WorldWideScience

Sample records for steel-20m5

  1. Welding of heat-resistant 20% Cr-5% Al steels

    International Nuclear Information System (INIS)

    Tusek, J.; Arbi, D.; Kosmac, A.; Nartnik, U.

    2002-01-01

    The paper treats welding of heat-resistant ferritic stainless steels alloyed with approximately 20% Cr and 5% Al. The major part of the paper is dedicated to welding of 20% Cr-5% Al steel with 3 mm in thickness. Welding was carried out with five different welding processes, i. e., manual metal-arc, MIG, TIG, plasma arc, and laser beam welding processes, using a filler material and using no filler material, respectively. The welded joints obtained were subjected to mechanical tests and the analysis of microstructure in the weld metal and the transition zone. The investigations conducted showed that heat-resistant ferritic stainless 20% Cr-5% Al steel can be welded with fusion welding processes using a Ni-based filler material. (orig.)

  2. Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.

    Science.gov (United States)

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-03-21

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.

  3. Fracture behaviour of steel 20 MnMoNi 5 5 under stress wave loading

    International Nuclear Information System (INIS)

    Clos, R.; Schreppel, U.; Veit, P.; Zencker, U.; Specht, E.

    1994-01-01

    Crack initiation in fine grained 20 MnMoNi 5 5 steel has been investigated under stress wave loading conditions in the temperature range from -50 C to 20 C by a loading setup similar the ''Split Hopkinson Pressure Bar'' technique. For temperatures up to 20 C, fracture occurs by cleavage and K Id approaches and falls below the reference fracture toughness, while at room temperature stable crack growth occurs with a J i close to the static initiation value of the J-integral. The analysis of the crack tip configuration suggests that stable crack growth is the result of the following simultaneously induced stochastical processes: generation of constrained local microcracks, blunting of the individual crack tips and the deformation of material bridges at different regions along the crack tip front. (orig.)

  4. Excellent corrosion resistance of 18Cr-20Ni-5Si steel in liquid Pb-Bi

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.

    2004-01-01

    The corrosion properties of three austenitic steels with different Si contents were studied under oxygen-saturated liquid Pb-Bi condition for 3000 h. The three austenitic steels did not exhibit appreciable dissolution of Ni and Cr at 450 deg. C. At 550 deg. C, the thick ferrite layer produced by dissolution of Ni and Cr was found in JPCA and 316SS with low Si contents while the protective oxide film composed of Si and O was formed on 18Cr-20Ni-5Si steel and prevented dissolution of Ni and Cr

  5. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

    Directory of Open Access Journals (Sweden)

    Min Liu

    2018-03-01

    Full Text Available 20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot.

  6. Alfinated coating structure on HS6-5-2 (SW7M high speed steel

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2010-10-01

    Full Text Available The paper presents the results of immersion alfinated coating structure in AlSi5 silumin on HS6-5-2 (SW7M high speed steel. Alfinating bath temperature was 750 ± 5 ° C, time of sample immersion was τ = 180s. Thickness of obtained coating under specified conditions was g = 150μm. Manufactured coating consists of three layers of different construction phase. The first layer from the substrate „g1`” constructed with a AlFe phase consist of alloy additives constituents of HS6-5-2 (SW7M steel: W, Mo, V, Cr and Si. On it crystallizes the second layer „g1``” of AlFeWMoCr intermetallic phases also containing Si and small amount of V. Last, the outer layer „g2” of the coating is composed with silumin including AlFeWMoCrVSi intermetallic phases. Within all layers of the coating occurs carbides. Penetration of carbides to individual coating layers is mainly due to steel surface partial melting and crystallizing layers „g1`” and „g1``” by alfinating liquid and shifting into her of carbides as well as partial carbides rejection by crystallization front of intermetallic phases occurs in coating.

  7. characterization and weldability of plasma nitrided P/M martensitic stainless steel X 20 Cr Ni 172

    International Nuclear Information System (INIS)

    Abdel-Karim, R.A.; El-demellawy, M.A; Waheed, A.F.

    2004-01-01

    stainless steels are widely used in nuclear applications, as a construction material. in these applications stainless steels suffer from corrosion degradation due severe environment and operating conditions. improving the engineering properties of such material prolong the service life time.in the present study, powder metallurgy technique namely plasma rotating electrode process (PREP) was used to produce martensitic steel DIN X 20 Cr Ni 172 with 0.5 % N. this step was followed by hot isostatic pressing process (HIP) . the effect of N on the weldability of this steel has been investigated . this included microstructure characterization, hardness evaluation and ferrite content measurements. the results showed that the presence of high nitrogen content in this steel resulted in a pore free structure with improved the hardness across the welding area. A single phase with few precipitates was detected on the grain boundaries in the heat affected zone. the results were supplemented by x-ray diffraction patterns and EDAX analysis

  8. Formation of non-equilibrium structures in R6M5 steel under strong pulse beams action

    International Nuclear Information System (INIS)

    Rusin, Yu.G.; Plotnikov, S.V.

    2001-01-01

    Formation of non-equilibrium structures in R6M5 steel surface layer in the supply state under irradiation by strong pulse beams (SPB) is examined. Cylindric samples with diameter 10 mm and height 15 mm of R6M5 fast-cutting steel with following content (weight %): 0.85% C, 0.4% Mn, 0.5% Si, 4.0 Cr; 2.1% V; 5.3% Mo, 6.0% W; 0.4% Ni, Fe (the rest) were examined. Irradiation by SPB was conducted on the 'TEMP' modified accelerator operating in a technological regime with carbon beams parameters: energy from 0.3 up o 0.4 MeV, beam density in an impulse from 20 to 250 A/cm 2 , pulse duration from 60 tp 100 ns. The beam consists of 70 % carbon ions and 30 % hydrogen ions. Phase identification and its structural phase analysis have been studied on the DRON-3 X-ray diffractometer of common assignment. Topography of metallographic specimen surface has been examined on the REM-200 scanning electron microscope. Doping elements redistribution and phases quantitative characteristics after SPB action were studied with help of the X-ray spectral microanalysis (XRSA) on the MS-46 Camebax microanalyzer. Character of doping elements redistribution in the alloy (XRSA data) show its appreciably redistribution, moreover in the melted zone the increased content of molybdenum, tungsten, vanadium is observing, and in the zone of thermal action its increase relatively to matrix values

  9. Peculiarities of welding procedure for the 05Kh12K14N5M5T-VD maraging stainless steel with strength higher 1500 MPa

    International Nuclear Information System (INIS)

    Pustovit, A.I.

    1980-01-01

    The effect of welding procedure of 05Kh12K14N5M5T-VD stainless steel on the properties of its welded joints is investigated. A new procedure of welding for pressure vessels made of this steel using Sv-03Kh15K14N5M3T-EL welding wire is suggested [ru

  10. First attempts towards the early detection of fatigued substructures using cyclic-loaded 20 MnMoNi 5 5 steel

    International Nuclear Information System (INIS)

    Dobmann, G.; Seibold, A.

    1992-01-01

    Materials subjected to cyclic loading undergo substructural changes which may affect service life. The low alloy, fine-grained structural steel 20 MnMoNi 5 5 is used to demonstrate how substructural changes detected using TEM techniques are a function of the number of cycles undergone. For a given cyclic loading the usage factor η=N/N f =0.5 can be derived. Initial investigations using nondestructive examination methods have indicated that substructural changes and magnetic variables can be correlated. (orig.)

  11. The effect of sulphite on crevice corrosion and pitting on various steels in 0.5 M sodium chloride

    International Nuclear Information System (INIS)

    Hemmingsen, T.; Nielsen, L.V.; Maahn, E.

    1992-01-01

    A carbon steel, st 37, and two stainless steels, AISI 304 SS and AISI 316 SS were exposed to 0.5 M NaCl with 10 mM sulphite under anaerobic conditions. The sulphite ions may, under these conditions, be reduced to sulphide ions, and cause pitting or crevice corrosion. Electrochemical and bottle-test experiments were done to determine the effect of the sulphite addition. These effects were highly dependant on the pH

  12. Friction stir welding of F/M ODS steel plug and F/M steel tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon, E-mail: shkang77@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute (Korea, Republic of); Vasudevan, M. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Noh, Sanghoon; Jin, Hyun Ju; Jang, Jinsung; Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute (Korea, Republic of)

    2016-11-01

    Highlights: • Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. • The curvature and smaller thickness of tube was the major limitation for applying FSW method, it was solved using specially designed jig. • Considerable hardening occurs in the joint because the cooling rate was sufficient to reproduce a martensitic microstructure. • The measured hoop strength of the FSWed joint was 70–90 MPa, the value was at around 70% of the tube. - Abstract: Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. The dimensions of the tube included outer diameter of 7 mm, wall thickness of 0.5 mm. The objective was to find suitable process variables for gaining enough frictional heat from those thin and curved pieces. A specially designed jig was used for stabilization and slow rotation of tube during FSW. Additionally, the plug was designed to overlap the tube. Inconel 718 was used as FSW tool, the diameter was 3.5 mm. The adequate rotation speed of the tool and jig were 1200 rpm and 1.5 rpm, respectively. The joining was successfully accomplished using above combination, showing a good possibility. The hoop stress tests of joint were conducted by blowing Ar gas into the tube, the flow rate of gas was 10 MPa/min. The measured hoop stress was 70–90 MPa, the value was at around 70% of the tube.

  13. Friction stir welding of F/M ODS steel plug and F/M steel tube

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Vasudevan, M.; Noh, Sanghoon; Jin, Hyun Ju; Jang, Jinsung; Kim, Tae Kyu

    2016-01-01

    Highlights: • Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. • The curvature and smaller thickness of tube was the major limitation for applying FSW method, it was solved using specially designed jig. • Considerable hardening occurs in the joint because the cooling rate was sufficient to reproduce a martensitic microstructure. • The measured hoop strength of the FSWed joint was 70–90 MPa, the value was at around 70% of the tube. - Abstract: Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. The dimensions of the tube included outer diameter of 7 mm, wall thickness of 0.5 mm. The objective was to find suitable process variables for gaining enough frictional heat from those thin and curved pieces. A specially designed jig was used for stabilization and slow rotation of tube during FSW. Additionally, the plug was designed to overlap the tube. Inconel 718 was used as FSW tool, the diameter was 3.5 mm. The adequate rotation speed of the tool and jig were 1200 rpm and 1.5 rpm, respectively. The joining was successfully accomplished using above combination, showing a good possibility. The hoop stress tests of joint were conducted by blowing Ar gas into the tube, the flow rate of gas was 10 MPa/min. The measured hoop stress was 70–90 MPa, the value was at around 70% of the tube.

  14. Corrosion cracking of 03N18K1M3TYu and 02N12Kh5M3 maraging steels in chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V.N.; Chumalo, G.V.; Vereshchagin, A.N.; Melekhov, R.K.

    1987-07-01

    The authors investigate the electrochemical behavior in 0.5% NaCl solution and 42% MgCl/sub 2/ solution and the tendency toward corrosion cracking was determined in boiling 0.5% chloride solution of the cobalt-containing maraging steels in the title. Weld specimens and specimens of the base metal of 03N18K1M3TYu steel were tested in 3% NaCl solution for resistance to corrosion cracking. Additional investigations were made of specimens of that steel with previously created fatigue cracks of the base metal and the weld specimens in 3% NaCl solutions, since that steel is a promising material for structures operating in sea water and low concentration chloride solutions.

  15. Effect of hydroxyl group position at imine structure on corrosion inhibition of mild steel in 0.5 m NaCl

    Science.gov (United States)

    Mohd, Yusairie; Dzolin, Syaidah Athirah; Bahron, Hadariah; Halim, Nurul Huda Abdul

    2017-12-01

    Corrosion is inherent for mild steel and it can be retarded through many approaches including electrodeposition of inert inhibitors in the form of organic molecules. Salicylideneaniline (L1) and 4-hydroxybenzalaniline (L2) were electrodeposited on mild steel using cyclic voltammetry (CV) using 0.1 M inhibitor concentration in 0.3 M NaOH. The scanning potential range for coating via CV was set from 0 - 2 V and back to 0 V for five cycles. A yellow film was observed covering the surface of the mild steel. The corrosion behavior of coated and uncoated mild steel was studied using Linear Polarization Resistance (LPR) in 0.5 M NaCl. Both coated mild steel specimens showed better corrosion resistance than the uncoated, with L1 providing a better inhibition protection with the inhibition efficiency of 80.51 %.

  16. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    Science.gov (United States)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  17. Influence of regenerative heat treatment on structure and properties of G20CrMo2 - 5 (L20HM cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2008-03-01

    Full Text Available Thc papcr prcscnts rcsuSts or rcscarch on thc influence of rcgcncratic hcat treatment on thc structurc and propcrtics [hardncss. impactcncrgy or L2O11M cnst stccl. Invcstipatcd material was taken from outer fmmc of a turbinc which was scrviccd for t 67 424 hours a! thctcmpcrauirc or 535 "C and prcssurc or 12.75 MPa. In psi-operating condition ~hicnv cstigntcd cast steel was cl~aracteri~cbdy low impactcncrpy of II I ant1 hart3ncss of 139HV30. Analysis uF the irlflue~~uuel ;lustcniriz;~ti on pariimctcrs (tcrnpcr;lturc and lime has rcvealcd rhntat thc tcinpcr;~turcr angc o f 895 + 955 "C (i-e. h3 - +I IO + 70 "C.fo r both 3 and 5 hours of holtl timc. rhc ohtaincd grain sizc amounls to 20+ 2511m. I has hccn pmved that tempcred bainitic-rcrri~ica nd remit ic-hainiric-pearlit ic stn~cturco f thc invcstigatcd cast stccl msurcs highimpact cncrgy, i.c. KV > 1001. as well a5 hardncss. i.e. 11Y30. just at thc tcrnpcmturc of OXl "C. 'I'crnpcmliirc or 7110 "C causcs i'~tnhcrincrclrsc of impact cncrgy along with a slight dccrcasc of hardncss. Morcovcr. it has hccn concludd that nppl ying oS under-annealinginstcad or tcmpcring. nflcr standardizalion. guarantees scquircd impact cncrgy of KY r 271.

  18. The Inhibitive Effect of 2-Phenyl-3-nitroso-imidazo [1, 2-a]pyridine on the Corrosion of Steel in 0.5 M HCl Acid Solution

    Directory of Open Access Journals (Sweden)

    K. Bouhrira

    2010-01-01

    Full Text Available The effect of 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine (PNIP on the corrosion inhibition of carbon-steel in 0.5 M HCl was studied by weight loss and different electrochemical techniques such as electrochemical impedance spectroscopy (EIS, potentiodynamic polarization. The obtained results showed that PNIP effectively reduces the corrosion rate of carbon steel. Inhibition efficiency (E% increases with inhibitor concentration to attain 88% at 10-3 M. Adsorption of that PNIP on the carbon steel surface in 0.5 M HCl follows the Langmuir isotherm model. E% values obtained from various methods used are in good agreement. SEM characterization of the steel surface is made.

  19. Microstructural characterization of 5-9% chromium reduced-activation steels

    International Nuclear Information System (INIS)

    Jayaram, R.; Klueh, R.L.

    1997-01-01

    The microstructures of a 9Cr-2W-0.25-0.1C (9Cr-2WV), a 9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa), a 7Cr-2W-0.25V-0.07Ta-0.1C (7Cr-2WVTa), and a 5Cr-2W-0.25V-0.07Ta-0.1C (5Cr-2WVTa) steel (all compositions are in weight percent) have been characterized by Analytical Electron Microscopy (AEM) and Atom Probe Field Ion Microscopy (APFIM). The matrix in all four reduced-activation steels was 100% martensite. In the two 9Cr steels, the stable precipitates were blocky M 23 C 6 and small spherical MC. The two lower-chromium steels contained blocky M 7 C 3 and small needle-shaped carbonitrides in addition to M 23 C 6 . AEM and APFIM analysis revealed that in the steels containing tantalum, the majority of the tantalum was in solid solution. The experimental observations were in good agreement with phases and compositions predicted by phase equilibria calculations

  20. Manufacturing of ultra-large diameter 20 MnMoNi 5 5 steel forgings for reactor pressure vessels and their properties

    International Nuclear Information System (INIS)

    Onodera, S.; Kawaguchi, S.; Tsukada, H.; Moritani, H.; Suzuki, K.; Sato, I.

    1985-01-01

    As the structural material for RPV typical of increased dimensions, as set of ultra-large diameter steel forgings for a PHWR RPV is presented as outlined below. (1) Material designation: 20 MnMoNi 5 5 (similar to SA508, Cl.3) (2) Size of the forgings: flanges, 8.440 mm OD, a weight of 238 tons for shell flange; shells and torus, 7,920 mm OD, with large height, cover dome, 6,800 mm OD in chord and 460 mm thick; blank before formed to dome is ca. 8,000 mm OD. (3) Chemical composition: particular effort was made for minimizing the tramp elements as P, S, As, Sn, Sb, Cu. (4) Manufacturing, key points: steel making - combined refining and degassing in ladle; ingot making - largest size ingots, including 570 ton and 500 ton ingots; forging - special ''outside-the-press'' forging and forming techniques; heat treatment - prevention of H 2 flaking in normalizing and tempering and handling of the extra-large forgings at water quenching. (5) Metallurgical properties: sufficiently uniform carbon distributions in the forgings; a lowest possible content of hydrogen, non-metallic inclusions and oxygen. Mechanical properties: uniformity in tensile and toughness properties; flaws - only limited number of spots of UT indications under 2 mm EFG (EFS). (orig.)

  1. Microstructural characterization of 5-9% chromium reduced-activation steels

    Energy Technology Data Exchange (ETDEWEB)

    Jayaram, R. [Univ. of Pittsburgh, PA (United States); Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    The microstructures of a 9Cr-2W-0.25-0.1C (9Cr-2WV), a 9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa), a 7Cr-2W-0.25V-0.07Ta-0.1C (7Cr-2WVTa), and a 5Cr-2W-0.25V-0.07Ta-0.1C (5Cr-2WVTa) steel (all compositions are in weight percent) have been characterized by Analytical Electron Microscopy (AEM) and Atom Probe Field Ion Microscopy (APFIM). The matrix in all four reduced-activation steels was 100% martensite. In the two 9Cr steels, the stable precipitates were blocky M{sub 23}C{sub 6} and small spherical MC. The two lower-chromium steels contained blocky M{sub 7}C{sub 3} and small needle-shaped carbonitrides in addition to M{sub 23}C{sub 6}. AEM and APFIM analysis revealed that in the steels containing tantalum, the majority of the tantalum was in solid solution. The experimental observations were in good agreement with phases and compositions predicted by phase equilibria calculations.

  2. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    OpenAIRE

    Shola Elijah Adeniji; Bamigbola Abiola Akindehinde

    2018-01-01

    Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the tempe...

  3. Wear Resistance of Steel 20MnCr5 After Surfacing with Micro-jet Cooling

    Directory of Open Access Journals (Sweden)

    Tarasiuk W.

    2016-09-01

    Full Text Available This paper presents results of experimental research concerning the impact of an innovative method of micro-jet cooling on the padding weld performed with MIG welding. Micro-jet cooling is a novel method patented in 2011. It enables to steer the parameters of weld cooling in a precise manner. In addition, various elements which may e.g. enhance hardness or alter tribological properties can be entered into its top surface, depending on the applied cooling gas. The material under study was steel 20MnCr5, which was subject to the welding process with micro-jet cooling and without cooling. Nitrogen was used as a cooling gas. The main parameter of weld assessment was wear intensity. The tests were conducted in a tribological pin-on-disc type position. The following results exhibit growth at approximately 5% in wear resistance of padding welds with micro-jet cooling.

  4. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Ishii, Masaomi [Department of Nuclear Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Muroga, Takeo [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 502-5292 (Japan)

    2015-10-15

    Graphical abstract: Corrosion of RAFM steel, JLF-1, in liquid Sn–20Li was caused by the formation of Fe-Sn alloyed layer. - Highlights: • The corrosion tests were performed for the reduced activation ferritic martensitic steel JLF-1 and the austenitic steel SUS316 in liquid Ga, Sn and Sn-20Li at 873 K up to 750 h. • The weight loss of the specimens exposed to liquid Ga, Sn and Sn-20Li was evaluated. • The corrosion of the steels in liquid Ga was caused by the alloying reaction between Ga and Fe on the steel surface. • The corrosion of the steels in liquid Sn was caused by the alloying reaction between Sn and Fe on the steel surface. • The corrosion of the steels in liquid Sn-20Li was caused by the formation of the Fe-Sn alloyed layer and the diffusion of Sn and Li into the steel matrix. - Abstract: The compatibility of steels in liquid gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li) was investigated by means of static corrosion tests. The corrosion tests were performed for reduced activation ferritic martensitic steel JLF-1 (JOYO-HEAT, Fe–9Cr–2W–0.1C) and austenitic steel SUS316 (Fe–18Cr–12Ni–2Mo). The test temperature was 873 K, and the exposure time was 250 and 750 h. The corrosion of these steels in liquid Ga, Sn and Sn–20Li alloy was commonly caused by the formation of a reaction layer and the dissolution of the steel elements into the melts. The reaction layer formed in liquid Ga was identified as Fe{sub 3}Ga from the results of metallurgical analysis and the phase diagram. The growth rate of the reaction layer on the JLF-1 steel showed a parabolic rate law, and this trend indicated that the corrosion could be controlled by the diffusion process through the layer. The reaction layer formed in liquid Sn and Sn–20Li was identified as FeSn. The growth rate had a linear function with exposure time. The corrosion in Sn and Sn–20Li could be controlled by the interface reaction on the layer. The growth rate of the layer formed

  5. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Ishii, Masaomi; Muroga, Takeo

    2015-01-01

    Graphical abstract: Corrosion of RAFM steel, JLF-1, in liquid Sn–20Li was caused by the formation of Fe-Sn alloyed layer. - Highlights: • The corrosion tests were performed for the reduced activation ferritic martensitic steel JLF-1 and the austenitic steel SUS316 in liquid Ga, Sn and Sn-20Li at 873 K up to 750 h. • The weight loss of the specimens exposed to liquid Ga, Sn and Sn-20Li was evaluated. • The corrosion of the steels in liquid Ga was caused by the alloying reaction between Ga and Fe on the steel surface. • The corrosion of the steels in liquid Sn was caused by the alloying reaction between Sn and Fe on the steel surface. • The corrosion of the steels in liquid Sn-20Li was caused by the formation of the Fe-Sn alloyed layer and the diffusion of Sn and Li into the steel matrix. - Abstract: The compatibility of steels in liquid gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li) was investigated by means of static corrosion tests. The corrosion tests were performed for reduced activation ferritic martensitic steel JLF-1 (JOYO-HEAT, Fe–9Cr–2W–0.1C) and austenitic steel SUS316 (Fe–18Cr–12Ni–2Mo). The test temperature was 873 K, and the exposure time was 250 and 750 h. The corrosion of these steels in liquid Ga, Sn and Sn–20Li alloy was commonly caused by the formation of a reaction layer and the dissolution of the steel elements into the melts. The reaction layer formed in liquid Ga was identified as Fe 3 Ga from the results of metallurgical analysis and the phase diagram. The growth rate of the reaction layer on the JLF-1 steel showed a parabolic rate law, and this trend indicated that the corrosion could be controlled by the diffusion process through the layer. The reaction layer formed in liquid Sn and Sn–20Li was identified as FeSn. The growth rate had a linear function with exposure time. The corrosion in Sn and Sn–20Li could be controlled by the interface reaction on the layer. The growth rate of the layer formed in

  6. Creep rupture properties of oxidised 20%Cr austenitic stainless steels

    International Nuclear Information System (INIS)

    Lobb, R.C.; Ecob, R.C.

    1989-02-01

    Sheet specimens of stabilised 20%Cr/25%Ni/Nb and nitrided 20%Cr/25%Ni/Ti stainless steels, both used as fuel cladding materials in CAGRs, have been oxidised in simulated reactor gas (Co 2 /1-2%CO) for up to l.9kh at 850 0 C, including intermediate thermal cycles to room temperature. The oxidised specimens have been creep tested subsequently at 750 0 C, under conditions of constant stress. The creep rupture properties are affected differently for the two materials. For 20%Cr/25%Ni/Nb stainless steel, there was no effect of oxidation on the intrinsic microstructure, when compared with thermally aged, non-oxidised material. Any differences in creep ductility were ascribed to geometric effects in specimens of this alloy. Lower ductilities were associated with an increased incidence of pitting attack (higher oxide spallation) and it was concluded that the extent of local, rather than general, loss of section controlled the ductility. For nitrided 20%Cr/25%Ni/Ti stainless steel, the intrinsic microstructure was affected by oxidation, such that increased grain boundary precipitation of M 23 C 6 occurred. The resultant effect was for a greater tendency for intergranular failure at lower ductility than for the thermally aged material. The magnitude of this reduction could not be quantified because the specimen geometry was also changed by oxidation. In this instance, the oxidation mode that produced the most severe loss of section was grain boundary, rather than pitting, attack. This mode of attack was not linked directly to oxide fracture/spallation, but to the period of oxidation. (author)

  7. Closure of the telephone switchboard at 5 p.m. on 20 December

    CERN Multimedia

    Communications Support Section

    2013-01-01

    Exceptionally, the telephone switchboard will close at 5 p.m. on Friday 20 December, instead of 6 p.m. (usual time), to allow time for all systems to be properly closed before the annual closure.   Therefore, switchboard operator assistance to transfer calls from/to external lines will cease. All other phone services will run as usual.

  8. Protective Behavior of Poly(m-aminophenol) and Polypyrrole Coatings on Mild Steel

    Science.gov (United States)

    Yahaya, Sabrina M.; Harun, M. K.; Rosmamuhamadani, R.; Bonnia, N. N.; Ratim, S.

    2018-01-01

    Electrodeposition of polypyrrole (PPy) and poly (m-aminophenol) (PMAP) films on mild steel (MS) substrate was achieved in 0.3M oxalic acid solution and 0.3M NaOH, water:ethanol (70:30) solvent respectively using cyclic voltammetry technique. The morphology of the films constructed was determined by scanning electron microscope (SEM) while energy dispersive X-Ray analyzer (EDX) was used to establish the presence of organic PMAP and PPy film coating and its compositions. The corrosion performance of MS coated with both polymer films were investigated after 0.5 hours immersed in 0.5M NaCl aqueous solution by using polarization curves. It was found that PPy coating provides anodic protection while PMAP coating provides cathodic protection towards corrosion protection of mild steel substrate.

  9. Bainite transformation and TRIP effect in 20Mn2SiVB steel

    International Nuclear Information System (INIS)

    Huo Yanqiu; Long Xiuhui; Zhou Zhenhua; Li Jianguo

    2006-01-01

    Transformation-induced plasticity (TRIP) steel is a relatively new type of automotive steel known for its combination of high-strength and high ductility which was developed in the 1990s. 20Mn2SiVB steel is a kind of TRIP steel with low-carbon and low-alloying contents and high-strength. Specimens of a tested 20Mn2SiVB steel austenitized at 920 deg. C and austempered at 420 deg. C in a salt bath at different time are investigated. The microstructure obtained is studied by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that bainitic ferrite precipitates at the boundary of the austenite first, and with the prolongation of the isothermal time, the amount of bainitic ferrite increase. Then the ferrite decollates the austenite grain and lath-shaped bainitic ferrite with little island-shaped austenite forms during the holding time. The microstructure contains carbide-free bainite, granular bainite, retained austenite and martensite in the process of bainite transformation. Tensile test of the different treated specimens indicates that a better comprehensive property can be gained after austenized at 920 deg. C following austempered at 420 deg. C for 5 min, a certain TRIP effect can be also obtained under this condition

  10. Microstructural analysis of hot press formed 22MnB5 steel

    Science.gov (United States)

    Aziz, Nuraini; Aqida, Syarifah Nur; Ismail, Izwan

    2017-10-01

    This paper presents a microstructural study on hot press formed 22MnB5 steel for enhanced mechanical properties. Hot press forming process consists of simultaneous forming and quenching of heated blank. The 22MnB5 steel was processed at three different parameter settings: quenching time, water temperature and water flow rate. 22MnB5 was processed using 33 full factorial design of experiment (DOE). The full factorial DOE was designed using three factors of quenching time, water temperature and water flow rate at three levels. The factors level were quenching time range of 5 - 11 s, water temperature; 5 - 27°C and water flow rate; 20 - 40 L/min. The as-received and hot press forming processed steel was characterised for metallographic study and martensitic structure area percentage using JEOL Field Emission Scanning Electron Microscopic (FESEM). From the experimental finding, the hot press formed 22MnB5 steel consisted of 50 to 84% martensitic structure area. The minimum quenching time of 8 seconds was required to obtain formed sample with high percentage of martensite. These findings contribute to initial design of processing parameters in hot press forming of 22MnB5 steel blanks for automotive component.

  11. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    Directory of Open Access Journals (Sweden)

    Shola Elijah Adeniji

    2018-05-01

    Full Text Available Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the temperature was increased. Corrosion inhibition by the extract of Dialium guineense leaves is carried out by adsorption mechanism with the kinetics of corrosion following the pseudo first order reaction with high correlation. Thermodynamic consideration revealed that adsorption of the ethanol extract of Dialium guineense leaves on mild steel surface is an exothermic and spontaneous process that fitted the Langmuir adsorption isotherm. The values of activation energy and Gibb’s free energy were found within the range of limits expected for the mechanism of physical adsorption.

  12. Heat affected zone structure in welded joints of 15Kh1M1FL, 25Kh2NMFA and 20KhN2MFA steels

    International Nuclear Information System (INIS)

    Levenberg, N.E.; German, S.I.; Fomina, O.P.; Netesa, E.M.; Tsaryuk, A.K.; Kornienko, T.A.

