WorldWideScience

Sample records for steep slope stability

  1. Percent Agricultural Land Cover on Steep Slopes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  2. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    Science.gov (United States)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  3. Assessing slope stability in unplanned settlements in developing countries.

    Science.gov (United States)

    Anderson, Malcolm G; Holcombe, Liz; Renaud, Jean-Philippe

    2007-10-01

    Unplanned housing in developing countries is often located on steep slopes. Frequently no building code is enforced for such housing and mains water is provided with no drainage provision. Both of these factors can be particularly significant in terms of landslide risk if, as is so often the case, such slopes lack any planned drainage provision. There is thus a need to develop a model that facilitates the assessment of slope stability in an holistic context, incorporating a wide range of factors (including surface cover, soil water topographic convergence, slope loading and point source water leakage) in order that appropriate advice can be given as to the general controls on slope stability in such circumstances. This paper outlines a model configured for this specific purpose and describes an application to a site in St. Lucia, West Indies, where there is active slope movement in an unplanned housing development on relatively steep topography. The model findings are in accord with the nature of the current failure at the site, provide guidance as to the significance of slope drainage and correspond to inferences drawn from an application of resistance envelope methods to the site. In being able to scenario test a uniquely wide range of combinations of factors, the model structure is shown to be highly valuable in assessing dominant slope stability process controls in such complex environments.

  4. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    Science.gov (United States)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  5. Interrill soil erosion processes on steep slopes

    Science.gov (United States)

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  6. 30 CFR 785.15 - Steep slope mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...

  7. Percent Agricultural Land Cover on Steep Slopes (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  8. Steep cut slope composting : field trials and evaluation.

    Science.gov (United States)

    2011-04-01

    Three different depths of compost and five compost retention techniques were tested to determine : their efficacy and cost effectiveness for increasing the establishment of native grass seedings and decreasing : erosion on steep roadside cut slopes i...

  9. Cooperative Three-Robot System for Traversing Steep Slopes

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  10. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    Science.gov (United States)

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could

  11. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    Science.gov (United States)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  12. Parametric study on the effect of rainfall pattern to slope stability

    Directory of Open Access Journals (Sweden)

    Hakim Sagitaningrum Fathiyah

    2017-01-01

    Full Text Available Landslide in Indonesia usually occurs during the rainy seasons. Previous studies showed that rainfall infiltration has a great effect on the factor of safety (FS of slopes. This research focused on the effect of rainfall pattern on the FS of unsaturated slope with different slope angle i.e.: 30°, 45°, and 60°. Three different rainfall patterns, which are normal, advanced, and delayed were considered in the analysis. The effects of low or high hydraulic conductivity of the soil are also observed. The analyses were conducted with SEEP/W for the seepage and SLOPE/W for the slope stability. It is found that the lowest FS for gentle slope is reached under the application of advanced rainfall pattern and the lowest FS for steep slope is reached under the application of delayed rainfall pattern. Reduction of FS is known to be the largest for gentle slope rather than steep slope due to negative pore water pressure reduction and the rising of ground water level. The largest FS reduction caused by rainfall was achieved for gentle slope under advanced rainfall pattern.

  13. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  14. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  15. Steep cut slope composting : field trials and evaluation : project summary report.

    Science.gov (United States)

    2011-04-01

    This project is a continuation of earlier work performed by Montana State University (Jennings et al. 2007) evaluating compost application on, and incorporation into, soils on steep cut slopes for the Montana Department of Transportation (MDT). The e...

  16. Green infrastructure in high-rise residential development on steep slopes in city of Vladivostok

    Science.gov (United States)

    Kopeva, Alla; Ivanova, Olga; Khrapko, Olga

    2018-03-01

    The purpose of this study is to identify the facilities of green infrastructure that are able to improve living conditions in an urban environment in high-rise residential apartments buildings on steep slopes in the city of Vladivostok. Based on the analysis of theoretical sources and practices that can be observed in the world, green infrastructure facilities have been identified. These facilities meet the criteria of the sustainable development concept, and can be used in the city of Vladivostok. They include green roofs, green walls, and greening of disturbed slopes. All the existing high-rise apartments buildings situated on steep slopes in the city of Vladivostok, have been studied. It is concluded that green infrastructure is necessary to be used in new projects connected with designing and constructing of residential apartments buildings on steep slopes, as well as when upgrading the projects that have already been implemented. That will help to regulate the ecological characteristics of the sites. The results of the research can become a basis for increasing the sustainability of the habitat, and will facilitate the adoption of decisions in the field of urban design and planning.

  17. Green infrastructure in high-rise residential development on steep slopes in city of Vladivostok

    Directory of Open Access Journals (Sweden)

    Kopeva Alla

    2018-01-01

    Full Text Available The purpose of this study is to identify the facilities of green infrastructure that are able to improve living conditions in an urban environment in high-rise residential apartments buildings on steep slopes in the city of Vladivostok. Based on the analysis of theoretical sources and practices that can be observed in the world, green infrastructure facilities have been identified. These facilities meet the criteria of the sustainable development concept, and can be used in the city of Vladivostok. They include green roofs, green walls, and greening of disturbed slopes. All the existing high-rise apartments buildings situated on steep slopes in the city of Vladivostok, have been studied. It is concluded that green infrastructure is necessary to be used in new projects connected with designing and constructing of residential apartments buildings on steep slopes, as well as when upgrading the projects that have already been implemented. That will help to regulate the ecological characteristics of the sites. The results of the research can become a basis for increasing the sustainability of the habitat, and will facilitate the adoption of decisions in the field of urban design and planning.

  18. Research on fast ecological restoration technology of high and steep rocky slope of highway

    Science.gov (United States)

    Qin, Xin

    2017-08-01

    Along with the development of the western region, the traffic construction in mountainous areas is booming. In the infrastructure, it produced a large number of secondary bare land. Soil erosion is serious. Based on the literature search and analysis of the domestic and international slope ecological restoration technology, this paper proposes a fast and efficient adaptive highway high steep rock slope ecological restoration technology (it has been authorized by the national patent). And it states the systemic structure, working principle and key construction technology. The ecological restoration technique combines the growth characteristics of the vegetation and the characteristics of the rock mass, which not only improves the survival rate of plants, but also stable slope. The results of this study make up for the shortcomings of the existing ecological restoration technology of slope. Compared with the prior art, which have obvious advantages and suitable for the ecological restoration of high steep rock slope.

  19. Influence of slope and gradation on rip rap stability and degradation mechanisms

    International Nuclear Information System (INIS)

    Lefebvre, G.; Rohan, K.; Belfahdel, M. B.

    1997-01-01

    A major investigation was undertaken at the La Grande hydroelectric complex with some 220 dikes and dams to study rip rap stability and repair. Degradation mechanisms were also studied under laboratory conditions to verify the main field study conclusions and to test different repair techniques. The result of both laboratory and field observation was that rip rap gradation has only marginal effect on slope stability and degradation mechanisms. On the other hand, the inclusion of even a small fraction of fine blocks (as little as 10 per cent) into the rip rap was shown to be very detrimental to the stability of steep rip rap but only marginally effective on flat slopes. 15 refs., 8 figs

  20. A Passive Dynamic Walking Model Based on Knee-Bend Behaviour: Stability and Adaptability for Walking down Steep Slopes

    Directory of Open Access Journals (Sweden)

    Kang An

    2013-10-01

    Full Text Available This paper presents a passive dynamic walking model based on knee-bend behaviour, which is inspired by the way human beings walk. The length and mass parameters of human beings are used in the walking model. The knee-bend mechanism of the stance leg is designed in the phase between knee-strike and heel-strike. q* which is the angular difference of the stance leg between the two events, knee-strike and knee-bend, is adjusted in order to find a stable walking motion. The results show that the stable periodic walking motion on a slope of r <0.4 can be found by adjusting q*. Furthermore, with a particular q* in the range of 0.12slope. The walking motion is more stable and adaptable than the conventional walking motion, especially for steep slopes.

  1. Impact of Crack on Stability of Slope with Linearly Increasing Undrained Strength

    Directory of Open Access Journals (Sweden)

    Bing Li

    2018-01-01

    Full Text Available This paper presents a procedure for assessment of the impact of tension crack on stability of slope in clays with linearly increasing undrained strength. The procedure is based on the limit equilibrium method with variational extremization. The distribution of the normal stress over slip surface is mathematically obtained for slopes in clays with the linearly increasing undrained strength and then used to determine the tension crack for clays with zero tensile strength. The seismic effect is also included using the pseudostatic approach. Closed-form solutions to the minimum safety factor and the maximum crack depth can be derived and given in the form of chart for convenient use. The results demonstrate a significant effect of the tension crack on the stability of steep slopes, especially for strong seismic conditions. In this situation, neglecting the impact of tension crack in traditional ϕ=0 analyses may overestimate the slope safety. The most adverse location of the tension crack can be also determined and presented in the charts, which may be useful in designing reinforcements and remedial measures for slope stabilization.

  2. Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities

    Directory of Open Access Journals (Sweden)

    F. Løvholt

    2013-06-01

    Full Text Available Tsunamis induced by rock slides plunging into fjords constitute a severe threat to local coastal communities. The rock slide impact may give rise to highly non-linear waves in the near field, and because the wave lengths are relatively short, frequency dispersion comes into play. Fjord systems are rugged with steep slopes, and modeling non-linear dispersive waves in this environment with simultaneous run-up is demanding. We have run an operational Boussinesq-type TVD (total variation diminishing model using different run-up formulations. Two different tests are considered, inundation on steep slopes and propagation in a trapezoidal channel. In addition, a set of Lagrangian models serves as reference models. Demanding test cases with solitary waves with amplitudes ranging from 0.1 to 0.5 were applied, and slopes were ranging from 10 to 50°. Different run-up formulations yielded clearly different accuracy and stability, and only some provided similar accuracy as the reference models. The test cases revealed that the model was prone to instabilities for large non-linearity and fine resolution. Some of the instabilities were linked with false breaking during the first positive inundation, which was not observed for the reference models. None of the models were able to handle the bore forming during drawdown, however. The instabilities are linked to short-crested undulations on the grid scale, and appear on fine resolution during inundation. As a consequence, convergence was not always obtained. It is reason to believe that the instability may be a general problem for Boussinesq models in fjords.

  3. A New Recursive Filtering Method of Terrestrial Laser Scanning Data to Preserve Ground Surface Information in Steep-Slope Areas

    Directory of Open Access Journals (Sweden)

    Mi-Kyeong Kim

    2017-11-01

    Full Text Available Landslides are one of the critical natural hazards that cause human, infrastructure, and economic losses. Risk of catastrophic losses due to landslides is significant given sprawled urban development near steep slopes and the increasing proximity of large populations to hilly areas. For reducing these losses, a high-resolution digital terrain model (DTM is an essential piece of data for a qualitative or a quantitative investigation of slopes that may lead to landslides. Data acquired by a terrestrial laser scanning (TLS, called a point cloud, has been widely used to generate a DTM, since a TLS is appropriate for detecting small- to large-scale ground features on steep slopes. For an accurate DTM, TLS data should be filtered to remove non-ground points, but most current algorithms for extracting ground points from a point cloud have been developed for airborne laser scanning (ALS data and not TLS data. Moreover, it is a challenging task to generate an accurate DTM from a steep-slope area by using existing algorithms. For these reasons, we developed an algorithm to automatically extract only ground points from the point clouds of steep terrains. Our methodology is focused on TLS datasets and utilizes the adaptive principal component analysis–triangular irregular network (PCA-TIN approach. Our method was applied to two test areas and the results showed that the algorithm can cope well with steep slopes, giving an accurate surface model compared to conventional algorithms. Total accuracy values of the generated DTMs in the form of root mean squared errors are 1.84 cm and 2.13 cm over the areas of 5252 m2 and 1378 m2, respectively. The slope-based adaptive PCA-TIN method demonstrates great potential for TLS-derived DTM construction in steep-slope landscapes.

  4. The Cs-137 technique applied to steep Mediterranean slopes (Part I) : the effects of lithology, slope morphology and land use

    NARCIS (Netherlands)

    de Meijer, R.J.; van der Graaf, E.R.

    2004-01-01

    Concentrations in the soil of anthropogenic and natural radionuclides have been investigated in order to assess the applicability of the Cs-137 technique in an area of typical Mediterranean steep slopes. This technique can be used to estimate net soil redistribution rates but its potential in areas

  5. The 137Cs technique applied to steep Mediterranean slopes (Part I): the effects of lithology, slope morphology and land use

    NARCIS (Netherlands)

    Schoorl, J.M.; Boix Fayos, C.; Meijer, de R.J.; Graaff, van der E.R.; Veldkamp, A.

    2004-01-01

    Concentrations in the soil of anthropogenic and natural radionuclides have been investigated in order to assess the applicability of the Cs-137 technique in an area of typical Mediterranean steep slopes. This technique can be used to estimate net soil redistribution rates but its potential in areas

  6. Tunnel field-effect transistor charge-trapping memory with steep subthreshold slope and large memory window

    Science.gov (United States)

    Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2018-04-01

    Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.

  7. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    Science.gov (United States)

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  8. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    Science.gov (United States)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  9. Investigations of slope stability

    Energy Technology Data Exchange (ETDEWEB)

    Nonveiller, E.

    1979-01-01

    The dynamics of slope slides and parameters for calculating slope stability is discussed. Two types of slides are outlined: rotation slide and translation slide. Slide dynamics are analyzed according to A. Heim. A calculation example of a slide which occurred at Vajont, Yugoslavia is presented. Calculation results differ from those presented by Ciabatti. For investigation of slope stability the calculation methods of A.W. Bishop (1955), N. Morgenstern and M. Maksimovic are discussed. 12 references

  10. Assessment of Slope Stability of Various Cut Slopes with Effects of Weathering by Using Slope Stability Probability Classification (SSPC)

    Science.gov (United States)

    Ersöz, Timur; Topal, Tamer

    2017-04-01

    Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering

  11. Erosion protection Phytoreinforcement of SCARP steep slopes of the holy virgin’s DITCH

    Directory of Open Access Journals (Sweden)

    Darchiya Valentina Ivanovna

    2015-09-01

    Full Text Available Erosion protection landscaping embedment of steep subsoil slopes is a time-sensitive issue of road construction and planning of recreational area that are often fit on a challenging picturesque terrain unsuitable for site development. The article provides the results of a 4-year experiment on landscaping and plant fixing of up to 4.5 m soil slopes with 1:1 and 2:1 grades; the experiment was carried out by the MGSU on the territory of a convent in the south of the Nizhniy Novgorod region. The site has slopes oriented towards all cardinals. At some places the slopes are bedimmed by trees. All these factors create a wide range of geo-ecological conditions for lawns. All the slopes are fixed with geo-fibrefill grids; slopes with 2:1 grade are strengthened by auxiliary grids made of reinforced metal bars, anchors and braces on the bottom of the Holy Moat. The paper recommends composition of grass plants as well as techniques to build up lawns suitable for various micro-climate conditions. It also advises the structure of multi-tier plant entity. The suggested methods are tested during a 3-year maintenance of slopes built for constant use.

  12. Preliminary Slope Stability Study Using Slope/ W

    International Nuclear Information System (INIS)

    Nazran Harun; Mohd Abd Wahab Yusof; Kamarudin Samuding; Mohd Muzamil Mohd Hashim; Nurul Fairuz Diyana Bahrudin

    2014-01-01

    Analyzing the stability of earth structures is the oldest type of numerical analysis in geotechnical engineering. Limit equilibrium types of analyses for assessing the stability of earth slopes have been in use in geotechnical engineering for many decades. Modern limit equilibrium software is making it possible to handle ever-increasing complexity within an analysis. It is being considered as the potential method in dealing with complex stratigraphy, highly irregular pore-water pressure conditions, various linear and nonlinear shear strength models and almost any kind of slip surface shape. It allows rapid decision making by providing an early indication of the potential suitability of sites based on slope stability analysis. Hence, a preliminary slope stability study has been developed to improve the capacity of Malaysian Nuclear Agency (Nuclear Malaysia) in assessing potential sites for Borehole Disposal for Disused Sealed Radioactive Sources. The results showed that geometry of cross section A-A ' , B-B ' , C-C ' and D-D ' achieved the factor of safety not less than 1.4 and these are deemed acceptable. (author)

  13. Assessment of slope stability and remedial measures around Gilgel ...

    African Journals Online (AJOL)

    A road constructed from Fofa town to Gilgel Gibe-II powerhouse in south-western Ethiopia passes through an extremely rugged terrain characterized by steep hill slopes and deep valleys. The present study has been carried out to identify potentially unstable slope sections and to work out proper remedial measures. In order ...

  14. Assessment of Submarine Slope Stability on the Continental Margin off SW Taiwan

    Science.gov (United States)

    Hsu, Huai-Houh; Dong, Jia-Jyun; Cheng, Win-Bin; Su, Chih-Chieh

    2017-04-01

    The abundant gas hydrate reservoirs are distributed in the southwest (SW) off Taiwan. To explore this new energy, geological methods were systematically used and mainly emphasized on the storage potential evaluation. On the other hand, the correlation between gas hydrate dissociation and submarine slope stability is also an important issue. In this study, three submarine profiles on the active and passive continental margin were selected and assessed their slope stabilities by considering two influence factors (seismic forces and number of sedimentary layers). The gravity corers obtained from these three sites (Xiaoliuqiu, Yuan-An Ridge, and Pointer Ridge) to conduct soil laboratory tests. The physical property tests and isotropically consolidated undrained (CIU) triaxial tests were carried out to establish reference properties and shear strength parameters. Before the stability analysis is performed, it is also necessary to construct the seabed profile. For each submarine profile, data from P-waves and from S-waves generated by P-S conversion on reflection from airgun shots recorded along one line of ocean bottom seismometers were used to construct 2-D velocity sections. The seabed strata could be simplified to be only one sedimentary layer or to be multilayer in accordance with the velocity structure profile. Results show the safety factors (FS) of stability analysis are obviously different in considering the number of sedimentary layers, especially for a very thin layer of sediments on a steep slope. The simplified strata condition which treated all seabed strata as only one sedimentary layer might result in the FS lower than 1 and the slope was in an unstable state. On the contrary, the FS could be higher than 10 in a multilayer condition.

  15. Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey

    Science.gov (United States)

    Akin, Mutluhan

    2013-03-01

    This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.

  16. Influence of slope steepness, foot position and turn phase on plantar pressure distribution during giant slalom alpine ski racing.

    Directory of Open Access Journals (Sweden)

    Thomas Falda-Buscaiot

    Full Text Available The purpose of this study was to investigate the evolution of ground reaction force during alpine skiing turns. Specifically, this study investigated how turn phases and slope steepness affected the whole foot normal GRF pattern while performing giant slalom turns in a race-like setting. Moreover, the outside foot was divided into different plantar regions to see whether those parameters affected the plantar pressure distribution. Eleven skiers performed one giant slalom course at race intensity. Runs were recorded synchronously using a video camera in the frontal plane and pressure insoles under both feet's plantar surface. Turns were divided according to kinematic criteria into four consecutive phases: initiation, steering1, steering2 and completion; both steering phases being separated by the gate passage. Component of the averaged Ground Reaction Force normal to the ski's surface([Formula: see text], /BW, and Pressure Time Integral relative to the entire foot surface (relPTI, % parameters were calculated for each turn phases based on plantar pressure data. Results indicated that [Formula: see text] under the total foot surface differed significantly depending on the slope (higher in steep sections vs. flat sections, and the turn phase (higher during steering2 vs. three other phases, although such modifications were observable only on the outside foot. Moreover, [Formula: see text] under the outside foot was significantly greater than under the inside foot.RelPTI under different foot regions of the outside foot revealed a global shift from forefoot loading during initiation phase, toward heel loading during steering2 phase, but this was dependent on the slope studied. These results suggest a differentiated role played by each foot in alpine skiing turns: the outside foot has an active role in the turning process, while the inside foot may only play a role in stability.

  17. The Hydromechanics of Vegetation for Slope Stabilization

    Science.gov (United States)

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  18. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.

    Directory of Open Access Journals (Sweden)

    F. Giadrossich

    2009-09-01

    Full Text Available The present paper deals with the root system's characteristics of Spanish Broom (Spartium junceum L., a species whose capacity for adaptating and resisting to drought is worth investigating. In particular, the aims of the study were 1 to investigate the plant's bio-mechanical aspects and 2 to verify whether root reinforcement and the field rooting ability of stem cuttings enhance its potential for use in slope stabilization and soil bio-engineering techniques, particularly in the Mediterranean areas. Single root specimens were sampled and tested for tensile strength, obtaining classic tensile strength-diameter relationships. Analysis were performed on the root systems in order to assess root density distribution. The Root Area Ratio (RAR was analyzed by taking both direct and indirect measurements, the latter relying on image processing. The data obtained were used to analyze the stability of an artificial slope (landfill and the root reinforcement. The measurement and calculation of mean root number, mean root diameter, RAR, root cohesion and Factor of safety are presented in order to distinguish the effect of plant origin and propagation. Furthermore, tests were performed to assess the possibility of agamic propagation (survival rate of root-ball endowed plants, rooting from stem cuttings. These tests confirmed that agamic propagation is difficult, even though roots were produced from some buried stems, and for practical purposes it has been ruled out. Our results show that Spanish Broom has good bio-mechanical characteristics with regard to slope stabilization, even in critical pedoclimatic conditions and where inclinations are quite steep, and it is effective on soil depths up to about 50 cm, in agreement with other studies on Mediterranean species. It is effective in slope stabilization, but less suitable for soil bio-engineering or for triggering natural plant succession.

  19. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: Implications for slope stability, Edmonds, Washington, USA

    Science.gov (United States)

    Biavati, G.; Godt, J.W.; McKenna, J.P.

    2006-01-01

    Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions

  20. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: implications for slope stability, Edmonds, Washington, USA

    Directory of Open Access Journals (Sweden)

    G. Biavati

    2006-01-01

    Full Text Available Shallow landslides on steep (>25° hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5 m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope

  1. Stability of Slopes Reinforced with Truncated Piles

    Directory of Open Access Journals (Sweden)

    Shu-Wei Sun

    2016-01-01

    Full Text Available Piles are extensively used as a means of slope stabilization. A novel engineering technique of truncated piles that are unlike traditional piles is introduced in this paper. A simplified numerical method is proposed to analyze the stability of slopes stabilized with truncated piles based on the shear strength reduction method. The influential factors, which include pile diameter, pile spacing, depth of truncation, and existence of a weak layer, are systematically investigated from a practical point of view. The results show that an optimum ratio exists between the depth of truncation and the pile length above a slip surface, below which truncating behavior has no influence on the piled slope stability. This optimum ratio is bigger for slopes stabilized with more flexible piles and piles with larger spacing. Besides, truncated piles are more suitable for slopes with a thin weak layer than homogenous slopes. In practical engineering, the piles could be truncated reasonably while ensuring the reinforcement effect. The truncated part of piles can be filled with the surrounding soil and compacted to reduce costs by using fewer materials.

  2. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  3. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    Science.gov (United States)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  4. Slope stability radar for monitoring mine walls

    Science.gov (United States)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  5. Coir geotextile for slope stabilization and cultivation - A case study in a highland region of Kerala, South India

    Science.gov (United States)

    Vishnudas, Subha; Savenije, Hubert H. G.; Van der Zaag, Pieter; Anil, K. R.

    A sloping field is not only vulnerable to soil erosion it may also suffer from soil moisture deficiency. Farmers that cultivate on slopes everywhere face similar problems. Conservation technologies may reduce soil and nutrient losses, and thus enhance water holding capacity and soil fertility. But although these technologies promote sustainable crop production on steep slopes, the construction of physical structure such as bench terraces are often labour intensive and expensive to the farmers, since construction and maintenance require high investments. Here we studied the efficiency of coir geotextile with and without crop cultivation in reducing soil moisture deficiency on marginal slopes in Kerala, India. From the results it is evident that the slopes treated with geotextile and crops have the highest moisture retention capacity followed by geotextiles alone, and that the control plot has the lowest moisture retention capacity. As the poor and marginal farmers occupy the highland region, this method provides an economically viable option for income generation and food security along with slope stabilization.

  6. Assessment and mapping of slope stability based on slope units: A ...

    Indian Academy of Sciences (India)

    Shallow landslide; infinite slope stability equation; return period precipitation; assessment; slope unit. ... 2010), logistic regression ... model to assess the hazard of shallow landslides ..... grating a fuzzy k-means classification and a Bayesian.

  7. Assessing deep-seated landslide susceptibility using 3-D groundwater and slope-stability analyses, southwestern Seattle, Washington

    Science.gov (United States)

    Brien, Dianne L.; Reid, Mark E.

    2008-01-01

    In Seattle, Washington, deep-seated landslides on bluffs along Puget Sound have historically caused extensive damage to land and structures. These large failures are controlled by three-dimensional (3-D) variations in strength and pore-water pressures. We assess the slope stability of part of southwestern Seattle using a 3-D limit-equilibrium analysis coupled with a 3-D groundwater flow model. Our analyses use a high-resolution digital elevation model (DEM) combined with assignment of strength and hydraulic properties based on geologic units. The hydrogeology of the Seattle area consists of a layer of permeable glacial outwash sand that overlies less permeable glacial lacustrine silty clay. Using a 3-D groundwater model, MODFLOW-2000, we simulate a water table above the less permeable units and calibrate the model to observed conditions. The simulated pore-pressure distribution is then used in a 3-D slope-stability analysis, SCOOPS, to quantify the stability of the coastal bluffs. For wet winter conditions, our analyses predict that the least stable areas are steep hillslopes above Puget Sound, where pore pressures are elevated in the outwash sand. Groundwater flow converges in coastal reentrants, resulting in elevated pore pressures and destabilization of slopes. Regions predicted to be least stable include the areas in or adjacent to three mapped historically active deep-seated landslides. The results of our 3-D analyses differ significantly from a slope map or results from one-dimensional (1-D) analyses.

  8. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    Directory of Open Access Journals (Sweden)

    Á. Török

    2018-02-01

    Full Text Available Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System was used to collect images which were processed by Pix4D mapper (structure from motion technology to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS with the use of seven ground control points. The obtained digital surface model (DSM was processed (vegetation removal and the derived digital terrain model (DTM allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method. Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE–WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS.

  9. The Influence of Flow and Bed Slope on Gas Transfer in Steep Streams and Their Implications for Evasion of CO2

    Science.gov (United States)

    Maurice, L.; Rawlins, B. G.; Farr, G.; Bell, R.; Gooddy, D. C.

    2017-11-01

    The evasion of greenhouse gases (including CO2, CH4, and N2O) from streams and rivers to the atmosphere is an important process in global biogeochemical cycles, but our understanding of gas transfer in steep (>10%) streams, and under varying flows, is limited. We investigated gas transfer using combined tracer injections of SF6 and salt. We used a novel experimental design in which we compared four very steep (18.4-29.4%) and four moderately steep (3.7-7.6%) streams and conducted tests in each stream under low flow conditions and during a high-discharge event. Most dissolved gas evaded over short distances ( 100 and 200-400 m, respectively), so accurate estimates of evasion fluxes will require sampling of dissolved gases at these scales to account for local sources. We calculated CO2 gas transfer coefficients (KCO2) and found statistically significant differences between larger KCO2 values for steeper (mean 0.465 min-1) streams compared to those with shallower slopes (mean 0.109 min-1). Variations in flow had an even greater influence. KCO2 was substantially larger under high (mean 0.497 min-1) compared to low flow conditions (mean 0.077 min-1). We developed a statistical model to predict KCO2 using values of streambed slope × discharge which accounted for 94% of the variation. We show that two models using slope and velocity developed by Raymond et al. (2012) for streams and rivers with shallower slopes also provide reasonable estimates of our CO2 gas transfer velocities (kCO2; m d-1). We developed a robust field protocol which could be applied in future studies.

  10. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their assigned...

  11. Slope stabilization guide for Minnesota local government engineers.

    Science.gov (United States)

    2017-06-01

    This user guide provides simple, costeffective methods for stabilizing locally maintained slopes along roadways in Minnesota. Eight slope stabilization techniques are presented that local government engineers can undertake using locally available ...

  12. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    International Nuclear Information System (INIS)

    Yu, L.; Batlle, F.

    2011-01-01

    Highlights: → A quasi-three-dimensional slope stability analysis method was proposed. → The proposed method is a good engineering tool for 3D slope stability analysis. → Factor of safety from 3D analysis is higher than from 2D analysis. → 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that

  13. Slope Stability. CEGS Programs Publication Number 15.

    Science.gov (United States)

    Pestrong, Raymond

    Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…

  14. An alternative soil nailing system for slope stabilization: Akarpiles

    Science.gov (United States)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  15. Stability of the slopes around nuclear power plants in earthquake

    International Nuclear Information System (INIS)

    Ito, Hiroshi

    1983-01-01

    The evaluation of the stability of the slopes around the buildings of nuclear power plants is important especially with respect to earthquakes. In this connection, the behavior of a slope up to its destruction and the phenomena of the destruction have been examined in the case of an earthquake by both experiment and numerical analysis. The purpose is to obtain the data for the establishment of a method for evaluating the seismic stability of a slope and of the slope design standards. The following results are described: the behavior of a slope and its destruction characteristics in the slope destruction experiment simulating the seismic coefficient method; the vibration of a slope and its destruction characteristics in vibration destruction experiment; the validity of the method of numerical simulation analysis and of stability evaluation for the slope destruction and the vibration destruction experiments, and quantitative destruction mechanism; the comparison of the various stability evaluation methods and the evaluation of seismic forces. (Mori, K.)

  16. A study of soil erosion on a steep cultivated slope in the Mt. Gongga region near Luding, Sichuan, China, using the 137Cs technique

    International Nuclear Information System (INIS)

    Zhang, X.B.; Wen, A.B.; Quine, T.A.; Walling, D.E.

    2000-01-01

    This paper reports the results of an investigation of soil erosion on a steep cultivated slope in the Mt Gongga region of the Upper Yangtze River Basin, Southwest China, using the 137 Cs technique. The effective 137 Cs reference inventory for the study field, estimated from the bottom layer of a 137 Cs depth profile at the deposition zones, is 2373.9 Bq/m2, accounting for 65.8% the local 137 Cs reference inventory of 3607.7 Bq/m2. It strongly indicates that a considerable amount of 137 Cs input was lost prior to incorporation into the ploughing layer from the study field during the nuclear weapons testing period because of 137 Cs surface enrichment. The average erosion rate is estimated to be 4914 t/km 2 yr for a typical cultivated steep slope with an angle of 34 deg at the subtropical zone in the Mt Gongga region. It can reach to 22856 t/km 2 yr for a failure slope under cultivation. (author)

  17. New possibilities for slope stability assessment of spoil banks

    Energy Technology Data Exchange (ETDEWEB)

    Radl, A [Palivovy Kombinat, Vresova (Czechoslovakia)

    1991-03-01

    Discusses problems associated with slope stability of spoil banks consisting of sedimentary rocks from brown coal surface mining. Effects of rock physical properties on slope stability are analyzed: grain size distribution, compression strength, moisture content, angle of internal friction, etc. Mechanism of plastic slope deformation which occurs during a landslide is evaluated. Formulae for calculating slope stability considering stress distribution in a spoil bank (including all the main factors that influence stresses) are derived. Practical use of the gamma-gamma logging and logging schemes used in geodetic surveys of unstable spoil banks in Czechoslovakia (the Vintirov spoil bank in the Sokolov brown coal district) are discussed. 5 refs.

  18. Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms

    Science.gov (United States)

    Matasci, Battista; Stock, Greg M.; Jaboyedoff, Michael; Carrea, Dario; Collins, Brian D.; Guérin, Antoine; Matasci, G.; Ravanel, L.

    2018-01-01

    Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.

  19. Probabilistic Analysis of Cut-Slope Stability for Tropical Red Clay of Depok, West Java as an Effect of Rainfall Duration and Intensity

    Directory of Open Access Journals (Sweden)

    Hakim Sagitaningrum Fathiyah

    2018-01-01

    Full Text Available Landslide in Indonesia, specifically in Java island, occurs during rainy seasons. In Java island, it is known that the tropical red clay has the ability to stand at steep angles, while in stability analysis due to rainfall, practitioners only consider the rise of groundwater table. Previous studies states that one of the factor affecting factor of safety (FS for tropical red clay slopes is the formation of saturated zones due to matric suction. This research studies the effect of rainfall intensity and duration to FS of cut-slopes as parametric study with probabilistic analysis for different height of 10m, 20m, and 30m also slope angles of 27°, 45°, 55°, and 70°. Rainfall parameter are taken from FTUI rainfall station for advanced pattern and three-days duration of rain. Analysis of seepage uses SEEP/W and slope stability uses SLOPE/W. It is known that the significant increase of probability of failure due to the three-days rainfall is achieved at the 10m height and 70°-angled slope. Increase of the probability of failure is mainly due to rainfall infiltration which saturates the surface and pore water pressure increase until certain time where infiltration stops and turn into surface run-off.

  20. Infiltration on sloping terrain and its role on runoff generation and slope stability

    Science.gov (United States)

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  1. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    Science.gov (United States)

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  2. A New European Slope Length and Steepness Factor (LS-Factor for Modeling Soil Erosion by Water

    Directory of Open Access Journals (Sweden)

    Panos Panagos

    2015-04-01

    Full Text Available The Universal Soil Loss Equation (USLE model is the most frequently used model for soil erosion risk estimation. Among the six input layers, the combined slope length and slope angle (LS-factor has the greatest influence on soil loss at the European scale. The S-factor measures the effect of slope steepness, and the L-factor defines the impact of slope length. The combined LS-factor describes the effect of topography on soil erosion. The European Soil Data Centre (ESDAC developed a new pan-European high-resolution soil erosion assessment to achieve a better understanding of the spatial and temporal patterns of soil erosion in Europe. The LS-calculation was performed using the original equation proposed by Desmet and Govers (1996 and implemented using the System for Automated Geoscientific Analyses (SAGA, which incorporates a multiple flow algorithm and contributes to a precise estimation of flow accumulation. The LS-factor dataset was calculated using a high-resolution (25 m Digital Elevation Model (DEM for the whole European Union, resulting in an improved delineation of areas at risk of soil erosion as compared to lower-resolution datasets. This combined approach of using GIS software tools with high-resolution DEMs has been successfully applied in regional assessments in the past, and is now being applied for first time at the European scale.

  3. Stability Analysis of Tunnel-Slope Coupling Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2015-07-01

    Full Text Available Subjects in tunnels, being constrained by terrain and routes, entrances and exits to tunnels, usually stay in the terrain with slopes. Thus, it is necessary to carry out stability analysis by treating the tunnel slope as an entity. In this study, based on the Janbu slices method, a model for the calculation of the stability of the original slope-tunnel-bank slope is established. The genetic algorithm is used to implement calculation variables, safety coefficient expression and fitness function design. The stability of the original slope-tunnel-bank slope under different conditions is calculated, after utilizing the secondary development function of the mathematical tool MATLAB for programming. We found that the bearing capacity of the original slopes is reduced as the tunnels are excavated and the safety coefficient is gradually decreased as loads of the embankment construction increased. After the embankment was constructed, the safety coefficient was 1.38, which is larger than the 1.3 value specified by China’s standards. Thus, the original slope-tunnel-bank slope would remain in a stable state.

  4. Robustness for slope stability modelling under deep uncertainty

    Science.gov (United States)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  5. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    Science.gov (United States)

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  6. On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows

    Science.gov (United States)

    Ye, Z. J.; Garratt, J. R.; Segal, M.; Pielke, R. A.

    1990-04-01

    The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso-β domains (i.e., 20 200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.

  7. A simplified approach for slope stability analysis of uncontrolled waste dumps.

    Science.gov (United States)

    Turer, Dilek; Turer, Ahmet

    2011-02-01

    Slope stability analysis of municipal solid waste has always been problematic because of the heterogeneous nature of the waste materials. The requirement for large testing equipment in order to obtain representative samples has identified the need for simplified approaches to obtain the unit weight and shear strength parameters of the waste. In the present study, two of the most recently published approaches for determining the unit weight and shear strength parameters of the waste have been incorporated into a slope stability analysis using the Bishop method to prepare slope stability charts. The slope stability charts were prepared for uncontrolled waste dumps having no liner and leachate collection systems with pore pressure ratios of 0, 0.1, 0.2, 0.3, 0.4 and 0.5, considering the most critical slip surface passing through the toe of the slope. As the proposed slope stability charts were prepared by considering the change in unit weight as a function of height, they reflect field conditions better than accepting a constant unit weight approach in the stability analysis. They also streamline the selection of slope or height as a function of the desired factor of safety.

  8. Coupling a 1D Dual-permeability Model with an Infinite Slope Stability Approach to Quantify the Influence of Preferential Flow on Slope Stability

    NARCIS (Netherlands)

    Shao, W.; Bogaard, T.A.; Su, Y.; Bakker, M.

    2016-01-01

    In this study, a 1D hydro-mechanical model was developed by coupling a dual-permeability model with an infinite slope stability approach to investigate the influence of preferential flow on pressure propagation and slope stability. The dual-permeability model used two modified Darcy-Richards

  9. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    Directory of Open Access Journals (Sweden)

    Gofar Nurly

    2017-01-01

    Full Text Available This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–pore-water pressure analysis to evaluate the effect of rainfall infiltration on the deformation and transient pore-water pressure on slope stability. Slope stability analyses were performed at some times during and after rainfall infiltration. Results show that the critical condition for slope made by sandy material was at the end of rainfall while for clayey material was at some specified times after the rainfall ceased. Unsaturated stability analysis on sandy soil gives higher factor of safety because the soil never reached saturation. Transient analysis using unsaturated soil concept could predict more critical condition of delayed failure of slopes made up of clayey soil.

  10. Geology and Slope Stability Analysis using Markland Method on Road Segment of Piyungan – Patuk, Sleman and Gunungkidul Regencies, Yogyakarta Special Region, Indonesia

    Directory of Open Access Journals (Sweden)

    B. N. Kresna Citrabhuwana

    2016-06-01

    Full Text Available Road segment of Piyungan - Patuk is a part of Yogyakarta - Wonosari highway, fairly dense traversed by vehicles, from bicycles to buses and trucks. This road crosses hilly topography, causing its sides bounded by quite steep slopes or cliffs. Steep slopes and cliffs are potential to create mass movement. Geologic condition of the surrounding area is built of various volcanic lithology such as breccia, siltstone, sandstone and tuff. There are also geologic structures of joints and faults that affect the stability of the slopes around this road. Slope stability analysis for road segment of Piyungan – Patuk was conducted by applying Markland method. Laboratory testings were done to determine the mechanical and physical properties of rocks that influence the slope strength. Results of the testings show that cohesion and friction angle of volcanic breccia are c = 20.0441 kg/cm2 and  = 56.38˚; cohesion and friction angle of sandstone are cr = 0.6862 kg/cm2, cp = 4.6037 kg/cm2, r = 26.37˚, and p = 32.79˚; cohesion and friction angle of tuff is cr = 1.677 kg/cm2, cp = 7.5553 kg/cm2, r = 17.85˚, and p = 24.19˚. Based on the analysis, some slopes in the study area are potential to move. The movements can be classified into rock fall, debris fall, and rock slides with the sliding plane categorized as planar and wedge. On the other hand, landslide prone zones in the study area can be divided into: Areas with high vulnerability, Areas with moderate vulnerability, and Areas with low vulnerability. Areas prone to landslide should be managed by a series of measures, among others understand natural phenomena, recognizing symptoms of avalanche, attempting to reduce the risk, and land use regulation. The management activities should involve all stakeholders in an integrated manner of implementation.

  11. Slope stability probability classification, Waikato Coal Measures, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, P.; Gillard, G.R.; Moore, T.A. [CRL Energy, PO Box 29-415, Christchurch (New Zealand); Campbell, R.N.; Fergusson, D.A. [Solid Energy North, Private Bag 502, Huntly (New Zealand)

    2001-01-01

    Ferm classified lithological units have been identified and described in the Waikato Coal Measures in open pits in the Waikato coal region. These lithological units have been classified geotechnically by mechanical tests and discontinuity measurements. Using these measurements slope stability probability classifications (SSPC) have been quantified based on an adaptation of Hack's [Slope Stability Probability Classification, ITC Delft Publication, Enschede, Netherlands, vol. 43, 1998, 273 pp.] SSPC system, which places less influence on rock quality designation and unconfined compressive strength than previous slope/rock mass rating systems. The Hack weathering susceptibility rating has been modified by using chemical index of alteration values determined from XRF major element analyses. Slaking is an important parameter in slope stability in the Waikato Coal Measures lithologies and hence, a non-subjective method of assessing slaking in relation to the chemical index of alteration has been introduced. Another major component of this adapted SSPC system is the inclusion of rock moisture content effects on slope stability. The main modifications of Hack's SSPC system are the introduction of rock intact strength derived from the modified Mohr-Coulomb failure criterion, which has been adapted for varying moisture content, weathering state and confining pressure. It is suggested that the subjectivity in assessing intact rock strength within broad bands in the initial SSPC system is a major weakness of the initial system. Initial results indicate a close relationship between rock mass strength values, calculated from rock mass friction angles and rock mass cohesion values derived from two established rock mass classification methods (modified Hoek-Brown failure criteria and MRMR) and the adapted SSPC system. The advantage of the modified SSPC system is that slope stability probabilities based on discontinuity-independent and discontinuity-dependent data and a

  12. The possible influence of terracettes on surface hydrology of steep-sloping and subalpine environments

    Science.gov (United States)

    Greenwood, Philip; Kuonen, Samuel; Fister, Wolfgang; Kuhn, Nikolaus

    2015-04-01

    could provide temporary storage for runoff-associated substances. Greater understanding of the exact influence of terracettes on surface hydrology in steep-sloping and subalpine environments could benefit the future management of grazing and rangelands in such areas.

  13. Dynamic stability and failure modes of slopes in discontinuous rock mass

    International Nuclear Information System (INIS)

    Shimizu, Yasuhiro; Aydan, O.; Ichikawa, Yasuaki; Kawamoto, Toshikazu.

    1988-01-01

    The stability of rock slopes during earthquakes are of great concern in rock engineering works such as highway, dam, and nuclear power station constructions. As rock mass in nature is usually discontinuous, the stability of rock slopes will be geverned by the spatial distribution of discontinuities in relation with the geometry of slope and their mechanical properties rather than the rock element. The authors have carried out some model tests on discontinuous rock slopes using three different model tests techniques in order to investigate the dynamic behaviour and failure modes of the slopes in discontinuous rock mass. This paper describes the findings and observations made on model rock slopes with various discontinuity patterns and slope geometry. In addition some stability criterions are developed and the calculated results are compared with those of experiments. (author)

  14. On Front Slope Stability of Berm Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    2013-01-01

    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...

  15. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

    Science.gov (United States)

    Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  16. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Science.gov (United States)

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  17. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Directory of Open Access Journals (Sweden)

    Roohollah Kalatehjari

    2014-01-01

    Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  18. Numerical computation of homogeneous slope stability.

