WorldWideScience

Sample records for steel-ehp699

  1. Ageing temperature effect on inclination of martensite high strength steels EhP699, EhP678, EhP679 to corrosion cracking

    International Nuclear Information System (INIS)

    Rozenfel'd, I.L.; Spiridonov, V.B.; Konradi, M.V.; Krasnorutskaya, I.B.; Fridman, V.S.

    1979-01-01

    Stated are the data permitting to judge of the role of ageing temperature in the total number of factors, determining the inclination to corrosion cracking of high strength maraging steels, which contain chromium as a main alloying element. The inclination of the EhP699, EhP678, EhP679 steels to corrosion cracking was estimated on smooth stressed specimens in 3 % NaCl solution with the use of electrochemical polarization. The tensile stress resulted from deflection; anode and cathode current density was 10 mA/cm 2 . It is shown, that resistance to corrosion cracking depends on the ageing temperature: maximum sensitivity to corrosion cracking the steels manifest at the ageing temperatures, providing for maximum strength (470-500 deg). At the ageing temperatures by 20-30 deg over the temperature of this maximum the sensitivity to corrosion cracking disappears, which may result from the loss of coherence of strengthening phase in a matrix, from particle coagulation and stress relaxation in the crack peak

  2. Neutron metrology in the HFR. Steel irradiation R139-699 (SINAS)

    International Nuclear Information System (INIS)

    Baard, J.H.; Paardekooper, A.

    1996-06-01

    The aim of the irradiation of experiment R139-699 was the testing of austenitic stainless steel type AISI-316 TIG. This report presents the final metrology results obtained from activation monitors in the specimen holder, coded as R139-699. Data about the helium production as well as the number of displacements per atom are also included. The irradiation circumstances for this experiment, carried out in a TRIO type capsule in HFR position F2, are as close as possible relevant for the candidate materials which will be used for the first wall of the NET (Next European Torus). The main results of the thermal and fast neutron fluence measurements are presented in tables 2 and 3 as well as in the figure 2. (orig.)

  3. Heat treatment effect on the properties of the EhP767 maraging steel welded joints

    International Nuclear Information System (INIS)

    Taver, E.I.; Piskarev, M.N.; Yushchenko, K.A.; Pustovit, A.I.; Anisimova, M.S.

    1977-01-01

    Heat treatment effect on properties of welded joints of maraging 03Kh13N4K13M3T (EhP767) steel with yield strength over 150 kgs/mm 2 has been investigated. It is shown, that change in impact strength of aged joints at - 196 deg C depends on the amount of residual austenite and grain size. To stabilize 20-40 % residual austenite heat treatment regimes have been developed. Recommended are quenching at 1030-1050 deg C, sub-zero treatment and aging at 520 deg C for 16 hrs

  4. Ductile fracture of two-phase welds under 77K. [Steel-EhP810, steel-EhP666, steel-08Kh18N10T, steel-EhP659-VI, steel-chP810

    Energy Technology Data Exchange (ETDEWEB)

    Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel' , A.V.

    The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters sigmasub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulating the part of the basic metal in joint content.

  5. Borehole completion data package for SWL facility wells 699-22-35 and 699-23-34B

    International Nuclear Information System (INIS)

    Hodges, F.N.

    1997-09-01

    Two groundwater monitoring wells were drilled at the Hanford Solid Waste Landfill in 1993 and 1994 in support of the WAC 173-304 groundwater monitoring program at that size. The wells, 699-22-35 and 699-23-34B, were constructed in accordance with the requirements of WAC 173-160. However, a waver was received from the Washington State Department of Ecology to complete the wells with 10.7-m (35-ft) screens to allow for the expected drop in the water table in the vicinity of the landfill. The wells, drilled with an ODEX air rotary drilling rig, were completed at depths of 54.8 m (180 ft) and 49.8 m (163.5 ft), respectively, and were completed with 4-in. stainless steel casing and continuous-wrap wire screen with a sand pack of 20-40 mesh silica sand. The wells were developed and equipped with Hydrostar sampling pumps. Sampling with the SEAMIST membrane system during drilling indicated significant quantities of carbon tetrachloride vapor to depths of at least 35.6 m (120 ft) within the vadose zone

  6. Investigation of the hydrolytic and radiolytic degradation of HEH[EHP

    International Nuclear Information System (INIS)

    Peterman, Dean Richard; McDowell, Rocklan George; Zarzana, Christopher Andrew; Johnson, Kristyn Marie; Rowe, Salene Marie; Groenewold, Gary Steven

    2016-01-01

    The extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) is a component used in both the Advanced TALSPEAK and ALSEP solvent extraction processes. The most likely compound formed via hydrolytic or radiolytic degradation of HEH[EHP] would be the phosphonic acid 2-ethylhexylphosphonic acid (H2EHP) that is formed by cleavage of the P-O-R bond. Thus far, attempts to detect H2EHP by gas chromatography or mass spectrometry have not been successful. The inability to detect this proposed degradation product in analytical samples is likely due to inadequate analysis techniques, lack of H2EHP production, further decomposition of H2EHP forming products not detectable by the employed analytical techniques, or a combination of all of the above scenarios. In order to address this problem, commercially available alkylphosphonic acids were acquired and used as surrogates for H2EHP in the gas chromatography and mass spectrometry analysis of samples. Once the ability to detect alkylphosphonic acid compounds was confirmed, these analytical techniques were used to confirm the production of H2EHP in samples of HEH[EHP] exposed to nitric acid and nitric acid plus gamma radiation. This report provides a brief summary of results and serves as documentation of the completion the level four milestone M4FT-16IN030102025 “Investigate the hydrolytic and radiolytic degradation of HEH[EHP]”.

  7. Data_files_Reyes_EHP_phthalates

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file contains three files in comma separated values (.csv) format. “Reyes_EHP_Phthalates_US_metabolites.csv” contains information about the National Health and...

  8. 47 CFR 73.699 - TV engineering charts.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false TV engineering charts. 73.699 Section 73.699 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Television Broadcast Stations § 73.699 TV engineering charts. This section consists of the following Figures...

  9. 20 CFR 410.699a - Penalties for fraud.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Penalties for fraud. 410.699a Section 410.699a Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969... Review, Finality of Decisions, and Representation of Parties § 410.699a Penalties for fraud. The penalty...

  10. Visual loop-mediated isothermal amplification (LAMP) for the rapid diagnosis of Enterocytozoon hepatopenaei (EHP) infection.

    Science.gov (United States)

    T, Sathish Kumar; A, Navaneeth Krishnan; J, Joseph Sahaya Rajan; M, Makesh; K P, Jithendran; S V, Alavandi; K K, Vijayan

    2018-05-01

    The emerging microsporidian parasite Enterocytozoon hepatopenaei (EHP), the causative agent of hepatopancreatic microsporidiosis, has been widely reported in shrimp-farming countries. EHP infection can be detected by light microscopy observation of spores (1.7 × 1 μm) in stained hepatopancreas (HP) tissue smears, HP tissue sections, and fecal samples. EHP can also be detected by polymerase chain reaction (PCR) targeting the small subunit (SSU) ribosomal RNA (rRNA) gene or the spore wall protein gene (SWP). In this study, a rapid, sensitive, specific, and closed tube visual loop-mediated isothermal amplification (LAMP) protocol combined with FTA cards was developed for the diagnosis of EHP. LAMP primers were designed based on the SSU rRNA gene of EHP. The target sequence of EHP was amplified at constant temperature of 65 °C for 45 min and amplified LAMP products were visually detected in a closed tube system by using SYBR™ green I dye. Detection limit of this LAMP protocol was ten copies. Field and clinical applicability of this assay was evaluated using 162 field samples including 106 HP tissue samples and 56 fecal samples collected from shrimp farms. Out of 162 samples, EHP could be detected in 62 samples (47 HP samples and 15 fecal samples). When compared with SWP-PCR as the gold standard, this EHP LAMP assay had 95.31% sensitivity, 98.98% specificity, and a kappa value of 0.948. This simple, closed tube, clinically evaluated visual LAMP assay has great potential for diagnosing EHP at the farm level, particularly under low-resource circumstances.

  11. Ductility and resistance to deformation of EhP975 alloy during hot plastic working

    International Nuclear Information System (INIS)

    Baturin, A.I.; Martynov, A.I.

    1982-01-01

    Results of investigations into ductility and resistance to deformation of the EhP975 most heat-resistant difficult-to-form alloy of commercial melting in 1000-1200 deg C temperature range and at deformation rates epsilon = 0.1 - 25 s - 1 are presented. It is shown that ductility of EhP975 alloy grows rather slowly with increase of temperature approximately up to 1075 deg C, then sharp growth of ductility up to the maximum at 1120-1125 deg C is observed; ductility decreases above this temperature zone. It was also established that ductility of EhP975 alloy grows with increase of preliminary deformation degree. It is marked that high temperature annealing increases ductility of EhP975 alloy in comparison with (cast state), especially noticeably at high deformation rates

  12. Effect of HEH[EHP] impurities on the ALSEP solvent extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Holfeltz, Vanessa E. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA; Campbell, Emily L. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; Peterman, Dean R. [Aqueous Separations and Radiochemistry Department, Idaho National Laboratory, Idaho Falls, ID, USA; Standaert, Robert F. [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Biochemistry & amp, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA; Biology & amp, Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Shull Wollan Center — a Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Paulenova, Alena [School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA; Lumetta, Gregg J. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA; Levitskaia, Tatiana G. [Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA

    2017-12-20

    In solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. This affects the process-level viability of a separation concept and necessitates knowledge of the behavior and mechanisms to control impurities in the solvent. The most widespread way through which impurities are introduced into a system is through impure extractants and/or diluents used to prepare the solvent, and often development of new purification schemes to achieve the desired level of purity is needed. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalent minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagents are reviewed, and a new method specific to HEH[EHP] purification is presented.

  13. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    International Nuclear Information System (INIS)

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-01-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate

  14. 27 CFR 6.99 - Stocking, rotation, and pricing service.

    Science.gov (United States)

    2010-04-01

    ... pricing service. 6.99 Section 6.99 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... pricing service. (a) General. Industry members may, at a retail establishment, stock, rotate and affix the price to distilled spirits, wine, or malt beverages which they sell, provided products of other industry...

  15. Melting of corrosion-resistant steel of martensite class with given phase composition

    International Nuclear Information System (INIS)

    Grashchenkov, P.M.; Kachanov, E.B.; Stetsenko, N.V.; Moshkevich, E.I.; Bunina, T.I.

    1979-01-01

    Introduced is a melting procedure for the EhP410U (vacuum arc remelted) and VNC-2M (electroslag remelted) stainless steels with carbon (carbon ferrochrome) and nickel additions to ensure a present phase composition. Magnetizability of cold specimens of the EhP410U steel should be within the limits 17.0-19.5 mV by a special device. During melting of the second steel controlled are not only cold specimens magnetizability of which should be not less than 16 mV, but hot as well (at 25O-400 deg C) by the level of magnetizability not higher than 0.5 mV. During vacuum arc remelting nitrogen content reduces in general by 0.014% and manganese content - by 0.23%; correspondingly the magnetizability of specimens insceases approximately by 1 mV. During electroslag remelting chemical and phase composition practically are not changed. Total and diffusible hydrogen contents in the vacuum remelted steel is rather low (1-5 and 0.03-0.35 cm 3 /100 gs), which provides increased reliability of the articles

  16. The Assessment of reliability and validity of Persian Version of the Endometriosis Health Profile (EHP-30

    Directory of Open Access Journals (Sweden)

    Marzieh Nojomi

    2011-06-01

    Full Text Available Background: The Endometriosis Health Profile-30 (EHP-30 is a disease-specific questionnaire to measure the health-related quality of life in patients with endometriosis. The aim of this study was to evaluate the validity and reliability of the Persian version of Endometriosis Health Profile (EHP-30 in women with endometriosis referring to three Gynecology Clinics in Tehran, Iran. Methods: One hundred women (20 to 50 years old with surgically confirmed endometriosis recruited from three outpatient Gynecology Clinics affiliated to the Iran University of Medical Sciences. All 100 patients were asked to complete EHP-30 questionnaire while referring to the Clinics. The findings were analyzed using descriptive statistics, internal reliability consistency, construct validity (using short form-36, which had already been validated in Iran, factor analysis (with principle component analysis method, and item total correlation to assess the validity and reliability of the questionnaire. Results: The internal consistency reliability of the questionnaire was high (Cronbach’s α ranged between 0.80 and 0.93 for core, and 0.78 and 0.90 for modular parts. All items were loaded on their own factors except item 17 (feeling aggressive or violent and item 18 (feeling unwell, which were loaded on pain and social support domains, respectively. Construct validity of EHP-30, established by using SF-36, indicates good correlations in several similar scales of these two questionnaires. Conclusion: The findings of the study demonstrate that Persian version of EHP-30 is a valid and reliable measure to assess the quality of life in women with endometriosis

  17. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms

    Science.gov (United States)

    Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A. P.; Stentiford, Grant D.; Flegel, Timothy W.; Sritunyalucksana, Kallaya

    2016-01-01

    Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers. PMID:27832178

  18. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms.

    Science.gov (United States)

    Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A P; Stentiford, Grant D; Flegel, Timothy W; Sritunyalucksana, Kallaya; Itsathitphaisarn, Ornchuma

    2016-01-01

    Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.

  19. The short form endometriosis health profile (EHP-5: translation and validation study of the Iranian version

    Directory of Open Access Journals (Sweden)

    Goshtasebi Azita

    2011-07-01

    Full Text Available Abstract Background Endometriosis Health Profile (EHP-5 is a valid instrument to measure health-related quality of life in endometriosis. This study was conducted to culturally adapt and validate the EHP-5 in Iran. Methods Using a standard "forward-backward' translation procedure, the English language version of the questionnaire was translated into Persian (Iranian language. Then a sample of 199 women aged 18-50 years completed the questionnaire. To test reliability the internal consistency was assessed by Cronbach's alpha coefficient. Validity was evaluated using known groups comparison. Results The mean age of respondents was 31.4 (SD = 5.4 years. Reliability analysis showed satisfactory result (Cronbach's alpha coefficient = 0.71. The questionnaire discriminated well between sub-groups of women differing in infertility and premenstrual syndrome (PMS in the expected direction. Conclusion This preliminary validation study of the Iranian version of the EHP-5 proved that it is an acceptable, reliable and valid measure of quality of life in endometriosis patients.

  20. 3 CFR - Delegation of Certain Functions Under Sections 603-604 and 699 of the Foreign Relations...

    Science.gov (United States)

    2010-01-01

    ...-604 and 699 of the Foreign Relations Authorization Act, Fiscal Year 2003 (Public Law 107-228... Functions Under Sections 603-604 and 699 of the Foreign Relations Authorization Act, Fiscal Year 2003...-604 and 699 of the Foreign Relations Authorization Act, Fiscal Year 2003 (Public Law 107-228). You are...

  1. Dense populations of the microsporidian Enterocytozoon hepatopenaei (EHP) in feces of Penaeus vannamei exhibiting white feces syndrome and pathways of their transmission to healthy shrimp.

    Science.gov (United States)

    Tang, Kathy F J; Han, Jee Eun; Aranguren, Luis Fernando; White-Noble, Brenda; Schmidt, Margeaux M; Piamsomboon, Patharapol; Risdiana, Eris; Hanggono, Bambang

    2016-10-01

    White feces syndrome (WFS) is an emerging problem for penaeid shrimp farming industries in SE Asia countries, Thailand, Malaysia, Vietnam, Indonesia, China, and in India. This occurrence of this syndrome is usually first evidenced by the appearance of white fecal strings floating on surface of the shrimp ponds. The gross signs of affected shrimp include the appearance of a whitish hindgut and loose carapace, and it is associated with reduced feeding and growth retardation. To investigate the nature of the white feces syndrome, samples of white feces and shrimp hepatopancreas tissue were collected from Penaeus vannamei in affected farms in Indonesia, and these were examined histologically. Within the white feces, we found densely packed spores of the microsporidian Enterocytozoon hepatopenaei (abbreviated as EHP) and relatively fewer numbers of rod-shaped bacteria. From WFS ponds, hepatopancreas samples form 30 individual shrimp were analyzed by histology and in situ hybridization. The results showed that all of the shrimp examined were infected with EHP accompanied by septic hepatopancreatic necrosis (SHPN). Midgut epithelial cells were also infected and this increased the number of tissue types being affected by EHP. By PCR, EHP was detected in all the samples analyzed from WFS-affected ponds, but not in those sampled from healthy shrimp ponds. To determine the modes of transmission for this parasite, we performed feeding and cohabitation bioassays, the results showed that EHP can be transmitted through per os feeding of EHP-infected hepatopancreas tissue to healthy shrimp and through cohabitation ofinfected and healthy shrimp. In addition, we found the use of Fumagillin-B, an antimicrobial agent, was ineffective in either reducing or eliminating EHP in infected shrimp. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cold-rolled sheets production of stainless martensite-ageing steel smelted by vacuum arc and electroslag techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, A A; Grishkov, A I; Suslin, A P; Nesterenko, A A; Lola, V N [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-05-01

    In cooperation with a number of metallurgical works the production of a high strength sheet stainless maraging steel EHP678 (000KH11N10M2T) has been tested by rolling cylindrical ingots of vacuum arc smelting at the blooming (the mass of rough ingots was 5.1 to 6.0 t, that of cleaned ingots - 3.8 to 5.1 t) or rectangular ingots of electroslag smelting (13 t) at the slabbing. The recommended regimes of heating and deformation are much similar to those used for the steel-KH18N10T. The output of valid cold-rolled sheets proved to be rather low (0.24 t/t for the vacuum arc smelting and 0.30 t/t for the electroslag smelting) mainly due to the losses on cleaning and a considerable portion of wrong-size slabs. The data are presented on the steel-EHP678 properties after various heat treatments. For the production of wide cold-rolled sheets of the steel EHP678 it is recommended to use steelmaking procedure with electroslag smelting including open-hearth melting in arc furnaces, rolling of ingots at the slabbing with heating up to 1260-1280 deg C (hold-up of 4.5 to 5 hrs); electroslag smelting for rectangular section slabs, rolling of ingots of electroslag smelting at the slabbing with their heating up to 1250 deg C (hold-up of 5.5 to 6 hrs), rolling at the 1680-type mill with heating up to 1250-1260 deg C (hold-up of 4 to 4.5 hrs ensuring the rolling temperature after a rough group not below 1100 deg C), quenching of hot-rolled sheets heating up to 920-940 deg C (hold-up of 3 to 3.5 min/mm), shot peening of sheets for descaling (provided the respective equipment is available) with a subsequent short-time pickling in an acid solution and cold rolling with a summary deformation of 35 to 45 %. The steelmaking with the electroslag smelting is much more profitable as regards to the fine technology of number of the main procedures, convenient cooperation of the works and a considerably greater output of the final products out of one ton of the steel produced.

  3. Study of surface layer on 08Kh15N5D2T steel

    International Nuclear Information System (INIS)

    Tyurin, A.G.; Povolotskij, V.D.; Zhivotovskij, Eh.A.; Berg, B.N.

    1986-01-01

    08Kh15N5D2T steel phase composition is investigated. Its surface layer was determined by X-ray diffraction analysis method. It is shown, that a subscale appears to be the reason for corrosion of products, made of EhP410 steel. Under the existing smelling technology the carbon content in it is ≥ 0.05%. Therefore to avoid the metal surface depletion with chromium, one must provide for titanium relation to carbon of not less than 4.5 and carry out the rolled product thermal treatment in a protective atmosphere; otherwise, the technology must include not only the removal of scale from steel but the metal subscale layer as well

  4. New stainless steels of ferrite-martensite grade and perspectives of their application in thermonuclear facilities and fast reactors

    International Nuclear Information System (INIS)

    Ajtkhozhin, Eh.S.; Maksimkin, O.P.

    2007-01-01

    Review of scientific literature for last 5 years in which results on study of radiation effect on ferrite-martensite steels - construction materials of fast reactors and most probable candidates for first wall and blanket of the thermonuclear facilities ITER and Demo - are presented. Alongside with this a prior experimental data on study of microstructure changing and physical- mechanical properties of ferrite-martensite steel EhP-450 - the material of hexahedral case of spent assembly of BN-350 fast reactor- are cited. Principal attention was paid to considering of radiation effects of structural components content changing and ferrite-martensite steel swelling irradiated at comparatively low values of radiation damage climb rate

  5. Ductile fracture of two-phase welds under 77K

    International Nuclear Information System (INIS)

    Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel', A.V.

    1984-01-01

    The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters σsub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulaing the part of the basic metal in joint content

  6. Investigating thermomechanical parameters of the EhP693VD heat resisting alloys deformation

    International Nuclear Information System (INIS)

    Garibov, G.S.; Galkin, A.M.; Ermanok, M.Z.; Trepilets, A.E.

    1975-01-01

    The purpose of the present publication consists in complex research of the deformation resistance and plastic characteristics of heat-resistant hard-to-form alloy EhP693VD at the temperatures and deformation rates peculiar for the pressing process. The test conditions are: temperature 1000 to 1200 deg C; rate of deformation 0.5, 5.0 and 25 s -1 . The curves of deformation hardening of alloy EhP693VD show that the alloy is characterized by very high values of forming resistance index Ssub(f). With the increase of the rates of deformation, the maximum of curves Ssub(f) /antiepsilon/ is shifted towards greater degrees of deformation. The increase of the temperature results in the lower deformation hardening of the alloy. The intensity of the growth of the deformation resistance with the decrease of temperature becomes higher at lower degrees of deformation. Variation of plasticity at temperatures of up to 1150 deg C correlates with the curves showing variation of the deformation resistance. At a temperature of 1200 deg C, the drop of the deformation resistance is accompanied by the intensive drop of the plastic characteristics. The planning matrices, test results and complete disperse analysis tables are given. The analysis of the obtained equations makes it possible to draw a conclusion that the rise of the test temperature and drop of the rates of deformation entail the increase of the plastic characteristics

  7. Effect of heat treatment regime on structural lamination in ferritic-austenitic steels

    International Nuclear Information System (INIS)

    Sizov, R.A.; Zakharova, M.I.; Novikov, I.I.; Bannykh, O.A.

    1983-01-01

    The effect of preliminary thermal treatment on lamination and viscosity of EhP-53 and KO-3 steels after durable aging at the temperature of 350 is studied. It is shown that preliminary heat treatment considerably affects lamination processes in the result of aging of 0Kh18G8N2T steel. The lowest rate of lamination and higher impact strength after aging at 350 deg C for 4500 hours corresponds to the following heat treatment: 10 hour aging at 650 deg C with cooling in the air, then quenching in water from 950 deg C after aging for 30 min and the following tempering (650 deg C, 5 hours). Unlike the 0Kh18G8N2T steel, lamination parameters of steel 0Kh22N6T practically do not change after the application of heat treatment. Nevertherless, taking into account results of impact strength, it is advisable to have thermal treatment according to the regime: quenching in water at 950 deg C after aging for 30 min

  8. Measuring health-related quality of life in women with endometriosis: comparing the clinimetric properties of the Endometriosis Health Profile-5 (EHP-5) and the EuroQol-5D (EQ-5D).

    Science.gov (United States)

    Aubry, G; Panel, P; Thiollier, G; Huchon, C; Fauconnier, A

    2017-06-01

    Which of the Endometriosis Health Profile-5 (EHP-5) and the EuroQol-5D (EQ-5D) is the most efficient to assess quality of life in women suffering from endometriosis? Although EHP-5 and EQ-5D instruments had an excellent responsiveness, EHP-5 has a better discriminative ability than EQ-5 to measure health-related quality of life (HrQoL). Proper measurement of HrQoL is important in endometriosis. While many quality of life instruments are available, few have been completely validated in endometriosis. The EHP-5 and the EQ-5D are short and practical scales, which may be useful. Literature is lacking to determine which one is the most suitable in clinical practice or in clinical research. This prospective and observational study conducted between 1 January 2012 and 31 December 2013 included a total of 253 consecutive women with proven endometriosis, undergoing medical or surgical treatment, in 2 French tertiary care centers. Women over 18 years consulting for painful symptoms of at least 3 months' duration or for infertility, with endometriosis proven histologically or radiologically, were requested to fill in the 2 scales before (T0) and 12 months after treatment (T1). Construct validity consisted in testing presupposed relationships between the scales and the characteristics of the patients or the endometriosis. Responsiveness to change was calculated for all patients and in each treatment group. Effect sizes were used according to Cohen's d method. A total of 216 women filled in completely all the questionnaires at T0 and 133 (61.6%) at T1. EHP-5 and EQ-5D had good discriminative abilities regarding the patients' symptoms, with significant superiority of EHP-5 concerning three of the nine hypotheses. The largest difference was that calculated for the 'intensity of dysmenorrhea' using the Visual Analogic Scale, with respectively effect size from Cohen's d (ES) = 0.86 95% CI (0.54-1.17) for EHP-5 versus 0.48 95% CI (0.16-0.79) for EQ-5D. There were no differences in

  9. Column extraction chromatography with HEH (EHP) for separating rare earth elements from coexistent elements and its application

    International Nuclear Information System (INIS)

    Peng Chunlin; Sun Baocheng; Zhao Junwu; Liu Xuan

    1985-01-01

    For separating rare earths from large amount of coexistent elements a new method of column extraction chromatography with HEH (EHP) as a stationary phase and sulphosalicylic acid, gluconic acid, ascorbic acid respectively as a mobile phase has been developed. It has been applied to the determination of trace rare earth elements in nickel-base alloys and iron-nickel-base alloys with satisfactory results

  10. Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU UP-1 Wells 299-W19-48, 699-30-66, and 699-36-70B

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.; Newcomer, Darrell R.

    2010-06-15

    This report presents test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) UP-1 wells: 299-W19-48 (C4300/Well K), 699-30-66 (C4298/Well R), and 699-36-70B (C4299/Well P). These wells are located within, adjacent to, and to the southeast of the Hanford Site 200-West Area. The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OU UP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.

  11. Exploring energy efficiency in China's iron and steel industry: A stochastic frontier approach

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Xiaolei

    2014-01-01

    The iron and steel industry is one of the major energy-consuming industries in China. Given the limited research on effective energy conservation in China's industrial sectors, this paper analyzes the total factor energy efficiency and the corresponding energy conservation potential of China's iron and steel industry using the excessive energy-input stochastic frontier model. The results show that there was an increasing trend in energy efficiency between 2005 and 2011 with an average energy efficiency of 0.699 and a cumulative energy conservation potential of 723.44 million tons of coal equivalent (Mtce). We further analyze the regional differences in energy efficiency and find that energy efficiency of Northeastern China is high while that of Central and Western China is low. Therefore, there is a concentration of energy conservation potential for the iron and steel industry in the Central and Western areas. In addition, we discover that inefficient factors are important for improving energy conservation. We find that the structural defect in the economic system is an important impediment to energy efficiency and economic restructuring is the key to improving energy efficiency. - Highlights: • A stochastic frontier model is adopted to analyze energy efficiency. • Industry concentration and ownership structure are main factors affecting the non-efficiency. • Energy efficiency of China's iron and steel industry shows a fluctuating increase. • Regional differences of energy efficiency are further analyzed. • Future policy for energy conservation in China's iron and steel sector is suggested

  12. Elastic and Inelastic α-scatterings from {sup 58}Ni, {sup 116}Sn, and {sup 20}'8Pb targets at 288, 340, 480, and 699 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Behairy, Kassem O., E-mail: drkasemomar@yahoo.com [Physics Department, Aswan University (Egypt); Mahmoud, Zakaria M.M.; Hassanain, M.A. [Physics Department, Faculty of Science, Assiut University (Egypt)

    2015-12-15

    Real double-folding optical potentials are calculated using the S1Y effective nucleon-nucleon (NN) interaction and the tρρ approximation in order to analyze elastic and inelastic scattering of α-particles from {sup 58}Ni, {sup 116}Sn, and {sup 208}Pb targets at 288, 340, 480, and 699 MeV. The relativistic corrections for momenta and reduced masses are performed to investigate the data at the energies 480 and 699 MeV. The second-order (double-scattering) correction to the tρρ potential is also considered. The inelastic scattering to low-lying excited states (2{sup +}) is investigated using the distorted wave born approximation (DWBA) and the coupled-channel (CC) techniques. (author)

  13. Proposal for the award of a contract for the supply of low-carbon steel sheets for LHC resistive dipole magnets

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply of 1 106 tonnes of low-carbon steel sheets for the MBW, MBXW and MCBW resistive dipole magnets for the LHC. Following a market survey (MS-2619/SL/LHC) carried out among 62 firms in sixteen Member States, a call for tenders (IT-2911/SL/LHC) was sent on 6 March 2001 to 11 firms in seven Member States. By the closing date, CERN had received one tender. The Finance Committee is invited to agree to the negotiation of a contract with the firm COCKERILL SAMBRE (BE), the only bidder, for the supply of 1 106 tonnes of low-carbon steel sheets for the MBW, MBXW and MCBW resistive dipole magnets for a total amount of 984 803 euros (1 511 328 Swiss francs), not subject to revision until 1 January 2003, with an option for the supply of up to 15% additional steel sheets, for a total amount of 147 720 euros (226 699 Swiss francs), not subject to revision until 1 January 2003, bringing the total amount to a maximum of 1 132 523 euros (1 738 027 Swiss francs), not s...

  14. An experimental study of the enhanced heating capacity of an electric heat pump (EHP) using the heat recovered from a gas engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Min; Chang, Se Dong [HAC R and D Laboratory, LG Electronics, 327-23 Gasan-Dong, Geumcheon-gu, Seoul 153-802 (Korea); Lee, Jaekeun; Hwang, Yujin [School of Mechanical Engineering, Pusan National University, San 30, Changjeon-Dong, Keumjeong-Ku, Busan 609-735 (Korea)

    2009-11-15

    This paper is concerned with the effect of recovered heat on the heating capacity of an Electric Heat Pump (EHP), which is supplied with electric power and recovered heat from a gas engine generator system. Two methods of supplying recovery heat are examined: (i) to the refrigerant with the discharge line heat exchanger (HEX), and (ii) to the refrigerant of the evaporator with the sub-evaporator. Heating capacity, input power and coefficient of performance (COP) were investigated and compared for each heat recovery method. Conclusively, we found that the second method was most reasonable to recover wasted heat and increased system COP by 215%. (author)

  15. Adult Gli2+/-;Gli3Δ699/+ Male and Female Mice Display a Spectrum of Genital Malformation.

    Directory of Open Access Journals (Sweden)

    Fei He

    Full Text Available Disorders of sexual development (DSD encompass a broad spectrum of urogenital malformations and are amongst the most common congenital birth defects. Although key genetic factors such as the hedgehog (Hh family have been identified, a unifying postnatally viable model displaying the spectrum of male and female urogenital malformations has not yet been reported. Since human cases are diagnosed and treated at various stages postnatally, equivalent mouse models enabling analysis at similar stages are of significant interest. Additionally, all non-Hh based genetic models investigating DSD display normal females, leaving female urogenital development largely unknown. Here, we generated compound mutant mice, Gli2+/-;Gli3Δ699/+, which exhibit a spectrum of urogenital malformations in both males and females upon birth, and also carried them well into adulthood. Analysis of embryonic day (E18.5 and adult mice revealed shortened anogenital distance (AGD, open ventral urethral groove, incomplete fusion of scrotal sac, abnormal penile size and structure, and incomplete testicular descent with hypoplasia in male mice, whereas female mutant mice displayed reduced AGD, urinary incontinence, and a number of uterine anomalies such as vaginal duplication. Male and female fertility was also investigated via breeding cages, and it was identified that male mice were infertile while females were unable to deliver despite becoming impregnated. We propose that Gli2+/-;Gli3Δ699/+ mice can serve as a genetic mouse model for common DSD such as cryptorchidism, hypospadias, and incomplete fusion of the scrotal sac in males, and a spectrum of uterine and vaginal abnormalities along with urinary incontinence in females, which could prove essential in revealing new insights into their equivalent diseases in humans.

  16. Effect of preliminary thermal treatment of EhP-56 on resistivity to cold cracks formation in the joint heat affected zone

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Shubin, V.I.; Belov, Yu.M.

    1975-01-01

    Data are given on the influence of the conditions of prior heat treatment on the resistance of steel EP56 to cold cracking in the joint heat affected zone /HAZ/. Other things being equal, the resistance of steel EP56 to cold cracking in the HAZ increases with reduction of hardness and increase of austenite content. Conditions for welding steel EP56, preventing cracking in the HAZ, have been determined

  17. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  18. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  19. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  20. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    Science.gov (United States)

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  1. A semi-automated LC-MS/MS method for the determination of LCI699, a steroid 11β-hydroxylase inhibitor, in human plasma.