    1983-01-01

    Heat affected zone (HAZ) structure of thick-walled, nature joints of 15Kh1M1FL steel for block structure of power reactors and 25Kh2NMFA and 20KhN2MFA steels for rotors - is investigated. Multi-layer arc welding is performed under conditions being created for standard components of turbines. Thermokinetics diagrams of austenite decomposition are built, phase composition and character of the structure forming at HAZ in the process of welding with preheating are studied. It is shown that at HAZ in joints of the steels under consideration in the process of welding with preheating is formed a structure of a grained bainite which is uniform in its structure and phase composition. Small volumes of round and elongated forms consisting of martensite and residual austenite are distributed in α-solid solution of the bainite. The bainite of the HAZ in welded joints possesses high hardness and great stability in the process of tempering

  13. Refinement of grain structure in 20 MnNiMo (SA508C) steel

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Zou Min

    1997-04-01

    The size of prior austenite grains and bainitic colonies of 20 MnNiMo (SA508C) steel (a reactor pressure vessel steel) after normal heat treatment is measured and its controlling factors are discussed. Results show that low aluminium content can induce serious mixed structure with fine and coarse grains in prior austenite. Fast cooling rate can promote refinement of bainitic colonies. Further refinement of grains can be obtained by inter-critical quenching. (5 figs., 1 tab.)

  14. Indeno-1-one [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5 M H2SO4 solution

    International Nuclear Information System (INIS)

    Obot, I.B.; Obi-Egbedi, N.O.

    2010-01-01

    Indeno-1-one [2,3-b] quinoxaline (INQUI), synthesized in our laboratory, was tested as inhibitor for the corrosion of mild steel in 0.5 M H 2 SO 4 using gravimetric method at 30 o C. The inhibitor (INQUI) showed about 81% inhibition efficiency (E (%)) at an optimum concentration of 10 x 10 -6 M. The inhibition efficiency increases with increase in inhibitor concentration but decreases with increase in immersion time. The adsorption of the inhibitor on the mild steel in the acid solution was found to accord with Temkin's adsorption isotherm. The calculated value of the free energy for the adsorption process, ΔG ads , reveals a strong chemisorbed bond between the inhibitor and mild steel surface and a spontaneous adsorption of the inhibitor on the mild steel surface. Density functional theory (DFT) proves that INQUI molecule is adsorbed on the mild steel surface by the most negatively charged nitrogen and oxygen atoms.

  15. Properties of 40N3M powder structural steel

    International Nuclear Information System (INIS)

    Moskvina, T.P.; Gulyaev, A.P.; Gulyaev, I.A.; Byakov, S.V.; Melent'ev, I.V.; Morgun, G.N.

    1984-01-01

    Effect of the fabrication technique of compact slabs made of the 40N3M powder structural steel on mechanical properties with determination of a cold brittleness threshold was studied. It is established that after a thermal treatment at a density close to 100% a powder steel is sufficiently close to steel, rolled of an ingot, but is second in reference to steel in its ductility and impact strength. Properties of powder steel obtained by the method of dynamic hot forming (DHF) and hot extrusion are practically equal, but the first method has definite advantages as it allows to obtain details with a definitive form. The above investigation permits to recommend an application of the 40N3M powder steel fabricated by the DHF methods. The optimum thermal treatment course is: quenching+high annealing

  16. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    International Nuclear Information System (INIS)

    He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H.J.

    2014-01-01

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal–mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi–ODS steel exhibits a remarkable lifetime extension with a factor of 10–20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 10 14 m −2 , independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y–Ti–O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti–ODS steel

  17. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    He, P., E-mail: pei.he@kit.edu; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H.J.

    2014-12-15

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal–mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi–ODS steel exhibits a remarkable lifetime extension with a factor of 10–20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 10{sup 14} m{sup −2}, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y–Ti–O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti–ODS steel.

  18. Preliminary heat treatment of 4KhM2Fch die steel

    International Nuclear Information System (INIS)

    Leonidov, V.M.; Berezkin, Y.A.; Nikitenko, E.V.

    1986-01-01

    To improve the machinability and preparation of the structure for hardening, die steels are given a preliminary treatment which provides a reduction in hardness as a result of separation in the structure of the carbide and ferrite phases, coagulation of the carbides, and acquisition by them of a granular form and also the obtaining of fine grains and a uniform distribution of the structural constituents. The microstructure was evaluated after etching in 4% nital on an MIM-8M microscope. The 4KhM2Fch steel was given a preliminary heat treatment of normalize and anneal. It was concluded that for 4KhM2Fch steel a preliminary heat treatment of normalizing from 950 0 C with a hold of 1.5-2 h, annealing at 750-760 0 C with a hold of 2-3 h, cooling to the isothermal temperature of 670-680 0 C with a hold of 3-4 h, and further air cooling is recommended. The structure after such a heat is granular pearlite with a rating 1-2 and a hardness of 220-250 HB

  19. Experimental study of residual stresses in laser clad AISI P20 tool steel on pre-hardened wrought P20 substrate

    International Nuclear Information System (INIS)

    Chen, J.-Y.; Conlon, K.; Xue, L.; Rogge, R.

    2010-01-01

    Research highlights: → Laser cladding of P20 tool steel. → Residual stress analysis of laser clad P20 tool steel. → Microstructure of laser clad P20 tool steel. → Tooling Repair using laser cladding. → Stress reliving treatment of laser clad P20 tool steel. - Abstract: Laser cladding is to deposit desired material onto the surface of a base material (or substrate) with a relatively low heat input to form a metallurgically sound and dense clad. This process has been successfully applied for repairing damaged high-value tooling to reduce their through-life cost. However, laser cladding, which needs to melt a small amount of a substrate along with cladding material, inevitably introduces residual stresses in both clad and substrate. The tensile residual stresses in the clad could adversely affect mechanical performance of the substrate being deposited. This paper presents an experimental study on process-induced residual stresses in laser clad AISI P20 tool steel onto pre-hardened wrought P20 base material and the correlation with microstructures using hole-drilling and neutron diffraction methods. Combined with X-ray diffraction and scanning electron microscopic analyses, the roles of solid-state phase transformations in the clad and heat-affected zone (HAZ) of the substrate during cladding and post-cladding heat treatments on the development and controllability of residual stresses in the P20 clad have been investigated, and the results could be beneficial to more effective repair of damaged plastic injection molds made by P20 tool steel.

  20. The precipitation response of 20%-cold-worked type 316 stainless steel to simulated fusion irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1979-01-01

    The precipitation response of 20%-cold-worked type 316 stainless steel has been examined after irradiation in HFIR at 380-600 0 C, after irradiation in EBR-II at 500 0 C, and after thermal aging at 600 to 750 0 C. Eta phase forms during exposure to all environments. It constitutes a major portion of the precipitation response, and is rich in Ni, Si and Mo relative to M 23 C 6 after thermal aging. It is not normally reported in 20%-cold-worked type 316 stainless steel. The eta, M 23 C 6 , Laves, sigma, and chi precipitate phases appear at similar temperatures after HFIR, EBR-II, or thermal exposure. There are, however, some differences in relative amounts, size, and distribution of phases among the various environments. Eta phase is the only carbide-type phase observed after irradiation in HFIR from 380-550 0 C. The large cavities associated with it at 380 0 C contribute significantly to swelling. Re-solution of fine M 23 C 6 , eta, and Laves particles and re-precipitation of massive particles of sigma, M 23 C 6 and chi are observed after recrystallization in HFIR. (orig.)

  1. PEMBUATAN SUMBER RADIASI GAMMA 137Cs DENGAN AKTIVITAS 20 mCi DARI PEB U3Si2-Al PASCA IRADIASI DALAM CONTAINER STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Aslina Br. Ginting

    2016-03-01

    Full Text Available ABSTRAK PEMBUATAN SUMBER RADIASI GAMMA ISOTOP 137Cs DENGAN AKTIVITAS 20 mCi DARI PEB U3Si2-Al PASCA IRADIASI DALAM CONTAINER STAINLESS STEEL. Kegiatan uji pasca iradiasi pelat elemen bakar (PEB U3Si2-Al banyak menghasilkan larutan dengan keaktifan yang sangat tinggi. Larutan tersebut mengandung isotop 137Cs, uranium serta transuranium yang mempunyai waktu paroh panjang dan berbahaya bagi lingkungan. Namun larutan tersebut memiliki nilai ekonomis tinggi karena dapat dimanfaatkan sebagai bahan baku untuk pembuatan sumber radiasi sinar gamma isotop 137Cs. Hal ini dapat membantu bidang industri dalam memenuhi kebutuhan sumber radioaktif dalam negeri karena selama ini kebutuhan isotop 137Cs di Indonesia masih tergantung dari industri luar negeri. Selain itu, pengadaan dan transportasi isotop 137Cs dari luar negeri serta dalam penggunaannya memerlukan persyaratan yang cukup ketat dari Badan Pengawas Tenaga Nuklir Nasional (BAPETEN, sehingga menyebabkan harga isotop 137Cs menjadi mahal sampai di Indonesia. Dengan alasan tersebut, BATAN sebagai lembaga litbang nuklir di Indonesia perlu mempelajari pembuatan sumber radiasi gamma isotop 137Cs dari larutan hasil pengujian bahan bakar nuklir U3Si2-Al pasca iradiasi. Manfaat isotop 137Cs sangat luas antara lain digunakan dalam menganalisis sampel lingkungan, industri migas, konstruksi, radiografi, perikanan, rumah sakit dan pertambangan. Pembuatan sumber radiasi gamma isotop 137Cs dimulai dari pengumpulan larutan hasil pengujian PEB U3Si2-Al. Larutan larutan hasil pengujian mengandung isotop 137Cs dan isotop lainnya dikumpulkan menjadi satu dalam botol dengan volume 65 mL. Pemisahan isotop 137Cs dari hasil fisi lainnya dilakukan dengan metode penukar kation menggunakan zeolit Lampung dengan berat 45 gr. Hasil pemisahan diperoleh 137Cs-zeolit dalam fasa padat dan isotop lainnya berada dalam fasa cair. Padatan137Cs-zeolit kering kemudian kemudian ditimbang dan diukur aktivitasnya menggunakan spektrometer

  2. SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel joints prepared by dynamic diffusion bonding: Microelectrochemical studies in 0.6 M NaCl solution

    International Nuclear Information System (INIS)

    Andreatta, Francesco; Matesanz, Laura; Akita, Adriano H.; Paussa, Luca; Fedrizzi, Lorenzo; Fugivara, Cecilio S.; Gomez de Salazar, Jose M.; Benedetti, Assis V.

    2009-01-01

    Corrosion of SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel interfaces was investigated in 0.6 M NaCl solution using an electrochemical microcell, which enables local electrochemical characterization at the micrometer scale. Two pieces of steel, one with a WC-Co coating covered with Ni (12 μm) and Cu (5 μm) layers, and the other with a Ni (15 μm) layer, were welded by dynamic diffusion bonding. A WC-Co coating was applied to the steel by the high velocity oxygen-fuel process, and Ni-Cu and Ni layers by electroplating. Polarization curves were recorded using an electrochemical microcell. Different regions of welded samples were investigated, including steel, cermet coating, and steel/cermet and steel/Ni-Cu-Ni/cermet interfaces. Optical and electronic microscopes were employed to study the corroded regions. Potentiodynamic polarization curves obtained using the microcell revealed that the base metal was more susceptible to corrosion than the cermet. In addition, cermet steel/cermet and steel/Ni-Cu-Ni/cermet joints exhibited different breakdown potentials. Steel was strongly corroded in the regions adjacent to the interfaces, while the cermet was less corroded. Iron oxides/hydroxides and chloride salts were the main corrosion products of steel. After removal of the superficial layer of corrosion products, iron oxides were mainly observed. Chloride ions were detected mainly on a copper-enriched layer placed between two Ni-enriched layers.

  3. Shrinkage Porosity Criterion and Its Application to A 5.5 Ton Steel Ingot

    Directory of Open Access Journals (Sweden)

    Zhang C.

    2016-06-01

    Full Text Available In order to predict the distribution of shrinkage porosity in steel ingot efficiently and accurately, a criterion R√L and a method to obtain its threshold value were proposed. The criterion R√L was derived based on the solidification characteristics of steel ingot and pressure gradient in the mushy zone, in which the physical properties, the thermal parameters, the structure of the mushy zone and the secondary dendrite arm spacing were all taken into consideration. The threshold value of the criterion R√L was obtained with combination of numerical simulation of ingot solidification and total solidification shrinkage rate. Prediction of the shrinkage porosity in a 5.5 ton ingot of 2Cr13 steel with criterion R√L>0.21 m · °C1/2 · s−3/2 agreed well with the results of experimental sectioning. Based on this criterion, optimization of the ingot was carried out by decreasing the height-to-diameter ratio and increasing the taper, which successfully eliminated the centreline porosity and further proved the applicability of this criterion.

  4. Neutron irradiation embrittlement of reactor pressure vessel steel 20 MnMoNi55 weld

    International Nuclear Information System (INIS)

    Ghoneim, M.M.

    1987-05-01

    The effect of neutron irradiation on the mechanical and fracture properties of an 'improved' 20 MnMoNi 55 Pressure Vessel Steel (PVS) weld was investigated. In addition to very low residual element content, especially Cu (0.035 wt.%), and relatively higher Ni content (0.9 wt.%), this steel has higher strength (30% more) than the steels used currently in nuclear reactor pressure vessels. The material was irradiated to 3.5x10 19 and 7x10 19 n/cm 2 (E > 1 Mev) at 290 0 C and 2.5x10 19 n/cm 2 (E > 1 MeV) at 160 0 C in FRJ-1 and FRJ-2 research reactors at KFA, Juelich, F.R.G. Test methods used in the evaluation included instrumented impact testing of standard and precracked Charpy specimens, tensile, and fracture toughness testing. Instrumented impact testing provided load and energy vs. time (deflection) data in addition to energy absorption data. The results indicated that the investigated high strength improved steel is more resistant to irradiation induced embrittlement than conventional PVSs. (orig./IHOE)

  5. Effect of thermal aging on the low cycle fatigue behavior of Z3CN20.09M cast duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weifeng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Tian, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Dunji, E-mail: djyu@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Weiwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Chen, Xu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-10-14

    Nuclear grade Z3CN20.09M cast duplex stainless steel exhibits enhanced cyclic stress response and prolonged low cycle fatigue life at room temperature after thermal aging at 400 °C for up to 6000 h. The threshold strain amplitude for the onset of secondary hardening is shifted to a lower value after thermal aging. Microstructural observations reveal that fatigue cracks tend to initiate from phase boundaries in virgin specimens, but to initiate in the ferrite phase in aged ones. Denser fatigue striations are found on the fracture surface of fatigued specimen subjected to longer thermal aging duration. These observations are explained in the context of thermal aging induced embrittlement of the ferrite phase and deformation induced martensitic phase transformation in the austenite phase.

  6. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Science.gov (United States)

    Ahmed, Mohammed H. Othman; Al-Amiery, Ahmed A.; Al-Majedy, Yasmin K.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Gaaz, Tayser Sumer

    2018-03-01

    The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-yl)phenol), for mild steel in 1 M hydrochloric acid (HCl) has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms.

  7. Self-ion Irradiation Damage of F/M and ODS steels

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Chun, Young-Bum; Noh, Sanghoon; Jang, Jinsung; Kim, Tae Kyu

    2014-01-01

    Oxide dispersion strengthened (ODS) ferritic steels are potential high-temperature materials that are stabilized by dispersed particles at elevated temperatures. These dispersed particles improve the tensile strength and creep rupture strength, they are expected to increase the operation temperature up to approximately 650 .deg. C and also enhance the energy efficiency of the fusion reactor. Some reports described that the nano-clusters are strongly resistant to coarsening by annealing up to 1000 .deg. C, and nanoclusters do not change after ion irradiation up to 0.7 dpa at 300 .deg. C. ODS steels will be inevitably exposed to neutron irradiation condition; the irradiation damages, creep and swelling are always great concern. The dispersed oxide particles are believed to determine the performance of the steel, even the radiation resistance. In this study, F/M and ODS model alloys of Korea Atomic Energy Research Institute (KAERI) were irradiated by Fe 3+ self-ion to emulate the neutron irradiation effect. In this study, Fe 3+ self-ion irradiation is used as means of introducing radiation damage in F/M steel and ODS steel. The ion accelerator named DuET (in Kyoto University, Japan) was used for irradiation of Fe 3+ ion by 6.4 MeV at 300 .deg. C. The maximum damage rate in F/M and ODS steels were estimated roughly 6 dpa. After radiation, point or line defects were dominantly observed in F/M steel, on the other hands, small circular cavities were typically observed in ODS steel. Nanoindentation is a useful tool to determine the irradiationinduced hardness change in the damage layer of ionirradiated iron base alloys

  8. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Mohammed H. Othman Ahmed

    2018-03-01

    Full Text Available The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-ylphenol, for mild steel in 1 M hydrochloric acid (HCl has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms. Keywords: Corrosion, Inhibitor, Mild steel, EIS spectroscopy

  9. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  10. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  11. Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mourya, Punita, E-mail: mouryapunita025@gmail.com [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Praveen [Department of Chemistry, Banaras Hindu University, Varanasi 221005 (India); Rastogi, R.B.; Singh, M.M. [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-09-01

    Highlights: • TODPCN is a good corrosion inhibitor for mild steel in 0.5 M H{sub 2}SO{sub 4} solution. • Addition of iodide ion increases the inhibition efficiency of the studied nitrile derivative. • Inhibition efficiency successively increases with concentration. • XPS study has revealed the chemical composition of the protective film. - Abstract: The effect of iodide ions on inhibitive performance of 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (TODPCN) on mild steel (MS) corrosion in 0.5 M H{sub 2}SO{sub 4} was studied using gravimetric and electrochemical measurements. TODPCN inhibits the corrosion of MS to the extent of 62.3% at its lowest concentration (0.5 mM) and its inhibition efficiency (η) further increases on increasing concentration at 298 K. The adsorption of TODPCN on MS was found to follow the Langmuir adsorption isotherm. The value of η increased on the addition of 2.0 mM KI. The value of synergism parameter being more than unity indicates that the enhanced η value in the presence of iodide ions is only due to synergism. Thus, a cooperative mechanism of inhibition exists between the iodide anion and TODPCN cations. The increase in surface coverage in the presence of KI indicates that iodide ions enhance the adsorption of TODPCN. The surface morphology of corroded/inhibited MS was studied by atomic force microscopy. X-ray photoelectron spectroscopy of inhibited MS surface was carried out to determine the composition of the adsorbed film. Some quantum chemical parameters and the Mulliken charge densities for TODPCN calculated by density functional theory provided further insight into the mechanism of inhibition.

  12. Microstructure-strength relations in a hardenable stainless steel with 16 pct Cr, 1.5 pct Mo, and 5 pct Ni

    Science.gov (United States)

    Grobner, P. J.; Blšs, V.

    1984-07-01

    Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.

  13. Microstructural Evolution of AerMet100 Steel Coating on 300M Steel Fabricated by Laser Cladding Technique

    Science.gov (United States)

    Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming

    2018-02-01

    In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.

  14. Experimental Investigation on Friction and Wear Properties of Different Steel Materials

    OpenAIRE

    M.A. Chowdhury; D.M. Nuruzzaman

    2013-01-01

    Friction coefficient and wear rate of different steel materials are investigated and compared in this study. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when different types of disc materials such as stainless steel 314 (SS 314), stainless steel 202 (SS 202) and mild steel slide against stainless steel 314 (SS 314) pin. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative humidity 70%. A...

  15. Influence of Copper on the Hot Ductility of 20CrMnTi Steel

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% copper (x = 0, 0.34) was investigated. Results show that copper can reduce its hot ductility, but there is no significant copper-segregation at the boundary tested by EPMA. The average copper content at grain boundaries and substrate is 0.352% and 0.318% respectively in steel containing 0.34% copper tensile-tested at 950 °C. The fracture morphology was examined with SEM and many small and shallow dimples were found on the fracture of steel with copper, and fine copper sulfide was found from carbon extraction replicas using TEM. Additionally, adding 0.34% copper caused an increase in the dynamic recrystallization temperature from 950 °C to 1000 °C, which indicates that copper can retard the dynamic recrystallization (DRX) of austenite. The detrimental influence of copper on hot ductility of 20CrMnTi steel is due mainly to the fine copper sulfide in the steel and its retarding the DRX.

  16. Surface modification of M50 steel by dual-ion-beam dynamic mixing

    International Nuclear Information System (INIS)

    Kuang Yuanzhu; Jan Jun; Qin Ouyang

    1994-01-01

    TaN films have many attractive characteristics, and so have been used for electronic and mechanical applications. There are many methods used for deposition of TaN films. Recently, the ion-beam dynamic mixing method has been used for thin film deposition and materials modification. In order to obtain high performance, stoichiometric composition and good adhesion we have deposited TaN films by a dual-ion-beam dynamic mixing method. This paper introduces the deposition and properties of TaN films on M50 steel by dual-ion-beam dynamic mixing. The microstructure of films was analysed by X-ray diffraction and Auger electron spectroscopy (AES). The microhardness, resistance to wear and erosion of these films were determined. The results showed that (1) the TaN films were successfully deposited on M50 steel by this method, (2) the performance, resistance to wear and erosion of M50 steel were improved by ion-beam-mixing deposition of the TaN thin films, (3) AES showed there was a mixed layer on the film interface, (4) the microhardness of the thin film depends on microstructure and thickness and (5) the microstructure and quality of the films depends on the deposition conditions, so it is important to select the proper operational parameters of ion sources. ((orig.))

  17. On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol

    International Nuclear Information System (INIS)

    Musa, Ahmed Y.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Takriff, Mohd Sobri; Daud, Abdul Razak; Kamarudin, Siti Kartom

    2010-01-01

    The corrosion inhibition of mild steel in a 2.5 M H 2 SO 4 solution by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT) was studied at different temperatures, utilising open circuit potential, potentiodynamic and impedance measurements. The results indicate that APTT performed as an excellent mixed-type inhibitor for mild steel corrosion in a 2.5 M H 2 SO 4 solution and that the inhibition efficiencies increased with the inhibitor concentration but decreased proportionally with temperature. The kinetic and thermodynamic parameters for adsorption of APTT on the mild steel surface were calculated. A chemisorption mechanism of APTT molecules on the mild steel surface was proposed based on the thermodynamic adsorption parameters.

  18. Induced magnetic moment in stainless steel components of orthodontic appliances in 1.5 T MRI scanners

    Science.gov (United States)

    Rollins, Nancy K.; Liang, Hui; Park, Yong Jong

    2015-01-01

    Purpose: Most orthodontic appliances are made of stainless steel materials and induce severe magnetic susceptibility artifacts in brain MRI. In an effort for correcting these artifacts, it is important to know the value of induced magnetic moments in all parts of orthodontic appliances. In this study, the induced magnetic moment of stainless steel orthodontic brackets, molar bands, and arch-wires from several vendors is measured. Methods: Individual stainless steel brackets, molar bands, and short segments of arch-wire were positioned in the center of spherical flask filled with water through a thin plastic rod. The induced magnetic moment at 1.5 T was determined by fitting the B0 map to the z-component of the magnetic dipole field using a computer routine. Results: The induced magnetic moment at 1.5 T was dominated by the longitudinal component mz, with a small contribution from the transverse components. The mz was insensitive to the orientation of the metal parts. The orthodontic brackets collectively dominated the magnetic dipole moment in orthodontic appliances. In brackets from six vendors, the total induced mz from 20 brackets for nonmolar teeth ranged from 0.108 to 0.158 (median 0.122) A ⋅ m2. The mz in eight molar bands with bracket attachment from two vendors ranged from 0.0004 to 0.0166 (median 0.0035) A ⋅ m2. Several full length arch wires had induced magnetic moment in the range of 0.006–0.025 (median 0.015) A ⋅ m2. Conclusions: Orthodontic brackets collectively contributed most to the total magnetic moment. Different types of brackets, molar bands, and arch wires all exhibit substantial variability in the induced magnetic moment. PMID:26429261

  19. The FEM Analysis of Stress Distribution in front of the Crack Tip and Fracture Process in the Elements of Modified and Unmodified Cast Steel G17CrMo5-5

    Directory of Open Access Journals (Sweden)

    Pała Robert

    2016-09-01

    Full Text Available The article presents influence of modification of the low-alloy cast steel G17CrMo5-5 by rare earth metals on stress distribution in front of the crack at the initial moment of the crack extension. Experimental studies include determination of strength and fracture toughness characteristics for unmodified (UM and modified (M cast steel. In the numerical computations, experimentally tested specimens SEN(B were modelled. The true stress–strain curves for the UM and M cast steel are used in the calculation. The stress distributions in front of the crack were calculated at the initial moment of the crack extension. On the basis of data on the particle size inclusions in the UM and M cast steel, and the calculated stress distributions was performed an assessment of the possibility of the occurrence of cleavage fracture. The analysis results indicate that at room temperature for the UM cast steel, there is a possibility of cleavage fracture, while for the M cast steel occurrence of cleavage fracture is negligible.

  20. Experimental and quantum chemical simulations on the corrosion inhibition of mild steel by 3-((5-(3,5-dinitrophenyl)-1,3,4-thiadiazol-2-yl)imino)indolin-2-one

    Science.gov (United States)

    Al-Azawi, Khalida F.; Mohammed, Iman Mahdi; Al-Baghdadi, Shaimaa B.; Salman, Taghried A.; Issa, Hamsa A.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer; Kadhum, Abdul Amir H.

    2018-06-01

    Iraq has been one of the most extensive oil and natural gas industries in the world. The corrosion of mild steel is costly and insufficiency process. It is responsible for great loss in manufacture and environment. Natural and organic inhibitors have been utilized for a long time to inhibit the corrosion. Selected thiadiazol derivative, namely 3-((5-(3,5-dinitrophenyl)-1,3,4-thiadiazol-2-yl)imino)indolin-2-one (TDIO) was investigated for it inhibitive impacts in 1 M HCl medium on corrosion of mild steel using weight loss and scanning electron microscope techniques. The maximum inhibition efficiency up to 90.7% at the maximum inhibitor concentration 0.5 mM. Surface morphology of results demonstrated that TDIO formed adsorbed film on surface of mild steel in hydrochloric acid solution. Give molecular based clarifications to the inhibitive impacts of the studied. The interactions between mild steel surface and the inhibitor molecules have been undertaken to further corroborate the methodological results.

  1. Effect of preliminary neutron irradiation on helium blistering of 0Kh16N15M3B steel

    International Nuclear Information System (INIS)

    Chernov, I.I.; Kalin, B.A.; Skorov, D.M.; Shishkin, G.N.; Ivanov, M.V.

    1982-01-01

    The method of electron microscopy has been applied to investigate the effect of preliminary neutron irradiation on the OKh16N15M3B steel blistering under irradiation by 20 keV helium ions with (1-10)x10 21 ion/m 2 doses at the temperature below 373 K. It is shown that neutron irradiation shifts critical doses of blister formation and intense scaling towards higher doses. But after the incubation period the erosion of steel preliminary neutron irradiated grows with the increase of helium ion dose above 7x10 21 ion/m 2 . Short-term heating of neutron irradiated samples during 15 min at 1173 K does not practically affect the beginning of intense scaling of the surface

  2. Electrochemical studies of novel corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2018-06-01

    Full Text Available The electrochemical performance of a novel organic corrosion inhibitor 6-(4-hydroxyphenyl-3-mercapto-7,8-dihydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine [HT3], for mild steel in 1 M hydrochloric acid is evaluated by potentiodynamic curves. The experimental results show that the investigated inhibitor [HT3], which can effectively retard the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing a protective coating for the mild steel that, can be weakened by increasing the temperature. Furthermore, the inhibition efficiency of [HT3] increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. Keywords: Corrosion, Inhibitor, Mild steel, Potentiodynamic polarization, HT3, NMR, FT-IR

  3. The Faceted Discrete Growth and Phase Differentiation During the Directional Solidification of 20SiMnMo5 Steel

    Science.gov (United States)

    Ma, Xiaoping; Li, Dianzhong

    2018-07-01

    The microstructures, segregation and cooling curve were investigated in the directional solidification of 20SiMnMo5 steel. The typical characteristic of faceted growth is identified. The microstructures within the single cellular and within the single dendritic arm, together with the contradictive segregation distribution against the cooling curve, verify the discrete crystal growth in multi-scales. Not only the single cellular/dendritic arm but also the single martensite zone within the single cellular/dendritic arm is produced by the discrete growth. In the viewpoint of segregation, the basic domain following continuous growth has not been revealed. Along with the multi-scale faceted discrete growth, the phase differentiation happens for both the solid and liquid. The differentiated liquid phases appear and evolve with different sizes, positions, compositions and durations. The physical mechanism for the faceted discrete growth is qualitatively established based on the nucleation of new faceted steps induced by the composition gradient and temperature gradient.

  4. The Faceted Discrete Growth and Phase Differentiation During the Directional Solidification of 20SiMnMo5 Steel

    Science.gov (United States)

    Ma, Xiaoping; Li, Dianzhong

    2018-03-01

    The microstructures, segregation and cooling curve were investigated in the directional solidification of 20SiMnMo5 steel. The typical characteristic of faceted growth is identified. The microstructures within the single cellular and within the single dendritic arm, together with the contradictive segregation distribution against the cooling curve, verify the discrete crystal growth in multi-scales. Not only the single cellular/dendritic arm but also the single martensite zone within the single cellular/dendritic arm is produced by the discrete growth. In the viewpoint of segregation, the basic domain following continuous growth has not been revealed. Along with the multi-scale faceted discrete growth, the phase differentiation happens for both the solid and liquid. The differentiated liquid phases appear and evolve with different sizes, positions, compositions and durations. The physical mechanism for the faceted discrete growth is qualitatively established based on the nucleation of new faceted steps induced by the composition gradient and temperature gradient.

  5. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    OpenAIRE

    Dumas, Claire; Basséguy, Régine; Bergel, Alain

    2008-01-01

    Stainless steel and graphite electrodes were individually addressed and polarized at−0.60V vs. Ag/AgCl in reactors filled with a growth medium that contained 25mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75Am−2 for graphite and 20.5Am−2 for stainless steel. Cyclic voltamm...