    Science.gov (United States)

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  19. Heterogeneous Landscapes on Steep Slopes at Low Altitudes as Hotspots of Bird Diversity in a Hilly Region of Nepal in the Central Himalayas

    Czech Academy of Sciences Publication Activity Database

    Basnet, T. B.; Rokaya, Maan Bahadur; Bhattarai, B. P.; Münzbergová, Zuzana

    2016-01-01

    Roč. 11, č. 3 (2016), s. 1-19, č. článku e0150498. E-ISSN 1932-6203 R&D Projects: GA ČR GP13-10850P Institutional support: RVO:67985939 Keywords : bird diversity * steep slopes * altitude Subject RIV: EF - Botanics Impact factor: 2.806, year: 2016

  20. A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor.

    Science.gov (United States)

    Vitale, Wolfgang A; Casu, Emanuele A; Biswas, Arnab; Rosca, Teodor; Alper, Cem; Krammer, Anna; Luong, Gia V; Zhao, Qing-T; Mantl, Siegfried; Schüler, Andreas; Ionescu, A M

    2017-03-23

    Steep-slope transistors allow to scale down the supply voltage and the energy per computed bit of information as compared to conventional field-effect transistors (FETs), due to their sub-60 mV/decade subthreshold swing at room temperature. Currently pursued approaches to achieve such a subthermionic subthreshold swing consist in alternative carrier injection mechanisms, like quantum mechanical band-to-band tunneling (BTBT) in Tunnel FETs or abrupt phase-change in metal-insulator transition (MIT) devices. The strengths of the BTBT and MIT have been combined in a hybrid device architecture called phase-change tunnel FET (PC-TFET), in which the abrupt MIT in vanadium dioxide (VO 2 ) lowers the subthreshold swing of strained-silicon nanowire TFETs. In this work, we demonstrate that the principle underlying the low swing in the PC-TFET relates to a sub-unity body factor achieved by an internal differential gate voltage amplification. We study the effect of temperature on the switching ratio and the swing of the PC-TFET, reporting values as low as 4.0 mV/decade at 25 °C, 7.8 mV/decade at 45 °C. We discuss how the unique characteristics of the PC-TFET open new perspectives, beyond FETs and other steep-slope transistors, for low power electronics, analog circuits and neuromorphic computing.

  1. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    Science.gov (United States)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  2. A more general model for the analysis of the rock slope stability

    Indian Academy of Sciences (India)

    slope stability analysis, the joint surfaces are assumed to be continuous along the potential ... of rock slope stability has many applications in the design of rock slopes, roofs and walls of .... cases the wedge failure analysis can be applied.

  3. Numerical Computation of Homogeneous Slope Stability

    Directory of Open Access Journals (Sweden)

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  4. Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China

    Science.gov (United States)

    GAO, X.

    2017-12-01

    China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.

  5. Slope Stability of Geosynthetic Clay Liner Test Plots

    Science.gov (United States)

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  6. Effects of topographic data quality on estimates of shallow slope stability using different regolith depth models

    Science.gov (United States)

    Baum, Rex L.

    2017-01-01

    Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.

  7. A new design equation for drained stability of conical slopes in cohesive-frictional soils

    Directory of Open Access Journals (Sweden)

    Boonchai Ukritchon

    2018-04-01

    Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils

  8. Influences of geological parameters to probabilistic assessment of slope stability of embankment

    Science.gov (United States)

    Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr

    2018-04-01

    This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.

  9. Research on the stability evaluation of slope

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to create the guideline corresponding to a new regulatory standard, such as criteria in the ground-slope stability evaluation method, we have conducted an analysis and discussion of the shaking table test results using a large slope model. As a result, it was found that in that phase of the vertical motion and the horizontal motion affects the amplification characteristics of the ground motion, need to be considered in assessing the safety of the slope and the influence of the phase difference amplification or local. We also conduct a study on countermeasure construction slope by shaking table test, the effect of the countermeasure construction of pile and anchors deterrence could be confirmed. Focusing on the new method can reproduce the behavior of large deformation and discontinuity, with respect to the advancement of slope analysis, we identify issues on the maintenance and code applicability of each analysis method. (author)

  10. Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency

    Science.gov (United States)

    Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.

    2018-01-01

    Slope is a part of soil topography formed due to elevation difference from two soil surface. Landslides is frequently occur in natural slope, it is because shear force is greater than shear strength in the soil. There are some factor that influence slope stability such as: rain dissipation, vibration from earthquake, construction and crack in the soil. Slope instability can cause risk in human activity or even threaten human lives. Every years in rainy season, landslides always occur in Indonesia. In 2016, there was some landslide occurred in Bali. One of the most damaging is landslide in Petang district, Badung regency. This landslide caused main road closed entirely. In order to overcome and prevent landslide, a lot of method have been practiced and still looking for more sophisticated method for forecasting slope stability. One of the method to strengthen soil stability is filling the soil pores with some certain material. Cement is one of the material that can be used to fill the soil pores because when it is in liquid form, it can infiltrate into soil pores and fill the gap between soil particles. And after it dry, it can formed a bond with soil particle so that soil become stronger and the slope as well. In this study, it will use experimental method, slope model in laboratory to simulate a real slope behavior in the field. The first model is the slope without any addition of cement. This model will be become a benchmark for the other models. The second model is a slope with improved soil that injects the slope with cement. Injection of cement is done with varying interval distance of injection point is 5 cm and 10 cm. Each slope model will be given a load until the slope collapses. The slope model will also be analyzed with slope stability program. The test results on the improved slope models will be compared with unimproved slope. In the initial test will consist of 3 model. First model is soil without improvement or cement injection, second model is soil

  11. Effect of variations in rainfall intensity on slope stability in Singapore

    Directory of Open Access Journals (Sweden)

    Christofer Kristo

    2017-12-01

    Full Text Available Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 were obtained and analysed by duration using linear regression. A general increasing trend was observed in both weather stations, with a possible shift to longer duration rainfall events, despite being statistically insignificant according to the Mann-Kendall test. Using the derived trends, projected rainfall intensities in 2050 and 2100 were used in the seepage and slope stability analyses performed on a typical residual soil slope in Singapore. A significant reduction in factor of safety was observed in the next 50 years, with only a marginal decrease in factor of safety in the subsequent 50 years. This indicates a possible detrimental effect of variations in rainfall patterns on slope stability in Singapore, especially in the next 50 years. The statistical analyses on rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 indicated that rainfall intensity tend to increase over the years, with a possible shift to longer duration rainfall events in the future. The stability analyses showed a significant decrease in factor of safety from 2003 to 2050 due to increase in rainfall intensity, suggesting that a climate change might have existed beyond 2009 with possibly detrimental effects to slope stability. Keywords: Climate change, Rainfall, Seepage, Slope stability

  12. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    Science.gov (United States)

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  13. Stability calculation method of slope reinforced by prestressed anchor in process of excavation.

    Science.gov (United States)

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.

  14. Physical Analysis Work for Slope Stability at Shah Alam, Selangor

    Science.gov (United States)

    Ishak, M. F.; Zaini, M. S. I.

    2018-04-01

    Slope stability analysis is performed to assess the equilibrium conditions and the safe design of a human-made or natural slope to find the endangered areas. Investigation of potential failure and determination of the slope sensitivity with regard to safety, reliability and economics were parts of this study. Ground anchor is designed to support a structure in this study. Ground anchor were implemented at the Mechanically Stabilized Earth (MSE) wall along Anak Persiaran Jubli Perak to overcome the further cracking of pavement parking, concrete deck and building of the Apartments. A result from the laboratory testing of soil sample such as index test and shear strength test were applied to the Slope/W software with regard to the ground anchors that were implemented. The ground anchors were implemented to increase the value of the factor of safety (FOS) of the MSE Wall. The value of the factor of safety (FOS) before implementing the ground anchor was 0.800 and after the ground anchor was implemented the value increase to 1.555. The increase percentage of factor of safety by implementing on stability of slope was 94.38%.

  15. Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison

    Science.gov (United States)

    Wang, Yan; Stewart, Andrew L.

    2018-01-01

    Mesoscale eddies are ubiquitous in the ocean and play a key role in exchanges across continental slopes. In this study the properties of wind-driven baroclinic turbulence are investigated using eddy-resolving process simulations, focusing on the case of retrograde winds that arises around the margins of the subtropical gyres. In contrast to a flat-bottomed ocean, over steep slopes eddies develop from baroclinic instabilities are confined to the top few hundred meters. Deeper in the water column baroclinic instability and vertical momentum transfer are suppressed, so wind-input momentum is exported toward the open ocean by eddies before traversing down to the ocean bed. Close to the sloping topography, eddy energy sourced from the upper ocean is converted to potential energy, steepening isopycnals and driving bottom-trapped prograde flows. This process is associated with upgradient lateral buoyancy fluxes and downgradient isopycnal potential vorticity fluxes, and cannot be reproduced via linear stability calculations. These properties of wind-driven shelf/slope turbulence are contrasted against simulations with flat bathymetry. The key differences described above hinge on the flow close to the steep topographic slope, which may be sensitive to the model's vertical coordinate system. The simulations are therefore replicated using models that employ geopotential coordinates, terrain-following coordinates, and isopycnal coordinates. Quantitative inter-model discrepancies in the momentum and energy budgets are much more pronounced in the presence of a steep bottom slope. However, the key findings of this study are consistent across the models, suggesting that they are robust and warrant incorporation into parameterizations of eddy transfer across continental slopes.

  16. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.

    Science.gov (United States)

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-03-15

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.

  17. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  18. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    OpenAIRE

    Gofar Nurly; Rahardjo Harianto

    2017-01-01

    This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–...

  19. Steep microbial boundstone-dominated plaform margins

    NARCIS (Netherlands)

    Kenter, J.A.M.; Harris, P.M.; Della Porta, G.P.

    2005-01-01

    Seaward progradation of several kilometers has been documented mostly for leeward margin low-angle carbonate slope systems with a dominant platform top sediment source. However, steep and high-relief margins fronting deep basins can also prograde and as such are somewhat perplexing. Characteristics

  20. Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration

    Science.gov (United States)

    Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.

    2017-01-01

    Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.

  1. Postural Stability Margins as a Function of Support Surface Slopes.

    Science.gov (United States)

    Dutt-Mazumder, Aviroop; Slobounov, Seymon M; Challis, John Henry; Newell, Karl Maxim

    2016-01-01

    This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length) had least motion at the baseline (0° Flat) platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy) as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  2. Delay-slope-dependent stability results of recurrent neural networks.

    Science.gov (United States)

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  3. Investigation on the water retention curve of loose pyroclastic ashes of Campania (Italy) and its potential implications on slope stability

    Science.gov (United States)

    Comegna, Luca; Damiano, Emilia; Greco, Roberto; Olivares, Lucio; Piccolo, Marco; Picarelli, Luciano

    2017-04-01

    Loose pyroclastic soils in Campania cover a large amount of steep slopes in the area surrounding the volcanic complex of Somma-Vesuvius. The stability of such slopes is assured by the contribution of suction to soil shear strength, which decreases during rainy periods till the possible attainment of a failure condition. The resulting landslide may evolve in form of a fast flow, if at the onset of instability the soil is nearly saturated and undrained conditions establish, so that soil liquefaction arises. The attainment of instability near saturation is not uncommon, as it requires the slope to have an inclination close to the friction angle of the soil constituting the deposit. The pyroclastic ashes of Campania are typically silty sands with friction angle between 36° and 38°, and small or even null cohesion. Many of the flow-like landslides, occurred during the last decades, were indeed triggered along slopes with inclination around 40°, which are quite common in Campania. As a suction of few kPa may be enough to guarantee the stability of a slope, knowledge of the water retention curve of the soil constituting the deposit is mandatory to correctly predict soil conditions at failure. Several studies report that the pyroclastic ashes of Campania exhibit a quite complex water retention behavior, showing a bimodal porosity distribution and, in some cases, a marked hysteresis domain, possibly enhanced by air entrapment during the infiltration of steep wetting fronts. In this study, a series of vertical infiltration and evaporation cycles have been carried out over two reconstituted specimens, both 20cm high, of pyroclastic ashes collected at the slope of Cervinara. TDR probes and minitensiometers were buried at various depths to provide coupled measurements of soil water content and suction. In order to highlight the possible hysteretic effects due to air entrapment, different hydraulic boundary conditions were established at the base of the two specimens: in one

  4. Using three-dimensional plant root architecture in models of shallow-slope stability.

    Science.gov (United States)

    Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia

    2008-05-01

    The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.

  5. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    International Nuclear Information System (INIS)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-01-01

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area

  6. Slope stability probability classification, Waikato Coal Measures, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, P.; Campbell, R.; Fergusson, D.A.; Ferm, J.C.; Gillard, G.R.; Moore, T.A. [CRL Energy Ltd., Christchurch (New Zealand)

    1999-07-01

    Ferm classified lithological units have been identified and described in the Waikato Coal Measures in open pits in the Waikato coal region. These lithological units have been classified geotechnically with mechanical tests and discontinuity measurements. Using these measurements, slope stability probability classification (SSPC) have been quantified based on an adaption of Hack's SSPC system which places less influence on rock quality designation and unconfined compressive strength than previous rock mass rating systems. An attempt has been made to modify the Hack weathering susceptibility rating by using chemical index of alteration values from XRF major element analysis. Another major component of this adapted SSPC system is the inclusion of rock moisture content effects on slope stability. The paper explains the systematic initial approach of using the adapted SSPC system to classify slope stability in the Waikato open pit coal mines. The XRF major element results obtained for lithologies in the Waikato coal region may be a useful mine management tool to quantify stratigraphic thickness and palaeoweathering from wash drill cuttings. 14 refs., 7 figs., 3 tabs.

  7. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    Directory of Open Access Journals (Sweden)

    Rahardjo Harianto

    2016-01-01

    Full Text Available Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in designing a slope repair or slope failure preventive measure. In this study, the historical rainfall data were analyzed and investigated to understand the characteristics of rainfall in Singapore. The frequency distribution method was used to estimate future rainfall characteristics in Singapore. New intensity-duration-frequency (IDF curves for rainfall in Singapore were developed for six different durations (10, 20, 30 min and 1, 2 and 24 h and six frequencies (2, 5, 10, 25, 50 and 100 years. The new IDF curves were used in the seepage and slope stability analyses to determine the variation of factor of safety of residual soil slopes under different rainfall intensities in Singapore.

  8. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability

    Science.gov (United States)

    Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto

    2013-06-01

    In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.

  9. Numerical Modeling of Infragravity Wave Runup on Steep and Mildly Sloping Natural Beaches

    Science.gov (United States)

    Fiedler, J. W.; Smit, P.; Brodie, K. L.; McNinch, J.; Guza, R. T.; Gallien, T.

    2016-12-01

    We present ongoing work which aims to validate the non-hydrostatic model SWASH for wave runup and infragravity waves generated by a range of different incident wave spectra at the offshore boundary, including the effect of finite directional spread. Flume studies of wave runup are limited to normally incident (1D) sea and infragravity waves, but natural waves are directionally spread (2D), with substantially different dynamics from 1D. For example, refractive trapping (edge waves) is only possible with 2D waves, and the bound infragravity wave response to short wave groups is highly amplified for the special case of normal incidence. Selected case studies are modeled at Agate Beach, Oregon, a low slope (1:80) beach with maximum offshore wave heights greater than 7m, and Cardiff, California, a steep (1:8) beach with maximum wave heights of 2m. Peak periods ranged between 5-20 s at both sites. On both beaches, waves were measured on a transect from approximately 10m depth to the runup, using pressure sensors, current meters, and a scanning lidar. Bulk short wave quantities, wave runup, infragravity frequency spectra and energy fluxes are compared with SWASH. On the low slope beach with energetic incident waves, the observed horizontal runup excursions reach 140m ( 100s periods). Swash front velocities reached up to several m/s, causing short waves to stack up during runup drawdown. On reversal of the infragravity phase, the stacked short waves are swept onshore with the long wave front, effectively enhancing runup by phase coupling long and short waves. Statistical variability and nonlinearity in swash generation lead to time-varying runup heights. Here, we test these observations with 2D SWASH, as well as the sensitivity of modeled runup to the parameterization of bottom friction.

  10. Postural Stability Margins as a Function of Support Surface Slopes.

    Directory of Open Access Journals (Sweden)

    Aviroop Dutt-Mazumder

    Full Text Available This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe Down, 0° Flat and 10°, 20°, 25° Facing (Toe Up and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length had least motion at the baseline (0° Flat platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  11. Slope Stability Estimation of the Kościuszko Mound in Cracow

    Science.gov (United States)

    Wrana, Bogumił; Pietrzak, Natalia

    2015-06-01

    In the paper, the slope stability problem of the Kościuszko Mound in Cracow, Poland is considered. The slope stability analysis was performed using Plaxis FEM program. The outer surface of the mound has complex geometry. The slope of the cone is not uniform in all directions, on the surface of the cone are pedestrian paths. Due to its complicated geometry it was impossible to do computing by Plaxis input pre-procesor. The initial element mesh was generated using Autodesk Autocad 3D and next it was updated by Plaxis program. The soil parameters were adopted in accordance with the detailed geological soil testing performed in 2012. Calculating model includes geogrids. The upper part was covered by MacMat geogrid, while the lower part of the Mound was reinforced using Terramesh Matt geogrid. The slope analysis was performed by successives reduction of φ /c parameters. The total multiplayer ΣMsf is used to define the value of the soil strength parameters. The article presents the results of slope stability before and after the rainfall during 33 days of precipitation in flood of 2010.

  12. Quantification of Urban Environment's Role in Slope Stability for Landslide Events.

    Science.gov (United States)

    Bozzolan, E.; Holcombe, E.; Wagener, T.; Pianosi, F.

    2017-12-01

    The combination of a rapid and unplanned urban development with a likely future climate change could significantly affect landslide occurrences in the humid tropics, where rainfall events of high intensity and duration are the dominant trigger for landslide risk. The attention of current landslide hazard studies is largely focussed on natural slope processes based on combinations of environmental factors, excluding the role of urbanisation on slope stability. This project aims to understand the relative influence of urbanisation features on local slope stability and to translate the findings to a wider region. Individual slopes are firstly analysed with the software CHASM, a physically based model which combines soil hydrology and slope stability assessment. Instead of relying on existing records, generally lacking for landslides, ranges of plausible preparatory (such as slope, cohesion, friction angles), triggering (rainfall) and aggravating factors (deforestation, house density and water network) are defined and possible combinations of these factors are created by sampling from those ranges. The influence of urban features on site hydrology and stability mechanisms are evaluated and then implemented in denser urban contexts, characteristic of unplanned settlements. The results of CHASMS can be transferred to regional maps in order to identify the areas belonging to the triggering combinations of factors previously found. In this way, areas susceptible to landslides can be detected not only in terms of natural factors but also in relation to the degree of urbanisation. Realistic scenarios can be extrapolated from the areas considered and then analysed again with CHASM. This permits to adapt (and improve) the initial variability ranges of the factors, creating a general-specific cycle able to identify the landslide susceptibility regions and outline a hazard map. Once the triggers are understood, possible consequences can be assessed and mitigation strategies can

  13. How steep are the Alps?

    Science.gov (United States)

    Robl, Jörg; Prasicek, Günther; Stüwe, Kurt; Hergarten, Stefan

    2014-05-01

    The topography of the European Alps reflects continental collision, crustal thickening and buoyancy driven surface uplift, overprinted by erosional processes. Topographic gradients generally steepen from the valley floors up to about 1500 m - 2000 m followed by an unexpected decrease in slope up to about 2900 m and a further increase to the highest summits of the range. Several studies have interpreted this pattern and the accompanied maximum in the hypsometric curve in terms of either the critical slope stability angle, the prematurity of the Alps caused by recent tectonic uplift, or the effect of the glacial "buzz saw" related to the Pleistocene glaciation cycles. There is consensus that the lithological inventory represents a first order parameter for the steepness of fluvial channels and the angle of hillslopes in steady state and that the response time of a transient landscape is controlled by lithology. In this study we systematically explore the slope-elevation distributions for several hundred continuous domains of the major structural units of the Alps. For this, we apply a novel numerical code to determine the predominant cause for the observed peculiar topography. We compare adjacent alpine domains with contrasting lithology to explore lithological effects on the limiting slope stability angle. We analyze domains with different lithology in the non-glaciated parts of the orogen to highlight the state of maturity related to a recent uplift event. We evaluate the glacial effects on the landscape by the comparison of areas belonging to the same structural units but affected by a variable amount of glacial imprint. The results show that lithology has a major impact on the morphometric characteristics of the European Alps. Adjacent but different structural units show a significant variability in their slope-elevation distributions although they have experienced the same uplift history and the same amount of glacial imprint. This suggests that the response

  14. Some considerations on the seismic stability of large slopes surrounding the nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Watanabe, Hiroyuki

    1982-01-01

    As a series of the research on the seismic stabilities of a large scale slope surrounding the Nuclear Power Plant, the numerical simulation and analytical stability calculation are conducted in order to clarify the applicability of static stability evaluation method (conventional circular arc slip method, static non-linear F.E. analysis) and dynamic one (2-dimensional dynamic F.E. analysis). The discussions on these slope stability methods are done and the followings are clarified, i) The results of numerical simulation by dynamic F.E. analysis concerning the response property and the failure mode are qualitatively corresponded with the behaviour of dynamic failure test. ii) From the results of static and dynamic stability analysis, it is concluded that the conventional circular arc slip method gives the severest evaluation for slope stability. iii) It is proposed that the seismic coefficient for static slope stability analysis should be used the value of the equivalent instant acceleration. (author)

  15. Rainfall Reliability Evaluation for Stability of Municipal Solid Waste Landfills on Slope

    Directory of Open Access Journals (Sweden)

    Fu-Kuo Huang

    2013-01-01

    Full Text Available A method to assess the reliability for the stability of municipal solid waste (MSW landfills on slope due to rainfall infiltration is proposed. Parameter studies are first done to explore the influence of factors on the stability of MSW. These factors include rainfall intensity, duration, pattern, and the engineering properties of MSW. Then 100 different combinations of parameters are generated and associated stability analyses of MSW on slope are performed assuming that each parameter is uniform distributed around its reason ranges. In the following, the performance of the stability of MSW is interpreted by the artificial neural network (ANN trained and verified based on the aforementioned 100 analysis results. The reliability for the stability of MSW landfills on slope is then evaluated and explored for different rainfall parameters by the ANN model with first-order reliability method (FORM and Monte Carlo simulation (MCS.

  16. Hydraulic-based empirical model for sediment and soil organic carbon loss on steep slopes for extreme rainstorms on the Chinese loess Plateau

    Science.gov (United States)

    Liu, L.; Li, Z. W.; Nie, X. D.; He, J. J.; Huang, B.; Chang, X. F.; Liu, C.; Xiao, H. B.; Wang, D. Y.

    2017-11-01

    Building a hydraulic-based empirical model for sediment and soil organic carbon (SOC) loss is significant because of the complex erosion process that includes gravitational erosion, ephemeral gully, and gully erosion for loess soils. To address this issue, a simulation of rainfall experiments was conducted in a 1 m × 5 m box on slope gradients of 15°, 20°, and 25° for four typical loess soils with different textures, namely, Ansai, Changwu, Suide, and Yangling. The simulated rainfall of 120 mm h-1 lasted for 45 min. Among the five hydraulic factors (i.e., flow velocity, runoff depth, shear stress, stream power, and unit stream power), flow velocity and stream power showed close relationships with SOC concentration, especially the average flow velocity at 2 m from the outlet where the runoff attained the maximum sediment load. Flow velocity controlled SOC enrichment by affecting the suspension-saltation transport associated with the clay and silt contents in sediments. In consideration of runoff rate, average flow velocity at 2 m location from the outlet, and slope steepness as input variables, a hydraulic-based sediment and SOC loss model was built on the basis of the relationships of hydraulic factors to sediment and SOC loss. Nonlinear regression models were built to calculate the parameters of the model. The difference between the effective and dispersed median diameter (δD50) or the SOC content of the original soil served as the independent variable. The hydraulic-based sediment and SOC loss model exhibited good performance for the Suide and Changwu soils, that is, these soils contained lower amounts of aggregates than those of Ansai and Yangling soils. The hydraulic-based empirical model for sediment and SOC loss can serve as an important reference for physical-based sediment models and can bring new insights into SOC loss prediction when serious erosion occurs on steep slopes.

  17. Title Qualitative stability assessment of cut slopes along the national ...

    Indian Academy of Sciences (India)

    64

    Qualitative stability assessment of cut slopes along the national highway- 05 around Jhakri area, .... The rock types in the area are augen migmatite, biotite gneiss, quartz ..... slopes using quantified method (Sonmez and Ulusay 1999, 2002). Finally a .... through numerical simulation is suggested by many researchers. 1. 2. 3.

  18. Geological hazards investigation - relative slope stability map

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Suk; Kim, Won Young; Yu, Il Hyon; Kim, Kyeong Su; Lee, Sa Ro; Choi, Young Sup [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainside. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps. For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996. The selected area encompasses about 5,900 km{sup 2} including the topographic maps of Ulsan, Yongchon, Kyongju, Pulguksa, and Kampo, all at a scale of 1:50,000. Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite. Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area. Produced for the study area were six different maps consisting of slope classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base. Using the first four maps and GIS, two sheets of relative slope-stability maps were constructed, each at a scale of 1

  19. Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake

    OpenAIRE

    Liang Lu; Zongjian Wang; Xiaoyuan Huang; Bin Zheng; Katsuhiko Arai

    2014-01-01

    The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthe...

  20. Seismic slope stability of embankments: a comparative study on EC8 provisions

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Y.; Psarropoulos, P.N.

    2011-01-01

    According to EC8 provisions, seismic stability assessment of natural slopes is currently performed based on simplified methods i.e. the pseudostatic and the Newmark’s sliding block method. The application of these methods requires the beforehand consideration of major assumptions necessary...... for the selection of either the seismic coefficient or the acceleration time history of the rigid block. Although both ULS and SLS are defined according to acceptable level of deformations at the slope, the assigned level of displacements is not clarified. In the current study the seismic slope stability...

  1. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    Science.gov (United States)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically

  2. "A Comparison of Several Methods in a Rock Slope Stability ...

    African Journals Online (AJOL)

    This researchuses the mentioned methods and principles in the stability analysis of some rock slopes in an open pit mine in Syria, that is Khneifees phosphate mine. The importance of this researchis that it shows the role of kinematical analysis in minimizing efforts when verifying the safety of rock slopes in site, and when ...

  3. A nomogram for interpreting slope stability of fine-grained deposits in modern and ancient-marine environments.

    Science.gov (United States)

    Booth, J.S.; Sangrey, D.A.; Fugate, J.K.

    1985-01-01

    This nomogram was designed to aid in interpreting the causes of mass movement in modern and ancient settings, to provide a basis for evaluating and predicting slope stability under given conditions and to further the understanding of the relationships among the several key factors that control slope stability. Design of the nomogram is based on effective stress and combines consolidation theory as applicable to depositional environments with the infinite-slope model of slope-stability analysis. If infinite-slope conditions are assumed to exist, the effective overburden stress can be used to derive a factor of safety against static slope failure by using the angle of internal friction and the slope angle. -from Authors

  4. Holocene and Late Glacial sedimentation near steep slopes in southern Lake Baikal

    Directory of Open Access Journals (Sweden)

    Michael Sturm

    2015-07-01

    Full Text Available We here present new data on sedimentation at and near the steep north-slopes of southern Lake Baikal. Short sediment cores were taken at 550 m and at 1366 m water depth, within 3600 m offshore Cape Ivanovskii at the station of the Baikal Deep Underwater NEUTRINO Telescope. The sediments within 3600 m off the northern coast of Southern Lake Baikal are dominated by pelagic deposition. Our data reveal surprisingly little influence from terrigenous material from adjacent coastal areas, tributaries and their catchment. At the shallow-water site (at 550 m water depth, 700 m off shore just 27 cm thick homogenous sediments have accumulated during the Holocene on top of Pleistocene deposits resulting in Holocene sedimentation rates of 0.003 cm a-1. The very low rates are caused by long-term persistent winnowing of fine particles caused by week contour currents along the slope. The uppermost sediments are oxidized down to 22 cm. Very low concentrations of Corg, Sibio and Ntot in Pleistocene sediments increase dramatically within the Holocene. The heavy mineral fraction of the shallow-water sediments contains up to 33.6 % olivine and up to 2.4 % spinel. These rare minerals originate from white marbles of the nearby coastal outcrop Belaya Vyemka of the Early Precambrian Sharyzalgaiskaya Series. At the deep-water site (at 1366 m water depth, 3600 m off shore Holocene sedimentation rates are 10-times higher (0.036 cm a-1. Sediment oxidation occurs just within the uppermost 2 cm. Of the two rare type minerals of the Sharyzalgaiskaya Series spinel does not occur at all and olivine is represented by very diminished concentrations. This indicates insignificant influx of terrestrial material from the nearby shore to the deep-water site . Distal turbidites of far-off sources are intercalated to pelagic sediments at the deep-water site. Breakdown events of deltas at the SE- and S-coast of the basin are suggested to be responsible for the formation of the turbidites

  5. Bioengineering case studies sustainable stream bank and slope stabilization

    CERN Document Server

    Goldsmith, Wendi; McCullah, John

    2014-01-01

    This unique volume describes and evaluates 30 projects from across the United States where bio-stabilization was employed to address a detrimental naturally occurring process or byproduct of the built environment. Bio-stabilization (or soil bioengineering) refers to the use of plant materials, primarily live cuttings, arranged in the ground in different arrays to reinforce soils and protect upland slopes and/or stream banks against surficial erosion and shallow slope failures. Examples included in the collection represent different regions of the country and their specific conditions and challenges. Each project is illustrated with a number of distinctive photographs to support the reader's understanding and showcase the wide scope of projects and techniques presented. This book also: ·         Presents a range of well-documented case studies on key techniques and best practices for bio-stabilization projects ·         Emphasizes evaluation and comparison of different techniques and challeng...

  6. The long-term hydrological effect of forest stands on the stability of slopes

    Science.gov (United States)

    Bogaard, T. A.; Meng, W.; van Beek, L. P. H.

    2012-04-01

    Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we

  7. Overtopping And Rear Slope Stabillity Of Reshaping Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk; Lykke Andersen, Thomas

    2003-01-01

    An experimental study of overtopping and rear slope stability of reshaping breakwaters has been carried out. The variation of those two parameters with crest width, crest freeboard and sea state was investigated. The tests showed that the variation in overtopping discharge with crest freeboard...

  8. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    OpenAIRE

    Rahardjo Harianto; Satyanaga Alfrendo; Leong Eng Choon

    2016-01-01

    Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in d...

  9. Stability Analysis Method for Rock Slope with an Irregular Shear Plane Based on Interface Model

    Directory of Open Access Journals (Sweden)

    Changqing Qi

    2018-01-01

    Full Text Available Landslide developed in rock mass usually has irregular shear plane. An approach for calculating distributed factor of safety of the irregular shear plane was put forward in this paper. The presented method can obtain not only the detailed stability status at any grid node of a complex shear plane but also the global safety of the slope. Thus, it is helpful to thoroughly understand the mechanism of slope failure. Comparing with the result obtained through the limit equilibrium method, the presented method was proved to be more accurate and suitable for stability analysis of rock slope with a thin shear plane. The stability of a potentially unstable rock slope was analyzed based on the presented method at the end of this paper. The detailed local stability, global stability, and the potential failure mechanism were provided.

  10. Wave interaction with large roughness elements on an impermeable sloping bed

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2012-01-01

    The present paper presents the results of an experimental and numerical investigation of the flow between large roughness elements on a steep sloping impermeable bed during wave action. The setup is designed to resemble a breakwater structure. The work is part of a study where the focus is on the......The present paper presents the results of an experimental and numerical investigation of the flow between large roughness elements on a steep sloping impermeable bed during wave action. The setup is designed to resemble a breakwater structure. The work is part of a study where the focus...... is on the details in the porous core flow and the armour layer flow i.e. the interaction between the two flow domains and the effect on the armour layer stability. In order to isolate the processes involved with the flow in the porous core the investigations are first carried out with a completely impermeable bed...... and successively repeated with a porous bed. In this paper the focus is on the impermeable bed. Results are obtained experimentally for flow and turbulence between the roughness elements on the sloping bed. Numerical simulations have reproduced the experimental results with good agreements and can hereby add more...

  11. Zonation of Landslide-Prone Using Microseismic Method and Slope Analysis in Margoyoso, Magelang

    Science.gov (United States)

    Aditya, Muchamad Reza; Fauqi Romadlon, Arriqo’; Agra Medika, Reymon; Alfontius, Yosua; Delva Jannet, Zukhruf; Hartantyo, Eddy

    2018-04-01

    Margoyoso Village, Salaman Sub-district, Magelang Regency, Central Java is one of the villages that were included in landslide prone areas. The steep slopes and land use in this village were quite apprehensive. There were fractures with 5 cm in width and a length of 50 m. Moreover, these fractures appeared in the home residents. Although the local government has established a disaster response organization, this village is still not getting adequate information about the landslide prone areas. Based on the description before, we conducted research with geophysical methods and geotechnical analysis to minimize the danger of landslides. The geophysical method used in this research was microseismic method and geotechnical analysis. The microseismic measurement and slope stability analysis at Margoyoso village was a step in analysing the landslide-prone zone boundary. The results of this research indicated that landslide potential areas had a low peak ground acceleration values with a range from 36 gal to 46 gal. Measurement of slope stability indicated that a slope angle values between 55°-78° are a potential landslide slope because the soil in this village has very loose properties so it is very easy to move.

  12. Stability of nuclear crater slopes in rock

    International Nuclear Information System (INIS)

    Fleming, Robert W.; Frandsen, Alton D.; LaFrenz, Robert L.

    1970-01-01

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  13. Stability of nuclear crater slopes in rock

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert W; Frandsen, Alton D; LaFrenz, Robert L [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects.

  14. Comparing Potential Unstable Sites and Stable Sites on Revegetated Cut-Slopes of Mountainous Terrain in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ho Kil

    2015-11-01

    Full Text Available This study employs a diverse set of variables to explain slope stabilization on stable versus failure-prone revegetated cut-slopes in Korea. A field survey was conducted at potential unstable sites and stable sites using 23 variables. Through a non-parametric test of the field survey results, 15 variables were identified as primary determinants of slope failure. Of these variables, one described physical characteristics (elapsed year; four variables described vegetation properties (plant community, vegetation coverage rate, number of trees, and number of herbs; and 10 variables represented soil properties (porosity, soil hardness, water content, sand ratio and silt ratio of soil texture, tensile strength, permeability coefficient, soil depth, soil acidity, salt concentration, and organic matter. Slope angle, which was mainly considered in previous studies, of variables in physical characteristics was not statistically selected as one of the 15 variables because most of sites were located on steep slopes. The vegetation community, vegetation coverage, and number of trees influence slope stabilization. Vegetation coverage is highly correlated with other soil and vegetation variables, making it a major indicator of slope stabilization. All soil variables were related to slope failure such that subsequent slope failure was related to the method of slope revegetation rather than the environmental condition of the slope. Slope failure did not occur in revegetated slopes that matched the characteristics of the surrounding landscape and contained a large number of native trees. Most soil and vegetation variables showed differing values for whether a revegetated slope is potentially unstable or stable.

  15. Qualitative stability assessment of cut slopes along the National ...

    Indian Academy of Sciences (India)

    Jagadish Kundu

    2017-11-23

    Nov 23, 2017 ... Landslide is the most common hazard in the state. Every year ... table 2. 3. Stability evaluation (qualitative) ..... the slopes using quantified method (Sonmez and ..... Research to Engineering, Proceedings of the 2nd Interna-.

  16. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran)

    International Nuclear Information System (INIS)

    Choobbasti, A J; Farrokhzad, F; Barari, A

    2009-01-01

    Investigations of failures of soil masses are subjects touching both geology and engineering. These investigations call the joint efforts of engineering geologists and geotechnical engineers. Geotechnical engineers have to pay particular attention to geology, ground water, and shear strength of soils in assessing slope stability. Artificial neural networks (ANNs) are very sophisticated modeling techniques, capable of modeling extremely complex functions. In particular, neural networks are nonlinear. In this research, with respect to the above advantages, ANN systems consisting of multilayer perceptron networks are developed to predict slope stability in a specified location, based on the available site investigation data from Noabad, Mazandaran, Iran. Several important parameters, including total stress, effective stress, angle of slope, coefficient of cohesion, internal friction angle, and horizontal coefficient of earthquake, were used as the input parameters, while the slope stability was the output parameter. The results are compared with the classical methods of limit equilibrium to check the ANN model's validity. (author)

  17. 75 FR 65366 - Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities

    Science.gov (United States)

    2010-10-22

    ...] Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities AGENCY: Federal... the final Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities, which... facilities threatened by landslides or slope failures; as well as the eligibility of permanent repairs to...

  18. Impact of weathering on slope stability in soft rock mass

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2014-06-01

    Full Text Available Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also results in shear strength reduction in the interior of the slope. Principal processes in association with weathering are discussed with the examples of marl hosted on flysch formations near Split, Croatia.

  19. Bioengineering Techniques for Soil Erosion Protection and Slope Stabilization

    OpenAIRE

    Julia Georgi; Ioannis Stathakopoulos

    2006-01-01

    The use of bio-engineering methods for soil erosion protection and slope stabilization has a long tradition. Old methods with rocks and plants, structures of timber have been used over the past centuries. Recently these old soil conservation and stabilization techniques have been rediscovered and improved. Biotechnical engineering methods have become part of geotechnical and hydraulic engineering and have helped bridge the gap between classical engineering disciplines, land use management, la...

  20. Experimental research on stability of covering blocks for sloping banks

    International Nuclear Information System (INIS)

    Okuno, Toshihiko

    1988-01-01

    In the case of constructing thermal and nuclear power stations facing open seas, usually the harbors for unloading fuel and others are constructed. In Japan, breakwaters are installed in the places of relatively shallow depth less than 20 m, and in such case, the sloping banks having the covering material of wave-controlling blocks made of concrete are mostly adopted as those are excellent in their function and economical efficiency, and are advantageous in the maintenance and management. Sloping banks are of such type that wave-controlling blocks cover the vertical front face of nonpermeating caissons, and the same type was adopted for breakwaters and others in Onagawa Nuclear Power Station, Tohoku Electric Power Co., Inc. As for the wave-controlling blocks, tetrapods and shake blocks were used. One of the most important problems in the design of sloping banks is how to estimate the stability of wave controlling blocks. In this paper, the results of the examination by hydraulic model experiment on the stability of covering blocks are reported, which are useful as the basic data for the rational and economical design of sloping banks. The experimental setup and a model bank, the generation of experimental waves and their characteristics, the experimental conditions and experimental method, and the results are reported. (Kako, I.)

  1. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    Science.gov (United States)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil properties indicate that the primary method of downslope transport is largely due to tree throw and faunal burrowing. Onset of slope instability at 40-30 ka appears to

  2. Analysis of the parameters involved in the design of slope stabilizing dowels

    International Nuclear Information System (INIS)

    Lopez Dominguez, J. J.; Estaire Gepp, J.

    2014-01-01

    The use of dowels to stabilize landslides is a common practice nowadays. There are many theories, even contradictory, to design such dowels. This paper describes the methods proposed by Estaire and Sopena (2001), based on the fact that the earth pressures on the dowels, produced by the movement of the sliding ground, are equivalent to the stabilizing forces exerted by such dowels to improve the safety level of the slope. The method consists on the following steps: definition of the hydrogeological model, quantification of the initial safety level, determination of stabilization force, position of dowels in the slope, calculation of the dowel embedment and the acting load laws, election of the dowel separation and typology, and the structural design. The paper performs a critical review of some of the main design parameters: influence of the position of the dowels in the slope, the distribution of the earth pressure on the dowels and the restrains in the head of the dowels. (Author)

  3. Seismic Stability of Reinforced Soil Slopes

    DEFF Research Database (Denmark)

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.

    2012-01-01

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...

  4. Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope

    Directory of Open Access Journals (Sweden)

    Yanlong Chen

    2017-01-01

    Full Text Available To explore the variation laws of mechanical parameters of soft rock and the formed slope stability, an experiment was carried out with collected soft rock material specimens and freezing and thawing cycle was designed. Meanwhile, a computational simulation analysis of the freezing-thawing slope stability was implemented. Key factors that influence the strength of frozen rock specimens were analyzed. Results showed that moisture content and the number of freezing-thawing cycles influenced mechanical parameters of soft rock significantly. With the increase of moisture content, cohesion of frozen soft rock specimens presents a quadratic function decrease and the internal friction angle shows a negative exponential decrease. The stability coefficient of soft rock material slope in seasonal freeze soil area declines continuously. With the increase of freezing and thawing cycle, both cohesion and internal friction angle of soft rock decrease exponentially. The higher the moisture content, the quicker the reduction. Such stability coefficient presents a negative exponential reduction. After three freezing and thawing cycles, the slope stability coefficient only changes slightly. Findings were finally verified by the filed database.

  5. Comparison of slope stability in two Brazilian municipal landfills.

    Science.gov (United States)

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  6. Impact of Rain Water Infiltration on the Stability of Earth Slopes

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Ahmed

    2016-12-01

    Full Text Available Slope failure occurs very often in natural and man-made slopes which are subjected to frequent changes in ground water level, rapid drawdown, rainfall and earthquakes. The current study discusses the significance of water infiltration, pore water pressure and degree of saturation that affect the stability of earth slopes. Rainwater infiltration not only mechanically reduces the shear strength of a slope material, but also chemically alters the mineral composition of the soil matrix. It results in the alteration of macro structures which in turn decreases the factor of safety. A few case studies are discussed in this paper to quantitatively observe the variation in factor of safety (FOS of various earth slopes by changing the degree of saturation. The results showed that most of the earth slopes get failed or become critical when the degree of saturation approaches to 50 % or more.

  7. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2-3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS

    International Nuclear Information System (INIS)

    Reddy, Naveen A.; Steidel, Charles C.

    2009-01-01

    We use the deep ground-based optical photometry of the Lyman Break Galaxy (LBG) Survey to derive robust measurements of the faint-end slope (α) of the UV luminosity function (LF) at redshifts 1.9 ≤ z ≤ 3.4. Our sample includes >2000 spectroscopic redshifts and ∼31000 LBGs in 31 spatially independent fields over a total area of 3261 arcmin 2 . These data allow us to select galaxies to 0.07L* and 0.10L* at z ∼ 2 and z ∼ 3, respectively. A maximum-likelihood analysis indicates steep values of α(z = 2) = -1.73 ± 0.07 and α(z = 3) = -1.73 ± 0.13. This result is robust to luminosity-dependent systematics in the Lyα equivalent width and reddening distributions, and is similar to the steep values advocated at z ∼> 4, and implies that ∼93% of the unobscured UV luminosity density at z ∼ 2-3 arises from sub-L* galaxies. With a realistic luminosity-dependent reddening distribution, faint to moderately luminous galaxies account for ∼>70% and ∼>25% of the bolometric luminosity density and present-day stellar mass density, respectively, when integrated over 1.9 ≤ z 2 contrasts with the shallower slope inferred locally, suggesting that the evolution in the faint-end slope may be dictated simply by the availability of low-mass halos capable of supporting star formation at z ∼< 2.

  8. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  9. Hydrodynamic Forces from Steep Waves in Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Loevoll, A.