    Science.gov (United States)

    Li, Wenkui; Luo, Suyi; Rebello, Sam; Flarakos, Jimmy; Tse, Francis L S

    2014-06-01

    A novel liquid chromatographic method with tandem mass spectrometric detection (LC-MS/MS) for the determination of LCI699 was developed and validated with dynamic ranges of 0.0500-50.0 ng/mL and 1.00-1,000 ng/mL using 0.0500 mL and 0.100mL, respectively, of human plasma. LCI699 and the internal standard, [M+6]LCI699, were extracted from fortified human plasma via protein precipitation. After transfer or dilution of the supernatant followed by solvent evaporation and/or reconstitution, the extract was injected onto the LC-MS/MS system. Optimal chromatographic separation was achieved on an ACE C18 (50 mm × 4.6mm, 3 μm) column with 30% aqueous methanol (containing 0.5% acetic acid and 0.05% TFA) as the mobile phase run in isocratic at a flow rate of 1.0 mL/min. The total analysis cycle time is approximately 3.5 min per injection. The addition of an ion-pair reagent, TFA (0.05%, v/v), to the mobile phases significantly improved the chromatographic retention and resolution of the analyte on silica based reversed-phase column. Although addition of TFA to the mobile phase suppresses the ESI signals of the analyte due to its ion-pairing characteristics in the gas phase of MS source, this negative impact was effectively alleviated by adding 0.5% acetic acid to the mobile phase. The current method was validated for sensitivity, selectivity, linearity, reproducibility, stability and recovery. For the low curve range (0.0500-50.0 ng/mL), the accuracy and precision for the LLOQs (0.0500 ng/mL) were -13.0 to 2.0% bias and 3.4-19.2% CV, respectively. For other QC samples (0.100, 6.00, 20.0 and 40.0 ng/mL), the precision ranged from 1.2 to 9.0% and from 3.8 to 8.8% CV, respectively, in the intra-day and inter-day evaluations. The accuracy ranged from -11.3 to 8.0% and -7.2 to 1.6% bias, respectively, in the intra-day and inter-day batches. For the high curve range (1.00-1,000 ng/mL), the accuracy and precision for the LLOQs (1.00 ng/mL) were 1.0-15.0% bias and 7.4-9.2% CV

  2. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, So Young; Kim, Jong Do [Korea Maritime and Ocean University, Busan (Korea, Republic of); Kim, Jong Su [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-01-15

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained.

  3. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    International Nuclear Information System (INIS)

    Choi, So Young; Kim, Jong Do; Kim, Jong Su

    2015-01-01

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained

  4. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    Science.gov (United States)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  5. Current status of stainless steel industry and development of stainless steel

    International Nuclear Information System (INIS)

    Lee, Yong Deuk; Lee, Chan Soo; Kim Kwang Tae

    2000-01-01

    Stainless steel is not only clean and smooth in its surface, but also it is superior in quality in terms of corrosion resistance and strength. So that, it is widely in use in the field of construction, chemical installations, and other industries. Growth of stainless steel industry started since the steel technology was developed for mass production in 1960s. Since then stainless steel industry grew rapidly on account of diversified development in this field and growth rate went up to 5.8% per year comparable to 2.3% of steel growth. The rapid growth is attributed to significant industry developments in Europe and Japan in the years of 1970s and 1980s. In addition to these the expansion of stainless steel industry in Korea and Taiwan. Presently Korea produces about 120,000 tons of stainless steel and occupies about 8% of international market. This means Korea become the second largest single country in world in stainless steel production. Moreover Korea is to reinforce its domestic production line by affiliating production companies, increasing of production capability, and specializing in types of stainless steel. This paper is to describe activity of material development, and types of stainless steel for industry use. (Hong, J. S.)

  6. [Factors influencing electrocardiogram results in workers exposed to noise in steel-making and steel-rolling workshops of an iron and steel plant].

    Science.gov (United States)

    Li, Y H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Jiao, J

    2016-02-20

    To investigate the factors influencing the electrocardiogram results in the workers exposed to noise in steel-making and steel rolling workshops of an iron and steel plant. From September to December, 2013, cluster sampling was used to select 3 150 workers exposed to noise in the steel-making and steel-rolling workshops of an iron and steel plant, and a questionnaire survey and physical examinations were performed. The number of valid workers was 2 915, consisting of 1 606 workers in the steel-rolling workshop and 1 309 in the steel-making workshop. The electrocardiogram results of the workers in steel-making and steel-rolling workshops were analyzed. The overall abnormal rate of electrocardiogram was 26.35%, and the workers in the steel-making workshop had a significantly higher abnormal rate of electrocardiogram than those in the steel-rolling workshop(32.24% vs 21.54%, Pelectrocardiogram than female workers(27.59% vs 18.61%, Pelectrocardiogram than those who did not drink(28.17% vs 23.75%, Pelectrocardiogram than those who were not exposed to high temperature(29.43% vs 20.14%, Pelectrocardiogram in the workers with cumulative noise exposure levels of electrocardiogram results. High cumulative noise exposure, alcohol consumption, and high temperature may affect the abnormal rate of electrocardiogram in the workers exposed to noise in steel-making and steel-rolling workshops.

  7. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  8. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  9. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  10. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  11. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  12. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  13. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  14. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  15. Substitution of modified 9 Cr-1 Mo steel for austentic stainless steels

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1982-04-01

    This report describes the current program to develop a high-strength ferritic-martensitic steel. The alloy is essentially Fe-9% Cr-1% Mo with small additions of V and Nb and is known as modifed 9 Cr-1 Mo steel. Its elevated-temperature properties and design allowable stresses match those of type 304 stainless steel for temperatures up to 600 0 C and exceed those of other ferritic steels by factors of 2 to 3. The improved strength of this alloy permits its use in place of stainless steels for many applications

  16. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  17. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  18. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  19. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    Directory of Open Access Journals (Sweden)

    Elena Gordo

    2003-12-01

    Full Text Available HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W, to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results carried out to improve the compressibility of HCx are presented. The way to attempt this improvement is the dilution of base material with two stainless steels, the ferritic 430LHC and the austenitic 316L. The powder mixes prepared were uniaxially pressed to study the compressibility. The sinterability was study by determining of density, hardness, transverse rupture strength (TRS and microstructural evolution after vacuum sintering at different temperatures. As a result, better compressibility is observed in the mixes although not all of them present the properties required.

  20. Boron Steel: An Alternative for Costlier Nickel and Molybdenum Alloyed Steel for Transmission Gears

    Directory of Open Access Journals (Sweden)

    A. Verma

    2010-06-01

    Full Text Available Case Carburized (CC low carbon steels containing Ni, Cr and Mo alloying elements are widely used for transmission gears in automobile, as it possesses desired mechanical properties. In order to cut cost and save scarce materials like Ni and Mo for strategic applications, steel alloyed with Boron has been developed, which gives properties comparable to Ni-Cr-Mo alloyed steel. In the process of steel development, care was taken to ensure precipitation of boron which results in precipitation hardening. The characterization of the developed boron steel had exhibited properties comparable to Ni-Cr-Mo alloyed steel and superior to conventional boron steel.

  1. Interaction model of steel ladle of continuous caster in steel works

    Directory of Open Access Journals (Sweden)

    Huang Bang Fu

    2016-01-01

    Full Text Available For further research on the precondition and interoperability model of interaction ladles among continuous caster, this article takes steel ladle of Y steel works as the object of research. On the basis of turnover number calculation model of single cast steel ladle, the relationship between cast number and the turnover number and turnover times and last turnover number are further analyzed. The simulation of steel ladle turnover rules was taken on the 2 continuous casters with Gantt chart. After that, the relationships between turnover number and last turnover number and non-turnover number are researched deeply. Combining with the Gantt chart, the expressions of start casting time and empty ladle ending time and heavy ladle starting time were put forward. The precondition of steel ladle interaction is obtained, which means the exchange ladle should not undertaking transport task in first stop continuous caster, and the empty ladle end time of exchange ladle of first stop continuous caster should early than the heavy ladle start time of last stop continuous caster. After applying the model to practice, 3 steel ladles of No.2 continuous caster can be reduced. This research results is supplying theoretical basis for steel ladle controlling and production organization optimization, and enriches the theory and method of metallurgical process integration.

  2. Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongsheng, E-mail: chen.dongsheng85@gmail.com [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko; Han, Wentuo; Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-10-15

    Highlights: • The role of oxide particles in α/α′ phase decomposition behavior; microstructure of phase decomposition observed by TEM. • The characteristics of ductility loss caused by age-hardening. • Correlation of phase decomposition and age-hardening explained by dispersion strengthened models. • Age-hardening susceptibility of ODS steels and SUS430 steel. - Abstract: The effect of aging on high-Cr ferritic steels was investigated with focusing on the role of oxide particles in α/α′ phase decomposition behavior. 12Cr-oxide dispersion strengthened (ODS) steel, 15Cr-ODS steel and commercial SUS430 steel were isothermally aged at 475 °C for up to 10,000 h. Thermal aging caused a larger hardening in SUS430 than 15Cr-ODS, while 12Cr-ODS showed almost no hardening. A characteristic of the ODS steels is that the hardening was not accompanied by the significant loss of ductility that was observed in SUS430 steel. After aging for 2000 h, SUS430 steel shows a larger ductile–brittle transition temperature (DBTT) shift than 15Cr-ODS steel, which suggests that the age-hardening susceptibility is lower in 15Cr-ODS steel than in conventional SUS430 steel. Thermal aging leaded to a large number of Cr-rich α′ precipitates, which were confirmed by transmission electron microscopy (TEM). Correlation of age-hardening and phase decomposition was interpreted by Orowan type strengthening model. Results indicate that oxide particles cannot only suppress ductility loss, but also may influence α/α′ phase decomposition kinetics.

  3. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  4. Nitrogen-alloyed martensitic steels

    International Nuclear Information System (INIS)

    Berns, H.

    1988-01-01

    A report is presented on initial results with pressure-nitrided martensitic steels. In heat-resistant steels, thermal stability and toughness are raised by nitrogen. In cold work steel, there is a more favourable corrosion behaviour. (orig./MM) [de

  5. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  6. Notch aspects of RSP steel microstructure

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2012-01-01

    Full Text Available For a rather long time, basic research projects have been focused on examinations of mechanical properties for Rapid Solidification Powder (RSP steels. These state-of-art steels are commonly known as “powdered steels“. In fact, they combine distinctive attributes of conventional steel alloys with unusual resistance of construction material manufactured by so called “pseudo-powdered” metallurgy.Choice of suitable materials for experimental verification was carried out based on characteristic application of so called “modern steel”. First, groups of stainless and tool steel types (steel grades ČSN 17 and 19 were selected. These provided representative specimens for the actual comparison experiment. For stainless steel type, two steel types were chosen: hardenable X47Cr14 (ČSN 17 029 stainless steel and non-hardenable X2CrNiMo18-14-3 (ČSN 17 350 steel. They are suitable e.g. for surgical tools and replacements (respectively. For tooling materials, C80U (ČSN 19 152 carbon steel and American D2 highly-alloyed steel (ČSN “equivalent” being 19 572 steel were chosen for the project. Finally, the M390 Böhler steel was chosen as representative of powdered (atomized steels. The goal of this paper is to discuss structural aspects of modern stainless and tool steel types and to compare them against the steel made by the RSP method. Based on the paper's results, impact of powdered steel structural characteristics on the resistance to crack initiation shall be evaluated.

  7. Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading

    Science.gov (United States)

    Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.

    2018-03-01

    SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.

  8. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  9. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  10. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  11. Damascus steel ledeburite class

    Science.gov (United States)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  12. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  13. Stahlschüssel key to steel

    CERN Document Server

    Wegst, W S

    2016-01-01

    The Key to Steel (Stahlschlüssel/Stahlschluessel) cross reference book will help you to decode / decipher steel designations and find equivalent materials worldwide. The 2016 edition includes more than 70,000 standard designations and trade names from approximately 300 steelmakers and suppliers. Presentation is trilingual: English, French, and German. Materials covered include structural steels, tool steels, valve steels, high temperature steels and alloys, stainless and heat-resisting steels, and more. Standards and designations from 25 countries are cross-referenced.

  14. Methods of forging steel

    OpenAIRE

    Pečoler, Primož

    2014-01-01

    The following work presents processes of steel forming, challenges when forging steel, forming machines suitable for forging and which choice of machine is most suitable for forging. We can separate steel forming to free forging and drop forging. Free forging can be divided to hand forging and machine forging. The correct choice of furnaces is also very important. We must reach correct temperature in the furnace for raw steel to melt with less scalings. In diploma I mentioned some machine...

  15. Corrosion characteristics of DMR-1700 steel and comparison with different steels in marine environment

    International Nuclear Information System (INIS)

    Gurrappa, I.; Malakondaiah, G.

    2005-01-01

    In the present paper, a systematic corrosion study has been carried out on DMR-1700 steel to understand the protective nature of oxide scale that forms on its surface under marine environmental conditions. Further, the studies related to oxide scales as well as pitting and crevice corrosion resistance of both stainless steels and widely used low alloy steel EN24 in marine environment have been studied for comparison purpose. The surface morphologies of corroded steels have been observed under scanning electron microscope (SEM) in order to understand the nature of corrosion. A high performance protective coating that has been developed for protection of low alloy steels DMR-1700 and EN24 against corrosion is presented after stressing the importance of surface engineering in enhancing the life of steels. Based on the studies with different techniques, DMR-1700 steel has been recommended for manufacture of components used in aerospace systems in association with appropriate protective coating for improving their efficiency

  16. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  17. Methods of making bainitic steel materials

    Science.gov (United States)

    Bakas, Michael Paul; Chu, Henry Shiu-Hung; Zagula, Thomas Andrew; Langhorst, Benjamin Robert

    2018-01-16

    Methods of making bainitic steels may involve austenitizing a quantity of steel by exposing the quantity of steel to a first temperature. A composition of the quantity of steel may be configured to impede formation of non-bainite ferrite, pearlite, and Widmanstatten ferrite. The quantity of steel may be heat-treated to form bainite by exposing the quantity of steel to a second, lower temperature. The second, lower temperature may be stabilized by exposing the quantity of steel to the second, lower temperature in the presence of a thermal ballast.

  18. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  19. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  20. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).

  1. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    International Nuclear Information System (INIS)

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-01-01

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: ► FSW produced sound welds between st37 low carbon steel and 304 stainless steel. ► The SZ of the st37 steel contained some products of allotropic transformation. ► The material in the SZ of the 304 steel showed features of dynamic recrystallization. ► The finer microstructure in the SZ increased the hardness and tensile strength.

  2. Osilodrostat (LCI699), a potent 11β-hydroxylase inhibitor, administered in combination with the multireceptor-targeted somatostatin analog pasireotide: A 13-week study in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: li1.li@novartis.com [Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, NJ (United States); Vashisht, Kapil; Boisclair, Julie [Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, NJ (United States); Li, Wenkui; Lin, Tsu-han [Drug Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research, East Hanover, NJ (United States); Schmid, Herbert A. [Novartis Oncology Development, Basel (Switzerland); Kluwe, William; Schoenfeld, Heidi; Hoffmann, Peter [Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, NJ (United States)

    2015-08-01

    The somatostatin analog pasireotide and the 11β-hydroxylase inhibitor osilodrostat (LCI699) reduce cortisol levels by distinct mechanisms of action. There exists a scientific rationale to investigate the clinical efficacy of these two agents in combination. This manuscript reports the results of a toxicology study in rats, evaluating different doses of osilodrostat and pasireotide alone and in combination. Sixty male and 60 female rats were randomized into single-sex groups to receive daily doses of pasireotide (0.3 mg/kg/day, subcutaneously), osilodrostat (20 mg/kg/day, orally), osilodrostat/pasireotide in combination (low dose, 1.5/0.03 mg/kg/day; mid-dose, 5/0.1 mg/kg/day; or high dose, 20/0.3 mg/kg/day), or vehicle for 13 weeks. Mean body-weight gains from baseline to Week 13 were significantly lower in the pasireotide-alone and combined-treatment groups compared to controls, and were significantly higher in female rats receiving osilodrostat monotherapy. Osilodrostat and pasireotide monotherapies were associated with significant changes in the histology and mean weights of the pituitary and adrenal glands, liver, and ovary/oviduct. Osilodrostat alone was associated with adrenocortical hypertrophy and hepatocellular hypertrophy. In combination, osilodrostat/pasireotide did not exacerbate any target organ changes and ameliorated the liver and adrenal gland changes observed with monotherapy. C{sub max} and AUC{sub 0–24h} of osilodrostat and pasireotide increased in an approximately dose-proportional manner. In conclusion, the pasireotide and osilodrostat combination did not exacerbate changes in target organ weight or toxicity compared with either monotherapy, and had an acceptable safety profile; addition of pasireotide to the osilodrostat regimen may attenuate potential adrenal gland hyperactivation and hepatocellular hypertrophy, which are potential side effects of osilodrostat monotherapy. - Highlights: • We examined the target organ toxicity of SOM230

  3. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    Science.gov (United States)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  4. Hydrogen gas embrittlement of stainless steels mainly austenitic steels. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Azou, P.

    1988-01-01

    Steel behavior in regard to hydrogen is examined especially austenitic steels. Gamma steels are studied particularly the series 300 with various stabilities and gamma steels with improved elasticity limit for intermetallic phase precipitation and nitrogen additions. A two-phase structure γ + α' is also studied. All the samples are tested for mechanical behavior in gaseous hydrogen. Influence of metallurgical effects and of testing conditions on hydrogen embrittlement are evidenced. Microstructure resulting from mechanical or heat treatments, dislocation motion during plastic deformation and influence of deformation rate are studied in detail [fr

  5. Some comments about the situation of the Steel Industry in the Arab Countries (Arab Steel Summit)

    International Nuclear Information System (INIS)

    Haidar, Y.; Astier, J.

    2009-01-01

    The Arab Steel Summit, that convened in Abu Dhabi in April, gave us another opportunity to review the situation of the Arab Iron and Steel Industry, with regard to the present World economic context. We will address: - the World situation of steel production, focusing on the Arab Countries; - the related situation of steel consumption; - the steel trade, including imports, exports and prices; - the consequences for technology and economy. (authors)

  6. Challenges in Special Steel Making

    Science.gov (United States)

    Balachandran, G.

    2018-02-01

    Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.

  7. Trends in steel technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants

  8. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  9. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  10. Fatigue damage of steel components

    DEFF Research Database (Denmark)

    Fæster, Søren; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials......Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials...

  11. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  12. The Study for Recycling NORM - Contaminated Steel Scraps from Steel Industry

    International Nuclear Information System (INIS)

    Tsai, K. F.; Lee, Y. S.; Chao, H. E.

    2003-01-01

    Since 1994, most of the major steel industries in Taiwan have installed portal monitor to detect the abnormal radiation in metal scrap feed. As a result, the discovery of NORM (Naturally Occurring Radioactive Material) has increased in recent years. In order to save the natural resources and promote radiation protection, an experimental melting process for the NORM contaminated steel scraps was carried out by the Institute of Nuclear Energy Research (INER) Taiwan, ROC. The experimental melting process has a pretreatment step that includes a series of cutting and removal of scales, sludge, as well as combustible and volatile materials on/in the steel scraps. After pretreatment the surface of the steel scraps are relatively clean. Then the scraps are melted by a pilot-type induction furnace. This experiment finally produced seven ingots with a total weight of 2,849 kg and 96.8% recovery. All of the surface dose rates are of the background values. The activity concentrations of these ingots are also below the regulatory criteria. Thus, these NORM-bearing steel scraps are ready for recycling. This study has been granted by the regulatory authority

  13. Steel: Price and Policy Issues

    National Research Council Canada - National Science Library

    Cooney, Stephen

    2006-01-01

    Steel prices remain at historically elevated levels. The rapid growth of steel production and demand in China is widely considered as a major cause of the increases in both steel prices and the prices of steelmaking inputs...

  14. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  15. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  16. On choice of tempered steels

    International Nuclear Information System (INIS)

    Govorov, A.A.; Pan'shin, I.F.; Rakhmanov, V.I.

    1978-01-01

    For the purpose of developing a graphical method for choosing structural steels, a change in the propagation work of a crack and in the critical temperature of brittleness of 40, 40Kh, 40KhN, and 40KhNM steels, was examined depending on the hardness after hardening and tempering. A diagram enabling to choose the grade of steel for making an article of known dimensions according to the preset values of its mechanical properties has been plotted. The developed selection scheme takes into account the hardenability of steels and the influence of the hardness after thermal treatment on the cold-shortness of steel

  17. Volatilization from PCA steel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Smolik, G.R.; McCarthy, K.A.; Petti, D.A.

    1996-08-01

    The mobilizations of key components from Primary Candidate Alloy (PCA) steel alloy have been measured with laboratory-scale experiments. The experiments indicate most of the mobilization from PCA steel is due to oxide formation and spalling but that the spalled particles are large enough to settle rapidly. Based on the experiments, models for the volatization of iron, manganese, and cobalt from PCA steel in steam and molybdenum from PCA steel in air have been derived.

  18. Risk of lung cancer according to mild steel and stainless steel welding

    DEFF Research Database (Denmark)

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni

    2007-01-01

    OBJECTIVES: Whether the elevated risk of lung cancer observed among welders is caused by welding emissions or by confounding from smoking or asbestos exposure is still not resolved. This question was addressed in a cohort with a long follow-up and quantified estimates of individual exposure.......06-1.70)]. Among the stainless steel welders, the risk increased significantly with increasing accumulative welding particulate exposure, while no exposure-response relation was found for mild steel welders, even after adjustment for tobacco smoking and asbestos exposure. CONCLUSIONS: The study corroborates...... earlier findings that welders have an increased risk of lung cancer. While exposure-response relations indicate carcinogenic effects related to stainless steel welding, it is still unresolved whether the mild steel welding process carries a carcinogenic risk....

  19. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  20. Radiation embrittlement of WWER 440 pressure vessel steel and of some improved steels by western producers

    International Nuclear Information System (INIS)

    Koutsky, J.; Vacek, M.; Stoces, B.; Pav, T.; Otruba, J.; Novosad, P.; Brumovsky, M.

    1982-01-01

    The resistance was studied of Cr-Mo-V type steel 15Kh2MFA to radiation embrittlement at an irradiation temperature of around 288 degC. Studied was the steel used for the manufacture of the pressure vessel of the Paks nuclear reactor in Hungary. The obtained results of radiation embrittlement and hardening of steel 15Kh2MFA were compared with similar values of Mn-Ni-Mo type steels A 533-B and A 508 manufactured by leading western manufacturers within the international research programme coordinated by the IAEA. It was found that the resistance of steel 15Kh2MFA to radiation embrittlement is comparable with steels A 533-B and A 508 by western manufacturers. (author)

  1. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.

    1984-01-01

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=50 0 C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 300 0 C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  2. Ductility of high chromium stainless steels

    International Nuclear Information System (INIS)

    Peretyat'ko, V.N.; Kazantsev, A.A.

    1997-01-01

    Aimed to optimize the hot working conditions for high chromium stainless steels the experiments were carried in the temperature range of 800-1300 deg C using hot torsion tests and cylindrical specimens of ferritic and ferritic-martensitic steels 08Kh13, 12Kh13, 20Kh13, 30Kh13 and 40Kh13. Testing results showed that steel plasticity varies in a wide range depending on carbon content. Steels of lesser carbon concentration (08Kh13 and 12Kh13) exhibit a sharp increase in plasticity with a temperature rise, especially in the interval of 1200-1250 deg C. Steels 20Kh13 and 30Kh13 display insignificant plasticity increasing, whereas plastic properties of steel 40Kh13 increase noticeably in the range of 1000-1300 deg C. It is shown that optimal hot working conditions for specific steel must be selected with account of steel phase composition at high temperatures

  3. Steels for nuclear power. I

    International Nuclear Information System (INIS)

    Bohusova, O.; Brumovsky, M.; Cukr, B.; Hatle, Z.; Protiva, K.; Stefec, R.; Urban, A.; Zidek, M.

    1976-01-01

    The principles are listed of nuclear reactor operation and the reactors are classified by neutron energy, fuel and moderator designs, purpose and type of moderator. The trend and the development of light-water reactor applications are described. The fundamental operating parameters of the WWER type reactors are indicated. The effect is discussed of neutron radiation on reactor structural materials. The characteristics are described of steel corrosion due to the contact of the steel with steam or sodium in the primary coolant circuit. The reasons for stress corrosion are given and the effects of radiation on corrosion are listed. The requirements and criteria are given for the choice of low-alloy steel for the manufacture of pressure vessels, volume compensators, steam generators, cooling conduits and containment. A survey is given of most frequently used steels for pressure vessels and of the mechanical and structural properties thereof. The basic requirements for the properties of steel used in the primary coolant circuit are as follows: sufficient strength in operating temperature, toughness, good weldability, resistance to corrosion and low brittleness following neutron irradiation. The materials are listed used for the components of light-water and breeder reactors. The production of corrosion-resistant steels is discussed with a view to raw materials, technology, steel-making processes, melting processes, induction furnace steel-making, and to selected special problems of the chemical composition of steels. The effects are mainly discussed of lead, bismuth and tin as well as of some other elements on hot working of high-alloy steels and on their structure. The problems of corrosion-resistant steel welding and of pressure vessel cladding are summed up. Also discussed is the question of the concept and safeguards of the safety of nuclear installation operation and a list is presented of most commonly used nondestructive materials testing methods. The current

  4. CES_EHP_Figure_2

    Data.gov (United States)

    U.S. Environmental Protection Agency — The increasing number of chemicals for which SHEDS probabilistic exposure assessment has been performed over the years. This dataset is associated with the following...

  5. The industrial ecology of steel

    Energy Technology Data Exchange (ETDEWEB)

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  6. DETERMINANTS OF RETAINED EARNINGS IN PROFITABLE STEEL COMPANIES IN INDIA: A STUDY OF STEEL SECTOR

    OpenAIRE

    Dr. Sohaib Masood

    2018-01-01

    In this paper an attempt has been made to identify the important determinants of retained earnings in profitable steel companies in steel sector of India and which have impact on the retention of earnings of steel companies under study. Multiple linear regression is used to identify the determinants of retained earnings for a period of sixteen years. Also the importance of retained earnings as a source of finance for steel sector companies is also studied in the paper.

  7. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Harald; Mattissen, Dorothea; Schaumann, Thomas Wilhelm [ThyssenKrupp Steel AG, Center of Materials Excellence, Dortmund (Germany)

    2009-01-15

    Advanced high-strength steels offer a great potential for the further development of automobile bodies-in-white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash-relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex-phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (orig.)

  8. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    Science.gov (United States)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  9. Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser

    International Nuclear Information System (INIS)

    Tamura, Koji; Ishigami, Ryoya; Yamagishi, Ryuichiro

    2016-01-01

    Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser was studied for application to nuclear decommissioning. Successful cutting of carbon steel and stainless steel plates up to 300 mm in thickness was demonstrated, as was that of thick steel components such as simulated reactor vessel walls, a large pipe, and a gate valve. The results indicate that laser cutting applied to nuclear decommissioning is a promising technology. (author)

  10. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  11. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  12. Clean steels for fusion

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels

  13. Thermal stability of manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Kenik, E.A.

    1993-01-01

    Previous work on a series of experimental high-manganese reduced-activation austenitic stainless steels demonstrated that they have improved tensile properties relative to type 316 stainless steel in both the annealed and 20% cold-worked conditions. Steels were tested with an Fe-20Mn-12Cr-0.25C (in weight percent) base composition, to which various combinations of Ti, W, V, P, and B were added. Tensile tests have now been completed on these steels after thermal aging at 600 degrees C. Thermal stability varied with composition, but the alloys were as stable or more stable than type 316 stainless steel. the strength of the annealed steels increased slightly after aging to 5000 h, while a strength decrease occurred for the cold worked steel. In both conditions, a steel containing a combination of all the alloying elements was most stable and had the best strength after thermal aging 5000 h at 600 degrees C. Despite having much higher strength than 316 stainless steel after aging, the ductility of the strongest experimental alloy was still as good as that of 316 stainless steel

  14. Sliding wear characteristics of carburized steels and thermally refined steels implanted with nitrogen ions

    International Nuclear Information System (INIS)

    Terashima, Keiichi; Koda, Hiroyuki; Takeuchi, Eiichi.

    1995-01-01

    In order to concretely examine the application of surface reforming by ion implantation, nitrogen ion implantation was applied to the thermally refined steels S45C and SCM440 and the carburized steel SCM415, which are high versatile steels for mechanical structures, and their friction and wear characteristics were examined. The results are summarized as follows. In the surface-reformed material, in which nitrogen was implanted for the purpose of improving the seizure durability of the carburized steel, the load-frictional coefficient curve in lubricated sliding friction was similar to that of the material without implantation, but it was recognized that the load at which seizure occurred reached 2000 kgf or more, and as the amount of implantation was more, the material withstood higher load. In the lubricated sliding friction using a pin-ring type wear testing machine of the thermally refined steels and those to which implantation was applied, it was recognized that the specific wear amount was less in the implanted steels than in those without implantation. The results of the analysis of the implanted surface layers and the friction surfaces are reported. (K.I.)

  15. Larson-Miller Constant of Heat-Resistant Steel

    Science.gov (United States)

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  16. Properties of hot rolled steels for enamelling

    International Nuclear Information System (INIS)

    Gavrilovski, Dragica; Gavrilovski, Milorad

    2003-01-01

    The results of an investigation of the structure and properties of experimental produced hot rolled steels suitable for enamelling are presented in the paper. Hot rolled steels for enamelling represent a special group of the steels for conventional enamelling. Their quality has to be adapted to the method and conditions of enamelling. Therefore, these steels should meet some specific requirements. In addition to usual investigation of the chemical composition and mechanical properties, microstructure and quality of the steel surface also were investigated. The basic aim was to examine steels capability for enamelling, i. e. steels resistance to the fish scales phenomena, by trial enamelling, as well as quality of the steel - enamel contact surface, to evaluate the binding. Also, the changes of the mechanical properties, especially the yield point, during thermal treatment, as a very specific requirement, were investigated, by simplified method. Good results were obtained confirming the steels capability for enamelling. (Original)

  17. Reduced-activation steels: present status and future development

    International Nuclear Information System (INIS)

    Klueh, R.L.

    2007-01-01

    Full text of publication follows: Reduced-activation steels for fusion reactor applications were developed in the 1980's to replace the commercial elevated- temperature steels first considered. In the United States, this involved replacing Sandvik HT9 and modified 9Cr-1Mo steels. Reduced-activation steels, which were developed for more rapid radioactivity decay following exposure in a fusion neutron environment, were patterned after the commercial steels they were to replace. The objective for the reduced-activation steels was that they have strengths (yield stress and ultimate tensile strength from room temperature to 600 deg. C) and impact toughness (measured in a Charpy test) comparable to or better than the steels they were replacing. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Since the reduced-activation steels were developed in the 1980's, reactor designers have been interested designs for increased efficiency of future fusion plants. This means reactors will need to operate at higher temperatures-above 550 deg. C, which is the upper-temperature limit for the reduced-activation steels. Although the tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some of the commercial steels they replaced. furthermore, they are much inferior to commercial steels that have been developed since the 1980's. Reasons for why the creep-rupture properties for the new commercial ferritic/martensitic steels are superior to the earlier commercial steels and the reduced-activation steels were examined. The reasons involve compositional changes that were made in the earlier commercial steels to give the new commercial steels their superior properties. Computational thermodynamics calculations were carried out to compare the expected equilibrium phases. It appears that similar changes in composition

  18. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  19. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  20. Scientific and Technological Principles of Development of New Cold-Resistant Arc-Steels (Steels for Arctic Applications)

    Science.gov (United States)

    Sych, O. V.; Khlusova, E. I.; Yashin, E. A.

    2017-12-01

    The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.

  1. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  2. Heat treatments in a conventional steel to reproduce the microstructure of a nuclear grade steel

    International Nuclear Information System (INIS)

    Rosalio G, M.

    2014-01-01

    The ferritic steels used in the manufacture of pressurized vessels of Boiling Water Reactors (BWR) suffer degradation in their mechanical properties due to damage caused by the neutron fluxes of high energy bigger to a Mega electron volt (E> 1 MeV) generated in the reactor core. The materials with which the pressurized vessels of nuclear reactors cooled by light water are built correspond to low alloy ferritic steels. The effect of neutron irradiation on these steels is manifested as an increase in hardness, mechanical strength, with the consequent decrease in ductility, fracture toughness and an increase in temperature of ductile-brittle transition. The life of a BWR is 40 years, its design must be considered sufficient margin of safety because pressure forces experienced during operation, maintenance and testing of postulated accident conditions. It is necessary that under these conditions the vessel to behave ductile and likely to propagate a fracture is minimized. The vessels of light water nuclear reactors have a bainite microstructure. Specifically, the reactor vessels of the nuclear power plant of Laguna Verde (Veracruz, Mexico) are made of a steel Astm A-533, Grade B Class 1. At present they are carrying out some welding tests for the construction of a model of a BWR, however, to use nuclear grade steel such as Astm A-533 to carry out some of the welding tests, is very expensive; perform these in a conventional material provides basic information. Although the microstructure present in the conventional material does not correspond exactly to the degree of nuclear material, it can take of reference. Therefore, it is proposed to conduct a pilot study to establish the thermal treatment that reproduces the microstructure of nuclear grade steel, in conventional steel. The resulting properties of the conventional steel samples will be compared to a JRQ steel, that is a steel Astm A-533, Grade B Class 1, provided by IAEA. (Author)

  3. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: aaran.sumner@nottingham.ac.uk [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: chris.gerada@nottingham.ac.uk [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: neil.brown@cummins.com [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: adam.clare@nottingham.ac.uk [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  4. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-01-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  5. STEFINS: a steel freezing integral simulation program

    International Nuclear Information System (INIS)

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included

  6. Nitrogen-containing steels and thermomechanical treatment

    International Nuclear Information System (INIS)

    Kaputkina, L.; Prokoshkina, V.G.; Svyazhin, G.