  6. Effect of wheel speed on magnetic and mechanical properties of melt spun Fe-6.5 wt.% Si high silicon steel

    Science.gov (United States)

    Ouyang, Gaoyuan; Jensen, Brandt; Tang, Wei; Dennis, Kevin; Macziewski, Chad; Thimmaiah, Srinivasa; Liang, Yongfeng; Cui, Jun

    2018-05-01

    Fe-Si electric steel is the most widely used soft magnetic material in electric machines and transformers. Increasing the silicon content from 3.2 wt.% to 6.5 wt.% brings about large improvement in the magnetic and electrical properties. However, 6.5 wt.% silicon steel is inherited with brittleness owing to the formation of B2 and D03 ordered phase. To obtain ductility in Fe-6.5wt.% silicon steel, the ordered phase has to be bypassed with methods like rapid cooling. In present paper, the effect of cooling rate on magnetic and mechanical properties of Fe-6.5wt.% silicon steel is studied by tuning the wheel speed during melt spinning process. The cooling rate significantly alters the ordering and microstructure, and thus the mechanical and magnetic properties. X-ray diffraction data shows that D03 ordering was fully suppressed at high wheel speeds but starts to nucleate at 10m/s and below, which correlates with the increase of Young's modulus towards low wheel speeds as tested by nanoindentation. The grain sizes of the ribbons on the wheel side decrease with increasing wheel speeds, ranging from ˜100 μm at 1m/s to ˜8 μm at 30m/s, which lead to changes in coercivity.

  7. Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4

    International Nuclear Information System (INIS)

    Ansari, K.R.; Quraishi, M.A.; Singh, Ambrish

    2015-01-01

    Highlights: • Mild steel protection in 20% H 2 SO 4 by TZs. • Potentiodynamic polarization curves reveal that the actions of TZs are mixed type but cathodically predominant. • The adsorption of TZs obeys the Langmuir adsorption isotherm. • Examination of surface morphology by SEM and EDX. • Correlation between experimental and quantum chemical results. - Abstract: The corrosion inhibition action of Isatin-β-thiosemicarbzone derivatives namely 1-Benzylidene-5-(2-oxoindoline-3-ylidene) Thiocarbohydrazone (TZ-1) and 1-(4-Methylbenzylidene)-5-(2-oxoindolin-3-ylidene) Thiocarbohydrazone (TZ-2) was studied on mild steel surface in 20% H 2 SO 4 by gravimetric measurements, Electrochemical measurements (EIS and Tafel), SEM, EDX and quantum chemical methods. Potentiodynamic polarization curves reveal that the TZs act as mixed type inhibitors exhibiting predominantly cathodic behavior. The adsorption of TZs obeys the Langmuir adsorption isotherm. The thermodynamic parameters (E a , K ads , ΔG° ads ) were also computed and discussed

  8. The influence of cerium and yttrium ion implantation upon the oxidation behaviour of a 20% Cr/25% Ni/Nb stabilised stainless steel, in carbon dioxide, at 8250C

    International Nuclear Information System (INIS)

    Bennett, M.J.; Dearnaley, G.; Houlton, M.R.; Hawes, R.W.M.

    1982-01-01

    The influence of cerium and yttrium ion implantation upon the oxidation behaviour of a 20% Cr/25% Ni niobium stabilised stainless steel during up to 7 157h exposure to carbon dioxide, at 825 0 C has been examined. The doses ranged between 5 x 10 14 and 10 17 ions cm -2 . Above thresholds of between 5 x 10 14 and 5 x 10 15 yttrium and between 5 x 10 15 and 10 16 cerium ions cm -2 the implantation of both elements improved the oxidation resistance of the 20/25/Nb steel. Yttrium exerted the greater influence, reducing by a factor of two the attack after 7 157h. Up to 80% of the oxide formed on the 20/25/Nb steel spalled, particularly on thermal cycling. Cerium and yttrium implantation improved oxide adhesion by similar extents, which increased with ion dose such that with the highest doses, no spallation was measurable. The effect of the implanted elements derived from their incorporation within the oxide film. It was initiated by their promotion of the formation of an initial chromium-rich oxide layer, which had a finer grain size than that formed on the 20/25/Nb steel. Reduction in continuing attack was associated in part, with improved oxide adhesion, as this decreased the significant contribution to the attack of the 20/25/Nb steel from the reoxidation of spalled areas. (author)

  9. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    Science.gov (United States)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in

  10. Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: Implication for clean corrosion-protection of wind energy structures in industrial environment

    Science.gov (United States)

    Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Popoola, Abimbola Patricia Idowu; Loto, Cleophas Akintoye

    2016-07-01

    This paper investigates Phyllanthus muellerianus leaf-extract and C6H15NO3 (triethanolamine: TEA) synergistic effects on reinforcing-steel corrosion-inhibition and the compressive-strength of steel-reinforced concrete immersed in 0.5 M H2SO4. This is to assess suitability of the synergistic admixture usage for wind-energy steel-reinforced concrete structures designed for industrial environments. Steel-reinforced concrete specimens were admixed with individual and synergistic designs of Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures and immersed in the 0.5 M H2SO4. Electrochemical monitoring of corrosion potential, as per ASTM C876-91 R99, and corrosion current were obtained and statistically analysed, as per ASTM G16-95 R04, for modelling noise resistance. Post-immersion compressive-strength testing then followed, as per ASTM C39/C39M-03, for detailing the admixture effect on load-bearing strength of the steel-reinforced concrete specimens. Results showed that while individual Phyllanthus muellerianus leaf-extract concentrations exhibited better inhibition-efficiency performance than C6H15NO3, synergistic additions of C6H15NO3 to Phyllanthus muellerianus leaf-extract improved steel-rebar corrosion-inhibition. Thus, 6 g Phyllanthus muellerianus + 2 g C6H15NO3 synergistically improved inhibition-efficiency to η = 84.17%, from η = 55.28% by the optimal chemical or from η = 74.72% by the optimal plant-extract admixtures. The study also established that improved compressive strength of steel-reinforced concrete with acceptable inhibition of the steel-rebar corrosion could be attained through optimal combination of the Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures.

  11. Observation of simultaneous increase in strength and ductility by grain refinement in a Fe-34.5Mn-0.04C steel

    DEFF Research Database (Denmark)

    Wang, Y. H.; Kang, J. M.; Peng, Y.

    2017-01-01

    Fine grained Fe-34.5Mn-0.04C steel samples with fully recrystallized grain sizes of 3.8 to 2.0 mu m were prepared by cold rolling followed by annealing a temperatures of either 650 degrees C or 800 degrees C. It is found that a simultaneous increase in both strength and ductility can be obtained ...... by grain refinement, leading to an observation that the best combination of strength and ductility occurs in the sample with the finest recrystallized grain size....

  12. Hydrogen pick-up effect on the deformation characteristics of the 20 steel

    International Nuclear Information System (INIS)

    Steklov, O.I.; Perunov, B.Vs.; Krovyakova, V.M.

    1977-01-01

    An experiment aimed at ascertaining the possibility of using plasticity characteristis as a criterion of the resistance of a material to slow failure through hydrogenation is set up in a manner to permit an evaluation of the individual effects of mechanical stresses hydrogenation medium and their combined action upon the plasticity characteristics. It is shown that the variation of the rupturing load for hydrogenated specimens of grade 20 steel, held under load, takes place on the initial holding stage, after which the changes in the plasticity characteritics are immaterial. In consequence, the deformation characteristics allow no judgement to be made on the resistance to slow cracking of grade 20 steel due to hydrogenation

  13. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  14. Corrosion behavior of carbon steel in wet Na-bentonite medium

    International Nuclear Information System (INIS)

    Yeon, Jae-Won; Ha, Young-Kyoung; Choi, In-Kyu; Chun, Kwan-Sik

    1996-01-01

    Corrosion behaviors of carbon steel in wet Na-bentonite medium were studied. Corrosion rate of carbon steel in wet bentonite was measured to be 20 μm/yr at 25 deg C using the AC impedance technique. This value is agreed with that obtained by weight loss at 40 deg C for 1 year. The effect of bicarbonate ion on the corrosion of carbon steel in wet bentonite was also evaluated. The carbon steels in wet bentonite having 0.001, 0.01, and 0.1 M concentration of bicarbonate ion gave corrosion rates of 20, 8, and 0.2 μm/yr, respectively. Corrosion potentials of specimens were also measured and compared with the AC impedance results. Both results indicated that bicarbonate ion could effectively reduce the corrosion rate of carbon steels in bentonite due to the formation of protective layer on the carbon steel. (author)

  15. Effect of nitrogen on the stabilization of austenite in a tungsten-molybdenum high-speed steel

    International Nuclear Information System (INIS)

    Popandopulo, A.N.; Zhukova, L.T.

    1986-01-01

    A study was made of the tendency of steels R6M5 and R6Am5 to austenite stabilization after subzero treatment and high-temperature tempering in hot-rolled bars. Data indicate that in steel R6AM5 during quenching there is almost instantaneous austenite stabilization. The data was derived from a study of phase composition (exposure from a microsection in DRON-2.0 equipment in iron K /SUB alpha/ radiation), microstructure, and hardness. The authors conclude that in view of serious difficulties in metallurgical and tool production, steel R6AM5 should be supplied only at the request of the customer

  16. Acoustic emission during tensile deformation of M250 grade maraging steel

    Science.gov (United States)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  17. Improved corrosion resistance of cast carbon steel in sulphur oxides by Alonizing

    International Nuclear Information System (INIS)

    Holtzer, M.; Dzioba, Z.

    1992-01-01

    The results of studies on the Alonizing of cast steel and of testing the corrosion resistance of this cast steel in an atmosphere containing 5 to 6% SO 2 + 50% SO 3 at 853 K are described and compared with the results obtained with unalonized cast carbon steel and high-alloy 23Cr-8Ni-2Mo cast steel. The duration of the corrosion tests was 336 hours. The aluminium diffusion layer on cast carbon steel was obtained by holding the specimens in a mixture containing 99% of powered Fe-Al and 1% of NH 4 Cl at 1323 ± 20 K. The holding time was 10 and 20 hours, respectively. The aluminium layer formed on the cast carbon steel was examined by optical microscopy and an X-ray microanalysis. After Alonizing for 10 h the layer had reached a thickness of 950 μm, and contained up to 35% Al. In a mixture of sulphur oxides corrosion rate of the alonized cast carbon steel was by about 600 times lower than of the unalonized cast carbon steel, and by about 50 times lower than that of the 23Cr-8Ni-2Mo cast steel. (orig.) [de

  18. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Science.gov (United States)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  19. The effect of ammonium partial pressure on residual stresses in surface layer of SW7M HSS steel after vacuum nitriding 'NITROVAC'79'

    International Nuclear Information System (INIS)

    Gawronski, Z.

    1997-01-01

    The effect of the nitriding atmosphere on the residual stresses in the surface layer of the SW7M HSS steel has been investigated in the work. It has been proved that the pressure influences the distribution of those stresses to a great extent. At lower pressures (20 hPa and 40 hPa) at which only one zone is being created - the one of internal nitriding, without that of ε type nitrides on the surface - the highest residual stresses are operating on the HSS steel surface itself or eventually in the subsurface region very close to the surface. In the difference, in case of higher pressure (120 hPa and 240 hPa), the highest stresses are operating at great depth 8-12 μm from the steel surface - depending on the thickness of the ε type nitride layer created on the steel surface at those pressure. All the relevant stresses are compressive one. (author). 6 refs, 4 figs, 1 tab

  20. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    Serna, M.M.; Galego, E.; Rossi, J.L.

    2005-01-01

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  1. New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: Electrochemical, XPS and DFT studies

    International Nuclear Information System (INIS)

    Zarrouk, A.; Hammouti, B.; Lakhlifi, T.; Traisnel, M.; Vezin, H.; Bentiss, F.

    2015-01-01

    Highlights: • 1H-pyrrole derivatives act as good corrosion inhibitors for carbon steel in 1 M HCl. • Adsorption of the inhibitors on carbon steel surface obeys Langmuir’s isotherm. • XPS showed that the inhibitors are chemisorbed on the metal surface. • Quantum chemical parameters were correlated with experimental results. - Abstract: New 1H-pyrrole-2,5-dione derivatives, namely 1-phenyl-1H-pyrrole-2,5-dione (PPD) and 1-(4-methylphenyl)-1H-pyrrole-2,5-dione (MPPD) were synthesised and their inhibitive action against the corrosion of carbon steel in 1 M HCl solution were investigated at 308 K by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results showed that the investigated 1H-pyrrole-2,5-dione derivatives are good corrosion inhibitors for carbon steel in 1 M HCl medium, their inhibition efficiency increased with inhibitor concentration, and MPPD is slightly more effective than PPD. Potentiostatic polarization study showed that PPD and MPPD are mixed-type inhibitors in 1 M HCl. Impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. The results obtained from electrochemical and weight loss studies were in reasonable agreement. The adsorption of MPPD and PPD on steel surface obeyed Langmuir’s adsorption isotherm. Thermodynamic data and XPS analysis clearly indicated that the adsorption mechanism of 1H-pyrrole-2,5-dione derivatives on carbon steel surface in 1 M HCl solution is mainly controlled by a chemisorption process. Quantum chemical calculations using the Density Functional Theory (DFT) were performed on 1H-pyrrole-2,5-dione derivatives to determine the relationship between molecular structures and their inhibition efficiencies

  2. 1x2M steel performance in the BOR-60 steam generator

    International Nuclear Information System (INIS)

    Golovanov, V.N.; Shamardin, V.K.; Kondratiev, V.I.; Kryukov, F.N.; Chernobrovkin, Yu.V.; Bulanova, T.M.; Bai, V.F.

    The results from studies of 1x2M steel characteristics are presented. This steel was used as the material for the BOR-60 steam generator that had been in operation under the steam generating mode for 18,000 hs (35,000 hs in sodium). It was revealed that the pit corrosion depth on the water/steam side evaporative tube surfaces was about 0.25 μm and less and the total corrosion rate was less than 0.06 mm/y. The mechanical properties of the material were essentially similar both in the evaporator and superheater and met all the requirements imposed on. Based on the analysis of data on the decarbonizaton depth in sodium and on the corrosion damage in water and steam it was concluded that 1x2M steel can be successfully used as the steam generator material at the operating temperatures up to 470 deg. C and had sufficiently longer service-life as compared to 18,000 hs. (author)

  3. Influence of creep ductility on creep-fatigue behaviour of 20%Cr/25%Ni/Nb stainless steel

    International Nuclear Information System (INIS)

    Gladwin, D.; Miller, D.A.

    1985-01-01

    The influence of creep ductility on creep-fatigue endurance of 20%Cr/25%Ni/Nb stainless steel has been examined. In order to induce different creep ductilities in the 20/25/Nb stainless steel, three different thermo-mechanical routes were employed. These resulted in a range of ductilities (3-36%) being obtained at the strain rates of interest. Strain controlled slow-fast creep-fatigue cycles were used with strain rates of 10 -6 s -1 , 10 -7 s -1 in tension and 10 -3 s -1 in compression. It was found that creep ductility strongly influenced the creep-fatigue endurance of the 20/25/Nb stainless steel. When failure was creep dominated endurance was found to be directly proportional to the creep ductility. A ductility exhaustion model has been used to successfully predict creep-fatigue endurance when failure was creep dominated. (author)

  4. Electrochemical studies of adsorption and inhibition effect of new synthesized triazinane-amide derivatives on cold rolled steel in 0.5 M HCl

    International Nuclear Information System (INIS)

    Abo-Elenien, O.M.; Zohdy, K.M.; Abdelkreem, M.

    2012-01-01

    The adsorption and inhibition effects of new synthesized triazinane-amide derivatives (TAZA) on cold rolled steel (CRS) in 0.5 M HCl at concentration 100-500 ppm and 25.65 .C were studied by mean of weight loss and potentiodynamic polarization techniques. The results showed that the TAZA was a good inhibitor in 0.5 M HCl. The inhibition efficiency (IE) increased with the increase of inhibitor T AZA c oncentration. The adsorption of TAZA on the CRS surfaces followed the Langmuir adsorption isotherm. The thermodynamic and kinetic parameters show evidence of the stability control of the film formation on the CRS surfaces. The polarization curves revealed that the TAZA can act as cathodic and anodic protectors in the same time. Such protection phenomena were evidenced by the means of the weight loss and polarization methods. Significantly, the high efficient process of the film formation in terms of the corrosion rate, efficiency control was found with 300 ppm dose of TAZA, as evidenced from the electrochemical impedance and scanning electron microscope techniques

  5. OBSERVATIONAL 5-20 μm INTERSTELLAR EXTINCTION CURVES TOWARD STAR-FORMING REGIONS DERIVED FROM SPITZER IRS SPECTRA

    International Nuclear Information System (INIS)

    McClure, M.

    2009-01-01

    Using Spitzer Infrared Spectrograph observations of G0-M4 III stars behind dark clouds, I construct 5-20 μm empirical extinction curves for 0.3 ≤ A K V between ∼3 and 50. For A K K > 1, the curve exhibits lower contrast between the silicate and absorption continuum, develops ice absorption, and lies closer to the Weingartner and Draine R V = 5.5 Case B curve, a result which is consistent with that of Flaherty et al. and Chiar et al. Recently, work using Spitzer Infrared Array Camera data by Chapman et al. independently reaches a similar conclusion that the shape of the extinction curve changes as a function of increasing A K . By calculating the optical depths of the 9.7 μm silicate and 6.0, 6.8, and 15.2 μm ice features, I determine that a process involving ice is responsible for the changing shape of the extinction curve and speculate that this process is a coagulation of ice-mantled grains rather than ice-mantled grains alone.

  6. Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Hou, L.G., E-mail: lghou@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Zhang, J.X.; Wang, H.B.; Cui, H.; Huang, J.F. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Zhang, Y.A. [State Key Laboratory of Non-Ferrous Metals and Process, General Research Institute for Non-Ferrous Metals, Beijing 100088 (China); Zhang, J.S. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China)

    2016-07-15

    The microstructures and properties of spray formed (SF) high-speed steels (HSSs) with or without niobium (Nb) addition were studied. Particular emphasis was placed on the effect of Nb on the solidification microstructures, decomposition of M{sub 2}C carbides, thermal stability and mechanical properties. The results show that spray forming can refine the cell size of eutectic carbides due to the rapid cooling effect during atomization. With Nb addition, further refinement of the eutectic carbides and primary austenite grains are obtained. Moreover, the Nb addition can accelerate the decomposition of M{sub 2}C carbides and increase the thermal stability of high-speed steel, and also can improve the hardness and bending strength with slightly decrease the impact toughness. The high-speed steel made by spray forming and Nb alloying can give a better tool performance compared with powder metallurgy M3:2 and commercial AISI M2 high-speed steels. - Highlights: • Spray forming can effectively refine the microstructure of M3:2 steel. • Niobium accelerates the decomposition of M{sub 2}C carbides. • Niobium increases the hardness and bending strength of spray formed M3:2 steel. • Spray-formed niobium-containing M3:2 steel has the best tool performance.

  7. On change of vanadium carbide state during 20Kh3MVF steel heat treatment

    International Nuclear Information System (INIS)

    Gitgarts, M.I.; Maksimenko, V.N.

    1975-01-01

    The Xray diffraction study of vanadium carbide MC has been made in the steel-20KH3MVF quenched from 970 and 1040 deg and tempered at 660 deg for 210 hrs. It has been found that the constant of the MC crystal lattice regularly varies with the temperature of isothermal hold-up. In the steel tempered after quenching two vanadium carbides of different content could co-exist simultaneously: carbide formed in the quenching process and carbide formed during tempering. The discovered effect of the temperature dependence of the MC content is, evidently, inherent also to other steels containing vanadium

  8. Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17

    International Nuclear Information System (INIS)

    Bensely, A.; Senthilkumar, D.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.

    2007-01-01

    The crown wheel and pinion represent the most highly stressed parts of a heavy vehicle; these are typically made of 815M17 steel. The reasons for the frequent failure of these components are due to tooth bending impact, wear and fatigue. The modern processes employed to produce these as high, durable components include cryogenic treatment as well as conventional heat treatment. It helps to convert retained austenite into martensite as well as promote carbide precipitation. This paper deals with the influence of cryogenic treatment on the tensile behavior of case carburized steel 815M17. The impetus for studying the tensile properties of gear steels is to ensure that steels used in gears have sufficient tensile strength to prevent failure when gears are subjected to tensile or fatigue loads, and to provide basic design information on the strength of 815M17 steel. A comparative study on the effects of deep cryogenic treatment (DCT), shallow cryogenic treatment (SCT) and conventional heat treatment (CHT) was made by means of tension testing. This test was conducted as per ASTM standard designation E 8M. The present results confirm that the tensile behavior is marginally reduced after cryogenic treatment (i.e. both shallow and deep cryogenic treatment) for 815M17 when compared with conventional heat treatment. Scanning electron microscopic (SEM) analysis of the fracture surface indicates the presence of dimples and flat fracture regions are more common in SCT specimens than for CHT and DCT-processed material

  9. Effect of room temperature prestrain on creep life of austenitic 25Cr-20Ni stainless steels

    International Nuclear Information System (INIS)

    Park, In Duck; Ahn, Seok Hwan; Nam, Ki Woo

    2004-01-01

    25Cr-20Ni series strainless steels have an excellent high temperature strength, high oxidation and high corrosion resistance. However, further improvement can be expected of creep strength by work hardening prior creep. In the present study, the effect of prestraining at room temperature on the creep behavior of a Class M(STS310S) and a Class A(STS310J1TB) alloy containing precipitates have been examined. Prestraining was carried out at room temperature and range of prestrain was 0.5∼2.5 % at STS310J1TB and 2.0∼7.0 % at STS310S. Creep behavior and creep rate of pre-strained specimens were compared with that of virgin specimens. Room temperature prestraining produced the creep life that is longer than that of a virgin specimen both for STS310J1TB and STS310S when creep test was carried out at the temperature lower than recrystallization temperature. The reason for this improvement of creep life was ascribable to the interaction between dislocations and precipitates in addition to the dislocation-dislocation interaction in STS310J1TB and the dislocation-dislocation interaction in STS310S. The beneficial effect of prestraining in STS310J1TB was larger than that of STS310S

  10. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2015-08-01

    Full Text Available The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphyrin (HPTB, 5,10,15,20-tetra(4-pyridyl-21H,23H-porphyrin (T4PP, 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayltetrakis(benzoic acid (THP and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP was studied using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, scanning electrochemical microscopy (SECM and scanning electron microscopy (SEM techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  11. Investigation of instability of M23C6 particles in F82H steel under electron and ion irradiation conditions

    Science.gov (United States)

    Kano, Sho; Yang, Huilong; Shen, Jingjie; Zhao, Zishou; McGrady, John; Hamaguchi, Dai; Ando, Mamami; Tanigawa, Hiroyasu; Abe, Hiroaki

    2018-04-01

    In order to clarify the instability of M23C6 in F82H steel under irradiation, both electron irradiation using a high voltage electron microscope (HVEM) and ion irradiation using an ion accelerator were performed. For the electron irradiation, in-situ observation under 2 MV electron irradiation and ex-situ high resolution electron microscopic (HREM) analysis were utilized to evaluate the response of M23C6 against irradiation. The temperature dependence of the irradiation induced instability of the carbide was first confirmed: 293 K indicating severe loss of crystallinity due to dissolution of the constituent atoms though irradiation-enhanced diffusion under the vacancy diffusion by the focused electron beam irradiation. For the ion irradiation, 10.5 MeV-Fe3+ ion was applied to bombard the F82H steel at 673 K to achieve the displacement damage of ≈20 dpa at the depth of 1.0 μm from surface. Cross-section TEM specimens were prepared by a focused ion beam technique. The shrinkage of carbide particles was observed especially near the irradiation surface. Besides, the lattice fringes at the periphery of carbide were observed in the irradiated M23C6 by the HREM analysis, which is different from that observed in the electron irradiation. It was clarified that the instability of M23C6 is dependent on the irradiation conditions, indicating that the flow rate of vacancy type defects might be the key factor to cause the dissolution of constituent atoms of carbide particles into matrix under irradiation.

  12. Inhibitory action of quaternary ammonium bromide on mild steel and synergistic effect with other halide ions in 0.5 M H2SO4

    Directory of Open Access Journals (Sweden)

    A. Khamis

    2014-11-01

    Full Text Available The corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been investigated using electrochemical methods, X-ray diffraction (XRD and scanning electron microscope (SEM. The adsorption and inhibition action of acid corrosion of mild steel using cetyltrimethylammonium bromide (CTABr and different halides (NaCl, NaBr and NaI has shown synergetic effect. The results showed that the protection efficiency (P% has high values at considerable high concentration of CTABr. However, in the presence of the different halides, the P increases dramatically at low concentration of CTABr. Physisorption was proposed from the the values of ΔGads0. The synergism parameter (Sθ is found to be greater than unity indicating that the enhanced P% caused by the addition of the halides to the CTABr is due to a co-operative adsorption of both species. Corrosion products phases and surface morphology were studied using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively.

  13. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...

  14. Properties of super stainless steels for orthodontic applications.

    Science.gov (United States)

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. Copyright 2004 Wiley Periodicals, Inc.

  15. Properties of powder metallurgy steel forgings

    International Nuclear Information System (INIS)

    Crowson, A.; Anderson, F.E.

    1977-01-01

    The effects of processing variables on the mechanical properties of heat-treated powder metallurgy (P/M) steel forgings were determined. Prealloyed 4600 steel powder blended with graphite to yield 4640 was compacted into preforms and hot forged in a warm, closed die. Variables studied were preform density, method of lubrication, preform sintering (time, temperature and atmosphere), forging pressure (20 and 40 tsi) and temperature (1850 0 F, 2000 0 F and 2200 0 F), and forging ratio (0.75 and 0.95). Relationships between interconnected porosity and total porosity for the various preform densities were determined. High density compacts required higher sintering temperatures due to the restricted mobility of the reducing gases in the pores. Die wall lubrication was comparable to admixed lubrication, and it simplified powder mixing and preform sintering operations. Forgings with densities from 99 to 99.8 percent of theoretical density were attained with a forging pressure of 20 to 40 tsi and preform temperatures of 2000 0 F and above. At forging conditions which resulted in forgings with acceptable mechanical properties, complete die fill was accomplished at a forging ratio of 0.95, whereas incomplete die fill resulted at a forging ratio of 0.75. The response of P/M forgings to heat treatment was comparable to that for wrought materials, and the resultant tensile and yield strengths were equivalent to the strength values described for wrought 4640 steel in AMS specification 6317B. In addition, ductility and impact properties of P/M forgings with near theoretical density (99.5+ percent) were comparable to bar stock forgings

  16. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    International Nuclear Information System (INIS)

    Dumas, Claire; Basseguy, Regine; Bergel, Alain

    2008-01-01

    Stainless steel and graphite electrodes were individually addressed and polarized at -0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m -2 for graphite and 20.5 A m -2 for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around -0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G.sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes

  17. Study on The Geopolymer Concrete Properties Reinforced with Hooked Steel Fiber

    Science.gov (United States)

    Abdullah, M. M. A. B.; Tahir, M. F. M.; Tajudin, M. A. F. M. A.; Ekaputri, J. J.; Bayuaji, R.; Khatim, N. A. M.

    2017-11-01

    In this research, Class F fly ash and a mixture of alkaline activators and different amount of hooked steel fiber were used for preparing geopolymer concrete. In order to analyses the effect of hooked steel fiber on the geopolymer concrete, the analysis such as chemical composition of fly ash, workability of fresh geopolymer, water absorption, density, compressive strength of hardened geopolymer concrete have been carried out. Mixtures were prepared with fly ash to alkaline liquid ratio of 2.0 with hooked steel fibers were added to the mix with different amounts which are 1%, 3%, 5% and 7% by the weight of the concrete. Experimental results showed that the compressive strength of geopolymer concrete increases as the hooked steel fibers increases. The optimum compressive strength obtained was up to 87.83 MPa on the 14th day. The density of geopolymer concrete are in the range between 2466 kg/m3 to 2501 kg/m3. In addition, the workability value of geopolymer without hooked steel fibers is 100 mm while the workability value of geopolymer with hooked steel fibers are between 60 mm to 30 mm.

  18. Evaluation of Flash Bainite in 4130 Steel

    Science.gov (United States)

    2011-07-01

    Technical Report ARWSB-TR-11011 Evaluation of Flash Bainite in 4130 Steel G. Vigilante M. Hespos S. Bartolucci...4. TITLE AND SUBTITLE Evaluation of Flash Bainite in 4130 Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...need to be addressed, the Flash Bainite processing of 4130 steel demonstrates promise for applications needing a combination of high strength with

  19. Effect of metal properties of casts of steel-15Kh1M1FL on the crack resistance at 565 deg C

    International Nuclear Information System (INIS)

    Gladshtejn, V.I.; Sheshenev, M.F.