    1996-12-31

    The reservoir behind a hydroelectric power production dam has an enormous potential for destruction in case of a dam break. The present doctoral thesis evaluates the hydrodynamic forces from steep waves in rivers. In the laboratory, forces on a structure shaped as a vertical cylinder of rectangular cross section were measured, and the threshold condition for the bed sediment was investigated. A wave parameter {alpha} is introduced to describe the gradient of a wave front. The flow condition in the flume was reproduced by a 3-D numerical model. For various values of the wave parameter the forces were measured and compared to the drag force calculated from measured depth and velocity. From these comparisons the hydrodynamic force can be calculated as drag only, even in the case of a breaking wave front. The contribution from inertia relative to drag depends on the size of the structure. For larger structures the contributions may be important in steep waves. To study the initiation of motion (of sediments) under unsteady flow, waves of various parameter values were passed over a gravel covered bed. The initiation of motion starts before the peak of the wave, and is given by Shield`s relation if the friction slope is applied. No dependence upon the wave gradient was found. A relation was established which gives the critical shear stress if the friction slope is estimated by the bottom slope. 65 refs., 41 figs., 10 tabs.

  10. Hydrodynamic Forces from Steep Waves in Rivers

    International Nuclear Information System (INIS)

    Loevoll, A.

    1996-01-01

    The reservoir behind a hydroelectric power production dam has an enormous potential for destruction in case of a dam break. The present doctoral thesis evaluates the hydrodynamic forces from steep waves in rivers. In the laboratory, forces on a structure shaped as a vertical cylinder of rectangular cross section were measured, and the threshold condition for the bed sediment was investigated. A wave parameter α is introduced to describe the gradient of a wave front. The flow condition in the flume was reproduced by a 3-D numerical model. For various values of the wave parameter the forces were measured and compared to the drag force calculated from measured depth and velocity. From these comparisons the hydrodynamic force can be calculated as drag only, even in the case of a breaking wave front. The contribution from inertia relative to drag depends on the size of the structure. For larger structures the contributions may be important in steep waves. To study the initiation of motion (of sediments) under unsteady flow, waves of various parameter values were passed over a gravel covered bed. The initiation of motion starts before the peak of the wave, and is given by Shield's relation if the friction slope is applied. No dependence upon the wave gradient was found. A relation was established which gives the critical shear stress if the friction slope is estimated by the bottom slope. 65 refs., 41 figs., 10 tabs

  11. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.

    Science.gov (United States)

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-02-27

    This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.

  12. Stability of infinite slopes under transient partially saturated seepage conditions

    Science.gov (United States)

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  13. Grouting design for slope stability of kedung uling earthfill dam

    Directory of Open Access Journals (Sweden)

    Najib

    2018-01-01

    Full Text Available Kedung Uling earthfill dam locates at Wonogiri Regency, Central Java, Indonesia. The dam encountered sliding and settlement at the embankment wall. To minimize sliding and settlement and to optimize the dam, both field investigation and laboratory tests have been proceeded for slope stability analysis and remedial embankment wall. Soil and rock investigation around the dam, which is followed by 10 core drillings, have been conducted. Laboratory tests such as direct shear and index properties have also been carried on. The results were further used for dam slope stability model using slide 6.0 and were used to analyzed factor of safety (FS of Kedunguling dam. 10 conditions of dam were simulated and strengthening body of dam with grouting was designed. The results showed two conditions, which are condition of maximum water level with and without earthquake at downstream, were unsatisfy Indonesia National Standard (SNI for building and infrastructure. These conditions can be managed by using grouting for increasing stabilization of embankment wall. By setting up grouting, factor of safety increases and meet the SNI standard requirement.

  14. Overtopping and Rear Slope Stability of Reshaping & Non-reshaping Berm Breakwaters

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Burcharth, H. F.

    2004-01-01

    Overtopping and rear slope stability of reshaping and non-reshaping berm breakwaters have been studied in a wave flume. A total of 695 tests have been performed to cover the influence of crest freeboard, crest width, berm width, berm elevation, stone size and sea state. Formula for average...... overtopping discharge that includes these parameters has been derived. The measurements show good correlation between average overtopping discharge and rear slope damage....

  15. Pore water pressures and slope stability: a joint geophysical and geotechnical analysis

    International Nuclear Information System (INIS)

    Perrone, Angela; Lapenna, Vincenzo; Vassallo, Roberto; Maio, Caterina Di

    2008-01-01

    Slope stability is influenced by many factors, among which are subsoil structure and pore water pressure distribution. This paper presents a multi-disciplinary approach for the determination of these two factors and for the construction of a reliable model of the subsoil for the slope stability analysis. The case of a clay slope located in the Southern Apennines (Italy) is presented and discussed. Geophysical imaging (2D electrical resistivity tomography—ERT), in situ geotechnical monitoring (measurements of pore pressures and horizontal displacements) and laboratory geotechnical tests (for the determination of index, hydraulic and mechanical properties of soils) have been carried out. The comparison and the integration between ERT images and direct observations of the material extracted from boreholes have allowed us to reconstruct the subsoil stratigraphy with continuity. Thus, a reliable 2D model of the subsoil has been obtained, with well-defined boundaries on which it has been possible to apply appropriate hydraulic conditions. This geotechnical model has been used for studying the pore water pressure distribution and for analysing how the hydraulic boundary conditions—among which rain events—influence the slope stability. Our findings demonstrate the powerful skill of the ERT, if integrated with borehole data, to generate an accurate subsoil model. It is also evident that geophysical imaging can be a source of ambiguity and misjudgement if interpreted without a comparison with geotechnical data

  16. Case studies of slope stability radar used in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D. [GroundProbe Pty Ltd., South Brisbane, Qld. (Australia)

    2005-07-01

    This paper presents case studies about how the Slope Stability Radar (SSR) system provided adequate warning to safeguard people and equipment prior to highwall and low wall failure at two Australian coal mines. At Drayton mine, the SSR was able to provide the mine with sufficient warning to move the shovel and trucks away from the highwall, while personnel safely watched 50,000 tonnes of bulk material coming down from the wall. At Mt Owen mine, the SSR alarm allowed the mine to evacuate equipment and personnel four hours prior to a 30,000,000 tonne low wall failure. These two case studies demonstrate how the SSR system was able to continuously monitor the stability of these critical slopes, enabling greater mine productivity whilst maintaining the highest quality of safety. 2 refs., 7 figs., 1 tab.

  17. EFFECTS OF SLOPE SHAPES ON SOIL EROSION

    Directory of Open Access Journals (Sweden)

    Hüseyin ŞENSOY, Şahin PALTA

    2009-01-01

    Full Text Available Water is one of the most important erosive forces. A great number of factors also play a role in erosion process and slope characteristic is also one of them. The steepness and length of the slope are important factors for runoff and soil erosion. Another slope factor that has an effect on erosion is the shape of the slope. Generally, different erosion and runoff characteristics exist in different slopes which can be classified as uniform, concave, convex and complex shape. In this study, the effects of slope shape on erosion are stated and emphasized by taking similar researches into consideration.

  18. Influences of Holocene sea level, regional tectonics, and fluvial, gravity and slope currents induced sedimentation on the regional geomorphology of the continental slope off northwestern India

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Almeida, F.

    the Holocene sea level. The Bombay high area has slope breaks between 400 and 600 m, whereas off Saurashtra steep breaks in the slope occur between 560 and 960 m depth. Further southwards, at the slope, elevations and depressions are present. Variations...

  19. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    Science.gov (United States)

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  20. Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion

    Directory of Open Access Journals (Sweden)

    Belghali Mounir

    2018-01-01

    Full Text Available The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.

  1. Effect of variations in rainfall intensity on slope stability in Singapore

    OpenAIRE

    Christofer Kristo; Harianto Rahardjo; Alfrendo Satyanaga

    2017-01-01

    Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall d...

  2. Determination of stability of epimetamorphic rock slope using Minimax Probability Machine

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2016-01-01

    Full Text Available The article employs Minimax Probability Machine (MPM for the prediction of the stability status of epimetamorphic rock slope. The MPM gives a worst-case bound on the probability of misclassification of future data points. Bulk density (d, height (H, inclination (β, cohesion (c and internal friction angle (φ have been used as input of the MPM. This study uses the MPM as a classification technique. Two models {Linear Minimax Probability Machine (LMPM and Kernelized Minimax Probability Machine (KMPM} have been developed. The generalization capability of the developed models has been checked by a case study. The experimental results demonstrate that MPM-based approaches are promising tools for the prediction of the stability status of epimetamorphic rock slope.

  3. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for

  4. Bedform migration in steep channels: from local avalanches to large scale changes

    Science.gov (United States)

    Mettra, F.; Heyman, J.; Ancey, C.

    2013-12-01

    Many studies have emphasized the strength of bedload transport fluctuations in steep streams, especially at low and intermediate transport conditions (relative to the threshold of incipient motion). The origins of these fluctuations, which appear on a wide range of time scales, are still not well understood. In this study, we present the data obtained from a 2D idealized laboratory experiment with the objective of simultaneously recording the channel bed evolution and bedload transport rate at a high temporal resolution. A 3-m long by 8-cm wide transparent flume filled with well-sorted natural gravel (d50=6.5 mm) was used. An efficient technique using accelerometers has been developed to record the arrival time of every particle at the outlet of the flume for long experimental durations (up to a few days). In addition, bed elevation was monitored using cameras filming from the side of the channel, allowing the observation of global aggradation/degradation as well as bedform migration. The experimental parameters were the water discharge, the flume inclination (from 2° to 5°) and the constant feeding rate of sediments. Large-scale bed evolution showed successive aggradation and rapid degradation periods. Indeed, the measured global channel slope, i.e. mean slope over the flume length, fluctuated continuously within a range sometimes wider than 1° (experimental parameters were constant over the entire run). The analysis of these fluctuations provides evidence that steep channels behave like metastable systems, similarly to grain piles. The metastable effects increased for steeper channels and lower transport conditions. In this measurement campaign, we mainly observed upstream-migrating antidunes. For each run, various antidune heights and celerities were measured. On average, the mean antidune migration rate increased with decreasing channel slope and increasing sediment feeding rate. Relatively rare tall and fast-moving antidunes appeared more frequently at high

  5. SOSlope: a new slope stability model for vegetated hillslopes

    Science.gov (United States)

    Cohen, D.; Schwarz, M.

    2016-12-01

    Roots contribute to increase soil strength but forces mobilized by roots depend on soil relative displacement. This effect is not included in models of slope stability. Here we present a new numerical model of shallow landslides for vegetated hillslopes that uses a strain-step loading approach for force redistributions within a soil mass including the effects of root strength in both tension and compression. The hillslope is discretized into a two-dimensional array of blocks connected by bonds. During a rainfall event the blocks's mass increases and the soil shear strength decreases. At each time step, we compute a factor of safety for each block. If the factor of safety of one or more blocks is less than one, those blocks are moved in the direction of the local active force by a predefined amount and the factor of safety is recalculated for all blocks. Because of the relative motion between blocks that have moved and those that remain stationary, mechanical bond forces between blocks that depend on relative displacement change, modifying the force balance. This relative motion triggers instantaneous force redistributions across the entire hillslope similar to a self-organized critical system. Looping over blocks and moving those that are unstable is repeated until all blocks are stable and the system reaches a new equilibrium, or, some blocks have failed causing a landslide. Spatial heterogeneity of vegetation is included by computing the root density and distribution as a function of distance form trees. A simple subsurface hydrological model based on dual permeability concepts is used to compute the temporal evolution of water content, pore-water pressure, suction stress, and soil shear strength. Simulations for a conceptual slope indicates that forces mobilized in tension and compression both contribute to the stability of the slope. However, the maximum tensional and compressional forces imparted by roots do not contribute simultaneously to the stability of

  6. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty.

    Science.gov (United States)

    Shi, Xiaojun; Shen, Bin; Kang, Pengde; Yang, Jing; Zhou, Zongke; Pei, Fuxing

    2013-12-01

    To evaluate and quantify the effect of the tibial slope on the postoperative maximal knee flexion and stability in the posterior-stabilized total knee arthroplasty (TKA). Fifty-six patients (65 knees) who had undergone TKA with the posterior-stabilized prostheses were divided into the following 3 groups according to the measured tibial slopes: Group 1: ≤4°, Group 2: 4°-7° and Group 3: >7°. The preoperative range of the motion, the change in the posterior condylar offset, the elevation of the joint line, the postoperative tibiofemoral angle and the preoperative and postoperative Hospital for Special Surgery (HSS) scores were recorded. The tibial anteroposterior translation was measured using the Kneelax 3 Arthrometer at both the 30° and the 90° flexion angles. The mean values of the postoperative maximal knee flexion were 101° (SD 5), 106° (SD 5) and 113° (SD 9) in Groups 1, 2 and 3, respectively. A significant difference was found in the postoperative maximal flexion between the 3 groups (P slope resulted in a 1.8° flexion increment (r = 1.8, R (2) = 0.463, P slope can significantly increase the postoperative maximal knee flexion. The tibial slope with an appropriate flexion and extension gap balance during the operation does not affect the joint stability.

  7. Stability analysis of nonlinear systems with slope restricted nonlinearities.

    Science.gov (United States)

    Liu, Xian; Du, Jiajia; Gao, Qing

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  8. Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2014-01-01

    Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  9. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

    Science.gov (United States)

    Pasik, Tomasz; van der Meij, Raymond

    2017-12-01

    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  10. Relative roughness controls on incipient sediment motion in steep channels

    Science.gov (United States)

    Prancevic, J.; Lamb, M. P.; Fuller, B. M.

    2012-12-01

    For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These

  11. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    Science.gov (United States)

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  12. Transient river response, captured by channel steepness and its concavity

    Science.gov (United States)

    Vanacker, Veerle; von Blanckenburg, Friedhelm; Govers, Gerard; Molina, Armando; Campforts, Benjamin; Kubik, Peter W.

    2015-01-01

    Mountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105 a) are consistently low (3 to 200 mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400 mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.

  13. Soil moisture storage and hillslope stability

    Directory of Open Access Journals (Sweden)

    A. Talebi

    2007-09-01

    Full Text Available Recently, we presented a steady-state analytical hillslope stability model to study rain-induced shallow landslides. This model is based on kinematic wave dynamics of saturated subsurface storage and the infinite slope stability assumption. Here we apply the model to investigate the effect of neglecting the unsaturated storage on the assessment of slope stability in the steady-state hydrology. For that purpose we extend the hydrological model to compute the soil pore pressure distribution over the entire flow domain. We also apply this model for hillslopes with non-constant soil depth to compare the stability of different hillslopes and to find the critical slip surface in hillslopes with different geometric characteristics. In order to do this, we incorporate more complex approaches to compute slope stability (Janbu's non-circular method and Bishop's simplified method in the steady-state analytical hillslope stability model. We compare the safety factor (FS derived from the infinite slope stability method and the more complex approach for two cases: with and without the soil moisture profile in the unsaturated zone. We apply this extended hillslope stability model to nine characteristic hillslope types with three different profile curvatures (concave, straight, convex and three different plan shapes (convergent, parallel, divergent. Overall, we find that unsaturated zone storage does not play a critical role in determining the factor of safety for shallow and deep landslides. As a result, the effect of the unsaturated zone storage on slope stability can be neglected in the steady-state hydrology and one can assume the same bulk specific weight below and above the water table. We find that steep slopes with concave profile and convergent plan shape have the least stability. We also demonstrate that in hillslopes with non-constant soil depth (possible deep landslides, the ones with convex profiles and convergent plan shapes have

  14. Slope Stability Analysis of Waste Dump in Sandstone Open Pit Osielec

    Science.gov (United States)

    Adamczyk, Justyna; Cała, Marek; Flisiak, Jerzy; Kolano, Malwina; Kowalski, Michał

    2013-03-01

    This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit "Osielec". For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.

  15. DESIGN INFORMATION REPORT: PROTECTION OF WASTEWATER LAGOON INTERIOR SLOPES

    Science.gov (United States)

    A problem common to many wastewater treatment and storage lagoons is erosion of the interior slopes. Erosion may be caused by surface runoff and wind-induced wave action. The soils that compose the steep interior slopes of lagoons are especially susceptible to erosion and slumpin...

  16. Evaluating the Effect of Rainfall Infiltration on the Slope Stability of T16 tower of Taipei Mao-kong Gondola by Numerical Methods

    Science.gov (United States)

    RUNG, J.

    2013-12-01

    In this study, a series of rainfall-stability analyses were performed to simulate the failure mechanism and the function of remediation works of the down slope of T-16 tower pier, Mao-Kong gondola (or T-16 Slope) at the hillside of Taipei City using two-dimensional finite element method. The failure mechanism of T-16 Slope was simulated using the rainfall hyetograph of Jang-Mi typhoon in 2008 based on the field investigation data, monitoring data, soil/rock mechanical testing data and detail design plots of remediation works. Eventually, the numerical procedures and various input parameters in the analysis were verified by comparing the numerical results with the field observations. In addition, 48 hrs design rainfalls corresponding to 5, 10, 25 and 50 years return periods were prepared using the 20 years rainfall data of Mu-Zha rainfall observation station, Central Weather Bureau for the rainfall-stability analyses of T-16 Slope to inspect the effect of the compound stabilization works on the overall stability of the slope. At T-16 Slope, without considering the longitudinal and transverse drainages on the ground surface, there totally 4 types of stabilization works were installed to stabilize the slope. From the slope top to the slope toe, the stabilization works of T-16 Slope consists of RC-retaining wall with micro-pile foundation at the up-segment, earth anchor at the up-middle-segment, soil nailing at the middle-segment and retaining pile at the down-segment of the slope. The effect of each individual stabilization work on the slope stability under rainfall condition was examined and evaluated by raising field groundwater level.

  17. Assessment of Slope Stability and Interference of Structures Considering Seismity in Complex Engineering-Geological Conditions Using the Method of Finite Elements

    International Nuclear Information System (INIS)

    Menabdishvili, Papuna; Eremadze, Nelly

    2008-01-01

    There is elaborated the calculation model of slope deformation mode stability and the methodic of calculation considering the interference of structures to be built on it using the method of finite elements. There is examined the task of slope stability using the soil physically nonlinear finite element considering the seismicity 8. The deformation mode and field of coefficients of stability are obtained and slope supposed sliding curve is determined. The elaborated calculation methodic allows to determine the slope deformation mode, stability and select the optimum version of structure foundation at any slant and composition of slope layers

  18. Stability analysis and hazard assessment of the northern slopes of San Vicente Volcano in central El Salvador

    Science.gov (United States)

    Smith, Daniel M.

    Geologic hazards affect the lives of millions of people worldwide every year. El Salvador is a country that is regularly affected by natural disasters, including earthquakes, volcanic eruptions and tropical storms. Additionally, rainfall-induced landslides and debris flows are a major threat to the livelihood of thousands. The San Vicente Volcano in central El Salvador has a recurring and destructive pattern of landslides and debris flows occurring on the northern slopes of the volcano. In recent memory there have been at least seven major destructive debris flows on San Vicente volcano. Despite this problem, there has been no known attempt to study the inherent stability of these volcanic slopes and to determine the thresholds of rainfall that might lead to slope instability. This thesis explores this issue and outlines a suggested method for predicting the likelihood of slope instability during intense rainfall events. The material properties obtained from a field campaign and laboratory testing were used for a 2-D slope stability analysis on a recent landslide on San Vicente volcano. This analysis confirmed that the surface materials of the volcano are highly permeable and have very low shear strength and provided insight into the groundwater table behavior during a rainstorm. The biggest factors on the stability of the slopes were found to be slope geometry, rainfall totals and initial groundwater table location. Using the results from this analysis a stability chart was created that took into account these main factors and provided an estimate of the stability of a slope in various rainfall scenarios. This chart could be used by local authorities in the event of a known extreme rainfall event to help make decisions regarding possible evacuation. Recommendations are given to improve the methodology for future application in other areas as well as in central El Salvador.

  19. Effect of Variations in Long-Duration Rainfall Intensity on Unsaturated Slope Stability

    Directory of Open Access Journals (Sweden)

    Hsin-Fu Yeh

    2018-04-01

    Full Text Available In recent years, many scientific methods have been used to prove that the Earth’s climate is changing. Climate change can affect rainfall patterns, which can in turn affect slope safety. Therefore, this study analyzed the effects of climate change on rainfall patterns from the perspective of rainfall intensity. This analysis was combined with numerical model analysis to examine the rainfall patterns of the Zengwen reservoir catchment area and its effects on slope stability. In this study, the Mann–Kendall test and the Theil–Sen estimator were used to analyze the rainfall records of rainfall stations at Da-Dong-Shan, Ma-To-Shan, and San-Jiao-Nan-Shan. The rainfall intensity of the Zengwen reservoir catchment area showed an increasing trend from 1990–2016. In addition, the analysis results of rainfall intensity trends were used for qualitative analysis of seepage and slope stability. The trend analysis result showed that in the future, from 2017–2100, if the amount of rainfall per hour continues to rise at about 0.1 mm per year, the amount of seepage will increase at the slope surface boundary and significantly change pore water pressure in the soil. As a result, the time of the occurrence of slope instability after the start of rainfall will decrease from 20 to 13 h, and the reduction in the safety coefficient will increase from 32 to 41%. Therefore, to decrease the effects of slope disasters on the safety of the Zengwen reservoir and its surrounding areas, changes in rainfall intensity trends should be considered for slope safety in this region. However, the results of trend analyses were weak and future research is needed using a wider range of precipitation data and detailed hydrological analysis to better predict rainfall pattern variations.

  20. Aspect-Driven Changes in Slope Stability Due to Ecohydrologic Feedbacks

    Science.gov (United States)

    Poulos, M. J.; Pierce, J. L.; Flores, A. N.; Benner, S. G.; Smith, T. J.; McNamara, J. P.

    2009-12-01

    southwestern batholith, are most sensitive to aspect, with average northern slope angles of 29°, and southern slope angles of 21°. Initial assessment of ecohydrologic factors in Dry Creek finds that annual precipitation for the watershed ranges from 20-35 inches, forestation ranges from ~15% forested on south-facing slopes, to ~80% forested on north-facing slopes, and annual insolation on north-facing slopes is roughly three-fifths that for south-facing slopes. Furthermore, preliminary analysis of soil textures finds soils to contain 29-41% silt on north-facing slopes, and ~12% silt on south-facing slopes. Slope distributions from the Lochsa River basin in the northern Idaho Batholith had little contrast between slope angles; this basin, however, receives 30-70 inches of precipitation and has nearly-homogenous forest cover for all aspects. Ongoing study seeks to 1) use large-scale spatial analysis to correlate the influence of aspect on slope angles to changes in ecohydrologic conditions and 2) understand the spatial distribution and relative influence of processes that affect the weathering of slope materials, erosive processes that reduce slope angles, and cohesive forces that stabilize slopes (e.g. root strength, soil texture, and soil moisture).

  1. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Science.gov (United States)

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  2. Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope

    OpenAIRE

    Chen, Yanlong; Wu, Peng; Yu, Qing; Xu, Guang

    2017-01-01

    To explore the variation laws of mechanical parameters of soft rock and the formed slope stability, an experiment was carried out with collected soft rock material specimens and freezing and thawing cycle was designed. Meanwhile, a computational simulation analysis of the freezing-thawing slope stability was implemented. Key factors that influence the strength of frozen rock specimens were analyzed. Results showed that moisture content and the number of freezing-thawing cycles influenced mech...

  3. Stability charts for uniform slopes in soils with nonlinear failure envelopes

    OpenAIRE

    Eid, Hisham T.

    2014-01-01

    Based on the results of an extensive parametric study, charts were developed for assessment of the stability of uniform slopes in soils with nonlinear shear strength failure envelopes. The study was conducted using envelopes formed to represent the realistic shapes of soil nonlinear drained strength envelopes and the associated different degrees of nonlinearity. The introduction of a simple methodology to describe the nonlinear envelopes and a stability parameter, the value of which depends o...

  4. How Do Adults Perceive, Analyse and Measure Slope?

    Science.gov (United States)

    Duncan, Bruce; Chick, Helen

    2013-01-01

    Slope is a mathematical concept that is both fundamental to the study of advanced calculus and commonly perceived in everyday life. The measurement of steepness of terrain as a ratio is an example of an everyday application the concept of slope. In this study, a group of pre-service teachers were tested for their capacity to mathematize the…

  5. Effect of Slope, Rainfall Intensity and Mulch on Erosion and Infiltration under Simulated Rain on Purple Soil of South-Western Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Muhammad Naeem Khan

    2016-11-01

    Full Text Available Purple soil is widely distributed in the hilly areas of the Sichuan basin, southwest China, and is highly susceptible to water erosion. The triggering of this process is related to slope, rainfall intensity and surface cover. Therefore, this study assesses the effects of different simulated rainfall intensities with different slopes on hydrological and erosional processes in un-mulched and mulched purple soils. Results show that the sediment and water losses increased with an increase of rainfall intensity and slope steepness. Generally, the slope contribution (Sc on water and sediment losses decreased with increasing rainfall intensity and slope steepness under both un-mulched and mulched soil. In un-mulched conditions, water losses were independent of slope steepness (Sc < 50% during the highest rainfall intensity. However, in mulched soil, the higher contributions of slope (Sc and rainfall (Rc were found for water and sediment losses, respectively, i.e., >50%, except during the increase in slope steepness from 15° to 25° under the highest rainfall intensity (120 mm·h−1. The effectiveness of mulch was more pronounced in reducing sediment losses (81%–100% compared with water losses (14%–100%. The conservation effectiveness of mulch both decreased and increased with slope steepness for water and sediment losses, respectively, under higher rainfall intensities. Water infiltration and recharge coefficient (RC decreased with an increase of slope steepness, while with an increase in rainfall intensity, the water infiltration and RC were increased and decreased, respectively, in both un-mulched and mulched soil. On the other hand, mulched soil maintained a significantly (α = 0.05 higher infiltration capacity and RC compared to that of the un-mulched soil.

  6. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    Science.gov (United States)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root

  7. Antecedent topography and morphological controls on sediment accumulation and slope stability of the U.S. Atlantic margin

    Science.gov (United States)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.

    2017-12-01

    The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role

  8. Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.

  9. Effect of Variations in Long-Duration Rainfall Intensity on Unsaturated Slope Stability

    OpenAIRE

    Hsin-Fu Yeh; Yi-Jin Tsai

    2018-01-01

    In recent years, many scientific methods have been used to prove that the Earth’s climate is changing. Climate change can affect rainfall patterns, which can in turn affect slope safety. Therefore, this study analyzed the effects of climate change on rainfall patterns from the perspective of rainfall intensity. This analysis was combined with numerical model analysis to examine the rainfall patterns of the Zengwen reservoir catchment area and its effects on slope stability. In this study, the...

  10. Including the influence of waves in the overall slope stability analysis of rubble mound breakwaters

    OpenAIRE

    Mollaert, J.; Tavallali, A.

    2016-01-01

    An offshore breakwater is designed for the construction of a LNG-terminal. For the slope stability analysis of the rubble mound breakwater the existing and the extreme wave climate are considered. Pore water pressure variations exist in the breakwater and its permeable foundation. A wave trough combined with the moment of maximum wave run-up results in a decrease and increase of the pore water pressure, respectively. Therefore, the wave actions have on overall effect on the slope stability of...

  11. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examines the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.

  12. Slope Stability Evaluation And Equipment Setback Distances For Burial Ground Excavations

    International Nuclear Information System (INIS)

    Mcshane, D.S.

    2010-01-01

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examines the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38 o or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.

  13. Stability of submarine slopes in the northern South China Sea: a numerical approach

    Science.gov (United States)

    Zhang, Liang; Luan, Xiwu

    2013-01-01

    Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained ( Φ=0) cases. Results show that submarine slopes are stable when the slope is 13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes >10°, and >3° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.

  14. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    Science.gov (United States)

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  15. Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope was calculated from the bathymetry surface for each raster cell using ArcGIS's Spatial Analyst 'Slope' Tool. Slope describes the maximum steepness of a terrain...

  16. Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong; Wang, Mingjiang; Lai, Xu

    2015-01-01

    Highlights: • Novel nonlinear mathematical model of hydro-turbine governing system is proposed. • Hopf bifurcation analysis on the governing system is conducted. • Stability of the system under load disturbance is studied. • Influence of four factors on stability is analyzed. • Optimization methods of improving system stability are put forward. - Abstract: In order to overcome the problem of nonlinear dynamics of hydro-turbine governing system with sloping ceiling tailrace tunnel, which is caused by the interface movement of the free surface-pressurized flow in the tailrace tunnel, and the difficulty of analyzing the stability of system, this paper uses the Hopf bifurcation theory to study the stability of hydro-turbine governing system of hydropower station with sloping ceiling tailrace tunnel. Firstly, a novel and rational nonlinear mathematical model of the hydro-turbine governing system is proposed. This model contains the dynamic equation of pipeline system which can accurately describe the motion characteristics of the interface of free surface-pressurized flow in sloping ceiling tailrace tunnel. According to the nonlinear mathematical model, the existence and direction of Hopf bifurcation of the nonlinear dynamic system are analyzed. Furthermore, the algebraic criterion of the occurrence of Hopf bifurcation is derived. Then the stability domain and bifurcation diagram of hydro-turbine governing system are drawn by the algebraic criterion, and the characteristics of stability under different state parameters are investigated. Finally, the influence of step load value, ceiling slope angle and section form of tailrace tunnel and water depth at the interface in tailrace tunnel on stability are analyzed based on stable domain. The results indicate that: The Hopf bifurcation of hydro-turbine governing system with sloping ceiling tailrace tunnel is supercritical. The phase space trajectories of characteristic variables stabilize at the equilibrium points

  17. Slope stability and bearing capacity of landfills and simple on-site test methods.

    Science.gov (United States)

    Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi

    2017-07-01

    This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.

  18. Dip-slope and Dip-slope Failures in Taiwan - a Review

    Science.gov (United States)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  19. Evaluation of the instability problems in rock slopes surrounding historical Safranbolu by kinematic analysis

    Directory of Open Access Journals (Sweden)

    İnan Keskin

    2017-10-01

    Full Text Available Safranbolu which has high probability for slope-induced disasters is a very worthwhile settlement for our country and also for the world with its historical and cultural heritage. Finding out potential hazards that may affect the wealth of this world heritage city is very crucial. The historic Safranbolu is surrounded by very steep rock slopes, and occasionally instability occurs in the rock mass that forms these slopes. The rock blocks that are relaesed in various causes and shapes can damage the historic town living spaces by creating a source for the rock fallings and moving down the slope in these very steep slopes. The rock slopes were evaluated by kinematic analysis in order to reduce the mentioned damages and to reveal potential hazards. In the study, characteristics of mass that causes rock fallings are analysed, kinematic controlled instability types are determined considering the obtained data and characteristic of slopes.

  20. Stability of Armour Units in Oscillatory Flow

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Thompson, A. C.

    1983-01-01

    As part of a program to study the hydraulics of wave attack on rubble mound breakwaters tests were made on model armour units in a steady flow through a layer laid on a slope. The flow angle has little effect on stability for dolosse or rock layers. The head drop at failure across each type...... of layer is similar but the dolosse layer is more permeable and fails as a whole. There was no viscous scale effect. These results and earlier tests in oscillating flow suggest a 'reservoir' effect is important in the stability in steep waves....

  1. Slope Stability Analysis Based on Type, Physical And Mechanical Properties Rock in Teluk Pandan District, East Kutai Regency, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Sujiman Kusnadi

    2017-12-01

    Full Text Available Research was located In Teluk Pandan District, East Kutai Regency, East Kalimantan Province.  It’s aimed to determine the lithology in the  research area and to find out how the amount of slope that will be a landslide at that location. The research conducted with the analysis of coring drilling results and then analyzed in the laboratory of rock mechanics to get the characteristic of physical and mechanical properties of the rocks. The data analysis using Hoek and Bray Method. The results showed that in the area study has a sedimentary rock lithology fine to medium detritus, such as claystone, siltstone and sandstone, as well as inserts are coal and shale. Based on the results of laboratory analysis of rock mechanics obtained density between 2,648 to 2,770. While the test results obtained value triaxial cohesion between (6.66 - 9:05 Kg / cm2, friction angle in between (37.19 - 44.08o, cohesion residual (2.72 - 3.10 Kg / cm2, residual friction angle (27.22 - 32.44o. While the direct shear test the cohesion of the summit between (6.66 - 9:05 Kg / cm2, friction angle in the cohesion peak (36.15 - 43.00o, cohesion residual (2:22 to 3:10 Kg / cm2, friction angle in the cohesion residual (37.22 - 33.85o. The simulation results stability of the slope stability Hoek and Bray using rockslide software, the result is that if the slope with a single slope stability, the stability of the slope is 60o, and if the slope with the stability of the slope overall stability of the slope is 48o.

  2. 30 CFR 716.2 - Steep-slope mining.

    Science.gov (United States)

    2010-07-01

    ... burial does not cause, or add to, instability of the backfill. Woody materials may be chipped and... planning agencies, if any, constitutes an equal or better economic or public use. (iii) The permittee has... standards established to assure the stability, drainage, and configuration necessary for the intended use of...

  3. Wave run-up on sandbag slopes

    Directory of Open Access Journals (Sweden)

    Thamnoon Rasmeemasmuang

    2014-03-01

    Full Text Available On occasions, sandbag revetments are temporarily applied to armour sandy beaches from erosion. Nevertheless, an empirical formula to determine the wave run -up height on sandbag slopes has not been available heretofore. In this study a wave run-up formula which considers the roughness of slope surfaces is proposed for the case of sandbag slopes. A series of laboratory experiments on the wave run -up on smooth slopes and sandbag slopes were conducted in a regular-wave flume, leading to the finding of empirical parameters for the formula. The proposed empirical formula is applicable to wave steepness ranging from 0.01 to 0.14 and to the thickness of placed sandbags relative to the wave height ranging from 0.17 to 3.0. The study shows that the wave run-up height computed by the formula for the sandbag slopes is 26-40% lower than that computed by the formula for the smooth slopes.

  4. Slope Stability Analysis of Mountainous/Hilly regions of Nepal: A case study of Bhotekoshi Hydropower site

    Science.gov (United States)

    Acharya, A.; Gautam, S.; Kafle, K. R.

    2017-12-01

    Nepal is a mountainous, developing country that straddles the boundary between the Indian and Himalayan tectonic plates. In Nepal, landslides represent a major constraint on development, causing high levels of economic loss and substantial number of fatalities each year. There is a general consensus that the impacts of landslides in mountainous countries such as Nepal are increasing with time due to unstable slopes. The present study deals with the field investigation of slope stability in mountainous/hilly region of Nepal. Among the natural hazards that occur in regularly in Nepal, flood and landslides due to unstable slopes are by far the serious ones. They claim many human lives every year and cause other damages such as destruction and blockage of highway, destruction of hydropower, losses of livestock, crops and agricultural land. Slope Mass Rating system and stereographic projection has been carried out for analysis of slope stability using standard formats and parameters. It has been found that there are few major discontinuities that play the role for the rock/soil slides around the area. The major discontinuities are 235°/67°. These joint sets play the main role to the plane as well as wedge failures around the area. The rock mass rating of the slope has been found to be 27 and the slope mass rating has been found to be 37.8. The obtained slope mass rating value lies on IV class (Bad) that represents unstable slope having planner or big wedge failure and needs to be corrective measures in the slope. From stereographic projection, wedge failure of the slope has been seen according to the conditions of slope failure.

  5. Local dynamic stability of lower extremity joints in lower limb amputees during slope walking.

    Science.gov (United States)

    Chen, Jin-Ling; Gu, Dong-Yun

    2013-01-01

    Lower limb amputees have a higher fall risk during slope walking compared with non-amputees. However, studies on amputees' slope walking were not well addressed. The aim of this study was to identify the difference of slope walking between amputees and non-amputees. Lyapunov exponents λS was used to estimate the local dynamic stability of 7 transtibial amputees' and 7 controls' lower extremity joint kinematics during uphill and downhill walking. Compared with the controls, amputees exhibited significantly lower λS in hip (P=0.04) and ankle (P=0.01) joints of the sound limb, and hip joints (P=0.01) of the prosthetic limb during uphill walking, while they exhibited significantly lower λS in knee (P=0.02) and ankle (P=0.03) joints of the sound limb, and hip joints (P=0.03) of the prosthetic limb during downhill walking. Compared with amputees level walking, they exhibited significantly lower λS in ankle joints of the sound limb during both uphill (P=0.01) and downhill walking (P=0.01). We hypothesized that the better local dynamic stability of amputees was caused by compensation strategy during slope walking.

  6. Linking slope stability and climate change: the Nordfjord region, western Norway, case study

    Science.gov (United States)

    Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.

    2009-12-01

    Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.

  7. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations

    Directory of Open Access Journals (Sweden)

    Mahdi Motagh

    2013-07-01

    Full Text Available The detection and monitoring of mass movement of susceptible slopes plays a key role in mitigating hazards and potential damage associated with creeping slopes and landslides. In this paper, we use observations from both Interferometric Synthetic Aperture Radar (InSAR and Global Positioning System (GPS to assess the slope stability of the Sarcheshmeh ancient landslide in the North Khorasan province of northeast Iran. InSAR observations were obtained by the time-series analysis of Envisat SAR images covering 2004–2006, whereas repeated GPS observations were conducted by campaign measurements during 2010–2012. Surface displacement maps of the Sarcheshmeh landslide obtained from InSAR and GPS are both indicative of slope stability. Hydrogeological analysis suggests that the multi-year drought and lower than average precipitation levels over the last decade might have contributed to the current dormancy of the Sarcheshmeh landslide.

  8. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  9. The design on high slope stabilization in waste rock sites of uranium mines

    International Nuclear Information System (INIS)

    Liu Taoan; Zhou Xinghuo; Liu Jia

    2005-01-01

    Design methods, reinforcement measures, and flood control measures concerning high slope stabilization in harnessing waste rock site are described in brief according to some examples of two uranium mines in Hunan province. (authors)

  10. EFFECT OF GROUND VIBRATION TO SLOPE STABILITY, CASE STUDY LANDSLIDE ON THE MOUTH OF RAILWAY TUNNEL, GUNUNG GAJAH VILLAGE, LAHAT DISTRICT

    Directory of Open Access Journals (Sweden)

    Moamar Aprilian Ghadafi

    2017-12-01

    Full Text Available Slope stability around railway tunnel in Gunung Gajah Village, Lahat District needs to be analysed due to landslide which occurred on January, 23th 2016. That analysis needs to be done so that the railway transportation system can run safely. The purposes of this research are: to find out the factors that cause slope instability, to find out peak acceleration caused by railway traffic and earthquakes and its effects to the safety factor of slope, and determine stabilization method in order to prevent the occurrence of further landslide. The research activities include surveying, sampling, laboratory testing and analyzing slope stability using pseudo-static approach. Based on research result, the main factors that cause slope instability are morphology, structural geology, and ground vibration caused by earthquakes. Ground vibration are correlated to the slope instability. It shows that the higher of peak acceleration the lower of safety factor of slope. To prevent the occurrence of further landslide around research area, stabilization method should be applied in accordance with the conditions in that area such as building a retaining wall to increase safety factor of slope, building draining channels to reduce run off and performing shotcrete in the wall of landslide in order to avoid weathering.

  11. A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy)

    Science.gov (United States)

    Camera, C.; Apuani, T.; Masetti, M.

    2013-02-01

    The aim of this work was to understand and reproduce the hydrological dynamics of a slope, which was terraced using dry-stone retaining walls and its response to these processes in terms of stability at the slope scale. The slope studied is located in Valtellina (northern Italy), near the village of Tresenda, and in the last 30 yr has experienced several soil slip/debris flow events. In 1983 alone, such events caused the death of 18 people. Direct observation of the events of 1983 enabled the principal triggering cause of these events to be recognized in the formation of an overpressure at the base of a dry-stone wall, which caused its failure. To perform the analyses it is necessary to include the presence of dry-stone walls, considering the importance they have in influencing hydrological and geotechnical processes at the slope scale. This requires a very high resolution DEM (1 m × 1 m because the walls are from 0.60 m to 1.0 m wide) that has been appositely derived. A hydrogeological raster-based model, which takes into account both the unsaturated and saturated flux components, was applied. This was able to identify preferential infiltration zones and was rather precise in the prediction of maximum groundwater levels, providing valid input for the distributed stability analysis. Results of the hydrogeological model were used for the successive stability analysis. Sections of terrace were identified from the downslope base of a retaining wall to the top of the next downslope retaining wall. Within each section a global method of equilibrium was applied to determine its safety factor. The stability model showed a general tendency to overestimate the amount of unstable areas. An investigation of the causes of this unexpected behavior was, therefore, also performed in order to progressively improve the reliability of the model.

  12. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    Science.gov (United States)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort

  13. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    Science.gov (United States)

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  14. Logisnet: A tool for multimethod, multiple soil layers slope stability analysis

    Science.gov (United States)

    Legorreta Paulin, G.; Bursik, M.

    2009-05-01

    Shallow landslides and slope failures have been studied from several points of view (inventory, heuristic, statistic, and deterministic). In particular, numerous methods embedded in Geographic Information Systems (GIS) applications have been developed to assess slope stability. However, little work has been done on the systematic comparison of different techniques and the incorporation of vertical contrasts of geotechnical properties in multiple soil layers. In this research, stability is modeled by using LOGISNET, an acronym for Multiple Logistic Regression, Geographic Information System, and Neural Network. The main purpose of LOGISNET is to provide government planners and decision makers a tool to assess landslide susceptibility. The system is fully operational for models handling an enhanced cartographic-hydrologic model (SINMAP) and multiple logistic regression. The enhanced implementation of SINMAP was tested at regional scale in the Highway 101 corridor in Del Norte County, California, and its susceptibility map was found to have improved factor of safety estimates based on comparison with landslide inventory maps. The enhanced SINMAP and multiple logistic regression subsystems have functions that allow the user to include vertical variation in geotechnical properties through summation of forces in specific soil layers acting on failure planes for a local or regional-scale mapping. The working group of LOGISNET foresees the development of an integrated tool system to handle and support the prognostic studies of slope instability, and communicate the results to the public through maps.

  15. Sensitivity analysis and calibration of a dynamic physically based slope stability model

    Science.gov (United States)

    Zieher, Thomas; Rutzinger, Martin; Schneider-Muntau, Barbara; Perzl, Frank; Leidinger, David; Formayer, Herbert; Geitner, Clemens

    2017-06-01

    Physically based modelling of slope stability on a catchment scale is still a challenging task. When applying a physically based model on such a scale (1 : 10 000 to 1 : 50 000), parameters with a high impact on the model result should be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) uncertainties of laboratory tests and field measurements or (iv) parameters that cannot be derived experimentally or measured in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling, this is rarely done using physically based slope stability models. In the present study a dynamic, physically based, coupled hydrological-geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed multitemporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg (Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic conductivity, specific storage, angle of internal friction for effective stress, cohesion for effective stress) are systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble, including 25 behavioural model runs with the highest portion of correctly predicted landslides and non-landslides, is then validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the location and the supposed triggering timing of 73.0 % of the observed landslides triggered in August 2005 and 91.5 % of the observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight increase in areas potentially affected by slope failure. At the same time, the peak run-off increases more markedly, suggesting that

  16. Satellites and Steep Slopes - the challenge of topography in the Himalaya - Karakorum for cryosphere models

    Science.gov (United States)

    Steiner, J. F.; Buri, P.; Miles, E. S.; Immerzeel, W.