    2004-01-01

    The strengthening of nitrogen-containing corrosion-resistant steels resulting from alloying and thermomechanical treatment have been investigated using X-ray diffraction analysis, light microscopy, hardness measurements and tensile testing. Combined data have been obtained for nitrogen interaction with alloying elements , peculiarities of deformed structure and short-range of nitrogen-containing steels of various structural classes. The higher nitrogen and total alloying element contents, the higher deformation strengthening. Prospects of use the steels with not high nitrogen content and methods of their thermomechanical strengthening are shown. High temperature thermomechanical treatment (HTMT) is very effective for obtaining high and thermally stable constructional strength of nitrogen-containing steels of all classes. The HTMT is most effective if used in a combination with dispersion hardening for aging steels or in the case of mechanically unstable austenitic steels. (author)

  7. Automated Steel Cleanliness Analysis Tool (ASCAT)

    Energy Technology Data Exchange (ETDEWEB)

    Gary Casuccio (RJ Lee Group); Michael Potter (RJ Lee Group); Fred Schwerer (RJ Lee Group); Dr. Richard J. Fruehan (Carnegie Mellon University); Dr. Scott Story (US Steel)

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel

  8. Automated Steel Cleanliness Analysis Tool (ASCAT)

    International Nuclear Information System (INIS)

    Gary Casuccio; Michael Potter; Fred Schwerer; Richard J. Fruehan; Dr. Scott Story

    2005-01-01

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  9. Corrosion of carbon steel and low-alloy steel in diluted seawater containing hydrazine under gamma-rays irradiation

    International Nuclear Information System (INIS)

    Nakano, Junichi; Yamamoto, Masahiro; Tsukada, Takashi

    2014-01-01

    Seawater was injected into reactor cores of Units 1, 2, and 3 in the Fukushima Daiichi nuclear power station as an urgent coolant. It is considered that the injected seawater causes corrosion of steels of the reactor pressure vessel and primary containment vessel. To investigate the effects of gamma-rays irradiation on weight loss in carbon steel and low-alloy steel, corrosion tests were performed in diluted seawater at 50°C under gamma-rays irradiation. Specimens were irradiated with dose rates of 4.4 kGy/h and 0.2 kGy/h. To evaluate the effects of hydrazine (N 2 H 4 ) on the reduction of oxygen and hydrogen peroxide, N 2 H 4 was added to the diluted seawater. In the diluted seawater without N 2 H 4 , weight loss in the steels irradiated with 0.2 kGy/h was similar to that in the unirradiated steels, and weight loss in the steels irradiated with 4.4 kGy/h increased to approximate 1.7 times of those in the unirradiated steels. Weight loss in the steels irradiated in the diluted seawater containing N 2 H 4 was similar to that in the diluted seawater without N 2 H 4 . When N 2 was introduced into the gas phase in the flasks during gamma-rays irradiation, weight loss in the steels decreased. (author)

  10. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  11. Modern steels for light automobiles (review)

    Science.gov (United States)

    Tikhonov, A. K.

    1994-10-01

    The article considers the directions of work at VAZ together with metallurgists of the CIS for creating highly efficient economically-alloyed and microalloyed steels; highly ductile forged steels with improved corrosion resistance coated with zinc and with good stamping, welding, and painting capacity. Steels are created for petrol tanks with aluminum-zinc coatings instead of lead, and new heat and corrosion-resistant steels are developed for automobile exhaust gas systems.

  12. Inclusion control in high-performance steels

    International Nuclear Information System (INIS)

    Holappa, L.E.K.; Helle, A.S.

    1995-01-01

    Progress of clean steel production, fundamentals of oxide and sulphide inclusions as well as inclusion morphology in normal and calcium treated steels are described. Effects of cleanliness and inclusion control on steel properties are discussed. In many damaging constructional and engineering applications the nonmetallic inclusions have a quite decisive role in steel performance. An example of combination of good mechanical properties and superior machinability by applying inclusion control is presented. (author)

  13. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  14. Development of nuclear grade stainless steels at KCSSL

    International Nuclear Information System (INIS)

    Balachandran, G.; Dhere, M.; Mahadik, A.; Hinge, N.M.; Balasubramanian, V.

    2011-01-01

    Kalyani Carpenter Special Steels Ltd is an alloy steel plant, where a variety of alloy steel grades are produced for automotive, defence, nuclear and aerospace applications. The plant has developed expertise in processing of several alloy steel grades of superior quality that meets stringent specifications. Primary steel is processed through a combination of electric arc furnace, ladle furnace and vacuum degassing where stringent control over dephosphorisation, desulphurization, deoxidation is effected to get a refined high quality steel. The molten steel is cast through continuous casting of slabs or ingot casting. In grades specific to nuclear application, the primary cast products are further subjected to electroslag remelting to achieve further freedom from inclusions and to achieve a favourable solidification grain structure, which ultimately improve the hot workability of the alloy steel. Appropriate choice of slag and operating parameters are needed for realising the required ingot quality. The present study would examine the processing and quality aspects of some important grades of steels used in nuclear industry namely ferritic 9Cr-1Mo steel, martensitic stainless steels 403, 410, precipitation hardenable 17-4 PH stainless steel and austenitic 321, 316LN stainless steel, which were made and supplied for applications to Indian nuclear industry. The expertise developed in processing the steels in terms of melting, heat treatment and their relationship to structural features and mechanical properties would be highlighted. (author)

  15. Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints

    International Nuclear Information System (INIS)

    Paventhan, R.; Lakshminarayanan, P.R.; Balasubramanian, V.

    2011-01-01

    Research highlights: → Fusion welding of dissimilar metals is a problem due to difference in properties. → Solid state welding process such as friction welding is a solution for the above problem. → Fatigue life of friction welded carbon steel and stainless steel joints are evaluated. → Effect of notch on the fatigue life of friction welded dissimilar joints is reported. → Formation of intermetallic is responsible for reduction in fatigue life of dissimilar joints. -- Abstract: This paper reports the fatigue behaviour of friction welded medium carbon steel-austenitic stainless steel (MCS-ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = -1). Applied stress vs. number of cycles to failure (S-N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.

  16. Life after Steel

    Science.gov (United States)

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  17. Development of new high-performance stainless steels

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2002-01-01

    This paper focused on high-performance stainless steels and their development status. Effect of nitrogen addition on super-stainless steel was discussed. Research activities at Yonsei University, on austenitic and martensitic high-performance stainless, steels, and the next-generation duplex stainless steels were introduced

  18. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  19. Evaluation criteria of structural steel reliability

    International Nuclear Information System (INIS)

    Zav'yalov, A.S.

    1980-01-01

    Different low-carbon and medium-carbon structural steels are investigated. It is stated that steel reliability evaluation criteria depend on the fracture mode, steel suffering from the brittle fracture under the influence of the stresses (despite their great variety) arising in articles during the production and operation. Fibrous steel fracture at the given temperature and article thickness says about its high ductility and toughness and brittle fractures are impossible. Brittle fractures take place in case of a crystalline and mixed fracture with a predominant crystalline component. Evaluation methods of article and sample steel structural strength differing greatly from real articles in a thickness (diameter) or used at temperatures higher than possible operation temperatures cannot be reliability evaluation criteria because at a great thickness (diameter) and lower operation temperatures steel fracture and its strain mode can change resulting in a sharp reliability degradation

  20. Development of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed

  1. Development of PWR pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed.

  2. Influence of steel-making process and heat-treatment temperature on the fatigue and fracture properties of pressure vessel steels

    International Nuclear Information System (INIS)

    Koh, S. K.; Na, E. G.; Baek, T. H.; Won, S. Y.; Park, S. J.; Lee, S. W.

    2001-01-01

    In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as Vacuum Degassing(VD) and Electro-Slag Remelting(ESR) methods. After the steel-making process, they were normalized at 955 deg. C, quenched at 843 .deg. C, and finally tempered at 550 .deg. C or 450 deg. C, resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-Cycle Fatigue(LCF) tests, Fatigue Crack Growth Rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process

  3. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    Science.gov (United States)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  4. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  5. ABOUT RATIONING MAXIMUM ALLOWABLE DEFECT DEPTH ON THE SURFACE OF STEEL BILLETS IN PRODUCTION OF HOT-ROLLED STEEL

    Directory of Open Access Journals (Sweden)

    PARUSOV E. V.

    2017-01-01

    Full Text Available Formulation of the problem. Significant influence on the quality of rolled steel have various defects on its surface, which in its turn inherited from surface defects of billet and possible damage to the surface of rolled steel in the rolling mill line. One of the criteria for assessing the quality indicators of rolled steel is rationing of surface defects [1; 2; 3; 6; 7]. Current status of the issue. Analyzing the different requirements of regulations to the surface quality of the rolled high-carbon steels, we can conclude that the maximum allowable depth of defects on the surface of billet should be in the range of 2.0...5.0 mm (depending on the section of the billet, method of its production and further the destination Purpose. Develop a methodology for calculating the maximum allowable depth of defects on the steel billet surface depending on the requirements placed on the surface quality of hot-rolled steel. Results. A simplified method of calculation, allowing at the rated depth of defects on the surface of the hot-rolled steel to make operatively calculation of the maximum allowable depth of surface defects of steel billets before heating the metal in the heat deformation was developed. The findings shows that the maximum allowable depth of surface defects is reduced with increasing diameter rolled steel, reducing the initial section steel billet and degrees of oxidation of the metal in the heating furnace.

  6. The reactor vessel steels

    International Nuclear Information System (INIS)

    Bilous, W.; Hajewska, E.; Szteke, W.; Przyborska, M.; Wasiak, J.; Wieczorkowski, M.

    2005-01-01

    In the paper the fundamental steels using in the construction of pressure vessel water reactor are discussed. The properties of these steels as well as the influence of neutron irradiation on its degradation in the time of exploitation are also done. (authors)

  7. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    .... Chemical compositions, heat treatments, and some properties and uses are presented for structural steels, tool steels, stainless and heat-resisting steels, precipitation-hardenable stainless steels...

  8. Performance Steel Castings

    Science.gov (United States)

    2012-09-30

    system components to be built. Figure la shows the machine design . PSC-2012 Page 94 Glue Application Sheet Transfer Feed Elevator Figure la...Department of Defense such as cleats, ejection chutes , control arms, muzzle brakes, mortar components, clevises, tow bar clamps, ammo conveyor elements...Foundry and the members of Steel Founders’ Society of America. Abstract Weapon system designers and builders need advanced steel casting technology

  9. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  10. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    Directory of Open Access Journals (Sweden)

    Aizik F.

    2012-08-01

    Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  11. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  12. East/west steels for reactor pressure vessels

    International Nuclear Information System (INIS)

    Davies, M.; Kryukov, A.; Nikolaev, Y.; English, C.

    1997-01-01

    The report consist of three parts dealing with comparison of the irradiation behaviour of 'Eastern' and 'Western' steels, mechanisms of irradiation embrittlement and the role of compositional variations on the irradiation sensitivity of pressure vessels. Nickel, copper and phosphorus are the elements rendering the most essential influence on behaviour of pressure vessel steels under irradiation and subsequent thermal annealing. For WWER-440 reactor pressure vessel (RPV) steels in which nickel content does nor exceed 0.3% the main affecting factors are phosphorous and copper. For WWER-1000 RPV welds in which nickel content generally exceed 1.5% the role of nickel in radiation embrittlement is decisive. In 'Western' type steels main influencing elements are nickel and copper. The secondary role of phosphorus in radiation embrittlement of 'Western' steels is caused by lower relative content compared to 'Eastern' steels. The process of how copper, phosphorus and nickel contents affect the irradiation sensitivity of both types of steel seem to be similar. Some distinctions between the observed radiation effects is apparently caused by differences in the irradiation conditions and ratios of the contents of above mentioned elements in both types of steel. For 'Eastern' RPV steels the dependence of the recovery degree of irradiated steels due to postirradiation thermal annealing id obviously dependent on phosphorus contents and the influence of nickel contents on this process is detectable

  13. Development of ferritic steels for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs.

  14. Development of ferritic steels for fusion reactor applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs

  15. Hydrogen effects in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1983-01-01

    The effects of hydrogen on stainless steels have been reviewed and are summarized in this paper. Discussion covers hydrogen solution and transport in stainless steels as well as the effects of hydrogen on deformation and fracture under various loading conditions. Damage is caused also by helium that arises from decay of the hydrogen isotope tritium. Austenitic, ferritic, martensite, and precipitation-hardenable stainless steels are included in the discussion. 200 references

  16. Occupational Profiles in the European Steel Industry.

    Science.gov (United States)

    Franz, Hans-Werner; And Others

    The steel industry in Europe has faced great changes, with resulting layoffs and restructuring. Now that the most basic changes seem to be over, it has become evident that the remaining steel industry requires more highly trained workers than was the case previously. Although steel maintenance employees were always highly skilled, steel production…

  17. Cold-formed steel design

    CERN Document Server

    Yu, Wei-Wen

    2010-01-01

    The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Fourth Edition of the classic text provides you with more of the detailed, up-to-the-minute techni

  18. Performance of Retrofitted Self-Compacting Concrete-Filled Steel Tube Beams Using External Steel Plates

    Directory of Open Access Journals (Sweden)

    Ahmed A. M. AL-Shaar

    2018-01-01

    Full Text Available Self-compacting concrete-filled steel tube (SCCFST beams, similar to other structural members, necessitate retrofitting for many causes. However, research on SCCFST beams externally retrofitted by bolted steel plates has seldom been explored in the literature. This paper aims at experimentally investigating the retrofitting performance of square self-compacting concrete-filled steel tube (SCCFST beams using bolted steel plates with three different retrofitting schemes including varied configurations and two different steel plate lengths under flexure. A total of 18 specimens which consist of 12 retrofitted SCCFST beams, three unretrofitted (control SCCFST beams, and three hollow steel tubes were used. The flexural behaviour of the retrofitted SCCFST beams was examined regarding flexural strength, failure modes, and moment versus deflection curves, energy absorption, and ductility. Experimental results revealed that the implemented retrofitting schemes efficiently improve the moment carrying capacity and stiffness of the retrofitted SCCFST beams compared to the control beams. The increment in flexural strength ranged from 1% to 46%. Furthermore, the adopted retrofitting schemes were able to restore the energy absorption and ductility of the damaged beams in the range of 35% to 75% of the original beam ductility. Furthermore, a theoretical model was suggested to predict the moment capacity of the retrofitted SCCFST beams. The theoretical model results were in good agreement with the test results.

  19. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  20. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    Science.gov (United States)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  1. Utilization of structural steel in buildings.

    Science.gov (United States)

    Moynihan, Muiris C; Allwood, Julian M

    2014-08-08

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is 'rationalization'-providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in 'embodied' carbon emissions.

  2. Corrosion fatigue of pressure vessel steels in PWR environments--influence of steel sulfur content

    International Nuclear Information System (INIS)

    Scott, P.M.; Druce, S.G.; Truswell, A.E.

    1984-01-01

    Large effects of simulated light water reactor environments at 288 C on fatigue crack growth in low alloy pressure vessel steels are observed only when specific mechanical, metallurgical, and electrochemical conditions are satisfied simultaneously. In this paper, the relative importance of three key variables--steel impurity content, water chemistry, and flow rate--and their interaction with loading rate or strain rate are examined. In particular, the results of a systematic examination of the influence of a steel's sulfur content are described

  3. Corrosion fatigue of pressure vessel steels in PWR environments--influence of steel sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.M.; Druce, S.G.; Truswell, A.E.

    1984-07-01

    Large effects of simulated light water reactor environments at 288 C on fatigue crack growth in low alloy pressure vessel steels are observed only when specific mechanical, metallurgical, and electrochemical conditions are satisfied simultaneously. In this paper, the relative importance of three key variables--steel impurity content, water chemistry, and flow rate--and their interaction with loading rate or strain rate are examined. In particular, the results of a systematic examination of the influence of a steel's sulfur content are described.

  4. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    International Nuclear Information System (INIS)

    Novick, V.J.; Brodrick, C.J.; Crawford, S.; Nasiatka, J.; Pierucci, K.; Reyes, V.; Sambrook, J.; Wrobel, S.; Yeary, J.

    1996-01-01

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D ampersand D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D ampersand D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 μm and the other at about 10 μm. The average Mass Median Aerodynamic Diameters (MMAD's) for these tests are 0.36 ±0.08 μm for stainless steel, 0.48 ±0.17μm for aluminum and 0.52±0.12 μm for carbon steel

  5. Kawasaki Steel Giho, Vol. 27, No. 4, 1995. Special issue on steel structure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    ;Contents (Partial): Vertical Gust Prediction of Cable-Stayed Bridges in Yawed Wind; Design and Construction of a Super Platform Structure Made of Steel; Prefabricated Steel Deck of Battledeck Floor Type for Redecking; Aesthetic Design of Structures; and Lift-up Construction Method for Multi-layer Building.

  6. Data for a steel industry model

    OpenAIRE

    Mæstad, Ottar

    2000-01-01

    SNF has recently developed a new model of the steel market and some of the major factor markets connected to the steel industry. The aim of the model has been to study how regulations of the emissions of carbon dioxide (CO2) in the steel industry might affect the structure of the industry. It has also been an objective to investigate how structural changes in the steel industry might influence on the industry’s demand for transport services. This paper outlines the details about the data that...

  7. Symbolic aesthetics in steel structural systems

    Directory of Open Access Journals (Sweden)

    Usama Abdul-Mun'em Khuraibet

    2015-02-01

    Full Text Available The aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility and accuracy in manufacture of structural elements as visual items, structural interest in the forms of spaces which have long span systems or in high buildings are different forms of expression and influence. So the research focuses on the study of those expressive patterns related with the steel construction properties, including the advantages of these systems at the level of strength and firmness, flexibility and economy as well as aesthetic and expression. Accordingly, the research problem concentrated on educational shortage in the study of the structural steel system aspects concerning constructional characteristic, expressive and aesthetic features, and how to deal with them as a language bearing the symbols and meanings which have clear structural style, because it the best ways to make those systems as communication means with users, by premise that the use of expressional symbol in steel construction increases the aesthetic value. Therefore the research aims to reveal the most structural and expressive patterns by analysis the expressional means and steel structural aesthetics.

  8. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  9. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  10. National steel tries wheeling

    International Nuclear Information System (INIS)

    Dudak, J.R.

    1992-01-01

    In 1989, National Steel felt the need to take the next step to make its Detroit-based division, Great Lakes Steel, more competitive in the world flat-rolled steel market. In 1988, Great Lakes Steel started flowing natural gas through the first fully litigated bypass (Competitive Sourcing Option) of a local distribution company. In 1989, the second connection with the new supply route for gas transportation, Panhandle Eastern had started flowing and the LDC, Michigan Consolidated Gas Co. (MichCon) had pulled out their piping previously serving the plants. Since we had been able to structure a fully reliable supply route, storage and balancing program for gas in the face of such strong opposition by the LDC, the author felt it was time to attack the next singularly sourced major commodity, electricity. Electricity, at this major integrated steel plant, represented approximately 7% of plant cost yearly. Yet being monopolized, Great Lakes Division (GLD) could not multiple source this commodity like it does with its other 93% of costs, except for labor (25% of the 93%). Multiple sourcing is done to bring competitive pressure to suppliers and to diversify supplies and protect plant operation in the event of failure by one supplier. This paper describes National Steel's strategy to reduce the cost of power, at the minimum of capital costs, the most expedient way possible, that does not sacrifice any major long-term potential cost improvements. The results show that competitively priced power is available across the mid-west, at prices well below many state regulated electric utilities, for at least 5 to 15 years, but with major obstacles in obtaining transmission access

  11. Texture Analysis using The Neutron Diffraction Method on The Non Standardized Austenitic Steel Process by Machining,Annealing, and Rolling

    Directory of Open Access Journals (Sweden)

    Tri Hardi Priyanto

    2016-04-01

    Full Text Available Austenitic steel is one type of stainless steel which is widely used in the industry. Many studies on  austenitic stainless steel have been performed to determine the physicalproperties using various types of equipment and methods. In this study, the neutron diffraction method is used to characterize the materials which have been made from  minerals extracted from the mines in Indonesia. The materials consist of a granular ferro-scrap, nickel, ferro-chrome, ferro-manganese, and ferro-silicon added with a little titanium. Characterization of the materials was carried out in threeprocesses, namely: machining, annealing, and rolling. Experimental results obtained from the machining process generally produces a texture in the 〈100〉direction. From the machining to annealing process, the texture index decreases from 3.0164 to 2.434.Texture strength in the machining process (BA2N sample is  8.13 mrd and it then decreases to 6.99 in the annealing process (A2DO sample. In the annealing process the three-component texture appears, cube-on-edge type texture{110}〈001〉, cube-type texture {001}〈100〉, and brass-type {110}〈112〉. The texture is very strong leading to the direction of orientation {100}〈001〉, while the {011}〈100〉is weaker than that of the {001}, and texture withorientation {110}〈112〉is weak. In the annealing process stress release occurred, and this was shown by more randomly pole compared to stress release by the machining process. In the rolling process a brass-type texture{110}〈112〉with a spread towards the goss-type texture {110}〈001〉 appeared,  and  the  brass  component  is markedly  reinforced  compared  to  the undeformed state (before rolling. Moreover, the presence of an additional {110} component was observed at the center of the (110 pole figure. The pole density of three components increases withthe increasing degree of thickness reduction. By increasing degrees

  12. Auburn Steel Company radioactive contamination incident

    International Nuclear Information System (INIS)

    Bradley, F.J.; Cabasino, L.; Kelly, R.; Awai, A.; Kasyk, G.

    1986-04-01

    On February 21, 1983, workers at the Auburn Steel Company, Auburn, New York discovered that about 120 tons of steel poured that day had become contaminated with 60 Co. In addition to the steel, the air cleaning system and portions of the mill used in casting the steel were contaminated. Approximately 25 curies of 60 Co were involved. Decontamination and disposal of the contamination cost in excess of $2,200,000. This report details the discovery of the contamination, decontamination of the plant and disposal of the contamination

  13. Steeling and Resilience in Art Education

    Science.gov (United States)

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  14. Development of commercial nitrogen-rich stainless steels

    International Nuclear Information System (INIS)

    Liljas, M.

    1999-01-01

    This paper reviews the development of nitrogen alloyed stainless steels. Nitrogen alloying of austenitic stainless steels started at an early stage and was to a large extent caused by nickel shortage. However, direct technical advantages such as increased strength of the nitrogen alloyed steels made them attractive alternatives to the current steels. It was not until the advent of the AOD (argon oxygen decarburisation) process in the late 1960s that nitrogen alloying could be controlled to such accuracy that it became successful commercially on a broader scale. The paper describes production aspects and how nitrogen addition influences microstructure and the resulting properties of austenitic and duplex stainless steels. For austenitic steels there are several reasons for nitrogen alloying. Apart from increasing strength nitrogen also improves structural stability, work hardening and corrosion resistance. For duplex steels nitrogen also has a decisive effect in controlling the microstructure during thermal cycles such as welding. (orig.)

  15. Damascus steels: history, processing, properties and carbon dating

    International Nuclear Information System (INIS)

    Wadsworth, J.

    2007-01-01

    In the mid-1970s, a class of steels containing high levels of carbon (∼ 1-2 wt% C) was developed for superplastic characteristics - that is, the ability to plastically deform to an extraordinary degree in tension at intermediate temperatures. Because these steels also had excellent room temperature properties, they were developed for their commercial potential. In the late 1970s, we became aware of the striking compositional similarities between these modern steels and the ancient steels of Damascus. This observation led us to revisit the history and metallurgy of Damascus steels and related steels. The legends and origins of Damascus steel date back to the time of Alexander the Great (323 BC) and the medieval Crusades (11th and 12th century AD), and this material has also been the subject of scrutiny by famous scientist in Europe, including Michael Faraday. Modern attempts to reproduce the legendary surface patterns which famously characterized Damascus steels are described. The extend to which the characteristics of Damascus steels are unusual is discussed. Finally, a program on radiocarbon dating was initiated to directly determine the age of about 50 ancient steels, including a Damascus knife, and the results are summarized. (author)

  16. Designing of the chemical composition of steels basing on the hardenability of constructional steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    2003-01-01

    The paper presents the original method of modelling of the relationships between chemical composition of alloy constructional steel and its hardenability, employing neural networks. Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. (author)

  17. Mechanical properties of irradiated 9Cr-2WVTa steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Rieth, M.

    1998-01-01

    An Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel has excellent strength and impact toughness before and after irradiation in the Fast Flux Test Facility and the High Flux Reactor (HFR). The ductile-brittle transition temperature (DBTT) increased only 32 C after 28 dpa at 365 C in FFTF, compared to a shift of ∼60 C for a 9Cr-2WV steel--the same as the 9Cr-2WVTa steel but without tantalum. This difference occurred despite the two steels having similar tensile but without tantalum. This difference occurred despite the two steels having similar tensile properties before and after irradiation. The 9Cr-2WVTa steel has a smaller prior-austenite grain size, but otherwise microstructures are similar before irradiation and show similar changes during irradiation. The irradiation behavior of the 9Cr-2WVTa steel differs from the 9Cr-2WV steel and other similar steels in two ways: (1) the shift in DBTT of the 9Cr-2WVTa steel irradiated in FFTF does not saturate with fluence by ∼28 dpa, whereas for the 9Cr-2WV steel and most similar steels, saturation occurs at <10 dpa, and (2) the shift in DBTT for 9Cr-2WVTa steel irradiated in FFTF and HFR increased with irradiation temperature, whereas it decreased for the 9Cr-2WV steel, as it does for most similar steels. The improved properties of the 9Cr-2WVTa steel and the differences with other steels were attributed to tantalum in solution

  18. Technical features of steel structure construction by Kawasaki Steel; Kawasaki Seitetsu no kokozo gijutsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Urata, I.; Okata, S. [Kawasaki Steel Corp., Tokyo (Japan)

    1996-03-01

    In the steel structure technology of Kawasaki Steel, the joint technique (e.g., welding) is added to them while developing or improving the products that meet the social needs as a material supplier. Moreover, the execution technique that manufactures materials or constructs them as an integrated structure, the structural analysis that conforms to the function and application of a structure, and the design technique on dynamic properties or durability such as earthquake resistance, fatigue, and corrosion resistance are synthetically expanded for engineering. In this paper, a building steel frame, non-residence building, bridge, and harbor structure as steel structure in the building and construction fields were described for each structure genre. The structural technology of a building steel frame is summarized to the products of pillar materials. An earthquake brace, using a dead soft steel, with high earthquake energy absorption capability and a damping wall were also developed. The design and execution technique of a large roof was systematized. The exchange technique of a road bridge RC floor and the technique of an unstiffened suspension bridge for pipeline were developed. A new technique was also developed for a suspension monorail track and offshore structure. 30 refs., 5 figs.

  19. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    Science.gov (United States)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  20. Corrosion behaviour of laser clad stainless steels

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Weerasinghe, V.M.; West, D.R.F.

    1993-01-01

    The present paper is focussed in the study of the properties of a clad layer of stainless steel on a mild steel. By blowing powder of the alloy into a melt pool generated by a laser of 2 KW, an homogeneous layer of 316 stainless steel can be obtained. Structure, composition and corrosion behaviour are similar to those of a stainless steel in as-received condition. (Author)

  1. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  2. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  3. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  4. The problems of high-nitrogen steels production

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Kaputkina, L.M.; Efimenko, S.P.

    1999-01-01

    Analysis of existing technologies of high-nitrogen steel production shows that rational nitrogen content in mass production corresponds to moderate high values. Such steels can be smelted under normal or slightly elevated pressure in steelmaking units, using processes of mass- and special metallurgy. High-nitrogen steels with ''overequilibrium'' nitrogen content are promising, but technology and equipment for production of them are complicated, and production of such steels is therefore limited. (orig.)

  5. Behaviour of steels in natural environments: focus on stainless steels in natural sea water

    International Nuclear Information System (INIS)

    Feron, D.

    2005-01-01

    Corrosion behaviour of steels and alloys in natural environments is not only dependent to material parameters and environmental chemistry, but also to micro-organisms which may be there. The global approach used to investigate the behaviour of alloys in natural environments is illustrated by the work done on stainless steels in seawater. In aerated seawater, studies led to the proposal of an 'enzymatic model' based on the enzymatic catalyze of the cathodic reaction and which allows reproducing the electrochemical behaviour of stainless steels in natural seawater and the crevice corrosion phenomena observed in natural sea waters. Coupling areas under aerobic and anaerobic conditions leads to the worst situation for stainless steel behaviour: the catalysis of the cathodic reaction on aerobic exposed surfaces and the decrease of the corrosion resistance of anaerobic surfaces due to sulphides. These results lead to the concept of electro-active bio-films. (author)

  6. Structure of three Zlatoust bulats (Damascus-steel blades)

    Science.gov (United States)

    Schastlivtsev, V. M.; Gerasimov, V. Yu.; Rodionov, D. P.

    2008-08-01

    Chemical composition, structure, and hardness of samples of three Zlatoust bulats (Damascus steels), namely, an Anosov bulat blade (1841), Obukhov bulat blade (1859), and a Shvetsov forged bulat-steel blank (crucible steel) have been investigated. The Anosov bulat possesses all signs of the classical Damascus steel; this is a hypereutectoid carbon steel with a structure formed from chains of carbides against the background of fine pearlite (troostite). A banded pattern is revealed on the surface of the blade. The Obukhov blade cannot be referred to classical Damascus steel. The pattern on the surface of the blade is absent, despite the fact that the initial steel is hypereutectoid. The structure of the blade does not correspond to the structure of classical Damascus steel; this is bainite with numerous cementite particles. The Shvetsov sample cannot be regarded as Damascus steel since it is made from a hypereutectoid steel alloyed by managanese and tungsten. The pattern on the surface of the metal is a consequence of the dendritic structure of the ingot which is developed during forging. The structure of this pattern differs from classical damascene pattern, since the latter is formed due to a specific arrangement of a variety of carbide particles against the pearlitic or some other background obtained during heat treatment.

  7. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  8. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  9. Behaviour of carbon steel and chromium steels in CO2 environments

    International Nuclear Information System (INIS)

    Lefebvre, B.; Bounie, P.; Guntz, G.; Prouheze, J.C.; Renault, J.J.

    1984-01-01

    The behavior in aqueous CO 2 environments of steel with chromium content between 0 and 22% has been studied by autoclave tests. The influence of chromium and molybdenum contents has been investigated particularly on 13 Cr steel. Conventional electrochemical test results are related to the CO 2 autoclave test results. The influence of the environment: temperature, chloride concentration, partial pressure of CO 2 and some amount of H 2 S on the corrosion resistance are discussed

  10. Microstructural Development during Welding of TRIP steels

    NARCIS (Netherlands)

    Amirthalingam, M.

    2010-01-01

    The Advanced High Strength Steels (AHSS) are promising solutions for the production of lighter automobiles which reduce fuel consumption and increase passenger safety by improving crash-worthiness. Transformation Induced Plasticity Steel (TRIP) are part of the advanced high strength steels which

  11. Tribological Response of Heat Treated AISI 52100 Steels Against Steel and Ceramic Counterparts

    Directory of Open Access Journals (Sweden)

    Türedi E.

    2017-09-01

    Full Text Available AISI 52100 bearing steels are commonly used in applications requiring high hardness and abrasion resistance. The bearing steels are working under dynamic loads in service conditions and their toughness properties become important. In order to provide the desired mechanical properties, various heat treatments (austenizing, quenching and tempering are usually applied. In this study, AISI 52100 bearing steel samples were austenized at 900°C for ½ h and water quenched to room temperature. Then tempering was carried out at 795°C, 400°C and 200°C for ½ h. In order to investigate the effect of heat treatment conditions on wear behavior, dry friction tests were performed according to ASTM G99-05 Standard with a ‘ball-on-disk’ type tribometer. The samples were tested against steel and ceramic counterparts using the parameters of 100 m distance and 30 N load and 0.063 m/s rotational speed. After wear test, the surface characterization was carried out using microscopy. Wear loss values were calculated using a novel optical method on both flat and counterpart specimens.

  12. Precaution against radioactive contamination of steel products in Germany

    International Nuclear Information System (INIS)

    Ewers, E.; Schulz-Klemp, V.; Steffen, R.

    1999-01-01

    Regulations for handling of radioactive materials in Germany. Engagement of the Germany Iron and Steel Institute (VDEh) since the end of the eighties and measures taken. Level of radioactivity in uncontaminated steel products. Agreements between steel industry and scrap supplying industry as well as terms of delivery. Actual status of equipment for detection of radioactivity in the German steel plants. Demands of steel users for clean steel. (author)

  13. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  14. Corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Preece, C.M.