    1976-01-01

    Results are given of prolonged tests of the metal of industrial casts with various fluidity limits. It has been shown experimentally that a quite satisfactory crack resistance is characteristic of a metal with a fluidity limit in the range 30-50 kgf/mm 2 . Metallographic studies have been conducted. Upon variation of the structure and properties of the 15Kh1M1FL steel during operation, the rate of growth of small cracks (up to 2.0 mm) decreases almost by 3 orders of ten (from 1.4x10 -4 to 2.0x10 -7 mm/hour). Subsequent structural changes during prolonged operation (over 50000 hours) result in a gradual increase in the rate of crack growth. At the same time resistance towards appearance of the impermissible high rate of the crack growth, Ksub(10sup(-3)), diminishes monotonically with the operation time. The metal of industrial 15Kh1M1FL steel casts has good crack resistance (Ksub(10sup(-3)) =30-70 kgf/mmsup(3/2) and Vsub(ef) =) kgf/mm 2 ) and a satisfactory local plasticity (critical opening being no more than 0.20 mm for 10 3 hours)

  20. Serrated Flow and Dynamic Strain Aging in Fe-Mn-C TWIP Steel

    Science.gov (United States)

    Lan, Peng; Zhang, Jiaquan

    2018-01-01

    The tensile behavior, serrated flow, and dynamic strain aging of Fe-(20 to 24)Mn-(0.4 to 0.6)C twinning-induced plasticity (TWIP) steel have been investigated. A mathematical approach to analyze the DSA and PLC band parameters has been developed. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with a theoretical ordering index (TOI) between 0.1 and 0.3, DSA can occur at the very beginning of plastic deformation and provide serrations during work hardening, while for TOI less than 0.1 the occurrence of DSA is delayed and twinning-dominant work hardening remains relatively smooth. The critical strain for the onset of DSA and PLC bands in Fe-Mn-C TWIP steels decreases as C content increases, while the numbers of serrations and bands increase. As Mn content increases, the critical strain for DSA and PLC band varies irregularly, but the numbers of serrations and bands increase. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with grain size of about 10 to 20 μm, the twinning-induced work hardening rate is about 2.5 to 3.0 GPa, while the DSA-dominant hardening rate is about 2.0 GPa on average. With increasing engineering strain from 0.01 to 0.55 at an applied strain rate of 0.001s-1, the cycle time for PLC bands in Fe-Mn-C TWIP steel increases from 6.5 to 162 seconds, while the band velocity decreases from 4.5 to 0.5 mm s-1, and the band strain increases from 0.005 to 0.08. Increasing applied strain rate leads to a linear increase of band velocity despite composition differences. In addition, the influence of the Mn and C content on the tensile properties of Fe-Mn-C TWIP steel has been also studied. As C content increases, the yield strength and tensile strength of Fe-Mn-C TWIP steel increase, but the total elongation variation against C content is dependent on Mn content. As Mn content increases, the yield strength and tensile strength decrease, while the total elongation increases, despite C content. Taking both tensile properties and serrated flow behavior into

  1. Characterization of Aging Behavior in M250 Grade Maraging Steel Using Ultrasonic Measurements

    Science.gov (United States)

    Rajkumar, K. V.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K. K.

    2007-02-01

    Ultrasonic measurements have been carried out in M250 grade maraging steel specimens subjected to solution annealing at 1093 K for 1 hour followed by aging at 755 K for various durations in the range of 0.25 to 100 hours. The influence of aging on microstructure, room temperature hardness, and ultrasonic parameters (longitudinal and shear wave velocities and Poisson’s ratio) has been studied in order to derive correlations among these parameters in aged M250 maraging steel. Both hardness and ultrasonic velocities exhibit almost similar behaviors with aging time. They increase with the precipitation of intermetallic phases, Ni3Ti and Fe2Mo, and decrease with the reversion of martensite to austenite. Ultrasonic shear wave velocity is found to be more influenced by the precipitation of intermetallic phases, whereas longitudinal wave velocity is influenced more by the reversion of martensite to austenite. Unlike hardness and ultrasonic velocities, the Poisson’s ratio exhibits a monotonous decrease with aging time and, hence, can be used for unambiguous monitoring of the aging process in M250 maraging steel. Further, none of the parameters, i.e., hardness, ultrasonic velocity, or Poisson’s ratio, alone could identify the initiation of the reversion of austenite at early stage; however, the same could be identified from the correlation between ultrasonic velocity and Poisson’s ratio, indicating the advantage of using the multiparametric approach for comprehensive characterization of complex aging behavior in M250 grade maraging steel.

  2. The influence of surface roughness on the hydrogen permeation of type API 5L-X52 steel; Influencia del acabado superficial en la permeacion de hidrogeno del acero API 5L-X52 steel

    Energy Technology Data Exchange (ETDEWEB)

    Requiz, R; Vera, N; Camero, S

    2004-07-01

    The influence of surface reoughness on the corrosion and hydrogen permeation behaviour was evaluated on a type API 5L-52 steel in dearated 0.1M NaSO{sub 4} at pH=2. Potentiodynamic polarization curves were emplyed to determine the electrochemical behaviour of the steel, while the Devanathan-Stachurski technique was used to estimate the hydrogen permeation rate. Additionally, the surface roughness profiles were obtained in order to correlate the changes in the hydrogen perkeation rate with different metal surface finishings. The obtained results clearly demonstrate that when the roughness parameters have larger values, the cathodic current of hydrogen evolution increases while the hydrogen entry rate decreases. This effect can be attributed to the microstructural defects induced at the steel surface, such as dislocations, which increase the catalytic activity of the atomic hydrogen favouring its recombination. Also, these defects could allow the atomic hydrogen to remain adsorbed on the steel surface. Both effects could hinder the hydrogen diffusion into the metal since the possibility for this atom of becoming absorbed has been reduced. (Author) 16 refs.

  3. Effect of temperature on the mechanical characteristics of cold-worked steel OKh16N15M3B with active tension and creep

    International Nuclear Information System (INIS)

    Erasov, V.S.; Konoplenko, V.P.; Pirogov, E.N.

    1986-01-01

    Steel OKh16N15M3B is used extensively for the manufacture of atomic reactor fuel-element shells. The aim of this work is a study of the mechanical characteristics of this steel cold-worked by 20% with active tension and creep in the temperature range 973-1323 0 K, which is necessary for predicting the behavior of fuel-element shells in critical situations. It is found that above 973 0 K there is active loss of strength for cold-worked steel OKh16N15M3B. Strength characteristics in the region 973-1323 0 K decrease by more than a factor of six. Thermal activation analysis of the plastic deformation process, showing a sharp increase in activation energy above 1073 0 K, suggests a change in the mechanisms of plastic deformation taking place. For active tension and creep the same temperature range is obtained for a marked change in activation energy

  4. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing

    International Nuclear Information System (INIS)

    Araujo Filho, Oscar Olimpio de

    2006-01-01

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  5. A Study on the Fatigue-Fractured Surface of Normalized SS41 Steel and M.E.F. Dual Phase Steel by an X-ray Diffraction Technique

    International Nuclear Information System (INIS)

    Oh, Sae Wook; Park, Young Chul; Park, Soo Young; Kim, Deug Jin; Hue, Sun Chul

    1996-01-01

    This study verified the relationship between fracture mechanics parameters and X-ray parameters for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation test were carried out and X-ray diffraction technique was applied to fatigue fractured surface. The change in X-ray parameters(residual stress, half-value breadth) according to the depth of fatigue fractured surface were investigated. The depth of maximum plastic zone, W y , were determined on the basis of the distribution of the half-value breadth for normalized SS41 steel and that of the residual stress for M.E.F. dual phase steel. K max could be estimated by the measurement of W y

  6. The DSeis Project: Drilling into Seismogenic zones of M2.0 to M5.5 earthquakes in South African gold mines

    Science.gov (United States)

    Yabe, Y.; Ogasawara, H.; Ito, T.; van Aswegen, G.; Durrheim, R. J.; Cichowicz, A.; Onstott, T. C.; Kieft, T. L.; Boettcher, M. S.; Wiemer, S.; Ziegler, M.; Shapiro, S. A.; Gupta, H. K.; Dight, P.

    2017-12-01

    The DSeis project under ICDP consists of drilling in three mines; MK, TT and C4 mines. Common scientific targets among them are the stress state and the microstructure in the seismogenic zone. In addition to these targets, specific targets in individual mines are detailed below. A M5.5 earthquake occurred beneath the MK mine on 5 August 2014. The hypocenter of this event was 5km depth from the surface. In contrast to the normal faulting of induced earthquakes in mining horizons (planned to evaluate how much is a ratio of microseismicity associated with creation of new fractures. In the C4 mine, there was the site of a previous project, in which the microseismicity monitoring and the stress measurement by the CCBO technique were carried out. A M2.8 earthquake occurred 1 year after the CCBO and its hypocenter was only 100m away from the CCBO site. Due to little mining activity in the source region, the stress state just after the M2.8 event should be preserved. We will measure the stress again. Damage zones that evolved quasi-statically were seen by the microseismicity monitoring. Drilling into these zones would provide a clue to see a difference between faults evolved dynamically and quasi-statically.

  7. Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, M.; Tourabi, M.; Nyassi, A. [Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Zarrouk, A. [LCAE-URAC 18, Faculty of Science, First Mohammed University, PO Box 717, M-60 000 Oujda (Morocco); Jama, C. [UMET-ISP, CNRS UMR 8207, ENSCL, Université Lille Nord de France, CS 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F., E-mail: fbentiss@gmail.com [Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); UMET-ISP, CNRS UMR 8207, ENSCL, Université Lille Nord de France, CS 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2016-12-15

    Highlights: • 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole is good corrosion inhibitor for carbon steel in 1 M HCl. • XPS analysis has provided the composition of adsorbed protective layer on the steel surface. • The adsorption of the investigated 1,3,4-oxadiazole is mainly due to chemisorption. - Abstract: Corrosion inhibition of carbon steel in normal hydrochloric acid solution at 30 °C by 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole (DAPO) has been studied by weight loss measurements and electrochemical techniques (polarization and AC impedance). The experimental results showed that DAPO acted as an efficient inhibitor against the carbon steel corrosion in 1 M HCl, and its inhibition efficiency increased with the inhibitor concentration reaching a value up to 93% at 1 mM. Polarization studies showed that the DAPO was a mixed-type inhibitor. The adsorption of this 1,3,4-oxadiazole derivative on the carbon steel surface in 1 M HCl solution followed the Langmuir adsorption isotherm and the corresponding value of the standard Gibbs free energy of adsorption (ΔG°{sub ads}) is associated to a chemisorption mechanism. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) analyses were carried out to characterize the chemical composition of the inhibitive film formed on the steel surface. The surfaces studies showed that the inhibitive layer is composed of an iron oxide/hydroxide mixture where DAPO molecules are incorporated. The cytotoxicity of DAPO was also determined using cell culture system.

  8. Observations on thermally cycled 20% Cr/25% Ni/Nb stabilised stainless steel

    International Nuclear Information System (INIS)

    Lobb, R.C.

    1984-06-01

    A variety of optical and electron techniques, such as optical metallography, scanning electron microscopy and electron probe microanalysis, have been used to study the morphology and composition of oxides formed on 20 Cr/25 Ni/Nb stainless steel during oxidation at 850 0 C and subsequent thermal cycling in simulated reactor gas. (author)

  9. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  10. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Steel Industry.

    Science.gov (United States)

    1980-12-22

    180,000 Utah Pl’!nouth Nucor Steel (Proposed) 350,000 I 50 175,000 ,rem Unied State Steel Corp. 2,500,000 0 0 Arizona Tempe urathion Steel Co. 180,300 75...allocated to the M-X system construction without disrupting supply to its existing customers. h. Nucor Corporation. Nucor Corporation operates three...amount of this, at least 40 percent to possibly one half, could be in the form of rebar. Nucor will have an obvious freight advantage. i. Ameron, Inc

  11. Stress corrosion cracking properties of 15-5PH steel

    Science.gov (United States)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  12. Effect of methanol extract of Prosopis juliflora on mild steel corrosion in 1M HCl

    OpenAIRE

    Zulfareen, Nasarullah; Kannan, Kulanthi; Venugopal, Thiruvengadam

    2016-01-01

    The Prosopis juliflora extract was investigated as a corrosion inhibitor for mild steel in 1M HCl using weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). The inhibition efficiency of Prosopis juliflora increases with an increase in inhibitor concentration and temperature. Polarization studies revealed that Prosopis juliflora acts as a mixed type inhibitor for mild steel in 1M HCl. AC impedance indicates that the value of charge transfer ...

  13. Dependence of irradiation creep on temperature and atom displacements in 20% cold worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Gilbert, E.R.

    1976-04-01

    Irradiation creep studies with pressurized tubes of 20 percent cold worked Type 316 stainless steel were conducted in EBR-2. Results showed that as atom displacements are extended above 5 dpa and temperatures are increased above 375 0 C, the irradiation induced creep rate increases with both increasing atom displacements and increasing temperature. The stress exponent for irradiation induced creep remained near unity. Irradiation-induced effective creep strains up to 1.8 percent were observed without specimen failure. 13 figures

  14. Multiaxial creep of fine grained 0.5Cr-0.5Mo-0.25V and coarse grained 1Cr-0.5Mo steels

    International Nuclear Information System (INIS)

    Browne, R.J.; Flewitt, P.E.J.; Lonsdale, D.

    1991-01-01

    To explore the multiaxial creep response of materials used for electrical power generating plant, two steels, a fine grained 0.5Cr-0.5Mo-0.25V steel in a normalised and tempered condition with high creep ductility and a coarse grained 1Cr-0.5Mo steel in a quenched and tempered condition with low uniaxial creep ductility, have been selected. A range of multiaxial stress testing techniques which span the stress states that would allow identification of any technique dependent variables has been used. The deformation and failure of the normalised and tempered 0.5Cr-0.5Mo-0.25V steel for a range of multiaxial test techniques and, therefore, stress states may be described by an equivalent stress criterion. The results from the multiaxial tests carried out on the fully bainitic 1Cr-0.5Mo steel show that the multiaxial stress rupture criterion (MSRC) varies with stress state; at high triaxiality (notch), it is controlled by the maximum principal stress, whereas at low triaxiality (shear) it is dependent on both maximum principal stress and equivalent stress. Furthermore, a simple description of stress state based on maximum principal and equivalent stress does not define this uniquely, since the MSRC derived from uniaxial and torsion testing does not describe the failure of notch, tube, or double shear tests. (author)

  15. Effect of nickel and MnS inclusions in the metal on the pitting corrosion of low-carbon stainless steels

    International Nuclear Information System (INIS)

    Frejman, L.I.; Nguen, The Dong; Volkov, D.E.; Konnov, Yu.P.

    1986-01-01

    The resistance to pitting corrosion of steels on the 03Kh17-03Kh18 base containing up to 20 % Ni at different levels of S and Mn impurities contamination is investigated. It is shown that up to 50 % of nickel introduced into ordinary steels with 5-6 % Ni is spent to compensate the resistance decrease caused by MnS inclusions. Full compensation is not attained even in the 10-20 %. Ni range in which nickel practically does not affect the resistance of neither ordinary, nor pure (without MnS) steels. Titanium introduction into ordinary steel on the Kh22N6 base permits to surpass the level of 03Kh17N3 pure steel resistance and attain the level of 03Kh17N6 pure steel almost by all characteristics (including passivated characteristics in sulfuric acid) besides pitting repassivity. In this property pure steels with Ni >or approx. 3 % surpass even the molybdenum containing 03Kh21NbM2T ordinary steel though they by far concede by passivation in sulfuric acid

  16. Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, K.V. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Vaidyanathan, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, Anish [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)]. E-mail: tjk@igcar.gov.in; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Ray, K.K. [Indian Institute of Technology, Kharagpur 721302 (India)

    2007-05-15

    The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3-10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity (H {sub c}), saturation magnetization (M {sub s}) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3-10 h of aging duration at 755 K) in M250 grade maraging steel.

  17. Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters

    International Nuclear Information System (INIS)

    Rajkumar, K.V.; Vaidyanathan, S.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K.K.

    2007-01-01

    The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3-10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity (H c ), saturation magnetization (M s ) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3-10 h of aging duration at 755 K) in M250 grade maraging steel

  18. The carbide M7C3 in low-temperature-carburized austenitic stainless steel

    International Nuclear Information System (INIS)

    Ernst, Frank; Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H.

    2011-01-01

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M 7 C 3 (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M 5 C 2 under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  19. Microstructure of steel X 20 Cr 13 in the electron microscopical picture

    International Nuclear Information System (INIS)

    Gesatzke, W.

    1982-01-01

    The tempered microstructure of the steel X 20 Cr 13 is described by an electron microscopical overall picture and additional information is gained which would not be possible with the optical microscope. The large transmission area permits one to quantitatively evaluate a microstructure component which due to its small size can only be measured with electron microscope pictures. (orig.) [de

  20. Effect of Tin, Copper and Boron on the Hot Ductility of 20CrMnTi Steel between 650 °C and 1100 °C

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% tin, y% copper and z ppm boron (x = 0, 0.02; y = 0, 0.2; z = 0, 60) was investigated. The results show that tin and copper in 20CrMnTi steel are detrimental to its hot ductility while adding boron can eliminate the adverse effect and enhance hot ductility greatly. Tin is found to segregate to the boundaries tested by EPMA in 20CrMnTi steel containing tin and copper and tin-segregation is suppressed by adding boron, moreover, copper was found not to segregate to boundaries, however, fine copper sulfide was found from carbon extraction replicas using TEM. The adverse effect of tin and copper on the hot ductility was due mainly to tin segregation and fine copper sulfide in the steel. The proeutectoid ferrite film precipitating along the austenite grain boundary causes the ductility trough of the three examined steels. Tin and copper in 20CrMnTi steel can retard the occurrence of dynamic recrystallization (DRX) while boron-addition can compensate for that change. The beneficial effect of boron on 20CrMnTi steel containing tin and copper might be ascribed to the fact that boron segregates to grain boundaries, accelerates onset of DRX, retards austenite/ferrite transformation and promotes intragranular nucleation of ferrite.

  1. PLASTIC DEFORMATION ON THE MACHINED SURFACE OF STEEL Cr20Ni10MoTi AT DRILLING

    Directory of Open Access Journals (Sweden)

    Jozef Jurko

    2009-07-01

    Full Text Available Information about material machinability is very important for the machining technology. Precise and reliable information on the machinability of a material before it enters the machining process is a necessity, and this brings the verification of technological methods in practice. This article presents the conclusions of machinability tests on austenitic stainless steel according to EN-EU (ISO: steel Cr20Ni10MoTi. This article presents the conclusions of VEGA grant agency at the Ministry of Education SR for supporting research work and co-financing the projects: Grant work #01/3173/2006 with the title „Experimental investigation of cutting zones in drilled and milled stainless steels

  2. Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Narinder [Semiconductor Materials and Device Laboratory, Department of Semiconductor Science, Dongguk University-Seoul, Seoul 100715 (Korea, Republic of); Kumar, Manoj [School of Mechanical, Materials & Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab (India); Sharma, Sanjeev K.; Kim, Deuk Young [Semiconductor Materials and Device Laboratory, Department of Semiconductor Science, Dongguk University-Seoul, Seoul 100715 (Korea, Republic of); Kumar, S.; Chavan, N.M.; Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), Hyderabad 500005 (India); Singh, Narinder [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab (India); Singh, Harpreet, E-mail: harpreetsingh@iitrpr.ac.in [School of Mechanical, Materials & Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab (India)

    2015-02-15

    Highlights: • A presynthesized Ni-20Cr nanocrystalline powder was successfully deposited on T22 and SA 516 boilers steels using cold spray process. • The coatings are observed to have more than 2-folds microhardness in comparison with the base steels. • The coating was successful in reducing the weight gain of T22 and SA 516 steel by 71% and 94%. - Abstract: In the current investigation, high temperature oxidation behavior of a novel cold-spray Ni-20Cr nanostructured coating was studied. The nanocrystalline Ni-20Cr powder was synthesized by the investigators using ball milling, which was deposited on T22 and SA 516 steels by cold spraying. The crystallite size based upon Scherrer's formula for the developed coatings was found to be in nano-range for both the substrates. The accelerated oxidation testing was performed in a laboratory tube furnace at a temperature 900 °C under thermal cyclic conditions. Each cycle comprised heating for one hour at 900 °C followed by cooling for 20 min in ambient air. The kinetics of oxidation was established using weight change measurements for the bare and the coated steels. The oxidation products were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) and X-ray mapping techniques. It was found from the results that the coating was successful in reducing the weight gain of SA213-T22 and SA 516-Grade 70 steel by 71% and 94%, respectively. This may be attributed to relatively denser structure, lower porosity and lower oxide content of the coating. Moreover, the developed nano-structured Ni-20Cr powder coating was found to perform better than its counterpart micron-sized Ni-20Cr powder coating, in terms of offering higher oxidation resistance and hardness.

  3. Gas metal arc weldability of 1.5 GPa grade martensitic steels

    Science.gov (United States)

    Hwang, Insung; Yun, Hyeonsang; Kim, Dongcheol; Kang, Munjin; Kim, Young-Min

    2018-01-01

    The gas metal arc weldability of 1.5 GPa grade martensitic (MART) steel was evaluated using both inverter direct current (DC) and DC pulse power type welders, under conditions of different welding currents, welding speeds, and shielding gasses. By investigating the bead appearance, tensile strength, and arc stability, it was determined that DC pulse power is better than inverter DC power for arc welding of 1.3 mm thick 1.5 GPa grade MART steel. Further, from the results of the weldability for various shielding gases, it was determined that mixed shielding gas is more effective for welding 1.5 GPa grade MART steel than is pure inert gas (Ar) or active (CO2) gas. In the case of pure shielding gas, no sound bead was formed under any conditions. However, when the mixed shielding gas was used, sound and fine beads were obtained.

  4. Pitting Corrosion Susceptibility of AISI 301 Stainless Steel in ...

    African Journals Online (AJOL)

    The susceptibility of austenitic (AISI 301) stainless steel to pitting corrosion was evaluated in sodium chloride (NaCl) solutions - 0.1M, 0.2M, 0.3M, 0.5M and 0.7M and 1.0M. Tensile tests and microscopic examinations were performed on samples prepared from the steel after exposure in the various environments.

  5. Ultrasonic Characterization of Aging Behavior in M250 Grade Maraging Steel

    Science.gov (United States)

    Yeheskel, Ori

    2009-03-01

    The increase in sound velocities during the aging of M250 maraging steel reported by Rajkumar et al. was analyzed. The present article provides a new perspective on why and to what extent the sound velocities change during aging. The main parameter that affects the elastic moduli and the sound velocities in the early and intermediate stages of aging in maraging steel is the depletion of Ni from the martensitic matrix due to Ni3Ti and Ni3Mo formation. The issue of sound velocity increase with aging time was addressed here in a few different ways to support the validity of Ni depletion.

  6. Study of the solidification of M2 high speed steel Laser Cladding coatings

    Directory of Open Access Journals (Sweden)

    Candel, J. J.

    2013-10-01

    Full Text Available High speed steel laser cladding coatings are complex because cracks appear and the hardness is lower than expected. In this paper AISI M2 tool steel coatings on medium carbon AISI 1045 steel substrate have been manufactured and after Laser Cladding (LC processing it has been applied a tempering heat treatment to reduce the amount of retained austenite and to precipitate secondary carbides. The study of metallurgical transformations by Scanning Electron Microscopy (SEM and Electron Back Scattered Diffraction (EBSD shows that the microstructure is extremely fine and complex, with eutectic transformations and MC, M2C and M6C precipitation. Therefore, after the laser coating is necessary to use post-weld heat treatments.Los recubrimientos de acero rápido por Laser Cladding (LC son complejos porque aparecen fisuras y la dureza es menor a la esperada. En este trabajo se han fabricado recubrimientos de acero AISI M2 sobre acero al carbono AISI 1045 y tras el procesado por láser, se han revenido para reducir la cantidad de austenita retenida y precipitar carburos secundarios. El estudio de las transformaciones metalúrgicas con Microscopía Electrónica de Barrido (MEB y Difracción de Electrones Retrodispersados (EBSD muestra que la microestructura es extremadamente fina y compleja, presenta transformaciones eutécticas y precipitación de carburos MC, M2C y M6C. Por tanto, tras el recubrimiento por láser es necesario recurrir a tratamientos térmicos post-soldeo.

  7. Effect of oxidation on the fatigue crack propagation behavior of Z3CN20.09M dyplex stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan Chun; Yang, Bin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing (China); Chen, Yue Feng; Chen, Xu Dong [Collaborative Innovation Center of Steel Technology, Beijing (China)

    2017-06-15

    The fatigue crack propagation behaviors of Z3CN20.09M duplex stainless steel (DSS) were investigated by studying oxide films of specimens tested in 290°C water and air. The results indicate that a full oxide film that consisted of oxides and hydroxides was formed in 290°C water. By contrast, only a half-baked oxide film consisting of oxides was formed in 290°C air. Both environments are able to deteriorate the elastic modulus and hardness of the oxide films, especially the 290°C water. The fatigue lives of the specimens tested in 290°C air were about twice of those tested in 290°C water at all strain amplitudes. Moreover, the crack propagation rates of the specimen tested in 290°C water were confirmed to be faster than those tested in 290°C air, which was thought to be due to the deteriorative strength of the oxide films induced by the mutual promotion of oxidation and crack propagation at the crack tip. It is noteworthy that the crack propagation can be postponed by the ferrite phase in the DSS, especially when the specimens were tested in 290°C water.

  8. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.

    1984-01-01

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=50 0 C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 300 0 C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  9. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal

    Science.gov (United States)

    Wang, Jian; Yuan, Ligang; Zhang, Yingwu; Chen, Guo; Cheng, Hongjuan; Gao, Yanzhao

    2018-06-01

    CdSe single crystal, with the sizes of ∼54 mm in diameter and ∼25 mm in length, was grown by a high pressure vertical gradient freeze (HPVGF) technique using (0 0 1)-oriented seed. The CdSe crystal was characterized with transmission spectrophotometer. The transmission spectra showed that the infrared transmission was above 68% and the mean absorption coefficient was 0.041 cm-1 in the range of 2.5-20 μm. Using fabricated CdSe crystal with the dimensions of 6 mm × 10 mm × 44 mm, we demonstrated an optical parametric oscillator (OPO) pumped by a 2.05 μm Ho:YLF laser at a pulse repetition frequency of 5 kHz. Up to 320 mW output was obtained at the idler wavelength of 10.20 μm with a pump power of 18.06 W. 320 mW at 10.20 μm, to our knowledge, was the highest power obtained with a 2.05 μm laser-pumped CdSe OPO.

  10. Corrosion of martensitic steels in flowing 17Li83Pb alloy

    International Nuclear Information System (INIS)

    Flament, T.; Fauvet, P.; Hocde, B.; Sannier, J.

    1988-01-01

    Corrosion of three martensitic steels - 1.4914, HT9 and T91 - in the presence of flowing 17Li83Pb is investigated in thermal convection loops Tulip entirely made of 1.4914 steel. Two 3000-hour tests were performed at maximal temperatures of respectively 450 and 475 0 C with a δT of 60 0 C and an alloy velocity of about 0.08 m.s -1 . In both tests, corrosion is characterized by an homogeneous dissolution of the steel without formation of a corrosion layer. Corrosion rate is constant and very temperature dependent: the sound-metal loss of 1.4914 steel is 22 μm. year -1 at 450 0 C and 40 μm.year -1 at 475 0 C. Behaviours of 1.4914 and HT9 steels are very similar whereas T91 steel is about 20% less corroded

  11. Structure change in 25 Cr - 20 Ni steels as a function of their Cr, Ni, Si and W content

    International Nuclear Information System (INIS)

    Gribaudo, L.M.; Durand, F.; Durand-Charre, M.

    1983-01-01

    The influence of varying the Cr, Ni, Si and W concentrations on the type and composition of the carbides of solidification and on the phase shift temperature is studied with 18 alloys of composition close to stainless steel-25-20 (AISI 310) composition. Experimental techniques used are differential thermal analysis, microprobe and scanning electron microscope. Crystallization is interpreted with the equilibrium diagram Ni-Cr-C. The formation of the interdendritic σ phase for a chromium rich alloys is interpreted with the phase equilibrium diagram of Fe-Ni-Cr-C. Mechanical properties and corrosion resistance are dependent on the morphology of the carbides M 7 C 3 and M 23 C 6 [fr

  12. Changing in Fatigue Life of 300 M Bainitic Steel After Laser Carburizing and Plasma Nitriding

    Directory of Open Access Journals (Sweden)

    Abdalla Antonio J.

    2018-01-01

    Full Text Available In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a using low-power laser CO2 (125 W for introducing carbon into the surface and (b plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.

  13. INFLUENCE OF HEAT TREATMENT ON THE MICROSTRUCTURE AND TOUGHNESS OF BÖHLER M333 ISOPLAST STEEL

    OpenAIRE

    Perko, J.; Redl, C.; Leitner, H.

    2009-01-01

    In this work the through hardenability and the influence of the heat treatment parameters (austenitizingtemperature, cooling parameter ? and tempering temperature) on the microstructure and the achievabletoughness level of Böhler M333 ISOPLAST are investigated. The results are compared to the standardizedtool steel grade DIN 1.2083. The investigations showed that the cooling parameter ? has a strong influenceon the impact toughness of M333 ISOPLAST plastic mould steel. The toughness is reduce...

  14. Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters

    Science.gov (United States)

    Rajkumar, K. V.; Vaidyanathan, S.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K. K.

    2007-05-01

    The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3-10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity ( Hc), saturation magnetization ( Ms) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3-10 h of aging duration at 755 K) in M250 grade maraging steel.

  15. Laser Welding of Coated Press-hardened Steel 22MnB5

    Science.gov (United States)

    Siltanen, Jukka; Minkkinen, Ari; Järn, Sanna

    The press-hardening process is widely used for steels that are used in the automotive industry. Using ultra-high-strength steels enables car manufacturers to build lighter, stronger, and safer vehicles at a reduced cost and generating lower CO2 emissions. In the study, laser welding properties of the coated hot stamped steel 22BMn5 were studied. A constant 900 °C temperature was used to heat the steel plates, and two different furnace times were used in the press-hardening, being 300 and 740 seconds. Some of the plates were shot blasted to see the influence of the partly removed oxide layer on the laser welding and quality. The welding set-up, welding, and testing of the weld specimens complied with the automotive testing code SEP 1220.

  16. The influence of surface roughness on the hydrogen permeation of type API 5L-X52 steel

    International Nuclear Information System (INIS)

    Requiz, R.; Vera, N.; Camero, S.