    2016-12-01

    The topography in glaciated catchments in the Himalaya - Karakoram range are extreme in a number of aspects that proof to be a challenge for distributed modelling. High altitude regions, where accumulation areas of glaciers are generally located, can at times be very steep, covered in hanging ice and seasonal snow. On the other hand, lower areas, where ablation zones on glacier tongues are located, tend to be very shallow. This has consequences for obtaining glacier areas from satellite derived glacier inventories (e.g. RGI, ICIMOD). As they are taken perpendicular to the center of the earth, these inventories will underestimate the area of steep regions, sometimes quite considerably (Figure 1). This can have consequences for a number of statistics in glaciological modeling, especially when it comes to the relative comparison of accumulation and ablation and hence overall melt from a glacier. Additionally, these steep head walls cause topographic shading. Depending on the exposition of the valley this can result in very divergent amounts of direct solar radiation reaching the glacier surface from valley to valley. Comparisons of melt between different regions and even glaciers have to be taken with considerable caution. Finally, these shallow glacier tongues are increasingly covered in debris. Such glacier surfaces with a debris cover ranging in grain size from sand to boulders several meters in diameter are very hummocky rather than flat bare ice glacier surfaces. This in turn increases local shading but also increases the overall glacier surface. Using high resolution satellite imagery and DEMs ( 5m) from our field site we investigate the effects of areal misrepresentations on the local scale. Decreasing resolution we then take this analysis to the mountain range scale and can identify to what degree these factors are significant and considering literature values determine the quantitative impact for energy and mass balance studies. Figure 1: A schematic

  17. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy

    Science.gov (United States)

    Baum, Rex L.; Godt, Jonathan W.; De Vita, P.; Napolitano, E.

    2012-01-01

    Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is

  18. The Road to Bribery and Corruption : Slippery Slope or Steep Cliff?

    NARCIS (Netherlands)

    Köbis, Nils C.; van Prooijen, Jan Willem; Righetti, Francesca; Van Lange, Paul A.M.

    2017-01-01

    Major forms of corruption constitute a strong threat to the functioning of societies. The most frequent explanation of how severe corruption emerges is the slippery-slope metaphor—the notion that corruption occurs gradually. While having widespread theoretical and intuitive appeal, this notion has

  19. The Road to Bribery and Corruption: Slippery Slope or Steep Cliff?

    NARCIS (Netherlands)

    Köbis, N.C.; van Prooijen, J.W.; Righetti, F.; Van Lange, P.A.M.

    Major forms of corruption constitute a strong threat to the functioning of societies. The most frequent explanation of how severe corruption emerges is the slippery-slope metaphor—the notion that corruption occurs gradually. While having widespread theoretical and intuitive appeal, this notion has

  20. Stability of Cubipod Armoured Roundheads in Short Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Medina, Josep R.

    2011-01-01

    The paper presents a comparison of the stability of concrete cube armour and Cubipod armour in a breakwater roundhead with slope 1:1.5, exposed to both 2-D (long-crested) and 3-D (short-crested) waves. The model tests were performed at the Hydraulics and Coastal Engineering Laboratory at Aalborg...... University, Denmark. The model tests showed that Cubipod armour is more stable than cube armour when exposed to longer waves (steepness approx. 0.025) and has equal stability to cubes in shorter waves. The Cubipod armour layer contained due to its high porosity approximately 6-17% less concrete than the cube...

  1. Stability of Armour Units in Flow Through a Layer

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; C. Thompson, Alex

    1984-01-01

    As part of a program to study the hydraulics of wave attack on rubble mound breakwaters tests were made on model armour units in a steady flow through a layer laid on a slope. The flow angle has little effect on stability for dolosse or rock layers. The head drop at failure across each type...... of layer is similar but the dolosse layer is more permeable and fails as a whole. There was no viscous scale effect. These results and earlier tests in oscillating flow suggest a 'reservoir' effect is important in the stability in steep waves....

  2. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    Science.gov (United States)

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the posterior drawer test but had little effect on rotational or dynamic multiplanar stability as assessed by the dial and RPS tests, respectively. Conversely, decreasing posterior slope resulted in increased posterior instability and a significant increase in the magnitude of the RPS. These results suggest that increasing posterior tibial slope may improve

  3. Integrating the effects of forest cover on slope stability in a deterministic landslide susceptibility model (TRIGRS 2.0)

    Science.gov (United States)

    Zieher, T.; Rutzinger, M.; Bremer, M.; Meissl, G.; Geitner, C.

    2014-12-01

    The potentially stabilizing effects of forest cover in respect of slope stability have been the subject of many studies in the recent past. Hence, the effects of trees are also considered in many deterministic landslide susceptibility models. TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; USGS) is a dynamic, physically-based model designed to estimate shallow landslide susceptibility in space and time. In the original version the effects of forest cover are not considered. As for further studies in Vorarlberg (Austria) TRIGRS 2.0 is intended to be applied in selected catchments that are densely forested, the effects of trees on slope stability were implemented in the model. Besides hydrological impacts such as interception or transpiration by tree canopies and stems, root cohesion directly influences the stability of slopes especially in case of shallow landslides while the additional weight superimposed by trees is of minor relevance. Detailed data on tree positions and further attributes such as tree height and diameter at breast height were derived throughout the study area (52 km²) from high-resolution airborne laser scanning data. Different scenarios were computed for spruce (Picea abies) in the study area. Root cohesion was estimated area-wide based on published correlations between root reinforcement and distance to tree stems depending on the stem diameter at breast height. In order to account for decreasing root cohesion with depth an exponential distribution was assumed and implemented in the model. Preliminary modelling results show that forest cover can have positive effects on slope stability yet strongly depending on tree age and stand structure. This work has been conducted within C3S-ISLS, which is funded by the Austrian Climate and Energy Fund, 5th ACRP Program.

  4. A development of an evaluation flow chart for seismic stability of rock slopes based on relations between safety factor and sliding failure

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2010-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake- induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is needed to evaluate the seismic stability of surrounding slopes against extremely strong ground motions. In order to evaluate the seismic stability of surrounding slopes, the most conventional method is to compare safety factors on an expected sliding surface, which is calculated from the stability analysis based on the limit equilibrium concept, to a critical value which judges stability or instability. The method is very effective to examine whether or not the sliding surface is safe. However, it does not mean that the sliding surface falls whenever the safety factor becomes smaller than the critical value during an earthquake. Therefore the authors develop a new evaluation flow chart for the seismic stability of rock slopes based on relations between safety factor and sliding failure. Furthermore, the developed flow chart was validated by comparing two kinds of safety factors calculated from a centrifuge test result concerned with a rock slope. (author)

  5. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    Science.gov (United States)

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.

  6. Investigations of slope stability, Savannah River Plant, Aiken, South Carolina. Draft report

    International Nuclear Information System (INIS)

    1985-01-01

    Our analysis of slope stability indicates acceptable factors of safety for trenches excavated at a slope inclination of one (horizontal) to one (vertical). Further, without the addition of externally applied loads, such as construction trafficking and the gantry crane, a slope inclination of 0.75 horizontal to 1.0 vertical was found to have an acceptable factor of safety of 1.5. Setback distances were calculated for a slope inclination of one to one, and it was found that the gantry crane loading could safely be applied at a setback distance of approximately 7.5 feet while maintaining a factor of safety of approximately 1.2. Similarly, setback distances required for dump trucks and scrapers would be expected to be approximately 6 feet and 10 feet, respectively, to maintain a factor of safety of 1.2. In order to allow flexibility with construction loadings, parametric studies were utilized for construction trafficking to enable setback distances to be selected consistent with actual equipment to be utilized during construction. The effect of removal of surficial soils was investigated, and it is concluded that a minimum of 4-1/2 feet should be removed from all areas prior to the excavation of slopes

  7. Methods for assessing the stability of slopes during earthquakes-A retrospective

    Science.gov (United States)

    Jibson, R.W.

    2011-01-01

    During the twentieth century, several methods to assess the stability of slopes during earthquakes were developed. Pseudostatic analysis was the earliest method; it involved simply adding a permanent body force representing the earthquake shaking to a static limit-equilibrium analysis. Stress-deformation analysis, a later development, involved much more complex modeling of slopes using a mesh in which the internal stresses and strains within elements are computed based on the applied external loads, including gravity and seismic loads. Stress-deformation analysis provided the most realistic model of slope behavior, but it is very complex and requires a high density of high-quality soil-property data as well as an accurate model of soil behavior. In 1965, Newmark developed a method that effectively bridges the gap between these two types of analysis. His sliding-block model is easy to apply and provides a useful index of co-seismic slope performance. Subsequent modifications to sliding-block analysis have made it applicable to a wider range of landslide types. Sliding-block analysis provides perhaps the greatest utility of all the types of analysis. It is far easier to apply than stress-deformation analysis, and it yields much more useful information than does pseudostatic analysis. ?? 2010.

  8. Experimental study on slope sliding and debris flow evolution with and without barrier

    Directory of Open Access Journals (Sweden)

    Ji-kun Zhao

    2015-01-01

    Full Text Available A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, and that the growth rate of the soil moisture content of the steep slope is large under the first weak rainfall, and that of the gentle slope is significantly affected by the second heavy rainfall. For the steep slope, slope sliding first occurs on the upper slope surface under heavy rainfall and further develops along the top platform and lower slope surface, while under weak rainfall the soil moisture content at the lower part of the slope first increases because of the high runoff velocity, meaning that failure occurring there is more serious. When a barrier was placed at a high position on a slope, debris flow was separated and distributed early and had less ability to carry solids, and the variation of the greatest depth of erosion pits on soil slopes was not significant.

  9. Monitoring System for Slope Stability under Rainfall by using MEMS Acceleration Sensor IC tags

    International Nuclear Information System (INIS)

    Murakami, S; Dairaku, A; Komine, H; Saito, O; Sakai, N; Isizawa, T; Maruyama, I

    2013-01-01

    Real-time warning system for slope failure under rainfall is available to disaster prevention and mitigation. Monitoring of multi-point and wireless measurements is effective because it is difficult to conclude the most dangerous part in a slope. The purpose of this study is to propose a method of monitoring system with multi-point and wireless measurements for a slope stability using MEMS acceleration sensor IC tags. MEMS acceleration sensor IC tag is an acceleration sensor microminiaturized by a technology of Micro Electro Mechanical Systems on board IC tag. Especially, low cost of the sensor will yield to the realization of the system. In order to investigate the applicability of the proposed system, a large-scale model test of artificial slope subjected to rainfall has been performed. MEMS acceleration sensor IC tags has been located on the slope and ground acceleration caused by forced vibration has been measured until the model slope collapses. The experimental results show that the MEMS acceleration sensor IC tag is comfortably available under rainfall, the characteristics of ground accelerations varies with changing the condition of the slope subjected to rainfall, and the proposed method can be applied to a real-time monitoring system for slope failure under rainfall.

  10. Recent and future warm extreme events and high-mountain slope stability.

    Science.gov (United States)

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  11. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    Science.gov (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  12. New Formula for Stability of Cube Armoured Roundheads

    DEFF Research Database (Denmark)

    Maciñeira, Enrique; Burcharth, Hans F.

    2009-01-01

    The paper presents a new formula for the stability of cube armoured roundheads. The formula is based on physical model tests in Aalborg University which both long crested and short crested waves of different wave steepness were used. The slope of the radius of the head were varied in order...... to explore the influence of the geometry on the armour stability. Besides cubes with mass density 2.4 t/m3, cubes with mass density 2.80 t/m3 were used in order to include the effect of mass density in the formula. The damage predictions given by the formula have been compared with prototype hand...

  13. Slope instability in complex 3D topography promoted by convergent 3D groundwater flow

    Science.gov (United States)

    Reid, M. E.; Brien, D. L.

    2012-12-01

    headlands and re-entrants to minimize slope effects on stability. Despite these equal slopes, our analyses, given dry conditions, illustrated that the headlands can be 5-7% less stable than the re-entrants, owing to the geometry of the 3D failure mass with the lowest stability. We then simulated groundwater flow in these landscapes; flow was caused by recharge perching on a horizontal low permeability layer with discharge at the bluff faces. By systematically varying recharge, hydraulic conductivity of the material, and conductance at the bluffs, we created different 3D pore-pressure fields. Recharge rates and hydraulic conductivities controlled the height of the water table, whereas bluff conductance influenced the gradient of the water table near the bluff face. Given elevated water tables with steep gradients, bluffs in the re-entrants became unstable where flow converged. Thus, with progressively stronger effects from water flow, overall instability evolved from relatively unstable headlands to more uniform stability to relatively unstable re-entrants. Larger re-entrants led to more 3D flow convergence and greater localized instability. One- or two-dimensional models cannot fully characterize slope instability in complex topography.

  14. Infants' Perception of Affordances of Slopes under High- and Low-Friction Conditions

    Science.gov (United States)

    Adolph, Karen E.; Joh, Amy S.; Eppler, Marion A.

    2010-01-01

    Three experiments investigated whether 14- and 15-month-old infants use information for both friction and slant for prospective control of locomotion down slopes. In Experiment 1, high- and low-friction conditions were interleaved on a range of shallow and steep slopes. In Experiment 2, friction conditions were blocked. In Experiment 3, the…

  15. Development of kenaf mat for slope stabilization

    Science.gov (United States)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  16. Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach

    Directory of Open Access Journals (Sweden)

    Alireza Baghbanan

    2017-06-01

    Full Text Available Due to existence of uncertainties in input geometrical properties of fractures, there is not any unique solution for assessing the stability of slopes in jointed rock masses. Therefore, the necessity of applying probabilistic analysis in these cases is inevitable. In this study a probabilistic analysis procedure together with relevant algorithms are developed using Discrete Fracture Network-Distinct Element Method (DFN-DEM approach. In the right abutment of Karun 4 dam and downstream of the dam body, five joint sets and one major joint have been identified. According to the geometrical properties of fractures in Karun river valley, instability situations are probable in this abutment. In order to evaluate the stability of the rock slope, different combinations of joint set geometrical parameters are selected, and a series of numerical DEM simulations are performed on generated and validated DFN models in DFN-DEM approach to measure minimum required support patterns in dry and saturated conditions. Results indicate that the distribution of required bolt length is well fitted with a lognormal distribution in both circumstances. In dry conditions, the calculated mean value is 1125.3 m, and more than 80 percent of models need only 1614.99 m of bolts which is a bolt pattern with 2 m spacing and 12 m length. However, as for the slopes with saturated condition, the calculated mean value is 1821.8 m, and more than 80 percent of models need only 2653.49 m of bolts which is equivalent to a bolt pattern with 15 m length and 1.5 m spacing. Comparison between obtained results with numerical and empirical method show that investigation of a slope stability with different DFN realizations which conducted in different block patterns is more efficient than the empirical methods.

  17. Using Controlled Landslide Initiation Experiments to Test Limit-Equilibrium Analyses of Slope Stability

    Science.gov (United States)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2004-12-01

    Most studies of landslide initiation employ limit equilibrium analyses of slope stability. Owing to a lack of detailed data, however, few studies have tested limit-equilibrium predictions against physical measurements of slope failure. We have conducted a series of field-scale, highly controlled landslide initiation experiments at the USGS debris-flow flume in Oregon; these experiments provide exceptional data to test limit equilibrium methods. In each of seven experiments, we attempted to induce failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand placed behind a retaining wall in the 31° sloping flume. We systematically investigated triggering of sliding by groundwater injection, by prolonged moderate-intensity sprinkling, and by bursts of high intensity sprinkling. We also used vibratory compaction to control soil porosity and thereby investigate differences in failure behavior of dense and loose soils. About 50 sensors were monitored at 20 Hz during the experiments, including nests of tiltmeters buried at 7 cm spacing to define subsurface failure geometry, and nests of tensiometers and pore-pressure sensors to define evolving pore-pressure fields. In addition, we performed ancillary laboratory tests to measure soil porosity, shear strength, hydraulic conductivity, and compressibility. In loose soils (porosity of 0.52 to 0.55), abrupt failure typically occurred along the flume bed after substantial soil deformation. In denser soils (porosity of 0.41 to 0.44), gradual failure occurred within the soil prism. All failure surfaces had a maximum length to depth ratio of about 7. In even denser soil (porosity of 0.39), we could not induce failure by sprinkling. The internal friction angle of the soils varied from 28° to 40° with decreasing porosity. We analyzed stability at failure, given the observed pore-pressure conditions just prior to large movement, using a 1-D infinite-slope method and a more complete 2-D Janbu method. Each method provides a static

  18. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    Science.gov (United States)

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  19. Some considerations on the seismic stability of large slopes surrounding the nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Watanabe, Hiroyuki; Imaide, Hiroshi

    1982-01-01

    As a part of the researches with regard to the seismic stability of large scale slope, the authors have carried out the model test, in which the static failure has been generated by inclining the slope model. In this report, the results of static inclination tests of slope model are described and discussions are done from viewpoints of, 1. the mechanical behaviours and failure state of slope during the inclination test, 2. comparison between the results obtained by the static failure test (that is, inclination test) and those of another report with regard to the dynamic failure test which had been performed using the shaking table, and the relationship between an equivalent seismic coefficient obtained by static failure test and acceleration by dynamic failure test, 3. relationship between the failure state of inclination test and the factor of convensional circular arc slip method. (author)

  20. Best practices of using shotcrete for wall fascia and slope stabilization (phase 1 study)

    Science.gov (United States)

    2017-06-01

    Shotcrete has become attractive and holds potential to replace cast-in-place (CIP) concrete for elements like retaining walls and slope stabilization. However, this practice is still limited due to concerns of drying shrinkage cracking, long-term dur...

  1. Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data

    Science.gov (United States)

    Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.

    2014-01-01

    Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.

  2. Stability analysis of jointed rock slope by the block theory

    International Nuclear Information System (INIS)

    Yoshinaka, Ryunoshin; Yamabe, Tadashi; Fujita, Tomoo.

    1990-01-01

    The block theory to analyze three dimensional stability problems of discontinuous rock masses is applied to the actual discontinuous rock slope. Taking into consideration that the geometrical information about discontinuities generally increases according to progressive steps of rock investigation in field, the method adopted for analysis is divided into following two steps; 1) the statistical/probabilitical analysis using information from the primary investigation stage which mainly consists of that of natural rock outcrops, and 2) the deterministic analysis correspond to the secondary stage using exploration adits. (author)

  3. Physically-based slope stability modelling and parameter sensitivity: a case study in the Quitite and Papagaio catchments, Rio de Janeiro, Brazil

    Science.gov (United States)

    de Lima Neves Seefelder, Carolina; Mergili, Martin

    2016-04-01

    We use the software tools r.slope.stability and TRIGRS to produce factor of safety and slope failure susceptibility maps for the Quitite and Papagaio catchments, Rio de Janeiro, Brazil. The key objective of the work consists in exploring the sensitivity of the geotechnical (r.slope.stability) and geohydraulic (TRIGRS) parameterization on the model outcomes in order to define suitable parameterization strategies for future slope stability modelling. The two landslide-prone catchments Quitite and Papagaio together cover an area of 4.4 km², extending between 12 and 995 m a.s.l. The study area is dominated by granitic bedrock and soil depths of 1-3 m. Ranges of geotechnical and geohydraulic parameters are derived from literature values. A landslide inventory related to a rainfall event in 1996 (250 mm in 48 hours) is used for model evaluation. We attempt to identify those combinations of effective cohesion and effective internal friction angle yielding the best correspondence with the observed landslide release areas in terms of the area under the ROC Curve (AUCROC), and in terms of the fraction of the area affected by the release of landslides. Thereby we test multiple parameter combinations within defined ranges to derive the slope failure susceptibility (fraction of tested parameter combinations yielding a factor of safety smaller than 1). We use the tool r.slope.stability (comparing the infinite slope stability model and an ellipsoid-based sliding surface model) to test and to optimize the geotechnical parameters, and TRIGRS (a coupled hydraulic-infinite slope stability model) to explore the sensitivity of the model results to the geohydraulic parameters. The model performance in terms of AUCROC is insensitive to the variation of the geotechnical parameterization within much of the tested ranges. Assuming fully saturated soils, r.slope.stability produces rather conservative predictions, whereby the results yielded with the sliding surface model are more

  4. Erosion and stability of a mine soil

    International Nuclear Information System (INIS)

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-01-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes

  5. Characteristics of the Roof Behaviors and Mine Pressure Manifestations During the Mining of Steep Coal Seam

    Science.gov (United States)

    Hong-Sheng, Tu; Shi-Hao, Tu; Cun, Zhang; Lei, Zhang; Xiao-Gang, Zhang

    2017-12-01

    A steep seam similar simulation system was developed based on the geological conditions of a steep coal seam in the Xintie Coal Mine. Basing on similar simulation, together with theoretical analysis and field measurement, an in-depth study was conducted to characterize the fracture and stability of the roof of steep working face and calculate the width of the region backfilled with gangue in the goaf. The results showed that, as mining progressed, the immediate roof of the steep face fell upon the goaf and backfilled its lower part due to gravity. As a result, the roof in the lower part had higher stability than the roof in the upper part of the working face. The deformation and fracture of main roof mainly occurred in the upper part of the working face; the fractured main roof then formed a "voussoir beam" structure in the strata's dip direction, which was subjected to the slip- and deformation-induced instability. The stability analysis indicated that, when the dip angle increased, the rock masses had greater capacity to withstand slip-induced instability but smaller capacity to withstand deformation-induced instability. Finally, the field measurement of the forces exerted on the hydraulic supports proved the characteristics of the roof's behaviors during the mining of a steep seam.

  6. Slope earthquake stability

    CERN Document Server

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang

    2017-01-01

    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  7. Numerical Analysis of Slopes Stability and Shallow Foundations Behavior at Crest under Real Seismic Loading - Reinforcement Effect

    International Nuclear Information System (INIS)

    Mekdash, H.; Hage Chehade, F.; Sadek, M.; Abdel Massih, D.; El Hachem, E.; Youssef, E.

    2011-01-01

    The aim of this paper is to analyze the slopes stability under seismic loading using a global numerical dynamic approach. This approach allows important parameters that are generally ignored by traditional engineering methods such as the soil deformability, the dynamic amplification, non linear soil behavior, the spatial and temporal variability of the seismic loading and the reinforcement element. The present study is conducted by using measures recorded during real earthquakes (Turkey, 1999) and (Lebanon, 2008). Elastoplastic soil behavior analysis leads to monitor the evolution of the slope state after an earthquake and to clarify the most probable failure circles. A parametric study according to the reinforcement length, position, inclination and the number of elements has been studied in order to define the optimal reinforcement scheme for slopes under seismic loading. This study contains also the stability analysis of an existing foundation near the slope's crest. It will focus on the reinforcement in order to give recommendation for the most appropriate scheme that minimize the settlement of the foundation due to earthquake effect. (author)

  8. A steep road to climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Friedlingstein, P [CEA Saclay, Inst Pierre Simon Laplace, Lab Climate and Environm Sci, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    The only way to stabilize Earth's climate is to stabilize the concentration of greenhouse gases in the atmosphere, but future changes in the carbon cycle might make this more difficult than has been thought. (author)

  9. A steep road to climate stabilization

    International Nuclear Information System (INIS)

    Friedlingstein, P.

    2008-01-01

    The only way to stabilize Earth's climate is to stabilize the concentration of greenhouse gases in the atmosphere, but future changes in the carbon cycle might make this more difficult than has been thought. (author)

  10. Rock slopes and reservoirs - lessons learned

    International Nuclear Information System (INIS)

    Moore, D.P.

    1999-01-01

    Lessons learned about slope stability in the course of four decades of monitoring, and in some cases stabilizing, slopes along British Columbia's hydroelectric reservoirs are discussed. The lessons are illustrated by short case histories of some of the more important slopes such as Little Chief Slide, Dutchman's Ridge, Downie Slide, Checkerboard Creek and Wahleach. Information derived from the monitoring and other investigations are compared with early interpretations of geology and slope performance. The comparison serves as an indicator of progress in slope stability determination and as a measure of the value of accumulated experience in terms of the potential consequences to safety and cost savings over the long life-span of hydroelectric projects.14 refs., 2 tabs., 15 figs

  11. Using a Remotely Piloted Aircraft System (RPAS) to analyze the stability of a natural rock slope

    Science.gov (United States)

    Salvini, Riccardo; Esposito, Giuseppe; Mastrorocco, Giovanni; Seddaiu, Marcello

    2016-04-01

    This paper describes the application of a rotary wing RPAS for monitoring the stability of a natural rock slope in the municipality of Vecchiano (Pisa, Italy). The slope under investigation is approximately oriented NNW-SSE and has a length of about 320 m; elevation ranges from about 7 to 80 m a.s.l.. The hill consists of stratified limestone, somewhere densely fractured, with dip direction predominantly oriented in a normal way respect to the slope. Fracture traces are present in variable lengths, from decimetre to metre, and penetrate inward the rock versant with thickness difficult to estimate, often exceeding one meter in depth. The intersection between different fracture systems and the slope surface generates rocky blocks and wedges of variable size that may be subject to phenomena of gravitational instability (with reference to the variation of hydraulic and dynamic conditions). Geometrical and structural info about the rock mass, necessary to perform the analysis of the slope stability, were obtained in this work from geo-referenced 3D point clouds acquired using photogrammetric and laser scanning techniques. In particular, a terrestrial laser scanning was carried out from two different point of view using a Leica Scanstation2. The laser survey created many shadows in the data due to the presence of vegetation in the lower parts of the slope and limiting the feasibility of geo-structural survey. To overcome such a limitation, we utilized a rotary wing Aibotix Aibot X6 RPAS geared with a Nikon D3200 camera. The drone flights were executed in manual modality and the images were acquired, according to the characteristics of the outcrops, under different acquisition angles. Furthermore, photos were captured very close to the versant (a few meters), allowing to produce a dense 3D point cloud (about 80 Ma points) by the image processing. A topographic survey was carried out in order to guarantee the necessary spatial accuracy to the process of images exterior

  12. Prediction of slope stability based on numerical modeling of stress–strain state of rocks

    Science.gov (United States)

    Kozhogulov Nifadyev, KCh, VI; Usmanov, SF

    2018-03-01

    The paper presents the developed technique for the estimation of rock mass stability based on the finite element modeling of stress–strain state of rocks. The modeling results on the pit wall landslide as a flow of particles along a sloped surface are described.

  13. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests

    Science.gov (United States)

    Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars

    2015-09-01

    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal

  14. [Effects of posterior tibial slope on non-contact anterior cruciate ligament rupture and stability of anterior cruciate ligament rupture knee].

    Science.gov (United States)

    Yue, De-bo; E, Sen; Wang, Bai-liang; Wang, Wei-guo; Guo, Wan-shou; Zhang, Qi-dong

    2013-05-07

    To retrospectively explore the correlation between anterior cruciate ligament (ACL)-ruptured knees, stability of ACL-rupture knee and posterior tibial slope (PTS). From January 2008 to October 2012, 150 knees with ACL rupture underwent arthroscopic surgery for ACL reconstruction. A control group was established for subjects undergoing arthroscopic surgery without ACL rupture during the same period. PTS was measured on a digitalized lateral radiograph. Lachman and mechanized pivot shift tests were performed for assessing the stability of knee. There was significant difference (P = 0.007) in PTS angle between the patients with ACL rupture (9.5 ± 2.2 degrees) and the control group (6.6 ± 1.8 degrees). Only among females, increased slope of tibial plateau had effect on the Lachman test. There was a higher positive rate of pivot shift test in patients of increased posterior slope in the ACL rupture group. Increased posterior tibial slope (>6.6) appears to contribute to non-contact ACL injuries in females. And the changes of tibial slope have no effect upon the Lachman test. However, large changes in tibial slope affect pivot shift.

  15. Life-cycle cost comparison of alternative surfacing for steep slopes on low-volume roads in Ghana

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph K

    2017-05-01

    Full Text Available surfacing options to gravel wearing courses used on steep gradients (in excess of 12%) of feeder roads in Ghana. A major outcome was three surfacing options (i.e. concrete, bituminous and stone setts/cobbles) that would be more effective to address drainage...

  16. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    Science.gov (United States)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  17. Experimental test of theory for the stability of partially saturated vertical cut slopes

    Science.gov (United States)

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  18. Determination of strength behaviour of slope supported by vegetated crib walls using centrifuge model testing

    Science.gov (United States)

    Sudan Acharya, Madhu

    2010-05-01

    of deformation and failure and provides benchmarks useful for verification of numerical models. In this case this test is mainly carried out to verify the stability analysis and deformation characteristics of a bamboo crib wall. Models of crib wall of dimensions 37x13x10 cm and 37x13x14cm were placed inside a Plexiglas box of internal dimensions of 42.5x42.5x30 cm and slope was formed leaving a space about 10 cm in the front. The model crib wall tests were all performed at 40-70 times earth's gravity. This means that the 5 mm diameters bamboo rods in model used represents a prototype diameter of 20-35 cm. The horizontal and vertical displacements were measured with the help of three displacements sensor fixed horizontally and one sensor fixed vertically at the top of the model crib wall. All together nine tests were carried out with varying model parameters. Standard medium sand and coarse sand were used as fill material in the testing. Two wall heights variations and three slopes variations were used in the testing. The test model was constructed either compacted or uncompacted. The compaction in the model was carried out by hand to about 90% of the Proctor density. Three slopes inclinations were used. For flat slope the slope angle was less than 25° , and for steep slope it was 25° -35° and for extremely steep slope it was > 35° . The test results and conclusions are presented in this paper.

  19. Environmental Assessment for Slope Stabilization Projects at Fort MacArthur, San Pedro, California

    Science.gov (United States)

    2012-01-01

    effective in stabilizing slopes. The USAF and its consultants identified the most effective remedial measures that can be economically constructed within...consultants identified the most effective remedial measures that can be economically constructed with the physical and property boundary constraints...carbon tetrachloride, ammonia, hydrogen sulfide, hydrogen cyanide , and methane. The SCAB is not classified under CAAQS for any TACs (CARB 2011). EA

  20. Slope Stability Analysis and Mitigation Measures in the Area of the Sighişoara Medieval Citadel

    Directory of Open Access Journals (Sweden)

    George-Cătălin Silvaş

    2014-07-01

    Full Text Available The Sighişoara Medieval Citadel has a very big importance to the cultural, architectural and historical heritage of Romania. The citadel is situated on the Fortress Hill and it is the only inhabited fortress in Romania. But underneath the beauty of the Citadel lies some problems that only the inhabitants and the authorities know. These problems consist in the presence of the slope instability phenomenon. Throughout the years the slopes of the Fortress Hill, because of a series of factors, became instable. Thus landslides occurred that affected the Citadel fortress walls. There are still some areas of the walls that have never been reconstructed yet. So a slope stability analysis shall show if the slope instability phenomenon is still active and the mitigation measures recommended will stop the activity of this phenomenon.

  1. Long-term stability analysis of the left bank abutment slope at Jinping I hydropower station

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-06-01

    Full Text Available The time-dependent behavior of the left bank abutment slope at Jinping I hydropower station has a major influence on the normal operation and long-term safety of the hydropower station. To solve this problem, a geomechanical model containing various faults and weak structural planes is established, and numerical simulation is conducted under normal water load condition using FLAC3D, incorporating creep model proposed based on thermodynamics with internal state variables theory. The creep deformations of the left bank abutment slope are obtained, and the changes of principal stresses and deformations of the dam body are analyzed. The long-term stability of the left bank abutment slope is evaluated according to the integral curves of energy dissipation rate in domain and its derivative with respect to time, and the non-equilibrium evolution rules and the characteristic time can also be determined using these curves. Numerical results show that the left bank abutment slope tends to be stable in a global sense, and the stress concentration is released. It is also indicated that more attention should be paid to some weak regions within the slope in the long-term deformation process.

  2. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  3. The modelling influence of water content to mechanical parameter of soil in analysis of slope stability

    Science.gov (United States)

    Gusman, M.; Nazki, A.; Putra, R. R.

    2018-04-01

    One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.

  4. Means of Slope Retreat on the Na Pali Cliffs, Kauai, Hawaii

    Science.gov (United States)

    Osborn, G.; Sheardown, A.; Blay, C.

    2016-12-01

    The spectacular, 500 to 600 m high, deeply grooved escarpment referred to as the Na Pali cliffs, on the northwest coast of Kauai, requires a substrate competent enough to hold up high steep cliffs yet erodible enough to allow generation of wide, deep grooves. These opposing tendencies are afforded by weathering of originally strong basalt that keeps pace with erosion. The fluted cliffs maintain a rather consistent slope angle, generally 50-60°, whether they are close to the shoreline or have retreated some distance from it, indicating that the slopes are retreating parallel to themselves. Previous literature promotes groundwater sapping or waterfall-plunge-pool erosion as the chief means of valley-head retreat, but there is no evidence that either concept provides a general explanation for retreat of the fluted cliffs. The eroding cliffs maintain steepness because as much rock is eroded at the base as at the top, and transported sediment is washed completely out of the gully system. The thin-bedded basalts exposed in the steep flutes are decomposed into irregularly alternating fine sediment of low to moderate cohesion and thoroughly fractured beds or lenses of solid but chemically weathered rock, and covered with a veneer of sparse grass. Erosion proceeds by episodic removal of thin grass-covered surficial sheets of the weathering products. Some of this process may be facilitated by shallow mass movement, but probably most of the work is done by overland and channelized flow during intense rainstorms. The Na Pali coast experiences one-hour rainfalls of 2-2.5 inches (1 year recurrence interval) and 5-6 inches (100 year recurrence interval); experiments by others on basaltic soils in Molokai suggest such rain is more than enough to generate erosion-inducing overland flow. Between the deep grooves and the shoreline are slopes with lesser drainage densities and lesser slope angles. The rocks here are not distinguished from the rocks above in previous literature, and

  5. A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau

    Science.gov (United States)

    Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan

    2018-05-01

    Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.

  6. Uncertainty of the Soil–Water Characteristic Curve and Its Effects on Slope Seepage and Stability Analysis under Conditions of Rainfall Using the Markov Chain Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Weiping Liu

    2017-10-01

    Full Text Available It is important to determine the soil–water characteristic curve (SWCC for analyzing slope seepage and stability under the conditions of rainfall. However, SWCCs exhibit high uncertainty because of complex influencing factors, which has not been previously considered in slope seepage and stability analysis under conditions of rainfall. This study aimed to evaluate the uncertainty of the SWCC and its effects on the seepage and stability analysis of an unsaturated soil slope under conditions of rainfall. The SWCC model parameters were treated as random variables. An uncertainty evaluation of the parameters was conducted based on the Bayesian approach and the Markov chain Monte Carlo (MCMC method. Observed data from granite residual soil were used to test the uncertainty of the SWCC. Then, different confidence intervals for the model parameters of the SWCC were constructed. The slope seepage and stability analysis under conditions of rainfall with the SWCC of different confidence intervals was investigated using finite element software (SEEP/W and SLOPE/W. The results demonstrated that SWCC uncertainty had significant effects on slope seepage and stability. In general, the larger the percentile value, the greater the reduction of negative pore-water pressure in the soil layer and the lower the safety factor of the slope. Uncertainties in the model parameters of the SWCC can lead to obvious errors in predicted pore-water pressure profiles and the estimated safety factor of the slope under conditions of rainfall.

  7. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Science.gov (United States)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  8. Hydrologically complemented deterministic slope stability analysis in part of Indian Lesser Himalaya

    Directory of Open Access Journals (Sweden)

    John Mathew

    2016-09-01

    Full Text Available This study uses a deterministic approach to evaluate the factor of safety (FS of the terrain for different hydrological conditions, in part of Indian Lesser Himalaya. The results indicate sudden increase in the percentage unstable area from 7.5% to 13.8% for rainfall intensity variation from 50 to 100 mm/day. For the rainfall intensity of 15 August 2007 which caused many landslides in the study area, 18.5% of the total area was unstable and it increases to 21.7%, 23.5% and 24.7%, respectively, for rainfall intensities corresponding to 10, 25 and 50 year return periods. This increment stagnates at about 260 mm/day, making about 25% of the area unstable. Higher rainfall intensities make progressively gentler slopes unstable, but limited to 25 degrees of slope in this area. The area underlain by granitic gneiss showed 23.1% of area as unstable for 135 mm/day of rainfall intensity, and was followed by those areas underlain by amphibolite (16%, limestone (13.7% and quartzite (10.4%. Receiver operating characteristic (ROC curve analysis has given 84.2% accuracy for the model. Conversion of FS to failure probability through Z scores enables identification unstable or marginally unstable areas, for planning selective slope stabilization measures.

  9. The Q-Slope Method for Rock Slope Engineering

    Science.gov (United States)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  10. Effect of Slope Positions on Physicochemical Properties of Soils Located on a Toposequence in Deilaman Area of Guilan Province

    Directory of Open Access Journals (Sweden)

    P. Mohajeri

    2016-10-01

    Full Text Available Introduction: Topography is one of the most important factors of soil formation and evolution. Soil properties vary spatially and are influenced by some environmental factors such as landscape features, including topography, slope aspect and position, elevation, climate, parent material and vegetation. Variations in landscape features can influence many phenomena and ecological processes including soil nutrients and water interactions. This factor affects soil properties by changing the altitude, steepness and slope direction of lands. In spite of the importance of understanding the variability of soils for better management, few studies have been done to assess the quality of soils located on a toposequence and most of these studies include just pedological properties. The aim of this study was to investigate physical and chemical properties of soils located on different slope positions and different depths of a toposequence in Deilaman area of Gilan province, that located in north of Iran. Materials and Methods: The lands on toposequence that were same in climate, parent material, vegetation and time factors but topographical factor was different, were divided into five sections including steep peak, shoulder slope, back slope, foot slope and toe slope. In order to topsoil sampling, transverse sections of this toposequence were divided into three parts lengthways, each forming one replicate or block. 10*10 square was selected and after removing a layer of undecomposed organic residues such as leaf litter, three depths of 0 to 20, 20 to 40 and 40 to60 cm soil samples were collected. physical and chemical characteristics such as soil texture, bulk density, aggregate stability, percent of organic matter, cation exchange capacity, available phosphorous and total nitrogen were measured. Results and Discussion: The results showed that, because of high organic matter content and fine textured soils on the lower slope positions including foot slope

  11. A multidisciplinary methodological approach for slope stability assessment of an area prone to shallow landslides

    Science.gov (United States)

    Bordoni, Massimiliano; Meisina, Claudia; Valentino, Roberto; Bittelli, Marco; Battista Bischetti, Gian; Vercesi, Alberto; Chersich, Silvia; Giuseppina Persichillo, Maria

    2016-04-01

    Rainfall-induced shallow landslides are widespread slope instabilities phenomena in several hilly and mountainous contexts all over the world. Due to their high density of diffusion also in small areas, they can provoke important damages to terrains, infrastructures, buildings, and, sometimes, loss of human lives. Shallow landslides affect superficial soils of limited thickness (generally lower than 2 m), located above weathered or not bedrock levels. Their triggering mechanism is strictly linked to the hydrological response of the soils to rainfall events. Thus, it becomes fundamental a comprehensive analysis of the soil properties which can influence the susceptibility of a slope to shallow landslides. In this study, a multidisciplinary approach was followed for the characterization of the soils and the individuation of the triggering conditions in an area particularly prone to shallow failures, for slope stability assessment. This area corresponded to the hilly sector of North-Eastern Oltrepò Pavese (Lombardy Region, Northern Italy), where the density of shallow landslides is really high, reaching more than 36 landslides per km2. The soils of the study area were analyzed through a multidisciplinary characterization, which took into account for the main geotechnical, mechanical and mineralogical parameters and also for the main pedological features of the materials. This approach allowed for identifying the main features and the horizons which could influence the soil behavior in relation to the conditions that are preparatory to shallow landslides development. In a test-site slope, representative of the main geomorphological, geological and landslides distribution characteristics typical of the study area, a continuous in time monitoring of meteorological (rainfall amount, air temperature, air humidity, atmospheric pressure, net solar radiation, wind speed and direction) and hydrological (soil water content, pore water pressure) parameters was implemented. In

  12. assessment of slope stability around gilgel gibe-ii hydroelectric

    African Journals Online (AJOL)

    preferred customer

    1 Gilgel-Gibe II Hydroelectric Project, Fofa Town, Ethiopia ... Key words/phrases: Factor of safety, plane failure, slope design, slope .... condition of potential unstable slopes along the road between Fofa town and Gilgel-Gibe Hydro- power II.

  13. EnviroAtlas - 2011 Agricultural Land Cover on Steep Slopes for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset represents the percentage land area that is classified as agricultural land cover that occurs on slopes above a given threshold for each...

  14. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  15. Stability of Dolos Slopes

    DEFF Research Database (Denmark)

    Brorsen, Michael; Burcharth, Hans F.; Larsen, Torben

    The stability of dolos armour blocks against wave attack has been investigated in wave model studies.......The stability of dolos armour blocks against wave attack has been investigated in wave model studies....

  16. Simulated stability tests of a small articulated tractor designed for extreme-sloped vineyards

    Directory of Open Access Journals (Sweden)

    F. Mazzetto

    2013-09-01

    Full Text Available A new reversible wheeled articulated tractor, designed to work in terraced vineyards trained with “pergola” system, common in mountain areas, is here described in its latest version and analysed through numerical simulations. This tractor has small dimensions, necessary to operate in that environment, and its central articulation has two rotational degrees-offreedom. The described features are surely strong design points but could be critical for vehicle’s stability, as affecting the supporting base’s dimensions and shape. Therefore, the tractor was equipped with a new automatic safety system: a self-locking articulation activated by contact sensors on the wheels. This device makes the vehicle partially-rigid in case of lateral unbalancing, so that rollover can happen only by overcoming the whole vehicle mass. A mathematical description of vehicle-ground interactions was implemented to deeply inquiry the tractor behaviour in different configurations (straight, angled at increasing values of ground slope; roll and pitch stability indexes were then computed and used for comparisons with conventional tractors. Thanks to the low centre-of-gravity, the resulting rollover angle with the vehicle in straight configuration is promising (43.8°→96%: it is greater than the maximum lateral (20°→36% and frontal (38°→78% slope angle ever recorded on terraced vineyards. The same rollover angle is lower when the tractor turns.

  17. Slope failures and timing of turbidity flows north of Puerto Rico

    Science.gov (United States)

    ten Brink, Uri S.; Chaytor, Jason D.

    2014-01-01

    The submerged carbonate platform north of Puerto Rico terminates in a high (3,000–4,000 m) and in places steep (>45°) slope characterized by numerous landslide scarps including two 30–50 km-wide amphitheater-shaped features. The origin of the steep platform edge and the amphitheaters has been attributed to: (1) catastrophic failure, or (2) localized failures and progressive erosion. Determining which of the two mechanisms has shaped the platform edge is critically important in understanding landslide-generated tsunami hazards in the region. Multibeam bathymetry, seismic reflection profiles, and a suite sediment cores from the Puerto Rico Trench and the slope between the trench and the platform edge were used to test these two hypotheses. Deposits within trench axis and at the base of the slope are predominantly composed of sandy carbonate turbidites and pelagic sediment with inter-fingering of chaotic debris units. Regionally-correlated turbidites within the upper 10 m of the trench sediments were dated between ∼25 and 22 kyrs and ∼18–19 kyrs for the penultimate and most recent events, respectively. Deposits on the slope are laterally discontinuous and vary from thin layers of fragmented carbonate platform material to thick pelagic layers. Large debris blocks or lobes are absent within the near-surface deposits at the trench axis and the base of slope basins. Progressive small-scale scalloping and self-erosion of the carbonate platform and underlying stratigraphy appears to be the most likely mechanism for recent development of the amphitheaters. These smaller scale failures may lead to the generation of tsunamis with local, rather than regional, impact.