    1982-10-01

    A comparative study has been made of those properties of Massiv and Standard cements which are considered to determine their ability to protect steel reinforcement from corroding. Saturated Massiv cement has a higher evaporabel water content, but a significantly finer pore structure than has saturated Standard cement. This fine structure resulted in an electrical resistivity ten times higher and chloride diffusivity ten times lower than those of Standard cement. Electrochemical measurements have shown that the passive current density of steel in Massiv mortar is higher than that of steel in Standard mortar, but the higher current should lead to a more rapid decrease in potential to a level at which neither chloride attack of hydrogen evolution will occur. Whereas steel in Standard mortar was found to be highly susceptible to crevice corrosion, no such attack has been observed in Massiv mortar. Moreover, the initiation of chloride induced corrosion and the subsequent rates of corrosion were both lower in Massiv mortar than in Standard mortar. Thus, it may be predicted that Massiv cement would provide greater protection for steel reinforcement in underground structures exposed to chloride containing ground water than would Standard cement. (author)

  15. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ....A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and carbon-silicon steel may convert to graphite. (b) (Reproduces 124.2.B.) Upon prolonged exposure to...

  16. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    Tarata, Daniela Florentina

    1999-01-01

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  17. Micropurity in stainless steel making

    International Nuclear Information System (INIS)

    Motloch, Z.

    1981-01-01

    New technologies were developed by the Vitkovice research institutes in response to high requirements for the quality of high-alloy steels for nuclear power, viz., duplex technology with double vacuum degassing at the DH unit and oxidation vacuum degassing using the VAKUVIT equipment. The steel produced shows low contents of impurities and high micropurity. A study was conducted into changes in carbon content and the formation of titanium nitrides and carbonitrides in austenitic steels during their production, and optimum technological parameters were found for eliminating their formation in forgings. (author)

  18. Water requirements of the iron and steel industry

    Science.gov (United States)

    Walling, Faulkner B.; Otts, Louis Ethelbert

    1967-01-01

    Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore

  19. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  20. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  1. Metallurgy of steels for PWR pressure vessels

    International Nuclear Information System (INIS)

    Kepka, M.; Mocek, J.; Barackova, L.

    1980-01-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure. (B.S.)

  2. Metallurgy of steels for PWR pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kepka, M; Mocek, J; Barackova, L [Skoda, Plzen (Czechoslovakia)

    1980-09-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure.

  3. Metadynamic recrystallization in C steels

    Indian Academy of Sciences (India)

    Unknown

    EN24 and EN2 steels, a drop from 4000 s to 6 s for similar temperature rise was observed. Metadynamic ... carbon–manganese or silicon–manganese steels, but stops after a reduction at ... growth by strain-induced grain boundary migration;.

  4. A Tale of Wootz Steel

    Indian Academy of Sciences (India)

    manufacture of steel in south India by a crucible process at ... indicates that the production of wootz steel was almost on an industrial scale in ... in an Age of Design marked by ... The Russian Anasoff also studied the process of manufacturing.

  5. Optimum conditions for aging of stainless maraging steels

    International Nuclear Information System (INIS)

    Mironenko, P.A.; Krasnikova, S.I.; Drobot, A.V.

    1980-01-01

    Aging kinetics of two 0Kh11N10M2T type steels in which 3 % Mo (steel 1), and 3 % Mo and 11 % Co (steel 2) had been additionally introduced instead of titanium were investigated. Electron microscopy and X-ray methods were used. It was ascertained that the process of steel aging proceeded in 3 stages. Steel 2 was hardened more intensively during the aging, had a higher degree of hardness and strength after the aging, weakened more slowly if overaged than steel 1. The intermetallide hcp-phase Fe 2 Mo was the hardening phase on steels extended aging. Optimum combination of impact strength and strength was was achieved using two-stage aging: the first stage - maximum strength aging was achieved, the second stage - aging at minimum temperatures of two-phase α+γ region

  6. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    Science.gov (United States)

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  7. Radiation induced microstructural evolution in ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Kohno, Y.; Kohyama, A.; Asakura, K.; Gelles, D.S.

    1993-01-01

    R and D of ferritic/martensitic steels as structural materials for fusion reactor is one of the most important issues of fusion technology. The efforts to characterize microstructural evolution under irradiation in the conventional Fe-Cr-Mo steels as well as newly developed Fe-Cr-Mn or Fe-Cr-W low activation ferritic/ martensitic steels have been continued. This paper provides some of the recent results of heavy irradiation effects on the microstructural evolution of ferritic/martensitic steels neutron irradiated in the FFTF/MOTA (Fast Flux Test Facility/Materials Open Test Assembly). Materials examined are Fe-10Cr-2Mo dual phase steel (JFMS: Japanese Ferritic/Martensitic Steel), Fe-12Cr-XMn-1Mo manganese stabilized martensitic steels and Fe-8Cr-2W Tungsten stabilized low activation martensitic steel (F82H). JFMS showed excellent void swelling resistance similar to 12Cr martensitic steel such as HT-9, while the manganese stabilized steels and F82H showed less void swelling resistance with small amount of void swelling at 640-700 K (F82H: 0.14% at 678 K). As for irradiation response of precipitate behavior, significant formation of intermetallic χ phase was observed in the manganese stabilized steels along grain boundaries which is though to cause mechanical property degradation. On the other hand, precipitates identified were the same type as those in unirradiated condition in F82H with no recognition of irradiation induced precipitates, which suggested satisfactory mechanical properties of F82H after the irradiation. (author)

  8. Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

    International Nuclear Information System (INIS)

    James, L.A.; Poskie, T.J.; Auten, T.A.; Cullen, W.H.

    1996-01-01

    Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 degrees C, under loading conditions (ΔK, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC

  9. A model for TRIP steel constitutive behaviour

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Menari, G

    2011-01-01

    A constitutive model is developed for TRIP steel. This is a steel which contains three or four different phases in its microstructure. One of the phases in TRIP steels is metastable austenite (Retained Austenite) which transforms to martensite upon deformation. The accompanying transformation strain

  10. Reinforcement steel corrosion in passive state and by carbonation: Consideration of galvanic currents and interface steel - concrete defaults

    International Nuclear Information System (INIS)

    Nasser, A.

    2010-01-01

    This thesis aims to study the durability of nuclear waste deep storage structures. The work carried out is essentially an experimental study, and focuses on the corrosion of steel in the passive state with aerated or non-aerated conditions on the one hand, and the corrosion of steel in carbonated concrete during the propagation phase on the other hand. Indeed, the pore solution of concrete in contact with the metal is alkaline (pH between 12 and 13). Under these conditions, steel reinforced concrete remains passive by forming a stable and protective oxide layer (corrosion of steel in the passive state). This passive layer limits the steel corrosion rate at very low values (negligible on a short life time) but not null. For the nuclear waste storage structures due to a very long life time (up to several hundred years), this low corrosion rate can become a risk. Therefore, it is necessary to study the evolution of the oxide layer growth over time. The objectives of the thesis are to study the influence of the steel-concrete interface quality on reinforcement corrosion in passive and active state, and the possible occurrence of galvanic corrosion currents between different reinforcement steel areas. (author)

  11. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  12. Chemical analysis of steel by optical emission spectrometry

    International Nuclear Information System (INIS)

    Hayakawa, M.O.; Kajita, T.; Jeszensky, G.

    1981-01-01

    The development of the chemical analysis for special steels by optical emission spectrometry direct reading method with computer, at the Siderurgica N.S. Aparecida S.A. is presented. Results are presented for the low alloy steels and high speed steel. Also, the contribution of this method to the special steel preparation is commented. (Author) [pt

  13. Steamside Oxidation Behavior of Experimental 9%Cr Steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D.

    2007-10-01

    Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650ºC for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.

  14. Plasticity of low carbon stainless steels

    International Nuclear Information System (INIS)

    Bulat, S.I.; Fel'dgandler, Eh.G.; Kareva, E.N.

    1975-01-01

    In the temperature range 800-1200 0 C and with strain rates of from 10 -3 to 3 s -1 , austenitic (000Kh18N12) and austenitic-ferrite (000Kh26N6) very low carbon stainless steels containing 0.02-0.03% C exhibit no higher resilience than corresponding ordinary steels containing 0.10-0.12% C. However, the plasticity of such steels (particularly two-phase steels) at 900-1100 0 C is appreciably inferior owing to the development of intergranular brittle fracture. Pressure treatment preceded by partial cooling of the surface to 850 0 C yields rolled and forged products with acceptable indices but is inconvenient technically. At the Zlatoustovsk and Ashin metallurgical plants successful tests have been performed involving the forging and rolling of such steels heated to 1280-1300 0 C without partial cooling; it was necessary to improve the killing conditions, correct the chemical composition (increasing the proportion of ferrite) and take measures against heat loss. (author)

  15. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Li, Xiaodong; Chang, Ying; Wang, Cunyu; Hu, Ping; Dong, Han

    2017-01-01

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M s temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  16. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodong [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Chang, Ying, E-mail: yingc@dlut.edu.cn [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Wang, Cunyu [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China); Hu, Ping [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Dong, Han [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China)

    2017-01-02

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M{sub s} temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  17. From the TRIP effect and Quenching and Partitioning steels concepts to the development of new high-performance, lean powder metallurgy steels

    International Nuclear Information System (INIS)

    Torralba, José M.; Navarro, Alfonso; Campos, Mónica

    2013-01-01

    A new method of developing lean powder metallurgy steel is proposed. The microstructure of the steel is tailored by combining two different prealloyed steel grades. These materials open a new niche in steel grades for high-performance applications by using a low-cost method of production. Moreover, an alternative route to developing microstructures suitable for manufacturing TRIP and/or Q and P steels is proposed avoiding some of the complex steps that must otherwise be taken to obtain the proper starting microstructure

  18. From the TRIP effect and Quenching and Partitioning steels concepts to the development of new high-performance, lean powder metallurgy steels

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, José M., E-mail: josemanuel.torralba@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid (Spain); Department of Materials Science and Engineering, Universidad Carlos III Av. Universidad, 30, Leganés (Spain); Navarro, Alfonso; Campos, Mónica [Department of Materials Science and Engineering, Universidad Carlos III Av. Universidad, 30, Leganés (Spain)

    2013-06-20

    A new method of developing lean powder metallurgy steel is proposed. The microstructure of the steel is tailored by combining two different prealloyed steel grades. These materials open a new niche in steel grades for high-performance applications by using a low-cost method of production. Moreover, an alternative route to developing microstructures suitable for manufacturing TRIP and/or Q and P steels is proposed avoiding some of the complex steps that must otherwise be taken to obtain the proper starting microstructure.

  19. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  20. Clean Cast Steel Technology, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  1. Mechanical properties of CO2/MIG welded structural rolled steel and stainless steel

    International Nuclear Information System (INIS)

    Lim, Jong Young; Yoon, Myong Jin; Kim, Sang Youn; Kim, Tae Gyu; Shin, Hyeon Seung

    2015-01-01

    To accomplish long-term use of specific parts of steel, welding technology is widely applied. In this study, to compare the efficiency in improving mechanical properties, rolled steel (SS400) was welded with stainless steel (STS304) by both CO 2 welding method and MIG (metal inert gas) welding method, respectively. Multi-tests were conducted on the welded specimen, such as X-ray irradiation, Vickers' Hardness, tensile test, fatigue test and fatigue crack growth test. Based on the fatigue crack growth test performed by two different methods, the relationship of da/dN was analyzed. Although the hardness by the two methods was similar, tensile test and fatigue properties of MIG welded specimen are superior to CO 2 welded one.

  2. IMPACT STRENGTH AND FAILURE ANALYSIS OF WELDED DAMASCUS STEEL

    Directory of Open Access Journals (Sweden)

    Rastislav Mintách

    2012-01-01

    Full Text Available The aim of this work was the experimental research of damascus steel from point of view of the structural analyze, impact strength and failure analyzes. The damascus steel was produced by method of forged welding from STN 41 4260 spring steel and STN 41 9312 tool steel. The damascus steel consisted of both 84 and 168 layers. The impact strength was experimentally determined for original steels and damascus steels after heat treatment in dependence on temperature in the range from -60 to 160 °C. It has been found that the impact strength of experimental steels decreased with decreasing temperature behind with correlated change of damage mode. In the case of experimental tests performed at high temperature ductile fracture was revealed and with decreasing temperature proportion of cleavage facets increased. Only the STN 41 9312 steel did not show considerable difference in values of the impact strength with changing temperature.

  3. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  4. High-strength maraging steels

    International Nuclear Information System (INIS)

    Grachev, S.V.; Shejn, A.S.

    1989-01-01

    Analysis of data on technological and operation properties of maraging steels on Fe-Cr-Ni, Fe-Ni, Fe-Cr-Co-Mo bases is given. Their advantages and drawbacks are pointed out. The scheme of strengthening heat treatment is considered. The fields of the most effective application of maraging steels for instance, for products operating under conditions of low-cycle and shock cyclic loading are mentioned

  5. Parallel between steels alloyed with chrome-nickel and Fe-Mn-Al-C steels, in their response to fracture and wear (Review)

    International Nuclear Information System (INIS)

    Ramos, J; Perez, G.A

    2008-01-01

    The big worldwide demand for chrome-nickel alloy steels ('conventional steel') leads to the need for advanced materials for applications in different engineering systems that operate at high temperatures and in aggressive environmental conditions, favoring research and development in alternate alloys. In this technological race in search of these new materials, the FeMnAlC alloys ('new steels') have attracted attention for their excellent mechanical and tribological properties as well as for their good performance in corrosive-oxide environments, which make them similar to conventional steel. There are two important similarities between these two steels. First, an agent that causes the passive film to become stainless appears in both steels: chrome in the conventional steel, and aluminum in the FeMnAl alloy. The second similarity is that a stabilizing agent of the austenitic phase (FCC) appears in both, so that excellent mechanical properties can be obtained: nickel in the conventional steel, and manganese in the FeMnAl alloy. In certain sectors, such as aeronautics, conventional steel is rarely used because it is a very heavy material. This conventional steel is almost three times heavier that aluminum (7.85/2.7). Two advantages that the new FeMnAIC steels have compared to the conventional steels are that they are about 13% lighter in weight and they are less expensive. The FeMnAl also have excellent mechanical properties and good corrosion-oxidation resistance, which generates big expectations for their application in a broad scientific spectrum. This work reports the state of the information currently available about FeMnAlC alloys, comparing the mechanical and tribological behaviors of conventional alloy steels with chrome and nickel alloys, specifying the scopes of their application. A condition that favors the steels' fragility is the high speed of deformation and impact, where the FCC crystalline structure materials do not have a fragile ductile transition

  6. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  7. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  8. Use of ferritic steels in breeder reactors worldwide

    International Nuclear Information System (INIS)

    Patriarca, P.

    1983-01-01

    The performance of LMFBR reactor steam generator materials is reviewed. Tensile properties of stainless steel-304, stainless steel-316, chromium-molybdenum steels, and Incoloy 800H are presented for elevated temperatures

  9. Comparison of SA508 Gr.3 and SA508 Gr.4N Low Alloy Steels for Reactor Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S

    2009-12-15

    The microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure which has the coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3} due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. Besides, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect. And the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

  10. 76 FR 2708 - Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From...

    Science.gov (United States)

    2011-01-14

    .... 701- TA-267 and 731-TA-304 (Third Review)] Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From Korea AGENCY: United States International Trade Commission...-steel cooking ware from Taiwan and the antidumping and countervailing duty orders on imports of top-of...

  11. Solubility and diffusivity of hydrogen in enameling steel

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, P.; Valentini, R.; Solina, A.; Gastaldo, F. (Centro Sviluppo Materiali, Rome (Italy) Pisa Univ. (Italy). Dip. di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali)

    1991-06-01

    In recent years, continuous casting has almost expelled conventional ingot casting from the steel-making process by its much higher productivity. However, enameling steel sheets doesn't give the steel sufficient resistance to fishscale, as that which is achieved by the inclusions in case of ingot capped steel. Fishscales are caused by hydrogen gas building up pressure at the interface between enamel and steel, resulting in the rupture of enamel. Object of this study, was not only to correlate fishscale susceptibility with metallurgical parameters, but to define the effect of reversible and irreversible traps on hydrogen solubility and diffusivity in enameling steel. Hydrogen permeation was studied, in low carbon enameling steel, with an electrochemical technique developed by Devanathan and co-workers. This method was used to calculate concentrations of irreversibly adsorbed hydrogen and evaluate hydrogen diffusion coefficients. The results on reversible traps correlated with micro-voids formations around the carbide precipitate, while the irreversible traps correlated with inclusions and precipitate content.

  12. Topic 1. Steels for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Brynda, J.; Kepka, M.; Barackova, L.; Vacek, M.; Havel, S.; Cukr, B.; Protiva, K.; Petrman, I.; Tvrdy, M.; Hyspecka, L.; Mazanec, K.; Kupca, L.; Brezina, M.

    1980-01-01

    Part 1 of the Proceedings consists of papers on the criteria for the selection and comparison of the properties of steel for pressure vessels and on the metallurgy of the said steels, the selection of suitable material for internal tubing systems, the manufacture of high-alloy steels for WWER components, the mechanical and metallurgical properties of steel 22K for WWER 440 pressure components, and of steel 10MnNi2Mo for the WWER primary coolant circuit, and the metallographic assessment of steel 0Kh18N10T. (J.P.)

  13. Welding Metallurgy and Weldability of Stainless Steels

    Science.gov (United States)

    Lippold, John C.; Kotecki, Damian J.

    2005-03-01

    Welding Metallurgy and Weldability of Stainless Steels, the first book in over twenty years to address welding metallurgy and weldability issues associated with stainless steel, offers the most up-to-date and comprehensive treatment of these topics currently available. The authors emphasize fundamental metallurgical principles governing microstructure evolution and property development of stainless steels, including martensistic, ferric, austenitic, duplex, and precipitation hardening grades. They present a logical and well-organized look at the history, evolution, and primary uses of each stainless steel, including detailed descriptions of the associated weldability issues.

  14. Selected properties of new „duplex” cast steel

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-10-01

    Full Text Available In this paper selected properties of new „duplex” cast steel are presented. The new cast steel was devised in HYDRO-VACUUM company in Grudziądz, where “duplex” cast steel for pump elements is smelted. The goal was to devise a new grade of “duplex” cast steel of better physicochemical properties and cheaper than now applied. It was demonstrated, that there is the possibility of devising the new grade of “duplex” cast steel. It is characterized by higher mechanical properties, similar wear resistance and greater corrosion resistance in 15% water solution of H2SO4 in comparison to now applied “duplex” cast steel. The chemical composition was selected to obtain in microstructure about of 50% ferrite and 50% austenite. It guarantee the highest properties and the lowest costs of its smelting.In the paper results of: the microstructure, Rm, Rp0,2, A5, HB, wear resistance and corrosion resistance in water solution of 15% HCl and H2SO4 acids of new cast steel was presented. They were compared with now applied in HYDRO-VACUUM company “duplex” cast steel.

  15. The structure of the alphinizing coat on alloy steels

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper results of the structure of the coat alphinizing in AlSi5 silumin on alloy steels: acid-proof 1H18N9T (X6CrNiTi18-10 and high speed SW18 (HS18-0-1 were presented. The temperature of the alphinizing bath was amounts to750±5°C, and immersion time of the element τ = 180s. It was shown, that there is the different “g” coat thickness on testing steels. On the 1H18N9T steel it amounts to g = 52μm, and on the SW18 steel – g = 203μm. Regardless of a grade of testing alloy steels the coat consist of three layers with diversified phasic structure. There is different chemical composition of coat layers on testing steels. The first layer from the base consist of AlFe phase containing alloy addictions of steels: Cr and Ni (1H18N9T and W, V and Cr (SW18. On this layer crystallize the second layer of intermetallic phases. It is the phase containing the main alloy addiction of steels: AlFeCr (1H18N9T and AlFeW (SW18. The last, outside layer consist of silumin containing AlFeNi intermetallic phases on the 1H18N9T steel and AlFeW on the SW18 steel. Regardless of the grade of testing steels there is Si element in all layers of the coat. There are morphological differences in tested layers. The second layer (AlFeW phase inside the coat on the SW18 steel consist of faced crystals growing into in outside silumin layer. On the 1H18N9T steel a boundary between transient and outside layer is more uniform. Free separations of intermetallic phases inside silumin layer on the 1H18N9T steel have lamellar and on the SW18 steel – faced form.

  16. Marine corrosion of mild steel at Lumut, Perak

    Science.gov (United States)

    Ting, Ong Shiou; Potty, Narayanan Sambu; Liew, Mohd. Shahir

    2012-09-01

    The corrosion rate of structural steels in the adverse marine and offshore environments affects the economic interest of offshore structures since the loss of steel may have significant impact on structural safety and performance. With more emphasis to maintain existing structures in service for longer time and hence to defer replacement costs, there is increasing interest in predicting corrosion rate at a given location for a given period of exposure once the protection coating or cathodic protection is lost. The immersion depth, salinity, steel composition and water pollution will be taken into account. Various corrosion allowances are prescribed for structural members by different standards. There are no studies to determine the appropriate corrosion allowance for steel structures in marine environment in Malaysia. The objectives of the research are to determine the nature and rate of corrosion in mm/year for steel structures in marine environment. It also tries to identify whether the corrosion rate is affected by differences in the chemical composition of the steels, and microalgae. Two sets of corrosion coupons of Type 3 Steel consisting of mild steel were fabricated and immersed in seawater using steel frames. The corrosion rate of the coupon in mm/ per year is estimated based on the material weight loss with time in service. The results are compared with recommendations of the code.

  17. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    International Nuclear Information System (INIS)

    Cruz, Magnus G.H.; Viecelli, Alexandre

    2008-01-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation

  18. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Magnus G.H. [Marcopolo S.A., Unidade Ana Rech, Av. Rio Branco, 4889, Ana Rach, 95060-650 Caxias do Sul (Brazil)], E-mail: magnus@verbonet.com.br; Viecelli, Alexandre [Mechanical Engineering Department, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, 95070-560 Caxias do Sul, RS (Brazil)], E-mail: avieceli@ucs.br

    2008-07-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation.

  19. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  20. 75 FR 62144 - Porcelain-on-Steel Cooking Ware From China and Taiwan; Top-of-the-Stove Stainless Steel Cooking...

    Science.gov (United States)

    2010-10-07

    ...); (Investigation Nos. 701-TA-267 and 731-TA-304 (Third Review))] Porcelain-on-Steel Cooking Ware From China and Taiwan; Top-of- the-Stove Stainless Steel Cooking Ware From Korea AGENCY: United States International... porcelain-on-steel cooking ware from China and Taiwan and the antidumping and countervailing duty orders on...

  1. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  2. Fire-induced collapses of steel structures

    DEFF Research Database (Denmark)

    Dondera, Alexandru; Giuliani, Luisa

    Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....

  3. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  4. Experimental studies of Steel Corrugated Constructions

    Directory of Open Access Journals (Sweden)

    Lazarev Yuriy

    2016-01-01

    Full Text Available The purpose of this particular article is to assess existing calculations of steel corrugated constructions. Steel Corrugated Construction is a perspective type of constructions, which is exhibiting numerous advantages in comparison with one that currently applied in automobile and railroad networks (reinforced concrete water-throughput pipes, reinforced concrete frame bridges. The evaluation of experimental data on models of constructions of this particular type has been carried out in order to improve calculations of Steel Corrugated Constructions.

  5. The development of EUROFER reduced activation steel

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, B. van der E-mail: vanderschaaf@nrg-nl.com; Tavassoli, F.; Fazio, C.; Rigal, E.; Diegele, E.; Lindau, R.; LeMarois, G

    2003-09-01

    Ferritic martensitic steels show limited swelling and susceptibility to helium effects and can be made with low activation chemical compositions. These properties make them the reference steel for the development of breeding blankets in fusion power plants. EUROFER97 is the European implementation of such a steel, where experience gained from an IEA co-operation with Japan and the US is also implemented. Results obtained so far show that EUROFER steel has attractive mechanical properties even after long ageing times. Compatibility tests in water and PbLi17 are in progress. Oxidised aluminium is the most effective protective layer in PbLi17. The displacement damage and helium formation strongly influence the hydrogen transport in the steel. Present experiments should be backed by tests in a more fusion relevant environment, e.g. IFMIF. The 2.5 dpa neutron irradiations at low temperatures result in a higher DBTT. High dose irradiations, up to 80 dpa, are underway. The early results of ODS grades with EUROFER steel composition show potential of these grades for increasing the operating temperature with 100-150 K.

  6. Assessing the national steel-making problem: the demand for steel products in Brazil (1901-1940

    Directory of Open Access Journals (Sweden)

    Gustavo Barros

    2017-12-01

    Full Text Available This paper examines the demand for steel products inBrazil between 1901 and 1940, considering its dimension, its composition and its evolution, as well as the contemporaries’ perception on the issue. In order to do this, a wide array of primary sources is used, including original disaggregated foreign exchange data. Based on these sources, it is observed that the dimension of the potential domestic market exhibited a certain stability along the more than three decades during which the steel-making debate took place, and that this reflected on the contemporary estimates of the size of the market. This relative stability of the market size was accompanied by a diversification process of the demand for steel products. Furthermore, the share of iron and steel products on the value of imports showed a growth trend along the period, highlighting the importance the external constraint had in the shaping of this market in the country.

  7. Corrosion behaviour of dissimilar welds between martensitic stainless steel and carbon steel from secondary circuit of candu npp

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2015-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. It is not unusual to find that, although the base metal or alloy is resistant to corrosion in a particular environment, the welded counterpart is not resistant. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. Our experiments were performed in chloride environmental on two types of samples: non-welded (420 martensitic steel and 52.2k carbon steel) and dissimilar welds (dissimilar metal welds: joints beetween 420 martensitic steel and 52.2k carbon steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and metallography microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and carbon steel in solutions containing chloride ions. We have been evaluated the corrosion rates of samples (welded and non-welded) by electrochemically. (authors)

  8. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450 0 C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450 0 C. 18 refs., 13 figs

  9. Iron and steel research at CENIM

    International Nuclear Information System (INIS)

    Medina, S. F.; Lopez, F.; Morcillo, M.

    2003-01-01

    In 2002 the National Centre for Metallurgical Research (CENIM) celebrated its 39th anniversary. During this time, steel has been the most studied material of all the metals and alloys researched in the different projects funded by national science and technology plans, European metallurgical research programmes, and by the iron and steel making companies who over the years have placed their trust in the research work undertaken at CENIM. Two generations of researchers have dedicated their careers to studying the different aspects of steel, from primary metallurgy considering iron ores and enrichment processes, the thermodynamics of reactions in the blast furnace and in the ladle, thermal and thermomechanical treatments, the physical metallurgy of steels, their mechanical properties, and finally their deterioration in a wide range of media of different aggressivities. CENIM maintains its commitment to iron and steel research, drawing attention to the vast amount of research work undertaken and financed within the framework of the ECSC programme since Spain joined the European Community in January 1986. (Author) 3 refs

  10. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  11. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  12. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  13. Stainless steel electrochemical behaviour - application to the decontamination of steel parts contaminated by tritium

    International Nuclear Information System (INIS)

    Bellanger, G.

    1991-01-01

    This purpose of this work is the study of an electrochemical decontamination process of stainless steel in which tritium is present on the surface of the metal, in the oxide layer and in the metal. We have first investigated the behaviour of the oxide layer. Then we have studied the hydrogen evolution, its diffusion and retrodiffusion in the metal. The results are applied to the decontamination of steel parts contamined by tritium. Part of the tritium can be eliminated by reducing the oxyde layer, which contains large amounts of tritium. However, it is more beneficial to electrolyse at the potential at which the H + ions are reduced. The hydrogen on the steel surface enters in the metal and displaces most of tritium located in the metallic layers near the surface. The tritium surface elimination rate is about 95%. The tritium eliminated through electrolysis is only a small fraction of all the tritium contained in the metal. However, according to conservation experiments of parts after electrolysis, it can be concluded that hydrogen, probably more strongly bound than tritium to steel, forms near the surface a barrier that prevents tritium retrodiffusion. Electrolysis appears as a satisfactory process for the surface decontamination of slightly tritiated steel parts. A decontamination automaton based on the preceding results is described using a pad electrolyser. This type of decontamination is little polluting, and the parts can be recycled after the in situ treatment [fr

  14. The effect of intermediate stop and ball size in fabrication of recycled steel powder using ball milling from machining steel chips

    International Nuclear Information System (INIS)

    Fitri, M.W.M.; Shun, C.H.; Rizam, S.S.; Shamsul, J.B.

    2007-01-01

    A feasibility study for producing recycled steel powder from steel scrap by ball milling was carried out. Steel scrap from machining was used as a raw material and was milled using planetary ball milling. Three samples were prepared in order to study the effect of intermediate stop and ball size. Sample with intermediate stop during milling process showed finer particle size compared to the sample with continuous milling. Decrease in the temperature of the vial during the intermediate stop milling gives less ductile behaviour to the steel powder, which is then easily work-hardened and fragmented to fine powder. Mixed small and big size ball give the best production of recycled steel powder where it gives higher impact force to the scrap and accelerate the fragmentation of the steel scrap into powder. (author)

  15. Austenitic stainless steel-to-ferritic steel transition joint welding for elevated temperature service

    International Nuclear Information System (INIS)

    King, J.F.; Goodwin, G.M.; Slaughter, G.M.

    1978-01-01

    Transition weld joints between ferritic steels and austenitic stainless steels are required for fossil-fired power plants and proposed nuclear plants. The experience with these dissimilar-metal transition joints has been generally satisfactory, but an increasing number of failures of these joints is occurring prematurely in service. These concerns with transition joint service history prompted a program to develop more reliable joints for application in proposed nuclear power plants

  16. Electrochemical Determination of Hydrogen Entry to HSLA Steel during Pickling

    Directory of Open Access Journals (Sweden)

    Jari Aromaa

    2018-01-01

    Full Text Available Pickling with hydrochloric acid is a standard method to clean steel surfaces before hot-dip galvanizing. When normal low strength steels are pickled, hydrogen formed in pickling reactions does not have any significant harmful effect on the mechanical properties of steel. However, in pickling of steels with higher strength, the penetration of hydrogen into the steel may cause severe damages. The effect of pickling of high-strength low-alloy (HSLA steels was investigated using a cell construction based on the Devanathan-Stachurski method with modified anodic surface treatment and hydrogen production using acid. The penetration and the permeability of hydrogen were measured using an electrochemical cell with hydrochloric acid on the one side of the steel sample and a solution of NaOH on the other side. No protective coating, for example, palladium on the anodic side of the sample, is needed. The penetration rate of hydrogen into the steel and exit rate from the steel were lower for higher strength steel.

  17. Applications of electron beam to precoated steel

    International Nuclear Information System (INIS)

    Koshiishi, K.; Masuhara, K.

    1992-01-01

    Applications of EB to precoated steel started with paint cure and have expanded to film lamination and surface modification. These applications can offer precoated steel some advantages which are difficult or impossible to gain by thermal methods. But there are also such problems as adhesion, formability and paintability in EB processing. In practice, using EB technologies along with thermal technologies cannot be avoided for precoated steel at the present. Future development of EB applications to precoated steel will depend on how we can seek superiority and distinction of EB technology against conventional and competitive technologies. (author)

  18. Mechanism of creep in stainless steel

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Silveira, T.L.

    In the present work the creep criterions to identify the deformation mechanisms through the exponent of the strain rate versus stress relationship are presented. When applied to several stainless steels these criterions show an apparent contradiction for the proper mechanism acting at Σ/D above 10 9 /cm 2 . Microstructural aspects interfering in different manners with the fracture of these steels could be a reason for rationalizing the contradictory behavior. This is discussed in suggested deformation maps for the steels investigated [pt

  19. MERGER FOR MONOPOLY: THE FORMATION OF U.S. STEEL

    Directory of Open Access Journals (Sweden)

    Charles S. Reback

    2007-01-01

    Full Text Available Scholars have posited three reasons as to why U.S. Steel Corporation was formed: to swindle the public, to monopolize the steel industry, or to become a more efficient firm. The evidence from a stock market event study shows that from its inception, U.S. Steel was viewed as a monopolistic competitor. The stock prices of component and competing firms reacted positively to the announcement of the company’s formation. This is consistent with the theory that U.S. Steel was formed to monopolize the domestic steel industry, inconsistent with the theory that U.S. Steel was formed to become a more efficient firm, and inconsistent with the theory that US. Steel was formed in order to sell overpriced stock to an unsuspecting public. These results confirm Stigler’s conclusions in his classic paper “The Dominant Firm and the Inverted Umbrella,” despite that paper’s empirical flaws. Further, this conclusion is supported by much of the recent literature on U:S. Steel.

  20. Radioisotope methods of investigations of phenomenons at phases border of steel - atmosphere in gaseous processes of thermochemical treatment of steel

    International Nuclear Information System (INIS)

    L'utse-Birk, A.; Bel'ski, V.; Vez'ranovski, Eh.; Valis', L.