    2004-01-01

    The influence of surface roughness on the corrosion and hydrogen permeation behaviour was evaluated on a type API 5L-52 steel in dearated 0.1M NaSO 4 at pH=2. Potentiodynamic polarization curves were employed to determine the electrochemical behaviour of the steel, while the Devanathan-Stachurski technique was used to estimate the hydrogen permeation rate. Additionally, the surface roughness profiles were obtained in order to correlate the changes in the hydrogen perkeation rate with different metal surface finishings. The obtained results clearly demonstrate that when the roughness parameters have larger values, the cathodic current of hydrogen evolution increases while the hydrogen entry rate decreases. This effect can be attributed to the microstructural defects induced at the steel surface, such as dislocations, which increase the catalytic activity of the atomic hydrogen favouring its recombination. Also, these defects could allow the atomic hydrogen to remain adsorbed on the steel surface. Both effects could hinder the hydrogen diffusion into the metal since the possibility for this atom of becoming absorbed has been reduced. (Author) 16 refs

  17. Heteroepitaxial growth of Fe{sub 2}Al{sub 5} inhibition layer in hot-dip galvanizing of an interstitial-free steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kuang-Kuo [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Chang, Liuwen, E-mail: lwchang@mail.nsysu.edu.t [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Gan, Dershin; Wang, Hung-Ping [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2010-02-01

    This work presents characterization results on inhibition layers formed on a TiNb-stabilized interstitial-free steel after short time galvanizing. The Fe-Al and steel interface was free from oxide, so that the Fe-Al intermetallic compound could directly nucleate on ferrite grains. Electron diffraction performed in a transmission electron microscope showed that only Fe{sub 2}Al{sub 5} was formed and it had a well-defined orientation relationship of [110]{sub Fe(sub/2)Al(sub/5)}// [111]{sub Fe}, (001){sub Fe(sub/2)Al(sub/5)}//(011){sub Fe} and (110){sub Fe(sub/2)Al(sub/5)}//(211){sub Fe} with Fe substrate. The structure of the interfaces between Fe{sub 2}Al{sub 5} and Fe is discussed. The epitaxially nucleated Fe{sub 2}Al{sub 5} grains on Fe substrate had very small grain size, 20 nm or less, and several variants were intimately mixed. The grains grew rapidly to hundreds of nanometers toward the Zn side.

  18. Accuracy of a 10 Hz GPS Unit in Measuring Shuttle Velocity Performed at Different Speeds and Distances (520 M

    Directory of Open Access Journals (Sweden)

    Beato Marco

    2016-12-01

    Full Text Available The aim of this study was to validate the accuracy of a 10 Hz GPS device (STATSports, Ireland by comparing the instantaneous values of velocity determined with this device with those determined by kinematic (video analysis (25 Hz. Ten male soccer players were required to perform shuttle runs (with 180° change of direction at three velocities (slow: 2.2 m·s-1; moderate: 3.2 m·s-1; high: maximal over four distances: 5, 10, 15 and 20 m. The experiments were video-recorded; the “point by point” values of speed recorded by the GPS device were manually downloaded and analysed in the same way as the “frame by frame” values of horizontal speed as obtained by video analysis. The obtained results indicated that shuttle distance was smaller in GPS than video analysis (p < 0.01. Shuttle velocity (shuttle distance/shuttle time was thus smaller in GPS than in video analysis (p < 0.001; the percentage difference (bias, % in shuttle velocity between methods was found to decrease with the distance covered (5 m: 9 ± 6%; 20 m: 3 ± 3%. The instantaneous values of speed were averaged; from these data and from data of shuttle time, the distance covered was recalculated; the error (criterion distance-recalculated distance was negligible for video data (0.04 ± 0.28 m whereas GPS data underestimated criterion distance (0.31 ± 0.55 m. In conclusion, the inaccuracy of this GPS unit in determining shuttle speed can be attributed to inaccuracy in determining the shuttle distance.

  19. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    Science.gov (United States)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  20. Steel for nuclear applications

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.

    1978-01-01

    A steel contains, in percent by weight, the following constituents: carbon from 0.13 to 0.18, silicon from 0.17 to 0.37, manganese from 0.30 to 0.60, chromium from 1.7 to 2.4, nickel from 1.0 to 1.5, molybdenum from 0.5 to 0.7, vanadium from 0.05 to 0.12, aluminium from 0.01 to 0.035, nitrogen from 0.05 to 0.012, copper from 0.11 to 0.20, arsenic from 0.0035 to 0.0055, iron and impurities, the balance. This steel is preferable for use in the manufacture of nuclear reactors. 1 table

  1. Microstructural evolution of austenitic stainless steels irradiated to 17 dpa in spectrally tailored experiment of the ORR and HFIR at 400{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, E.; Hashimoto, N.; Gibson, L.T. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    The microstructural evolution of austenitic JPCA aged and solution annealed JPCA, 316R, C, K, and HP steels irradiated at 400{degrees}C in spectrally tailored experiments of the ORR and HFIR has been investigated. The helium generation rates were about 12-16 appm He/dpa on the average up to 17.3 dpa. The number densities and average diameters of dislocation loops in the steels have ranges of 3.3 x 10{sup 21} m{sup -3} and 15.2-26.3 nm, respectively, except for HP steel for which they are 1.1 x 10{sup 23} m{sup -3} and 8.0 nm. Precipitates are formed in all steels except for HP steel, and the number densities and average diameters have ranges of 5.2 x 10{sup 20} - 7.7 x 10{sup 21} m{sup -3} and 3.4- 19.3 nm, respectively. In the 216R, C, and K steels, the precipitates are also formed at grain boundaries, and the mean sizes of these are about 110, 50, and 50 nm, respectively. The number densities of cavities are about 1 x 10{sup 22} m{sup -3} in all the steels. The swelling is low in the steels which form the precipitates.

  2. A 20mK temperature sensor

    International Nuclear Information System (INIS)

    Wang, N.; Sadoulet, B.; Shutt, T.

    1987-11-01

    We are developing a 20mK temperature sensor made of neutron transmutation doped (NTD) germanium for use as a phonon detector in a dark matter search. We find that NTD germanium thermistors around 20mK have resistances which are a strong function of temperature, and have sufficient sensitivity to eventually reach a base line rms energy fluctuation of 6eV at 25mK. Further work is needed to understand the extreme sensitivity of the thermistors to bias power. 13 refs., 18 figs

  3. Novel cationic surfactants from fatty acids and their corrosion inhibition efficiency for carbon steel pipelines in 1 M HCl

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available Four fatty acids were used as a source of alkyl halides. Untraditionally tertiary amines were prepared by ethoxylation of aromatic and aliphatic fatty amines. These alkyl halide and tertiary amines were used to prepare 20 cationic quaternary ammonium surfactants (QASS. Their chemical structures were characterized and they tested as corrosion inhibitors for carbon steel in 1 M HCl solution. The corrosion inhibition efficiency was measured using, weight loss and potentiodynamic polarization methods. The inhibition efficiencies obtained from the two employed methods are nearly closed. From the obtained data it was found that, the inhibition efficiency increases with increasing the inhibitor concentration until the optimum one. Also, it was found that the inhibition efficiency of QASs which based on ethoxylated aromatic tertiary amine is greater than the obtained efficiencies by the QASs which based on ethoxylated aliphatic tertiary amines. The QASs based on alkyl halide C16 exhibited the maximum inhibition efficiency 98.8%. Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm. The quantum chemical calculations were done for some selected quaternary ammonium compounds based on their chemical structures QL1,4,5–QP3,4,5. The following quantum chemical indices such as the bond length, bond angle, charge density distribution, highest occupied molecular orbital (HOMO, lowest unoccupied molecular orbital (LUMO, energy gap ΔE = HOMO − LUMO, and dipole moment (u were considered. The relation between these parameters and the inhibition efficiencies was explained on the light of the chemical structure of the used inhibitors.

  4. Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    The wear behavior of tungsten carbide (WC)-TiC-Co cutting tools during cutting P20 tool steel was investigated. Orthogonal cutting tests were performed on a CNC lathe using five speeds, namely, 60, 120, 240, 380 and 600 m/min. Wear, as the width of the wear land, was monitored at five time intervals. Wear characterization of the rake and the flank surfaces as well as the collected chips was performed using scanning electron microscopy (SEM), backscattered electron imaging and energy-dispersive X-ray analysis (EDX). Microhardness of collected chips was also performed to monitor strain hardening effects during cutting. Two dominant wear mechanisms were identified: at high speed (380-600 m/min), wear was found to occur by a melt wear mechanism; at low speed (60-120 m/min), adhesion (built-up edge) followed by delamination was found to be the cause of wear damage. It was also found that deformation in the chips occurred by localized shear deformation

  5. Verification of Compton scattering spectrum of a 662 keV photon beam scattered on a cylindrical steel target using MCNP5 code

    International Nuclear Information System (INIS)

    Thanh, Tran Thien; Nguyen, Vo Hoang; Chuong, Huynh Dinh; Tran, Le Bao; Tam, Hoang Duc; Binh, Nguyen Thi; Tao, Chau Van

    2015-01-01

    This article focuses on the possible application of a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets. In order to increase the reliability of the obtained experimental results and to verify the detector response function of Compton scattering spectrum, simulation using Monte Carlo N-particle (MCNP5) code is performed. The obtained results are in good agreement with the response functions of the simulation scattering and experimental scattering spectra. On the basis of such spectra, the saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°. This study aims at measuring the diameter of solid cylindrical objects by gamma-scattering technique. - Highlights: • This study aims a possible application a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets by gamma-scattering technique. • Monte Carlo N-particle (MCNP5) code is performed to verify on the detector response function of Compton scattering spectrum. • The results show a good agreement in response function of the experimental and simulation scattering spectra. • The saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°.

  6. Kinetics of electrochemical boriding of low carbon steel

    International Nuclear Information System (INIS)

    Kartal, G.; Eryilmaz, O.L.; Krumdick, G.; Erdemir, A.; Timur, S.

    2011-01-01

    In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2 B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.

  7. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ....A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and carbon-silicon steel may convert to graphite. (b) (Reproduces 124.2.B.) Upon prolonged exposure to...

  8. Estimates of time-dependent fatigue behavior of type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1979-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irraidated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63 x 10 26 neutrons (n)/m 2 E > 0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20% cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadins ranging from 2 to 5 MW/m 2 were used. Results, although conjectural because of the many assumptions, tended to show that 20% cold-worked Type 316 stainless steel could be used as a first-wall material meeting a 7.5 go 8.5 MW-year/m 2 lifetime goal provided the neutron wall loading does not exceed more than about 2 MW/m 2 . These results were obtained for an air environment, ant it is expected that the actual vacuum environment will extend lifetime beyond 10 MW-year/m 2

  9. Rapid nickel diffusion in cold-worked carbon steel at 320-450 °C

    Science.gov (United States)

    Arioka, Koji; Iijima, Yoshiaki; Miyamoto, Tomoki

    2015-11-01

    The diffusion coefficient of nickel in cold-worked carbon steel was determined with the diffusion couple method in the temperature range between 320 and 450 °C. Diffusion couple was prepared by electro-less nickel plating on the surface of a 20% cold-worked carbon steel. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time to 12,000 h. The diffusion coefficient (DNi) of nickel in cold-worked carbon steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 0% of nickel. The temperature dependence of DNi is expressed by DNi = (4.5 + 5.7/-2.5) × 10-11 exp (-146 ± 4 kJ mol-1/RT) m2s-1. The value of DNi at 320 °C is four orders of magnitude higher than the lattice diffusion coefficient of nickel in iron. The activation energy 146 kJ mol-1 is 54% of the activation energy 270.4 kJ mol-1 for lattice diffusion of nickel in the ferromagnetic state iron.

  10. Character evaluation of strength in dispersion strengthened ferritic steel. 5

    International Nuclear Information System (INIS)

    Yoshida, Fuyuki; Nakashima, Hideharu

    1997-03-01

    In order to clarify the high-temperature deformation behaviour and the origin of threshold stress of ODS martensite steel with Y 2 O 3 particles, the stress-strain curves were measured by compression test at 600 to 700degC and at strain rates from 2x10 -5 to 2x10 -3 s -1 , and the threshold stress was measured by stress abruptly loading test (SAL test) at 650degC. Further, the possibility of temperature dependence of threshold stress was discussed by estimating the activation energy for dislocations to detach the Y 2 O 3 particles. The results are summarized as follows. 1) The stress exponents of ODS martensite steel were 22-35. And the activation energy of high-temperature deformation was 742 kJ/mol. Those deformation behaviour of ODS martensite steel agrees with the deformation behaviour of ODS ferritic steel. 2) The Orowan stress and the void-hardening stress calculated from dispersion parameters approximately agreed with the threshold stress obtained by SAL test. It is concluded that the originating mechanism of the threshold stress in ODS martensite steel is the Srolovitz's one. 3) The calculated activation energy for a dislocation to detach the particles was very high compared to the thermal energy. Therefor, the threshold stress is almost independent of temperature. (author)

  11. Effect of long-term aging on microstructural stabilization and mechanical properties of 20Cr32Ni1Nb steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaofeng; Jia, Xiankai [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); Gong, Jianming, E-mail: gongjm@njtech.edu.cn [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); Key Lab of Design and Manufacture of Extreme Pressure Equipment, Jiangsu Province (China); Geng, Luyang; Tang, Jianqun; Jiang, Yong [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); Key Lab of Design and Manufacture of Extreme Pressure Equipment, Jiangsu Province (China); Ni, Yingying; Yang, Xinyu [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816 (China)

    2017-04-06

    The centrifugally cast 20Cr32Ni1Nb stainless steel aged at 950 ℃ from 200 h up to 5000 h was investigated on the mechanical properties and microstructural evolution using post-aged tensile tests, post-aged Charpy impact tests, Optical microscopy (OM) observations, and field emission-scanning electron microscopy (FE-SEM) examinations. Experimental results indicate that the as-cast microstructure of the steel typically consists of a supersaturated solid solution of austenite matrix with a network of interdendritic primary carbides (NbC and M{sub 23}C{sub 6}). During aging process, the growth and coarsening of NbC carbides and M{sub 23}C{sub 6} carbides as well as the transformation of NbC carbide into G phase take place. Meanwhile, the transformation of NbC into G phase releases C into the matrix during aging exposure. This released C tends to combine with Cr, and forms M{sub 23}C{sub 6} at the dendrite boundaries. Compared with a continuous reduction of the elongation in the whole aging period, the strength parameters (σ{sub ult} and σ{sub ys}) exhibit an initial increase followed by a continuous decrease with the aging time prolonged from 1000 h to 5000 h. Additionally, the variation of Charpy impact absorbed energy is relatively complex during aging process. The microstructural evolution during long-term aging process is consistent with the variation of mechanical properties.

  12. The carbide M{sub 7}C{sub 3} in low-temperature-carburized austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank, E-mail: frank.ernst@cwru.edu [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)

    2011-04-15

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M{sub 7}C{sub 3} (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M{sub 5}C{sub 2} under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  13. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel

    Energy Technology Data Exchange (ETDEWEB)

    Jin, T.Y.; Liu, Z.Y.; Cheng, Y.F. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta (Canada)

    2010-08-15

    In this work, the type, composition and distribution of inclusions contained in an API5L X100 steel were characterized by scanning electron microscopy and energy-dispersive x-ray analysis. A hydrogen-charging at various current densities was used to introduce hydrogen into the steel, and the correlation between HIC and the inclusions was established. The microstructure of the steel consists of a leather-like bainitic ferrite matrix, with martensite/austenite as the second phase particles. At least four types of inclusions are contained in API5L X100 steel, elongated MnS inclusions and spherical Al-, Si- and Ca-Al-O-S-enriched inclusions. In particular, the majority of inclusions in the steel are Al-enriched. Upon hydrogen-charging, hydrogen blisters and HIC could be caused in the steel in the absence of external stress. The cracks are primarily associated with the Al- and Si-enriched inclusions, rather than the elongated MnS inclusion. The critical amount of hydrogen resulting in HIC of the tested API5L X100 steel is determined to be 3.24 ppm under condition in this work. (author)

  14. Corrosion behaviour of high chromium ferritic stainless steels

    International Nuclear Information System (INIS)

    Kiesheyer, H.; Lennartz, G.; Brandis, H.

    1976-01-01

    Ferritic steels developed for seawater desalination and containing 20 to 28% chromium, up to 5% Mo and additions of nickel and copper have been tested with respect to their corrosion behaviour, in particular in chloride containing media. The materials in the sensibilized state were tested for intercrystalline corrosion susceptibility in the Strauss-, Streicher-, nitric acid hydrofluoric acid- and Huey-Tests. No intercrystalline corrosion was encountered in the case of the steels with 28% Cr and 2% Mo. The resistance to pitting was assessed on the basis of rupture potentials determined by potentiokinetic tests. The resistance of the steels with 20% Cr and 5% Mo or 28% Cr and 2% Mo is superior to that of the molybdenum containing austenitic types. Addition of nickel yields a significant increase in crevice corrosion resistance; the same applies to resistance in sulfuric acid. In boiling seawater all the materials tested are resistant to stress corrosion cracking. No sign of any type of corrosion was found on nickel containing steels after about 6,000 hours exposure to boiling 50% seawater brine even under salt deposits. (orig.) [de

  15. Passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution studied by Mott–Schottky analysis in conjunction with the point defect model

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2016-11-01

    Full Text Available The passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution, in the steady-state condition, has been explored using electrochemical impedance spectroscopy (EIS and Mott–Schottky analysis. Based on the Mott–Schottky analysis in conjunction with the point defect model (PDM, it was shown that the calculated donor density decreases exponentially with increasing passive film formation potential. The thickness of the passive film was increased linearly with the formation potential. These observations were consistent with the predictions of the PDM, noting that the point defects within the passive film are metal interstitials, oxygen vacancies, or both.

  16. Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

    OpenAIRE

    Topçu, İlker Bekir; Karakurt, Cenk

    2008-01-01

    The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 5...

  17. Practical domain for ultrasonic testing of stainless steel over plain carbon steel layered components using M21 waves

    International Nuclear Information System (INIS)

    Grewal, D.S.; Bray, D.E.

    1995-01-01

    The first higher order mode of the Rayleigh wave was discussed by Sezawa in the early part of this century in context of seismological wave studies. These Sezawa, or M 21 , or first higher order mode Rayleigh waves, have subsequently been used in the field of nondestructive testing of layered materials based on the development of the seismological model of the Sezawa waves by others. In this paper the study of the Tiersten formulation in context with slow speed over high speed materials, e.g. stainless steel overlay on plain carbon steel, the limitations and applicability of that formulation is reported. This study illustrates the practical bounds for testing such layered media, using numerical analysis of this formulation for the first higher-order mode to establish theoretical limits, and corroboration of these bounds by experimental results

  18. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels

    CERN Document Server

    Zwaag, S; Kruijver, S O; Sietsma, J

    2002-01-01

    Stability of retained austenite is the key issue to understand transformation-induced plasticity (TRIP) effect. In this work, both thermal stability and mechanical stability are investigated by thermo-magnetic as well as in situ conventional X-ray diffraction and micro synchrotron radiation diffraction measurements. The thermal stability in a 0.20C-1.52Mn-0.25Si-0.96Al (wt%) TRIP steel is studied in the temperature range between 5 and 300 K under a constant magnetic field of 5T. It is found that almost all austenite transforms thermally to martensite upon cooling to 5K and M sub s and M sub f temperatures are analyzed to be 355 and 115 K. Transformation kinetics on the fraction versus temperature relation are well described by a model based on thermodynamics. From the in situ conventional X-ray and synchrotron diffraction measurements in a 0.17C-1.46Mn-0.26Si-1.81Al (wt%) steel, the volume fraction of retained austenite is found to decrease as the strain increases according to Ludwigson and Berger relation. T...

  19. Mechanical Suppression of SCC and Corrosion Fatigue Failures in 300M Steel Landing Gear

    National Research Council Canada - National Science Library

    Prevey, Paul; Jayaraman, N; Ontko, Neal; Shepard, Mike; Ware, Robert; Coate, Jack

    2004-01-01

    300M steel is widely used in landing gear because of its ultra high strength with high fracture toughness, but is vulnerable to both corrosion fatigue and stress corrosion cracking, with potentially...

  20. The effects of N+ implantation on the wear and friction of type 304 and 15-5 PH stainless steels

    International Nuclear Information System (INIS)

    Yost, F.G.; Picraux, S.T.; Follstaedt, D.M.; Pope, L.E.; Knapp, J.A.

    1983-01-01

    Ion implantation of N + into mechanically polished type 304 and 15-5 PH stainless steels was studied to determine its effect on dry wear and friction behavior. Implantation of 4.0 X 10 17 N + cm -2 at 50 keV yielded a depth profile with a peak concentration of about 45 at.% at a depth of 70 nm which dropped to about 10 at.% at 120 nm. Wear and friction were studied in an unlubricated pin-on-disc configuration using type 304 and 440C stainless steel pins. Both N + -implanted steels exhibited reduced wear at low loads but no significant reduction in the coefficient of friction was found. At the lowest normal load studied (12.3 gf), the average maximum wear depth of the implanted 15-5 PH stainless steel disc (about 0.1 μm) was reduced to approximately 10% of that for the corresponding unimplanted pin-on-disc pair after 1000 cycles. At normal loads of 50 gf or above (corresponding to hertzian stresses of 1160 MPa or higher) all beneficial effects were gone. Vacuum heat treatment at 923 K for 1.8 ks of an identically implanted type 304 stainless steel specimen eradicated the beneficial effects of the nitrogen implantation. The N + -implanted discs show similar reductions in wear to discs implanted with titanium and carbon, but the N + -implanted discs do not exhibit the reductions in the coefficient of friction seen with the discs implanted with titanium and carbon. (Auth.)

  1. Experimental Investigation of Friction Coefficient and Wear Rate of Composite Materials Sliding Against Smooth and Rough Mild Steel Counterfaces

    OpenAIRE

    M.A. Chowdhury; D.M. Nuruzzaman; B.K. Roy; S. Samad; R. Sarker; A.H.M. Rezwan

    2013-01-01

    In the present study, friction coefficient and wear rate of gear fiber reinforced plastic (gear fiber) and glass fiber reinforced plastic (glass fiber) sliding against mild steel are investigated experimentally. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when smooth or rough mild steel pin slides on gear fiber and glass fiber disc. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative h...

  2. Effects of Cooling Rate on 6.5% Silicon Steel Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jun [Ames Lab. and Iowa State Univ., Ames, IA (United States); Macziewski, Chad [Iowa State Univ., Ames, IA (United States); Jensen, Brandt [Ames Lab., Ames, IA (United States); Ouyang, Gaoyuan [Iowa State Univ., Ames, IA (United States); Zhou, Lin [Ames Lab., Ames, IA (United States); Dennis, Kevin [Ames Lab., Ames, IA (United States); Zarkevich, Nikolai [Ames Lab., Ames, IA (United States); Jiang, Xiujuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tang, Wei [Ames Lab., Ames, IA (United States); Zhou, Shihuai [Ames Lab., Ames, IA (United States); Simsek, Emrah [Ames Lab., Ames, IA (United States); Napolitano, Ralph [Iowa State Univ., Ames, IA (United States); Kramer, Matt [Ames Lab., Ames, IA (United States)

    2017-03-02

    Increasing Si content improves magnetic and electrical properties of electrical steel, with 6.5% Si as the optimum. Unfortunately, when Si content approaches 5.7%, the Fe-Si alloy becomes brittle. At 6.5%, the steel conventional cold rolling process is no longer applicable. The heterogeneous formation of B2 and D03 ordered phases is responsible for the embrittlement. The formation of these ordered phases can be impeded by rapid cooling. However, only the cooling rates of water and brine water were investigated. A comprehensive study of the effect of rapid cooling rate on the formation of the ordered phases was carried out by varying wheel speed and melt-injection rate. Thermal imaging employed to measure cooling rates while microstructures of the obtained ribbons are characterized using X-ray diffraction and TEM. The electrical, magnetic and mechanical properties are characterized using 4-pt probe, VSM, and macro-indentation methods. The relations between physical properties and ordered phases are established.

  3. Effect of nitrogen alloying of stainless steels on their corrosion stability

    International Nuclear Information System (INIS)

    Chigal, V.; Knyazheva, V.M.; Pitter, Ya.; Babich, S.G.; Bogolyubskij, S.D.

    1986-01-01

    Results of corrosion tests and structural investigations of 03Cr18Ni10 and 03Cr18Ni10Mo3 steels without nitrogen and with nitrogen content of 0.15-0.3% are presented. Corrosion-electrochemical behaviour of Cr20Ni20 steel with ultralow carbon content (0.004-0.006%) and nitrogen content with 0-0.5% as well as Cr 2 N nitride behaviour are investigated. A conclusion is made on nitrogen and excessive nitride phase effect on corrosion stability of steel in corrosive media with different reduction-oxidation properties

  4. Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels

    International Nuclear Information System (INIS)

    Lewis, D.B.; Leyland, A.; Stevenson, P.R.; Cawley, J.; Matthews, A.

    1993-01-01

    We recently reported a novel low-temperature carbon diffusion technique for surface hardening of stainless steels. The treatment was shown to provide benefits in terms of abrasive wear resistance. There is also evidence to suggest that by performing diffusion treatments at low temperatures (i.e. below 400 C), these benefits can be achieved without compromising corrosion resistance. Here a variety of surface analysis and depth profiling techniques have been used to determine the physical and mechanical properties of carbon-rich layers produced on a range of stainless steel substrate materials. X-ray diffraction (XRD) was employed to determine the crystallographic structure, whilst wavelength dispersive X-ray analysis (WDX) and glow discharge optical spectroscopy (GDOS) gave information on the concentration and distribution of the diffused species within the treated layers. A variety of carbide-based structures was detected, including the expected M 23 C 6 and, more surprisingly, M 3 C. Optical and electron microscopy techniques were used to provide information on layer morphology. The surfaces produced by the low-temperature carbon-diffusion process generally exhibit a distinct diffusion layer of between 1 and 20 μm, depending on the material and the treatment conditions. Austenitic stainless steels appear to give the best response to treatment, however other types of stainless steel can be treated, particularly if the microstructure contains above 5% retained austenite. Here we discuss the changes in mechanical and metallurgical properties provided by this technique and its potential value for treatment of both austenitic and other stainless steel substrate materials. (orig.)

  5. Thermal creep and stress-affected precipitation of 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Puigh, R.J.; Lovell, A.J.; Garner, F.A.

    1984-01-01

    Measurements of the thermal creep of 20% cold-worked 316 stainless steel have been performed for temperatures from 593 to 760 0 C, stress levels as high as 138 MPa and exposure times as long as 15,000 hours. The creep strains exhibit a complex behavior arising from the combined action of true creep and stress-affected precipitation of intermetallic phases. The latter process is suspected to be altered by neutron irradiation. (orig.)

  6. Physical and Tribological Properties of Nitrided AISI 316 Stainless Steel Balls

    Directory of Open Access Journals (Sweden)

    Yang Shicai

    2016-01-01

    Full Text Available AISI 316 austenitic stainless steel balls (diameters 5.0 and 12.0 mm, typical hardness 250 HV0.3 and flat samples (20×20×2.0 mm were nitrided by a pulsed glow discharge Ar/N2 plasma. Hardness of the ball surfaces was analysed using Vickers indentation. Thermal stability of the nitrided balls (diameter 12.0 mm was studied using a furnace to heat them in air for 8 hours at temperatures up to 700.0°C and then, after cooling to room temperature, the surface hardness of the heated balls was re-measured. Scanning electron microscopy and X-ray diffraction were used to study the microstructures, composition and phase formation of the nitrided sublayers. Unlubricated pin-on-disc wear testing was used to evaluate the wear resistance of nitrided stainless steel balls (5.0 mm diameter and the results were compared with similar testing on hardened Cr-Steel balls (5 mm diameter with hardness of about 650 HV0.3. All the test results indicated that the nitrided AISI 316 austenitic stainless steel balls have advantages over the hardened Cr-Steel balls in terms of retaining high hardness after heat treatment and high resistance to sliding wear at room temperature under higher counterpart stress. These properties are expected to be beneficial for wide range of bearing applications.

  7. Structural changes IN THE Kh20N45M4B nickel alloys and THE Kh16N15M3B steel due to helium ion bombardment

    International Nuclear Information System (INIS)

    Kalin, B.A.; Chernikov, U.N.; Chernov, I.I.; Kozhevnikov, O.A.; Shishkin, G.N.; Yakushin, V.L.

    1986-01-01

    Using transmission electron microscopy, x-ray structural analysis, and the thermal desorption techniques, the authors carried out a detailed study of the structural and phase changes, defect formation, and helium accumulation in the He + -bombarded 16-15 austenitic steels and 20-45 nickel alloys. Microstructure of the bombarded specimens was studied using the methods of transmission electron microscopy of thin foils in the EVM-100, and EM-301G electron microscopes. Results of x-ray studies on the bombarded specimens are presented. The conducted studies show that bombardment of structural materials with light ions can lead to significant structural damages and changes in the chemical and phase composition of the surface layer. The possible mechanisms of the changes in the chemical and phase composition include selective sputtering and radiation-induced accelerated diffusion of elements in the field of internal lateral stresses developing during the He + implantation process

  8. Study of effect of austenite prehistory of 03Ch20N16AG6 steel on it structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Demchuk, I S; Krakhmalev, V I; Manninen, A I [Leningradskij Politekhnicheskij Inst. (USSR)

    1981-01-01

    Effect of preliminary cold working and different procedures of thermal treatment on structure and mechanical properties of stable austenite of 03Kh20N16AG6 steel is found out. It is shown that the degree of defectability of initial austenite structure predetermines the further deformation behaviour of the steel (level of strength characteristics, plasticity storage, hardening degree etc.) in the wide temperature range. Close connection of structural changes with properties should determine the choice of preliminary treatment of stable austenitic steel as applied to concrete condition of operation.

  9. V and Nb Influence on the Austenitic Stainless Steel Corrosion in 0.1 M HCl

    Directory of Open Access Journals (Sweden)

    Amel GHARBI

    2014-05-01

    Full Text Available Vanadium and niobium were added in AISI309 austenitic stainless steel composition to modify their structure and pitting corrosion resistance in 0.1 M HCl. The structural characterization was carried out by X-rays diffraction and optical microscopy. Corrosion behavior was investigated using potentiodynamic tests and electrochemical impedance measurements (EIS .Results showed that vanadium and niobium addition precipitated stable carbides (VC, NbC to chromium carbides’ detriment and improved austenitic stainless steel corrosion resistance.