  18. STABILIZATION OF A FAILED SLOPE WITH PILED STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. Rifat KAHYAOĞLU

    2008-01-01

    Full Text Available Neogene aged units of a densely populated region of Western Turkey along the Aegean Sea coastline is susceptible to landslides causing frequent economic loss especially following raining seasons. Several landslides took place in the area covering a narrow band of the coastline between Izmir and Söke (Aydın. Countermeasures against these relatively small-scale slope failures in the region often involve construction of either reinforced concrete retaining walls or stabilizing piles, which can be easily constructed by local contractors. In this study borings, in-situ and laboratory soil mechanics tests, geophysical and geological investigations have been performed in order to investigate the landslide occurred in the yard of an elementary school in Söke township. The analysis of two rows of piled retaining system constructed to reuse the school building against a potential slides are presented. Three inclinometer measurements have been performed after completion of the bored pile system. It has been concluded that the measured and the calculated displacement values are both small. There is no problem of the built project by means of moments and displacements.

  19. Numerical analysis of the stability of inhomogeneous slopes considering partially saturated conditions

    Directory of Open Access Journals (Sweden)

    Pichler Patrick P.

    2016-01-01

    Full Text Available It is well accepted that rainfall could play a significant role in instability of slopes. The main objective of the presented study is to quantify the influence of varying characteristics of water flow, its associated changes of pore-water pressures and shear strength on the stability of simplified, but inhomogeneous, slope geometries. The commonly used van Genuchten model was used to describe the Soil Water Characteristic Curve (SWCC mathematically. In the context of this study, the influence of different hydraulic behaviour of soil layers, i.e. different SWCC, on the factor of safety (FoS is evaluated by means of fully coupled flow-deformation analyses employing the finite element method. To quantify the slopes’ factor of safety during rainfall events after specified times of infiltration or evaporation, the strength reduction method was applied. In addition to various combinations of soil layers, the influence of a water bearing high permeable soil layer between two less permeable soil layers, a situation which is often encountered in practice, on the factor of safety has been investigated.

  20. Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model

    Science.gov (United States)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.

  1. Geosynthetic clay liners - slope stability field study

    International Nuclear Information System (INIS)

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-01-01

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project

  2. How to model the stability of terraced slopes? The case study of Tresenda (northern Italy)

    Science.gov (United States)

    Camera, Corrado; Apuani, Tiziana; Masetti, Marco

    2015-04-01

    Terraces are very common morphological features all around the Mediterranean Basin. They have been built to adapt the natural morphology of the territory to the development of anthropogenic activities, particularly agriculture. However, the increasing land abandonment during the last century is leading to soil degradation and stability issues, mainly due to lack of maintenance of these peculiar environments. The objective of this study was to develop a coupled hydrologic-stability model to identify possible triggering areas of superficial landslides during intense rainfall events. The model was tested on a slope uphill of the village of Tresenda, in Northern Italy, which experienced several superficial landslides in the last 35 years. Distributed stability analyses are usually carried out using an infinite slope approach, but in the case of terraces some basic assumptions of this method fail: the parallelism between topographical surface and potential sliding surface and the high ratio between slope length and failure surface depth are the most important examples. In addition, the interest is more on the stability of the terrace system (dry stone retaining wall and backfill soil) and not on soil alone. For these reasons, a stability analysis based on the global method of equilibrium is applied and soft coupled to a well know hydrological model (STARWARS). Sections of terrace, one cell wide, are recognized from the base of a wall to the top of the closest downstream one, and each cell (1 x 1 m2) is considered as a slice. The method of Sarma for circular and non-circular failure is applied. The very fine horizontal resolution (1 m) is crucial to take into consideration the hydrogeological and mechanical properties of dry stone walls (0.6-1.0 m wide). A sensitivity analysis was conducted for saturated water content, initial volumetric water content, the cohesion and friction angle of soil and walls and soil depth. The results of the sensitivity analysis showed that

  3. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    Science.gov (United States)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  4. Planning criteria for open pit mines under special consideration of slope stability and controlled blasting

    Energy Technology Data Exchange (ETDEWEB)

    Weise, H

    1986-04-01

    The criteria which influence the economics of a future surface mining operation are discussed; these include the size of the mine and the depth of the deposit. The methods of working are outlined - single bench, multiple bench - and choices of haulage equipment (trucks vs. conveyors) are discussed. For a mine using conveyors, the slope of the open pit will affect the operating cost. Pumps will be required to dewater the strata; it will be necessary to take steps to ensure slope stability. Bucket wheel excavators will be impeded by the presence of consolidated material, which may be best removed by shatter blasting. An example is given of the use of shatter blasting at the Neyveli lignite mine in Tamil Nadu, India. 5 references.

  5. The influence of terracettes on surface hydrology and erosion on vegetated Alpine, mountain and steep-sloping environments

    Science.gov (United States)

    Kuhn, Nikolaus; (Phil) Greenwood, Philip

    2014-05-01

    Alpine and mountain slopes represent important pathways that link high altitude grazing areas to meadows and rangelands at lower elevations. Given the often acute gradient of mountain slopes, they represent a convenient and potentially highly efficient runoff conveyance route that facilitates the downslope transfer of fine-sediment and sediment-bound nutrients and contaminants during erosion events. Above a certain gradient, many slopes host small steps, or `terracettes`. As these are generally orientated across slope, their genesis is usually attributed to a combination of soil creep, coupled with (and often accentuated by) grazing animals. Motivated by the prevalence of these distinct landform features and lack of information on their role as runoff conveyance routes, this communication reports preliminary results from an investigation to explore the possibility that terracettes may act as preferential flow-paths, with an as yet undocumented ability to greatly influence surface hydrology in mountainous and steeply-sloping environments. A ca. 40 m2 area of vegetated terracettes and section of adjacent thalweg, with gradients ranging from approximately 25-35o, were scanned using an automated Topcon IS03 Total Station at a resolution of 0.1 * 0.1 m. Data were converted to a Digital Elevation Model (DEM) in ArcGIS 10 Geographical Information System (GIS), and queried using Spatial Analyst (Surface Hydrology; Flow Accumulation function) to identify slope-sections that could act as preferential flow-pathways during runoff events. These data were supplemented by information on soil physical properties that included grain size composition, bulk density and porosity, in order to establish spatial variations in soil characteristics associated with the vertical and horizontal terracette features. Combining the digital and in-situ data indicate that the technique is able to identify preferential surface flow-paths. Such information could greatly benefit the future management

  6. Simulating the seismic behaviour of soil slopes and embankments

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2010-01-01

    In the current study the clarification of the main assumptions, related to the two most commonly used methods of seismic slope stability analysis (pseudostatic and permanent deformation) is attempted. The seismic permanent displacements and the corresponding seismic coefficients were determined via...... parametric dynamic numerical analyses taking into account not only the main parameters dominating the seismic slope stability, but also the inherent assumptions of the applied approaches that affect the obtained results. The investigation conclude to a realistic procedure for seismic slope stability...

  7. Numerical Modelling of Seismic Slope Stability

    Science.gov (United States)

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  8. An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds

    NARCIS (Netherlands)

    Zhang, Hongming; Wei, Jicheng; Yang, Qinke; Baartman, Jantiene E.M.; Gai, Lingtong; Yang, Xiaomei; Li, Shu Qin; Yu, Jiantao; Ritsema, Coen J.; Geissen, Violette

    2017-01-01

    The Universal Soil Loss Equation (USLE) and its revised version (RUSLE) are often used to estimate soil erosion at regional landscape scales. USLE/RUSLE contain parameters for slope length factor (L) and slope steepness factor (S), usually combined as LS. However a major limitation is the difficulty

  9. Flow Around Steep Topography

    Science.gov (United States)

    2015-09-30

    Flow around steep topography T. M. Shaun Johnston Scripps Institution of Oceanography University of California, San Diego 9500 Gilman Drive, M...tall, steep, submarine topography and islands. During the Flow Encountering Abrupt Topography (FLEAT) DRI, investigators will determine: • Whether...estimates from making accurate statistical/deterministic predictions at ᝺ km resolution around submarine topography and islands? How can we

  10. A preliminary pit slope stability study Kvanefjeld, South Greenland

    International Nuclear Information System (INIS)

    Kalvig, P.

    1983-11-01

    On the basis of 1300 field measurements of joint planes, four individual structural regions have been outlined in the Kvanefjeld area. Potential failure planes and planes which are unlikely to be involved in slope failures are identified. Failures seem, not likely to occur on walls dipping SW or NE respectively, but may occur on walls dipping NM. The factors of safety for each region are calculated in order to determine the sensibility of the overall slope to different overall slope angles. The factors of safety does only exceed the required factor of safety of 1.5 in one of the structural regions. Changing the overall pit slope inclination from 55deg to 45deg improves the security, but even still not satisfactorily for two of the regions. At 45deg overall pit slope in parts of the pit implies additional 14.3 x 10 6 tonnes of non-mineralized material to be mined, thus resulting in a total mineralized- to non-mineralized material ratio about 1.0: 1.7. (author)

  11. Why most agricultural terraces in steep slopes in semiarid SE Spain remain well preserved since their abandonment 50 years go?

    Directory of Open Access Journals (Sweden)

    Cantón, F.

    2010-12-01

    Full Text Available A large part of the agricultural terraces in mountain environments are abandoned, like those from the Filabres range in Almería, SE Spain. While many of such terraces show signs of soil erosion (wall disruptions, surface crusts, pipes and gullies, others in steep slopes remain well preserved after 50 years since their abandonment and still seem to play an active role against soil erosion. In order to know both magnitude of soil erosion and controlling factors in different types of abandoned terraces, a rainfall simulation campaign with a portable sprinkler was carried out in 45 representative microsites. Runoff, derived-infiltration and sediment production were measured and their relationships to basic soil parameters (particle size distribution, pH, EC, organic matter content, aggregate stability, geomorphic position, and ground cover, were examined. Under the average applied rainfall intensity (48 mm/h, which represents a precipitation with a return period of 5 years in the area, narrow bench terraces from steep hillslopes, have larger infiltration values and deliver less sediments than large bank terraces in alluvial plains. The presence of stony pavement sieving crusts on narrow-bench terraces and also on un-terraced alluvial fans, play an essential armouring effect against soil erosion while favouring water infiltration. Considerations are made about the evolution of the different types of traditional terraces in the area under both past agricultural and present abandoned status, and also about possible uses under a sustainable land management policy.

    Una gran parte de las terrazas agrícolas en zonas de montaña están abandonadas, como las de la Sierra de los Filabres en Almería, SE de España. Si bien muchas de dichas terrazas muestran señales de erosión hídrica (destrucción de muros, encostramiento superficial, piping y cárcavas, otras en laderas con pendientes acusadas siguen bien conservadas tras 50 años de abandono y

  12. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    Science.gov (United States)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  13. Ecological and Bioengineering Studies for Stabilizing the Wad Medani-Sennar Roadside Slope Linking the Gezira and Sennar States

    Directory of Open Access Journals (Sweden)

    Altaeb Mohammed

    2018-01-01

    Full Text Available The erosion of the highway embankment slope's soil along the Wad Medani-Sennar road is a significant issue, as there are many traffic accidents on this road, with an average of 15 to 25 fatalities per annum. It was thus decided to investigate this issue to find a method to protect slope from erosion on this road and to provide new approaches to slope erosion knowledge gap in Sudan. An engineering survey was carried out, followed by geotechnical studies, experimental work and interviews with academic experts regarding native vegetation in the survey area. These include measuring the eroded parts of the road; studying cross- sections of the road; soil experiments to check the strength, compaction and particle size distribution; and a native vegetation survey to check for suitable plants that could be used to control the slope erosion. It was found that an appropriate bio-engineering method to stabilize the slope soil against erosion due to rainfall was to cultivate the grasses Cynodon Dactylon and Vetiver on the slopes. In conclusion, that using native vegetation for eco -protection, was an excellent solution to the problem based on the climate, native vegetation, and type of soil in Sudan and it reduces the accidents.

  14. Effect of Angle of Attack on Slope Climbing Performance

    Science.gov (United States)

    Creager, Colin M.; Jones, Lucas; Smith, Lauren M.

    2017-01-01

    Ascending steep slopes is often a very difficult challenge for off-road vehicles, whether on Earth or on extraterrestrial bodies. This challenge is even greater if the surface consists of loose granular soil that does not provide much shear strength. This study investigated how the path at which a vehicle traverses a slope, specifically the angle that it is commanded to drive relative to the base of the hill (the angle of attack), can affect its performance. A vehicle was driven in loose sand at slope angles up to 15 degrees and angles of attack ranging from 10 to 90 degrees. A novel photogrammetry technique was implemented to both track vehicle motion and create a three-dimensional profile of the terrain. This allowed for true wheel sinkage measurements. The study showed that though low angles of attack result in lower wheel slip and sinkage, the efficiency of the vehicles uphill motion increased at higher angles of attack. For slopes up to 15 degrees, a 90 degree angle of attack provided the greatest likelihood of successful ascent.

  15. Comparison of Homogenous and Multi-layered Berm Breakwaters with Respect to Overtopping and Front Slope Stability

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Skals, K. T.; Burcharth, Hans F.

    2009-01-01

    A model test study was conducted to study overtopping and front slope stability of homogenous and multi-layered berm breakwaters. The two breakwater types are compared and cons and pros are listed. The study shows that the optimum number of stone classes might be significantly lower than what has...... previously been used in the Icelandic type of berm breakwater because it seems that the number of stone classes in the berm can be reduced from five to two without significantly influencing overtopping and stability performance. Moreover, the new results are compared to the design formulae established...

  16. HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars

    Science.gov (United States)

    Ojha, Lujendra; McEwen, Alfred; Dundas, Colin; Byrne, Shane; Mattson, Sarah; Wray, James; Masse, Marion; Schaefer, Ethan

    2014-01-01

    Recurring Slope Lineae (RSL) are active features on Mars that might require flowing water. Most examples observed through 2011 formed on steep, equator-facing slopes in the southern mid-latitudes. They form and grow during warm seasons and fade and often completely disappear during colder seasons, but recur over multiple Mars years. They are recognizable by their incremental growth, relatively low albedo and downhill orientation. We examined all images acquired by HiRISE during Ls 250–10° (slightly longer than southern summer, Ls 270–360°) of Mars years 30–31 (03/2011–10/2011), and supplemented our results with data from previous studies to better understand the geologic context and characteristics of RSL. We also confirmed candidate and likely sites from previous studies and discovered new RSL sites. We report 13 confirmed RSL sites, including the 7 in McEwen et al. (McEwen et al. [2011]. Science 333(6043), 740–743]. The observed seasonality, latitudinal and slope orientation preferences, and THEMIS bright- ness temperatures indicate that RSL require warm temperatures to form. We conclude that RSL are a unique phenomenon on Mars, clearly distinct from other slope processes that occur at high latitudes associated with seasonal CO2 frost, and episodic mass wasting on equatorial slopes. However, only 41% (82 out of 200) of the sites that present apparently suitable conditions for RSL formation (steep, equator-facing rocky slopes with bedrock exposure) in the southern mid-latitudes (28–60°S) contain any candidate RSL, with confirmed RSL present only in 7% (13 sites) of those locations. Significant variability in abundance, size and exact location of RSL is also observed at most sites, indicating additional controls such as availability of water or salts that might be playing a crucial role.

  17. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    Science.gov (United States)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  18. Design of Rock Slope Reinforcement: An Himalayan Case Study

    Science.gov (United States)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  19. Rock slope stability analysis along the North Carolina section of the Blue Ridge Parkway: Using a geographic information system (GIS) to integrate site data and digital geologic maps

    Science.gov (United States)

    Latham, R.S.; Wooten, R.M.; Cattanach, B.L.; Merschat, C.E.; Bozdog, G.N.

    2009-01-01

    In 2008, the North Carolina Geological Survey (NCGS) completed a five-year geologic and geohazards inventory of the 406-km long North Carolina segment of the Blue Ridge Parkway (BRP). The ArcGIS??? format deliverables for rock slopes include a slope movement and slope movement deposit database and maps and site-specific rock slope stability assessments at 158 locations. Database entries for known and potential rock slope failures include: location data, failure modes and dimensions, activity dates and levels, structural and lithologic data, the occurrence of sulfide minerals and acid-producing potential test results. Rock slope stability assessments include photographs of the rock cuts and show locations and orientations of rock data, seepage zones, and kinematic stability analyses. Assigned preliminary geologic hazard ratings of low, moderate and high indicate the generalized relative probability of rock fall and/or rock slide activity at a given location. Statistics compiled based on the database indicate some general patterns within the data. This information provides the National Park Service with tools that can aid in emergency preparedness, and in budgeting mitigation, maintenance and repair measures. Copyright 2009 ARMA, American Rock Mechanics Association.

  20. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    Science.gov (United States)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  1. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes

    Science.gov (United States)

    Okubo, C.H.; Tornabene, L.L.; Lanza, N.L.

    2011-01-01

    The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca >10m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity. ?? 2010.

  2. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    Science.gov (United States)

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  3. Guide for calculating the stability of mine berms and spoil bank slopes in the Maritsa-Iztok coal basin

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, G; Todorova, M; Doneva, V; Novachkov, N; Nedyalkov, N; Mitev, A; Rachev, R

    1984-08-01

    Major landslides are described which occurred in the basin between 1963 and 1970 during overburden removal and formation of spoil banks. Guidelines for the prevention of landslides were developed on the basis of large scale studies of geomechanics, geostatic calculations and geodetic observations of slope behavior; no further landslide has occurred since 1970. Cohesion coefficients, angle of internal friction and shear properties were determined for each material occurring in the clayey and sandy overburden and for the coal (ash content 15-55%). Slope stability of working benches and spoil banks at the Troyanovo mines was then calculated. 8 references.

  4. Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project

    Science.gov (United States)

    Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich

    2010-05-01

    ), rock slope stability probability classification (SSPC) and geological strength index (GSI) are employed to classify the rock mass. The results are further compared with one another to delineate the instability conditions and produce an instability map of the reservoir slopes. Instability of the reservoir slopes is found to be mainly associated with daylighting discontinuities, thinly bedded/foliated slates, and karstified limestone. It is also noted that these features are mostly located in the regional gliding plane and shear zone, which are related with old slides scars. In general, the instabilities are found relatively far from the dam axis, in relatively less elevated and less steep slopes, which are going to be nearly covered by the impoundment; thus, they are normally expected to have less hazard in relation to the reservoir setting. Some minor failures will be generally expected during the reservoir filling.

  5. Mycorrhizal inoculation as a tool for sustainable bio-engineering measures in steep alpine environments? - Results of a three year field experiment

    Science.gov (United States)

    Bast, Alexander; Wilcke, Wolfgang; Lüscher, Peter; Graf, Frank; Gärtner, Holger

    2013-04-01

    Global warming is anticipated to result in an increase of heavy precipitation events. In vegetation-free, steep Alpine areas intense rain fall events have distinct influences on erosional processes on slopes. These processes and (shallow) mass movements are directly linked with torrential rain falls, and for this lead to high erosion rates in those regions, resulting in an increased natural and socio-economic damage potential. For restoring and managing erosion-prone sites, bioengineering measures as a tool for hazard prevention gain more importance. Due to the rough environmental conditions, and hence, reduced germination capability and sprout vigour, it is difficult to establish a dense cover of pioneer vegetation. Thus, the question is what can be done to give planted saplings within bioengineering projects maximum support, to develop their above- and belowground structures to promote slope stabilization. Green-house and laboratory experiments have shown that mycorrhizal inoculum has a positive impact on plant development and soil structure, e.g. the formation of (stable) aggregates within several months. Based on these promising results, we intended to apply mycorrhizal inoculation in a field-experiment. In May 2010, we established experimental plots at an erosion-prone talus slope (inclination: ~40 - 45 °; elevation 1220 - 1360 m a.s.l.), located in the Eastern Swiss Alps. The slope, consisting of moraine and denudation-derived substrate, shows high geomorphic activity (e.g. debris flows, rill erosion). Two slope areas, 10m wide and 32m long, were stabilized with 1200 plants each. Additionally, mycorrhiza inoculum (INOQ Forst, 40 ml/plant) was added to one of the two areas. Within the stabilized areas, a mixture of eight saplings was planted per running meter in 15 rows. The assortment included four saplings of green alder and two of purple willow, as well as one tree (maple, birch, ash) and shrub species (e.g. guelder rose, honeysuckle). Finally, both areas

  6. Efficiency of subsoiling depth according to the slope of the land

    Directory of Open Access Journals (Sweden)

    Daniel Pena Pereira

    2012-12-01

    Full Text Available The effectiveness of subsoiling by measuring the depths achieved in different classes of slope of a forest plantation was evaluated. This operation was made with a fertilizer trawling subsoiler with a single smooth parabolic rod depending on seven groups of slope and the maximum lateral inclination of the tractor to perform the subsoiling. It was determined the number and breadth of slope classes by Sturges formula. Data were assessed by regression analysis for data with repetition at 5% significance level. The proposed regression model was adequate to describe the values given that it presented significant result for the F test. For the adjustment of the regression equation, the coefficient of determination was 78.95%, representing the the depth values that are explained by the slope. Thus, it can be said that the depth of subsoiling decreases as the steepness of the ground increases and is a limiter for the quality of the mechanized soil preparation. The results demonstrate that slopes up to 40% allowed the operation of subsoiling to reach the minimum depth of 0.50 m for forest cultivation.

  7. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    Science.gov (United States)

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  8. Submarine slope failures due to pipe structure formation.

    Science.gov (United States)

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  9. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  10. Method of Preparation AZP4330 PR Pattern with Edge Slope 40°

    Science.gov (United States)

    Wu, Jie; Zhao, Hongyuan; Yu, Yuanwei; Zhu, Jian

    2018-03-01

    When the edge which is under the multi-film is more steep or angular, the stress in the multilayer film near the edge is concentrated, this situation will greatly reduce the reliability of electronic components. And sometimes, we need some special structure such as a slope with a specific angle in the MEMS, so that the metal line can take the signal to the output pad through the slope instead of deep step. To cover these problems, the lithography method of preparing the structure with edge slope is studied. In this paper, based on the Kirchhoff scalar diffraction theory we try to change the contact exposure gap and the post-baking time at the specific temperature to find out the effect about the edge angle of the photoresist. After test by SEM, the results were presented by using AZP4330 photoresist, we can get the PR Pattern with edge slope 40° of the process and the specific process parameters.

  11. Physics of Gate Modulated Resonant Tunneling (RT)-FETs: Multi-barrier MOSFET for steep slope and high on-current

    Science.gov (United States)

    Afzalian, Aryan; Colinge, Jean-Pierre; Flandre, Denis

    2011-05-01

    A new concept of nanoscale MOSFET, the Gate Modulated Resonant Tunneling Transistor (RT-FET), is presented and modeled using 3D Non-Equilibrium Green's Function simulations enlightening the main physical mechanisms. Owing to the additional tunnel barriers and the related longitudinal confinement present in the device, the density of state is reduced in its off-state, while remaining comparable in its on-state, to that of a MOS transistor without barriers. The RT-FET thus features both a lower RT-limited off-current and a faster increase of the current with V G, i.e. an improved slope characteristic, and hence an improved Ion/ Ioff ratio. Such improvement of the slope can happen in subthreshold regime, and therefore lead to subthreshold slope below the kT/q limit. In addition, faster increase of current and improved slope occur above threshold and lead to high thermionic on-current and significant Ion/ Ioff ratio improvement, even with threshold voltage below 0.2 V and supply voltage V dd of a few hundreds of mV as critically needed for future technology nodes. Finally RT-FETs are intrinsically immune to source-drain tunneling and are therefore promising candidate for extending the roadmap below 10 nm.

  12. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    Science.gov (United States)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  13. The effects of the mineral phase on C stabilization mechanisms and the microbial community along an eroding slope transect

    Science.gov (United States)

    Doetterl, S.; Opfergelt, S.; Cornelis, J.; Boeckx, P. F.; van oost, K.; Six, J.

    2013-12-01

    An increasing number of studies show the importance of including soil redistribution processes in understanding carbon (C) dynamics in eroding landscapes. The quality and quantity of soil organic carbon in sloping cropland differs with topographic position. These differences are commonly more visible in the subsoil, while the size and composition of topsoil C pools are similar along the hillslope. The type (plant- or microbial-derived) and quality (level of degradation) of C found in a specific soil fraction depends on the interplay between the temporal dynamic of the specific mechanism and it's strength to protect C from decomposition. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths and slope positions and how they affect the microbial community and the degradation of C. For this we analyzed soil samples from different soil depths along a slope transect applying (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, (ii) a semi-quantitative and qualitative analysis of the clay mineralogy, (iii) an analysis of the microbial community using amino sugars and (iv) an analysis of the level of degradation of C in different soil fractions focusing on the soil Lignin signature. The results show that the pattern of minerals and their relative importance in stabilizing C varies greatly along the transect. In the investigated soils, pyrophosphate extractable Manganese, and not Iron or Aluminum as often observed, is strongly correlated to C in the bulk soil and in the non-aggregated silt and clay fractions. This suggests a certain role of Manganese for C stabilization where physical protection is absent. In contrast, pyrophosphate extractable Iron and Aluminum components are largely abundant in water-stable soil aggregates but not correlated to C, suggesting importance of these extracts to stabilize aggregates and

  14. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  15. Slope stability and erosion control: Ecotechnological solutions

    NARCIS (Netherlands)

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used

  16. Displacement of Pile-Reinforced Slopes with a Weak Layer Subjected to Seismic Loads

    Directory of Open Access Journals (Sweden)

    Haizuo Zhou

    2016-01-01

    Full Text Available The presence of a weak layer in a slope requires special attention because it has a negative impact on slope stability. However, limited insight into the seismic stability of slopes with a weak layer exists. In this study, the seismic stability of a pile-reinforced slope with a weak thin layer is investigated. Based on the limit analysis theory, a translational failure mechanism for an earth slope is developed. The rotational rigid blocks in the previous rotational-translational failure mechanism are replaced by continuous deformation regions, which consist of a sequence of n rigid triangles. The predicted static factor of safety and collapse mechanism in two typical examples of slopes with a weak layer compare well with the results obtained from the available literature and by using the Discontinuity Layout Optimization (DLO technique. The lateral forces provided by the stabilizing piles are evaluated using the theory of plastic deformation. An analytical solution for estimating the critical yield acceleration coefficient for the pile-reinforced slopes is derived. Based on the proposed translational failure mechanism and the corresponding critical yield acceleration coefficient, Newmark’s analytical procedure is employed to evaluate the cumulative displacement. Considering different real earthquake acceleration records as input motion, the effect of stabilizing piles and varying the spacing of piles on the cumulative displacement of slopes with a weak layer is investigated.

  17. Reducing the risk of the collapse of the soil by macro system modeling the slopes stability of the quarries

    Science.gov (United States)

    Klimova, E. V.; Semeykin, A. Yu

    2018-01-01

    The urgent task of modern production is to reduce the risks of man-made disasters and, as a consequence, preserve the life and health of workers, material properties and natural environment. In the mining industry, one of the reasons for the high level of injuries and accidents is the collapse of the soil. Macro system modelling of slopes stability of the quarries is based on the compliance with the conditions of physical and mathematical correctness of the application of the model of a continuous medium. This type of modelling allows to choose the safe parameters of the slopes of the quarries and to reduce the risk of collapse of the soil.

  18. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  19. A Simplified Solution for Calculating the Phreatic Line and Slope Stability during a Sudden Drawdown of the Reservoir Water Level

    Directory of Open Access Journals (Sweden)

    Guanhua Sun

    2018-01-01

    Full Text Available On the basis of the Boussinesq unsteady seepage differential equation, a new simplified formula for the phreatic line of slopes under the condition of decreasing reservoir water level is derived by means of the Laplacian matrix and its inverse transform. In this context, the expression of normal stress on the slip surface under seepage forces is deduced, and a procedure for obtaining the safety factors under hydrodynamic forces is proposed. A case study of the Three Gorges Reservoir is used to analyze the influences of the water level, decreasing velocity and the permeability coefficient on slope stability.

  20. Integrated satellite InSAR and slope stability modeling to support hazard assessment at the Safuna Alta glacial lake, Peru

    Science.gov (United States)

    Cochachin, Alejo; Frey, Holger; Huggel, Christian; Strozzi, Tazio; Büechi, Emanuel; Cui, Fanpeng; Flores, Andrés; Saito, Carlos

    2017-04-01

    The Safuna glacial lakes (77˚ 37' W, 08˚ 50' S) are located in the headwater of the Tayapampa catchment, in the northernmost part of the Cordillera Blanca, Peru. The upper lake, Laguna Safuna Alta at 4354 m asl has formed in the 1960s behind a terminal moraine of the retreating Pucajirca Glacier, named after the peak south of the lakes. Safuna Alta currently has a volume of 15 x 106 m3. In 2002 a rock fall of several million m3 from the proximal left lateral moraine hit the Safuna Alta lake and triggered an impact wave which overtopped the moraine dam and passed into the lower lake, Laguna Safuna Baja, which absorbed most of the outburst flood from the upper lake, but nevertheless causing loss in cattle, degradation of agricultural land downstream and damages to a hydroelectric power station in Quitaracsa gorge. Event reconstructions showed that the impact wave in the Safuna Alta lake had a runup height of 100 m or more, and weakened the moraine dam of Safuna Alta. This fact, in combination with the large lake volumes and the continued possibility for landslides from the left proximal moraine pose a considerable risk for the downstream settlements as well as the recently completed Quitaracsa hydroelectric power plant. In the framework of a project funded by the European Space Agency (ESA), the hazard situation at the Safuna Alta lake is assessed by a combination of satellite radar data analysis, field investigations, and slope stability modeling. Interferometric analyses of the Synthetic Aperture Radar (InSAR) of ALOS-1 Palsar-1, ALOS-2 Palsar-2 and Sentinel-1 data from 2016 reveal terrain displacements of 2 cm y-1 in the detachment zone of the 2002 rock avalanche. More detailed insights into the characteristics of these terrain deformations are gained by repeat surveys with differential GPS (DGPS) and tachymetric measurements. A drone flight provides the information for the generation of a high-resolution digital elevation model (DEM), which is used for the

  1. Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars

    Science.gov (United States)

    Chojnacki, Matthew; McEwen, Alfred; Dundas, Colin M.; Ojha, Lujendra; Urso, Anna; Sutton, Sarah

    2016-01-01

    One of the major Mars discoveries of recent years is the existence of recurring slope lineae (RSL), which suggests that liquid water occurs on or near the surface of Mars today. These dark and narrow features emerge from steep, rocky exposures and incrementally grow, fade, and reform on a seasonal basis and are detected in images from the High Resolution Imaging Science Experiment camera. RSL are known to occur at scattered midlatitude and equatorial sites with little spatial connection to one another. One major exception is the steep, low-albedo slopes of Melas and Coprates Chasmata, in Valles Marineris where RSL are detected among diverse geologic surfaces (e.g., bedrock and talus) and landforms (e.g., inselbergs and landslides). New images show topographic changes including sediment deposition on active RSL slopes. Midwall locations in Coprates and Melas appear to have more areally extensively abundant RSL and related fans as compared with other RSL sites found on Mars. Water budget estimates for regional RSL are on the order of 105 to 106 m3 of fluid, for depths of 10 to 100mm, and suggest that a significant amount of near-surface watermight be present. Many RSL are concentrated near local topographic highs, such as ridge crests or peaks, which is challenging to explain via groundwater or ice without a recharge mechanism. Collectively, results provide additional support for the notion that significant amounts of near-surface water can be found on Mars today and suggest that a widespread mechanism, possibly related to the atmosphere, is recharging RSL sources.

  2. Qualitative stability assessment of cut slopes along the National Highway-05 around Jhakri area, Himachal Pradesh, India

    Science.gov (United States)

    Kundu, Jagadish; Sarkar, Kripamoy; Tripathy, Ashutosh; Singh, T. N.

    2017-12-01

    Several deformation phases in tectonically active Himalayas have rendered the rock masses very complex in terms of structure, lithology and degree of metamorphism. Again, anthropogenic activities such as roads, tunnels and other civil engineering constructions have led to a state of disequilibrium which in many cases, results in failure of rock masses. National Highway-05 around Jhakri area in India is a major connecting route to the China border in the hilly terrains of the state Himachal Pradesh. It cuts through the Himalayan rocks and has a hazardous history of landslides destroying human lives and interrupting communication very frequently. As a contribution towards the mitigation process, a study has been carried out along the highway to analyse kinematic stability and qualitative estimation of rock mass condition through rock mass classification systems. The kinematic analysis shows that the rock slopes are prone to planar and wedge failure. Rock mass rating for most of the locations lies between 7 and 34, representing a poor rock mass quality (Class IV), whereas slope mass rating is more disperse and ranges from 11 to 52 for most of the slopes (Class III, IV and V).

  3. Species type controls root strength and influences slope stability in coastal Ecuador

    Science.gov (United States)

    Anttila, E.; Wray, M. E.; Knappe, E.; Ogasawara, T.; Tholt, A.; Cliffe, B.; Oshun, J.

    2014-12-01

    Tree roots, particular those of old growth trees, provide significant cohesive strength that can prevent shallow landslides. Little is known about the root strength of trees growing in dry tropical forests. In 1997, Bahía de Caráquez, Ecuador experienced a large landslide, which may have been precipitated by massive deforestation along the Ecuadorian coast. We used a tensile spring apparatus combined with root maps to caclulate the cohesive strength of different native species of trees. Whereas the results show the previously reported power law relationship between root diameter and tensile strength, our data also reveals new contributions. First, we find that trees have far stronger and more abundant roots than neighboring bushes, and thus add far more cohesive strength to the hillslope. Furthermore, there is a wide range of tensile strength among the native trees measured, with algarrobo having the strongest roots, and ceibo gernally being weak rooted. Finally, we use a slope stability model to predict failure conditions considering the strength added to a hillslope if vegetation is predominantly composed of bushes, algarrobo, or ceibo. Our results, which are the first of their kind for the Ecuadorian dry tropical forest, will be used to guide the ongoing native reforestation efforts of Global Student Embassy. Our unique partnership with Global Student Embassy connects our field study to practical land use decisions that will lead to increased slope and decreased human danger along coastal Ecuador's dry tropical forest.

  4. Slope and bank erosional stability of the Canonsburg, Pennsylvania, UMTRA disposal site

    International Nuclear Information System (INIS)

    1994-12-01

    This report was prepared in response to US Nuclear Regulatory Commission (NRC) comments received in a letter of 8 March 1994. This letter included discussions of the US Department of Energy (DOE) 21 May 1993 geomorphic report for the Canonsburg, Pennsylvania, site. To clarify the NRC's position, a DOE/NRC conference call was held on 12 April 1994. The NRC clarified that it did not require a preliminary erosion protection design for the Canonsburg site, but directed the DOE to address a ''one-bad-year'' scenario. The NRC wants confirmation that one bad year of stream flooding and landsliding will not release residual radioactive material (RRM) from the Canonsburg site into the creek. The NRC is concerned that a bad year theoretically could occur between postcell-closure inspections. These annual inspections are conducted in September or October. The NRC suggested that the following procedures should be conducted in this analysis: a flooding analysis, including the maximum saturation levels (flood water elevations) anticipated during a 100-year flood; a stream bank erosion analysis to determine how much of the bank adjacent to the site may be removed in a bad year; a slope stability analysis to determine how far back the site would be disturbed by slope instability that could be triggered by a bad year of stream bank erosion; and a ''critical cross section'' study to show the relationship of the RRM located outside the disposal cell to the maximum computer estimated erosion/landslide activity

  5. GEOSPATIAL DATA INTEGRATION FOR ASSESSING LANDSLIDE HAZARD ON ENGINEERED SLOPES

    Directory of Open Access Journals (Sweden)

    P. E. Miller

    2012-07-01

    Full Text Available Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator’s hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator’s existing field-based approaches.

  6. Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event

    Directory of Open Access Journals (Sweden)

    Christian Gabriel Sommer

    2015-12-01

    Full Text Available Terrestrial laser scanning was used to measure snow thickness changes (perpendicular to the surface in a rock face. The aim was to investigate the accumulation and redistribution of snow in extremely steep terrain (>60°. The north-east face of the Chlein Schiahorn in the region of Davos in eastern Switzerland was scanned before and several times after a snowfall event. A summer scan without snow was acquired to calculate the total snow thickness. An improved postprocessing procedure is introduced. The data quality could be increased by using snow thickness instead of snow depth (measured vertically and by consistently applying Multi Station Adjustment to improve the registration.More snow was deposited in the flatter, smoother areas of the rock face. The spatial variability of the snow thickness change was high. The spatial patterns of the total snow thickness were similar to those of the snow thickness change. The correlation coefficient between them was 0.86. The fresh snow was partly redistributed from extremely steep to flatter terrain, presumably mostly through avalanching. The redistribution started during the snowfall and ended several days later. Snow was able to accumulate permanently at every slope angle. The amount of snow in extremely steep terrain was limited but not negligible. Areas steeper than 60° received 15% of the snowfall and contained 10% of the total amount of snow.

  7. Slope instability related to permafrost changes on Mexican volcanoes

    Science.gov (United States)

    Delgado Granados, Hugo; Molina, Victor Soto

    2015-04-01

    Permafrost is present above 4,500 meters at the three highest Mexican mountains, Citlaltépetl, Popocatépetl and Iztaccihuatl (5,675, 5,452 and 5,286m asl, respectively), all active volcanoes. During the rainy season in the central region of Mexico, the occurrence of small debris-flows in the ice-free parts of the mountains, as well as small lanslides is frequent. At Popocatépetl volcano, flows are mostly related to a combination of the eruptive activity and climatic factors. However, the volcanic activity is different at Citlaltépetl and Iztaccihuatl where there is no eruptive activity, but landslides have occurred in recent years on their steep slopes because its stability has been altered as a result of an increase in the air temperature which in turn has caused variations in the thickness of the active layer of permafrost, causing as a consequence, the increase of an even more unstable soil. Additionally, cracks in the rock walls are subject to an increasing hydrostatic pressure due to continuous daily freezing and thawing of seasonal water produced by a warmer and less solid precipitation accumulating in the cracks over time and in the unconsolidated potentially unstable material.

  8. Application of distinct element method of toppling failure of slope

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Ito, Hiroshi

    1984-01-01

    The authors have pointed out, in the latest report, that DEM (Distinct Element Method) seems to be a very helpful numerical method to examine the stability of fissured rock slopes, in which toppling failure would occur during earthquakes. In this report, the applicability of DEM for such rock slopes is examined through the following comparisons between theoretical results and DEM results, referring Voegele's works (1982): (1) Stability of one block on a slope. (2) Failure of a rock block column composed of 10 same size rectangular blocks. (3) Cable force required to make a slope stable. Through above 3 comparisons, it seems that DEM give the reasonable results. Considering that these problems may not be treated by the other numerical methods such as FEM and so on, so DEM seems to be a very useful method for fissured rock slope analysis. (author)

  9. Feasibility of biochar application on a landfill final cover-a review on balancing ecology and shallow slope stability.

    Science.gov (United States)

    Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung

    2016-04-01

    Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.

  10. Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany

    Directory of Open Access Journals (Sweden)

    A. Günther

    2009-05-01

    Full Text Available In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area.

  11. Parametric study on the effect of rainfall pattern to slope stability

    OpenAIRE

    Hakim Sagitaningrum Fathiyah; Bahsan Erly

    2017-01-01

    Landslide in Indonesia usually occurs during the rainy seasons. Previous studies showed that rainfall infiltration has a great effect on the factor of safety (FS) of slopes. This research focused on the effect of rainfall pattern on the FS of unsaturated slope with different slope angle i.e.: 30°, 45°, and 60°. Three different rainfall patterns, which are normal, advanced, and delayed were considered in the analysis. The effects of low or high hydraulic conductivity of the soil are also obser...

  12. Simplified Model for the Hybrid Method to Design Stabilising Piles Placed at the Toe of Slopes

    Directory of Open Access Journals (Sweden)

    Dib M.

    2018-01-01

    Full Text Available Stabilizing precarious slopes by installing piles has become a widespread technique for landslides prevention. The design of slope-stabilizing piles by the finite element method is more accurate comparing to the conventional methods. This accuracy is because of the ability of this method to simulate complex configurations, and to analyze the soil-pile interaction effect. However, engineers prefer to use the simplified analytical techniques to design slope stabilizing piles, this is due to the high computational resources required by the finite element method. Aiming to combine the accuracy of the finite element method with simplicity of the analytical approaches, a hybrid methodology to design slope stabilizing piles was proposed in 2012. It consists of two steps; (1: an analytical estimation of the resisting force needed to stabilize the precarious slope, and (2: a numerical analysis to define the adequate pile configuration that offers the required resisting force. The hybrid method is applicable only for the analysis and the design of stabilizing piles placed in the middle of the slope, however, in certain cases like road constructions, piles are needed to be placed at the toe of the slope. Therefore, in this paper a simplified model for the hybrid method is dimensioned to analyze and design stabilizing piles placed at the toe of a precarious slope. The validation of the simplified model is presented by a comparative analysis with the full coupled finite element model.

  13. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers

  14. Analysis of the parameters involved in the design of slope stabilizing dowels; Analisis de las variables que intervienen en el dimensionamiento de pantalla de pasadores para contencion de deslizamientos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Dominguez, J. J.; Estaire Gepp, J.

    2014-07-01

    The use of dowels to stabilize landslides is a common practice nowadays. There are many theories, even contradictory, to design such dowels. This paper describes the methods proposed by Estaire and Sopena (2001), based on the fact that the earth pressures on the dowels, produced by the movement of the sliding ground, are equivalent to the stabilizing forces exerted by such dowels to improve the safety level of the slope. The method consists on the following steps: definition of the hydrogeological model, quantification of the initial safety level, determination of stabilization force, position of dowels in the slope, calculation of the dowel embedment and the acting load laws, election of the dowel separation and typology, and the structural design. The paper performs a critical review of some of the main design parameters: influence of the position of the dowels in the slope, the distribution of the earth pressure on the dowels and the restrains in the head of the dowels. (Author)

  15. Discussion on the Safety Factors of Slopes Recommended for Small Dams

    Directory of Open Access Journals (Sweden)

    Jan Vrubel

    2017-01-01

    Full Text Available The design and assessment of the slope stability of small embankment dams is usually not carried out using slope stability calculations but rather by the comparison of proposed or existing dam slopes with those recommended by technical standards or guidelines. Practical experience shows that in many cases the slopes of small dams are steeper than those recommended. However, most of such steeper slopes at existing dams do not exhibit any visible signs of instability, defects or sliding. For the dam owner and also for dam stability engineers, the safety of the slope, expressed e.g. via a factor of safety, is crucial. The aim of this study is to evaluate the safety margin provided by recommended slopes. The factor of safety was evaluated for several dam shape and layout variants via the shear strength reduction method using PLAXIS software. The study covers various dam geometries, dam core and shoulder positions and parameter values of utilised soils. Three load cases were considered: one with a steady state seepage condition and two with different reservoir water level drawdown velocities – standard and critical. As numerous older small dams lack a drainage system, variants with and without a toe drain were assessed. Calculated factors of safety were compared with required values specified by national standards and guidelines.