    1979-01-01

    Radioisotope methods of investigations of the processes of thermochemical treatment of steels are valuable, and in some cases, the only means for analysis of complicated mechanisms of diffusion, absorption and chemical reactions, going on in some technological processes. New specific methods are stated for investigation of processes on the border between steel and gaseous atmosphere. Quantative method nas been developed for investigation of the kinetics of carbon transfere (labelled by carbon-14) from steel into gases. Hydrocarbons and their derivatives are adsorbed selectivelly and beta-activity of the compound is measured in the presence of liquid scintillators. Limiting detectable amount of carbon equals to 0.5μg. Application of labelled (by radioisotope iron-59) iron in steel has ensured a possibility to determine its participation in reactions with chromium and titanum coating atmospheres. Application of hydrocarbons labelled by carbon-14 in the composition of titanum coating atmosphere has permitted to determine, in comparison with investigation of carbon diffusion in steel, participation of two different carbon sources in the forming of the TiC layer on steel and has led to the optimization of processes, especially for low-carbon steels [ru

  1. Prospects of weldable steels for nuclear power engineering

    International Nuclear Information System (INIS)

    Pilous, V.

    1985-01-01

    In nuclear power plants with WWER reactors a medium-alloyed CrNiMoV steel is considered for the pressure vessel and a MnNiMoV steel for the primary pipes, the pressurizer and other systems. The chemical composition of both steels is given and briefly discussed are the results of tests carried out within a study of the weldability of the steels. Attention is also devoted to the causes of cracks under austenite-based overlays occurring when medium-alloyed CrNiMoV steels are overlaid with strip electrodes using high thermal input submerged arc welding, and in the process of heat treatment. It appears that austenitic overlays reduce the life span by 5 to 15% as compared with the basic steel. If, however, the overlay is not part of the cross section critical with regard to strength, the reduced life span need not be considered and both types of steel will be suitable for primary circuits of nuclear power plants because they guarantee the required mechanical and physical properties of the welded joints. (Z.M.)

  2. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    Science.gov (United States)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-07-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  3. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    Science.gov (United States)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-03-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  4. TiC reinforced cast Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  5. TiC-reinforced cast Cr steels

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Schrems, K. K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5-4.5Ti, and 1-1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  6. Volatility Spillover in Chinese Steel Markets

    Science.gov (United States)

    Fang, Wen

    2018-03-01

    This paper examines volatility spillover in Chinese steel markets by comparing spillover effects before and after steel futures market established and finds some interesting change. Volatility spillover method based on multi-GARCH model are proposed. The results show that there is significant proof for spillover effects from B2B electronic market to spot market, and two-way effects between futures and spot market. Market policy planners and practitioners could make decisions according to the master of spillovers. We also find that B2B e-market and futures market can both provide efficient protection against steel price volatility risk, B2B e-market offer a broad-based platform for trading steel commodities over time and space since e-market role in information flow process is dominant.

  7. GRAPHITIZED STEELS IN MACHINE-BUILDING

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2010-01-01

    Full Text Available It is shown that graphitized steels in some cases due to its intermediate disposition by structure and characteristics among low-carbon steels and cast irons, can provide the necessary combination of characteristics of construction material and consequently to increase safety and durability of details of metallurgical and machinebuilding industry machines.

  8. 78 FR 11090 - Steel Import Monitoring and Analysis System

    Science.gov (United States)

    2013-02-15

    ... tariffs on these steel imports and providing the steel industry time to restructure. The monitoring system... submissions were received from a coalition of eight steel trade groups (referred to as the ``industry''), a... that helps the industry to closely monitor steel imports. The comments are summarized below. The three...

  9. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  10. Thermal stability study for candidate stainless steels of GEN IV reactors

    International Nuclear Information System (INIS)

    Simeg Veternikova, J.; Degmova, J.; Pekarcikova, M.; Simko, F.; Petriska, M.; Skarba, M.; Mikula, P.; Pupala, M.

    2016-01-01

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  11. Thermal stability study for candidate stainless steels of GEN IV reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simeg Veternikova, J., E-mail: jana.veternikova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Degmova, J. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pekarcikova, M. [Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, Paulinska 16, 917 24 Trnava (Slovakia); Simko, F. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia); Petriska, M. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Skarba, M. [Slovak University of Technology, Vazovova 5, 812 43 Bratislava (Slovakia); Mikula, P. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pupala, M. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia)

    2016-11-30

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  12. Elevated temperature mechanical properties of line pipe steels

    Science.gov (United States)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow

  13. Quest for steel quality: the role of metallurgical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2000-10-01

    Improvements in the quality of steels and the role played by metallurgical chemistry to bring about those improvements are discussed. The particular emphasis is on the chemical behaviour of solutes in molten steel and the reaction between steel, slag and refractory materials and the manner in which they influence the physical properties and performance of the steel product. As an illustration of the contribution of chemistry to steel making the case of the steel plates used in the construction of the Titanic is cited. In 1911 when the Titanic was constructed by Harland and Wolff at their Belfast shipyard, the steel plates used in the hull met all then current specifications. In 1992 when a number of steel samples recovered from the Titanic were examined, it was found that the hull of the vessel was constructed of low carbon, semi-killed steel, produced in the open-hearth process. Microstructural analysis showed extensive carbon banding, typical of hot rolled 0.2 per cent carbon steel. Also found were long manganese sulphide inclusions elongated in the rolling direction, some of which exceeded 25 mm in length. It was determined that as a consequence of these inclusions, at a seawater temperature of 0 degree C, the hull plates of the Titanic had essentially no resistance to fracture. Today's high quality steels used in applications such as Arctic pipelines, offshore platforms, icebreakers and ships for the transportation of natural gas, oxygen and sulphur concentrations are frequently less than 10 ppm. These elements have a profound influence of the quality of the final steel products by virtue of their effect of hindering the formation of inclusions. 2 refs., 3 figs.

  14. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  15. Comparison of Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony with 409L Stainless Steel for a Flue Gas Desulfurization System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Ah; Shin, Su-Bin; Kim, Jung-Gu [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-07-15

    The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H{sub 2}SO{sub 4} + 0.35 vol% HCl at 60 ℃. The inclusions in these steels ere identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction.

  16. HLA-inferred extended haplotype disparity level is more relevant than the level of HLA mismatch alone for the patients survival and GvHD in T cell-replate hematopoietic stem cell transplantation from unrelated donor.

    Science.gov (United States)

    Nowak, Jacek; Nestorowicz, Klaudia; Graczyk-Pol, Elzbieta; Mika-Witkowska, Renata; Rogatko-Koros, Marta; Jaskula, Emilia; Koscinska, Katarzyna; Madej, Sylwia; Tomaszewska, Agnieszka; Nasilowska-Adamska, Barbara; Szczepinski, Andrzej; Halaburda, Kazimierz; Dybko, Jaroslaw; Kuliczkowski, Kazimierz; Czerw, Tomasz; Giebel, Sebastian; Holowiecki, Jerzy; Baranska, Malgorzata; Pieczonka, Anna; Wachowiak, Jacek; Czyz, Anna; Gil, Lidia; Lojko-Dankowska, Anna; Komarnicki, Mieczyslaw; Bieniaszewska, Maria; Kucharska, Agnieszka; Hellmann, Andrzej; Gronkowska, Anna; Jedrzejczak, Wieslaw W; Markiewicz, Miroslaw; Koclega, Anna; Kyrcz-Krzemien, Slawomira; Mielcarek, Monika; Kalwak, Krzysztof; Styczynski, Jan; Wysocki, Mariusz; Drabko, Katarzyna; Wojcik, Beata; Kowalczyk, Jerzy; Gozdzik, Jolanta; Pawliczak, Daria; Gwozdowicz, Slawomir; Dziopa, Joanna; Szlendak, Urszula; Witkowska, Agnieszka; Zubala, Marta; Gawron, Agnieszka; Warzocha, Krzysztof; Lange, Andrzej

    2018-06-01

    Serious risks in unrelated hematopoietic stem cell transplantation (HSCT) including graft versus host disease (GvHD) and mortality are associated with HLA disparity between donor and recipient. The increased risks might be dependent on disparity in not-routinely-tested multiple polymorphisms in genetically dense MHC region, being organized in combinations of two extended MHC haplotypes (Ehp). We assessed the clinical role of donor-recipient Ehp disparity levels in N = 889 patients by the population-based detection of HLA allele phase mismatch. We found increased GvHD incidences and mortality rates with increasing Ehp mismatch level even with the same HLA mismatch level. In multivariate analysis HLA mismatch levels were excluded from models and Ehp disparity level remained independent prognostic factor for high grade acute GvHD (p = 0.000037, HR = 10.68, 95%CI 5.50-32.5) and extended chronic GvHD (p < 0.000001, HR = 15.51, CI95% 5.36-44.8). In group with single HLA mismatch, patients with double Ehp disparity had worse 5-year overall survival (45% vs. 56%, p = 0.00065, HR = 4.05, CI95% 1.69-9.71) and non-relapse mortality (40% vs. 31%, p = 0.00037, HR = 5.63, CI95% 2.04-15.5) than patients with single Ehp disparity. We conclude that Ehp-linked factors contribute to the high morbidity and mortality in recipients given HLA-mismatched unrelated transplant and Ehp matching should be considered in clinical HSCT. Copyright © 2018. Published by Elsevier Inc.

  17. Evaluation of Flash Bainite in 4130 Steel

    Science.gov (United States)

    2011-07-01

    Technical Report ARWSB-TR-11011 Evaluation of Flash Bainite in 4130 Steel G. Vigilante M. Hespos S. Bartolucci...4. TITLE AND SUBTITLE Evaluation of Flash Bainite in 4130 Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...need to be addressed, the Flash Bainite processing of 4130 steel demonstrates promise for applications needing a combination of high strength with

  18. Thermal embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-01-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels

  19. Diffusion zinc plating of structural steels

    International Nuclear Information System (INIS)

    Kazakovskaya, Tatiana; Goncharov, Ivan; Tukmakov, Victor; Shapovalov, Vyacheslav

    2004-01-01

    The report deals with the research on diffusion zinc plating of structural steels when replacing their cyanide cadmium plating. The results of the experiments in the open air, in vacuum, in the inert atmosphere, under various temperatures (300 - 500 deg.C) for different steel brands are presented. It is shown that diffusion zinc plating in argon or nitrogen atmosphere ensures obtaining the qualitative anticorrosion coating with insignificant change of mechanical properties of steels. The process is simple, reliable, ecology pure and cost-effective. (authors)

  20. The behaviour of concrete under attack of liquid steel

    International Nuclear Information System (INIS)

    Schneider, U.; Ehm, C.; Diederichs, U.

    1983-01-01

    Investigations were carried out to study the interaction between concrete and liquid steel. Different types and different forms of concrete were investigated at temperatures of liquid steel between 1.600 and 2.600 0 C. The liquid steel of 1.600 0 C was produced in an induction furnace, the liquid steel of 2.600 0 C was produced in concrete crucibles by metallothermic reactions. The reactions occuring during the interaction of concrete and liquid steel may be summarized as follows: - Concrete reacts violently upon sudden loading with high temperatures and high heat fluxes. Great quantities of steam and gases are generated. The mechanical strength decreases rapidly with increasing temperature. -At about 1.200 0 C concrete begins to melt. First the cement matrix melts, than the aggregates melt. The melts of different concretes consist of different constituents and their reactions with liquid steel vary. The temperature of the liquid steel significantly influences the intensity of the reactions and the erosion rates. - The erosion rates amounted to 30 mm/min, when liquid steel was produced in concrete crucibles. When cylindrical concrete specimens were immersed in molten steel the rate of melting off amounted up to 66 mm/min. - The dissipation of heat during the interaction brings about that the reactions between concrete and liquid steel vanish gradually, if no additional energy is fed into the system. (orig.)

  1. Comparative Research of Extra-large-span Cable-stayed Bridge with Steel Truss Girder and Steel Box Girder

    Directory of Open Access Journals (Sweden)

    Tan Manjiang

    2015-01-01

    Full Text Available To research structural performance of extra-large-span cable-stayed bridge under different section forms, with the engineering background of a 800m main-span cable-stayed bridge with steel truss girder, the cable-stayed bridge with steel box girder is designed according to the current bridge regulations when two bridges are designed in an ultimate state of the carrying capacity, so the maximum stress and minimum stress of the stress envelope diagram are substantially the same. A comprehensive comparison is given to two types of bridge on the aspect of static force, natural vibration frequency, stability, economic performance and so on. Analysis results provide future reference for the large-span cable-stayed bridge to select between the steel truss girder and the steel box girder.

  2. Material physical properties of 12 chromium ferritic steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Wakai, Takashi; Aoto, Kazumi

    2003-09-01

    High chromium ferritic steel is an attractive candidate for structural material of the next Fast Breeder Reactor, since both of thermal properties and high temperature strength of the steel are superior to those of conventional austenitic stainless steels. In this study, physical properties of 12Cr steels are measured and compared to those obtained in the previous studies to discuss about stochastic dispersions. The effect of measurement technique on Young's modulus and the influence of the specimen size on coefficient of thermal expansion are also investigated. The following conclusions are obtained. (1) Young's modulus of 12Cr steels obtained in this study tends to larger than those obtained in the previous studies especially in high temperature. Such a discrepancy is resulted from the difference in measurement technique. It was clarified that Young's modulus obtained by free vibration method is more adequate those obtained by the cantilever characteristic vibration method. Therefore, the authors recommend using the values obtained by free vibration method as Young's modulus of 12Cr steels. (2) Both instant and mean coefficient of thermal expansion of 12Cr steels obtained in this study is in a good agreement with those obtained in the previous studies. However, the obviously different values are obtained from the measurement by large size specimens. Such a discrepancy is resulted from heterogeneous during heating process of the specimens. Therefore, the authors recommend using the values obtained by φ4 x 20 mm specimens as instant and mean coefficient of thermal expansion of 12Cr steels. (3) Specific heat of 12Cr steels obtained in this study agree with those obtained in the previous studies with a few exceptions. (4)Thermal conductivity of 12Cr steels obtained in this study agree with those obtained in the previous studies. (5) It was confirmed that instant and mean coefficient of thermal expansion, density, specific heat and thermal conductivity of 12Cr steels

  3. Stability of ferritic steel to higher doses: Survey of reactor pressure vessel steel data and comparison with candidate materials for future nuclear systems

    International Nuclear Information System (INIS)

    Blagoeva, D.T.; Debarberis, L.; Jong, M.; Pierick, P. ten

    2014-01-01

    This paper is illustrating the potential of the well-known low alloyed clean steels, extensively used for the current light water Reactor Pressure Vessels (RPV) steels, for a likely use as a structural material also for the new generation nuclear systems. This option would provide, especially for large components, affordable, easily accessible and a technically more convenient solution in terms of manufacturing and joining techniques. A comprehensive comparison between several sets of surveillance and research data available for a number of RPV clean steels for doses up to 1.5 dpa, and up to 12 dpa for 9%Cr steels, is carried out in order to evaluate radiation stability of the currently used RPV clean steels even at higher doses. Based on the numerous data available, positive preliminary conclusions are drawn regarding the eventual use of clean RPV steels for the massive structural components of the new reactor systems. - Highlights: • Common embrittlement trend between RPV and advanced steels till intermediate doses. • For doses >1.5 dpa, damage rate saturation tendency is observed for RPV steels. • RPV steels might be conveniently utilised also outside their foreseen dose range

  4. Neutron irradiation creep in stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuele, Wolfgang (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy)); Hausen, Hermann (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300 C and 500 C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of primary'' creep stage is observed for doses up to 3-5 dpa after which dose the secondary'' creep stage begins. The primary'' creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These primary'' creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of [alpha]-ferrite below about 400 C and of carbides below about 700 C, and not to irradiation creep. The secondary'' creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature (Q[sub irr]=0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels. ((orig.))

  5. Steel Housing - The Reinvention of the Square Wheel?

    NARCIS (Netherlands)

    Willems, M.H.P.M.

    2002-01-01

    Steel housing has some remarkable resemblance with a square wheel. Both combine a simple concept, uncommon appearance and lack of appreciation. The title furthermore refers to the repeated stubborn efforts over the last decennia to develop prefabricated steel-based housing systems. Steel has

  6. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  7. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years' data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143

  8. Interphase and intergranular stress generation in carbon steels

    International Nuclear Information System (INIS)

    Oliver, E.C.; Daymond, M.R.; Withers, P.J.

    2004-01-01

    Neutron diffraction spectra have been acquired during tensile straining of high and low carbon steels, in order to compare the evolution of internal stress in ferritic steel with and without a reinforcing phase. In low carbon steel, the generation of intergranular stresses predominates, while in high carbon steel similar intergranular stresses among ferrite grain families are superposed upon a large redistribution of stress between phases. Comparison is made to calculations using elastoplastic self-consistent and finite element methods

  9. Enhanced Inclusion Removal from Steel in the Tundish

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bradt; M.A.R. Sharif

    2009-09-25

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  10. Enhanced Incluison Removal from Steel in the Tundish

    Energy Technology Data Exchange (ETDEWEB)

    R.C. Bradt; M.A.R. Sharif

    2009-09-25

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  11. Durability of light steel framing in residential applications

    OpenAIRE

    Lawson, RM; Popo-Ola, S.O.; Way, A.; Heatley, T; Pedreschi, Remo

    2010-01-01

    This paper presents a summary and analysis of research findings on the durability of galvanised cold-formed steel sections used in housing in order to deduce their design life. These cold-formed sections are produced from pre-galvanised strip steel. It reviews reports and publications from research projects carried out by Corus and the Steel Construction Institute on zinc-coated, cold-formed steel products. New data have also been gathered from measurements on houses and similar buildings tha...

  12. Chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The present invention concerns a method for chemical decontamination of radioactive metal waste materials contaminated with radioactive materials on the surface, generated in radioactive materials-handling facilities. The invention is comprised of a method of chemical decontamination of stainless steel, characterized by comprising a first process of immersing a stainless steel-based metal waste material contaminated by radioactive materials on the surface in a sulfuric acid solution and second process of immersing in an aqueous solution of sulfuric acid and oxidizing metal salt, in which a portion of the surface of the stainless steel to be decontaminated is polished mechanically to expose a portion of the base material before the above first and second processes. 1 figs., 2 tabs

  13. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    Daniel, B.

    1988-09-01

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  14. Tensile behavior of irradiated manganese-stabilized stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  15. A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contact when lubricated with mineral and biodegradable oils

    OpenAIRE

    Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    Diamond-like carbon (DLC) coatings, which can nowadays be applied to many highly loaded mechanical components, sometimes need to operate under lubricated conditions. It is reasonable to expect that in steel/DLC contacts, at least the steel counter body will behave according to conventional lubrication mechanisms and will interact with lubricants and additives in the contact. However, in DLC/DLC contacts, such mechanisms are still unclear. For example, the "inertness" of DLC coatings raises se...

  16. Industrial investigations of the liquid steel filtration

    Directory of Open Access Journals (Sweden)

    K. Janiszewski

    2014-07-01

    Full Text Available Hitherto existing investigations concerning the ceramic filter use in the steel making processes have given good results. The obtained results of filtration have proved that this method may be used as an effective and cheap way of steel filtration from non-metallic inclusions. Placing filters in the tundish is the best location considering the limitation of the possibility of secondary pollution of steel. Yet, the results presented in this paper, of an experiment prepared and carried out in the industrial environment, are the only positive results obtained, which are connected with so much quantities of liquid steel processed with use of the multi-hole ceramic filters.

  17. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  18. Deformation mechanism maps for pure iron, corrosion resistant austenitic steels and a low-alloy carbon steel

    International Nuclear Information System (INIS)

    Frost, H.Y.; Ashby, M.F.

    1980-01-01

    Principles of construction of deformation mechanisms charts for iron base alloys are presented. Deformation mechanisms charts for pure iron, 316 and 314 stainless steels, a ferritic steel with 1% Cr, Mo, V are given, examples of the charts application being provided. The charts construction is based, when it is possible, on the state equations, deduced from theoretical models and satisfying experimental data. The charts presented should be considered as an attempt to unite the main regularities of the theory of dislocations and diffusion with the observed experimental picture of plastic deformation and creep of commercial steels [ru

  19. Dual-phase ULCB steels thermomechanically processed

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.

    2001-01-01

    The design philosophy of the processing of dual-phase (D-P) ultra low carbon steels (ULCB) by thermomechanical treatment has been briefly discussed. Modelling of the structure evolution during thermomechanical rolling of ULCB steel was based upon the established empirical equations for yield flow at different conditions of: deformation temperatures, strain rates and stresses for applied amount of deformation during hot deformation compression tests. The critical amount of deformation needed for the occurrence of dynamic or static recrystallization was determined. The dependence of grain refinement of the acicular bainitic and polygonal ferrite of the accelerated cooling and amount of stored energy of deformation in steel has been evaluated. Effect of the decreasing of the finishing temperature of thermomechanical processing on the increase of the impact toughness of dual-phase microstructure consisted of the bainitie-martensite islands in the ferrite matrix has been shown. The effect of ageing process after thermomechanical rolling of heavy plates on fracture toughness values of J 0.2 for ULCB-Ni steels has been established from cod tests measurements. New low cost technology of rolling of ULCB steels dual-phase is proposed. (author)

  20. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    Al-Azawi, A; Smistrup, K; Kristensen, A

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  1. Stainless steels low temperature nitriding

    International Nuclear Information System (INIS)

    Roux, T.; Darbeida, A.; Von Stebut, J.; Michel, H.; Lebrun, J.P.; Hertz, D.

    1995-01-01

    Nitrogen ions implantation of 316L stainless steel leads to monophasic diffusion layers, which are constituted of a solid solution (γ N ) fcc, metastable, nitrogen sur-saturated, and without order. This article shows that for 316L stainless steels,these layers improve the tribological properties without degradation of the corrosion resistance. (A.B.). 13 refs. 6 figs

  2. Irradiation creep in ferritic steels

    International Nuclear Information System (INIS)

    Vandermeulen, W.; Bremaecker, A. de; Burbure, S. de; Huet, J.J.; Asbroeck, P. van

    Pressurized and non-pressurized capsules of several ferritic steels have been irradiated in Rapsodie between 400 and 500 0 C up to 3.7 x 10 22 n/cm 2 (E>0.1 MeV). Results of the diameter measurements are presented and show that the total in-pile deformation is lower than for austenitic steels

  3. Manufacture of Damascus steel: Metallographic study

    International Nuclear Information System (INIS)

    Criado, A.J.; Martinez, J.A.; Calabres, R.; Arias, D.

    1997-01-01

    Damascus Steel is the denomination that the Europeans gave to the material with which the musulman swords were manufactured during the Era of the Crusades. This hypereutectoid steel presents a high content in carbon more than 0.8%, and in some cases up to 2% in weight. The secret of its good mechanical characteristics is based in the hot forging process in the temperatures interval between 650 and 850 degree centigree. The final quenching in water brine or other aqueous solutions, confers to the swords manufactured with this steel a good resistance to its cutting edge and a high toughness. In the present investigation, the manufacture processes of this type of steel are studied. Electronic scanning microscopy has been applied to the study of materials manufactured by the authors following the ancient craftsmen methods of forging and quenching. (Author) 16 refs

  4. Superheat effect on bainite steel hardenability

    International Nuclear Information System (INIS)

    Kubachek, V.V.; Sklyuev, P.V.

    1978-01-01

    The bainite hardenability of 34KhN1M and 35 KhN1M2Ph steels has been investigated by the end-face hardening technique. It is established that, as the temperature of austenitization rises from 900 to 1280 deg C, the temperature of bainite transformation increases and bainite hardenability of the steels falls off. A repeated slow heating to 900 deg C of previously overheated 34KhN1M steel breaks up grain, lowers the temperature of the bainite transformation and raises the hardenability to values obtained with ordinary hardening from 900 deg C. A similar heating of previously overheated 35KhN1M2Ph steel is accompanied by restoration of initial coarse grains and maintenance of both the elevated bainite transformation temperature and to lower hardenability corresponding to hardening from the temperature of previous overheating

  5. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica...

  6. Radiation-induced sensitisation of stainless steels

    International Nuclear Information System (INIS)

    Norris, D.I.R.

    1987-01-01

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  7. Validation of constitutive equations for steel

    International Nuclear Information System (INIS)

    Valentin, T.; Magain, P.; Quik, M.; Labibes, K.; Albertini, C.

    1997-01-01

    High strain rate mechanical properties are a major concern for each steel manufacturer, especially with respect to thin sheet steel used in the automotive branch. We began to study this topic by starting a project with the following goals: acquiring reliable experimental data, understanding in depth the energy absorption in thin sheet steel and finding the right constitutive material equation. The first part of the project has been presented in. In this paper we present data computation and comparison with the existing material model theories to exploit the experimental data. (orig.)

  8. The Climate for Steel. Actions for, and conditions to, a Copenhagen climate agreement from the perspective of the EU steel sector

    International Nuclear Information System (INIS)

    Slingerland, S.; Werring, L.; De Bruijn, S.; Korteland, M.

    2009-02-01

    A position paper discussing the relationship between climate change policies and competitiveness in the global steel sector. Question is how the need for effective action to confront global climate change can be combined with a level playing field for competition in the global steel sector, taking into account the position of Corus Netherlands as a European steel producer. More specifically; what conditions in an international agreement could provide such a level playing field? Chapter 2 of this paper briefly outlines some essential characteristics of the global and European steel sector. Chapter 3 outlines the present status quo of the multilateral climate change negotiation process towards the December 2009 Copenhagen conference. Chapter 4 gives a view on climate and competitiveness for the EU steel sector. Chapter 5 finally provides conclusions and recommendations for provisions in an international agreement that could provide for a competitive level playing field in the steel sector

  9. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  10. Lung cancer mortality in stainless steel and mild steel welders: a nested case-referent study

    DEFF Research Database (Denmark)

    Lauritsen, Jens; Hansen, K S

    1996-01-01

    . Analysis was based on 439 deceased referents and 94 deceased cases. There was a 70% excess of lung cancer associated with "welding exposure ever" (OR +/- 95% C.I.: 1.68, 1.02-2.78). Overall OR for "mild steel (MS) welding ever" was 1.64, 0.99-2.72. The risk estimates for welding exposures showed...... an increasing tendency up to 15 years of exposure. The pattern of stainless steel (SS) welding resembles that of mild steel with an estimated OR of 1.65, 0.88-3.0. The general conclusion is that MS welding as well as SS welding seems to be associated with an increased risk of lung cancer. Further followup...

  11. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Wang Songtao; Yang Ke; Shan Yiyin; Li Laifeng

    2008-01-01

    The plastic deformation and fracture behaviors of two nitrogen-alloyed austenitic stainless steels, 316LN and a high nitrogen steel (Fe-Cr-Mn-0.66% N), were investigated by tensile test and Charpy impact test in a temperature range from 77 to 293 K. The Fe-Cr-Mn-N steel showed ductile-to-brittle transition (DBT) behavior, but not for the 316LN steel. X-ray diffraction (XRD) confirmed that the strain-induced martensite occurred in the 316LN steel, but no such transformation in the Fe-Cr-Mn-N steel. Tensile tests showed that the temperature dependences of the yield strength for the two steels were almost the same. The ultimate tensile strength of the Fe-Cr-Mn-N steel displayed less significant temperature dependence than that of the 316LN steel. The strain-hardening exponent increased for the 316LN steel, but decreased for the Fe-Cr-Mn-N steel, with decreasing temperature. Based on the experimental results and the analyses, a modified scheme was proposed to explain the fracture behaviors of austenitic stainless steels

  12. Recent trend of titanium-clad steel plate/sheet (NKK)

    International Nuclear Information System (INIS)

    Kimura, Hideto

    1997-01-01

    The roll-bonding process for titanium-clad steel production enabled the on-line manufacturing and quality control of the products which are usually applied for the production of steel plate and sheet by the steel producers. The recent trend of roll-bonded titanium-clad steel which has an excellent corrosion resistance together with the advantage in cost-saving are mainly described in this article as to the demand, production technique and new application aspects. Though the predominant usage of titanium-clad steel plate has been in power-generating plants, enlargeing utilization in the chemical plants such as terephthalic acid production plants is leading the growth in the market of titanium-clad steel plate. Also, the application of titanium-clad steel plates and sheets for the lining the marine structures is expected as one of the best solution to long-term surface protection for their outstanding corrosion resistance against sea water. (author)

  13. 49 CFR 192.55 - Steel pipe.

    Science.gov (United States)

    2010-10-01

    ... Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is...

  14. Stainless steel fabrications: past and present

    International Nuclear Information System (INIS)

    Daniels, R.

    1986-01-01

    The paper deals with stainless steel fabrications of Fairey Engineering Company for the nuclear industry. The manufacture of stainless steel containers for Magnox and Advanced Gas Cooled Reactors, flexible fabrication facility, and welding development, are all briefly described. (U.K.)

  15. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  16. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  17. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  18. Study of non-metallic inclusion sources in steel

    International Nuclear Information System (INIS)

    Khons, Ya.; Mrazek, L.

    1976-01-01

    A study of potential inclusion sources was carried out at the Tvinec steel plant using an unified labelling procedure for different sources. A lanthanum oxide labelling method has been used for refractories with the subsequent La determination in steel by the neutron activation analysis. Samarium and cerium oxides and the 141 Ce radionuclide have been used in conjunction with the testing. The following sources of exogenous inclusions have been studied: 1)Refractory material comprising fireclay and corundum for steel-teeming trough in open-heart furnaces; 2) Fireclay bottom-pouring refractories; 3) Steel-teeming laddle lining; 4) Heat-insulating and exothermic compounds for steel ingots; 5) Vacuum treatment plant lining; 6) Open-hearth and electric arc furnace slag. The major oxide inclusion source in steel was found to be represented by the furnace slag, since it forms about 40 p.c. of all oxide inclusions. The contributions of the remaining sources did not exceede 5 p.c. each

  19. The interaction between nitride uranium and stainless steel

    Science.gov (United States)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  20. Microstructure-property relationship in microalloyed high-strength steel welds

    International Nuclear Information System (INIS)

    Zhang, Lei

    2017-01-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  1. Microstructure-property relationship in microalloyed high-strength steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei

    2017-04-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  2. Corrosion of steels in sour gas environments

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1984-03-01

    This report presents a study on the effects of sour gas environments on steels. Emphasis is placed on alloys commonly used in the heavy water, sour gas and refining industries. In addition, 'high strength, low alloy' steels, known as 'oil country tubular goods', are included. Reference is made to the effects of hydrogen sulphide environments on austenitic steels and on certain specialty steels. Theories of hydrogen-related cracking mechanisms are outlined with emphasis placed on sulphide stress cracking and hydrogen induced cracking in carbon and low alloy steels. Methods of controlling sulphide stress cracking and hydrogen induced cracking are addressed separately. Case histories from the heavy water, refining, and sour gas industries are used to illustrate operating experience and failure mechanisms. Finally, recommendations, based largely on the author's industrial experience, are made with respect to quality assurance and inspection requirements for sour service components. Only published literature was surveyed. Abstracts were made of all references, reviewing the major sources in detail

  3. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  4. Design Solutions for Sustainable Construction of Pre Engineered Steel Buildings

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Saleem

    2018-05-01

    Full Text Available Sustainable construction of ecofriendly infrastructure has been the priority of worldwide researchers. The induction of modern technology in the steel manufacturing industry has enabled designers to get the desired control over the steel section shapes and profiles resulting in efficient use of construction material and manufacturing energy required to produce these materials. The current research study is focused on the optimization of steel building costs with the use of pre-engineered building construction technology. Construction of conventional steel buildings (CSB incorporates the use of hot rolled sections, which have uniform cross-section throughout the length. However, pre-engineered steel buildings (PEB utilize steel sections, which are tailored and profiled based on the required loading effects. In this research study, the performance of PEB steel frames in terms of optimum use of steel sections and its comparison with the conventional steel building is presented in detail. A series of PEB and CSB steel frames is selected and subjected to various loading conditions. Frames were analyzed using Finite Element Based analysis tool and design was performed using American Institute of Steel Construction design specifications. Comparison of the frames has been established in terms of frame weights, lateral displacements (sway and vertical displacements (deflection of the frames. The results have clearly indicated that PEB steel frames are not only the most economical solution due to lesser weight of construction but also have shown better performance compared to CSB frames.

  5. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  6. Consequences of Globalisation for the Belgian Steel Industry

    OpenAIRE

    DE GROOTE, Patrick

    2008-01-01

    Since a few years the worldwide steel industry has been under the spell of a great consolidation wave and enhanced competition. 2006 was a peak year with the merger of the European group Arcellor Mittal Steel to ArcellorMittal. With this merger, ArcellorMittal became the greatest steel group in the world with a market share of more than 10%. Thanks to the consolidation trend, the steel industry has changed from an obsolete and loss-making industry to a modern, attractive and profitable busine...