  10. Annealing dislocation loops in OKh16N15M3T steel implanted by helium

    International Nuclear Information System (INIS)

    Utkelbaev, B.D.; Reutov, V.F.; Zhdan, G.T.

    1993-01-01

    With the use of electron microscopy a study was made into the influence of preliminary thermomechanical treatment on the process of dislocation loop development in austenitic stainless steel type OKh16N15M3T with helium on annealing. Preliminary treatment was shown to prevent dislocation loop formation to a greater or lesser extent. Preliminary 'cold' working and thermal ageing of the material are the most effective ways to suppress radiation defect formation when annealing helium implanted steel

  11. Structural and tribological properties of carbon steels modified by plasma pulses

    International Nuclear Information System (INIS)

    Sartowska, B.; Walis, L.; Piekoszewski, J.; Senatorski, J.; Stanislawski, J.; Nowicki, L.; Ratajczak, R.; Barlak, M.; Kopcewicz, M.; Kalinowska, J.; Prokert, F.

    2006-01-01

    Carbon steels with different concentration of carbon and heat (Armco-iron, steels 20, 45, 65 and N9) were treated according to the standard procedures: they were irradiated with five intense (about 5 J/cm 2 ), short (μs range) argon or nitrogen plasma pulses generated in a rod plasma injector (RPI) type of plasma generator. Samples were characterized by the following methods: nuclear reaction analysis (NRA) 14 N(d,α) 12 C , scanning electron microscopy (SEM), conversion electron Moessbauer spectroscopy (CEMS), X-ray diffraction analysis (GXRD), and Amsler wear tests. SEM observations shown that the morphology of the pulse treated samples, both argon and nitrogen plasma are identical. It has been found, that nitrogen is much more efficient than argon in ausenitization of carbon steel. The craters and droplets are uniformly distributed over the surface, which is typical of melted and rapidly recrystallized top layers. The thickness of the modified layers is in the range of 1.2-1.6 μm

  12. Electrochemical and surface studies of some Porphines as corrosion inhibitor for J55 steel in sweet corrosion environment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ambrish, E-mail: ambrish.16752@ipu.co.in [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Department of Chemistry, LFTS, Lovely Professional University, Phagwara, Punjab 144402 (India); Lin, Yuanhua, E-mail: yhlin28@163.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Ansari, K.R.; Quraishi, M.A. [Department of Applied Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, U.P. (India); Ebenso, Eno. E. [Department of Chemistry, School of Mathematical & Physical Sciences, North-West University(Mafikeng Campus), Private Bag X2046, Mmabatho 2735 (South Africa); Chen, Songsong; Liu, Wanying [CNPC Key Lab for Tubular Goods Engineering (Southwest Petroleum University), Chengdu, Sichuan 610500 (China)

    2015-12-30

    Graphical abstract: Corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO2 by the three Porphines 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (P1), 5,10,15,20-Tetraphenyl-21H,23H-porphine (P2), 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (P3), electrochemical impedance spectroscopy (EIS), contact angle measurement, scanning electrochemical microscopy (SECM), and atomic force microscopy (AFM). - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO2 by Porphines. • Weight loss and impedance results are in good agreement. • The adsorption of Porphines obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. • Examination of surface morphology by AFM. - Abstract: Corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO{sub 2} by the three Porphines 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (P1), 5,10,15,20-Tetraphenyl-21H,23H-porphine (P2), 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (P3), electrochemical impedance spectroscopy (EIS), Contact angle measurement, scanning electrochemical microscopy (SECM), and atomic force microscopy (AFM). Adsorption of such Porphines on the J55 steel surface obeyed to the Langmuir adsorption isotherm. Atomic force microscopy (AFM), SECM, and Contact angle results confirm the formation of inhibitor film on J55 steel surface thereby mitigating corrosion.

  13. Electrochemical and surface studies of some Porphines as corrosion inhibitor for J55 steel in sweet corrosion environment

    International Nuclear Information System (INIS)

    Singh, Ambrish; Lin, Yuanhua; Ansari, K.R.; Quraishi, M.A.; Ebenso, Eno. E.; Chen, Songsong; Liu, Wanying

    2015-01-01

    Graphical abstract: Corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO2 by the three Porphines 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (P1), 5,10,15,20-Tetraphenyl-21H,23H-porphine (P2), 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (P3), electrochemical impedance spectroscopy (EIS), contact angle measurement, scanning electrochemical microscopy (SECM), and atomic force microscopy (AFM). - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO2 by Porphines. • Weight loss and impedance results are in good agreement. • The adsorption of Porphines obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. • Examination of surface morphology by AFM. - Abstract: Corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO_2 by the three Porphines 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (P1), 5,10,15,20-Tetraphenyl-21H,23H-porphine (P2), 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (P3), electrochemical impedance spectroscopy (EIS), Contact angle measurement, scanning electrochemical microscopy (SECM), and atomic force microscopy (AFM). Adsorption of such Porphines on the J55 steel surface obeyed to the Langmuir adsorption isotherm. Atomic force microscopy (AFM), SECM, and Contact angle results confirm the formation of inhibitor film on J55 steel surface thereby mitigating corrosion.

  14. Melting of corrosion-resistant steel of martensite class with given phase composition

    International Nuclear Information System (INIS)

    Grashchenkov, P.M.; Kachanov, E.B.; Stetsenko, N.V.; Moshkevich, E.I.; Bunina, T.I.

    1979-01-01

    Introduced is a melting procedure for the EhP410U (vacuum arc remelted) and VNC-2M (electroslag remelted) stainless steels with carbon (carbon ferrochrome) and nickel additions to ensure a present phase composition. Magnetizability of cold specimens of the EhP410U steel should be within the limits 17.0-19.5 mV by a special device. During melting of the second steel controlled are not only cold specimens magnetizability of which should be not less than 16 mV, but hot as well (at 25O-400 deg C) by the level of magnetizability not higher than 0.5 mV. During vacuum arc remelting nitrogen content reduces in general by 0.014% and manganese content - by 0.23%; correspondingly the magnetizability of specimens insceases approximately by 1 mV. During electroslag remelting chemical and phase composition practically are not changed. Total and diffusible hydrogen contents in the vacuum remelted steel is rather low (1-5 and 0.03-0.35 cm 3 /100 gs), which provides increased reliability of the articles

  15. Evaluation of Corrosion Inhibition of Mild Steel in 1 M Hydrochloric Acid Solution by Mollugo cerviana

    Directory of Open Access Journals (Sweden)

    P. Arockiasamy

    2014-01-01

    Full Text Available The inhibiting effect of methanolic extract of Mollugo cerviana plant on the corrosion of mild steel in 1 M HCl solution has been investigated by different techniques like potentiodynamic polarization, electrochemical impedance spectroscopy, and weight loss methods for five different concentrations of plant extract ranging from 25 to 1000 mg/L. The results indicated that the corrosion inhibition efficiency increased on increasing plant extract concentration till 500 mg/L and decreased on further increasing concentration. The extract was a mixed type inhibitor with the optimum inhibition concentration of 500 mg/L in potentiodynamic polarization. The adsorption of the plant extract on the mild steel surface was found to obey Langmuir adsorption isotherm. Surface analysis was also carried out to find out the surface morphology of the mild steel in the presence and in the absence of the inhibitor to find out its efficiency. The obtained results showed that the Mollugo cerviana extract acts as a good inhibitor for the corrosion of mild steel in 1 M HCl solution.

  16. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  17. Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300M Steel Substrates

    Science.gov (United States)

    Nastic, A.; Vijay, M.; Tieu, A.; Rahmati, S.; Jodoin, B.

    2017-10-01

    The effect of substrate surface topography on the creation of metallurgical bonds and mechanical anchoring points has been studied for the cold spray deposition of pure aluminum on 300M steel substrate material. The coatings adhesion strength showed a significant decrease from 31.0 ± 5.7 MPa on polished substrates to 6.9 ± 2.0 MPa for substrates with roughness of 2.2 ± 0.5 μm. Strengths in the vicinity of 45 MPa were reached for coatings deposited onto forced pulsed waterjet treated surfaces with roughnesses larger than 33.8 μm. Finite element analysis has confirmed the sole presence of mechanical anchoring in coating adhesion strength for all surface treatment except polished surfaces. Grit embedment has been shown to be non-detrimental to coating adhesion for the current deposited material combination. The particle deformation process during impacts has been studied through finite element analysis using the Preston-Tonks-Wallace (PTW) constitutive model. The obtained equivalent plastic strain (PEEQ), temperature, contact pressure and velocity vector were correlated to the particle ability to form metallurgical bonds. Favorable conditions for metallurgical bonding were found to be highest for particles deposited on polished substrates, as confirmed by fracture surface analysis.

  18. IRRADIATION CREEP AND MECHANICAL PROPERTIES OF TWO FERRITIC-MARTENSITIC STEELS IRRADIATED IN THE BN-350 FAST REACTOR

    International Nuclear Information System (INIS)

    Porollo, S. I.; Konobeev, Yu V.; Dvoriashin, A. M.; Budylkin, N. I.; Mironova, E. G.; Leontyeva-Smirnova, M. V.; Loltukhovsky, A. G.; Bochvar, A. A.; Garner, Francis A.

    2002-01-01

    Russian ferritic/martensitic steels EP-450 and EP-823 were irradiated to 20-60 dpa in the BN-350 fast reactor in the form of pressurized creep tubes and small rings used for mechanical property tests. Data derived from these steels serves to enhance our understanding of the general behavior of this class of steels. It appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures less then 420 degrees C, but may be camouflaged somewhat by precipitation-related densification. The irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels, and that the loss of strength at test temperatures above 500 degrees C is a problem generic to all F/M steels. This conclusion is supported by post-irradiation measurement of short-term mechanical properties. At temperatures below 500 degrees C both steels retain their high strength (yield stress 0.2=550-600 MPa), but at higher test temperatures a sharp decrease of strength properties occurs. However, the irradiated steels still retain high post-irradiation ductility at test temperatures in the range of 20-700 degrees C.

  19. Hardness and microstructural characterization of API 5L X70 steel pipes welded by HF/ERW process; Caracterizacao microestrutural e de dureza em tubos de aco API 5L X70 soldados pelo processo HF/ERW

    Energy Technology Data Exchange (ETDEWEB)

    Calcada, Mauricio Vieira; Voorwald, Herman Jacobus Cornelis; Nascimento, Marcelino Pereira do [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia

    2010-07-01

    The materials that stand in the manufacture of steel pipes are called API, that should have, high mechanical resistance, high corrosion resistance, high fatigue resistance, good weldability, and other properties. Thus, the purpose of this project was to evaluate the microstructure and hardness of welded joints by the HF/ERW process of API 5L X70 steel pipes. The microstructural analysis was performed using a surface finish with grit sizes from 220 to 25 {mu}m e polishing with diamond paste from 9 {mu}m to 0.05 {mu}m; the revelation was made with 3% Nital attack. The Vickers hardness was performed across the welded joint by 33 points to indentation. The results were: 80.5 {+-} 3.4% of ferrite and 19.5 {+-} 3.4% of perlite for microanalysis. As for hardness, the values were: 215.69 HV10 for weld line, 218.65 HV10 for ZTA and 218.95 HV10 for base metal. (author)

  20. Phase transformation of 316L stainless steel from wire to fiber

    International Nuclear Information System (INIS)

    Shyr, Tien-Wei; Shie, Jing-Wen; Huang, Shih-Ju; Yang, Shun-Tung; Hwang, Weng-Sing

    2010-01-01

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  1. Study of surface layer on 08Kh15N5D2T steel

    International Nuclear Information System (INIS)

    Tyurin, A.G.; Povolotskij, V.D.; Zhivotovskij, Eh.A.; Berg, B.N.

    1986-01-01

    08Kh15N5D2T steel phase composition is investigated. Its surface layer was determined by X-ray diffraction analysis method. It is shown, that a subscale appears to be the reason for corrosion of products, made of EhP410 steel. Under the existing smelling technology the carbon content in it is ≥ 0.05%. Therefore to avoid the metal surface depletion with chromium, one must provide for titanium relation to carbon of not less than 4.5 and carry out the rolled product thermal treatment in a protective atmosphere; otherwise, the technology must include not only the removal of scale from steel but the metal subscale layer as well

  2. Evolution of the microstructure and the mechanical properties of the 15-5PH martensitic stainless steel after ageing

    International Nuclear Information System (INIS)

    Herny, E.; Lafont, M.C.; Andrieu, E.; Lours, P.; Herny, E.; Lagain, P.; Cloue, J.M.

    2006-01-01

    The structural hardening martensitic stainless steel 15-5PH is used in aerospace and nuclear industries for the manufacture of pieces which are thermo-mechanically highly stressed. For this reason, the steel has to have good mechanical properties in a large range of running temperatures as well as a good corrosion resistance. During long time periods between 300 and 400 C, the 15-5PH is susceptible to embrittlement due to the decomposition of the martensite into a Cr-rich area and a Fe-rich area. This embrittlement induces a drop of the impact strength and of the ductility with a strong increase of the ductile-brittle transition and of the tensile properties. Transition electron microscopy observations have revealed the appearance of a thin chromium carbides precipitation after ageing. The spinodal decomposition of the martensite has been revealed by the tomographic atomic probe. (O.M.)

  3. Indigenous development of 20 Cu. M/hr flat linear induction pump (Paper No. 047)

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, R; Prakash, V; Sundarasekaran, S

    1987-01-01

    A distinctive physical property of sodium metal which is used as a coolant in fast reactors, is its high electrical conductivity. This together with its ability to wet stainless steel permits fluid pumping techniques using electromagnetic devices. Electromagnetic pumps are analogous to the electric motor, in which a force is produced by the interaction of magnetic field and current flowing in a conductor. Flat linear induction pump (FLIP) whose operating principle is similar to that of an induction motor is one of the types of electromagnetic pumps in wide use in auxilary circuits of fast reactors. As part of efforts to develop fast reactor components indigenously, work on the design and construction of a prototype FLIP rated for 20Cu.M/hr and 5Kg/sq.cm at 550degC was initiated. Under Board of Research in Nuclear Sciences scheme, the design was carried out by the Electrical Engineering Department of IIT, Madras. Pump was constructed at Engineering Development Division, Indira Gandhi Centre for Atomic Research, Kalpakkam. This paper presents in detail the work carried out for the fabrication of flow channel and for the stator assembly. Results obtained from dry electrical tests are also reported. Appendix summarises the design data. (author).

  4. Further development of the cleanable steel HEPA filter, cost/benefit analysis, and comparison with competing technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Lopez, R.; Wilson, K. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-08-01

    We have made further progress in developing a cleanable steel fiber HEPA filter. We fabricated a pleated cylindrical cartridge using commercially available steel fiber media that is made with 1 {mu}m stainless steel fibers and sintered into a sheet form. Test results at the Department of Energy (DOE) Filter Test Station at Oak Ridge show the prototype filter cartridge has 99.99% efficiency for 0.3 {mu}m dioctyl phthalate (DOP) aerosols and a pressure drop of 1.5 inches. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned using reverse air pulses. Our analysis of commercially optimized filters suggest that cleanable steel HEPA filters need to be made from steel fibers less than 1{mu}m, and preferably 0.5 {mu}m, to meet the standard HEPA filter requirements in production units. We have demonstrated that 0.5 {mu}m steel fibers can be produced using the fiber bundling and drawing process. The 0.5 {mu}m steel fibers are then sintered into small filter samples and tested for efficiency and pressure drop. Test results on the sample showed a penetration of 0.0015 % at 0.3 {mu}m and a pressure drop of 1.15 inches at 6.9 ft/min (3.5 cm/s) velocity. Based on these results, steel fiber media can easily meet the requirements of 0.03 % penetration and 1.0 inch of pressure drop by using less fibers in the media. A cost analysis of the cleanable steel HEPA filter shows that, although the steel HEPA filter costs much more than the standard glass fiber HEPA filter, it has the potential to be very cost effective because of the high disposal costs of contaminated HEPA filters. We estimate that the steel HEPA filter will save an average of $16,000 over its 30 year life. The additional savings from the clean-up costs resulting from ruptured glass HEPA filters during accidents was not included but makes the steel HEPA filter even more cost effective. 33 refs., 28 figs., 1 tab.

  5. Electrochemical analysis of the corrosion inhibition effect of trypsin complex on the pitting corrosion of 420 martensitic stainless steel in 2M H2SO4 solution.

    Science.gov (United States)

    Loto, Roland Tolulope

    2018-01-01

    Inhibition effect of trypsin complex (TC) on the pitting corrosion of martensitic stainless steel (type 420) in 1M H2SO4 solution was studied with potentiodynamic polarization, open circuit potential measurement and optical microscopy. TC reduced the corrosion rate of the steel with maximum inhibition efficiency of 80.75%. Corrosion potential shifted anodically due to the electrochemical action of TC. The pitting potential increased from 1.088VAg/AgCl (3M) at 0% TC to 1.365VAg/AgCl(3M) at 4% TC. TC shifts the open circuit corrosion potential from -0.270s at 0% TC concentration to -0.255V at 5% TC. The compound completely adsorbed onto the steel according to Langmuir, Frumkin and Temkin isotherms. ATF-FTIR spectroscopy confirmed the inhibition mode to be through surface coverage. Thermodynamic calculations showed physisorption molecular interaction. Corrosion pits are present on the uninhibited 420 morphology in comparison to TC inhibited surface which slightly deteriorated.

  6. Brittle and ductile rupture of 16MND5 steel. Irradiation effect

    International Nuclear Information System (INIS)

    Al Mundheri, M.; Soulat, P.; Pineau, A.

    1986-06-01

    Toughness tests have been made on 16MND5 steel (A508Cl3 steel) - before and after irradiation at 290 0 C (3.10 19 n/cm 2 , E > 1 MeV). It is shown that toughness is lowered following the irradiation and that it is a decreasing function of the thickness of the test pieces. In parallel, tests on three geometries of entailed specimens, prepared in the non-irradiated material, have been made at different temperatures to apply the methodology of local approach of ductile-brittle rupture [fr

  7. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing; Estudo comparativo de acos rapidos AISI M3:2 produzidos por diferentes processos de fabricacao

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Filho, Oscar Olimpio de

    2006-07-01

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  8. On the use of triazines as inhibitors of steel corrosion

    International Nuclear Information System (INIS)

    Sizaya, O.I.; Andrushko, A.P.

    2004-01-01

    A possibility of using substandard pesticides as a raw materials for synthesis of a set of triazines and also using them as a inhibitors of acidic corrosion of steel 20, as well as additions to epoxy powder coatings is considered. It is shown that triazines studied are inhibitors of acidic corrosion of steel 20. 2,4-di(ethylamino)-6-phenylhydrazono-1,3,5-triazine (In 4) has a maximum inhibiting effect among the studied compounds [ru

  9. Comparison of Grinding Characteristics of Converter Steel Slag with and without Pretreatment and Grinding Aids

    Directory of Open Access Journals (Sweden)

    Jihui Zhao

    2016-10-01

    Full Text Available The converter steel slag cannot be widely used in building materials for its poor grindability. In this paper, the grinding characteristics of untreated and pretreated (i.e., magnetic separation steel slag were compared. Additionally, the grinding property of pretreated steel slag was also studied after adding grinding aids. The results show that the residues (i.e., oversize substance that passed a 0.9 mm square-hole screen can be considered as the hardly grinding phases (HGP and its proportion is about 1.5%. After the initial 20 min grinding, the RO phase (RO phase is a continuous solid solution which is composed of some divalent metal oxides, such as FeO, MgO, MnO, CaO, etc., calcium ferrite, and metallic iron phase made up most of the proportion of the HGP, while the metallic iron made up the most component after 70 min grinding. The D50 of untreated steel slag could only reach 32.89 μm after 50 min grinding, but that of pretreated steel slag could reach 18.16 μm after the same grinding time. The grinding efficiency of steel slag was obviously increased and the particle characteristics were improved after using grinding aids (GA, especially the particle proportions of 3–32 μm were obviously increased by 7.24%, 7.22%, and 10.63% after 40 min, 50 min, and 60 min grinding, respectively. This is mainly because of the reduction of agglomeration and this effect of GA was evidenced by SEM (scanning electron microscope images.

  10. Experimental investigations of different steel resistances in the sodium-steam reaction zone

    International Nuclear Information System (INIS)

    Mazanov, A.S.; Kulpin, B.V.; Petukhov, V.P.; Ledovskikh, N.M.

    1975-01-01

    The results are stated on the experimental investigations of IX2M, IXI8HIOT, OXI2H2M and Sanikro-31 steel resistance in the sodium-steam reaction zone. A target in the form of a pipe was used in the experiments within which the excessive pressure of 95 atm. was produced with an inert gas. Steam was supplied through the nozzle to the sodium tank in which there was a movable target unit. The dependence of time-to failure and failure rate on the distance of the nozzle and target wall thickness was estimated for these steels. It was shown that the resistance of Sanikro-31 in the sodium steam reaction zone was 2.5, 3.5 and 6 times that of IXI8HIOT, OXI2H2M, IX2M steels, respectively. The failure curves were obtained on thin targets for two steels (author)

  11. Corrosion Behaviour of Nickel Plated Low Carbon Steel in Tomato Fluid

    Directory of Open Access Journals (Sweden)

    Oluleke OLUWOLE

    2010-12-01

    Full Text Available This research work investigated the corrosion resistance of nickel plated low carbon steel in tomato fluid. It simulated the effect of continuous use of the material in a tomato environment where corrosion products are left in place. Low carbon steel samples were nickel electroplated at 4V for 20, 25, 30 and 35 mins using Watts solution.The plated samples were then subjected to tomato fluid environment for for 30 days. The electrode potentials mV (SCE were measured every day. Weight loss was determined at intervals of 5 days for the duration of the exposure period. The result showed corrosion attack on the nickel- plated steel, the severity decreasing with the increasing weight of nickel coating on substrate. The result showed that thinly plated low carbon steel generally did not have any advantage over unplated steel. The pH of the tomato solution which initially was acidic was observed to progress to neutrality after 4 days and then became alkaline at the end of the thirty days test (because of corrosion product contamination of the tomatocontributing to the reduced corrosion rates in the plated samples after 10 days. Un-plated steel was found to be unsuitable for the fabrication of tomato processing machinery without some form of surface treatment - thick nickel plating is suitable as a protective coating in this environment.

  12. Electrochemical measurements for the corrosion inhibition of mild steel in 1 M hydrochloric acid by using an aromatic hydrazide derivative

    Directory of Open Access Journals (Sweden)

    P. Preethi Kumari

    2017-07-01

    Full Text Available The influence of an aromatic hydrazide derivative, 2-(3,4,5-trimethoxybenzylidene hydrazinecarbothioamide (TMBHC as corrosion inhibitor on mild steel in 1 M hydrochloric acid was studied by Tafel polarization and electrochemical impedance spectroscopy (EIS technique. The results showed that the inhibition efficiency (% IE of TMBHC increased with increasing inhibitor concentrations and also with increase in temperatures. TMBHC acted as a mixed type of inhibitor and its adsorption on mild steel surface was found to follow Langmuir’s adsorption isotherm. The evaluation of thermodynamic and activation parameters indicated that the adsorption of TMBHC takes place through chemisorption. The formation of protective film was further confirmed by scanning electron microscopy (SEM.

  13. The effects of adding molybdenum and niobium on the creep strength of 18Cr-10Ni-20Co austenitic steel

    International Nuclear Information System (INIS)

    Tomono, Yutaka

    1987-01-01

    The decrease in the creep strength of structural materials during service at elevated temperatures is a very important problem that affects the security of plants and machinery. The improvement in the creep strength of 18Cr-10Ni-20Co austenitic steel achieved through the addition of molybdenum and niobium was studied in tests carried out at 973K and 1,073K. The creep strengthening mechanism was examined using transmission electron micrographs, X-ray diffraction, etc. The results obtained are summarized as follows: (1) The creep strength of low C-18Cr-10Ni-20Co austenitic steel with molybdenum was greatly improved by the addition of niobium up to 1% by weight. In the case of long-term creep, no trend toward decreasing creep strength was observed. (2) The creep strength of austenitic steel possessing a matrix strengthened with molybdenum can be improved through the addition of niobium combined with precipitation hardening with fine carbides precipitated in the grains. (author)

  14. Corrosion resistance of API 5L grade B steel with taro leaf (Colocasia esculenta) addition as corrosion inhibitor in HCl 0.1 M

    Science.gov (United States)

    Lestari, Yulinda; Priyotomo, Gadang

    2018-05-01

    Taro leaf (Colocasia esculenta) has the potential to be used as a corrosion inhibitor because it has a substance called polyphenol that binds to the hydroxyl group and essential amino acids. Taro leaf extract is taken by maceration method. In this study, the specimen was steel API 5L grade B that would measured the corosivity in 0.1 M HCl solution + taro leaf extract with a specific concentration (in ppm). Tests conducted by FTIR method taro leaves, potentiodynamic polarization (Tafel) and Electrochemical Impedance Spectroscopy (EIS). Based on the results revealed that there is a phenolic group in taro leaves, which has polyphenol content 0.053 % (mg/100 mg). The optimum composition of taro leaf extract is 4000 ppm which generate corrosion rate value of 30.22 mpy and efficiency inhibitor performance of 72.7 %. In this study, the Kads value of taro leaf extract ranged from 0.885 to greater than Kads value of ginger extract in hydrochloric acid solution. The high Kads values indicate a more efficient process of adsorption and better value of inhibition efficiency.

  15. 22 CFR 20.5 - Survivor benefits.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Survivor benefits. 20.5 Section 20.5 Foreign Relations DEPARTMENT OF STATE PERSONNEL BENEFITS FOR CERTAIN FORMER SPOUSES § 20.5 Survivor benefits. (a) Type of benefits. A former spouse who meets the eligibility requirements of § 20.3 is entitled to...

  16. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Guoqing, E-mail: gz854@uowmail.edu.au [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zhang, Xiaoming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Wang, Yuqian [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Yan, Yi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Li, Chengang; Cao, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Jiang, Zhengyi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2017-02-15

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong <100>//ND texture and present high magnetic inductions and low iron losses after finial annealing. - Highlights: • 4.5 wt% Si as-cast sheet with excellent workability was produced by strip casting. • Three 4.5 wt% Si thin sheets were effectively fabricated by warm and cold rolling. • The microstructure and macro-texture of the thin sheets were elucidated. • High magnetic inductions and low iron losses were achieved simultaneously.

  17. Changes of structure and properties of cast steels GX10NiCrNb32-20 and GX10NiCrNb3-25 after long-term tempering at 600-1000 C

    International Nuclear Information System (INIS)

    Gommans, R.; Schrijen, H.; Sundermann, J.; Steinkusch, W.; Hering, W.

    2001-01-01

    Low-alloy cast steels of type GX 10NiCrNb 32.20 are commonly used for the outlet section of reformer and cracker tubes for the temperature range of 600-1000 C. There was a lack of data on the ductility of the 25%Cr alloyed cast steel GX10NiCrNb 35.25 at room temperature after tempering, which was investigated in a joint project of Pose-Marre and DSM. Mechanical tests were carried out at room temperature and at elevated temperatures. Apart from light microscopy, also SEM/EDX, SAM and TEM analyses were carried out. The 25% alloy has lower ductility than the 20% alloy, owing primarily to the more pronounced development of M 6 C carbide from primary NbC carbide, which takes up Ni and Si during tempering. The microstructure and composition of the M 6 C carbide wre not fully clarified. Information is presented on the potential application of low-carbon materials of the type GX10NiCrNb35.25 [de

  18. In-reactor creep rupture of 20% cold-worked AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lovell, A.J.; Chin, B.A.; Gilbert, E.R.

    1981-01-01

    Results of an experiment designed to measure in-reactor stress-to-rupture properties of 20% cold-worked AISI 316 stainless steel are reported. The in-reactor rupture data are compared with postirradiation and unirradiated test results. In-reactor rupture lives were found to exceed rupture predictions of postirradiation tests. This longer in-reactor rupture life is attributed to dynamic point defect generation which is absent during postirradiation testing. The in-reactor stress-to-rupture properties are shown to be equal to or greater than the unirradiated material stress-to-rupture properties for times up to 7000 h. (author)

  19. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    Science.gov (United States)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  20. Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhou, Xiaoling; Shi, Tiantian; Huang, Xi [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shang, Zhongxia [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu, Wenwen; Ji, Bo; Xu, Zhiqiang [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-12-15

    At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6}, Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are

  1. Advanced automobile steels subjected to plate rolling at 773 K or 1373 K

    Science.gov (United States)

    Torganchuk, Vladimir; Belyakov, Andrey; Kaibyshev, Rustam

    2017-12-01

    The high manganese steels exhibiting the effects of twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) demonstrate an excellent combination of enhanced formability, strength and ductility. Such unique mechanical properties make high-manganese steel the most attractive material for various applications, including the segment of advanced automobile steels. The strain hardening in such steels can be achieved through martensitic transformation, when the stacking fault energy (SFE) is about 10 mJ m-2, and/or twinning, when SFE is about 20 to 50 mJ m-2. The actual mechanical properties of high-Mn steels could vary, depending on the conditions of thermo-mechanical processing. In the present study, the effect of rolling temperature on the microstructure and mechanical properties of 18% Mn steels was clarified. The steels hot rolled at 1373 K were characterized by uniform almost equiaxed grains with near random crystallographic orientations that resulted in relatively low yield strengths of 300-360 MPa, followed by pronounced strain hardening that led to the total elongation above 60%. In contrast, the steels warm rolled at 773 K were characterized by flattened grains with a strong rolling texture and high yield strengths of 850-950 MPa combined with a total elongation of about 30%.