  16. Study of root tensile strength of softwood and hardwood tree species: Implications for slope stability

    Science.gov (United States)

    Esmaiili, Marzieh; Abdi, Ehsan; Jafary, Mohammad; Majnounian, Baris

    2017-04-01

    Landslides are known as one of the major natural hazards and often incurring economics and human life losses. The role of tree roots in slope stability is very important, especially when human lives and infrastructure are at risk. The anchorage of roots and improvement of slope stability mainly depend on specific properties of root network systems, such as tensile strength. These properties of the roots which govern the degree of reinforcement are different among tree species. Although, many studies have been conducted about plant biotechnical properties of species, yet there is lack of knowledge on comparing root systems of softwood and hardwood tree species for similar site conditions. Therefore this study was conducted to assess the tensile strength of the root system of Picea abies (softwood species) and Fraxinus excelsior (hardwood species) planted on two forested hillslopes. To this aim, single root specimens were sampled for each species and their tensile strength were then measured in laboratory using a computer controlled Instron Universal Testing Machine. According to the results root tensile strength tends to decrease with diameter according to a power law for both species. Based on analysis of covariance (ANCOVA), a significant difference has been observed in the tensile strength between the two studied species. Also the results showed that the value of mean root tensile strength for Picea abies (19.31 ± 2.64 MPa) was much more than that of Fraxinus excelsior (16.98 ± 1.01 MPa) within all root diameter classes. The data presented in this study may expand the knowledge of biotechnical properties of Picea abies and Fraxinus excelsior, as biomaterial for soil bioengineering.

  17. Design of anti-slide piles for slope stabilization in Wanzhou city, Three Gorges Area, China

    Science.gov (United States)

    Zhou, Chunmei; van Westen, Cees

    2013-04-01

    This study is related to the design of anti-slide piles for several landslides in Wanzhou city located in the Three Gorges area. Due to the construction of the Three Gorges Reservoir the hydro-geological conditions in this area have deteriorated significantly, leading to larger instability problems. China has invested a lot of money in slope stabilization measures for the treatment of landslides in the Three Gorges area. One of the methods for the stabilization of large landslides is the design of anti-sliding piles. This paper focuses on extensive slope stability analysis and modeling of the mechanical behavior of the landslide masses, and the parameters required for designing the number, size and dimensions of reinforced concrete stabilization piles. The study focuses on determining the rock parameters, anchor depth, and the pile and soil interaction coefficient. The study aims to provide guidelines for anti-slide pile stabilization works for landslides in the Wanzhou area. The research work contains a number of aspects. First a study is carried out on the distribution of pressures expected on the piles, using two different methods that take into account the expected pore water pressure and seismic acceleration. For the Ercengyan landslide , the Limit Equilibrium Method and Strength Reduction Method of FEM are compared through the results of the landslide pressure distributions on the piles and stress fields in the piles. The second component is the study of the required anchor depth of antislide piles, which is carried out using a statistical analysis with data from 20 landslides that have been controlled with anti-sliding piles. The rock characteristics of the anchor locations were obtained using laboratory tests, and a classification of rock mass quality is made for the anchors of antislide piles. The relationship between the critical anchor height and the angle of the landslide slip surface is determined. Two different methods are presented for the length

  18. Connecting Slope, Steepness, and Angles

    Science.gov (United States)

    Nagle, Courtney R.; Moore-Russo, Deborah

    2013-01-01

    All teachers, especially high school teachers, face the challenge of ensuring that students have opportunities to relate and connect the various representations and notions of mathematics concepts developed over the course of the pre-K-12 mathematics curriculum. NCTM's (2000) Representation Standard emphasizes the importance of students being…

  19. Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model

    Directory of Open Access Journals (Sweden)

    Dong-mei Sun

    2016-07-01

    Full Text Available Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase, and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes, TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC3D, which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.

  20. A modified risk evaluation method of slope failure in a heavy rain. For application to slopes in widespread area

    International Nuclear Information System (INIS)

    Suenaga, Hiroshi; Tanaka, Shiro; Kobayakawa, Hiroaki

    2015-01-01

    A risk evaluation method of slope failure has developed to combine gas-liquid two phase flow analysis as a rainfall infiltration analysis and elastic-plastic finite element analysis as a slope stability analysis and has applied to a slope field. This method, however, had a difficulty to apply to many slopes since it needed many parameters to calculate the risk of the slope failure. The method was simplified to lessen input parameters which included an inclination and length of a slope, a depth of bedrock and a rainfall pattern assuming that hydraulic properties and mechanical properties were similar for the same geological unit. The method was also modified to represent a water collection structure, a surface runoff, an existence of a forest road and a water level variation of a downward river / pond which could affect infiltration phenomena. Results of the simplification and the modification made it possible to enhance a prediction precision of the method and create a hazard map of slopes in widespread area. (author)

  1. Comparison study between traditional and finite element methods for slopes under heavy rainfall

    Directory of Open Access Journals (Sweden)

    M. Rabie

    2014-08-01

    Moreover, slope stability concerning rainfall and infiltration is analyzed. Specially, two kinds of infiltrations (saturated and unsaturated are considered. Many slopes become saturated during periods of intense rainfall or snowmelt, with the water table rising to the ground surface, and water flowing essentially parallel to the direction of the “slope” and “Influence” of the change in shear strength, density, pore-water pressure and seepage force in soil slices on the slope stability is explained. Finally, it is found that classical limit equilibrium methods are highly conservative compared to the finite element approach. For assessment the factor of safety for slope using the later technique, no assumption needs to be made in advance about the shape or location of the failure surface, slice side forces and their directions. This document outlines the capabilities of the finite element method in the analysis of slope stability problems.

  2. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    M. B. Defersha

    2011-07-01

    Full Text Available Soil erosion is a two-phase process consisting of the detachment of individual particles and their transport by the flowing water. This study discusses the results of laboratory experiments in which for three soils, the runoff depth, sediment yield, splash erosion and sediment size were measured. Rainfall intensity, slope and antecedent moisture contents were varied in the experiment. The soil types ranged from clay to sandy clay loam (Alemaya Black soil, Regosols and Cambisols. Rainfall was applied for six sequential 15-min periods with rainfall intensities varying between 55 and 120 mm h−1. The three slopes tested were 9, 25, and 45 %. Results show that as slope increased from 9 to 25 %, splash erosion and sediment yield increased. An increase in slope from 25 to 45 % generally decreases in splash erosion. Sediment yield for one soil increased and one soil decreased with slope and for the third soil the trend was different between the two initial moisture contents. Sediment yield was correlated (r = 0.66 with runoff amounts but not with splash erosion. Interrill erosion models that were based on the flowing water and rainfall intensity fitted the data better than when based on rainfall intensity solely. Models that assume a positive linear relationship between erosion and slope may overestimate sediment yield.

  3. Effect of rainfall intensity and slope steepness on the development of soil erosion in the Southern Cis-Ural region (A model experiment)

    Science.gov (United States)

    Sobol, N. V.; Gabbasova, I. M.; Komissarov, M. A.

    2017-09-01

    The effect of rainfall intensity on the erosion of residual calcareous agrogray soils and clay-illuvial agrochernozems in the Southern Cis-Ural region on slopes of different inclination and vegetation type has been studied by simulating with a small-size sprinkler. It has been shown that soil loss linearly depends on rainfall intensity (2, 4, and 6 mm/min) and slope inclination (3° and 7°). When the rainfall intensity and duration, and the slope inclination increase, soil loss by erosion from agrogray soils increases higher than from agrochernozems. On the plowland with a slope of 3°, runoff begins 12, 10, and 5 min, on the average, after the beginning of rains at these intensities. When the slope increases to 7°, runoff begins earlier by 7, 6, and 4 min, respectively. After the beginning of runoff and with its increase by 1 mm, the soil loss from slopes of 3° and 7° reaches 4.2 and 25.7 t/ha on agrogray soils and 1.4 and 4.7 t/ha on agrochernozems, respectively. Fallow soils have higher erosion resistance, and the soil loss little depends on the slope gradient: it gradually increases to 0.3-1.0 t/ha per 1 mm of runoff with increasing rainfall intensity and duration. The content of physical clay in eroded material is higher than in the original soils. Fine fractions prevail in this material, which increases their humus content. The increase in rainfall intensity and duration to 4 and 6 mm/min results in the entrapment of coarse silt and sand by runoff.

  4. Monitoring result analyses of high slope of five-step ship lock in the Three Gorges Project

    Directory of Open Access Journals (Sweden)

    Qixiang Fan

    2015-04-01

    Full Text Available The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP was commenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lock was put in operation in June 2003. The side slopes of the ship lock are characterized by great height (170 m, steepness (70 m in height of upright slope, and great length (over 7000 m in total length. In association with the ship lock, the surrounding rocks in slope have a high potential to deform, with which the magnitude of deformation is restricted. Monitoring results show that the deformation of the five-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformation tended to be stable and convergent during operation period, suggesting the allowable ranges of deformation. At present, the slopes and lock chambers are stable, and the ship lock works well under normal operation condition, enabling the social and economic benefits of the TGP.

  5. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability

    Science.gov (United States)

    Tristram C. Hales; Chelcy F. Miniat

    2017-01-01

    In steep soil-mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these...

  6. The stability of locus equation slopes across stop consonant voicing/aspiration

    Science.gov (United States)

    Sussman, Harvey M.; Modarresi, Golnaz

    2004-05-01

    The consistency of locus equation slopes as phonetic descriptors of stop place in CV sequences across voiced and voiceless aspirated stops was explored in the speech of five male speakers of American English and two male speakers of Persian. Using traditional locus equation measurement sites for F2 onsets, voiceless labial and coronal stops had significantly lower locus equation slopes relative to their voiced counterparts, whereas velars failed to show voicing differences. When locus equations were derived using F2 onsets for voiced stops that were measured closer to the stop release burst, comparable to the protocol for measuring voiceless aspirated stops, no significant effects of voicing/aspiration on locus equation slopes were observed. This methodological factor, rather than an underlying phonetic-based explanation, provides a reasonable account for the observed flatter locus equation slopes of voiceless labial and coronal stops relative to voiced cognates reported in previous studies [Molis et al., J. Acoust. Soc. Am. 95, 2925 (1994); O. Engstrand and B. Lindblom, PHONUM 4, 101-104]. [Work supported by NIH.

  7. How hydrological factors initiate instability in a model sandy slope

    OpenAIRE

    Terajima, Tomomi; Miyahira, Ei-ichiro; Miyajima, Hiroyuki; Ochiai, Hirotaka; Hattori, Katsumi

    2013-01-01

    Knowledge of the mechanisms of rain-induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down-slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the ...

  8. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  9. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2017-12-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  10. Detailed rock failure susceptibility mapping in steep rocky coasts by means of non-contact geostructural surveys: the case study of the Tigullio Gulf (Eastern Liguria, Northern Italy

    Directory of Open Access Journals (Sweden)

    P. De Vita

    2012-04-01

    Full Text Available In this study, an engineering geological analysis for the assessment of the rock failure susceptibility of a high, steep, rocky coast was developed by means of non-contact geostructural surveys. The methodology was applied to a 6-km coastal cliff located in the Gulf of Tigullio (Northern Tyrrhenian Sea between Rapallo and Chiavari.

    The method is based on the geostructural characterisation of outcropping rock masses through meso- and macroscale stereoscopic analyses of digital photos that were taken continuously from a known distance from the coastline. The results of the method were verified through direct surveys of accessible sample areas. The rock failure susceptibility of the coastal sector was assessed by analysing the fundamental rock slope mechanisms of instability and the results were implemented into a Geographic Information System (GIS.

    The proposed method is useful for rock failure susceptibility assessments in high, steep, rocky coastal areas, where accessibility is limited due to cliffs or steep slopes. Moreover, the method can be applied to private properties or any other area where a complete and systematic analysis of rock mass structural features cannot be achieved.

    Compared to direct surveys and to other non-contact methods based on digital terrestrial photogrammetry, the proposed procedure provided good quality data of the structural features of the rock mass at a low cost. Therefore, the method could be applied to similar coastal areas with a high risk of rock failure occurrence.

  11. 137Cs tracing dynamics of soil erosion, organic carbon and nitrogen in sloping farmland converted from original grassland in Tibetan plateau

    International Nuclear Information System (INIS)

    Nie Xiaojun; Wang Xiaodan; Liu Suzhen; Gu Shixian; Liu Haijun

    2010-01-01

    There is a shortage of research concerning the relationships between land-use change, soil erosion, and soil organic carbon (SOC) and nitrogen (N) dynamics in alpine environments such as those found in the Tibetan plateau. In this paper, typical sloping farmlands converted from grassland 50 years ago in eastern Tibet were selected to determine dynamics of soil erosion, SOC, and total N associated with land-use change. Soil samples were collected from sloping farmland and control fields (grassland). The 137 Cs, SOC, total N contents, and soil particle size fractions were analyzed in these samples. As compared with the control fields, 137 Cs, SOC, and total N inventories in the sloping farmlands decreased by 30%, 27%, and 33%, respectively. Meanwhile variations in the three parameters were enhanced in the sloping farmlands, with coefficients of variation (CVs) of 38%, 23%, and 20%, respectively, for 37 Cs, SOC, and total N. In addition, SOC and total N inventories significantly decreased with increasing soil erosion in the sloping farmland. In a sloping farmland with a steep 24 o gradient, the 137 Cs inventory gradually increased along a downslope transect with its lowest value at 0 Bq m -2 in the top-slope position (0 m). The soil clay ( 137 Cs and clay (r=0.92, p=0.003), SOC (r=0.96, p=0.001), or total N (r=0.95, p=0.001) were also found in the farmland. These results showed that converting alpine grassland to sloping farmland accelerates soil erosion, losses in SOC and N, and increases the soil's spatial variability. The combined impacts of tillage and water erosion contributed a significant decrease in the soil's organic carbon and N storages. Particularly in steep sloping farmlands, tillage erosion contributed for severe soil loss, but the soil redistribution pattern was dominated by water erosion, not tillage erosion, due to the lack of boundaries across the field patches. It was also found that 137 Cs, SOC, and total N moved along the same pathway within these

  12. An experimental study of particle-driven gravity currents on steep slopes with entrainment of particles

    Directory of Open Access Journals (Sweden)

    M. Rastello

    2002-01-01

    Full Text Available Results of laboratory experiments are presented in which a finite suspension of sawdust particles was released instantaneously into a rectangular channel immersed in a water tank. Two kinds of gravity currents were studied: currents with or without entrainment of particles from the bed. Experiments were repeated for two slopes: 30° and 45°. We observed that the velocity of the front was significantly in-creased as particle entrainment occurred. In addition, our experiments showed that the front kept a quasi-constant velocity for both runs. This might suggest that the flow regime corresponded to the "slumping regime" or "adjustment phase" described earlier by Huppert and Simpson (1980.

  13. Purpose-driven public sector reform: the need for within-government capacity build for the management of slope stability in communities in the Caribbean.

    Science.gov (United States)

    Anderson, Malcolm; Holcombe, Liz

    2006-01-01

    This article stresses the importance of within-government capacity build as the optimal approach to minimizing landslide risk to the most vulnerable communities in the developing world. Landslide risk is an integrated issue that demands strong managerial leadership and multidisciplinary inclusion to develop structures that deliver sustainable improvements in the reduction of risk. The tension between projects demanding international technical and financial intervention and those capable of "within-country" solutions are examined. More particularly, the challenges of developing a management methodology capable of energizing inter-ministry collaboration to achieve community-level action is examined in the context of a recently established program of slope stability management in St. Lucia. The program, Management of Slope Stability in Communities (MoSSaiC), is shown to have successfully fostered not only extensive technical collaboration within government but also to have energized local communities in the shared mission of capacity build through their direct involvement in the management process.

  14. Conceptualization of preferential flow for hillslope stability assessment

    Science.gov (United States)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  15. Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure

    Science.gov (United States)

    Wang, Dongdong; Li, Ling

    2010-05-01

    An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.

  16. Determination of improved steeping conditions for sorghum malting

    CSIR Research Space (South Africa)

    Dewar, J

    1997-07-01

    Full Text Available The effect of various steeping conditions (time, temperature and aeration) on the quality of sorghum malt for brewing (in terms of diastatic power, free amino nitrogen and hot water extract) was examined. Steeping time and temperature had a highly...

  17. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    Science.gov (United States)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  18. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  19. GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)

    Science.gov (United States)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the

  20. Slope Monitoring using Total Station: What are the Challenges and ...

    African Journals Online (AJOL)

    Afeni

    implications of incorrect use or negligence during slope monitoring surveys ... Data collection, processing and the presentation of results in a concise format ..... There are several software packages on the market for total station error propagation, ..... Thomas, H.G., 2011, Slope stability prism monitoring: A guide for practising ...

  1. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  2. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Science.gov (United States)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  3. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  4. Gravity current down a steeply inclined slope in a rotating fluid

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    1997-03-01

    Full Text Available The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t 1/ƒ, intermediate (t ≈ 1/ƒ, and main (t » 1/ƒ stages, where ƒ is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.

  5. Comparison of the Effects of the Different Methods for Computing the Slope Length Factor at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Fu Suhua

    2013-09-01

    Full Text Available The slope length factor is one of the parameters of the Universal Soil Loss Equation (USLE and the Revised Universal Soil Loss Equation (RUSLE and is sometimes calculated based on a digital elevation model (DEM. The methods for calculating the slope length factor are important because the values obtained may depend on the methods used for calculation. The purpose of this study was to compare the difference in spatial distribution of the slope length factor between the different methods at a watershed scale. One method used the uniform slope length factor equation (USLFE where the effects of slope irregularities (such as slope gradient, etc. on soil erosion by water were not considered. The other method used segmented slope length factor equation(SSLFE which considered the effects of slope irregularities on soil erosion by water. The Arc Macro Language (AML Version 4 program for the revised universal soil loss equation(RUSLE.which uses the USLFE, was chosen to calculate the slope length factor. In a parallel analysis, the AML code of RUSLE Version 4 was modified according to the SSLFE to calculate the slope length factor. Two watersheds with different slope and gully densities were chosen. The results show that the slope length factor and soil loss using the USLFE method were lower than those using the SSLFE method, especially on downslopes watershed with more frequent steep slopes and higher gully densities. In addition, the slope length factor and soil loss calculated by the USLFE showed less spatial variation.

  6. Relationship between Audiometric slope and tinnitus pitch in tinnitus patients: insights into the mechanisms of tinnitus generation.

    Directory of Open Access Journals (Sweden)

    Martin Schecklmann

    Full Text Available BACKGROUND: Different mechanisms have been proposed to be involved in tinnitus generation, among them reduced lateral inhibition and homeostatic plasticity. On a perceptual level these different mechanisms should be reflected by the relationship between the individual audiometric slope and the perceived tinnitus pitch. Whereas some studies found the tinnitus pitch corresponding to the maximum hearing loss, others stressed the relevance of the edge frequency. This study investigates the relationship between tinnitus pitch and audiometric slope in a large sample. METHODOLOGY: This retrospective observational study analyzed 286 patients. The matched tinnitus pitch was compared to the frequency of maximum hearing loss and the edge of the audiogram (steepest hearing loss by t-tests and correlation coefficients. These analyses were performed for the whole group and for sub-groups (uni- vs. bilateral (117 vs. 338 ears, pure-tone vs. narrow-band (340 vs. 115 ears, and low and high audiometric slope (114 vs. 113 ears. FINDINGS: For the right ear, tinnitus pitch was in the same range and correlated significantly with the frequency of maximum hearing loss, but differed from and did not correlate with the edge frequency. For the left ear, similar results were found but the correlation between tinnitus pitch and maximum hearing loss did not reach significance. Sub-group analyses (bi- and unilateral, tinnitus character, slope steepness revealed identical results except for the sub-group with high audiometric slope which revealed a higher frequency of maximum hearing loss as compared to the tinnitus pitch. CONCLUSION: The study-results confirm a relationship between tinnitus pitch and maximum hearing loss but not to the edge frequency, suggesting that tinnitus is rather a fill-in-phenomenon resulting from homeostatic mechanisms, than the result of deficient lateral inhibition. Sub-group analyses suggest that audiometric steepness and the side of affected ear

  7. Relationship between Audiometric Slope and Tinnitus Pitch in Tinnitus Patients: Insights into the Mechanisms of Tinnitus Generation

    Science.gov (United States)

    Schecklmann, Martin; Vielsmeier, Veronika; Steffens, Thomas; Landgrebe, Michael; Langguth, Berthold; Kleinjung, Tobias

    2012-01-01

    Background Different mechanisms have been proposed to be involved in tinnitus generation, among them reduced lateral inhibition and homeostatic plasticity. On a perceptual level these different mechanisms should be reflected by the relationship between the individual audiometric slope and the perceived tinnitus pitch. Whereas some studies found the tinnitus pitch corresponding to the maximum hearing loss, others stressed the relevance of the edge frequency. This study investigates the relationship between tinnitus pitch and audiometric slope in a large sample. Methodology This retrospective observational study analyzed 286 patients. The matched tinnitus pitch was compared to the frequency of maximum hearing loss and the edge of the audiogram (steepest hearing loss) by t-tests and correlation coefficients. These analyses were performed for the whole group and for sub-groups (uni- vs. bilateral (117 vs. 338 ears), pure-tone vs. narrow-band (340 vs. 115 ears), and low and high audiometric slope (114 vs. 113 ears)). Findings For the right ear, tinnitus pitch was in the same range and correlated significantly with the frequency of maximum hearing loss, but differed from and did not correlate with the edge frequency. For the left ear, similar results were found but the correlation between tinnitus pitch and maximum hearing loss did not reach significance. Sub-group analyses (bi- and unilateral, tinnitus character, slope steepness) revealed identical results except for the sub-group with high audiometric slope which revealed a higher frequency of maximum hearing loss as compared to the tinnitus pitch. Conclusion The study-results confirm a relationship between tinnitus pitch and maximum hearing loss but not to the edge frequency, suggesting that tinnitus is rather a fill-in-phenomenon resulting from homeostatic mechanisms, than the result of deficient lateral inhibition. Sub-group analyses suggest that audiometric steepness and the side of affected ear affect this

  8. Spatial variability of soil hydraulic properties on a steep slope in the loess plateau of China Variabilidade espacial de propriedades hídricas do solo de uma encosta do "Loess Plateau" da China

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2008-01-01

    Full Text Available The understanding of the structure of the spatial variability of soil surface hydraulic properties on steep slopes is important for modeling infiltration and runoff processes. The objective of this study was to investigate the spatial variability of these properties on a steep slope of the Loess Plateau in northwest China. A 9600 m² area was systematically sampled in a grid of 106 points spaced 10 m x 10 m. Hydraulic properties were determined with a disc infiltrometer under multiple pressure heads (-15, -9, -6, -3, 0 cm at each sample point. Classical and geo-statistical methods were used for data analysis. The results indicated that the variation of Gardner's a and hydraulic conductivities at all applied pressure heads was moderate and the heterogeneity for hydraulic conductivities increased as the applied pressure head increased. Along the slope, hydraulic conductivities generally decreased downwards, while the Gardner's a fluctuated slightly. The Gardner's a of the shaded aspect of the slope was greater than that of the sunny aspect. The hydraulic conductivities of the shaded aspect were greater at higher pressure heads as compared to the sunny aspect, but lower than those of the sunny aspect at lower pressure heads. Correlation analysis showed a negative correlation between hydraulic conductivity and soil organic matter and clay (A compreensão da estrutura da variabilidade especial das propriedades hidráulicas do solo de encostas íngremes é importante na modelagem dos processos de infiltração e de escoamento superficial da água. O objetivo deste estudo foi investigar a variabilidade destas propriedades em uma encosta íngreme do "Loess Plateau" do noroeste da China. Uma área de 9600 m² foi sistematicamente amostrada em um grid de 106 pontos espaçados de 10 m x 10 m. As propriedades hídricas foram determinadas com um infiltrômetro de disco operando sob múltiplas cargas hidráulicas (-15, -9, -6, -3, 0 cm em cada ponto de

  9. THE IMPACT OF STRUCTURAL, PETROGRAPHIC AND CLIMATIC FACTORS ON THE SLOPE STABILITY IN THE OPEN CAST MINE OF GRADNA

    Directory of Open Access Journals (Sweden)

    Ivan Tomašić

    1992-12-01

    Full Text Available This paper presents an analysis of a complexity of interrelated structural, petrologic and climatic factors that considerably affect the instabilities in the open cast mine of Gradna, near Samobor. The instabilities provoke the slope failures such as slides and slumps of rock material. During the protracted periodical investigations, the relationship among the factors of regional geology, tectonics, structural geology, petrography, engineering geology, rock mechanics and the rock mining technology was observed in the area. The local control of hydrogeologic properties, as well as climatic fluctuations of temperature and precipitation on the slope stability, was also recognized. It turned out that the structural relationships, characteristic of the manifold cataclased dolomite, stimulated the development of local instabilities, particularly during the period of low temperatures affecting the process of ground-water accumulation. When the temperatures are worm, the ground-water circulation is slow, exerting only the small-scale influence on the local instabilities (the paper is published in Croatian.

  10. Pressure-Dependent Friction on Granular Slopes Close to Avalanche.

    Science.gov (United States)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-04

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  11. Pressure-Dependent Friction on Granular Slopes Close to Avalanche

    Science.gov (United States)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-01

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  12. Sedimentology and preservation of aeolian sediments on steep terrains: Incipient sand ramps on the Atacama coast (northern Chile)

    Science.gov (United States)

    Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.

    2017-05-01

    The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process

  13. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    Science.gov (United States)

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    Previous studies have shown that increasing tibial slope can shift the resting position of the tibia anteriorly. As a result, sagittal osteotomies that alter slope have recently been proposed for treatment of posterior cruciate ligament (PCL) injuries. Increasing tibial slope with an osteotomy shifts the resting position anteriorly in a PCL-deficient knee, thereby partially reducing the posterior tibial "sag" associated with PCL injury. This shift in resting position from the increased slope causes a decrease in posterior tibial translation compared with the PCL-deficient knee in response to posterior tibial and axial compressive loads. Controlled laboratory study. Three knee conditions were tested with a robotic universal force-moment sensor testing system: intact, PCL-deficient, and PCL-deficient with increased tibial slope. Tibial slope was increased via a 5-mm anterior opening wedge osteotomy. Three external loading conditions were applied to each knee condition at 0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees of knee flexion: (1) 134-N anterior-posterior (A-P) tibial load, (2) 200-N axial compressive load, and (3) combined 134-N A-P and 200-N axial loads. For each loading condition, kinematics of the intact knee were recorded for the remaining 5 degrees of freedom (ie, A-P, medial-lateral, and proximal-distal translations, internal-external and varus-valgus rotations). Posterior cruciate ligament deficiency resulted in a posterior shift of the tibial resting position to 8.4 +/- 2.6 mm at 90 degrees compared with the intact knee. After osteotomy, tibial slope increased from 9.2 degrees +/- 1.0 degrees in the intact knee to 13.8 degrees +/- 0.9 degrees. This increase in slope reduced the posterior sag of the PCL-deficient knee, shifting the resting position anteriorly to 4.0 +/- 2.0 mm at 90 degrees. Under a 200-N axial compressive load with the osteotomy, an additional increase in anterior tibial translation to 2.7 +/- 1.7 mm at 30 degrees was

  14. Root strength changes after logging in southeast Alaska

    Science.gov (United States)

    R. R. Ziemer; D. N. Swanston

    1977-01-01

    Abstract - A crucial factor in the stability of steep forested slopes is the role of plant roots in maintaining the shear strength of soil mantles. Roots add strength to the soil by vertically anchoring through the soil mass into failures in the bedrock and by laterally tying the slope together across zones of weakness or instability. Once the covering vegetation is...

  15. Rock Slope Design Criteria : Executive Summary Report

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  16. Decontamination technology verification test on scraping surface soil on the highway roadside slopes using unmanned scraping machine

    International Nuclear Information System (INIS)

    Fujinaka, Hiroyuki; Kubota, Mitsuru; Shibuya, Susumu; Kasai, Yoshimitsu

    2013-01-01

    The restore the normal life in the contaminated area, reconstruction of the infrastructure is necessary and early decontamination of roads and roadside slopes of highway are required. Decontamination work of roadside slopes is conducted only by hand working so far, but on the high and steep roadside slopes it is desirable to carry out decontamination work by an unmanned scraping machine to reduce working hours and improve safety. In this verification test, decontamination work of the roadside slope of highway, of which area was 20m W x 15m L and divided into two sections, was implemented by the machine or by hand, and working hours and radiation exposure dose were measured. As the results of the test, working hours and radiation exposure dose by the machine were 49% and 63% respectively compared to those by hand. Based on the results, cost and radiation dose for decontamination work on larger slopes were evaluated. Cost by the machine is estimated to be less than that by hand where the area is over 4,000m 2 . It is confirmed that the decontamination work of roadside slopes by the machine can be done more quickly and safely in comparison with hand working. (author)

  17. Effect of rainfall on the reliability of an infinite slope

    OpenAIRE

    Yuan, J.; Papaioannou, I.; Mok, C. M.; Straub, D.

    2014-01-01

    Rainfall is one of the most common factors triggering landslides, since infiltration of water into the soil has a significant impact on pore water pressure buildup that affects slope stability. In this study, the influence of the wetting front development on the reliability of an infinite slope is analyzed. The failure condition of the slope is expressed in terms of the factor of safety. Rainfall infiltration is simulated by a time-dependent model, based on the Green and Ampt assumptions. The...

  18. Performance of the APS optical slope measuring system

    International Nuclear Information System (INIS)

    Qian, Jun; Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen

    2013-01-01

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms. -- Highlights: ► This is the first time to present the APS OSMS in publication. ► The APS OSMS is capable to measure flat and near flat mirrors with slope error <100 nrad rms. ► The accuracy of the slope error measurements of a 350 mm long mirror is less than 60 nrad rms

  19. Phytase activity in brown rice during steeping and sprouting

    NARCIS (Netherlands)

    Ou, K.; Cheng, Y.; Xing, Y.; Lin, L.; Nout, M.J.R.; Liang, J.

    2011-01-01

    Phytase in brown rice will be activated and accumulated during seed germination. Changes of phytase activity in brown rice during two stages of germination (steeping and sprouting) affected by process conditions were studied. It was shown that steeping led to significant decrease of phytase activity

  20. {sup 137}Cs tracing dynamics of soil erosion, organic carbon and nitrogen in sloping farmland converted from original grassland in Tibetan plateau

    Energy Technology Data Exchange (ETDEWEB)

    Nie Xiaojun, E-mail: niexj2005@126.co [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000 (China); Wang Xiaodan; Liu Suzhen; Gu Shixian [Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservation, Chengdu 610041 (China); Liu Haijun [Institute of Water Resources Planning, Surveying, Design, and Research, Lhasa 850000 (China)

    2010-09-15

    There is a shortage of research concerning the relationships between land-use change, soil erosion, and soil organic carbon (SOC) and nitrogen (N) dynamics in alpine environments such as those found in the Tibetan plateau. In this paper, typical sloping farmlands converted from grassland 50 years ago in eastern Tibet were selected to determine dynamics of soil erosion, SOC, and total N associated with land-use change. Soil samples were collected from sloping farmland and control fields (grassland). The {sup 137}Cs, SOC, total N contents, and soil particle size fractions were analyzed in these samples. As compared with the control fields, {sup 137}Cs, SOC, and total N inventories in the sloping farmlands decreased by 30%, 27%, and 33%, respectively. Meanwhile variations in the three parameters were enhanced in the sloping farmlands, with coefficients of variation (CVs) of 38%, 23%, and 20%, respectively, for {sup 37}Cs, SOC, and total N. In addition, SOC and total N inventories significantly decreased with increasing soil erosion in the sloping farmland. In a sloping farmland with a steep 24{sup o} gradient, the {sup 137}Cs inventory gradually increased along a downslope transect with its lowest value at 0 Bq m{sup -2} in the top-slope position (0 m). The soil clay (<0.002 mm) content in such an area increased with decreasing elevation (r=-0.95, p=0.001). Significant correlations between {sup 137}Cs and clay (r=0.92, p=0.003), SOC (r=0.96, p=0.001), or total N (r=0.95, p=0.001) were also found in the farmland. These results showed that converting alpine grassland to sloping farmland accelerates soil erosion, losses in SOC and N, and increases the soil's spatial variability. The combined impacts of tillage and water erosion contributed a significant decrease in the soil's organic carbon and N storages. Particularly in steep sloping farmlands, tillage erosion contributed for severe soil loss, but the soil redistribution pattern was dominated by water erosion

  1. Reclamation of slopes left after surface mining

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, J [Banske Projekty, Teplice (Czech Republic)

    1993-03-01

    Discusses land reclamation of abandoned slopes from brown coal surface mining in the North Bohemian brown coal basin in the Czech Republic. Problems associated with reclamation of landslide areas in two former coal mines are evaluated: the Otokar mine in Kostany (mining from 1956 to 1966) and the CSM mine in Pozorka (mining from 1955 to 1967). Land reclamation was introduced 25 years after damage occurred. The following aspects are analyzed: hydrogeologic conditions, range of landslides, types of rocks in landslide areas, water conditions, methods for stabilizing slopes, safety aspects.

  2. Blasting methods for heterogeneous rocks in hillside open-pit mines with high and steep slopes

    Science.gov (United States)

    Chen, Y. J.; Chang, Z. G.; Chao, X. H.; Zhao, J. F.

    2017-06-01

    In the arid desert areas in Xinjiang, most limestone quarries are hillside open-pit mines (OPMs) where the limestone is hard, heterogeneous, and fractured, and can be easily broken into large blocks by blasting. This study tried to find effective technical methods for blasting heterogeneous rocks in such quarries based on an investigation into existing problems encountered in actual mining at Hongshun Limestone Quarry in Xinjiang. This study provided blasting schemes for hillside OPMs with different heights and slopes. These schemes involve the use of vertical deep holes, oblique shallow holes, and downslope hole-by-hole sublevel or simultaneous detonation techniques. In each bench, the detonations of holes in a detonation unit occur at intervals of 25-50 milliseconds. The research findings can offer technical guidance on how to blast heterogeneous rocks in hillside limestone quarries.

  3. The dependence of sea surface slope on atmospheric stability and swell conditions

    Science.gov (United States)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  4. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    Science.gov (United States)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  5. Probabilistic evaluation method of stability of ground and slope considering spatial randomness of soil properties

    International Nuclear Information System (INIS)

    Ohtori, Yasuki

    2004-01-01

    In the JEAG4601-1987 (Japan Electric Association Guide for earthquake resistance design), either the conventional deterministic method or probabilistic method is used for evaluating the stability of ground foundations and surrounding slopes in nuclear power plants. The deterministic method, in which the soil properties of 'mean ± coefficient x standard deviation' is adopted for the calculations, is generally used in the design stage to data. On the other hand, the probabilistic method, in which the soil properties assume to have probabilistic distributions, is stated as a future method. The deterministic method facilitates the evaluation, however, it is necessary to clarify the relation with the probabilistic method. In this paper, the relationship between the deterministic and the probabilistic methods are investigated. To do that, a simple model that can take into account the dynamic effect of structures and a simplified method for accounting the spatial randomness are proposed and used for the studies. As the results of studies, it is found that the strength of soil properties is most importation factor for the stability of ground structures and the probability below the safety factor evaluated with the soil properties of mean -1.0 x standard deviation' by the deterministic method is of much lower. (author)

  6. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    Science.gov (United States)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  7. Small scale tests on the progressive retreat of soil slopes

    Science.gov (United States)

    Voulgari, Chrysoula; Utili, Stefano; Castellanza, Riccardo

    2015-04-01

    In this paper, the influence due to the presence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is investigated through small scale laboratory tests. Weathering turns hard rocks into soft rocks that maintain the structure of the intact rocks, but are characterised by higher void ratios and reduced bond strengths; soft rocks are transformed into granular soils generally called residual soils. A number of landslides develop in slopes due to weathering which results in the progressive retrogression of the slope face and the further degradation within the weathering zone. Cracks, that are widely present, can be a result of weathering and they can cause a significant decrease in their stability, as they provide preferential flow channels which increase the soil permeability and decrease the soil strength. The geological models employed until now are mainly empirical. Several researchers have tried to study the stability of slopes through experimental procedures. Centrifuge modelling is widely used to investigate the failure of slopes. Small scale tests are also an important approach, in order to study the behaviour of a slope under certain conditions, such as the existence of water, as they allow the observation of the infiltration processes, the movement of the weathering front, deformation and failure. However, the deformation response of a slope subject to weathering is not yet thoroughly clarified. In this work, a set of experiments were conducted to investigate weathering induced successive landslides. Weathering was applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content of the soil during the tests was monitored by soil moisture sensors that were buried inside the slope model. High resolution cameras were recording the behaviour of the slope model. GeoPIV was used to analyse the frames and obtain the deformations of the slope model during the

  8. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  9. A Two-Dimensional Post-Stack Seismic Inversion for Acoustic Impedance of Gas and Hydrate Bearing Deep-Water Sediments Within the Continental Slope of the Ulleung Basin, East Sea, Korea

    Directory of Open Access Journals (Sweden)

    Keumsuk Lee

    2013-01-01

    Full Text Available A post-stack inversion of 2D seismic data was conducted to estimate the spatial distribution of acoustic impedance associated with gas and hydrates in the Ulleung Basin, East Sea, Korea constrained by logs from three boreholes drilled on its continental margin. A model-based inversion was applied to a Plio-Quaternary succession composed of alternations of unconsolidated mass-flow deposits/turbidites. A comparison of seismic reflections and synthetic data computed from impedance logs is shown for two zones. An upper (steep slope zone contains a moderately continuous, possibly bottom-simulating reflector feature along the corresponding section. This feature may be associated with a lithology boundary near a drill site in addition to, or instead of, a stability boundary of gas hydrates (i.e., gas below and hydrates above. The lower (gentle slope zone has locally cross-cutting reflection patterns that are more likely to be attributed to gas- and hydrate-related physical phenomena than to spatiotemporal changes in lithology. This seismic inversion is informative and useful, making a contribution to enhance the interpretability of the seismic profiles for a potential hydrate recovery.

  10. Tibial Slope Strongly Influences Knee Stability After Posterior Cruciate Ligament Reconstruction: A Prospective 5- to 15-Year Follow-up.

    Science.gov (United States)

    Gwinner, Clemens; Weiler, Andreas; Roider, Manoussos; Schaefer, Frederik M; Jung, Tobias M

    2017-02-01

    The reported failure rate after posterior cruciate ligament (PCL) reconstruction remains high. Previous studies have shown that the tibial slope (TS) influences sagittal plane laxity. Consequently, alterations of TS might have an effect on postoperative knee stability after PCL reconstruction. We hypothesized that flattening of TS is associated with increased posterior laxity after PCL reconstruction. Cohort study; Level of evidence 3. This study consisted of 48 patients who underwent PCL reconstruction in a single-surgeon series. Eight patients underwent an isolated PCL reconstruction, 27 patients underwent an additional posterolateral corner reconstruction, and 13 patients underwent a combined reconstruction of the PCL, anterior cruciate ligament, and posterolateral corner. Three blinded observers measured TS and the side-to-side difference (SSD) of posterior tibial translation (PTT) before and after PCL reconstruction using standardized stress radiographs. The minimum follow-up was 5 years. At a mean follow-up of 103 months (range, 65-187), the mean SSD of PTT was significantly reduced (10.9 ± 2.9 vs 4.9 ± 4.3 mm; P slope.

  11. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    Science.gov (United States)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is

  12. Slope stability improvement using low intensity field electrosmosis

    Science.gov (United States)

    Armillotta, Pasquale

    2014-05-01

    The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1

  13. Restitution slope is principally determined by steady-state action potential duration.

    Science.gov (United States)

    Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James

    2017-06-01

    The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on

  14. Physical and theoretical modeling of rock slopes against block-flexure toppling failure

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2015-12-01

    Full Text Available Block-flexure is the most common mode of toppling failure in natural and excavated rock slopes. In such failure, some rock blocks break due to tensile stresses and some overturn under their own weights and then all of them topple together. In this paper, first, a brief review of previous studies on toppling failures is presented. Then, the physical and mechanical properties of experimental modeling materials are summarized. Next, the physical modeling results of rock slopes with the potential of block-flexural toppling failures are explained and a new analytical solution is proposed for the stability analysis of such slopes. The results of this method are compared with the outcomes of the experiments. The comparative studies show that the proposed analytical approach is appropriate for the stability analysis of rock slopes against block-flexure toppling failure. Finally, a real case study is used for the practical verification of the suggested method.

  15. Determining the Critical Slip Surface of Three-Dimensional Soil Slopes from the Stress Fields Solved Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.

  16. Bed slope effects on turbulent wave boundary layers: 2. Comparison with skewness, asymmetry, and other effects

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    currents or undertow). The effects from each of the four components are isolated and quantified using a standard set of bed shear stress quantities, allowing their easy comparison. For conditions representing large shallow-water waves on steep slopes, the results suggest that converging-diverging effects......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega model for turbulence closure, is used to systematically compare the relative strength of bed shear stress quantities and boundary layer streaming under wave motions from four...... from beach slope may make a significant onshore bed load contribution. Generally, however, the results suggest wave skewness (in addition to conventional steady streaming) as the most important onshore contribution outside the surf zone. Streaming induced within the wave boundary layer is also...

  17. Application of distinct element method to toppling failure of slopes

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Asai, Yoshiyuki.

    1985-01-01

    Recently, the stability of slopes during earthquakes has become to be an important engineering problem, especially in case of the earthquake-proof design of nuclear power plants. But, for fissured rock slopes, some problems are remained unresolved, because they can not be treated as continua. The authors have been investigating toppling failure of slopes, from a point of view which regards a fissured rock mass as an assemblage of rigid blocks. DEM (Distinct Element Method) proposed by Cundall (1974) seems to be very helpful to such a investigation. So, in this paper, the applicability of DEM to toppling failure of slopes is examined through the comparison between DEM results and theoretical or experimental results using 3 simple models. (author)

  18. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  19. The Effect of Saturation on the Slope Sliding in the San Juan de Grijalva Comunity, Chiapas

    Directory of Open Access Journals (Sweden)

    Mora-Ortiz R.S.

    2012-01-01

    Full Text Available A number of slopes that have been stable during many years may fail when an extraordinary rain period occurs. This phenomenon involves not only the lithology, the geometric and the mechanical characteristics of the slope but also the rain-evaporation-infiltration regime of the site. In this paper, the stability of a slope in the comunity of San Juan de Grijalva, Ostuacán, Chiapas (Mexico that failed during an intense raining period is analyzed. The volume of this slide was over 5 millions of cubics meters of soil and it produced the obstruction of the Grijalva river. The stratigraphic and geometric properties of the slope were determined and undisturbed samples were obtained in the site to determine the mechanical properties of the material. The stability analysis considered the variation of the cohesion of the soil caused by wetting and it was possible to observe the evolution of the safety factor with the water content of the material. Through the analysis of the rain infiltration and the stability of the slope, it has been possible to reproduce the failure process.