  7. Stainless steel in contact with food and bevarage

    Directory of Open Access Journals (Sweden)

    Sveto Cvetkovski

    2012-12-01

    Full Text Available Stainless steels are probably the most important materials in the food and beverage industries. The main reason for such broad implementation of stainless steel in contact with food are excellent properties which they possess such as corrosion resistance, resistance to high and low temperatures, very good mechanical and physical properties, aesthetic appeal, inertness of surface, durability, easy cleaning and recycling. Low thermal conductivity of these steels produces steeper temperature coefficient provoking an increased distortion, shrinkage and stresses compared with carbon steel.

  8. Charpy impact behavior of manganese-stabilized martensitic steels

    International Nuclear Information System (INIS)

    Hu, W.L.; Gelles, D.S.

    1986-05-01

    Tests were conducted to evaluate the irradiation-induced shift in ductile-to-brittle transition behavior of two manganese stabilized martensitic steels. Miniature Charpy specimens were fabricated from two heats of steel similar in composition to HT-9 but with 0.1% C and Mn contents ranging from 3.3 to 6.6.%. The 3.3% Mn steel showed a transition temperature similar to that of HT-9 in both the unirradiated condition and in specimens irradiated to 11.3 dpa. The steel containing 6.6% Mn exhibited a higher transition temperature after irradiation than the steel containing 3.3% Mn. The upper shelf energy (USE) after irradiation for the manganese stabilized alloys was much higher than for HT-9. 6 refs., 3 figs., 2 tabs

  9. Tantalum-containing Z-phase in 12%Cr martensitic steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John

    2009-01-01

    Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems to be identi......Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems...

  10. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  11. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  12. Reaction of uranium and plutonium carbides with austenitic steels

    International Nuclear Information System (INIS)

    Mouchnino, M.

    1967-01-01

    The reaction of uranium and plutonium carbides with austenitic steels has been studied between 650 and 1050 deg. C using UC, steel and (UPu)C, steel diffusion couples. The steels are of the type CN 18.10 with or without addition of molybdenum. The carbides used are hyper-stoichiometric. Tests were also carried out with UCTi, UCMo, UPuCTi and UPuCMo. Up to 800 deg. C no marked diffusion of carbon into stainless steel is observed. Between 800 and 900 deg. C the carbon produced by the decomposition of the higher carbides diffuses into the steel. Above 900 deg. C, decomposition of the monocarbide occurs according to a reaction which can be written schematically as: (U,PuC) + (Fe,Ni,Cr) → (U,Pu) Fe 2 + Cr 23 C 6 . Above 950 deg. C the behaviour of UPuCMo and that of the titanium (CN 18.12) and nickel (NC 38. 18) steels is observed to be very satisfactory. (author) [fr

  13. Compatibility tests of steels in flowing liquid lead-bismuth

    International Nuclear Information System (INIS)

    Barbier, F.; Benamati, G.; Fazio, C.; Rusanov, A.

    2001-01-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10 -6 wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 μm) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements

  14. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  15. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  16. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  17. Experimental and numerical simulation of carbon manganese steel ...

    African Journals Online (AJOL)

    Experimental and numerical simulation of carbon manganese steel for cyclic plastic behaviour. J Shit, S Dhar, S Acharyya. Abstract. The paper deals with finite element modeling of saturated low cycle fatigue and the cyclic hardening phenomena of the materials Sa333 grade 6 carbon steel and SS316 stainless steel.

  18. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  19. Tensile behavior of borated stainless steels

    International Nuclear Information System (INIS)

    Stephens, J.J. Jr.; Sorenson, K.B.

    1991-01-01

    Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section III. The adoption by ASME facilitates a material's qualification for structural use in transport cask applications. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. This can result in a decrease in net section thickness of the basket web (increased payload capacity) and eliminates the fabrication process and cost of attaching a discrete boron poison material to the basket web. In addition, adding borate stainless steel to the inventory of acceptable structural material provides the Department of Energy (DOE) and its cask contractors an alternative to current proposed materials which have not been qualified for structural service. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in A-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thicknesses using borated stainless steel would be comparable to or thinner tan an equivalent basket manufactured from a typical stainless steel without boron additions. General trends from test results indicate that ductilities decrease with increasing boron content

  20. Development of low-chromium, chromium-tungsten steels for fusion

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A.

    1995-01-01

    High-chromium (9-12% Cr) Cr-Mo and Cr-W ferritic steels are favored as candidates for fusion applications. In early work to develop reduced-activation steels, an Fe-2.25Cr-2W-0.25V-0.1C steel (designated 2.25Cr-2WV) had better strength than an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel (compositions are in weight percent). However, the 2.25Cr-2WV had poor impact properties, as determined by the ductile-brittle transition temperature and upper-shelf energy of subsize Charpy impact specimens. Because low-chromium steels have some advantages over high-chromium steels, a program to develop low-chromium steels is in progress. Microstructural analysis indicated that the reason for the inferior impact toughness of the 2.25Cr-2WV was the granular bainite obtained when the steel was normalized. Properties can be improved by developing an acicular bainite microstructure by increasing the cooling rate after austenitization. Alternatively, acicular bainite can be promoted by increasing the hardenability. Hardenability was changed by adding small amounts of boron and additional chromium to the 2.25Cr-2WV composition. A combination of B, Cr, and Ta additions resulted in low-chromium reduced-activation steels with mechanical properties comparable to those of 9Cr-2WVTa. (orig.)

  1. Erosion behaviour of hydro turbine steels

    Indian Academy of Sciences (India)

    WINTEC

    creases grain size hardening (Ikegami and Nemoto 1996). Nitrogen solubility ... 116. Table 1. Chemical composition of 13/4 martensitic and 21–4–N nitronic steel (wt %). Steel. C. Si Mn. Cr. Ni. N. S ..... In Fe–Cr–Ni alloys, Schramm and Reed ...

  2. Problems in development of pressure vessel steels

    International Nuclear Information System (INIS)

    McMahon, C.Y.

    1980-01-01

    The tendency of steels to intercrystalline fracture at low stresses is the main factor, limiting fracture resistance of steels in agressive media at conventional and elevated temperatures. The reasons for the phenomenon are analyzed. In particular, the role of grain boundary segregations of non-metallic impurities is pointed out. The ways of the problem solving both at the expense of corresponding microstructure control and by means of selection of the steel chemical composition are considered

  3. Properties of Mo-alloyed sintered manganese steels

    International Nuclear Information System (INIS)

    Romanski, A.; Cias, A.

    1998-01-01

    Sintered alloy steels are needed for mostly PM structural parts. Powder metallurgy techniques provide a means of fabricating high quality steel parts with tailored mechanical properties. It is now possible to produce sintered steel parts with properties equal to an even superior to those of parts made by more traditional routes. Challenges arise both with the material selection and component fabrication. This work outlines the processing for high performance structural application. (author)

  4. Experimental investigations on steel-concrete composite columns for varying parameters

    Science.gov (United States)

    Aparna, V.; Vivek, D.; Neelima, Kancharla; Karthikeyan, B.

    2017-07-01

    In this study, the experimental investigations on steel tubes filled with different types of concrete are presented. Steel tubes filled with fibre reinforced concrete using lathe waste and steel tube with concerned confined with steel mesh were investigated. The combinations were compared with steel tubes with conventional concrete. A total of 4 concrete filled steel tube (CFST) combinations were made with tubes of diameter 100 mm with wall thickness 1.6 mm and a height of 300 mm. Axial compression test to examine the resisting capacity of the columns and push-out test for noting the bond strength were performed. Coupon tests were also conducted to determine the mechanical properties of steel. The structural behaviour of the composite columns was evaluated from on the test results. It was observed that steel tube filled fibre reinforced possessed better bond strength and resistance to axial load.

  5. Tritiated Water Interaction with Stainless Steel

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water

  6. Quenching simulation of steel grinding balls

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Hernandez, O.; Reyes, L. A.; Camurri, C.; Carrasco, C.; Garza-Monte-de-Oca, F.; Colas, R.

    2015-07-01

    The phase transformations of high carbon steel during quenching and equalizing were modelled using commercial computer packages based on the finite element method and the kinetic transformation of steel. The model was used to predict the temperature and microstructural changes taking place within balls of two different sizes that are used for grinding mineral ores. A good correlation between the temperatures measured by inserted thermocouples and those predicted by the model was obtained after modifying the thermal conductivity of the steel within the temperature domain at which mixed phases are present. The phase transformations predicted were confirmed by metallographic analyses. (Author)

  7. Dynamic characteristics of automotive steel sheets

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2016-10-01

    Full Text Available The aim of this experimental research was to perform an analysis of deformation characteristics on two different types of steel: IF steel, and micro-alloyed steel were used automotive industry. For that purpose changes of properties of these materials were carried out by static 10-3 · s-1 and dynamic 103 · s-1 strain rate assess its plastic properties. Vickers micro hardness test was carried out by the static and dynamic loading condition and describes different hardness distribution. The higher strain hardening of materials was obtained too that was confirmed by distribution of dislocations.

  8. Hydrogen transport in iron and steel

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Derrick, R.G.; Donovan, J.A.; Caskey, G.R. Jr.

    1975-01-01

    The permeabilities of protium, deuterium, and tritium in iron and T-1 steel at temperatures as low as 260 0 K are in agreement with the equation proposed by Gonzalez. However, the permeabilities of HP-9-4-20 and 4130 steel to hydrogen are typically lower than predicted. The present data also show that, within experimental accuracy, the isotope effect on the permeability of hydrogen in HP-9-4-20, 4130 and T-1 steel, and high purity iron can be estimated by an inverse square root of mass correction. Trapping effects prevent the development of diffusivity and solubility equations. (auth)

  9. Problems in steel industry for power engineering

    International Nuclear Information System (INIS)

    Dolbenko, E.T.; Kryanin, I.R.

    1979-01-01

    The main problems of steel industry in power engineering are considered. The effect of charge materials upon steel quality is analyzed. Radical dicision of the problem is the ensurance of power engineering plants with high quality original charge materials, which are quite pure according to impurities such as: iron melted from metallized charge or prereduced pellets. The usage of such materials considerably improves the complex of technological and service properties and structure of large responsible products: vessels of the reactor core, especially large shafts and others. For the most responsible power engineering dies it is necessary to smelt steel of 150-200 tons and above. The main direction of steel melting industry is quality steel melting in large 150-200 tons arc furnaces which are equipped with magnetic stirrer installations. It is marked that the branch of power engineering is equipped with unique installations of out-of-furnace steel refining. It is shown that further increase in the metal quality is possible when vacuum and electroslag technique of melting is used. It permits to reduce considerably the amount of sulphur, gases, nonmetallic inclusions, to increase the metal density, to remove zonal segregation in large steel ingots. The main problem in the field of usage of material, produced by new melting methods is the expansion of the product nomenclature and the development of technical conditions, reflecting the increase in material properties as a result of new technique application. Importance of development and introduction of new automation and testing methods in metallurgical processes is marked

  10. Nuclear energy and the steel industry

    International Nuclear Information System (INIS)

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  11. Joining uranium to steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1976-05-01

    A method has been devised which will allow the joining of uranium to steel by fusion welding through the use of an intermediate material. Uranium-0.5 titanium was joined to AISI 304L stainless steel by using a vanadium insert. Also, a method is now available for selecting possible filler metals when two entirely dissimilar metals need to be joined. This method allows a quantitative ranking to be made of the possible filler metals and thus the most likely candidate can be selected

  12. Influence of titanium on the tempering structure of austenitic steels

    International Nuclear Information System (INIS)

    Ghuezaiel, M.J.

    1985-10-01

    The microstructure of titanium-stabilized and initially deformed (approximately 20%) austenitic stainless steels used in structures of fast neutrons reactors has been studied after one hour duration annealings (500 0 C) by X-ray diffraction, optical microscopy, microhardness and transmission electron microscopy. The studied alloys were either of industrial type CND 17-13 (0.23 to 0.45 wt% Ti) or pure steels (18% Cr, 14% Ni, 0 or 0.3 wt% Ti). During tempering, the pure steels presented some restauration before recristallization. In the industrial steels, only recristallization occurred, and this only in the most deformed steel. Precipitation does not occur in the titanium-free pure steel. In industrial steels, many intermetallic phases are formed when recristallization starts [fr

  13. Stainless steels: general considerations and rates of crack growth

    International Nuclear Information System (INIS)

    Chator, T.

    1992-05-01

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  14. The linear rule of metal extraction

    International Nuclear Information System (INIS)

    Han Li; Yushuang Wang; Zhichun Chen; Shulan Meng

    1988-01-01

    On the basis of experimental results a linear rule for the solvent extraction of rare earths and yttrium over a definite range of acidity and metal ion concentration is found. Relations between the coefficients of the linear rule and initial acidity are presented for the extraction systems: HEH(EHP)-kerosene-HNO 3 -R(NO 3 ) 3 , HEH(EHP)-kerosene-HCl-RCl 3 , D2EHPA-n-heptane-HCl-RCl 3 , HEH(EHP)-n-heptane-HCl-RCl 3 , where R=La-Nd, Sm-Lu, Y; HEH(EHP)=momo(2-ethyl-hexyl)2-ethyl-hexyl phosphonate; D2EHPA=di(2-ethyl-hexyl) phosphoric acid. 3 refs.; 1 tab

  15. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  16. Properties of 40N3M powder structural steel

    International Nuclear Information System (INIS)

    Moskvina, T.P.; Gulyaev, A.P.; Gulyaev, I.A.; Byakov, S.V.; Melent'ev, I.V.; Morgun, G.N.

    1984-01-01

    Effect of the fabrication technique of compact slabs made of the 40N3M powder structural steel on mechanical properties with determination of a cold brittleness threshold was studied. It is established that after a thermal treatment at a density close to 100% a powder steel is sufficiently close to steel, rolled of an ingot, but is second in reference to steel in its ductility and impact strength. Properties of powder steel obtained by the method of dynamic hot forming (DHF) and hot extrusion are practically equal, but the first method has definite advantages as it allows to obtain details with a definitive form. The above investigation permits to recommend an application of the 40N3M powder steel fabricated by the DHF methods. The optimum thermal treatment course is: quenching+high annealing

  17. Behavior of the elements in the mechanically alloyed and cast ferritic steels and a type 316 stainless steel in a flowing sodium environment

    International Nuclear Information System (INIS)

    Suzuki, T.; Mutoh, I.

    1988-01-01

    Sodium corrosion behavior of a mechanically alloyed ferritic steel, dispersion-strengthened with addition of Y 2 0 3 and Ti, two kinds of melted/cast ferritic steels and a Type 316 stainless steel was examined by using a non-isothermal sodium loop system, constructed of another Type 316 stainless steel, with a direct resistance electrical heater. The sodium conditions were 675 0 C, 4.0 m/s in velocity and 1-2 ppm oxygen concentration and a cumulative exposure time of the specimens was about 3000 h. The absorption of Ni and selective dissolution of Cr played an important role in the corrosion of the mechanically alloyed ferritic steel as in the case of the cast ferritic steels. However, the region of Ni absorption and Cr diminution was deeper than that of the cast ferritic steels. Peculiar finding for the mechanically alloyed ferritic steel was the corroded surface with irregularly shaped protuberance, that might be related with formation of sodium titanate, and the absorption of carbon and nitrogen to form carbide and nitride of titanium. It seems that these facts resulted in the irregular weight loss of the specimens, which depended on the downstream position and the cumulative exposure time. However, the tensile properties of the mechanically alloyed ferritic steel did not noticeably change by the sodium exposure

  18. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  19. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  20. Evolution of stainless steels in nuclear industry

    International Nuclear Information System (INIS)

    Tavassoli, Farhad

    2010-01-01

    Starting with the stainless steels used in the conventional industry, their adoption and successive evolutions in the nuclear industry, from one generation of nuclear reactors to another, is presented. Specific examples for several steels are given, covering fabrication procedures, qualification methods, property databases and design allowable stresses, to show how the ever-increasing demands for better performance and reliability, in particular under neutron irradiation, have been met. Particular attention is paid to the austenitic stainless steels types 304L, 316L, 316L(N), 316L(N)-IG, titanium stabilized grade 321, precipitation strengthened alloy 800, conventional and low activation ferritic/martensitic steels and their oxygen dispersion strengthening (ODS) derivatives. For each material, the evolution of the associated filler metal and welding techniques are also presented. (author)

  1. Utilizing steel slag in environmental application - An overview

    Science.gov (United States)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  2. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  3. Rotation capacity of self-compacting steel fibre reinforced concrete beams

    NARCIS (Netherlands)

    Schumacher, P.; Walraven, J.C.; Den Uijl, J.A.; Bigaj-van Vliet, A.

    2009-01-01

    Steel fibres are known to enhance the toughness of concrete in compression and in tension. Steel fibres also improve the bond properties between concrete matrix and reinforcing steel bars. In order to investigate the effect of steel fibres on the rotation capacity of reinforced concrete members,

  4. Lightweight Steel Solutions for Automotive Industry

    International Nuclear Information System (INIS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-01-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  5. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  6. Development of a new dual phase steel with laminated microstructural morphology

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 4156–83111 (Iran, Islamic Republic of); Karimi, M. [Department of Materials Science and Engineering, Shahrood University of Technology, Shahrood, 3619995161 (Iran, Islamic Republic of); Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 4156–83111 (Iran, Islamic Republic of)

    2017-05-01

    The development of dual phase steels to meet the current world demands, for the purpose of decreasing the fuel consumption with increasing the strength to weight ratio, requires certain microstructural modifications. In the present research, a new morphology of DP steel, known as Laminated–DP steel, as well as its unique production method has been introduced. The new process developed involved properly selecting low carbon steels, stacking them in a laminated manner and performing a roll bonding process followed by short austenitization treatment. The martensite volume fraction was designed and obtained to be 24%. Scanning electron microscopy (SEM) was employed for microstructural examination. Moreover, deformation and tensile behavior of the newly developed steel were studied and compared with those of some ordinary DP steel (ODP). Room temperature uniaxial tensile tests also revealed mechanical properties comparable with those of the commercial DP600 steel, a kind of structural automotive steel. - Highlights: • A new method for producing dual phase steels was introduced. • Employing a new thermo-mechanical process a laminated microstructure was obtained. • Mechanical properties of the new laminated DP steel were studied. • Tensile properties of the new DP steel were comparable with those of the commercial DP600 steel.

  7. Analysis of polypyrrole-coated stainless steel electrodes

    Indian Academy of Sciences (India)

    Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific ... is carried out on stainless steel electrodes using -toluene sulphonic acid. ... The feasibility of the electrode for supercapacitor applications is investigated.

  8. Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel

    Science.gov (United States)

    Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu

    2018-05-01

    Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.

  9. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  10. Development of Next Generation Heating System for Scale Free Steel Reheating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  11. Control of radioactivity at the Luxembourg steel-making facilities

    International Nuclear Information System (INIS)

    Werner, C.

    1999-01-01

    The Luxembourg steel industry has a yearly capacity of close to 3 million tonnes of raw steel produced from scrap at three electric arc furnace steel-making plants. It has introduced in 1994 a comprehensive system of measuring devices to prevent radioactive material from being introduced into its meltshops. Detection equipment has been installed at the road and railroad accesses to the three plants. Further to the controls of incoming scrap, radioactivity is monitored on both the steel and the slag samples of each heat produced at the plants. This measure is taken in order to detect any incident involving the melting of a radioactive source that might have escaped the controls of incoming material as soon as possible. The triple purpose of these controls is: (i) to protect the personnel of the steel making plants from radiation hazards; (ii) to maintain the integrity of the equipment; and (iii) to assure integrity of the products. The presentation describes the possible origins of radioactive contamination in steel scrap as well as the behaviour in the steel making process of the different radionuclides that can be expected to be introduced into the steel making vessels through steel scrap. Together with the government agency for radiation protection, procedures have been developed for the management of any event of detection of radioactivity in the plants and to assure optimum availability of the measuring equipment. These procedures are described and commented in the presentation. The presentation includes also a report on the experience from 4 years of monitoring, during which more than 10 million tonnes of scrap have passed the gates of the steel-making plants of ProfilARBED and ARES. (author)

  12. Passivation condition of carbon steel in bentonite/sand mixture

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawakami, Susumu

    2002-03-01

    It is essential to understand the corrosion type of carbon steel under the repository conditions for the lifetime assessment of carbon steel overpack used for geological isolation of high-level radioactive waste. According to the previous study, carbon steel is hard to passivate in buffer material assuming a chemical condition range of groundwater in Japan. However, concrete support will be constructed around the overpack in the case of repository in the soft rock system and groundwater having a higher pH may infiltrate to buffer material. There is a possibility that the corrosion type of carbon steel will be influenced by the rise of the pH in groundwater. In this study, anodic polarization experiments were performed to understand the passivation condition of carbon steel in buffer material saturated with water contacted with concrete. An ordinary concrete an a low-alkalinity concrete were used in the experiment. The results of the experiments showed that the carbon steel can passivate under the condition that water having pH > 13 infiltrate to the buffer material assuming present property of buffer material. If the low-alkalinity concrete is selected as the support material, passivation can not occur on carbon steel overpack. The effect of the factors of buffer material such as dry density and mixing ratio of sand on the passivation of carbon steel was also studied. The results of the study showed that the present property of buffer material is enough to prevent passivation of carbon steel. (author)

  13. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  14. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  15. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  16. Long-term Stability of 9- to 12 % Cr Steels

    DEFF Research Database (Denmark)

    Hald, John

    2004-01-01

    In the recent 25 years creep rupture strength of 9- to 12 %Cr steels for steam pipes and turbines has been doubled by development of new alloys. This development has formed a basis for improved efficiency of fossil fired steam power plants by introduction of advanced steam temperatures...... and pressures. Newly developed steam pipe steels are based on modifications of well-established steels like the X 20CrMoV12 1. Balanced addition of V, Nb and N to a 9Cr 1 Mo steel led to the Modified 9 Cr steel P 91. Addition of 1% W to a 9Cr 1 MoVNbN base composition led to steel E 911 and partial replacement...... of Mo with 1.8 % W combined with a slight amount of Boron led to steel P 92. The creep rupture strength of these new alloys are now secured with long-term tests up to 100,000 hours, which demonstrate improvements of 50% (P 91), 75 % (E 911) and 100 % (P 92) in strength compared to X 20CrMoV12 1....

  17. Electrolytic plasma processing of steel surfaces

    International Nuclear Information System (INIS)

    Bejar, M.A; Araya, R.N; Baeza, B

    2006-01-01

    The thermo-chemical treatments of steels with plasma is normally carried out in low-pressure ionized gaseous atmospheres. Among the treatments used most often are: nitruration, carburization and boronized. A plasma can also generate at atmospheric pressure. One way to produce it is with an electrochemical cell that works at a relatively high inter-electrode voltage and under conditions of heavy gas generation. This type of plasma is known as electrolytic plasma. This work studies the feasibility of using electrolytic plasma for the surface processing of steels. Two processes were selected: boronized and nitruration., for the hardening of two types of steel: one with low carbon (1020) and one with low alloy (4140). In the case of the nitruration, the 1020 steel was first aluminized. The electrolytes were aqueous solutions of borax for the boronizing and urea for the nitruration. The electrolytic plasmas were classified qualitatively, in relation with their luminosity by low, medium and high intensity. The boronizing was carried out with low intensity plasmas for a period of one hour. The nitruration was performed with plasmas of different intensities and for period of a few minutes to half an hour. The test pieces processed by electrolytic plasma were characterized by micro-hardness tests and X-ray diffraction. The maximum surface hardnesses obtained for the 1020 and 4140 steels were the following: 300 and 700 HV for the boronizing, and 1650 and 1200 HV for the nitruration, respectively. The utilization of an electrolytic plasma permits the surface processing of steels, noticeably increasing their hardness. With this type of plasma some thermo-chemical surface treatments can be done very rapidly as well (CW)

  18. Recent advances in creep-resistant steels for power plant applications

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    that the martensitic transformation in these three steels produces high dislocation density that confers ... impact and economics have focussed attention on the development of high efficiency, low emission systems. .... programme of Nippon Steel led to the steel NF616 (Nippon Steel 1991), which is now designated P92 in the ...

  19. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo,Carlos Eduardo; Tschiptschin,André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  20. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo, Carlos Eduardo; Tschiptschin, André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon super...

  1. Steel refining possibilities in LF

    Science.gov (United States)

    Dumitru, M. G.; Ioana, A.; Constantin, N.; Ciobanu, F.; Pollifroni, M.

    2018-01-01

    This article presents the main possibilities for steel refining in Ladle Furnace (LF). These, are presented: steelmaking stages, steel refining through argon bottom stirring, online control of the bottom stirring, bottom stirring diagram during LF treatment of a heat, porous plug influence over the argon stirring, bottom stirring porous plug, analysis of porous plugs disposal on ladle bottom surface, bottom stirring simulation with ANSYS, bottom stirring simulation with Autodesk CFD.

  2. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  3. EIS Response of MIC on Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Maahn, Ernst

    1998-01-01

    Abstract Microbially influenced corrosion of carbon steel under sulphate reducing (sulphide-producing) bacterial activity (SRB) results in the formation of both ferrous sulphides as well as biofilm on the metal surface. The electrochemical characteristics of the ferrous sulphide/steel interface...... as compared to the biofilm/ferrous sulphide/steel interface has been studied with EIS, DC polarisations (Tafel, LPR) and a potentiostatic step technique. The electrochemical response is related to a threshold sulphide concentration above which very characteristic changes such as indications of finite...

  4. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    Directory of Open Access Journals (Sweden)

    M. Mahmoudiniya

    2017-03-01

    Full Text Available Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment

  5. Steel fiber replacement of mild steel in prestressed concrete beams

    Science.gov (United States)

    2010-10-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and : transverse mild steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams : exhibit earl...

  6. Steel fiber replacement of mild steel in prestressed concrete beams.

    Science.gov (United States)

    2011-01-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and transverse mild : steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams exhibit early-...

  7. Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

    Directory of Open Access Journals (Sweden)

    İlker Bekir Topçu

    2008-01-01

    Full Text Available The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 500, 800, and 950∘C temperatures for 3 hours and tensile tests were carried out. Effect of temperature on mechanical behavior of S220 and S420 were determined. All mechanical properties were reduced due to the temperature increase of the steel rebars. It is seen that mechanical properties of S420 steel was influenced more than S220 steel at elevated temperatures.

  8. On the corrosion resistance of 01Kh25 ferritic steel

    International Nuclear Information System (INIS)

    Eremeeva, R.A.; Koval', E.K.

    1989-01-01

    Effect of non-ferrous metal ions on corrosion behaviour of 01Kh25 specific low carbon steel as compared to austenitic 12Kh18N10T and 06KhN28MDT steels in boiling solutions of sulfuric and nitric acids and their mixture is studied. Compositions initating commercial ones are chosen the media. It is shown that trough corrosion resistance of 01Kh25 steel in 10% H 2 SO 4 is two order below 06KhN28MDT austenitic steel in presence of Cu 2+ ions as a result of the surface passivation corrosion resistance of ferritic steel is an order higher the austenitic ones. Ferrite steel resistance in the nitric acid and its mixture with sulfuric acid is five timesas much as in 12Kh18N10T austenitic steel

  9. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  10. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  11. Nanostructured Bainite-Austenite Steel for Armours Construction

    Directory of Open Access Journals (Sweden)

    Burian W.

    2014-10-01

    Full Text Available Nanostructured bainite-austenite steels are applied in the armours construction due to their excellent combination of strength and ductility which enables to lower the armour weight and to improve the protection efficiency. Mechanical properties of the bainite-austenite steels can be controlled in the wide range by chemical composition and heat treatment. In the paper the results of investigation comprising measuring of quasi - static mechanical properties, dynamic yield stress and firing tests of bainite-austenite steel NANOS-BA® are presented. Reported results show that the investigated bainite-austenite steel can be used for constructing add-on armour and that the armour fulfils requirements of protection level 2 of STANAG 4569. Obtained reduction in weight of the tested NANOS-BA® plates in comparison with the present solutions is about 30%.

  12. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    Energy Technology Data Exchange (ETDEWEB)

    Bates, D J; Doctor, S R; Heasler, P G; Burck, E

    1987-10-01

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection.

  13. Introducing radioactivity monitoring systems in the production of steel

    International Nuclear Information System (INIS)

    Sofilic, T.; Marjanovic, T.; Rastovcan-Mioc, A.

    2005-01-01

    Over the last twenty years, a significant number of cases of radioactive pollution has been recorded in metallurgical processes. However, it is not certain whether the pollution was caused by increased uncontrolled disposal of waste containing radionuclides or whether it was the result of increased radioactivity monitoring and control of metallic scrap. Many metal producers in the world have therefore implemented systematic monitoring of radioactivity in their production processes. Special attention was given to monitoring radioactivity in steel making processes, which is still the most applied construction material with an annual output of over billion tonnes all over the world. Drawing on the experience of the best known steel producers in Europe and world, Croatian steel mills find it necessary and justified to introduce radioactivity monitoring and control systems of radioactive elements in steel scrap, semi-finished and finished products. The aim of this paper is to point out the need to introduce the radioactivity monitoring and control in steel and steel-casting production, and to inform experts in Croatian steel mills and foundries about potential solutions and current systems. At the same time, we wanted to demonstrate how implementation of monitoring equipment can improve quality management and environmental management systems. This would render Croatian products competitive on the European market both in terms of physical and chemical properties and in terms of product quality certificates and radioactivity information. Since we lack our own standards and regulations to control both domestic and imported steel scrap, semi-finished products (crude steel, hot and cold rolled strip) and finished products, we need apply current international recommendations and guidelines, until we design our own monitoring system and adopt relevant legislation on the national level. This paper describes basic types of radioactivity monitoring and control systems, the most

  14. Corrosion processes on weathering steel railway bridge in Prague

    OpenAIRE

    Urban, Viktor; Křivý, Vít; Buchta, Vojtěch

    2016-01-01

    This contribution deals with experimental corrosion tests carried out on the weathering steel railway bridge in Prague. The basic specific property of the weathering steel is an ability to create in favourable environment a protective patina layer on its surface. Since 1968 weathering steel is used under the name “Atmofix” in the Czech Republic and can be used as a standard structural material without any corrosion protection. The weathering steel Atmofix is mostly used for bridge structures ...

  15. Development status und future possibilities for martensitic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [Technical Univ. Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering

    2010-07-01

    In the last four decades new stronger modified 9%Cr martensitic creep resistant steels have been introduced in power plants, which has enabled increases in maximum achievable steam conditions from the previous 250 bar and 540-560 C up to the values of 300 bar and 600-620 C currently being introduced all over the world. In order to further increase the steam parameters of steel based power plants up to a target value of 650 C/325 bar it is necessary to double the creep strength of the martensitic steels. At the same time the resistance against steam oxidation must be improved by an increase of the chromium content in the steels from 9% to 12%. However, so far all attempts to make stronger 12%Cr steels have led to breakdowns in long-term creep strength. Significant progress has been achieved in the understanding of microstructure stability of the martensitic 9-12%Cr steels: Observed microstructure instabilities in 11-12%Cr steels are explained by Z-phase precipitation, which dissolves fine MN nitrides. Improved understanding of effects of B and N on long-term creep properties has formed the basis of a series of new stronger 9%Cr test alloys with improved creep strength. In parallel 9%Cr test steels with low C content show very promising behavior in long-term tests. However, the 9%Cr steels must be surface coated to protect against steam oxidation at high temperature applications above 620%C. A possibility to use fine Z-phases for strengthening of the martensitic steels has been identified, and this opens a new pathway for development of stable strong 12%Cr steels. There are still good prospects for the realization of a 325 bar / 650 C steam power plant all based on steel. (orig.)

  16. Development of Alloy Coating Process of Steel Pipe for Seawater service

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong Man; Kwon, Taeg Kyu; Lee, Sang Hyeog [Daewoo Shipbuilding and Marine Engineering Co., Ltd., Okpo (Korea)

    2001-02-01

    The new alloy coating process was developed to apply steel pipe for seawater service. This process consists of Zn-Al hot-dip coating treatment immediately following after normal galvanizing treatment. The alloy coating process formed double layer after surface treatment, and the surface layer was similar to that of Galfan steel and the intermetallic layer was also similar to that of aluminized steel. The alloy coating layer protect steel pipe galvanically and provide steel pipe with high resistance to general corrosion of seawater. This new alloy coated steel pipe had also good weldability and adhesion strength of paints compared to galvanized steel. 5 refs., 14 figs.

  17. Behaviour of Z phase in 9–12%Cr steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John

    2006-01-01

    The literature on the behaviour of modified Z phase Cr(V,Nb)N in creep resistant martensitic 9–12%Cr steels is briefly reviewed. Ten different 9–12%Cr steels were investigated after prolonged exposure at 600–660uC; the modified Z phase was found in all of them. In steels with high Cr content (11......–12%), Z phase precipitates much faster than in 9%Cr steels. Precipitation of Z phase is associated with dissolution of MX carbonitrides, and causes a breakdown in long term creep strength in 9–12%Cr steels. High Cr steels show creep instabilities accompanied with Z phase precipitation, whereas low Cr...... steels show good long term creep stability. A niobium free CrVN variant of the modified Z phase was observed for the first time during the course of this work. The solution temperature of the Cr(V,Nb)N and CrVN modified Z phases was found to be close to 800uC for 11–12%Cr steels, much lower than the 1200...