  2. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  3. Corrosion in lithium-stainless steel thermal-convection systems

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1980-01-01

    The corrosion of types 304L and 316 austenitic stainless steel by flowing lithium was studied in thermal-convection loops operated at 500 to 650 0 C. Both weight and compositional changes were measured on specimens distributed throughout each loop and were combined with metallographic examinations to evaluate the corrosion processes. The corrosion rate and mass transfer characteristics did not significantly differ between the two austenitic stainless steels. Addition of 500 or 1700 wt ppM N to purified lithium did not increase the dissolution rate or change the attack mode of type 316 stainless steel. Adding 5 wt % Al to the lithium reduced the weight loss of this steel by a factor of 5 relative to a pure lithium-thermal-convection loop

  4. Evaluation of workability and strength of green concrete using waste steel scrap

    Science.gov (United States)

    Neeraja, D.; Arshad, Shaik Mohammed; Nawaz Nadaf, Alisha K.; Reddy, Mani Kumar

    2017-11-01

    This project works on the study of workability and mechanical properties of concrete using waste steel scrap from the lathe industry. Lathe industries produce waste steel scrap from the lathe machines. In this study, an attempt is made to use this waste in concrete, as accumulation of waste steel scrap cause disposal problem. Tests like compressive test, split tensile test, NDT test (UPV test) were conducted to determine the impact of steel scrap in concrete. The percentages of steel scrap considered in the study were 0%, 0.5%, 1%, 1.5%, and 2% respectively by volume of concrete, 7 day, 28 days test were conducted to find out strength of steel scrap concrete. It is observed that split tensile strength of steel scrap concrete is increased slightly. Split tensile strength of Steel scrap concrete is found to be maximum with volume fraction of 2.0% steel scrap. The steel scrap gives good result in split tensile strength of concrete. From the study concluded that steel scrap can be used in concrete to reduce brittleness of concrete to some extent.

  5. Refining the microstructure of an AISI M2 tool steel by high-energy milling

    International Nuclear Information System (INIS)

    Postiglioni, R.V.; Alamino, A.E; Vurobi Junior, S.

    2009-01-01

    Samples of AISI M2 steel were produced by high-energy milling from chips of machining in Spex high energy mill, compaction and sintering of the powder obtained. The powder was analyzed by X-ray diffraction, and then compressed in discs of 8mm in diameter. The specimens have sintering at 1200 deg C for 1 hour under vacuum atmosphere, followed by annealing, quenching and tempering for 1 hour at 315 deg C and 540°C. Along with each disc, a sample of as-received steel was subjected to the same heat treatments to compare the final microstructure. After standard metallographic preparation, samples were etched with Beraha's reagent, characterized by optical microscopy, quantitative metallography, scanning electron microscopy with micro analysis and mapping by EDS, besides Vickers hardness. The steel produced by high-energy milling presented more refined carbide and better distribution in the microstructure. There was also reduction in the size of prior austenitic grains. (author)

  6. Effects of EDTA on the electronic properties of passive film formed on Fe-20Cr in pH 8.5 buffer solution

    International Nuclear Information System (INIS)

    Cho, Eun Ae; Kwon, Hyuk Sang; Beranrd, Frederic

    2003-01-01

    The electronic properties of the passive film formed on Fe-20Cr ferritic stainless steel in pH 8.5 buffer solution containing 0.05 M EDTA (ethylene diammine tetraacetic acid) were examined by the photocurrent measurements and Mott-Schottky analysis for the film. XPS depth profile for the film demonstrated that Cr content in the outermost layer of the passive film was higher in the solution with EDTA than that in the solution without EDTA, due to selective dissolution of Fe by EDTA. In the solution with EDTA, the passive film showed characteristics of an amorphous or highly disordered n-type semiconductor. The band gap energies of the passive film are estimated to be ∼ 3.0 eV, irrespective of film formation potential from 0 to 700 mV SCE and of presence of EDTA. However, the donor density of the passive film formed in the solution with EDTA is much higher than that formed in the solution without EDTA, due to an increase in oxygen vacancy resulted from the dissolution of Fe-oxide in the outermost layer of the passive film. These results support the proposed model that the passive film formed on Fe-20Cr in pH 8.5 buffer solution mainly consists of Cr-substituted γ-Fe 2 O 3

  7. Molecular dynamics and quantum chemical calculation studies on 4,4-dimethyl-3-thiosemicarbazide as corrosion inhibitor in 2.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Musa, Ahmed Y., E-mail: ahmed.musa@ymail.com [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Takriff, Mohd Sobri [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia)

    2011-09-15

    Highlights: {yields} This work deals with a study of chemical additives for corrosion inhibition of mild steel in acidic conditions. {yields} The effects of the additive 4,4-dimethyl-3-thiosemicarbazide (DTS) on mild steel were studied by means of electrochemical techniques. {yields} Quantum chemical calculations and molecular dynamic model were performed to characterize the inhibition mechanism. {yields} The calculations provided information that helps in the analysis/interpretation of the experimental work. - Abstract: The inhibition of mild steel corrosion in a 2.5 M H{sub 2}SO{sub 4} solution by 4,4-dimethyl-3-thiosemicarbazide (DTS) was studied at 30 deg. C using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Quantum chemical parameters were calculated for DTS using PM3-SCF method. The molecular dynamic method was performed to simulate the adsorption of the DTS molecules on Fe surface. Results showed that DTS performed excellent as inhibitor for mild steel corrosion in a 2.5 M H{sub 2}SO{sub 4} solution and indicated that the inhibition efficiencies increase with the concentration of inhibitor. Theoretical results indicated that DTS could adsorb on the mild steel surface firmly through heteroatoms.

  8. Effect of Cr, Ni, and Mo additions on the susceptibility of the 0Kh6n7m7c steel to hot cracking

    International Nuclear Information System (INIS)

    Tolstykh, L.G.; Pryakhin, A.V.; Popov, A.N.; Usynin, V.F.

    1977-01-01

    The effect of chromium, molybdenum, and nickel on the tendency of surfacing materials to form hot cracks (Vsub(kp) was studied using the mathematical statistics method. The St3 steel and 38KhN3MFA steel were used in the study. A device facilitating the hot cracking tendency test procedure was developed. It was found that, in the concentration range involved, Ni and Mo produce no effect on Vsub(kp), and Cr enhances it. A new powder wire, PP-OKh7N8M6S, capable of increasing surface material resistance by 1.5-2 times, has been developed

  9. Modification of steel 35 HL surge current during crystallization

    Directory of Open Access Journals (Sweden)

    Zhbanova O.M.

    2017-04-01

    Full Text Available The method of electro steel melt modification 35 HL variable polarity current pulses with a duration of more 10-3s frequency within the 5–33 Hz, 5–24 porosity meanders, strength 30–40 A at a voltage of 180–240 V during crystallization, which allows to obtain high-quality castings 35 HL steel grade. Show that electro melt processing improves the structure and reduces the physical heterogeneity of castings and increases the rate of dissolution of metallic impurities and other components in the melt, providing fine-grained structure and increases the homogeneity of metal carbides reduces the amount of manganese reduces gases and nonmetallic inclusions. Modifying steel 35 HL pulse current during crystallization of the melt increases the physical and mechanical properties of tempered steel, increasing yield strength by 30 %, the tensile strength at 7 % elongation of 1,5 % relative narrowing by 2 %, toughness at 20 %.

  10. Study of the Weldability of Austenitic PH Steel for Power Plants

    Directory of Open Access Journals (Sweden)

    Ziewiec A.

    2016-06-01

    Full Text Available The article presents the results of Transvarestraint test of a modern precipitation hardened steel X10CrNiCuNb18-9-3 with copper. For comparison, the results of tests of conventional steel without the addition of copper X5CrNi18-10 are presented. The total length of all cracks and the maximum length of cracks were measured. The study of microstructure (LM, SEM showed that the austenitic stainless steel X10CrNiCuNb18-9-3 is very prone to hot cracking. After performing the Transvarestraint tests three types of cracks were observed: solidification cracks occurring during crystallization, liquation cracks due to segregation in the heat affected zone (HAZ and surface cracks. Niobium carbonitrides dispersed in the bands of segregation are the reason of high susceptibility to liquation cracking. Segregation of copper occurring during solidification causes of surface cracking. A combined effect of copper and stresses contributes to formation of hot microcracks. These microcracks propagate to a depth of 20-30 μm.

  11. 46 CFR 58.20-5 - Design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Design. 58.20-5 Section 58.20-5 Shipping COAST GUARD... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for installation provided the design, material, and fabrication comply with the applicable requirements of the ABS...

  12. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  13. Low-temperature cyclic cracking resistance of Fe-Cr-Ni and Fe-Cr-Mn steels welded joints

    International Nuclear Information System (INIS)

    Ostash, O.P.; Zhmur-Klimenko, V.T.; Yarema, S.Ya.; Yushchenko, K.A.; Strok, L.P.; Belotserkovets, V.I.

    1983-01-01

    Results of further investigations into regularities of development of low-temperature fatigue fracture of welded oints in 07Kh13G20AN4 steel are presented, they are compared with analogous data traditional cryogenic 0Kh18N10T and 03Kh13AG19 steels. Welded joints have been prepared by means of automatic V-like level arc Welding of plates; 0Kh18N10T and 07Kh13G20AN4 steels have been welded by means of sv-04Kh19N9 wire, 03Kh13AG19 steel-by means of sv-07Kh13AG19 wire. Tests at almost zero (asymmetry coefficient R=0.05) cycle of extension at 15-20 Hz frequency have been conducted on 5 mm thick disk samples at 20 deg C and - 160 deg C according to the given methods. It is shown that by cyclic crack resistance of welded joint zones of 0Kh18N10T steel and chromium-manganese steels at normal temperature the 07Kh13G20AN4 steel exceeds 0Kh18N10T steel, at low temperature it yields to 0Kh18N10T only by fracture toughness of heat affected zones HAZ and weld metal (ne). 07Kh13G20AN4 steel and its welded joints as most hardened and cheap may be a good substituent for 0Kh18N10T steel. Optimization of WM alloying for increase of its cyclic fracture toughness at cryogenic temperatures is necessary

  14. Safety analysis report for packaging: the ORNL DOT Specification 20WC-5 - special form packaging

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1982-10-01

    The ORNL DOT Specification 20WC-5 - Special Form Package was fabricated for the transport of large quantities of solid nonfissile radioactive materials in special form. The package was evaluated on the basis of tests performed at Sandia National Laboratories, Albuquerque, New Mexico on an identical fire and impact shield and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of large quantities of nonfissile radioactive materials in special form

  15. Density functional calculations on the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C20F20 (M = Sc–Ni)

    International Nuclear Information System (INIS)

    Chun-Mei, Tang; Wei-Hua, Zhu; Kai-Ming, Deng

    2010-01-01

    This paper uses the generalised gradient approximation based on density functional theory to analyse the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C 20 F 20 (M = Sc–Ni). The geometric optimization shows that the cage centre is the most stable position for M, forming the structure named as M@C 20 F 20 -4. The inclusion energy, zero-point energy, and energy gap calculations tell us that N@C 20 F 20 -4 should be thermodynamically and kinetically stablest. M@C 20 F 20 -4 (M = Sc–Co) possesses high magnetic moments varied from 1 to 6 μ B , while Ni@C 20 F 20 -4 is nonmagnetic. The Ni–C bond in Ni@C 20 F 20 -4 contains both the covalent and ionic characters

  16. Experimental Investigation on Friction and Wear Properties of Different Steel Materials

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2013-03-01

    Full Text Available Friction coefficient and wear rate of different steel materials are investigated and compared in this study. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when different types of disc materials such as stainless steel 314 (SS 314, stainless steel 202 (SS 202 and mild steel slide against stainless steel 314 (SS 314 pin. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative humidity 70%. At different normal loads and sliding velocities, variations of friction coefficient with the duration of rubbing are investigated. The obtained results show that friction coefficient varies with duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases for a certain duration of rubbing and after that it remains constant for the rest of the experimental time. The obtained results reveal that friction coefficient decreases with the increase in normal load for all the tested materials. It is also found that friction coefficient increases with the increase in sliding velocity for all the materials investigated. Moreover, wear rate increases with the increase in normal load and sliding velocity for SS 314, SS 202 and mild steel. In addition, at identical operating condition, the magnitudes of friction coefficient and wear rate are different for different materials depending on sliding velocity and normal load.

  17. The structure of the alphinizing coat on alloy steels

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper results of the structure of the coat alphinizing in AlSi5 silumin on alloy steels: acid-proof 1H18N9T (X6CrNiTi18-10 and high speed SW18 (HS18-0-1 were presented. The temperature of the alphinizing bath was amounts to750±5°C, and immersion time of the element τ = 180s. It was shown, that there is the different “g” coat thickness on testing steels. On the 1H18N9T steel it amounts to g = 52μm, and on the SW18 steel – g = 203μm. Regardless of a grade of testing alloy steels the coat consist of three layers with diversified phasic structure. There is different chemical composition of coat layers on testing steels. The first layer from the base consist of AlFe phase containing alloy addictions of steels: Cr and Ni (1H18N9T and W, V and Cr (SW18. On this layer crystallize the second layer of intermetallic phases. It is the phase containing the main alloy addiction of steels: AlFeCr (1H18N9T and AlFeW (SW18. The last, outside layer consist of silumin containing AlFeNi intermetallic phases on the 1H18N9T steel and AlFeW on the SW18 steel. Regardless of the grade of testing steels there is Si element in all layers of the coat. There are morphological differences in tested layers. The second layer (AlFeW phase inside the coat on the SW18 steel consist of faced crystals growing into in outside silumin layer. On the 1H18N9T steel a boundary between transient and outside layer is more uniform. Free separations of intermetallic phases inside silumin layer on the 1H18N9T steel have lamellar and on the SW18 steel – faced form.

  18. Studies on the effect of a newly synthesized Schiff base compound from phenazone and vanillin on the corrosion of steel in 2M HCl

    International Nuclear Information System (INIS)

    Emreguel, Kaan C.; Hayvali, Mustafa

    2006-01-01

    The inhibiting action of a Schiff base 4-[(4-hydroxy-3-hydroxymethyl-benzylidene)-amino]-1,5-dimethyl-2-phenyl-1,2 -dihydro-pyrazol-3-one (phv), derived from 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (phz) and 4-hydroxy-3-methoxy-benzaldehyde (vn), towards the corrosion behavior of steel in 2M HCl solution has been studied using weight loss, polarization and electrochemical impedance spectroscopy (EIS) techniques. Although vn and phz were found to retard the corrosion rate of steel, the compound synthesized from vn and phz was seen to retard the corrosion rate even more. At constant temperature, the corrosion rate decreases with increasing inhibitor concentration. However, at any inhibitor concentration the increase in temperature leads to an increase in the corrosion rate of steel. The activations energies, ΔE a , as well as other thermodynamic parameters (ΔG ads 0 , ΔH ads 0 ) for the inhibitor process were calculated. The inhibitor efficiencies calculated from all the applied methods were in agreement and were found to be in the order: phv>phz>vn

  19. Estimation of flow stress of radiation induced F/M steels using molecular dynamics and discrete dislocation dynamics approach

    International Nuclear Information System (INIS)

    More, Ameya; Dutta, B.K.; Durgaprasad, P.V.; Arya, A.K.

    2012-01-01

    Fe-Cr based Ferritic/Martensitic (F/M) steels are the candidate structural materials for future fusion reactors. In this work, a multi-scale approach comprising atomistic Molecular Dynamics (MD) simulations and Discrete Dislocation Dynamics (DDD) simulations are used to model the effect of irradiation dose on the flow stress of F/M steels. At the atomic scale, molecular dynamics simulations are used to study the dislocation interaction with irradiation induced defects, i.e. voids and He bubbles. Whereas, the DDD simulations are used to estimate the change in flow stress of the material as a result of irradiation hardening. (author)

  20. Surface protection of mild steel in acidic chloride solution by 5-Nitro-8-Hydroxy Quinoline

    Directory of Open Access Journals (Sweden)

    R. Ganapathi Sundaram

    2018-03-01

    Full Text Available The effect of commercially available quinoline nucleus based pharmaceutically active compound 5-Nitro-8-Hydroxy Quinoline (NHQ against the corrosion of mild steel (MS in 1 M acidic chloride (HCl solution was investigated by chemical (weight loss – WL and electrochemical (Tafel polarization, Linear polarization and Electrochemical impedance spectroscopy techniques. From all the four methods, it is inferred that the percentage of inhibition efficiency increases with increasing the inhibitor concentration from 50 to 300 ppm. The adsorption behavior of inhibitor obeyed through Langmuir isotherm model. Thermodynamic parameters were also calculated and predict that the process of inhibition is a spontaneous reaction. EIS technique exhibits one capacitive loop indicating that, the corrosion reaction is controlled by charge transfer process. Tafel polarization studies revealed that the investigated inhibitor is mixed type and the mode of adsorption is physical in nature. The surface morphologies were examined by FT-IR, SEM and EDX techniques. Theoretical quantum chemical calculations were performed to confirm the ability of NHQ to adsorb onto mild steel surface. Keywords: Acidic chloride solution, MS, NHQ, WL, SEM, FT-IR

  1. Hydrogen embrittlement of the 22 Cr5 Ni austeno-ferritic stainless steel. Role of the microstructure

    International Nuclear Information System (INIS)

    Iacoviello, Francesco

    1997-01-01

    Austenitic-ferritic stainless steels are characterised by very good mechanical properties and by a high corrosion resistance, especially to stress-corrosion and to pitting. However, their duplex structure shows a sensitivity to hydrogen embrittlement. Among duplex stainless steels, the 22 Cr 5 Ni grade has gradually became the most used. In this work the tensile properties and the resistance to fatigue crack propagation of 22 Cr5 Ni duplex stainless steel have been analysed, with and without hydrogen charging, after it had been treated at temperatures ranging between 200-1050 deg. C for varying times. The heat treatment times and temperatures were chosen to characterise completely the effects of the different intermetallic and the carbide and nitride phases and to compare these results with those from the tensile tests and those in the literature. A technique for obtaining the hydrogen diffusion coefficient in the steel was optimised and was shown to be alternative to the permeation technique. Thermal analysis was used to determine the activation energy of the hydrogen traps in the steel. From the results the following conclusions were established: - Grain boundaries and dislocations have very little influence on the process of hydrogen diffusion. - The quantity of hydrogen absorbed depends in that any type of precipitate decrease the absorption. This decrease was probably due to changes in the diffusivity and solubility of hydrogen caused by the precipitation. - The charging with hydrogen caused a large decrease in ε m pc for the steel for all heat treatments temperature, except 1050 deg. C. At this temperature the effect was much less as the dislocation density was very low and the precipitates were now in solution. - Hydrogen charging of the steel did not affect the YS and the decrease in UTS produced depended on the microstructure. Use of the embrittlement index 'F' showed that spinodal decomposition and precipitation of G phase decrease hydrogen embrittlement

  2. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    OpenAIRE

    Hussien Aldeeky; Omar Al Hattamleh

    2017-01-01

    The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA) in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA) w...

  3. In-situ ultrasonic characterisation of M250 grade maraging steel

    International Nuclear Information System (INIS)

    Sakthipandi, K.; Rajesh Kanna, R.; Lenin, N.; Ahilandeswari, E.

    2016-01-01

    The excellent mechanical properties such as ultrahigh strength combined with good fracture toughness, hardness, ductility and corrosion resistance of maraging steels makes these steels the most preferred materials for nuclear power plants. The high strength and high fracture toughness of these maraging steels are characterised by intermetallic precipitation in iron-nickel martensite. The temperature dependent in-situ microstructural characterisation of maraging steel over wide range of temperatures is used to explore the microstructural changes in maraging steels during aging. An indigenous experimental set-up was used for in-situ measurements of ultrasonic longitudinal velocity (UL) over a wide range of temperatures from 300 to 1200 K at a heating rate of 1 K min -1 . The measured UL as a function of temperature is represented. Zone A (300-735 K) shows a gradual decrease with an increase in temperature and Zone B (735-785 K) are attributed to recovery of martensite i.e., reduction in point defects induced by quenching process. Zone C (785-835 K) is attributed to nucleation and formation of Ni 3 (Ti,Mo) coherent intermetallic precipitates. Coarsening and subsequent dissolution process of Ni 3 (Ti,Mo) intermetallic precipitates with increase in temperature is observed from 835 to 905 K (Zone D). The coarsening and partial dissolution of globular precipitation of Fe 2 Mo occurs during aging of maraging steel in the temperature region connecting to Zone E (905-1005 K). At 1005 K, the maraging steel gets transformed to austenite from martensite state, and hence, the velocity takes rapid decrease instead of taking a gradual decrease as marked by double dotted line. (author)

  4. Properties of Concrete partially replaced with Coconut Shell as Coarse aggregate and Steel fibres in addition to its Concrete volume

    Science.gov (United States)

    Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.

    2017-03-01

    Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.

  5. Optimization of Packing Density of M30 Concrete With Steel Slag As Coarse Aggregate Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Arivoli M.

    2017-09-01

    Full Text Available Concrete plays a vital role in the design and construction of the infrastructure. To meet the global demand of concrete in future, it is becoming a challenging task to find suitable alternatives to natural aggregates. Steel slag is a by-product of steel making process. The steel slag aggregates are characterized by studying particle size and shape, physical and chemical properties, and mechanical properties as per IS: 2386-1963. The characterization study reveals the better performance of steel slag aggregate over natural coarse aggregate. M30 grade of concrete is designed and natural coarse aggregate is completely replaced by steel slag aggregate. Packing density of aggregates affects the characteristics of concrete. The present paper proposes a fuzzy system for concrete mix proportioning which increases the packing density. The proposed fuzzy system have four sub fuzzy system to arrive compressive strength, water cement ratio, ideal grading curve and free water content for concrete mix proportioning. The results show, the concrete mix proportion of the given fuzzy model agrees with IS method. The comparison of results shows that both proposed fuzzy system and IS method, there is a remarkable increase in compressive strength and bulk density, with increment in the percentage replacement of steel slag.

  6. Nitrogen effect on the tendency of Cr-Ni-MN steels to delayed fracture under stress and hydrogen effects

    International Nuclear Information System (INIS)

    Suvorova, S.O.; Fillipov, G.A.

    1996-01-01

    Austenitic steels types 03Kh17N16G10AM5, 03Kh6N12G10AM5 and 07Kh13AG20 with various nitrogen contents were studied for their tendency to delayed fracture using mechanical tests, fractography and X ray diffraction analysis. The steel type 07Kh13G20 exhibited the highest strength in the initial state but showed an increase tendency to delayed fracture after hydrogenation. It is underlined that nitrogen additions essentially intensify the tendency of cold worked steels to delayed fracture. This fact should be taken into account when using nitrogen-containing Cr-Ni-Mn steels under severe operational conditions. 4 refs., 2 tabs

  7. Comparative estimation of weld-ability of medium-alloy steels

    International Nuclear Information System (INIS)

    Makarov, Eh.L.; Laz'ko, V.E.

    1977-01-01

    Weldability of various industrial steels has been investigated as affected by mutual presence of carbon and alloying elements in a wide range of concentrations. Mechanical properties and technological strength of medium alloyed steel welded joints have been compared. Technological strength parameters have been found to sharply decrease with increasing carbon content, the decrease depending on the alloying system. Resistance to hot and cold cracking is somewhat decreased by nickel and increased by molibdenum and tungsten. The best mechanical properties are displayed by steels of the Kh2GSNVM type. Industrial evidence on argon arc welding of different constructions made of steels 1.5-20 mm thick is compared to laboratory results. Accordingly, the high strength steels are divided into three groups, i.e. those manifesting good, satisfactory and poor weldability

  8. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    Science.gov (United States)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  9. Ductility of high chromium stainless steels

    International Nuclear Information System (INIS)

    Peretyat'ko, V.N.; Kazantsev, A.A.

    1997-01-01

    Aimed to optimize the hot working conditions for high chromium stainless steels the experiments were carried in the temperature range of 800-1300 deg C using hot torsion tests and cylindrical specimens of ferritic and ferritic-martensitic steels 08Kh13, 12Kh13, 20Kh13, 30Kh13 and 40Kh13. Testing results showed that steel plasticity varies in a wide range depending on carbon content. Steels of lesser carbon concentration (08Kh13 and 12Kh13) exhibit a sharp increase in plasticity with a temperature rise, especially in the interval of 1200-1250 deg C. Steels 20Kh13 and 30Kh13 display insignificant plasticity increasing, whereas plastic properties of steel 40Kh13 increase noticeably in the range of 1000-1300 deg C. It is shown that optimal hot working conditions for specific steel must be selected with account of steel phase composition at high temperatures

  10. A proposal of parameter to predict biaxial fatigue life for CF8M cast stainless steels

    International Nuclear Information System (INIS)

    Park, Joong Cheul; Kwon, Jae Do

    2005-01-01

    Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified

  11. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  12. Depth profiling of {sup 14} N and {sup 20} Ne implantation into iron and steel using(p, gamma) reactions. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Wriekat, A; Haj-Abdellah, M [Physics Department, University of Jordan, Amman (Jordan)

    1996-03-01

    Depth profiles of {sup 14} N and {sup 20} Ne ions at 800 KeV implanted into iron and by steel samples have been measured by means of the proton induced {gamma}- ray emission (Pige) technique. The range, R, and range straggling, {Delta}R for these profiles were obtained and compared with theoretical calculations. The experimental results did show that pure iron retains more N and Ne than steel. 2 figs., 1 tab.

  13. Microstructural Evolution and Constitutive Relationship of M350 Grade Maraging Steel During Hot Deformation

    Science.gov (United States)

    Chakravarthi, K. V. A.; Koundinya, N. T. B. N.; Narayana Murty, S. V. S.; Nageswara Rao, B.

    2017-03-01

    Maraging steels exhibit extraordinary strength coupled with toughness and are therefore materials of choice for critical structural applications in defense, aerospace and nuclear engineering. Thermo-mechanical processing is an important step in the manufacture of these structural components. This process assumes significance as these materials are expensive and the mechanical properties obtained depend on the microstructure evolved during thermo-mechanical processing. In the present study, M350 grade maraging steel specimens were hot isothermally compressed in the temperature range of 900-1200 °C and in the strain rate range of 0.001-100 s-1, and true stress-true strain curves were generated. The microstructural evolution as a function of strain rate and temperature in the deformed compression specimens was studied. The effect of friction between sample and compression dies was evaluated, and the same was found to be low. The measured flow stress data was used for the development of a constitutive model to represent the hot deformation behavior of this alloy. The proposed equation can be used as an input in the finite element analysis to obtain the flow stress at any given strain, strain rate, and temperature useful for predicting the flow localization or fracture during thermo-mechanical simulation. The activation energy for hot deformation was calculated and is found to be 370.88 kJ/mol, which is similar to that of M250 grade maraging steel.

  14. Studies on the influence of metallurgical variables on the stress corrosion behavior of AISI 304 stainless steel in sodium chloride solution using the fracture mechanics approach

    International Nuclear Information System (INIS)

    Khatak, H.S.; Gnanamoorthy, J.B.; Rodriguez, P.

    1996-01-01

    Stress corrosion data on a nuclear grade AISI type 304 stainless steel in a boiling solution of 5M NaCl + 0.15M Na 2 SO 4 + 3 mL/L HCl (bp 381 K) for various metallurgical conditions of the steel are presented in this article. The metallurgical conditions used are solution annealing, sensitization, 10 pct cold work, 20 pct cold work, solution annealing + sensitization, 10 pct cold work + sensitization, and 20 pct cold work + sensitization. The fracture mechanics approach has been used to obtain quantitative data on the stress corrosion crack growth rates. The stress intensity factor, K I , and J integral, J I , have been used as evaluation parameters. The crack growth rates have been measured using compact tension type samples under both increasing and decreasing stress intensity factors. A crack growth rate of 5 x 10 -11 m/s was chosen for the determination of threshold parameters. Results of the optical microscopic and fractographic examinations are presented. Acoustic signals were recorded during crack growth. Data generated from acoustic emissions, activation energy measurements, and fractographic features indicate hydrogen embrittlement as the possible mechanism of cracking

  15. Effect of cold work on tensile behavior of irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1986-01-01

    Tensile specimens were irradiated in ORR at 250, 290, 450, and 500 0 C to produce a displacement damage of approx.5 dpa and 40 at. ppM He. Irradiation at 250 and 290 0 C caused an increase in yield stress and ultimate tensile strength and a decrease in ductility relative to unaged and thermally aged controls. The changes were greatest for the 20%-cold-worked steel and lowest for the 50%-cold-worked steel. Irradiation at 450 0 C caused a slight relative decrease in strength for all cold-worked conditions. A large decrease was observed at 500 0 C, with the largest decrease occurring for the 50%-cold-worked specimen. No bubble, void, or precipitate formation was observed for specimens examined by transmission electron microscopy (TEM). The irradiation hardening was correlated with Frank-loop and ''black-dot'' loop damage. A strength decrease at 500 0 C was correlated with dislocation network recovery. Comparison of tensile and TEM results from ORR-irradiated steel with those from steels irradiated in the High Flux Isotope Reactor and the Experimental Breeder Reactor indicated consistent strength and microstructure changes

  16. Paraequilibrium Carburization of Duplex and Ferritic Stainless Steels

    Science.gov (United States)

    Michal, G. M.; Gu, X.; Jennings, W. D.; Kahn, H.; Ernst, F.; Heuer, A. H.

    2009-08-01

    AISI 301 and E-BRITE stainless steels were subjected to low-temperature (743 K) carburization experiments using a commercial technology developed for carburization of 316 austenitic stainless steels. The AISI 301 steel contained ~40 vol pct ferrite before carburization but had a fully austenitic hardened case, ~20- μm thick, and a surface carbon concentration of ~8 at. pct after treatment; this “colossal” paraequilibrium carbon supersaturation caused an increase in lattice parameter of ~3 pct. The E-BRITE also developed a hardened case, 12- to 18- μm thick, but underwent a more modest (~0.3 pct) increase in lattice parameter; the surface carbon concentration was ~10 at. pct. While the hardened case on the AISI 301 stainless steel appeared to be single-phase austenite, evidence for carbide formation was apparent in X-ray diffractometer (XRD) scans of the E-BRITE. Paraequilibrium phase diagrams were calculated for both AISI 301 and E-BRITE stainless steels using a CALPHAD compound energy-based interstitial solid solution model. In the low-temperature regime of interest, and based upon measured paraequilibrium carbon solubilities, more negative Cr-carbon interaction parameters for austenite than those in the current CALPHAD data base may be appropriate. A sensitivity analysis involving Cr-carbon interaction parameters for ferrite found a strong dependence of carbon solubility on relatively small changes in the magnitude of these parameters.