  20. Probabilistic analysis algorithm for UA slope software program.

    Science.gov (United States)

    2013-12-01

    A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...

  1. Is there a distinct continental slope fauna in the Antarctic?

    Science.gov (United States)

    Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.

    2011-02-01

    The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ˜3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be

  2. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    Science.gov (United States)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  3. Seasonal inorganic nitrogen release in alpine lakes on the Colorado western slope

    Science.gov (United States)

    Inyan, B.I.; Williams, M.W.; Tonnessen, K.; Turk, J.T.; Campbell, D.H.

    1998-01-01

    In the Rocky Mountains, the association of increases in acidic deposition with increased atmospheric loading of sulfate and direct changes in surface water chemistry has been well established. The importance, though, of increased nitrogen (N) deposition in the episodic acidification of alpine lakes and N saturation in alpine ecosystems is only beginning to be documented. In alpine areas of the Colorado Front Range, modest loadings of N in deposition have been associated with leakage of N to surface waters. On the Colorado western slope, however, no leakage of N to surface waters has been reported. A 1995 study that included early season under-ice water samples that were not available in earlier studies showed that there is, in fact, N leakage to surface waters in some western slope basins. Under-ice nitrate (NO3-) concentrations were as high as 10.5 ??q L-1, and only decreased to detection limits in September. Landscape type appears to be important in leakage of N to surface waters, which is associated with basins having steep slopes, thin soils, and large amounts of exposed bedrock. NO3- leakage compounds the existing sensitivity to episodic acidification from low acid neutralizing capacity (ANC), which is less than 40 ??eq L-1 in those basins.

  4. Wildlife response on the Alaska North Slope

    International Nuclear Information System (INIS)

    Costanzo, D.; McKenzie, B.

    1992-01-01

    Recognizing the need for a comprehensive plan to deal with potentially oiled wildlife on the Alaskan North Slope, a multifaceted wildlife protection strategy was developed and implemented during 1991. The strategy incorporated all aspects of wildlife response including protection of critical habitat, hazing, capture and stabilization, long term rehabilitation, and release. The primary wildlife response strategy emphasizes controlling of the release and spreading of spilled oil at the source to prevent or reduce contamination of potentially affected species and/or their habitat. A secondary response strategy concentrates on keeping potentially affected wildlife away from an oiled area through the use of deterrent techniques. Tertiary response involves the capture and treatment of oiled wildlife. Implementation of the strategy included the development of specialized training, the procurement of equipment, and the construction of a bird stabilization center. The result of this initiative is a comprehensive wildlife response capability on the Alaskan North Slope. 1 ref., 5 figs., 3 tabs

  5. Research on Safety Factor of Dam Slope of High Embankment Dam under Seismic Condition

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available With the constant development of construction technology of embankment dam, the constructed embankment dam becomes higher and higher, and the embankment dam with its height over 200m will always adopt the current design criteria of embankment dam only suitable for the construction of embankment dam lower than 200m in height. So the design criteria of high embankment dam shall be improved. We shall calculate the stability and safety factors of dam slope of high embankment dam under different dam height, slope ratio and different seismic intensity based on ratio of safety margin, and clarify the change rules of stability and safety factors of dam slope of high embankment dam with its height over 200m. We calculate the ratio of safety margin of traditional and reliable method by taking the stable, allowable and reliability index 4.2 of dam slope of high embankment dam with its height over 200m as the standard value, and conduct linear regression for both. As a result, the conditions, where 1.3 is considered as the stability and safety factors of dam slope of high embankment dam with its height over 200m under seismic condition and 4.2 as the allowable and reliability index, are under the same risk control level.

  6. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    Science.gov (United States)

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  7. An Analytical Solution for Block Toppling Failure of Rock Slopes during an Earthquake

    Directory of Open Access Journals (Sweden)

    Songfeng Guo

    2017-09-01

    Full Text Available Toppling failure is one of the most common failure types in the field. It always occurs in rock masses containing a group of dominant discontinuities dipping into the slope. Post-earthquake investigation has shown that many toppling rock slope failures have occurred during earthquakes. In this study, an analytical solution is presented on the basis of limit equilibrium analysis. The acceleration of seismic load as well as joint persistence within the block base, were considered in the analysis. The method was then applied into a shake table test of an anti-dip layered slope model. As predicted from the analytical method, blocks topple or slide from slope crest to toe progressively and the factor of safety decreases as the inputting acceleration increases. The results perfectly duplicate the deformation features and stability condition of the physical model under the shake table test. It is shown that the presented method is more universal than the original one and can be adopted to evaluate the stability of the slope with potential toppling failure under seismic loads.

  8. Bio-engineering for land stabilization : executive summary report.

    Science.gov (United States)

    2010-06-30

    Soil-bioengineering, or simply : bioengineering, is the use of vegetation for : slope stabilization. Currently, a large : number of slopes near Ohio highways are : experiencing stability problems. These : failures usually begin as local erosion...

  9. Erosion prediction for alpine slopes: a symbiosis of remote sensing and a physical based erosion model

    Science.gov (United States)

    Kaiser, Andreas; Neugirg, Fabian; Haas, Florian; Schindewolf, Marcus; Schmidt, Jürgen

    2014-05-01

    As rainfall simulations represent an established tool for quantifying soil detachment on cultivated area in lowlands and low mountain ranges, they are rarely used on steep slopes high mountain ranges. Still this terrain represents productive sediment sources of high morphodynamic. A quantitative differentiation between gravitationally and fluvially relocated material reveals a major challenge in understanding erosion on steep slopes: does solifluction as a result of melting in spring or heavy convective rainstorms during summer cause the essential erosion processes? This paper aims to answer this question by separating gravitational mass movement (solifluction, landslides, mudflow and needle ice) and runoff-induced detachment. First simulated rainstorm experiments are used to assess the sediment production on bare soil on a strongly inclined plot (1 m², 42°) in the northern limestone Alps. Throughout precipitation experiments runoff and related suspended sediments were quantified. In order to enlarge slope length virtually to around 20 m a runoff feeding device is additionally implemented. Soil physical parameters were derived from on-site sampling. The generated data is introduced to the physically based and catchment-scaled erosion model EROSION 3D to upscale plot size to small watershed conditions. Thus infiltration, runoff, detachment, transport and finally deposition can be predicted for single rainstorm events and storm sequences. Secondly, in order to separate gravitational mass movements and water erosion, a LiDAR and structure-from-motion based monitoring approach is carried out to produce high-resolution digital elevation models. A time series analysis of detachment and deposition from different points in time is implemented. Absolute volume losses are then compared to sediment losses calculated by the erosion model as the latter only generates data that is connected to water induced hillside erosion. This methodology will be applied in other watersheds

  10. Numerical modeling of the effect of preferential flow on hillslope hydrology and slope stability

    NARCIS (Netherlands)

    Shao, W.

    2017-01-01

    The topic of this thesis is the quantification of the influence of preferential flow on landslide-triggering in potentially unstable slopes. Preferential flow paths (e.g., cracks, macropores, fissures, pipes, etc.) commonly exists in slopes. Flow velocities in preferential flow paths can be

  11. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    Science.gov (United States)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation

  12. Application of dynamic programming to evaluate the slope stability of a vertical extension to a balefill.

    Science.gov (United States)

    Kremen, Arie; Tsompanakis, Yiannis

    2010-04-01

    The slope-stability of a proposed vertical extension of a balefill was investigated in the present study, in an attempt to determine a geotechnically conservative design, compliant with New Jersey Department of Environmental Protection regulations, to maximize the utilization of unclaimed disposal capacity. Conventional geotechnical analytical methods are generally limited to well-defined failure modes, which may not occur in landfills or balefills due to the presence of preferential slip surfaces. In addition, these models assume an a priori stress distribution to solve essentially indeterminate problems. In this work, a different approach has been applied, which avoids several of the drawbacks of conventional methods. Specifically, the analysis was performed in a two-stage process: (a) calculation of stress distribution, and (b) application of an optimization technique to identify the most probable failure surface. The stress analysis was performed using a finite element formulation and the location of the failure surface was located by dynamic programming optimization method. A sensitivity analysis was performed to evaluate the effect of the various waste strength parameters of the underlying mathematical model on the results, namely the factor of safety of the landfill. Although this study focuses on the stability investigation of an expanded balefill, the methodology presented can easily be applied to general geotechnical investigations.

  13. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    Science.gov (United States)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  14. Large-scale slope failure and active erosion occurring in the southwest Ryukyu fore-arc area

    Directory of Open Access Journals (Sweden)

    T. Matsumoto

    2001-01-01

    Full Text Available The southwestern Ryukyu area east of Taiwan Island is an arcuate boundary between Philippine Sea Plate and Eurasian Plate. The topographic features in the area are characterised by (1 a large-scale amphitheatre off Ishigaki Island, just on the estimated epicentre of the tsunamigenic earthquake in 1771, (2 lots of deep sea canyons located north of the amphitheatre, (3 15–20 km wide fore-arc basin, (4 15–20 km wide flat plane in the axial area of the trench, (5 E-W trending half grabens located on the fore-arc area, etc., which were revealed by several recent topographic survey expeditions. The diving survey by SHINKAI6500 in the fore-arc area on a spur located 120 km south of Ishigaki Island was carried out in 1992. The site is characterised dominantly by rough topography consisting of a series of steep slopes and escarpments. A part of the surface is eroded due to the weight of the sediment itself and consequently the basement layer is exposed. The site was covered with suspended particles during the diving, due to the present surface sliding and erosion. The same site was resurveyed in 1997 by ROV KAIKO, which confirmed the continuous slope failure taking place in the site. Another example that was observed by KAIKO expedition in 1997 is a largescale mud block on the southward dipping slope 80 km south of Ishigaki Island. This is apparently derived from the shallower part of the steep slope on the southern edge of the fan deposit south of Ishigaki Island. The topographic features suggest N-S or NE-SW tensional stress over the whole study area. In this sense, the relative motion between the two plates in this area is oblique to the plate boundary. So, the seaward migration of the plate boundary may occur due to the gravitational instability at the boundary of the two different lithospheric structures. This is evidenced by a lack of accretionary sediment on the fore-arc and the mechanism of a recent earthquake which occurred on 3 May 1998 in

  15. Slope Stability Analysis for Shallow Landslides using TRIGRS: A Case Study for Sta. Cruz, Zambales, Philippines

    Science.gov (United States)

    Mendoza, J. P. A.

    2016-12-01

    The Philippines, being located in the circum-Pacific, bounded by multiple subduction zones, open seas and ocean, is one of the most hazard-prone countries in the world (Benson, 1997). This widespread recurrence of natural hazards in the country requires much attention for disaster management (Aurelio, 2006). On the average, 21 typhoons enter the Philippine area of responsibility annually with 6-9 making a landfall. Several rainfall-induced landslide events are reported annually particularly during and after the inundation of major typhoons which imposes hazards to communities and causes destruction of properties due to the moving mass and possible flash floods it may induce. Shallow landslides are the most commonly observed failure involving soil-mantled slopes and are considered major geohazards, often causing property damage and other economic loss. Hence numerous studies on landslide susceptibility including numerical models based on infinite slope equation are used in order to identify slopes prone to occurrences of shallow landslides. The study aims to determine the relationships between the slope and elevation to the factor of safety for laterite-mantled topography by incorporating precipitation values in the determination of landslide susceptibility. Using a DEM, flow direction map and slope map of the Sta Cruz (Zambales, Philippines), the FORTRAN based program TRIGRS, was used to generate the values for the factors of safety in the study area. Overlays with a generated slope map and elevation map were used to determine relationships of the mentioned factors and the factors of safety. A slope in a topography mantled with lateritic soil will fail at a slope angle higher than 20 degrees. Generally, the factor of safety decreases as the slope angle increases; this increases the probability and risk of slope failure. Elevation has no bearing on the computation for the factor of safety. The factor of safety is heavily dependent on the slope angle. The value of

  16. A model for predicting embankment slope failures in clay-rich soils; A Louisiana example

    Science.gov (United States)

    Burns, S. F.

    2015-12-01

    A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (soils with a liquid limit plasticity index soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.

  17. Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach

    Science.gov (United States)

    Draebing, D.; Krautblatter, M.; Dikau, R.

    2014-12-01

    Degradation of permafrost rock wall decreases stability and can initiate rock slope instability of all magnitudes. Rock instability is controlled by the balance of shear forces and shear resistances. The sensitivity of slope stability to warming results from a complex interplay of shear forces and resistances. Conductive, convective and advective heat transport processes act to warm, degrade and thaw permafrost in rock walls. On a seasonal scale, snow cover changes are a poorly understood key control of the timing and extent of thawing and permafrost degradation. We identified two potential critical time windows where shear forces might exceed shear resistances of the rock. In early summer combined hydrostatic and cryostatic pressure can cause a peak in shear force exceeding high frozen shear resistance and in autumn fast increasing shear forces can exceed slower increasing shear resistance. On a multiannual system scale, shear resistances change from predominantly rock-mechanically to ice-mechanically controlled. Progressive rock bridge failure results in an increase of sensitivity to warming. Climate change alters snow cover and duration and, hereby, thermal and mechanical processes in the rock wall. Amplified thawing of permafrost will result in higher rock slope instability and rock fall activity. We present a holistic conceptual approach connecting thermal and mechanical processes, validate parts of the model with geophysical and kinematic data and develop future scenarios to enhance understanding on system scale.

  18. TRIGRS - A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0

    Science.gov (United States)

    Baum, Rex L.; Savage, William Z.; Godt, Jonathan W.

    2008-01-01

    The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS) is a Fortran program designed for modeling the timing and distribution of shallow, rainfall-induced landslides. The program computes transient pore-pressure changes, and attendant changes in the factor of safety, due to rainfall infiltration. The program models rainfall infiltration, resulting from storms that have durations ranging from hours to a few days, using analytical solutions for partial differential equations that represent one-dimensional, vertical flow in isotropic, homogeneous materials for either saturated or unsaturated conditions. Use of step-function series allows the program to represent variable rainfall input, and a simple runoff routing model allows the user to divert excess water from impervious areas onto more permeable downslope areas. The TRIGRS program uses a simple infinite-slope model to compute factor of safety on a cell-by-cell basis. An approximate formula for effective stress in unsaturated materials aids computation of the factor of safety in unsaturated soils. Horizontal heterogeneity is accounted for by allowing material properties, rainfall, and other input values to vary from cell to cell. This command-line program is used in conjunction with geographic information system (GIS) software to prepare input grids and visualize model results.

  19. Gravity current down a steeply inclined slope in a rotating fluid

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    Full Text Available The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t < 1/ƒ, intermediate (t1/ƒ, and main (t » 1/ƒ stages, where ƒ is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.

  20. Geological Aspect of Slope Failure and Mitigation Approach in Bireun - Takengon Main Road, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Ibnu Rusydy

    2016-04-01

    Full Text Available A soil and rock slope assessment survey was conducted along Bireun – Takengon main road in Aceh Province, Indonesia. The slope assessment survey was carried out to determine the geological condition, verify and identify the potential areas of slope failure and to study what type of slope stability and protection method could be applied to the road. Several research methodologies were conducted in the field such as rock and soil identification, and slope assessment. The survey was conducted in four selected areas along Bireun – Takengon main road. In study area I, soil creep occurred because of a presence of montmorillonite clay. The mitigation methods to reduce soil creeping in this area are building a retaining wall and pile. The shotcrete, wire mesh, net rock bolting, and rock removal method is suitable to apply in study area II. The shotcrete and soil nails were used because the type of rocks in those areas is sedimentary rock such as shale, sandstone, siltstone, and a boulder of a volcanic rock. The same approach shall be applied in study area IV. study area III was the best spot to learn about the mitigation approach for slope stability and provides many lessons learned. Aceh Province experience active tectonic movement, high intensity of rain, geological structures, a high degree of weathering, and high intensity of earthquake,as primary factors which trigger landslides. The techonology of slope stabilizing and protection methods can be applied to mitigate landslides.

  1. Solution of adsorption problems involving steep moving profiles

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.

    1998-01-01

    The moving finite element collocation method proposed by Kiil et al. (1995) for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures....... Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). Results of this application study show that the method is simple yet sufficiently accurate for use in adsorption problems with steep moving gradients, where global collocation...

  2. Collisional transport in a plasma with steep gradients

    International Nuclear Information System (INIS)

    Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S.

    1999-06-01

    The validity is given to the newly proposed two δf method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)

  3. Root tensile strength assessment of Dryas octopetala L. and implications for its engineering mechanism on lateral moraine slopes (Turtmann Valley, Switzerland)

    Science.gov (United States)

    Eibisch, Katharina; Eichel, Jana; Dikau, Richard

    2015-04-01

    Dryas roots appear to be quite strong compared to other alpine species with a mean tensile strength of 22,63 N mm -². (B) On a micro scale, morphological and biomechanical features of above and below-ground biomass were qualitatively studied through field observations on D. octopetala individuals. Findings indicate that D. octopetala's dense cushions, covering many square meters of the moraines surface, traps fine sediment, stores moisture and significantly reduces erosion through wind and water. Furthermore, Dryas is well adapted to rock fall or burial by forming stabilized patches of ground despite steep slope inclinations and strong, episodic surface runoff and creep processes. Anchorage is provided by its strong root, which in all studied cases grew upslope parallel to the moraines surface. Insights from this study allow to relate root tensile strength and other specific plant traits of Dryas octopetala to an engineering mechanism and effect on geomorphic processes on lateral moraine slopes. Knowledge about Dryas as an engineering species may help to understand its biotic influence on the geomorphic system of a lateral moraine and aid in the selection of species for erosion control or rehabilitation of ecosystems, where Dryas is native.

  4. Can sea level rise cause large submarine landslides on continental slopes?

    Science.gov (United States)

    Urlaub, Morelia

    2014-05-01

    Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.

  5. H∞ control of Lur'e systems with sector and slope restricted nonlinearities

    International Nuclear Information System (INIS)

    Park, Ju H.; Ji, D.H.; Won, S.C.; Lee, S.M.; Choi, S.J.

    2009-01-01

    This Letter considers H ∞ controller design scheme for Lur'e systems with sector/slope restrictions and external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, a state feedback controller is designed to not only guarantee stability of systems but also reduce the effect of external disturbance to an H ∞ norm constraint. The nonlinearities are expressed as convex combinations of sector and slope bounds so that equality constraints are converted into inequality constraints using convex properties of the nonlinear function. Then, the stabilizing feedback gain matrix is derived through LMI formulation. Finally, a numerical example shows the effectiveness of the proposed method.

  6. Development of a GIS-based failure investigation system for highway soil slopes

    Science.gov (United States)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  7. Geotechnical approach for occupational safety risk analysis of critical slope in open pit mining as implication for earthquake hazard

    Science.gov (United States)

    Munirwansyah; Irsyam, Masyhur; Munirwan, Reza P.; Yunita, Halida; Zulfan Usrina, M.

    2018-05-01

    Occupational safety and health (OSH) is a planned effort to prevent accidents and diseases caused by work. In conducting mining activities often occur work accidents caused by unsafe field conditions. In open mine area, there is often a slump due to unstable slopes, which can disrupt the activities and productivity of mining companies. Based on research on stability of open pit slopes conducted by Febrianti [8], the Meureubo coal mine located in Aceh Barat district, on the slope of mine was indicated unsafe slope conditions, it will be continued research on OSH for landslide which is to understand the stability of the excavation slope and the shape of the slope collapse. Plaxis software was used for this research. After analyzing the slope stability and the effect of landslide on OSH with Job Safety Analysis (JSA) method, to identify the hazard to work safety, risk management analysis will be conducted to classified hazard level and its handling technique. This research aim is to know the level of risk of work accident at the company and its prevention effort. The result of risk analysis research is very high-risk value that is > 350 then the activity must be stopped until the risk can be reduced to reach the risk value limit < 20 which is allowed or accepted.

  8. Cost estimation for slope stability improvement in Muara Enim

    Science.gov (United States)

    Juliantina, Ika; Sutejo, Yulindasari; Adhitya, Bimo Brata; Sari, Nurul Permata; Kurniawan, Reffanda

    2017-11-01

    Case study area of SP. Sugihwaras-Baturaja is typologically specified in the C-zone type because the area is included in the foot of the mountain with a slope of 0 % to 20 %. Generally, the factors that cause landslide in Muara Enim Regency due to the influence of soil/rock, water factor, geological factors, and human activities. Slope improvement on KM.273 + 642-KM.273 + 774 along 132 m using soil nailing with 19 mm diameter tendon iron and an angle of 20o and a 75 mm shotcrete thickness, a K-250 concrete grouting material. Cost modeling (y) soil nailing based on 4 variables are X1 = length, X2 = horizontal distance, X3 = safety factor (SF), and X4 = time. Nine variations were used as multiple linear regression equations and analyzed with SPSS.16.0 program. Based on the SPSS output, then attempt the classical assumption and feasibility test model which produced the model that is Cost = (1,512,062 + 194,354 length-1,649,135 distance + 187,831 SF + 54,864 time) million Rupiah. The budget plan includes preparatory work, drainage system, soil nailing, and shotcrete. An efficient cost estimate of 8 m length nail, 1.5 m installation distance, safety factor (SF) = 1.742 and a 30 day processing time resulted in a fee of Rp. 2,566,313,000.00 (Two billion five hundred sixty six million three hundred thirteen thousand rupiah).

  9. Spatial variability in channel and slope morphology within the Ardennes Massif, and its link with tectonics

    Science.gov (United States)

    Sougnez, N.; Vanacker, V.

    2010-09-01

    Geomorphic processes that produce and transport sediment, and incise river valleys are complex; and often difficult to quantify over longer timescales of 103 to 105 years. Morphometric indices that describe the topography of hill slopes, valleys and river channels have commonly been used to compare morphological characteristics between catchments and to relate them to hydrological and erosion processes. This work focuses on a wide range of slope and river channel morphometric indices to study their behavior and strength in regions affected by low to moderate tectonic activity. We selected 10 catchments of about 150 to 250 km2 across the Ardennes Massif that cover various tectonic domains with uplift rates ranging from about 0.06 to 0.20 mm year-1 since mid-Pleistocene times. The morphometric analysis indicates that the slope and channel morphology of third-order catchments is not yet in topographic steady-state, and exhibits clear convexities in slope and river profiles. Our data indicate that the fluvial system is the main driver of topographic evolution and that the spatial pattern of uplift rates is reflected in the distribution of channel steepness and convexity. The spatial variation that we observe in slope and channel morphology between the 10 third-order catchments suggests that the response of the fluvial system was strongly diachronous, and that a transient signal of adjustment is migrating from the Meuse valley towards the Ardennian headwaters.

  10. Estimation of mountain slope stability depending on ground consistency and slip-slide resistance changes on impact of dynamic forces

    Science.gov (United States)

    Hayroyan, H. S.; Hayroyan, S. H.; Karapetyan, K. A.

    2018-04-01

    In this paper, three types of clayish soils with different consistency and humidity properties and slip-slide resistance indexes are considered on impact of different cyclic shear stresses. The side-surface deformation charts are constructed on the basis of experimental data obtained testing cylindrical soil samples. It is shown that the fluctuation amplitude depends on time and the consistency index depends on the humidity condition in the soil inner contact and the connectivity coefficients. Consequently, each experiment is interpreted. The main result of this research is that it is necessary to make corrections in the currently active schemes of slip-hazardous slopes stability estimation, which is a crucial problem requiring ASAP solution.

  11. Bearing Capacity of Strip Footings near Slopes Using Lower Bound Limit Analysis

    Directory of Open Access Journals (Sweden)

    Javad Mofidi rouchi

    2014-06-01

    Full Text Available Stability of foundations near slopes is one of the important and complicated problems in geotechnical engineering, which has been investigated by various methods such as limit equilibrium, limit analysis, slip-line, finite element and discrete element. The complexity of this problem is resulted from the combination of two probable failures: foundation failure and overall slope failure. The current paper describes a lower bound solution for estimation of bearing capacity of strip footings near slopes. The solution is based on the finite element formulation and linear programming technique, which lead to a collapse load throughout a statically admissible stress field. Three-nodded triangular stress elements are used for meshing the domain of the problem, and stress discontinuities occur at common edges of adjacent elements. The Mohr-Coulomb yield function and an associated flow rule are adopted for the soil behavior. In this paper, the average limit pressure of strip footings, which are adjacent to slopes, is considered as a function of dimensionless parameters affecting the stability of the footing-on-slope system. These parameters, particularly the friction angle of the soil, are investigated separately and relevant charts are presented consequently. The results are compared to some other solutions that are available in the literature in order to verify the suitability of the methodology used in this research.

  12. Spatial distribution level of land erosion disposition based on the analysis of slope on Central Lematang sub basin

    Science.gov (United States)

    Putranto, Dinar Dwi Anugerah; Sarino, Yuono, Agus Lestari

    2017-11-01

    Soil erosion is a natural process that is influenced by the magnitude of rainfall intensity, land cover, slope, soil type and soil processing system. However, it is often accelerated by human activities, such as improper cultivation of agricultural land, clearing of forest land for mining activities, and changes in topographic area due to use for other purposes such as pile materials, mined pits and so on. The Central Lematang sub-basin is part of the Lematang sub basin, at the Musi River Region Unit, South Sumatra Province, in Indonesia, which has a topographic shape with varying types of slope and altitude. The critical condition of Central Lematang sub basin has been at an alarming rate, as more than 47.5% of topographic and land use changes are dominated by coal mining activities and forest encroachment by communities. The method used in predicting erosion is by USPED (Unit Stream Power Erosion and Disposition). This is because the USPED [1] method can predict not only sediment transport but also the value of peeling (detachment) and sediment deposition. From slope analysis result, it is found that the highest erosion potential value is found on slope (8-15%) and the sediment is carried on a steep slope (15-25%). Meanwhile, the high sediment deposition area is found in the waters of 5.226 tons / ha / year, the steeper area of 2.12 tons / ha / year.

  13. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-05-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  14. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-01-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  15. Model simulations of flood and debris flow timing in steep catchments after wildfire

    Science.gov (United States)

    Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J

    2016-01-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  16. Model simulations of flood and debris flow timing in steep catchments after wildfire

    Science.gov (United States)

    Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.

    2016-08-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  17. Slope stability susceptibility evaluation parameter (SSEP) rating scheme - An approach for landslide hazard zonation

    Science.gov (United States)

    Raghuvanshi, Tarun Kumar; Ibrahim, Jemal; Ayalew, Dereje

    2014-11-01

    In this paper a new slope susceptibility evaluation parameter (SSEP) rating scheme is presented which is developed as an expert evaluation approach for landslide hazard zonation. The SSEP rating scheme is developed by considering intrinsic and external triggering parameters that are responsible for slope instability. The intrinsic parameters which are considered are; slope geometry, slope material (rock or soil type), structural discontinuities, landuse and landcover and groundwater. Besides, external triggering parameters such as, seismicity, rainfall and manmade activities are also considered. For SSEP empirical technique numerical ratings are assigned to each of the intrinsic and triggering parameters on the basis of logical judgments acquired from experience of studies of intrinsic and external triggering factors and their relative impact in inducing instability to the slope. Further, the distribution of maximum SSEP ratings is based on their relative order of importance in contributing instability to the slope. Finally, summation of all ratings for intrinsic and triggering parameter based on actual observation will provide the expected degree of landslide in a given land unit. This information may be utilized to develop a landslide hazard zonation map. The SSEP technique was applied in the area around Wurgessa Kebelle of North Wollo Zonal Administration, Amhara National Regional State in northern Ethiopia, some 490 km from Addis Ababa. The results obtained indicates that 8.33% of the area fall under Moderately hazard and 83.33% fall within High hazard whereas 8.34% of the area fall under Very high hazard. Further, in order to validate the LHZ map prepared during the study, active landslide activities and potential instability areas, delineated through inventory mapping was overlain on it. All active landslide activities and potential instability areas fall within very high and high hazard zone. Thus, the satisfactory agreement confirms the rationality of

  18. Stability Evaluation of Volcanic Slope Subjected to Rainfall and Freeze-Thaw Action Based on Field Monitoring

    Directory of Open Access Journals (Sweden)

    Shima Kawamura

    2011-01-01

    Full Text Available Rainfall-induced failures of natural and artificial slopes such as cut slopes, which are subjected to freezing and thawing, have been frequently reported in Hokkaido, Japan. In particular, many failures occur intensively from spring to summer seasons. Despite numerous field studies, explanation of their mechanical behavior based on in situ data has not yet been completely achieved due to the difficulty in grasping failure conditions. This study aims at clarifying the aspects of in-situ volcanic slopes subjected to rainfall and freeze-thaw action. The changes in soil moisture, pore pressure, deformations, and temperatures in the slope were investigated using soil moisture meters, tensiometers, thermocouple sensors, clinometers, settlement gauges, an anemovane, a snow gauge, and a rainfall gauge. The data generated from these measures indicated deformation in the slope examined mainly proceeded during the drainage process according to changes in soil moisture. Based on this data, a prediction method for failures is discussed in detail.

  19. Fracture and slope stability monitoring at Puigcercós landslide (Catalonia, Spain)

    Science.gov (United States)

    Khazaradze, Giorgi; Vasquez, Sebastian; López, Robert; Guinau, Guinau; Calvet, Jaume; Vilaplana, Joan Manuel; Blanch, Xabier; Tapia, Mar; Roig, Pere; Suriñach, Emma

    2017-04-01

    The village of Puigcercós ( 50 inhabitants) is located in the region of Pallars Jussà (Lleida) in Catalonia, several km south of the town of Tremp. In 1881 the entire village had to be moved from its historical location on top of the hill to its current location. This was caused by a series of landslides caused by continuing rainfall. The most important landslide occurred on January 13th 1881, which displaced more than 5 million cubic meters of sediments and rocks and created an impressive rock scar of approximately 25 m height and 150 m width. The area where the sediments were accumulated is extensive, reaching 8 hectares. During the last years, our group has chosen the site of Puigcercós to conduct pilot studies of landslides and rockfalls using multidisciplinary approach, involving Terrestrial Laser Scanner, Total Station, DGPS, seismic monitoring and geophysical techniques. The geophysical surveys of the zone of the sediment accumulation, can help determine the internal structure of the displaced sediments. The work presented here mainly concerns the deformation monitoring at the site using geodetic techniques. In July 2015, a network of 11 new geodetic points has been established and measured with GPS. The location of these points was chosen with the purpose of answering two important questions in the studies of the stability and geomorphological activity of the Puigcercós landslide: 1) As a result of combined analysis of the tape-meter, total station and GPS measurements, we hope to obtain absolute values of deformation in the upper part of the escarpment, controlling the stability of the escarpment front and the associated fractures near the coronation. For this purpose, two geodetic control points have been established at the hilltop, some 5 meters away from the escarpment itself. 2) Determine the slope stability of the depositional area, where we established nine geodetic points. As of today, these points have been measured twice, in 2015 and 2016

  20. Long-term Stabilization of Disturbed Slopes Resulting from Construction Operations

    Science.gov (United States)

    2018-01-01

    Highway construction disturbs soil, which must be stabilized to prevent migration of soil particles into water bodies. Stabilization is enforced by law, regulation, and a permit system. Stabilization is most efficiently attained by reestablishment of...

  1. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    International Nuclear Information System (INIS)

    Aklik, P.

    2012-01-01

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author) [de

  2. An Automatic Approach to the Stabilization Condition in a HIx Distillation Simulation

    International Nuclear Information System (INIS)

    Chang, Ji Woon; Shin, Young Joon; Lee, Ki Young; Kim, Yong Wan; Chang, Jong Hwa; Youn, Cheung

    2010-01-01

    In the Sulfur-Iodine(SI) thermochemical process to produce nuclear hydrogen, an H 2 O-HI-I 2 ternary mixture solution discharged from the Bunsen reaction is primarily concentrated by electro-electrodialysis. The concentrated solution is distillated in the HIx distillation column to generate a high purity HI vapor. The pure HI vapor is obtained at the top of the HIx distillation column and the diluted HIx solution is discharged at the bottom of the column. In order to simulate the steady-state HIx distillation column, a vapor-liquid equilibrium (VLE) model of the H 2 O-HI-I 2 ternary system is required and the subprogram to calculate VLE concentrations has been already introduced by KAERI research group in 2006. The steady state simulation code for the HIx distillation process was also developed in 2007. However, the intrinsic phenomena of the VLE data such as the steep slope of a T-x-y diagram caused the instability of the simulation calculation. In this paper, a computer program to automatically find a stabilization condition in the steady state simulation of the HIx distillation column is introduced. A graphic user interface (GUI) function to monitor an approach to the stabilization condition was added in this program

  3. Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)

    Science.gov (United States)

    Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.

    2018-04-01

    The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.

  4. Numerical investigation of energy transfer for fast gas heating in an atmospheric nanosecond-pulsed DBD under different negative slopes

    International Nuclear Information System (INIS)

    Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min

    2013-01-01

    A validated one-dimensional air plasma kinetics model (13 species and 37 processes) for a nanosecond discharge under atmospheric pressure was developed to reveal the energy transfer mechanism for fast gas heating of a plane-to-plane dielectric barrier discharge (DBD). Calculations for voltage profiles with three different negative slopes were performed. Results have shown that 72% of the total heating energy goes to quench heating, which results in a temperature rise across the gap, the remaining 28% goes to ion collisions, thus heating the cathode sheath in a higher power density. The relationships between ion collision heating, quench heating and reduced electric field are given as two functions, which indicates that 10 13  W m −3 is the peak magnitude of power density produced by ion collisions in the nanosecond-pulsed DBD under atmospheric pressure, and a further increase in E/N does not increase the higher quench heating power. The steepness of the negative slope mainly affects the energy transfer efficiency, and the percentage of two heating sources in the total heating power. A short pulse will couple positive and negative slopes and provide a higher transient total heating power but lower energy transfer efficiency. By uncoupling the positive slope, steady stage and negative slope, the energy transfer efficiency under a certain voltage amplitude (20 kV in this paper) is found to have a maximum value of 68.5%. Two wave crests of temperature rise near the cathode sheath are observed, one is caused by a positive slope and the other by a negative slope. (paper)

  5. Recurring Slope Lineae (RSL) Observations Suggest Widespread Occurrence and Complex Behavior

    Science.gov (United States)

    Stillman, D. E.; Grimm, R. E.; Wagstaff, K.; Bue, B. D.; Michaels, T. I.

    2017-12-01

    RSL are described as narrow dark features that incrementally lengthen down steep slopes during warm seasons, fade in cold seasons, and recur annually. HiRISE observations from 5+ Mars years have allowed us to confirm 100 RSL sites and identify more than 600 candidate RSL sites. Detailed analysis of a few RSL sites has been performed using computer assisted analysis. RSL occur in low-albedo (dust-poor) regions with a latitude range of 42.2°N - 53.1°S. They are densely clustered throughout Valles Marineris (VM), in the light-toned layered deposits of Margaritifer and SW Arabia Terrae, Cerberus Fossae, and well-preserved impact craters in Chryse and Acidalia Planitae (CAP). RSL sites are also found at lower densities throughout the low-albedo highland terrains. RSL incrementally lengthen when their slopes are warm, thus the season at which RSL lengthen is dependent on latitude and slope orientation. While RSL occur on all slope orientation there is a large bias to W-facing and equatorial facing slopes. During the RSL activity season, RSL lengthening does not appear to be constant: (1) CAP RSL initially quickly lengthen and slow their lengthening rate by about an order of magnitude as temperatures increase, (2) many VM RSL sites possess RSL that fade at the same time that neighboring RSL on the same slope incrementally lengthen, and (3) some RSL sites in the southern mid-latitudes show at least two pulses of RSL activity - during the southern fall and summer RSL incrementally lengthen, fade, and then start incrementally lengthening again followed by fading as temperatures cool. The correlation of RSL activity to surface temperature, spectrally-derived hydrated salts, and quick fading all point to a wet formation mechanism. However, water sources remain problematic as water budgets suggest a much greater amount of water than could be trapped from the atmosphere. Additionally, some RSL occur in locations where subsurface discharge via an aquifer would be challenging

  6. Digital peak current mode control with adaptive slope compensation for DC-DC converters

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2017-01-01

    performance and stability of current mode control. The presented method adapt to DC-DC converter operating conditions by estimating the rising and falling inductor current slopes, to apply a current slope compensation value to obtain a constant quality factor. The experimental results verifies the theoretical......This paper presents an adaptive slope compensation method for peak current mode control of digital controlled DC-DC converters, which controls the quality factor of the complex conjugated poles at half the switching frequency. Using quality factor control enables optimization of the dynamic...

  7. The Stability of Metasedimentary Rock in Ranau, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Ismail Abd Rahim

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.23-31The aim of this paper is to determine the stability of slopes and to propose preliminary rock cut slope protection and stabilization measures for Paleocene to Middle Eocene Trusmadi Formation along Marakau-Kigiok in Ranau, Sabah, Malaysia. The rock of Trusmadi Formation is slightly metamorphosed and dominated by interbeds of sandstone with quartz vein (metagreywacke, metamudstone, shale, slate, sheared sandstone, and mudstone. The rock unit can be divided into four geotechnical units namely arenaceous unit, argillaceous unit, interbedded unit, and sheared unit. Twelve slopes were selected for this study. Geological mapping, discontinuity survey, kinematic analysis, and prescriptive measure were used in this study. Results of this study conclude that the potential modes of failures are planar and wedge. Terrace, surface drainage, weep holes, horizontal drain, vegetation cover, wire mesh, slope reprofiling, and retaining structure were proposed protection and stabilization measures for the slopes in the studied area.

  8. Design and stabilization works of the km 767 slope of Bolivia-Brazil gas pipeline; Projeto e obra de estabilizacao do talude do km 767 do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hudson R.; Vasconcellos, Carlos Renato Aragonez de [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The Bolivia-Brazil Natural Gas Pipeline starts at Santa Cruz de La Sierra city, in Bolivia, and goes until Canoas City (RS) in Brazil, with a total extent of 3,150 km. The pipeline crosses in the 2,593 km established in Brazilian soil, the most diverse types of geology and geomorphology. Along the line, the right-of-way (ROW) also crosses a lot of roads, railways, rivers and lakes. During a routine inspection (foot patrol), signs of instability were detected at an embankment slope of a highway of the Santa Catarina state, at the pipeline crossing. An eventual failure of this slope could put the pipeline at risk. The aim of this paper is to present the aspects of the stabilizations phases, since field investigation, design, works, instrumentation, until monitoring. Emphasis is given to the design criteria to pipeline safety. The solution adopted is composite by soil nailing, a changing of slope inclination and superficial drainage system. (author)

  9. Does perceived steepness deter stair climbing when an alternative is available?

    Science.gov (United States)

    Eves, Frank F; Thorpe, Susannah K S; Lewis, Amanda; Taylor-Covill, Guy A H

    2014-06-01

    Perception of hill slant is exaggerated in explicit awareness. Proffitt (Perspectives on Psychological Science 1:110-122, 2006) argued that explicit perception of the slant of a climb allows individuals to plan locomotion in keeping with their available locomotor resources, yet no behavioral evidence supports this contention. Pedestrians in a built environment can often avoid climbing stairs, the man-made equivalent of steep hills, by choosing an adjacent escalator. Stair climbing is avoided more by women, the old, and the overweight than by their comparators. Two studies tested perceived steepness of the stairs as a cue that promotes this avoidance. In the first study, participants estimated the steepness of a staircase in a train station (n = 269). Sex, age, height, and weight were recorded. Women, older individuals, and those who were heavier and shorter reported the staircase as steeper than did their comparison groups. In a follow-up study in a shopping mall, pedestrians were recruited from those who chose the stairs and those who avoided them, with the samples stratified for sex, age, and weight status. Participants (n = 229) estimated the steepness of a life-sized image of the stairs they had just encountered, presented on the wall of a vacant shop in the mall. Pedestrians who avoided stair climbing by choosing the escalator reported the stairs as steeper even when demographic differences were controlled. Perceived steepness may to be a contextual cue that pedestrians use to avoid stair climbing when an alternative is available.

  10. Application of Soil Nailing Technique for Protection and Preservation Historical Buildings

    Science.gov (United States)

    Kulczykowski, Marek; Przewłócki, Jarosław; Konarzewska, Bogusława

    2017-10-01

    Soil nailing is one of the recent in situ techniques used for soil improvement and in stabilizing slopes. The process of soil nailing consists of reinforcing the natural ground with relatively small steel bars or metal rods, grouted in the pre-drilled holes. This method has a wide range of applications for stabilizing deep excavations and steep slopes. Soil nailing has recently become a very common method of slope stabilisation especially where situated beneath or adjacent to historical buildings. Stabilisation by nails drilled into existing masonry structures such as failing retaining walls abutments, provide long term stability without demolition and rebuilding costs. Two cases of soil nailing technology aimed at stabilising slopes beneath old buildings in Poland are presented in this paper. The first concerns application of this technology to repair a retaining wall supporting the base of the dam at the historic hydroelectric power plant in Rutki. The second regards a concept of improving the slope of the Castle Hill in Sandomierz. An analysis of the slope stability for the latter case, using stabilisation technique with the piling system and soil nailing was performed. Some advantages of soil nailing especially for protection of historical buildings, are also underlined. And, the main results of an economic comparison analysis are additionally presented.

  11. Analysis of Dynamic Coupling Characteristics of the Slope Reinforced by Sheet Pile Wall

    Directory of Open Access Journals (Sweden)

    H. L. Qu

    2017-01-01

    Full Text Available Large deformation of slope caused by earthquake can lead to the loss of stability of slope and its retaining structures. At present, there have been some research achievements about the slope reinforcement of stabilizing piles. However, due to the complexity of the structural system, the coupling relationship between soil and pile is still not well understood. Hence it is of great necessity to study its dynamic characteristics further. In view of this, a numerical model was established by FLAC3D in this paper, and the deformation and stress nephogram of sheet pile wall in peak ground motion acceleration (PGA at 0.1 g, 0.2 g, and 0.4 g were obtained. Through the analysis, some conclusions were obtained. Firstly, based on the nephogram of motion characteristics and the positions of the slip surface and the retaining wall, the reinforced slope can be divided into 6 sections approximatively, namely, the sliding body parts of A, B, C, D, and E and the bedrock part F. Secondly, the deformation and stress distributions of slope reinforced by sheet pile wall were carefully studied. Based on the results of deformation calculation from time history analysis, the interaction force between structure and soil can be estimated by the difference of peak horizontal displacements, and the structure-soil coupling law under earthquake can be studied by this approach.