  18. Corrosion of carbon steel in contact with bentonite

    International Nuclear Information System (INIS)

    Dobrev, D.; Vokal, A.; Bruha, P.

    2010-01-01

    Document available in extended abstract form only. Carbon steel canisters were chosen in a number of disposal concepts as reference material for disposal canisters. The corrosion rates of carbon steels in water solution both in aerobic and anaerobic conditions are well known, but only scarce data are available for corrosion behaviour of carbon steels in contact with bentonite. A special apparatus, which enables to measure corrosion rate of carbon steels under conditions simulating conditions in a repository, namely in contact with bentonite under high pressure and elevated temperatures was therefore prepared to study: - Corrosion rate of carbon steels in direct contact with bentonite in comparison with corrosion rate of carbon steels in synthetic bentonite pore water. - Influence of corrosion products on bentonite. The apparatus is composed of corrosion chamber containing a carbon steel disc in direct contact with compacted bentonite. Synthetic granitic water is above compacted bentonite under high pressure (50 - 100 bar) to simulate hydrostatic pressure in a repository. The experiments can be carried out under various temperatures. Bentonites used for experiments were Na-type of bentonite Volclay KWK 80 - 20 and Ca-Mg Czech bentonite from deposit Rokle. Before adding water into corrosion system the corrosion chamber was purged by nitrogen gas. The saturation of bentonite and corrosion rate were monitored by measuring consumption of water, pressure increase caused by swelling pressure of bentonite and by generation of hydrogen. Corrosion rate was also determined after corrosion experiments from weight loss of samples. The results of experiments show that the corrosion behaviour of carbon steels in contact with bentonite is very different from corrosion of carbon steels in water simulating bentonite pore water solution. The corrosion rates of carbon steel in contact with bentonite reached after 30 days of corrosion the values approaching 40 mm/yr contrary to values

  19. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Science.gov (United States)

    2012-05-23

    ... will acquire all of the common stock of Patriot from Patriot Rail Holdings LLC, and thereby indirect... America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver... notice of exemption to acquire control of Patriot Rail Corp. (Patriot) and its rail carrier subsidiaries...

  20. Damping capacity of unstable steels on chromium-nickel-manganese base

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, L.I.; Rudakov, A.A. (Kirovskij Politekhnicheskij Inst. (USSR))

    1982-02-01

    The paper deals with results of a study on the energy scattering in OKh13N3G8, 20Kh13N3G4 and 30Kh13N3G4 unstable steels. It is shown that the development of microplastic strains most easily occurs in low-carbon steel having a two-phase structure in the initial state. The proceeding of microplastic deformations in carbon unstable steels is limited by the interstitial atom effect on the dislocation movement. It is established that in OKh13N3G8 steel the martensite ..cap alpha --> gamma..- transformation begins under the cyclic stress amplitudes below the yield point of this steel. The steels studied possess a high vibrostrength.

  1. Mechanism of an acoustic wave impact on steel during solidification

    Directory of Open Access Journals (Sweden)

    K. Nowacki

    2013-04-01

    Full Text Available Acoustic steel processing in an ingot mould may be the final stage in the process of quality improvement of a steel ingot. The impact of radiation and cavitation pressure as well as the phenomena related to the acoustic wave being emitted and delivered to liquid steel affect various aspects including the internal structure fragmentation, rigidity or density of steel. The article provides an analysis of the mechanism of impact of physical phenomena caused by an acoustic wave affecting the quality of a steel ingot.

  2. Financial Management: Emergency Steel Loan Guarantee Program

    National Research Council Canada - National Science Library

    2001-01-01

    In a February 1, 2001 letter, you expressed concerns about repayments of federally guaranteed loans by borrowers under the Emergency Steel Loan Guarantee Program and the effect of the program on the U.S. steel industry...

  3. Accelerated development of advanced steels for nuclear applications

    International Nuclear Information System (INIS)

    Ghoniem, N.; Zinkle, S.

    2009-01-01

    Significant progress has been achieved in the operational performance and radiation resistance of ferritic-martensitic steels during the past few decades. Conventional high temperature steels, such as HT-9 and 2 1/4 Cr-1Mo have evolved into super Oxide Dispersion Strengthened (ODS) steels through successive optimization to meet strict performance and radiation-resistance constraints. Such evolution was possible through a combination of experimentation, modeling and empirical information. Further development and optimization of structural steels in nuclear applications will require full utilization of the available array of sophisticated experimental techniques and multiscale computational modeling, in addition to empirical data. We present here a systematic approach to the process of optimum steel development, by linking material fabrication to thermo-mechanical properties through a physical understanding of microstructure evolution. The optimization process is based on the application of design constraints (e.g. low activation, low DBTT, low swelling, creep resistance, and weldability) to describe the required microstructures, which in turn, can be controlled through material processing techniques. Prospects for future design of optimum structural steels in nuclear applications by utilization of the hierarchy of multiscale experimental and computational strategies will be described. (author)

  4. Corrosion Protection of Steels by Conducting Polymer Coating

    Directory of Open Access Journals (Sweden)

    Toshiaki Ohtsuka

    2012-01-01

    Full Text Available The corrosion protection of steels by conducting polymer coating is reviewed. The conducting polymer such as polyaniline, polypyrrole, and polythiophen works as a strong oxidant to the steel, inducing the potential shift to the noble direction. The strongly oxidative conducting polymer facilitates the steel to be passivated. A bilayered PPy film was designed for the effective corrosion protection. It consisted of the inner layer in which phosphomolybdate ion, PMo12O3−40 (PMo, was doped and the outer layer in which dodecylsulfate ion (DoS was doped. The inner layer stabilized the passive oxide and the outer possessed anionic perm-selectivity to inhibit the aggressive anions such as chloride from penetrating through the PPy film to the substrate steel. By the bilayered PPy film, the steel was kept passive for about 200 h in 3.5% sodium chloride solution without formation of corrosion products.

  5. 49 CFR 178.512 - Standards for steel or aluminum boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel or aluminum boxes. 178.512... aluminum boxes. (a) The following are identification codes for steel or aluminum boxes: (1) 4A for a steel box; and (2) 4B for an aluminum box. (b) Construction requirements for steel or aluminum boxes are as...

  6. Fatigue of carbon and low-alloy steels in LWR environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Michaud, W.F.; Shack, W.J.

    1994-01-01

    Fatigue tests have been conducted on A106-Gr B carbon steel and A533-Gr B low-alloy steel to evaluate the effects of an oxygenated-water environment on the fatigue life of these steels. For both steels, environmental effects are modest in PWR water at all strain rates. Fatigue data in oxygenated water confirm the strong dependence of fatigue life on dissolved oxygen (DO) and strain rate. The effect of strain rate on fatigue life saturates at some low value, e.g., between 0.0004 and 0.001%/s in oxygenated water with ∼0.8 ppm DO. The data suggest that the saturation value of strain rate may vary with DO and sulfur content of the steel. Although the cyclic stress-strain and cyclic-hardening behavior of carbon and low-alloy steels is distinctly different, the degradation of fatigue life of these two steels with comparable sulfur levels is similar. The carbon steel exhibits pronounced dynamic strain aging, whereas strain-aging effects are modest in the low-alloy steel. Environmental effects on nucleation of fatigue crack have also been investigated. The results suggest that the high-temperature oxygenated water has little or not effect on crack nucleation

  7. Corrosion behaviour of dissimilar welds between ferritic-martensitic stainless steel and austenitic stainless steel from secondary circuit of CANDU NPP

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2016-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. The principal criteria for selecting a stainless steel usually is resistance to corrosion, and white most consideration is given to the corrosion resistance of the base metal, additional consideration should be given to the weld metal and to the base metal immediately adjacent to the weld zone. Our experiments were performed in chloride environmental on two types of samples: non-welded (410 or W 1.4006 ferritic-martensitic steel and 304L or W 1.4307 austenitic stainless steel) and dissimilar welds (dissimilar metal welds: joints between 410 ferritic-martensitic and 304L austenitic stainless steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and optic microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and ferritic-martensitic steel in solutions containing chloride ions. It was evaluated the corrosion rates of samples (welded and non-welded) by electrochemical methods. (authors)

  8. Ionic Liquids as Additives of Coffee Bean Oil in Steel-Steel Contacts

    Directory of Open Access Journals (Sweden)

    James Grace

    2015-10-01

    Full Text Available Environmental awareness and ever-growing restrictive regulations over contamination have increased the need for more environmentally-friendly lubricants. Due to their superior biodegradability and lower toxicity, vegetable oils are a good alternative to replace currently-used mineral oils. However, vegetable oils show low oxidation and thermal stability and poor anti-wear properties. Most of these drawbacks can be attenuated through the use of additives. In the last decade, ionic liquids have emerged as high-performance fluids and lubricant additives due to their unique characteristics. In this study, the tribological behavior of two phosphonium-based ionic liquids is investigated as additives of coffee bean oil in steel-steel contact. Coffee bean oil-ionic liquid blends containing 1, 2.5, and 5 wt% of each ionic liquid are studied using a block-on-flat reciprocating tribometer and the test results are compared to commercially-available, fully-formulated lubricant. Results showed that the addition of the ionic liquids to the coffee bean oil reduces wear volume of the steel disks, and wear values achieved are comparable to that obtained when the commercially-available lubricant is used.

  9. Visualization of hydrogen in steels by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2000-01-01

    Secondary ion mass spectrometry (SIMS) enables us to visualize hydrogen trapping sites in steels. Information about the hydrogen trapping sites in high-strength steels by SIMS is very important to discuss environmental embrittlement mechanism for developing steels with a high resistance to the environmental embrittlement. Secondary ion image analysis by SIMS has made possible to visualize the hydrogen and deuterium trapping sites in the steels. Hydrogen in tempered martensite steels containing Ca tends to accumulate on inclusions, at grain boundaries, and in segregation bands. Visualization of hydrogen desorption process by secondary ion image analysis confirms that the bonding between the inclusions and the hydrogen is strong. Cold-drawn pearlite steels trap hydrogen along cold-drawing direction. Pearlite phase absorbs the hydrogen more than ferrite phase does. This article introduces the principle of SIMS, its feature, analysis method, and results of hydrogen visualization in steels. (author)

  10. Assessing resistance of stabilized corrosion resistant steels to intergranular corrosion

    International Nuclear Information System (INIS)

    Karas, A.; Cihal, V. Jr.; Vanek, V.; Herzan, J.; Protiva, K.; Cihal, V.

    1987-01-01

    Resistance to intergranular corrosion was determined for four types of titanium-stabilized steels from the coefficients of stabilization efficiency according to the degree the chemical composition was known. The ATA SUPER steel showed the highest resistance parameter value. The resistance of this type of steel of a specific composition, showing a relatively low value of mean nitrogen content was compared with steel of an optimized chemical composition and with low-carbon niobium stabilized, molybdenum modified steels. The comparison showed guarantees of a sufficient resistance of the steel to intergranular corrosion. The method of assessing the resistance to intergranular corrosion using the calculation of the minimum content of Cr', i.e., the effective chromium content, and the maximum effective carbon content C' giving the resistance parameter k seems to be prospective for practical use in the production of corrosion resistant steels. (author). 1 tab., 5 figs., 15 refs

  11. Corrosion aspects of steel radioactive waste containers in cementitious materials

    International Nuclear Information System (INIS)

    Smart, Nick

    2012-01-01

    Nick Smart from Serco, UK, gave an overview of the effects of cementitious materials on the corrosion of steel during storage and disposal of various low- and intermediate-level radioactive wastes. Steel containers are often used as an overpack for the containment of radioactive wastes and are routinely stored in an open atmosphere. Since this is an aerobic and typically humid environment, the steel containers can start to corrode whilst in storage. Steel containers often come into contact with cementitious materials (e.g. grout encapsulants, backfill). An extensive account of different steel container designs and of steel corrosion mechanisms was provided. Steel corrosion rates under conditions buffered by cementitious materials have been evaluated experimentally. The main conclusion was that the cementitious environment generally facilitates the passivation of steel materials. Several general and localised corrosion mechanisms need to be considered when evaluating the performance of steel containers in cementitious environments, and environmental thresholds can be defined and used with this aim. In addition, the consequences of the generation of gaseous hydrogen by the corrosion of carbon steel under anoxic conditions must be taken into account. Discussion of the paper included: Is crevice corrosion really significant in cementitious systems? Crevice corrosion is unlikely in the cementitious backfill considered because it will tend to neutralise any acidic conditions in the crevice. What is the role of microbially-induced corrosion (MIC) in cementitious systems? Microbes are likely to be present in a disposal facility but their effect on corrosion is uncertain

  12. Mechanical properties of low alloy high phosphorus weathering steel

    Directory of Open Access Journals (Sweden)

    Jena B.K.

    2015-01-01

    Full Text Available Mechanical behaviour of two low alloy steels (G11 and G12 was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11 revealed ferrite and pearlite microstructure. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grain changed from equiaxed shape to pan-cake shape and grain size also increased. The Charpy V notch (CVN impact energy of G11 and G12 steel at room temperature was 32 J and 4 J respectively and their fractographs revealed brittle rupture with cleavage facets for both the steels. However, the fractograph of G11 steel after tensile test exhibited ductile mode of fracture with conical equiaxed dimple while that of G12 steel containing 0.42 wt. % P exhibited transgranular cleavage fracture. Based on this study, G11 steel containing 0.25 wt. % P could be explored as a candidate material for weathering application purpose where the 20°C toughness requirement is 27 J as per CSN EN10025-2:2004 specification.

  13. Surface modification of hydroturbine steel using friction stir processing

    Science.gov (United States)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  14. The morphology and formation mechanism of pearlite in steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.-X., E-mail: Mingxing.Zhang@uq.edu.au [Division of Materials, School of Engineering, University of Queensland, St. Lucia, Queensland 4072 (Australia); Kelly, P.M. [Division of Materials, School of Engineering, University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2009-06-15

    A number of morphological features of pearlite were revealed through scanning electron microscopy using deeply etched specimens. These include cementite branching, bridging, gaps, holes and curvature. The presence of cementite thin films or networks along the austenite grain boundaries in eutectoid steel and at the interface between pearlite and proeutectoid ferrite in hypoeutectoid steel is another characteristic of pearlite. Furthermore, ferrite thin films surrounding the proeutectoid cementite in hypereutectoid steels are also observed. Hence, it is considered that in hypoeutectoid steels the nucleus for pearlite is a film of cementite rather than the expected proeutectoid ferrite and, similarly, in hypereutectoid steels pearlite forms from a ferrite film rather than from proeutectoid cementite. Convergent beam Kikuchi line diffraction was used to accurately determine the orientation relationships between pearlitic constituents and parent austenite in a Hadfields steel. The results show that neither the pearlitic ferrite nor the cementite is crystallographically related to the austenite grain into which the pearlite was growing and to that into which it was not growing. In addition, a new orientation relationship between pearlitic cementite and ferrite in the Hadfield steel was also observed.

  15. How Will Copper Contamination Constrain Future Global Steel Recycling?

    Science.gov (United States)

    Daehn, Katrin E; Cabrera Serrenho, André; Allwood, Julian M

    2017-06-06

    Copper in steel causes metallurgical problems, but is pervasive in end-of-life scrap and cannot currently be removed commercially once in the melt. Contamination can be managed to an extent by globally trading scrap for use in tolerant applications and dilution with primary iron sources. However, the viability of long-term strategies can only be evaluated with a complete characterization of copper in the global steel system and this is presented in this paper. The copper concentration of flows along the 2008 steel supply chain is estimated from a survey of literature data and compared with estimates of the maximum concentration that can be tolerated in steel products. Estimates of final steel demand and scrap supply by sector are taken from a global stock-saturation model to determine when the amount of copper in the steel cycle will exceed that which can be tolerated. Best estimates show that quantities of copper arising from conventional scrap preparation can be managed in the global steel system until 2050 assuming perfectly coordinated trade and extensive dilution, but this strategy will become increasingly impractical. Technical and policy interventions along the supply chain are presented to close product loops before this global constraint.

  16. Microstructure and Mechanical Properties of Dissimilar Friction Stir Spot Welding Between St37 Steel and 304 Stainless Steel

    Science.gov (United States)

    Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah

    2017-05-01

    In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.

  17. Fracture-tough, corrosion-resistant bearing steels

    Science.gov (United States)

    Olson, Gregory B.

    1990-01-01

    The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during

  18. Porous stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sabrina de Fátima Ferreira Mariotto

    2011-01-01

    Full Text Available Porous 316L austenitic stainless steel was synthesized by powder metallurgy with relative density of 0.50 and 0.30 using 15 and 30 wt. (% respectively of ammonium carbonate and ammonium bicarbonate as foaming agents. The powders were mixed in a planetary ball mill at 60 rpm for 10 minutes. The samples were uniaxially pressed at 287 MPa and subsequently vacuum heat treated in two stages, the first one at 200 ºC for 5 hours to decompose the carbonate and the second one at 1150 ºC for 2 hours to sinter the steel. The sintered samples had a close porous structure and a multimodal pore size distribution that varied with the foaming agent and its concentration. The samples obtained by addition of 30 wt. (% of foaming agents had a more homogeneous porous structure than that obtained with 15 wt. (%. The MTT cytotoxicity test (3-[4,5-dimethylthiazol]-2,5-diphenyltetrazolium bromide was used to evaluate the mitochondrial activity of L929 cells with samples for periods of 24, 48, and 72 hours. The cytotoxicity test showed that the steel foams were not toxic to fibroblast culture. The sample with the best cellular growth, therefore the most suitable for biomedical applications among those studied in this work, was produced with 30 wt. (% ammonium carbonate. In this sample, cell development was observed after 48 hours of incubation, and there was adhesion and spreading on the material after 72 hours. Electrochemical experiments using a chloride-containing medium were performed on steel foams and compared to massive steel. The massive steel had a better corrosion performance than the foams as the porosity contributes to increase the surface area exposed to the corrosive medium.

  19. Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels

    Science.gov (United States)

    2012-03-01

    stainless steel and ferritic/ martensitic steel can vary from structural and support components in the reactor core to reactor fuel...of ferritic/ martensitic steels compared to type 316 stainless steel after irradiation in Experimental Breeder Reactor-II at 420 ºC to ~80dpa (From...ferritic martensitic steel at Sandia National Laboratories. The 316 stainless steel had a certified composition of:

  20. Stainless steel recycle FY94 progress report

    International Nuclear Information System (INIS)

    Imrich, K.J.

    1994-01-01

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft 3 ) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  1. Microstructure characterization of Friction Stir Spot Welded TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Adachi, Yoshitaka; Peterson, Jeremy

    2012-01-01

    Transformation Induced Plasticity (TRIP) steels have not yet been successfully joined by any welding technique. It is desirable to search for a suitable welding technique that opens up for full usability of TRIP steels. In this study, the potential of joining TRIP steel with Friction Stir Spot...

  2. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  3. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  4. Corrosion of carbon steel in neutral water

    International Nuclear Information System (INIS)

    Kawai, Noboru; Iwahori, Toru; Kurosawa, Tatsuo

    1983-01-01

    The initial corrosion behavior of materials used in the construction of heat exchanger and piping system of BWR nuclear power plants and thermal power plants have been examined in neutral water at 30, 50, 100, 160, 200, and 285 deg C with two concentrations of dissolved oxygen in the water. In air-saturated water, the corrosion rate of carbon steel was so higher than those in deaerated conditions and the maximum corrosion rate was observed at 200 deg C. The corrosion rate in deaerated water gradually increased with increasing the water temperature. Low alloy steel (2.25 Cr, 1Mo) exhibited good corrosion resistance compared with the corrosion of carbon steel under similar testing conditions. Oxide films grown on carbon steel in deaerated water at 50, 100, 160, 200, and 285 deg C for 48 and 240 hrs were attacked by dissolved oxygen in room temperature water respectively. However the oxide films formed higher than about 160 deg C showed more protective. The electrochemical behavior of carbon steel with oxide films was also similar to the effect of temperature on the stability of oxide films. (author)

  5. Modern high strength QT, TM and duplex-stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P. [Industeel (France); Luxenburger, G. [Aktiengesellschaft der Dillinger Huettenwerke, Dillingen/Saar (Germany); Porter, D. [Rautaruukki (Finland); Ericsson, C. [Avesta Polarit (Sweden)

    2003-07-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  6. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Bocquet, P.; Luxenburger, G.; Porter, D.; Ericsson, C.

    2003-01-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  7. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  8. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  9. SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel joints prepared by dynamic diffusion bonding: Microelectrochemical studies in 0.6 M NaCl solution

    International Nuclear Information System (INIS)

    Andreatta, Francesco; Matesanz, Laura; Akita, Adriano H.; Paussa, Luca; Fedrizzi, Lorenzo; Fugivara, Cecilio S.; Gomez de Salazar, Jose M.; Benedetti, Assis V.

    2009-01-01

    Corrosion of SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel interfaces was investigated in 0.6 M NaCl solution using an electrochemical microcell, which enables local electrochemical characterization at the micrometer scale. Two pieces of steel, one with a WC-Co coating covered with Ni (12 μm) and Cu (5 μm) layers, and the other with a Ni (15 μm) layer, were welded by dynamic diffusion bonding. A WC-Co coating was applied to the steel by the high velocity oxygen-fuel process, and Ni-Cu and Ni layers by electroplating. Polarization curves were recorded using an electrochemical microcell. Different regions of welded samples were investigated, including steel, cermet coating, and steel/cermet and steel/Ni-Cu-Ni/cermet interfaces. Optical and electronic microscopes were employed to study the corroded regions. Potentiodynamic polarization curves obtained using the microcell revealed that the base metal was more susceptible to corrosion than the cermet. In addition, cermet steel/cermet and steel/Ni-Cu-Ni/cermet joints exhibited different breakdown potentials. Steel was strongly corroded in the regions adjacent to the interfaces, while the cermet was less corroded. Iron oxides/hydroxides and chloride salts were the main corrosion products of steel. After removal of the superficial layer of corrosion products, iron oxides were mainly observed. Chloride ions were detected mainly on a copper-enriched layer placed between two Ni-enriched layers.

  10. Damping capacity of unstable steels on chromium-nickel-manganese base

    International Nuclear Information System (INIS)

    Kochkin, L.I.; Rudakov, A.A.

    1982-01-01

    The paper deals with results of a study on the energy scattering in OKh13N3G8, 20Kh13N3G4 and 30Kh13N3G4 unstable steels. It is shown that the development of microplastic strains most easily occurs in low-carbon steel having a two-phase structure in the initial state. The proceeding of microplastic deformations in carbon unstable steels is limited by the interstitial atom effect on the dislocation movement. It is established that in OKh13N3G8 steel the martensite α→γ- transformation begins under the cyclic stress amplitudes below the yield point of this steel. The steels studied possess a high vibrostrength [ru

  11. Noise pollution in iron and steel industry

    International Nuclear Information System (INIS)

    Bisio, G.; Piromalli, W.; Acerbo, P.

    1999-01-01

    Iron and steel industry is characterized by high energy consumption and thus present remarkable problems from the point of view of noise pollution. The aims of this paper is to examine characteristic and acoustical emissions and immisions of some fundamentals iron and steel plants with several remarks on the possible measures to reduce noise pollution. For a large integrate iron and steel system, some surveys are shown with all devices running and, in addition, comparisons are made with other surveys when the main devices were out of service owing to great maintenance works [it

  12. Hegelian Steel

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    Even in our globalized world the notion of national economies remain incredibly strong, just as a considerable part of the literature on transnational governance and globalization continue to rely on a zero-sum perspective concerning the relationship between the national and the transnational. De...... of the European steel industry....

  13. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ...), that an industry in the United States is materially injured by reason of imports of high pressure steel... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were... Publication 4328 (June 2012), entitled High Pressure Steel Cylinders from China: Investigation Nos. 701-TA-480...

  14. Work-hardening of dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Florian

    2016-07-01

    Exhibiting good mechanical properties for cold-sheet forming, low-alloyed dual-phase (DP) steels are nowadays widely used for automotive applications. The composite-like microstructure of DP steels is composed of a low-carbon ductile ferrite-matrix and 10 - 60 vol.% hard martensitic inclusions. A nonlinear mean-field model and full-field finite-element simulations are applied to investigate three major topics: the influence of grain-size distribution, grain-level plasticity and derivation of an original material-model. The plastic behavior of polycrystals is assumed to be grain-size dependent in this work. The distribution of grain-sizes is taken to be lognormal. It is found that grain-size dispersion leads to a decrease of the material strength, in particular for small mean diameters around one micron. The numerical results from the mean-field model are confirmed notably well by means of a simple analytical expression. The micromechanical behavior of DP steels is investigated by full-field RVE simulations with a crystal-plasticity based ferrite-matrix and von Mises-type martensite inclusions. To examine the martensite influence, full-field simulation results of DP steels have been compared to an RVE in which martensite is substituted by ferrite. After quenching, a higher grain-boundary area covered by martensite facilitates an increased average dislocation-density. For uniaxial deformations above ∝10%, however, the grain-size dependent relation reverses. With more surrounding martensite, the local crystal-plasticity material-model exhibits hardening at a slower rate. A nonlinear mean-field model of Hashin-Shtrikman type is employed as framework for the original material-model for DP steels. The model incorporates the interaction of ferrite and martensite via incompatibility-induced long-range stresses in an averaged sense. The proposed model combines works of Ashby (1970) and Brown and Stobbs (1971a) to simulate the ferrite behavior. Based on the composite model

  15. Tritium distributing in stainless steel determined by chemical etchin

    International Nuclear Information System (INIS)

    Xiong Yifu; Luo Deli; Chen Changan; Chen Shicun; Jing Wenyong

    2009-01-01

    The depth distribution of tritium in stainless steel was measured by chemical etching. The results show that the method can more quantitatively evaluate the tritium distributing in stainless steel. The maximum amount of tritium which distributed in crystal lattice of stainless steel is limitted by its solubility at room temperature. The other form of tritium in stainless steel is gaseous tritium that are trapped by defects, impurities, fractures, etc. within it. The gaseous tritium is several times more than the solid-dissolved tritium. (authors)

  16. Effect of smelt aluminium on mechanical properties of steels

    International Nuclear Information System (INIS)

    Ryabov, V.R.; Dykhno, I.S.; Deev, G.F.; Karikh, V.V.

    1987-01-01

    Effect of smelt aluminium on mechanical properties of armco-iron and 12 Kh18N10T steel is studied. It is stated that in smelt aluminium and aluminium alloy contact with armco-iron the sample ductility is decreased. Corrosion effect of smelt alluminium on (18Kh15N5AM3) steel in the form of reinforced wire in aluminium-steel KAS-1A composite material is investigted. It is stated in experiment that during smelt alluminium-steel contact interaction of heterogeneous phases takes place

  17. Japanese steel mills update and expectations to Canadian coal industry

    International Nuclear Information System (INIS)

    Yamaguchi, I.

    2008-01-01

    Kobe Steel's (Kobelco) corporate strategy includes expanding from only-one product such as high tensile strength steel sheet, and enlarging overseas production capacity through joint ventures and technical alliances. A new steel making process from low quality iron ore and steaming coal called ITmk3 has been developed by Kobe Steel that does not require any coke, reduces carbon dioxide emissions by 20 per cent, and reduces the cost of transporting slag. This strategy and technology was presented along with the changes surrounding the Japanese steel industry and raw materials market. These changes include the rise of emerging oil-producing countries; world steel production and exports; the rise in prices of resources; and the slowdown of the United States economy. The current situation of Japanese crude steel production, pig-iron production, and coke expansion plans were also presented. The presentation also outlined expectation's of the Canadian coal industry with reference to Canadian coal imports to Japan. tabs., figs

  18. Assessment of long-term creep strength of grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Kazuhiro; Sawada, Kota; Kushima, Hideaki [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    In 2004 and 2005 long-term creep rupture strength of ASME Grade 91 type steels of plate, pipe, forging and tube materials was evaluated in Japan by means of region splitting analysis method in consideration of 50% of 0.2% offset yield stress. According to the evaluated 100,000h creep rupture strength of 94MPa for plate, pipe and forging steels and 92MPa for tube steel at 600 C, allowable tensile stress of the steels regulated in the Interpretation for the Technical Standard for Thermal Power Plant was slightly reduced. New creep rupture data of the steels obtained in the long-term indicate further reduction of long-term creep rupture strength. Not only creep rupture strength, but also creep deformation property of the ASME Grade 91 steel was investigated and need of reevaluation of long-term creep strength of Grade 91 steel was indicated. A refinement of region splitting analysis method for creep rupture like prediction was discussed. (orig.)

  19. Residual stress relief in MAG welded joints of dissimilar steels

    International Nuclear Information System (INIS)

    Seodek, P.; Brozda, J.; Wang, L.; Withers, P.J.

    2003-01-01

    This paper addresses the relief of residual stress in welded joints between austenitic and non-alloyed ferritic-pearlitic steels. A series of similar and dissimilar steel joints based on the 18G2A (ferritic-pearlitic) and 1H18N10T (austenitic) steels were produced, some of which were stress relieved by annealing and some by mechanical prestressing. For the as-welded and stress relieved test joints the residual stresses were measured by trepanning. To aid the interpretation of these results, 2D plane stress finite element analysis has been performed to simulate the residual stress relieving methods. Analysis of the results has shown that thermal stress relieving of welded joints between dissimilar steels is not effective and may even increase residual stresses, due to the considerable difference in thermal expansion of the joined steels. It was found that, for the loads imposed, the effectiveness of the mechanical stress relieving of dissimilar steel welded joints was much lower than that of similar steel joints

  20. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1982-01-01

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  1. Evaluation of workability and strength of green concrete using waste steel scrap

    Science.gov (United States)

    Neeraja, D.; Arshad, Shaik Mohammed; Nawaz Nadaf, Alisha K.; Reddy, Mani Kumar

    2017-11-01

    This project works on the study of workability and mechanical properties of concrete using waste steel scrap from the lathe industry. Lathe industries produce waste steel scrap from the lathe machines. In this study, an attempt is made to use this waste in concrete, as accumulation of waste steel scrap cause disposal problem. Tests like compressive test, split tensile test, NDT test (UPV test) were conducted to determine the impact of steel scrap in concrete. The percentages of steel scrap considered in the study were 0%, 0.5%, 1%, 1.5%, and 2% respectively by volume of concrete, 7 day, 28 days test were conducted to find out strength of steel scrap concrete. It is observed that split tensile strength of steel scrap concrete is increased slightly. Split tensile strength of Steel scrap concrete is found to be maximum with volume fraction of 2.0% steel scrap. The steel scrap gives good result in split tensile strength of concrete. From the study concluded that steel scrap can be used in concrete to reduce brittleness of concrete to some extent.

  2. Fracture of ledeburitic steel during hot plastic deformation

    International Nuclear Information System (INIS)

    Nikitin, V.P.; Borisov, Yu.A.; Bulat, S.I.; Zajtsev, V.V.

    1977-01-01

    The mechanisms of the high-temperature failure of high-carbon chromium Kh6F1, Kh6T2 and Kh6VF steels and a possibility to avoid their overheating have been investigated. At 1190 deg C and over the failure occurs along boundaries of grains at points of formation of the initial portions of the liquid phase as carbides are dissolved. If after a holding at 1190-1210 deg C the steels are cooled to 1120-1150 deg C and held for a sufficiently long time, secondary carbides are formed in the eutectic areas and, if the steels are deformed, the discontinuities present a rounded shape. Holding of an overheated steel at 1120-1150 deg C ensures its satisfactory workability in rolling. By choosing adequate overheating and subsequent slight cooling conditions, it is possible not only to retain, but even to improve the plasticity of carbide high-carbon steels. The results of laboratory tests have been confirmed under industrial conditions

  3. Helium-induced weld degradation of HT-9 steel

    International Nuclear Information System (INIS)

    Wang, Chin-An; Chin, B.A.; Lin, Hua T.; Grossbeck, M.L.