  12. Synergism Analysis of Bedding Slope with Piles and Anchor Cable Support under Sine Wave Vehicle Load

    Directory of Open Access Journals (Sweden)

    Li Dan-Feng

    2016-01-01

    Full Text Available Slope instability under dynamic load is the technical difficulty in the engineering; the evaluation of slope stability under dynamic load and the control of dynamic load is particularly important. In this paper, taking the right side slope of K27+140 m~380 m typical section (K27 slope for short in Chongqing Fuling-Fengdu-Shizhu expresses highway as an example to calculate and analyze. The K27 slope is under sinusoidal vehicle load and supported by anchor cable and antislide pile to resist downslide strength; at the same time, the combined effect of them is studied. Three-dimensional finite element methodology (FEM is used to simulate the bedding slope with piles and anchor cable support; furthermore, the eigenvalue can be obtained. In order to reduce error of the elastic boundary conditions caused by the reflection effect of wavelengths, the combination of Lysmer surface viscous boundary and traditional ground support boundaries is utilized to analyze and calculate the time-histories during bedding slope under dynamic load. The dynamic response of pile anchor support to resist sliding force is obtained. The concept of the pile anchor supporting coordinate interval is put forward. Furthermore, it is verified that the pile anchor supporting coordinate interval can be used to evaluate the stability of the slope under dynamic load and provide a new method for the control of the dynamic load.

  13. Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM

    Science.gov (United States)

    Cai, Fei; Ugai, Keizo

    2003-06-01

    This paper reports the limitation of the conventional Bishop's simplified method to calculate the safety factor of slopes stabilized with anchors, and proposes a new approach to considering the reinforcing effect of anchors on the safety factor. The reinforcing effect of anchors can be explained using an additional shearing resistance on the slip surface. A three-dimensional shear strength reduction finite element method (SSRFEM), where soil-anchor interactions were simulated by three-dimensional zero-thickness elasto-plastic interface elements, was used to calculate the safety factor of slopes stabilized with anchors to verify the reinforcing mechanism of anchors. The results of SSRFEM were compared with those of the conventional and proposed approaches for Bishop's simplified method for various orientations, positions, and spacings of anchors, and shear strengths of soil-grouted body interfaces. For the safety factor, the proposed approach compared better with SSRFEM than the conventional approach. The additional shearing resistance can explain the influence of the orientation, position, and spacing of anchors, and the shear strength of soil-grouted body interfaces on the safety factor of slopes stabilized with anchors.

  14. Slope movements

    International Nuclear Information System (INIS)

    Wagner, P.

    2009-01-01

    On this poster some reasons of slope movements on the territory of the Slovak Republic are presented. Slope movements induced deterioration of land and forests, endangering of towns villages, and communications as well as hydro-engineering structures. Methods of preventing and stabilisation of slope movements are presented.

  15. Coarse root topology of Norway spruce (Picea abies) and its effects on slope stability

    Science.gov (United States)

    Lith, Aniek; Schmaltz, Elmar; Bogaard, Thom; Keesstra, Saskia

    2017-04-01

    The structural distribution of coarse roots and its beneficial effects on soil reinforcement has widely been assessed. However, it is still not fully understood how topological features of coarse roots (e.g. branching patterns) are affected by slope inclination and further influence the ability of young trees to reinforce soil. This study aims to analyse empirically the impact of slope gradient on the topological development of coarse roots and thus to assess its effects on soil reinforcement. We performed root system excavations on two young Picea abies: tree A on a gently inclined plane (β ≈ 12°) where slope failures are not expected; tree B on a slope (β ≈ 35°) with failure potential. The diameter (d) of the segments between distinct root nodes (root ends, branching locations, direction changes and attachments to stem) of coarse roots (d > 2mm) were measured in situ. The spatial coordinates (x,y,z) of the nodes and surface were measured on a plane raster grid, from which segment length (ls), direction and inclination towards the surface (βr) were derived. Roots and segments were classified into laterals (βr classifications (FSC), to obtain quantitative relations between the topological order and number of segments, total and average ls. The maximal root cohesion (cr) of each segment was assessed using material specific tensile forces (Tr), root area ratio (RAR) and βr, assuming that a potential slip surface would cross the root system parallel to the slope. Laterals depicted the majority of roots (57 %) for tree A orientated rather in upslope direction (76.8 %), whereas tree B showed mostly obliques (54 %) orientated rather in downslope direction (55.4 %). Vertical roots were scarcely observable for both trees. DSC showed a high r2 (> 0.84) for the segments and ls. FSC showed high r2 (> 0.95) for the number of segments and the total length. RAR values of tree B are distributed rather upslope (76.8 % of RARtot), compared to 44.5 % of RARtot for tree A

  16. Tracking snowmelt in the subsurface: time-lapse electrical resistivity imaging on an alpine hill slope.

    Science.gov (United States)

    Thayer, D.; Parsekian, A.; Hyde, K.; Beverly, D.; Speckman, H. N.; Ewers, B. E.

    2015-12-01

    In the mountain West region the winter snowpack provides more than 70% of our annual water supply. Modeling and predicting the timing and magnitude of snowmelt-driven water yield is difficult due to the complexities of hydrologic systems that move meltwater from snow to rivers. Particular challenges are understanding the temporal and spatial domain of subsurface hydraulic processes at relevant scales, which range from points to catchments. Subsurface characterization often requires borehole instrumentation, which is expensive and extremely difficult to install in remote, rugged terrain. Advancements in non-invasive geophysical methods allow us to monitor changes in geophysical parameters over time and infer changes in hydraulic processes. In the No-Name experimental catchment in the Medicine Bow National Forest in Wyoming, we are conducting a multi-season, time-lapse electrical resistivity imaging survey on a sub-alpine hill slope. This south-facing, partially forested slope ranges from 5 degrees to 35 degrees in steepness and consists of a soil mantle covering buried glacial talus deposits of unknown depth. A permanent grid of down-slope and cross-slope electrode arrays is monitored up to four times a day. The arrays span the entire vertical distance of the slope, from an exposed bedrock ridge to a seasonal drainage below, and cover treed and non-treed areas. Geophysical measurements are augmented by temperature and moisture time-series instrumented below the surface in a contiguous 3 meter borehole. A time-series of multiple resistivity models each day from May to July shows the changing distribution of subsurface moisture during a seasonal drying sequence punctuated by isolated rain events. Spatial patterns of changing moisture indicate that soil and gravel in the top two meters drain into a saturated layer parallel to the slope which overlies less saturated material. These results suggest that water from snowmelt and rain events tends to move down-slope beneath

  17. Root (Botany)

    Science.gov (United States)

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  18. Effects of slope smoothing in river channel modeling

    Science.gov (United States)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  19. Research of geotechnical properties of slope covers from Jamne and Jaszcze stream valleys in Gorce Mts.

    Directory of Open Access Journals (Sweden)

    Tymoteusz Adam Zydroń

    2018-02-01

    Full Text Available The test results pertaining to geotechnical parameters of slope covers from valleys of two mountainous streams from Gorce Mts. are presented in the paper. The tests were carried out in the context of slope stability estimation of the analyzed watersheds. The field studies included determination of basic physical properties of soil at several sites within the studied area, laboratory tests involved determination of particle size distribution, consistency limits, permeability coefficients and shear strengths, which were carried out at direct shear box and CIU tests in triaxial apparatus. The test results revealed that the tested slope covers can be described as coarse-grained soils with low content of clay fraction, characterized by low plasticity. The values of the internal friction angle of the average bad land were high and ranged from 28 to 38 degrees, whereas cohesion varied from 0 to 7 kPa. Generally, the higher values of angle of internal friction and lower cohesion were obtained from triaxial tests. The values of permeability coefficients determined using the infiltration method allow to characterize tested soils as a semi-permeable medium. The stability calculations using the SINMAP model have shown that a significant part of the analyzed area is prone to mass movements, giving a more conservative assessment of landslide vulnerability than the results of the SOPO report. The probabilistic slope stability calculation results indicate that the likelihood of slope failure increases significantly on the slopes with the inclination exceeding 20 degrees, and the results of the calculations providing a more detailed information of the mass movements susceptibility of the area than were obtained using the SINMAP model.

  20. Constraining the low-mass Slope of the star formation sequence at 0.5 < z < 2.5

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Henry, Alaina; Rigby, Jane R.; Franx, Marijn; Fumagalli, Mattia; Labbé, Ivo; Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Nelson, Erica J.; Skelton, Rosalind E.; Brammer, Gabriel B.

    2014-01-01

    We constrain the slope of the star formation rate (SFR; log Ψ) to stellar mass (log M * ) relation down to log (M * /M ☉ ) = 8.4 (log (M * /M ☉ ) = 9.2) at z = 0.5 (z = 2.5) with a mass-complete sample of 39,106 star-forming galaxies selected from the 3D-HST photometric catalogs, using deep photometry in the CANDELS fields. For the first time, we find that the slope is dependent on stellar mass, such that it is steeper at low masses (log Ψ∝log M * ) than at high masses (log Ψ∝(0.3-0.6)log M * ). These steeper low-mass slopes are found for three different star formation indicators: the combination of the ultraviolet (UV) and infrared (IR), calibrated from a stacking analysis of Spitzer/MIPS 24 μm imaging; β-corrected UV SFRs; and Hα SFRs. The normalization of the sequence evolves differently in distinct mass regimes as well: for galaxies less massive than log (M * /M ☉ ) < 10 the specific SFR (Ψ/M * ) is observed to be roughly self-similar with Ψ/M * ∝(1 + z) 1.9 , whereas more massive galaxies show a stronger evolution with Ψ/M * ∝(1 + z) 2.2-3.5 for log (M * /M ☉ ) = 10.2-11.2. The fact that we find a steep slope of the star formation sequence for the lower mass galaxies will help reconcile theoretical galaxy formation models with the observations.

  1. Soil aggregate stability within the morphologically diverse area

    Science.gov (United States)

    Jaksik, Ondrej; Kodesova, Radka; Kubis, Adam; Klement, Ales; Fer, Miroslav

    2013-04-01

    This study evaluates the effect of soil erosion on properties of topsoil especially on soil aggregate stability. Study was performed on morphologically diverse study site (6 ha area) in loess region of Southern Moravia, Czech Republic. The region has been under uninterrupted agricultural use since the middle of the Holocene. Haplic Chernozem is an original dominant soil unit in the area, nowadays progressively transformed into different soil units along with intensive soil erosion. There are eroded phases of Chernozem, Regosol (the steepest and heavily eroded parts of the study area), colluvial Chernozem and Colluvial soil (base slope). Sampling spots were selected in order to represent diverse soil units and morphological units. Soil samples were taken from the topsoil, carefully transported to the laboratory and consequently air dried. Following soil properties were measured: pH_KCl, pH_CaCl2, soil organic matter content (SOM), carbonate content (CO3), content of iron and manganese (in ammonium oxalate extract, Feo and Mn_o, and dithionite-citrate extract, Fed and Mn_d), and stability of soil aggregates using two different methods. The indexes of water stable aggregates (WSA) were determined using the procedure presented by Nimmo and Perkins (2002). The three methods proposed by Le Bissonnais (1996) were also used to study various destruction mechanisms. The fast wetting test (KV1) was applied to study aggregate slaking due to the compression of the entrapped air (mechanism similar to the WSA test). The slow wetting test (KV2) was used to evaluate aggregate disintegration caused by the micro cracking due to the different swelling, and physico-chemical dispersion due to the osmotic stress. The shaking after prewetting test (KV3) was utilized to study the mechanical aggregate breakdown. Terrain attributes were evaluated from digital terrain model. In general the lowest soil aggregate stability was observed on steep slopes, which were highly impacted by soil erosion

  2. Rock burst prevention at steep seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, G D

    1988-09-01

    At steep shield longwalls one method of preventing rock bursts is to avoid sharp angles during working. Stress in coal and rock body that appears when steep seams are worked where rock bursts occur at corners of set-up entries is discussed. The dynamic interaction between gas and rock pressure is assessed. Maintains that in order to avoid rock bursts at these places it is necessary to turn the protruding coal wall by 20-30 degrees towards the coal body to divert the action of shift forces. At the same time the face should also be inclined (by 10-15 degrees) to move the zones of increased stress away from the corner into the coal and rock body. Stress at workings with round cross-sections is 3-4 times lower than at square cross-sections. Recommendations are given that concern shearer loader operation (semi-spherical shape of the face), borehole drilling and water injection. Initial distance of 10-15 m between boreholes is suggested. 3 refs.

  3. A New Formula for Front Slope Recession of Berm Breakwaters

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Burcharth, Hans F.

    2010-01-01

    The front slope stability of breakwaters with a homogeneous berm was studied in a large number of two dimensional model tests at Aalborg University, Denmark. The results are presented together with a new formula for prediction of the berm recession which is the most important parameter...

  4. Modeling the flow of glaciers in steep terrains

    DEFF Research Database (Denmark)

    Egholm, D.L.; Knudsen, Mads Faurschou; Clark, Chris D.

    2011-01-01

    sliding, and to the interaction with topography through glacial erosion. Standard models capable of simulating mountain range–scale glaciations build on the so-called shallow ice approximation, which, among other parameters, neglects the longitudinal and transverse stress gradients, and therefore fails...... to capture the full effects of the rugged topography and related feedbacks between erosion by glacial sliding and the extent and style of glaciation. Here we present and test a new depth-integrated model framework which, on the one hand, takes into account the “higher-order” effects related to steep......The rugged topography of mountain ranges represents a special challenge to computational ice sheet models simulating past or present glaciations. In mountainous regions, the topography steers glaciers through relatively narrow and steep valleys, and as a consequence hereof, the flow rate of alpine...

  5. Infiltration on mountain slopes: a comparison of three environments.

    Science.gov (United States)

    Carol P. Harden*; P. Delmas Scruggs

    2003-01-01

    Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at...

  6. Challenges of Microgrids in Remote Communities: A STEEP Model Application

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2018-02-01

    Full Text Available There is a growing interest in the application of microgrids around the world because of their potential for achieving a flexible, reliable, efficient and smart electrical grid system and supplying energy to off-grid communities, including their economic benefits. Several research studies have examined the application issues of microgrids. However, a lack of in-depth considerations for the enabling planning conditions has been identified as a major reason why microgrids fail in several off-grid communities. This development requires research efforts that consider better strategies and framework for sustainable microgrids in remote communities. This paper first presents a comprehensive review of microgrid technologies and their applications. It then proposes the STEEP model to examine critically the failure factors based on the social, technical, economic, environmental and policy (STEEP perspectives. The model details the key dimensions and actions necessary for addressing the challenge of microgrid failure in remote communities. The study uses remote communities within Nigeria, West Africa, as case studies and demonstrates the need for the STEEP approach for better understanding of microgrid planning and development. Better insights into microgrid systems are expected to address the drawbacks and improve the situation that can lead to widespread and sustainable applications in off-grid communities around the world in the future. The paper introduces the sustainable planning framework (SPF based on the STEEP model, which can form a general basis for planning microgrids in any remote location.

  7. Soil-atmosphere interaction in unsaturated cut slopes

    Directory of Open Access Journals (Sweden)

    Tsiampousi Aikaterini

    2016-01-01

    Full Text Available Interaction between atmosphere and soil has only recently attracted significant interest. Soil-atmosphere interaction takes place under dynamic climatic conditions, which vary throughout the year and are expected to suffer considerable alterations due to climate change. However, Geotechnical Analysis has traditionally been limited to simplistic approaches, where winter and summer pore water pressure profiles are prescribed. Geotechnical Structures, such as cut slopes, are known to be prone to large irreversible displacements under the combined effect of water uptake by a complex vegetation root system and precipitation. If such processes take place in an unsaturated material the complexity of the problem renders the use of numerical analysis essential. In this paper soil-atmosphere interaction in cut slopes is studied using advanced, fully coupled partially saturated finite element analyses. The effect of rainfall and evapotranspiration is modelled through sophisticated boundary conditions, applying actual meteorological data on a monthly basis. Stages of low and high water demand vegetation are considered for a period of several years, before simulating the effect of vegetation removal. The analysis results are presented with regard to the serviceability and stability of the cut slope.

  8. Slope instability caused by small variations in hydraulic conductivity

    Science.gov (United States)

    Reid, M.E.

    1997-01-01

    Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.

  9. Mixed approach (numerical modeling / equilibrium analysis) for slope stability analysis: development and application to the dams and open pit mining; Une approche mixte (numerique/equilibre limite) pour le calcul de stabilite des ouvrages en terre: developpement et application aux barrages et talus miniers

    Energy Technology Data Exchange (ETDEWEB)

    Kourdey, A.

    2002-09-15

    The determination of the sliding surface of slope (dam, slope natural..) is one of the important and complicated problems in geotechnics. The Analyze of stability by the methods of Limit Equilibrium like the method of slices are the most used methods. They are able to determine a safety factor for a geometrically defined failure surface. These methods well adapted to the homogeneous mediums, have been developed a lot but they do not integrate the basic relations of mechanics (stress-strain). The numerical methods are better adapted to mediums having more complexity (effect of water, seismicity, fracturing,..). But, they are seldom used to determine a sliding surface and a safety factor. Each family offers appreciable advantages in the analysis of slope stability. For that purpose, we have developed a method that combines the advantages of the numerical methods as well as those of Limit Equilibrium allowing obtaining a slip surface determined by the calculated constraints. This slip surface may be imposed or better optimized, thus providing a minimal safety factor. Methods of operation research are used to obtain this surface. They are search methods by level, dynamic research.. or both at the same time. We integrated these developments in an existing computer code based on the method of Finite Differences known as FLAC. The stresses are determined for a linear behavior and for nonlinear. Interfaces and graphic tools are also produced to facilitate the analysis of stability. The validity of this approach was carried out for a standard case of slope, we analyzed and compared the results with the methods of Limit Equilibrium. The parametric study shows that this approach takes account of different parameters, which influences stability. We also kept a particular place for the application on real cases presenting slopes of different nature (dams, mining slops,...). (author)

  10. The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit

    Science.gov (United States)

    Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka

    2014-10-01

    The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case

  11. MERLIN observations of steep-spectrum radio sources at 6 cm

    International Nuclear Information System (INIS)

    Akujor, C.E.; Zhang, F.J.; Fanti, C.

    1991-01-01

    We present high-resolution observations of steep-spectrum radio sources made with MERLIN at 5 GHz. Thirty-one objects, comprising 11 quasars and 20 galaxies, most of them being 'Compact Steep-Spectrum' sources (CSSs), have been mapped with resolutions from 80 to 150 mas. This completes the current series of observations of CSS sources made with MERLIN at 5 GHz. We find that the majority of the quasars have complex structures, while galaxies tend to have double or triple structures, consistent with other recent studies of CSSs. (author)

  12. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)'s predictive skill for hurricane-triggered landslides: A case study in Macon County, North Carolina

    Science.gov (United States)

    Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R.

    2011-01-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the transient dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis) is a USGS landslide prediction model, coded in Fortran, that accounts for the influences of hydrology, topography, and soil physics on slope stability. In this study, we quantitatively evaluate the spatiotemporal predictability of a Matlab version of TRIGRS (MaTRIGRS) in the Blue Ridge Mountains of Macon County, North Carolina where Hurricanes Ivan triggered widespread landslides in the 2004 hurricane season. High resolution digital elevation model (DEM) data (6-m LiDAR), USGS STATSGO soil database, and NOAA/NWS combined radar and gauge precipitation are used as inputs to the model. A local landslide inventory database from North Carolina Geological Survey is used to evaluate the MaTRIGRS' predictive skill for the landslide locations and timing, identifying predictions within a 120-m radius of observed landslides over the 30-h period of Hurricane Ivan's passage in September 2004. Results show that within a radius of 24 m from the landslide location about 67% of the landslide, observations could be successfully predicted but with a high false alarm ratio (90%). If the radius of observation is extended to 120 m, 98% of the landslides are detected with an 18% false alarm ratio. This study shows that MaTRIGRS demonstrates acceptable spatiotemporal predictive skill for landslide occurrences within a 120-m radius in space and a hurricane-event-duration (h) in time, offering the potential to serve as a landslide warning system in areas where accurate rainfall forecasts and detailed field data are available. The validation can be further improved with additional landslide information including the exact time of failure for each

  13. Time shift in slope failure prediction between unimodal and bimodal modeling approaches

    Science.gov (United States)

    Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente

    2016-04-01

    Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function

  14. A Study on the Allowable Safety Factor of Cut-Slopes for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soo; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this study, the issues of allowable safety factor design criteria for cut-slopes in nuclear facilities is derived through case analysis, a proposed construction work slope design criteria that provides relatively detailed conditions can be applied in case of the dry season and some unclear parts of slope design criteria be modified in case of the rainy season. This safety factor can be further subdivided into two; normal and earthquake factors, a factor of 1.5 is applied for normal conditions and a factor of 1.2 is applied for seismic conditions. This safety factor takes into consideration the effect of ground water and rainfall conditions. However, no criteria for the case of cut-slope in nuclear facilities and its response to seismic conditions is clearly defined, this can cause uncertainty in design. Therefore, this paper investigates the allowable safety factor for cut-slopes in nuclear facilities, reviews conditions of both local and international cut-slope models and finally suggests an alternative method of analysis. It is expected that the new design criteria adequately ensures the stability of the cut-slope to reflect clear conditions for both the supervising and design engineers.

  15. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Science.gov (United States)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at contamination by the host galaxy light at short wavelengths so that the scenario with an extreme 2175 Å extinction bump can be excluded. We localise the GRB to be at a projected distance of approximately 4 kpc from the centre of the host galaxy. Based on emission-line diagnostics of the four detected nebular lines, Hα, Hβ, [O II] and [O III], we find the host to be a modestly star forming (SFR = 1.34 ± 0.04 M⊙ yr-1) and relatively metal poor (Z=0.35+0.15-0.11 Z⊙) galaxy with a large dust content, characterised by a measured visual attenuation of AV = 1.74 ± 0.41 mag. We compare the host to other GRB hosts at similar redshifts and find that it is unexceptional in all its physical properties. We model the extinction curve of the host-corrected afterglow and show that the standard dust properties causing the reddening seen in the Local Group are inadequate in describing the steep drop. We thus conclude that the steep extinction curve seen in the afterglow towards the GRB is of exotic origin and issightline-dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under programme IDs 095.D-0043(A, C) and 095.A-0045(A) with the X-shooter spectrograph and the FOcal Reducer and low dispersion Spectrograph 2 (FORS2

  16. Instream wood in a steep headwater channel: geomorphic significance of large and small wood

    Science.gov (United States)

    Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek

    2016-04-01

    Besides the well-known significance of large wood (LW), also small woody pieces (SW; here defined as pieces with dimensions at least 0.5 m length and 0.05 m diameter), can play an important role in steep narrow headwaters. We inventoried instream wood in the 0.4 km long Mazák headwater channel, Moravskoslezské Beskydy Mts, Czech Republic (2pieces were European beeches (Fagus sylvatica L.); only two pieces were Norway spruces (Picea abies (L.) Karst.). First results showed an increase in the number of LWs in channel-reaches confined by the steepest adjacent hillslopes (especially at 0.15-0.20 km). Increasing downstream amount of SW most likely reflected transport processes in the stream, and the later deposition of SWs on the lowest channel gradients. Also LWs and SWs in the downstream channel-reaches were more decayed than wood presented in the upper reaches. The orientation of instream wood was connected with its length and stability, and LWs longer than 5 m were usually attached to adjacent hillslopes. Pieces longer than 2 m, which were unattached or were somehow stabilized in the channel bed, had often orientation of 0° or 337°. LWs were mostly unattached in the upstream channel-reaches, while often stabilized by adjacent hillslopes in the middle part. At 0.05-0.10 km, there were also many logs stabilized by bed sediments. By contrast, SWs were mostly unattached in the whole longitudinal profile. We observed higher % of influenced channel width by SWs than LWs. Also, SWs were usually entirely located in the channel, which was significantly different when compared to LWs. Nine small steps (step height ~0.5 m) were created by instream wood; six of them were formed by SWs. Dendrogeomorphic cross dating supported the observed decay status for LW/SW within the longitudinal profile: at the lowest channel gradients with wider higher active channels, the potential for storage of instream wood increased. In these downstream reaches we observed older LW and SW, with

  17. Model slope infiltration experiments for shallow landslides early warning

    Science.gov (United States)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  18. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    Science.gov (United States)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  19. Soil bioengineering methods for abandoned mine land surface drainage channels

    Energy Technology Data Exchange (ETDEWEB)

    Sotir, R.B.; Simms, A.P.; Sweigard, R.J.; Hammer, P.; Graves, D.H.; Adkins, M. [Robbin B. Sotir & Associates, Marietta, GA (USA)

    1999-07-01

    Research to determine the suitability of soil bioengineering for slope stabilization at abandoned surface mining sites is described. The technology uses live woody plant material as a structural component, in this case live fascine with coir erosion control fabric made from coconut. A large water collection pond draining to nine channels on the slope below was constructed as a test site. The pond has drainage channels for testing at low, intermediate, and steep slope grades. Each group of three channels is composed of one riprap rock channel, one gabion channel, and one soil bioengineering channel. The channels will be tested summer 1999. 11 refs., 5 figs., 2 tabs., 8 photos.

  20. Dynamic Excitation of Monopiles by Steep and Breaking Waves: Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Slabiak, Peter; Sahlberg-Nielsen, Lasse

    2013-01-01

    . Emphasis is given to the observed impulsive excitation of the natural modes by steep and breaking waves. Additionally, springing and ringing-type continuous forcing of the first natural mode is seen for the moderately steep waves. The experiments were carried out at three depths and with two wave climates...

  1. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    Science.gov (United States)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides

  2. Pipeline modeling and assessment in unstable slopes

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Carlos Nieves [Oleoducto Central S.A., Bogota, Cundinamarca (Colombia); Ordonez, Mauricio Pereira [SOLSIN S.A.S, Bogota, Cundinamarca (Colombia)

    2010-07-01

    The OCENSA pipeline system is vulnerable to geotechnical problems such as faults, landslides or creeping slopes, which are well-known in the Andes Mountains and tropical countries like Colombia. This paper proposes a methodology to evaluate the pipe behaviour during the soil displacements of slow landslides. Three different cases of analysis are examined, according to site characteristics. The process starts with a simplified analytical model and develops into 3D finite element numerical simulations applied to the on-site geometry of soil and pipe. Case 1 should be used when the unstable site is subject to landslides impacting significant lengths of pipeline, pipeline is straight, and landslide is simple from the geotechnical perspective. Case 2 should be used when pipeline is straight and landslide is complex (creeping slopes and non-conventional stabilization solutions). Case 3 should be used if the pipeline presents vertical or horizontal bends.

  3. PIV measurements of velocities and accelerations under breaking waves on a slope

    DEFF Research Database (Denmark)

    Vested, Malene Hovgaard; Carstensen, Stefan; Christensen, Erik Damgaard

    2017-01-01

    waves. In this study, we have investigated the wave kinematics under steep and breaking waves on a laboratory beach with a slope of 1/25. The velocity field was measured by use of Particle Image Velocimetry (PIV) at a sample rate of 96Hz. The high sample rate allowed for the accelerations...... to be determined directly from the sampled velocities. It was found that both velocities and accelerations differ from the ones predicted from common wave theories such as streamfunction theory. This was especially evident at the top part of the wave close to the surface. This was not surprising, since...... the breaking event is a highly non-linear process. The results presented here may facilitate computations of the impact force on offshore structures and furthermore be used for validation of CFD models while altogether shedding light on the mechanisms behind breaking waves....

  4. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    -ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...... was found to steadily decrease with decreasing center frequency. Although the observed decrease in filter bandwidth with decreasing center frequency was only approximately monotonic, the preliminary data indicates the filter bandwidth does not stabilize around 100 Hz, e.g. it still decreases below...

  5. Tsunami-hazard assessment based on subaquatic slope-failure susceptibility and tsunami-inundation modeling

    Science.gov (United States)

    Anselmetti, Flavio; Hilbe, Michael; Strupler, Michael; Baumgartner, Christoph; Bolz, Markus; Braschler, Urs; Eberli, Josef; Liniger, Markus; Scheiwiller, Peter; Strasser, Michael

    2015-04-01

    Due to their smaller dimensions and confined bathymetry, lakes act as model oceans that may be used as analogues for the much larger oceans and their margins. Numerous studies in the perialpine lakes of Central Europe have shown that their shores were repeatedly struck by several-meters-high tsunami waves, which were caused by subaquatic slides usually triggered by earthquake shaking. A profound knowledge of these hazards, their intensities and recurrence rates is needed in order to perform thorough tsunami-hazard assessment for the usually densely populated lake shores. In this context, we present results of a study combining i) basinwide slope-stability analysis of subaquatic sediment-charged slopes with ii) identification of scenarios for subaquatic slides triggered by seismic shaking, iii) forward modeling of resulting tsunami waves and iv) mapping of intensity of onshore inundation in populated areas. Sedimentological, stratigraphical and geotechnical knowledge of the potentially unstable sediment drape on the slopes is required for slope-stability assessment. Together with critical ground accelerations calculated from already failed slopes and paleoseismic recurrence rates, scenarios for subaquatic sediment slides are established. Following a previously used approach, the slides are modeled as a Bingham plastic on a 2D grid. The effect on the water column and wave propagation are simulated using the shallow-water equations (GeoClaw code), which also provide data for tsunami inundation, including flow depth, flow velocity and momentum as key variables. Combining these parameters leads to so called «intensity maps» for flooding that provide a link to the established hazard mapping framework, which so far does not include these phenomena. The current versions of these maps consider a 'worst case' deterministic earthquake scenario, however, similar maps can be calculated using probabilistic earthquake recurrence rates, which are expressed in variable amounts of

  6. Prolonged lateral steep position impairs respiratory mechanics during continuous lateral rotation therapy in respiratory failure.

    Science.gov (United States)

    Schellongowski, Peter; Losert, Heidrun; Locker, Gottfried J; Laczika, Klaus; Frass, Michael; Holzinger, Ulrike; Bojic, Andja; Staudinger, Thomas

    2007-04-01

    To establish whether prolonged lateral steep position during continuous rotation therapy leads to improvement on pulmonary gas exchange, respiratory mechanics and hemodynamics. Prospective observational study. Intensive care unit of a university hospital. Twelve consecutive patients suffering from acute lung injury or adult respiratory distress syndrome undergoing continuous rotation therapy. Blood gas analysis, static lung compliance, blood pressure, cardiac index and pulmonary shunt fraction were measured in supine as well as in left and right lateral steep position at 62 degrees during continuous rotation therapy (phase I). Rotation was then stopped for 30 min with the patients in supine position, left and right lateral steep position, and the same measurements were performed every 10 min (phase II). Phase I and II revealed no significant changes in PaO(2)/FiO(2) ratio, mean arterial blood pressure, pulmonary shunt fraction, or cardiac index. Significantly lower static compliance was observed in lateral steep position than in supine position (pposition than in left and right lateral steep position (ppositioning impairs the compliance of the respiratory system. Prolonged lateral steep position does not lead to benefits with respect to oxygenation or hemodynamics. Individual response to the different positions is unpredictable. The pauses in "extreme" positions should be as short as possible.

  7. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    Science.gov (United States)

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.

  8. Cap stabilization for reclaimed uranium sites

    International Nuclear Information System (INIS)

    Abt, S.R.; Nelson, J.D.; Johnson, T.L.; Hawkins, E.F.

    1989-01-01

    The reclamation and stabilization of uranium-mill tailings sites requires engineering designs to protect against the disruption of tailings and the potential release of radioactive materials. The reclamation design is to be effective for 200-1000 years. This paper presents recently developed or refined techniques and methodologies used to evaluate uranium-tailings-reclamation plans designed to provide long-term stability against failure modes. Specific cap-design aspects presented include design flood selection, influence of fluvial geomorphology on site stabilization, stable slope prediction, slope stabilization using riprap, and riprap selection relative to rock quality and durability. Design relationships are presented for estimating flow through riprap, sizing riprap, and estimating riprap flow resistance for overtopping conditions. Guidelines for riprap-layer thickness and gradation are presented. A riprap-rating procedure for estimating rock quality and durability is also presented

  9. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja-Kong; Do, Nam-Young [Korea Advanced Institute of Science & Technology, Taejon (Korea, Republic of)

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  10. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture.

    Science.gov (United States)

    Dejour, David; Saffarini, Mo; Demey, Guillaume; Baverel, Laurent

    2015-10-01

    Revision ACL reconstruction requires careful analysis of failure causes particularly in cases of two previous graft ruptures. Intrinsic factors as excessive tibial slope or narrow femoral notch increase failure risks but are rarely addressed in revision surgery. The authors report outcomes, at minimum follow-up of 2 years, for second revision ACL reconstructions combined with tibial deflexion osteotomy for correction of excessive slope (>12°). Nine patients that underwent second revision ACL reconstruction combined with tibial deflexion osteotomy were retrospectively studied. The mean age was 30.3 ± 4.4 years (median 28; range 26-37), and mean follow-up was 4.0 ± 2.0 years (median 3.6; range 2.0-7.6). Autografts were harvested from the quadriceps tendon (n = 8) or hamstrings (n = 1), and tibial osteotomy was done by anterior closing wedge, without detachment of the patellar tendon, to obtain a slope of 3° to 5°. All patients had fused osteotomies, stable knees, and there were no intraoperative or postoperative complications. The mean posterior tibial slope decreased from 13.2° ± 2.6° (median 13°; range 12°-18°) preoperatively to 4.4° ± 2.3° (median 4°; range 2°-8°) postoperatively. The mean Lysholm score was 73.8 ± 5.8 (median 74; range 65-82), and the IKDC-SKF was 71.6 ± 6.1 (median 72.8; range 62.2-78.5). The satisfactory results of second revision ACL reconstruction combined with tibial deflexion osteotomy at minimum follow-up of 2 years suggest that tibia slope correction protects reconstructed ACL from fatigue failure in this study. The authors stress the importance of careful analysis failure causes prior to revision ACL reconstruction, and recommend correction of tibial slope if it exceeds 12°, to reduce the risks of graft retear. III.

  11. Combined effect of upstream surge chamber and sloping ceiling tailrace tunnel on dynamic performance of turbine regulating system of hydroelectric power plant

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong

    2017-01-01

    Highlights: • Nonlinear mathematical model and Hopf bifurcation analysis of turbine regulating system are presented. • Dynamic performance of turbine regulating system under 0.5 times Thoma sectional area is analyzed and a novel dynamic performance is revealed. • Relationship between two bifurcation lines and wave superposition is studied. • Combined effect mechanisms of upstream surge chamber and sloping ceiling tailrace tunnel on stability are revealed and optimization methods are proposed. - Abstract: Based on the nonlinear mathematical model of the turbine regulating system of hydroelectric power plant with upstream surge chamber and sloping ceiling tailrace tunnel and the Hopf bifurcation theory, this paper firstly studies the dynamic performance of the turbine regulating system under 0.5 times Thoma sectional area of surge chamber, and reveals a novel dynamic performance. Then, the relationship between the two bifurcation lines and the wave superposition of upstream surge chamber and sloping ceiling tailrace tunnel is analyzed. Finally, the effect mechanisms of the wave superposition on the system stability are investigated, and the methods to improve the system stability are proposed. The results indicate that: Under the combined effect of upstream surge chamber and sloping ceiling tailrace tunnel, the dynamic performance of the turbine regulating system of hydroelectric power plant shows an obvious difference on the two sides of the critical sectional area of surge chamber. There are two bifurcation lines for the condition of 0.5 times Thoma sectional area, i.e. Bifurcation line 1 and Bifurcation line 2, which represent the stability characteristics of the flow oscillation of “penstock-sloping ceiling tailrace tunnel” and the water-level fluctuation in upstream surge chamber, respectively. The stable domain of the system is determined by Bifurcation line 2. The effect of upstream surge chamber mainly depends on its sectional area, while the

  12. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Science.gov (United States)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  13. Atomic physics effects on dissipative toroidal drift wave stability

    International Nuclear Information System (INIS)

    Beer, M.A.; Hahm, T.S.

    1992-02-01

    The effects of atomic physics processes such as ionization, charge exchange, and radiation on the linear stability of dissipative drift waves are investigated in toroidal geometry both numerically and analytically. For typical TFTR and TEXT edge parameters, overall linear stability is determined by the competition between the destabilizing influence of ionization and the stabilizing effect due to the electron temperature gradient. An analytical expression for the linear marginal stability condition, η e crit , is derived. The instability is most likely to occur at the extreme edge of tokamaks with a significant ionization source and a steep electron density gradient

  14. Extreme Wave Runup over the Steep Rocky Cliffs of Banneg Island, France

    Science.gov (United States)

    Ardhuin, F.; Dodet, G.; Leckler, F.; Suanez, S.; Filipot, J. F.

    2016-12-01

    Ocean waves are constantly shaping coastal morphology. When storm waves are combined with high water levels, the wave runup can reach unexpected elevations and become a threat for coastal populations, through dike overtopping, dune breaching or accelerated coastline erosion. Therefore, the wave runup has been largely investigated over the last decades for its key importance in coastal engineering and risk management. Although the strongly nonlinear nature of swash flows prevented theoreticians and modellers from accurately predicting its kinematics, numerous laboratory and field studies provided a means for establishing wave runup empirical formula, which are now commonly used in engineering practice. However, most of the field studies only concerned gently sloping sand beaches, and run-up formula have barely been validated against field observations in steep rocky environments, where data are still very sparse. This study presents water elevation data acquired with pressure sensors solidly fixed to the bedrock of Banneg Island, France, during winter 2013/14. Offshore wave parameters and water levels were also measured during this winter and recorded storm events with Hm0 up to 9 m in spring tide conditions, which caused flooding and boulder transports across the island. A methodology to infer R2% from the local pressure measurements was implemented. The 4-month time-series of run-up measurements at the top and at the bottom of subvertical cliff profiles (with slopes ranging from 20% to 30%) were compared with offshore wave parameters and revealed a strong dependence of R2% to the Hunt parameter (ξ.Hm0). Several period parameters based on the spectral moments were also tested to compute ξ and the best correlations were obtained with T(m0,-1). Finally, the exceptional run-up values (up to 8 m) measured at the cliff top during the major storms allowed to test the validity of existing run-up formula for a range of conditions that exceeds any other observations, to

  15. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    Science.gov (United States)

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  16. Modern Instrumentation of a Historical Landslide to Understand Dynamic Processes Governing Slope Movement in a Hostile Environment.

    Science.gov (United States)

    Johnson, K. A.

    2017-12-01

    The Milepost 6.2 Landslide on Many Glacier Road in Glacier National Park, Montana, has been moving since construction of the roadway in the early 1900's. Movement of the slide has a direct impact on Park operations and requires regrading and reconstruction of the road on a nearly annual basis. Prior attempts to stabilize the slope were not effective. Despite the history of this slide, very little quality data was available to delineate the depth and shape of the slide or the groundwater pressures that influence slope stability due to only seasonal data collection and a hostile winter environment. Landslide dynamics are further complicated where the toe of the slide becomes submerged seasonally by Lake Sherburne. In addition, due to irrigation use the lake levels fluctuate rapidly with seasonal rise and drops commonly greater than 30 feet in elevation. Five Shape Accelerometer Array inclinometers (SAAs) were installed to depths between 60 and 200 feet, along with 10 vibrating wire piezometers, one tipping bucket rain gauge, and onsite data acquisition system with a real-time satellite communication link enabling year-round data collection. Measurements of groundwater pressures and slide dynamics were used to develop a well constrained 2-D dynamic model of slide movement. Movement is controlled by clayey zones in glacial till deposits that mantle the valley slopes, along with water pressures from groundwater in the slope and fluctuating lake levels at the toe of the slope. The SAAs document slide plane locations and rates of slide movement as it changes through the year in response to the dynamic hydrologic setting. SAAs document sliding of over 3 feet and continue to operate and generate additional data. The data collected enabled the design of an extensive horizontal drain system to lower the groundwater pressures and stabilize the slope. Continuous year-round monitoring allowed comparison of slope movement in response to changes in lake elevation and precipitation

  17. Instability risk assessment of construction waste pile slope based on fuzzy entropy

    Science.gov (United States)

    Ma, Yong; Xing, Huige; Yang, Mao; Nie, Tingting

    2018-05-01

    Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.

  18. Stability and instability on Maya Lowlands tropical hillslope soils

    Science.gov (United States)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Cook, Duncan; Krause, Samantha; Doyle, Colin; Eshleman, Sara; Wells, Greta; Dunning, Nicholas; Brennan, Michael L.; Brokaw, Nicholas; Cortes-Rincon, Marisol; Hammond, Gail; Terry, Richard; Trein, Debora; Ward, Sheila

    2018-03-01

    Substantial lake core and other evidence shows accelerated soil erosion occurred in the Maya Lowlands of Central America over ancient Maya history from 3000 to 1000 years ago. But we have little evidence of the wider network of the sources and sinks of that eroded sediment cascade. This study begins to solve the mystery of missing soil with new research and a synthesis of existing studies of tropical forest soils along slopes in NW Belize. The research aim is to understand soil formation, long-term human impacts on slopes, and slope stability over time, and explore ecological implications. We studied soils on seven slopes in tropical forest areas that have experienced intensive ancient human impacts and those with little ancient impacts. All of our soil catenas, except for one deforested from old growth two years before, contain evidence for about 1000 years of stable, tropical forest cover since Maya abandonment. We characterized the physical, chemical, and taxonomic characteristics of soils at crest-shoulder, backslopes, footslopes, and depression locations, analyzing typical soil parameters, chemical elements, and carbon isotopes (δ13C) in dated and undated sequences. Four footslopes or depressions in areas of high ancient occupation preserved evidence of buried, clay-textured soils covered by coarser sediment dating from the Maya Classic period. Three footslopes from areas with scant evidence of ancient occupation had little discernable deposition. These findings add to a growing corpus of soil toposequences with similar facies changes in footslopes and depressions that date to the Maya period. Using major elemental concentrations across a range of catenas, we derived a measure (Ca + Mg) / (Al + Fe + Mn) of the relative contributions of autochthonous and allochthonous materials and the relative age of soil catenas. We found very low ratios in clearly older, buried soils in footslopes and depressions and on slopes that had not undergone ancient Maya erosion. We

  19. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    Science.gov (United States)

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  20. Characterization of past landslides and slope susceptibility analysis for Lima and Callao provinces, Peru

    Science.gov (United States)

    Tatard, Lucile; Villacorta, Sandra; Metzger, Pascale

    2013-04-01

    85% of people exposed to earthquakes, hurricanes, floods and drought live in developing countries (IPU, 2010). This population is also exposed to the landslide risk as this phenomenon is mainly triggered by earthquakes and rainfall. There is an urgent need to propose methods to evaluate and mitigate the landslide risk for developing countries, where few studies were undergone and data, and information on data, are scarce. In this study, we characterize a landslide inventory set up for the megalopolis of Lima, Peru, by the local geological bureau (INGEMMET). This inventory was set up using satellite images and includes landslides of all ages. It is composed of two landslide types: rockfalls and debris flows (huaycos) that we investigate together and separately. First, we describe qualitatively the landslide occurrences in terms of geology, slope steepness, altitude, etc. We notably find that debris flows occur at altitudes larger than the ones of the rockfalls, probably due to the climatic conditions. Then we find that the rockfalls and debris flows area distributions follow a power law when investigated separately whereas it does not follow a power law when investigated together. This highlights a logical difference of mechanics between the two landslide types. Then, using the dimension of correlation D (Grassberger and Procaccia, 1983) we show that the event spatial occurrences are not uniformly distributed but clustered. It supports the existence of controlling parameters on the spatial occurrence of landslides and the research to identify them. Last, we investigate the relationships between different landslide parameters (geology, altitude, slope steepness, ...) using the linear correlation coefficient r, and we find that all these parameters are independent to each other. This allows us to investigate each parameter separately in terms of landslide susceptibility and to define values for which the landslide susceptibility is low, medium or high for each