    1992-01-01

    Helium-bearing Sandvik HT-9 ferritic steel was tested for weldability to simulate the welding of structural components of a fusion reactor after irradiation. Helium was introduced into HT-9 steel to 0.3 and 1 atomic parts per million (appm) by tritium doping and decay. Autogenous single pass full penetration welds were produced using the gas tungsten arc (GTA) welding process under laterally constrained conditions. Macroscopic examination showed no sign of any weld defect in HT-9 steel containing 0.3 appm helium. However, intergranular micro cracks were observed in the HAZ of HT-9 steel containing 1 appm helium. The microcracking was attributed to helium bubble growth at grain boundaries under the influence of high stresses and temperatures that were present during welding. Mechanical test results showed that both yield strength (YS) and ultimate tensile strength (UTS) decreased with increasing temperature, while the total elongation increased with increasing temperature for all control and helium-bearing HT-9 steels

  4. Safety analysis report for packaging (onsite) steel drum

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1998-01-01

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum

  5. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Bruhl, S.P; Charadia, R; Vaca, L.S; Cimetta, J

    2008-01-01

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  6. Progress in thermomechanical control of steel plates and their commercialization

    Science.gov (United States)

    Nishioka, Kiyoshi; Ichikawa, Kazutoshi

    2012-01-01

    The water-cooled thermomechanical control process (TMCP) is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates. PMID:27877477

  7. Creep constitutive equation of dual phase 9Cr-ODS steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Ukai, Shigeharu; Tamura, Manabu; Ohtsuka, Satoshi; Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Kohyama, Akira; Fujiwara, Masayuki

    2008-01-01

    9Cr-ODS (oxide dispersion strengthened) steels developed by JAEA (Japan Atomic Energy Agency) have superior creep properties compared with conventional heat resistant steels. The ODS steels can enormously contribute to practical applications of fast breeder reactors and more attractive fusion reactors. Key issues are developments of material processing procedures for mass production and creep life prediction methods in present R and D. In this study, formulation of creep constitutive equation was performed against the backdrop. The 9Cr-ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the δ ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the α' martensite. The δ ferrite functions as a reinforcement in the dual phase 9Cr-ODS steel. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative qualitative model of creep mechanism was formulated at the start of this study using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated using the exponential type creep equation extended by a law of mixture

  8. Progress in thermomechanical control of steel plates and their commercialization

    Directory of Open Access Journals (Sweden)

    Kiyoshi Nishioka and Kazutoshi Ichikawa

    2012-01-01

    Full Text Available The water-cooled thermomechanical control process (TMCP is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates.

  9. Microstructural Evolution of AerMet100 Steel Coating on 300M Steel Fabricated by Laser Cladding Technique

    Science.gov (United States)

    Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming

    2018-02-01

    In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.

  10. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    Science.gov (United States)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  11. Finite element model updating of multi-span steel-arch-steel-girder bridges based on ambient vibrations

    Science.gov (United States)

    Hou, Tsung-Chin; Gao, Wei-Yuan; Chang, Chia-Sheng; Zhu, Guan-Rong; Su, Yu-Min

    2017-04-01

    The three-span steel-arch-steel-girder Jiaxian Bridge was newly constructed in 2010 to replace the former one that has been destroyed by Typhoon Sinlaku (2008, Taiwan). It was designed and built to continue the domestic service requirement, as well as to improve the tourism business of the Kaohsiung city government, Taiwan. This study aimed at establishing the baseline model of Jiaxian Bridge for hazardous scenario simulation such as typhoons, floods and earthquakes. Necessities of these precaution works were attributed to the inherent vulnerability of the sites: near fault and river cross. The uncalibrated baseline bridge model was built with structural finite element in accordance with the blueprints. Ambient vibration measurements were performed repeatedly to acquire the elastic dynamic characteristics of the bridge structure. Two frequency domain system identification algorithms were employed to extract the measured operational modal parameters. Modal shapes, frequencies, and modal assurance criteria (MAC) were configured as the fitting targets so as to calibrate/update the structural parameters of the baseline model. It has been recognized that different types of structural parameters contribute distinguishably to the fitting targets, as this study has similarly explored. For steel-arch-steel-girder bridges in particular this case, joint rigidity of the steel components was found to be dominant while material properties and section geometries relatively minor. The updated model was capable of providing more rational elastic responses of the bridge superstructure under normal service conditions as well as hazardous scenarios, and can be used for manage the health conditions of the bridge structure.

  12. Water corrosion test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    As a part of feasibility study of ODS steel cladding, its water corrosion resistance was examined under water pool condition. Although addition of Cr is effective for preventing water corrosion, excessive Cr addition leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, water corrosion test was conducted for these ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) Corrosion rate of 9Cr-ODS martensitic and 12Cr-ODS ferritic steel are significantly small and no pitting was observed. Thus, these ODS steels have superior resistance for water corrosion under the condition of 60degC and pH8-12. (2) It was showed that 9Cr-ODS martensitic steel and 12Cr-ODS ferritic steel have comparable water corrosion resistance to that of PNC316 and PNC-FMS at 60degC for 1,000h under varying pH of 8, 10. Water corrosion resistance of these alloys is slightly larger than that of PNC316 and PNC-FMS at pH12 without significant difference of appearance and uneven condition. (author)

  13. Technical aspects of coal use in the Japanese steel industry

    International Nuclear Information System (INIS)

    Iguchi, T.

    1991-01-01

    Japan's crude steel production exceeded 100 million tons for the first time in fiscal 1972 and reached a peak of 120 million tons in fiscal 1973, as shown in this paper. The Japanese steel industry then switched from quantity to quality in line with production and market trends in the world. In fiscal 1987, all steelmakers announced future plans for reductions in steel production facilities on the assumption that Japan's crude steel production would hover around 90 million tons in response to the change in the country's production structure. Although steel production has held strong with the expansion in domestic steel demand triggered by the government's economic policy and the production plans that have eventually put their original production plans into practice. In its energy-saving activities prompted by 2 oil rises, the Japanese steel industry has dramatically improved its energy costs through energy conservation, waste heat recovery and process step consolidation, as represented by the reductions in blast furnace fuel rate and coke-oven heat consumption. During this period, the Japanese steel industry has won independence from oil and increased dependence on coal. This paper describes coal utilization technologies in coke ovens and blast furnaces, 2 major coal consuming processes in the steel industry. The environmental problems associated with the use of coal are discussed as well

  14. Mechanical characteristics of welded joints between different stainless steels grades

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  15. Functionally Graded Mo sintered steels

    Directory of Open Access Journals (Sweden)

    Manuel Cisneros-Belmonte

    2016-12-01

    Full Text Available Functionally graded materials (FGM, the multi-materials, strive to satisfy the numerous requirements demanded of parts in a given combination of compositions and microstructures. The required material compatibility lead the manufacturing process and the achieving of an interface, not always diffuse. Powder metallurgy is one of the techniques used in manufacturing functionally graded materials, in particular the compaction matrix of the possible techniques for forming these materials. In this paper, a process of forming a functionally graded steel based on the use of a high molybdenum steel with cooper and other steel with copper, without molybdenum, is proposed with the aim of concentrating this element to the surface of the workpiece, increasing the mechanical strength. The study is completed with the evaluation of physical properties (density and porosity distribution, mechanical properties (hardness, tensile strength and elongation and microstructural analysis by optical and scanning electron microscopy.

  16. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, B.K., E-mail: bkc@igcar.gov.in; Mathew, M.D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-15

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24–0.60% have been examined in the temperature range 300–873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24–0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  17. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    Science.gov (United States)

    Choudhary, B. K.; Mathew, M. D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24-0.60% have been examined in the temperature range 300-873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24-0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  18. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Mathew, M.D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-01-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24–0.60% have been examined in the temperature range 300–873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24–0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature

  19. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  20. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1986-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 450 0 C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  1. International comparisons of energy efficiency in power, steel, and cement industries

    International Nuclear Information System (INIS)

    Oda, Junichiro; Akimoto, Keigo; Tomoda, Toshimasa; Nagashima, Miyuki; Wada, Kenichi; Sano, Fuminori

    2012-01-01

    Industrial energy efficiency is of paramount importance both for conserving energy resources and reducing CO 2 emissions. In this paper, we compare specific energy consumption among countries in fossil power generation, steel, and cement sectors. The evaluations were conducted using common system boundaries, allocation, and calculation methods. In addition, we disaggregate within sectors, such as with blast furnace–basic oxygen furnace (BF–BOF) steel and scrap-based electric arc furnace (Scrap-EAF) steel. The results reveal that characteristics vary by sub-sector. Regional differences in specific energy consumption are relatively large in the power, BF–BOF steel, and cement sectors. For coal power generation and BF–BOF steel production, continual maintenance and rehabilitation are of key importance. We confirm these key factors identified in the previous work on our estimated numerical values. In BF–BOF steel production, corrections for hot metal ratios (pig iron production per unit of BOF crude steel production) and quality of raw materials have a large effect on the apparent specific energy consumption. Available data is not yet sufficient for straightforward evaluation of the steel and cement sectors. - Highlights: ► We compare energy efficiency among countries in power, steel, and cement sectors. ► In steel and cement sectors, the results are provided in terms of specific energy consumption (GJ/ton of product). ► We distinguish BOF steel and EAF steel. ► New installation and continual maintenance are the key for energy efficiency. ► Corrections have a large impact on apparent specific energy consumption.

  2. Advanced metallic structural materials and a new role for microalloyed steels

    International Nuclear Information System (INIS)

    Korchynsky, M.

    2004-01-01

    The recent worldwide surge of steel consumption, mainly of low-strength carbon grades, has created raw-materials shortages and price increases. These supply-demand strains could be relaxed by satisfying engineering needs with less steel. However, materials used for such a substitution must combine high weight reducing potential with low cost. Microalloyed (MA) steels are cost-effective substitutes, since their high strength is the result of grain refinement and precipitation hardening. These two strengthening mechanisms are developed by the interaction of micro-additives: niobium or vanadium with the deformation occurring during hot rolling followed by cooling. The physical metallurgy of these phenomena is discussed in the paper. The optimum alloy design of MA steels combines superior properties with lowest processing cost. In many applications, the versatility and adaptability of vanadium steels provides an economic advantage. The monetary value of weight production is sufficient to increase the profitability of steel makers and to lower the material cost to steel users. This 'win-win' situation is financed by the elimination of efforts spent in producing inefficient steel, yielding an increase in wealth formation. The gain acceptance of substitution by the consumer, a long-term strategic plan is needed to be implemented by the beneficiaries - both steel producers and steel users. The successful substitution is of importance to the national economy, resources and energy conservation, and the environment. Since microalloyed steels, used as a replacement for carbon steels, offer low cost weight savings, they deserve to be classified as advanced structural materials. (author)

  3. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  4. Low-cycle fatigue behaviors of pre-hardening Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Fei [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2017-05-17

    Low-cycle fatigue behaviors of the pre-hardening (PH) and the water-quenching (WQ) Hadfield steel were studied using optical microscopy, transmission electron microscopy, and electron backscatter diffraction technique. The effect of the PH treatment on low-cycle fatigue behavior of the Hadfield steel was analyzed through comparing the cyclic hardening/softening behaviors and the changing regulations of stress amplitude, internal stress, and effective stress at different total strain amplitudes. Results showed obvious differences in fatigue behaviors between the PH (with a cold rolling deformation degree of 40%) and the WQ Hadfield steels. Transient hardening followed by cyclic stability behavior occurred in the PH Hadfield steel under cyclic loading, whereas cyclic softening behavior was barely observed. The fatigue life of the PH Hadfield steel was higher than that of the WQ Hadfield steel at relatively low strain amplitudes, while a contrary result was obtained at relatively high strain amplitudes. At low strain amplitudes, the deformation twins induced in the PH Hadfield steel could enhance the multiplication and slip process of dislocations, which actually improved the deformation uniformity. The long-range motion of dislocations was intensified at high strain amplitudes. However, the dislocation motion was also blocked by twin boundaries. As a result, the interactions between dislocations and deformation twins enhanced, finally causing severe dislocation accumulation. These two effects of deformation twins on dislocation motion eventually resulted in different low-cycle fatigue behaviors of the PH Hadfield steel.

  5. Mapping the global flow of steel: from steelmaking to end-use goods.

    Science.gov (United States)

    Cullen, Jonathan M; Allwood, Julian M; Bambach, Margarita D

    2012-12-18

    Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.

  6. Semisolid forming of S48C steel grade

    Science.gov (United States)

    Plata, Gorka; Lozares, Jokin; Azpilgain, Zigor; Hurtado, Iñaki; Loizaga, Iñigo; Idoyaga, Zuriñe

    2017-10-01

    Steel production and component manufacturing industries have to face the challenge of globalization, trying to overcome the economic pressure to remain competitive. Moreover, the lightweighting trend of the latter years implies an even higher challenge to maintain the steel use. Therefore, advanced manufacturing processes will be the cornerstone. In this field, Semisolid forming (SSF) has demonstrated the capability of obtaining complex geometries and saving raw material and energy. Despite it is complicated the SSF of sound components, in Mondragon Unibertsitatea it has been successfully demonstrated the capability of producing strong enough automotive components with 42CrMo4 steel grade. In this work, we demonstrate the capability of SSF S48C steel grade with great mechanical properties.

  7. Fatigue resistance of Cr-Ni-Mo-V steel

    International Nuclear Information System (INIS)

    Naumchenkov, N.E.; Filimonova, O.V.; Borisov, I.A.

    1985-01-01

    A study was made on the effect of additional alloying (Ni, Ni+Co), stress concentration, surface plastic strain on fatigue resistance of rotor steel of Cr-Ni-Mo-V-composition. It is shown that the steel with decreased carbon content possesses high complex of mechanical properties. Fatigue characteristics are not inferior to similar characteristics of steels of 25KhN3MFA type. Additional alloying of the steel containing 0.11...0.17% C and 4.5...4.7% N:, with niobium separately or niobium and cobalt in combination enabled to improve fatigue resistance of samles up to 25%. Strengthening of stress concentration zones by surface plastic strain is recommended for improving rotor suppporting 'nower under cyclic loading

  8. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  9. Oxide Evolution in ODS Steel Resulting From Friction Stir Welding

    Science.gov (United States)

    2014-06-01

    the SZ on both the AS and RS of 304L stainless steel , from [16]. ...........................................12  Figure 7.  Past research conditions...being done on void swelling and embrittlement effects. Reduced activation ferritic/ martensitic (RAFM) steels and oxide dispersion strengthened (ODS...growth by grain boundary pinning at higher temperatures. Another type of ODS steel is 9-Cr martensitic steel , which is not considered in this research

  10. Supply chain of steel industries for the nuclear power plant construction in Indonesia

    International Nuclear Information System (INIS)

    Dharu Dewi; Sahala M Lumbanraja

    2017-01-01

    Nuclear Power Plant (NPP) Construction needs steel materials for the manufacturing of heavy components and civil work construction. National industries is expected to supply steel components especially for non nuclear component needs. Supply chain of steel industries is required to know the potency of steel industries from upstream to downstream industries which can support the NPP construction sustainability. The type of steel needed in the NPP construction consist of structure steel, rebar, steel plate, etc. The aim of the study is to identify supply chain of steel industries from upstream industries to downstream industries so that they can supply steel needs in the NPP construction. The methodology used are literature review and industries survey by purposive sampling test which sent questionnaires and carrying out technical visits to the potential industries to supply steel components for NPP construction. From the analysis of the questionnaires and survey, it has been obtained that the Indonesian steel industries capable of supplying steel for construction materials of non-nuclear parts are PT. Krakatau Steel, PT. Gunung Steel Group (PT Gunung Garuda and PT. Gunung Raja Paksi), PT. Cilegon Fabricators and PT. Ometraco Arya Samanta. While steel materials for primary components with nuclear grade, such as steel materials for reactor vessels and pressure vessels, the Indonesian steel industry has not been able to supply them. Therefore, the Indonesian steel industries must improve its capability, both in raw material processing and fabrication capability in order to meet the requirements of specifications, codes and standards of nuclear grade. (author)

  11. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  12. Method of making steel strapping and strip

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Reilly

    2000-02-16

    The technical progress obtained for this time frame consisted of the awarding of two contracts for determination of metallurgical parameters for heat treatment of strapping and strip which are unavailable from current technology and/or published data in this field. The two contractors were Bricmont, Inc. and the Department of Materials Science and Engineering at the Technological Institute of Northwestern University, Evanston, IL. Phase 1 of the two stage contract with Bricmont, Inc. which provided a computer analysis of the cooling rates of a typical range of thickness' of strapping was completed. This study was developed for the purpose of determining the time parameters for quenching low carbon steels to a martensitic microstructure within the time frame of the design of the proposed process. It also provides design criteria for cooling to ambient for the total process. This data is required for Phase 2 of the Bricmont proposal which completes the design and specifications of the total heat treating and cooling system for the process. This becomes the basis for developing the cost and space requirements for this component of the production line. The authors do not intend to award Phase 2 until the work done at Northwestern University discussed hereafter is completed. On or about May 1, 1999 a contract for a project entitled ``Effects of Steel Composition and Quench Rate on Microstructure and Mechanical Properties of Strapping'' to be performed at the Department of Materials Science and Engineering was awarded. The delay in initiating this project was due to the legal interpretation and final agreement of the intellectual provisions of the award by the author's attorneys, Northwestern's attorneys and the legal representative in the Chicago office of the DOE. The work to date includes rapid quenching of a number of different steel compositions and microstructure on an existing drop quench test apparatus. It was initially assumed that this

  13. Assessment of martensitic steels for advanced fusion reactors

    International Nuclear Information System (INIS)

    Wareing, J.; Tavassoli, A.A.

    1995-01-01

    Martensitic steels are currently considered in Europe to be prime structural candidate materials for the first wall and breeding blanket of the DEMO fusion reactor. In this design, reactor power and wall loading will be significantly higher than those of an experimental reactor. ITER and will give rise to component operating temperatures in the range 250 to 550 0 C with neutron doses higher than 70 dpa. These conditions render austenitic stainless steel, which will be used in ITER, less favourable. Factors contributing to the promotion of martensitic steels are their excellent resistance to irradiation induced swelling, low thermal expansion and high thermal conductivity allied to advanced industrial maturity, compared to other candidate materials vanadium alloys. This paper described the development and optimisation of the steel and weld metal. Using data design rules generated on modified 9 Cr 1 Mo steel during its qualification as a steam generator material for the European Fast Reactor (EFR), interim design guidelines are formulated. Whilst the merits of the steel are validated, it is shown that irradiation embrittlement at low temperature, allied to the need for prolonged post-weld hat treatment and the long term creep response of welds remain areas of some concern. (author). 18 refs., 6 figs., 2 tabs

  14. Joining dissimilar stainless steels for pressure vessel components

    International Nuclear Information System (INIS)

    Zheng Sun; Huai-Yue Han

    1994-01-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCrl3Ni4Mo) and AISI 347, respectively. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. Based on the weldability tests, a welding procedure - tungsten inert gas (TIG) welding for root passes with HNiCrMo-2B wire followed by manual metal arc (MMA) welding using coated electrode ENiCrFe-3B - was developed and a PWHT at 600 deg C/2h was recommended. Furthermore, the welding of tube/tube joints between these dissimilar steels is described. (21 refs., 11 figs., 14 tabs.)

  15. Medium carbon vanadium micro alloyed steels for drop forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-01-01

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author)

  16. Research of Steel-dielectric Transition Using Subminiature Eddy-current Transducer

    Science.gov (United States)

    Dmitriev, S. F.; Malikov, V. N.; Sagalakov, A. M.; Ishkov, A. V.

    2018-05-01

    The research aims to develop a subminiature transducer for electrical steel investigation. The authors determined the capability to study steel characteristics at different depths based on variations of eddy-current transducer amplitude at the steel-dielectric boundary. A subminiature transformer-type transducer was designed, which enables to perform local investigations of ferromagnetic materials using an eddy-current method based on local studies of the steel electrical conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of steel at the interface boundary. Test results are reported for a specimen with continuous and discrete measurements taken at different frequencies. The article provides the key technical information about the eddy current transformer used and describes the methodology of measurements that makes it possible to control steel to dielectric transition.

  17. Reuse of conditionally released steel; proposals and evaluation of processes for manufacturing of steel elements and processes for construction of selected scenarios - 59130

    International Nuclear Information System (INIS)

    Bezak, Peter; Ondra, Frantisek; Hajkova, Eva; Necas, Vladimir

    2012-01-01

    The project include systematic scenarios analysis of conditionally released materials from the decommissioning of nuclear installations and the creation of new knowledge in this field, which will be used for implementing projects for reuse of these materials. New knowledge includes data about materials from the decommissioning (types of materials and radiological data on the basis of analysis of various scenarios). Scenarios contain information about conditionally released materials, data of the external exposure of personnel who will assemble those structures and who will be use the constructions up to the target scenario. Scenarios assume guarantee that the final products will be placed on the current position for a very long period from 50 to 100 years. The paper presents the review of activities for manufacturing of various steel construction elements made of conditionally released steels and activities for realisation of selected scenarios for reuse of construction elements. The ingots after melting of decommissioned radioactive steel materials are as the starting material for manufacturing of steel components. Ingots from the controlled area will be melted into induction furnace and the mixture of liquid steel will be alloyed for achieve of required chemical parameters. Typical steel products suitable for established scenarios are steel rebar of concrete, steel profiles of various forms, railway rails and rolled steel sheets. Target scenarios include an analysis of staff exposure during installation of steel constructions as well as exposure of individual from critical groups of population during their exploitation. The various scenarios, provided within the scope of the CONRELMAT project are focused at the systematic analysis of the use of conditionally released steel from decommissioning of nuclear facilities. Scenarios are focused on research and development of model situations in constructions in the areas of transport, civil constructions, industry and

  18. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its... the aluminum cargo tank must meet the steel structural standards of the American Bureau of Shipping...

  19. Reliability and performance evaluation of stainless and mild steel ...

    African Journals Online (AJOL)

    Reliability and performance of stainless and mild steel products in methanolic and aqueous sodium chloride media have been investigated. Weight-loss and pre-exposure methods were used. There was a higher rate of weight-loss of mild steels and stainless steels in 1% HCl methanolic solution than in aqueous NaCl ...

  20. Overview of Steel Slag Application and Utilization

    Directory of Open Access Journals (Sweden)

    Lim J.W.

    2016-01-01

    Full Text Available Significant quantities of steel slag are generated as waste material or byproduct every day from steel industries. Slag is produced from different types of furnaces with different operating conditions. Slag contains Ferrous Oxide, Calcium Oxide, Silica etc. Physical and chemical properties of slag are affected by different methods of slag solidification such as air cooled, steam, and injection of additives. Several material characterization methods, such as X-ray Diffraction (XRD, Scanned Electron Microscopy (SEM and Inductive Coupled Plasma (ICP-OES are used to determine elemental composition in the steel slag. Therefore, slags can become one of the promising materials in various applications such as in transportation industry, construction, cement production, waste water and water treatment. The various applications of steel slag indicate that it can be reused and utilized rather than being disposed to the landfill. This paper presents a review of its applications and utilization.

  1. Advances in the heat treatment of steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Kim, J.I.; Syn, C.K.

    1978-06-01

    A number of important recent advances in the processing of steels have resulted from the sophisticated uses of heat treatment to tailor the microstructure of the steels so that desirable properties are established. These new heat treatments often involve the tempering or annealing of the steel to accompish a partial or complete reversion from martensite to austenite. The influence of these reversion heat treatments on the product microstructure and its properties may be systematically discussed in terms of the heat treating temperature in relation to the phase diagram. From this perspective, four characteristic heat treatments are defined: (1) normal tempering, (2) inter-critical tempering, (3) intercritical annealing, and (4) austenite reversion. The reactions occurring during each of these treatments are described and the nature and properties of typical product microstructures discussed, with specific reference to new commercial or laboratory steels having useful and exceptional properties

  2. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  3. Special Advanced Studies for Pollution Prevention. Delivery Order 0017: Sol-Gel Surface Preparation for Carbon Steel and Stainless Steel Bonding

    National Research Council Canada - National Science Library

    Zheng, Haixing

    1997-01-01

    The objective of this program is to study the feasibility of using sol-gel active alumina coatings for the surface preparation of carbon steel and stainless steel for adhesive bonding, and to optimize...

  4. performance of steel slag performance of steel slag as fine

    African Journals Online (AJOL)

    eobe

    Suitability of using steel slag (SS) as substitute for sand in concrete was ... The strength of SS concrete increased with increase in proporti. 10 mm. .... additives used. All other oxides ..... low lime coal fly ash in foamed concrete”, Fuel, Vol. 84,.

  5. Compatibility of graphite with a martensitic-ferritic steel, an austenitic stainless steel and a Ni-base alloy up to 1250 C

    International Nuclear Information System (INIS)

    Hofmann, P.

    1994-08-01

    To study the chemical interactions between graphite and a martensitic-ferritic steel (1.4914), an austenitic stainless steel (1.4919; AISI 316), and a Ni-base alloy (Hastelloy X) isothermal reaction experiments were performed in the temperature range between 900 and 1250 C. At higher temperatures a rapid and complete liquefaction of the components occurred as a result of eutectic interactions. The chemical interactions are diffusion-controlled processes and can be described by parabolic rate laws. The reaction behavior of the two steels is very similar. The chemical interactions of the steels with graphite are much faster above 1100 C than those for the Ni-base alloy. Below 1000 C the effect is opposite. (orig.) [de

  6. BEHAVIOR OF STEEL DP 600 UNDER DYNAMIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    Miroslav Német

    2014-01-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Dynamic tensile testing of sheet steels is becoming more important. Experimental dynamic tensile technique is depending on the strain rate. For experiments was used two testing method servo hydraulic and single bar method. Experiments was realized on steel grade DP 600. Steel were performed and evaluated static and dynamic tests. Was investigated substructure in static and dynamic loading conditions.

  7. Energy management system for an integrated steel plant

    Energy Technology Data Exchange (ETDEWEB)

    Perti, A.K.; Sankarasubramian, K.; Shivramakrishnan, J. (Bhilai Steel Plant, Bhilai (India))

    1992-09-01

    The cost of energy contributes 35 to 40% to the cost of steel production. Thus a lot of importance is being given to energy conservation in steel production. The paper outlines energy conservation measures at the Bhilai Steel Plant, India. Measures include: modifications to furnaces; partial briquetting of coal charge; and setting up an energy centre to integrate measurement and computer systems with despatches, engineers and managers of energy. 4 refs., 4 figs., 3 tabs.

  8. Arc brazing of austenitic stainless steel to similar and dissimilar metals

    Science.gov (United States)

    Moschini, Jamie Ian

    There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the

  9. Comparative estimation of weld-ability of medium-alloy steels

    International Nuclear Information System (INIS)

    Makarov, Eh.L.; Laz'ko, V.E.

    1977-01-01

    Weldability of various industrial steels has been investigated as affected by mutual presence of carbon and alloying elements in a wide range of concentrations. Mechanical properties and technological strength of medium alloyed steel welded joints have been compared. Technological strength parameters have been found to sharply decrease with increasing carbon content, the decrease depending on the alloying system. Resistance to hot and cold cracking is somewhat decreased by nickel and increased by molibdenum and tungsten. The best mechanical properties are displayed by steels of the Kh2GSNVM type. Industrial evidence on argon arc welding of different constructions made of steels 1.5-20 mm thick is compared to laboratory results. Accordingly, the high strength steels are divided into three groups, i.e. those manifesting good, satisfactory and poor weldability

  10. Strength of interface in stainless clad steels

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Nakai, Yoshikazu; Hashimoto, Shinji

    1990-01-01

    Mechanical tests were conducted on four kinds of stainless clad steels to establish test methods for determining crack growth resistance of bimaterial interface. In tension tests, smooth specimens and shallow notched specimens were employed. In these tests, all of the smooth specimens were broken in carbon steel, not along the bimaterial interface. On the other hand, most of the shallow notched specimens were broken along the interface, when the notch root was located at the interface. Therefore, the shallow notched specimens were suitable for estimating the strength of the interface in tension tests. For fracture toughness tests, chevron notched specimens are recommended, since pre-fatigue cracks were susceptible to initiate and grow in carbon steel for conventional straight notched specimens. In fatigue crack growth tests, side-grooved and non-side-grooved specimens were employed. Although the side-grooves were machined so that the minimum cross-sectional plane of the specimens coincided with the plane of the bimaterial interface, cracks did not always propagate along the interface. Therefore, the side-grooves were judged not to be effective for cracks to propagate along the bimaterial interface. Both in fracture toughness tests and fatigue tests, the crack growth resistance along bimaterial interface was much lower than the resistance of matrix steels. In all of the mechanical tests conducted, the crack growth resistance along the interface was higher for the normalized material than that for the as-rolled material. The nickel foil inserted between carbon steel and stainless steel improved the growth resistance of interfacial cracks. (author)

  11. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  12. Effect of ausforming on nanobainite steel

    International Nuclear Information System (INIS)

    Gong, W.; Tomota, Y.; Koo, M.S.; Adachi, Y.

    2010-01-01

    The effect of ausforming on kinetics, morphology and crystallography of nanobainite steel was examined by electron backscattered diffraction and transmission electron microscopy. Ausforming has been found to accelerate bainite transformation at 573 K. A characteristic microstructure consisting of blocky bainitic laths and retained austenite is observed in the ausformed bainite steel, where strong variant selection takes place due to the operated slip systems.

  13. Chromium-Makes stainless steel stainless

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  14. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  15. Steel. A handbook for materials research and engineering. Vol. 1. Fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This STEEL Textbook is the outcome of reflections within the Materials Committee of the German Iron and Steel Institute on whether to republish the Manual of Special Steels, the highly commendable work by E. Houdremont. Discussions came to the conclusion, however, that for various reasons it was neither possible nor expedient simply to publish a follow-up edition of the famed Houdremont. To begin with and from today's vantage point, there no longer seemed to be any justification for restricting the work to special steels in the sense of the term as understood by E. Houdremont. The term ''special steel'' has never gained acceptance in official circles or standards. If we replace it by the term ''high-grade steel'', which is nowadays defined in standards, and this would appear permissible with certain qualifications, and if we bear in mind that the boundaries between high-grade steels and non-high-grade steels, the commercial and quality steels, although defined in standards (see part A), nonetheless in terms of engineering parameters are quite blurred, so it would seem only fitting for such as work to cover all the various grades of steel, also in view of the great significance of the non-high-grade steels. Because of the very many different grades of steel, this approach necessarily involves the collaboration of very many experts, in other words it entails a joint effort. Moreover, the vast, barely manageable quantity of literature in this field all of which can hardly be analysed by just one person, inevitably leads to the conclusion that there is a need to produce the new work as a joint effort. (orig.).

  16. Microstructure and transformation kinetics in bainitic steels

    NARCIS (Netherlands)

    Luzginova, N.V.

    2008-01-01

    With the aim of reaching a better understanding of the microstructure evolution and the overall phase transformation kinetics in hyper-eutectoid steels a commercial SAE 52100 bearing steel and 7 model alloys with different concentrations of chromium, cobalt and aluminum have been studied in this

  17. Moessbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment

    International Nuclear Information System (INIS)

    Kamimura, Takayuki; Nasu, Saburo; Tazaki, Takashi; Kuzushita, Kaori; Morimoto, Shotaro

    2002-01-01

    The rusts formed on mild steel (15-year exposure) and weathering steel (32-year exposure) exposed to an industrial environment have been characterized by means of X-ray diffraction technique and 57 Fe Moessbauer spectroscopy. By using an X-ray diffraction method, it is suggested that the rusts formed on both steels consist of the crystalline α-FeOOH, γ-FeOOH and an X-ray amorphous phase, which gives no peak to X-ray diffraction pattern. The amount of the X-ray amorphous phase exceeds 50% of the total amount of the rust. The 57 Fe Moessbauer spectra observed at 10K indicate that the rust contains only α-FeOOH, γ-FeOOH and Fe 3-δ O 4 (γ-Fe 2 O 3 ) for mild steel, and only α-FeOOH and γ-FeOOH for weathering steel. The X-ray amorphous substance in the rust payer formed on mild steel possesses the structures of mainly α-FeOOH showing superparamagnetism owing to its small particle size, and Fe 3-δ O 4 (γ-Fe 2 O 3 ). They are contained both in the inner rust layer and in the outer rust layer. The X-ray amorphous phase in the rust layer formed on weathering steel is mainly α-FeOOH. (author)

  18. Development of advanced low alloy steel for nuclear RPV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Shin, K. S.; Lee, S. H.; Lee, B. J. [Seoul National Univ., Seoul (Korea)

    2000-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining toughness is more difficult than strength. When taking into account the loss of toughness due to neutron irradiation, attaining as low transition temperature as possible prior to operation is a critical task in the production of nuclear pressure vessels. In the present study, we investigated detrimental microstructural features of SA508III steels to toughness, then alloy design directions to achieve improved mechanical properties were devised. The next step of alloy design was determined based on phase equilibrium thermodynamics and obtained results. Low carbon low alloy steels having low transition temperatures with enough strength and hardenability were developed. Microstructure and mechanical properties of HAZ of SA508III steels and alloy designed steels were investigated. 22 refs., 147 figs., 38 tabs. (Author)

  19. Study on creep-fatigue evaluation of chrome-molybdenum steel

    International Nuclear Information System (INIS)

    Aoto, Kazumi; Wada, Yusaku

    1993-01-01

    Though chrome-molybdenum steel has quite different basic material properties from austenitic stainless steel, the life fraction rule based on an advanced ductility exhaustion theory proposed for SUS304 is able to give proper prediction for creep-fatigue life of chrome-molybdenum steel. The applicability of the present evaluation method to chrome-molybdenum steel is validated by both mechanical study and micro-structural observation. The mechanism of creep-fatigue failure of Mod.9Cr-1Mo(NT) is one of the most controversial subjects among researchers. However, it is clarified in this report that creep-fatigue damage of this material under actual loading conditions is dominated by creep-cavitation of grain boundaries as same way as that of austenitic stainless steel. Furthermore, for the life reduction of low cycle fatigue of chrome-molybdenum steel with compression-side strain hold, both effects of mean stress and oxide-wedge are denied and it is insisted that the acceleration of fatigue-crack propagation is occurred by oxide-progress location and its thickness. (author)

  20. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    Science.gov (United States)

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.