  17. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  18. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel

    2016-07-01

    Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characteristics of martensite as a function of the M{sub s} temperature in low-carbon armour steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Maweja, Kasonde, E-mail: mawejak@yahoo.fr [Council for Scientific and Industrial Research, CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001 (South Africa); Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Stumpf, Waldo [Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Berg, Nic van der [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2009-08-30

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M{sub s} temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M{sub s} temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  20. O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2004-07-31

    This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.

  1. MARTENSITIC CREEP RESISTANT STEEL STRENGTHENED BY Z-PHASE

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to steel alloys having a martensitic or martensitic- ferritic structure and comprising Z-phase (CrXN) particles, where X is one or more of the elements V, Nb, Ta, and where the Z-phase particles have an average size of less than 400 nm. The alloy comprises by wt...... % the following components: 9 to 15% Cr, 0.01-0.20% N, C in an amount less than 0.1%, one or more of: 0.01- 0.5%V,0.01-1%Nb, 0.01-2%Ta, and a balance being substantially iron and inevitable impurities. The invention further relates to a method of manufacturing such a steel alloy, a component comprising...... such a steel alloy, and to the use of such a steel alloy for high temperature components....

  2. IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles.

    Science.gov (United States)

    Tyagi, Anil K; Randolph, Theodore W; Dong, Aichun; Maloney, Kevin M; Hitscherich, Carl; Carpenter, John F

    2009-01-01

    This study investigated factors associated with vial filling with a positive displacement piston pump leading to formation of protein particles in a formulation of an IgG. We hypothesized that nanoparticles shed from the pump's solution-contact surfaces nucleated protein aggregation and particle formation. Vials of IgG formulation filled at a clinical manufacturing site contained a few visible particles and about 100,000 particles (1.5-3 microm) per mL. In laboratory studies with the same model (National Instruments FUS-10) of pump, pumping of 20 mg/mL IgG formulation resulted in about 300,000 particles (1.5-3 microm) per mL. Pumping of protein-free formulation resulted in 13,000 particles (1.5-15 microm) per mL. More than 99% of the particles were 0.25-0.95 microm in size. Mixing of protein-free pumped solution with an equal volume of 40 mg/mL IgG resulted in 300,000 particles (1.5-15 microm) per mL. Also, mixing IgG formulation with 30,000/mL stainless steel nanoparticles resulted in formation of 30,000 protein microparticles (1.5-15 microm) per mL. Infrared spectroscopy showed that secondary structure of IgG in microparticles formed by pumping or mixing with steel nanoparticles was minimally perturbed. Our results document that nanoparticles of foreign materials shed by pumps can serve as heterogeneous nuclei for formation of protein microparticles. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  3. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels

    International Nuclear Information System (INIS)

    Järvinen, Henri; Isakov, Matti; Nyyssönen, Tuomo; Järvenpää, Martti; Peura, Pasi

    2016-01-01

    This paper addresses the relationship between initial microstructure and final properties of press hardened 22MnB5 steels. Four commercial 22MnB5 steels having different initial microstructures were investigated. An experimental press hardening equipment with a flat-die was used to investigate material behavior in the direct press hardening process. Two austenitizing treatments, 450 s and 180 s at 900 °C, were examined. Microstructural characterization with optical and scanning electron microscopes revealed a mixture of martensite and auto-tempered martensite after press hardening. Electron backscatter diffraction data of the transformed martensite was used to reconstruct grain boundary maps of parent austenite. Grain sizes of parent austenite (mean linear intercept) were measured for each material. In addition to microstructural evaluation, quasistatic and high strain rate tensile tests at strain rates of 5×10 −4 s −1 and 400 s −1 , respectively, were performed for press hardened samples. The results show that strength and uniform elongation depend on the initial microstructure of the 22MnB5 steel, when parameters typical to the direct press hardening process are used. Parent austenite grain size was shown to influence the morphology of the transformed martensite, which in turn affects the strength and uniform elongation after press hardening. The tensile properties of the press hardened materials are almost strain rate independent in the studied strain rate range. The obtained results can be used to optimize the properties of 22MnB5 steels in the direct press hardening process. In addition, the here revealed connection between the parent austenite grain size and final steel properties should be taken into account in the development of new press hardening steel grades for automotive industry.

  4. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels

    Energy Technology Data Exchange (ETDEWEB)

    Järvinen, Henri, E-mail: henri.jarvinen@tut.fi [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Isakov, Matti; Nyyssönen, Tuomo [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Järvenpää, Martti [SSAB Europe Oy, Harvialantie 420, FI-13300 Hämeenlinna (Finland); Peura, Pasi [Department of Materials Science, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland)

    2016-10-31

    This paper addresses the relationship between initial microstructure and final properties of press hardened 22MnB5 steels. Four commercial 22MnB5 steels having different initial microstructures were investigated. An experimental press hardening equipment with a flat-die was used to investigate material behavior in the direct press hardening process. Two austenitizing treatments, 450 s and 180 s at 900 °C, were examined. Microstructural characterization with optical and scanning electron microscopes revealed a mixture of martensite and auto-tempered martensite after press hardening. Electron backscatter diffraction data of the transformed martensite was used to reconstruct grain boundary maps of parent austenite. Grain sizes of parent austenite (mean linear intercept) were measured for each material. In addition to microstructural evaluation, quasistatic and high strain rate tensile tests at strain rates of 5×10{sup −4} s{sup −1} and 400 s{sup −1}, respectively, were performed for press hardened samples. The results show that strength and uniform elongation depend on the initial microstructure of the 22MnB5 steel, when parameters typical to the direct press hardening process are used. Parent austenite grain size was shown to influence the morphology of the transformed martensite, which in turn affects the strength and uniform elongation after press hardening. The tensile properties of the press hardened materials are almost strain rate independent in the studied strain rate range. The obtained results can be used to optimize the properties of 22MnB5 steels in the direct press hardening process. In addition, the here revealed connection between the parent austenite grain size and final steel properties should be taken into account in the development of new press hardening steel grades for automotive industry.

  5. Effects of solute interstitial elements on swelling of stainless steel

    International Nuclear Information System (INIS)

    Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.

    1975-01-01

    High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)

  6. Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm

    DEFF Research Database (Denmark)

    Kubat, Irnis; Agger, Christian; Møller, Uffe Visbech

    2014-01-01

    We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr3+) chalcogenide fibre lasers. The 4...... for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8-10 μm band was 7.5 and 8.8mW for the 8 and 10μm fibres, respectively. For the 20μm core fibres up to 46mW was converted....

  7. The occurrence of an ordered fcc phase in neutron irradiated M316 stainless steel

    International Nuclear Information System (INIS)

    Cawthorne, C.; Brown, C.

    1977-01-01

    A small precipitate giving a superlattice type diffraction pattern has been observed in M316 type stainless steel irradiated in the Dounreay Fast Reactor. The precipitate was observed in cold worked and solution treated samples which were unstressed and irradiated below 540 0 C, but not in those irradiated above this temperature or in the stressed samples. (B.D.)

  8. In Memoriam: James Harlan Steele (1913—2013)

    Centers for Disease Control (CDC) Podcasts

    2014-05-19

    Drs. Jennifer McQuiston and Casey Barton Behravesh talk with Dr. Myron Schultz about the legendary Dr. James Harlan Steele.  Created: 5/19/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/20/2014.

  9. Ultra low carbon bainitic (ULCB) steels after quenching and tempering

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Kolan, C.; Jeziorski, L.

    1998-01-01

    The mechanical and Charpy V impact strength properties of new advanced ultra low carbon bainitic (ULBC) steels after water quenching and tempering (WQT) have been investigated. Their chemical compositions are given. The nine continuous cooling transformation diagrams (CCT) of the new ULCB steel grades have been established. The CCT diagrams for ULCB N i steels containing 9% Ni - grade 10N9 and 5% Ni - grade HN5MVNb are given. The comparison between CCT diagrams of 3.5%Ni + 1.5%Cu containing steels grade HSLA 100 and HN3MCu is shown. The effect of the increase in carbon and titanium contents in the chemical composition of ULCB M n steels 04G3Ti, 06G3Ti and 09G3Ti on the kinetics of phase transformations during continuous cooling is presented by the shifting CCT diagrams. The Charpy V impact strength and brittle fracture occurence curves are shown. The effect of tempering temperature on tensile properties of WQT HN3MCu steel is shown and Charpy V impact strength curves after different tempering conditions are shown. The optimum tempering temperatures region of HN3MCu steel for high Charpy V impact toughness at law temperatures - 80 o C(193 K) and -120 o C(153 K) is estimated. The effect of tempering temperature on mechanical properties of HN5MVNb steel is given. The low temperature impact Charpy V toughness of HN5MVNb steel is shown. The optimum range of tempering temperature during 1 hour for high toughness of WQT HN5MVNb steel is given. HN3MCu and HN5MVNb steels after WQT have high yield strength YS≥690 MPa and high Charpy V impact toughness KV≥80 J at -100 o C (173K) and KCV≥50 J/cm 2 at - 120 o C (153K) so they may be used for cryogenic applications

  10. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    Science.gov (United States)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  11. Corrosion Prevention of Steel Reinforcement in 7.5% NaCl Solution using Pure Magnesium Anode

    Science.gov (United States)

    Iyer Murthy, Yogesh; Gandhi, Sumit; Kumar, Abhishek

    2018-03-01

    The current work investigates the performance of pure Magnesium on corrosion prevention of steel reinforcements by way of sacrificial anoding. Two set of six steel reinforcements were tested for half-cell potential, weight loss, anode efficiency and tensile strength for each of the sacrificial anodes in a high chloride atmosphere of 7.5% NaCl in tap water. Significant reduction in weight of anode was observed during the initial 12 days. The reduction in weight of steel reinforcements tied with anodes was found to be negligible, while that of reinforcements without anodes was significantly higher. Five distinct zones of corrosion were observed during the test. The tensile strength of steel cathodically protected by Mg alloy anodes was found less affected. It could be concluded that pure Mg anode provides an effective way of corrosion mitigation.

  12. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Fujimoto, Koji; Ajiki, Kazuhide

    2000-01-01

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M 23 C 6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M 23 C 6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  13. Investigation of electrochemical corrosion behavior in a 3.5 wt.% NaCl solution of boronized dual-phase steel

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Anaturk, Bilal

    2013-01-01

    Highlights: ► Corrosion behaviors in a 3.5% NaCl solution of boronized Dual-Phase (DP) steels were examined. ► The martensite ratio increased with an increase in the intercritical annealing temperature. ► The corrosion resistance decreased with increase of the martensite ratio. ► The boride layer increased the corrosion resistance of DP steel 2–3-fold. ► The superior properties of DP steel as well as poor corrosion properties were improved by the boriding process. - Abstract: In this study, corrosion behaviors of boronized and non-boronized dual-phase steel were investigated with Tafel extrapolation and linear polarization methods in a 3.5 wt.% NaCl solution. Microstructure analyses show that the boride layer on the dual-phase steel surface had a flat and saw smooth morphology. It was detected by X-ray diffraction (XRD) analysis that the boride layer contained FeB and Fe 2 B phases. The amount of martensite increases with an increase in the intercritical annealing temperature. Both the amount of martensite and the morphology of the phase constituents have an influence on the corrosion behavior of dual-phase steel. A higher corrosion tendency was observed with an increased amount of martensite. The corrosion resistance of boronized dual-phase steel is higher compared with that of dual-phase steel

  14. The CCT diagrams of ultra low carbon bainitic steels and their impact toughness properties

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Jeziorski, L.

    1998-01-01

    The CCT diagrams of ULCB N i steels, HN3MV, HN3MVCu having 5.1% Ni and 3.5% Ni and Cu bearing steels; HN3M1.5Cu, HSLA 100 have been determined. The reduced carbon concentration in steel, in order to prevent the formation of cementite, allowed for using nickel, manganese, chromium and molybdenum to enhance hardenability and refinement of the bainitic microstructures by lowering B S temperature. Copper and microadditions of vanadium and niobium are successfully used for precipitation strengthening of steel both in thermomechanically or heat treated conditions. Very good fracture toughness at low temperatures and high yield strength properties of HN3MVCu and HN3MV steels allowed for fulfillment of the requirements for steel plates for pressure vessels and cryogenic applications. (author)

  15. Thermal stability of manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Kenik, E.A.

    1993-01-01

    Previous work on a series of experimental high-manganese reduced-activation austenitic stainless steels demonstrated that they have improved tensile properties relative to type 316 stainless steel in both the annealed and 20% cold-worked conditions. Steels were tested with an Fe-20Mn-12Cr-0.25C (in weight percent) base composition, to which various combinations of Ti, W, V, P, and B were added. Tensile tests have now been completed on these steels after thermal aging at 600 degrees C. Thermal stability varied with composition, but the alloys were as stable or more stable than type 316 stainless steel. the strength of the annealed steels increased slightly after aging to 5000 h, while a strength decrease occurred for the cold worked steel. In both conditions, a steel containing a combination of all the alloying elements was most stable and had the best strength after thermal aging 5000 h at 600 degrees C. Despite having much higher strength than 316 stainless steel after aging, the ductility of the strongest experimental alloy was still as good as that of 316 stainless steel

  16. Effect of nanoprecipitates and grain size on the mechanical properties of advanced structural steels

    International Nuclear Information System (INIS)

    Suarez, M.A.; Alvarez-Perez, M.A.; Alvarez-Fregoso, O.; Juarez-Islas, J.A.

    2011-01-01

    Highlights: → The composition of the steel responded positively to the thermomechanical processing. → Yield strength was increased due to micrometric grain size of 2.2 μm. → Mechanical properties were improved due to nanometric precipitates of 5 nm. → Yield strength values of the API steel were improved up to 877.9 MPa. - Abstract: The microstructure and nanometric precipitates present in advanced structured steel have been studied by high resolution transmission electron microscopy equipped with energy dispersion X-ray microanalysis, in order to relate the nanometric precipitates and grain size with the improvement of the yield strength value of the API steel. The microstructure and nanometric precipitates of the advanced steel were obtained by a combination of thermo-mechanical controlled hot rolling and accelerated cooling procedures. The API steel composition consisted of hot rolled Nb-Ti microalloyed with: 0.07C, 1.40Mn, 0.24Si, 0.020Al, 0.009P, 0.001S, 0.05Mo, 0.5Cr, 0.05Nb, 0.25Ni, 0.10Cu, 0.012Ti, 0.05N in wt%. As a result, this hot rolled steel tested at a strain rate of 5 x 10 -3 s -1 showed an improved yield strength from 798 MPa to 878 MPa due to the micrometric grain size of 2.2 μm and to the nanometric precipitates with a size of around 5 nm in the microstructure of the steel studied.

  17. Synergistic effect of iodide ion addition on the inhibition of mild steel corrosion in 1 M HCl by 3-amino-2-methylbenzylalcohol

    Energy Technology Data Exchange (ETDEWEB)

    Obot, I.B., E-mail: obot@kfupm.edu.sa; Madhankumar, A.

    2016-07-01

    The inhibition of mild steel corrosion in 1 M HCl aqueous solution by 3-amino-2-methylbenzylalcohol (AMBA) was investigated using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP) and cyclic voltammametry (CV) techniques. Attenuated total reflectance infrared spectroscopy (ATR-IR), contact angle (CA) and scanning electron microscopy (SEM) measurements were carried out to confirm the adsorption of AMBA on mild steel surface. Computer simulations using density functional theory (DFT) and Monte Carlo methodologies were further employed to provide insights into the mechanism of interaction between the inhibitor and the steel surface. All the results confirmed that AMBA is a good corrosion inhibitor for mild steel in 1 M HCl. The addition of NaI was found to increase the inhibition effect of AMBA on mild steel to a considerable extent. DFT results reveal that the N atom together with the π-systems in the aromatic ring were the active sites for the interaction of AMBA with steel surface. Furthermore, the negative value of the adsorption energy obtained from the Monte Carlo simulation indicates the stability of the adsorbed inhibitor film on the steel surface. - Graphical abstract: EIS spectra and adsorption configuration of AMBA on Fe (110). - Highlights: • 3-amino-2-methylbenzylalcohol inhibit mild steel corrosion in acid medium. • ATR-IR, contact angle, SEM, were used for steel surface characterization. • DFT and Monte Carlo simulations provide atomic and molecular level insights. • The theoretical data clearly support the experimental results obtained.

  18. Plasma-induced surface degradation in 304 stainless steel used for TRIAM-1M limiter

    International Nuclear Information System (INIS)

    Tsukuda, N.; Kuramoto, E.; Tokunaga, K.; Muroga, T.; Yoshida, N.; Itoh, S.

    1994-01-01

    Surface degradation in a 304 stainless steel limiter of TRIAM-1M by long-pulse discharge during long period operation has been examined by means of X-ray diffraction, scanning electron microscopy and dynamical microindentation tests. Particular exfoliation and hardening of the surface of the electron drift side were observed. These result from the formation of α prime martensite induced by hydrogen in the plasma. The stability of the martensitic phase has been studied by annealing experiments on the cathodically hydrogen charged 316 stainless steel by X-ray diffraction. Both ε and α prime martensites were formed by 22 h cathodic charging. The former reverts to γ-phase and/or converts to α prime martensite below 723 K and the latter reverts to γ-phase below 923 K, repectively. ((orig.))

  19. Effects of microstructure on ultrasonic examination of stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1976-01-01

    Ultrasonic inspection of cast stainless steel components or stainless steel welds is difficult, and the results obtained are hard to interpret. The present study describes the effects of stainless steel microstructure on ultrasonic test results. Welded coupons, 2.5 and 5.0 cm thick, were fabricated from Type 304 stainless steel, with Type 308 stainless steel as the weld material. Metallography of the base material shows grain sizes of 15 and 80 μm, and dendrites aligned from the top to the bottom surface in cast material. X-ray diffraction and ultrasonic velocity measurements indicate a random crystal orientation in the base material, but the cast sample had aligned dendrites. The weld material exhibits a dendritic structure with a preferred (100) direction perpendicular to the weld pass. Spectral analysis of ultrasonic broad-band signals through the base materials shows drastic attenuation of higher frequencies with increasing grain size (Rayleigh scattering). Annealing and recrystallization increases the ultrasonic attenuation and produces carbide precipitation at grain boundaries. The microstructural differences of the base metal, heat-affected zone, and weld metal affect the amplitude of ultrasonic reflections from artificial flaws in these zones. Data obtained from two samples of different grain sizes indicate that grain size has little effect when a 1-MHz transducer is used. When going from a 15 to an 80-μm crystalline structure, a 5-MHz unit suffers a 30-dB attenuation in the detection of a 1.2 mm deep notch. The anisotropy of the dendritic structure in stainless steel renewed the interest in the effect of shear-wave polarization. In the (110) crystallographic orientation of stainless steel, two modes of shear waves can be generated, which have velocities differing by a factor of two. This effect may be helpful in ''tuning'' of shear waves by polarization to obtain better penetration in large grain materials such as welds

  20. Development and industrial mastering hot rolling procedure for low-ductile steels and alloys

    International Nuclear Information System (INIS)

    Degterenko, V.K.; Sokolov, V.A.

    1980-01-01

    The technique for the development of the sheet hot rolling procedure for low-ductile steels and alloys (0Kh17N14M2, 12Kh21N5T, 20Kh25N20C2,40Kh13, 36NKhTYu etc.) is proposed, using plastometer which permits to obtain the data on the deformation resistance in the wide range of temperatures (800-1300 deg C), of deformation degrees (0.1-0.3) and deformation rates (0.001-300 c -1 ). With the help of the plastometric data processed on the computer the calculation of the rolling regimes for the sheet with improved surface quality is carried out at the more uniform loading on the mill stands

  1. Studying the Combination Effect of Additives and Micro Steel Fibers on Cracks of Self-Healing Concrete

    Directory of Open Access Journals (Sweden)

    Muhannad Hussien Muhsin

    2017-01-01

    Full Text Available In this study, the effect of the combination of micro steel fibers and additives (calcium hydroxide and sodium carbonate on the size of cracks formation and healing them were investigated. This study aims to apply the use of self-healing phenomenon to repair cracks and to enhance the service life of the concrete structures. Micro steel fibers straight type were used in this research with 0.2% and 0.4% by volume of concrete. A weight of 20 and 30 kg/m3 of Ca(OH2 and 2 and 3 kg/m3 of Na2CO3 were used as a partial cement replacement. The results confirm that the concrete cracks were significantly self-healed up to 30 days re-curing. Cracks width up to 0.2 mm were completely self-healed after re-curing for 90 days by using the combination of micro steel fiber of 0.4% by volume of concrete and 25 kg/m3 of Ca(OH2 and 2.5 kg/m3 of Na2CO3 as a partial replacement of cement. Products of Self-healing are observed by Scanning Electron Microscopy (SEM with Energy Dispersive X-Ray Analysis (EDX. It was found that self-healing occurred mainly due to precipitation of calcium carbonate.

  2. Control of activation levels to simplify waste management of fusion reactor ferritic steel components

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Santoro, R.T.

    1984-01-01

    The objective of this work is to examine the restrictions placed on the composition of steels to allow simplified waste management after service in a fusion reactor first wall. Decay of steel activity within tens of years could simplify waste disposal or even permit recycle. For material recycle, N, Al, Ni, Cu, Nb, and Mo must be excluded. For shallow land burial, initial concentration limits include (in at. ppM) Ni, <20,000; Mo, <3650; N, <3650; Cu, <2400; and Nb, <1.0. Other constituents of steels will not be limited

  3. Synthesis and 5α-Reductase Inhibitory Activity of C21 Steroids Having 1,4-diene or 4,6-diene 20-ones and 4-Azasteroid 20-Oximes

    Directory of Open Access Journals (Sweden)

    Eunsook Ma

    2011-12-01

    Full Text Available The synthesis and evaluation of 5α-reductase inhibitory activity of some 4-azasteroid-20-ones and 20-oximes and 3β-hydroxy-, 3β-acetoxy-, or epoxy-substituted C21 steroidal 20-ones and 20-oximes having double bonds in the A and/or B ring are described. Inhibitory activity of synthesized compounds was assessed using 5α-reductase enzyme and [1,2,6,7-3H]testosterone as substrate. All synthesized compounds were less active than finasteride (IC50: 1.2 nM. Three 4-azasteroid-2-oximes (compounds 4, 6 and 8 showed good inhibitory activity (IC50: 26, 10 and 11 nM and were more active than corresponding 4-azasteroid 20-ones (compounds 3, 5 and 7. 3β-Hydroxy-, 3β-acetoxy- and 1α,2α-, 5α,6α- or 6α,7α-epoxysteroid-20-one and -20-oxime derivatives having double bonds in the A and/or B ring showed no inhibition of 5α-reductase enzyme.

  4. Specific features of precipitation hardening of austenitic steels with various base. 2. Kinetics and mechanism of carbide precipitation

    International Nuclear Information System (INIS)

    Kositsyna, I.I.; Sagaradze, V.V.; Khakimova, O.N.

    1997-01-01

    Electron microscopic studies were carried out to determine the kinetics and mechanisms of precipitation hardening in Fe-Mn, Fe-Mn-Cr, Fe-Cr-Mn-N, Fe-Cr-Ni and Fe-Ni base stainless steels (45G20M2F2, 50Kh16G15N6M2F2, 45Kh18N10G10M2F2, 40Kh18Ni18M2F2, 45N26M2F2). The steels were heat treated under various conditions. It is revealed that in manganese steels the particles of vanadium carbide nucleate according to homogeneous mechanism at all aging temperatures (600-750 deg C). The presence of chromium in the matrix promotes the transition to heterogeneous mechanism of carbide nucleation and growth. With nickel content increasing the plasticity of precipitation hardened steels gets better due to more intense diffusion of atoms and vacancies to grain boundaries and, hence, the widening of near-boundary zones free of carbide particles

  5. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  6. Irradiation behavior evaluation of oxide dispersion strengthened ferritic steel cladding tubes irradiated in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shinichiro, E-mail: yamashita.shinichiro@jaea.go.jp; Yano, Yasuhide; Ohtsuka, Satoshi; Yoshitake, Tsunemitsu; Kaito, Takeji; Koyama, Shin-ichi; Tanaka, Kenya

    2013-11-15

    Irradiation behavior of ODS steel cladding tubes was evaluated for the further progress in understanding of the neutron-irradiation effects on ODS steel. Two types of ODS (9Cr–ODS{sub F}/M, 12Cr–ODS{sub F}) steel cladding tubes with differences in basic compositions and matrix phases were irradiated in JOYO. Post-irradiation examination data concerning hardness, ring tensile property, and microstructure were obtained. Hardness measurement after irradiation showed that there was an apparent irradiation temperature dependence on hardness for 9Cr–ODS{sub F}/M steel whereas no distinct temperature dependence for 12Cr–ODS{sub F} steel. Also, there was no significant change in tensile strengths after irradiation below 923 K, but those above 1023 K up to 6.6 × 10{sup 26} n/m{sup 2} (E > 0.1 MeV) were decreased by about 20%. TEM observations showed that the radiation-induced defect cluster formation during irradiation was suppressed because of high density sink site for defect such as initially-existed dislocation, and precipitate interfaces. In addition, oxide particles were stable up to the maximum doses of this irradiation test.

  7. Microstructure of a high boron 9-12% chromium steel

    Energy Technology Data Exchange (ETDEWEB)

    Andren, H.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2008-07-01

    Additions of small amounts of boron (10-100 ppm) to 9-12% chromium steels are often made since they have been found to be beneficial for the creep strength up to and above 600 C. The effect of boron is to restrict the coarsening of M{sub 23}C{sub 6} precipitates during service. It was found that increasing the boron content from 9 to 40 ppm gave a decrease in coarsening constant at 600 C by a factor of 2. The present understanding of boron solution, non-equilibrium grain boundary segregation, incorporation into M{sub 23}C{sub 6}, and diffusion is reviewed in the paper. A very high boron addition (300 ppm) was made in the trial TAF steel already in the 1950'ies. The microstructure of a similar trial steel, FT3B, has been studied detail. In this steel large Mo, Cr, Fe and V containing metal borides are formed rather than the expected BN, with the crystal structure M{sub 2}B{sub 2}. Nitrogen is therefore still available for the formation of VN. Due to tempering at a low temperature (690 C) to a high strength (830 MPa), this steel contained a dense distribution of very small VN precipitates, 5-15 nm in size. A similar VN distribution is probably the cause of the still unsurpassed creep strength of the TAF steel. (orig.)

  8. Hot corrosion of the steel SA213-T22 and SA213-TP347H in 80% V2O5-20%Na2SO4 mixture

    International Nuclear Information System (INIS)

    Almeraya, F.; Martinez-Villafane, A.; Gaona, C.; Romero, M.A.; Malo, J.M.

    1998-01-01

    Many hot corrosion problems in industrial and utility boilers are caused by molten salts. The corrosion processes which occur in salts are of an electrochemical nature, and so they can be studied using electrochemical test methods. In this research, electrochemical techniques in molten salt systems have been used for the measurements of molten corrosion processes. Electrochemical test methods are described here for a salt mixture of 80%V 2 O 5 -20%NaSO 4 at 540-680 degree centigrade. To establish better the electrochemical corrosion rate measurements for molten salt systems, information from electrochemical potentiodynamic polarization curves, such as polarization resistance and Tafeol slopes were used in this study to generate corrosion rate data. The salt was contained in a quartz crucible inside a stainless retort. The atmosphere used was air. A thermocouple sheathed with quartz glass was introduced into the molten salt for temperature monitoring and control. Two materials were tested in the molten mixture: SA213-T22 and SA213-TP347H steels. The corrosion rates values obtained using electrochemical methods were around 0.58-7.14 mm/yr (22.9-281 mpy). The corrosion rate increase with time. (Author) 7 refs

  9. Investigation of thin film deposition on stainless steel 304 substrates under different operating conditions

    International Nuclear Information System (INIS)

    Chowdhury, M A; Nuruzzaman, D M

    2016-01-01

    In recent times, friction and wear in relation to the deposited carbon films on the steel substrates are important issues for industrial applications. In this research study, solid thin films were deposited on the stainless steel 304 (SS 304) substrates under different operating conditions. In the experiments, natural gas (97.14% methane) was used as a precursor gas in a hot filament thermal chemical vapor deposition (CVD) reactor. Deposition rates on SS 304 substrates were investigated under gas flow rates 0.5 - 3.0 l/min, pressure 20 - 50 torr, gap between activation heater and substrate 3.0 - 6.0 mm and deposition duration 30 - 120 minutes. The obtained results show that there are significant effects of these parameters on the deposition rates on SS 304 within the observed range. Friction coefficient of SS 304 sliding against SS 314 was also investigated under normal loads 5 - 10 N and sliding velocities 0.5 - m/s before and after deposition. The experimental results reveal that in general, frictional values are lower after deposition than that of before deposition. (paper)

  10. 46 CFR 61.20-5 - Drydock examination.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Drydock examination. 61.20-5 Section 61.20-5 Shipping... INSPECTIONS Periodic Tests of Machinery and Equipment § 61.20-5 Drydock examination. (a) When any vessel is drydocked, examination shall be made of the propeller, stern bushing, sea connection, and fastenings if...

  11. Pipes out of the chromium-molybdenum 12Kh2M1 steel intended for power units

    International Nuclear Information System (INIS)

    Saf'yanov, A.V.; Plyatskovskij, O.A.; Khokhlov-Nekrasov, O.G.; Palatnikova, E.S.; Karpenko, N.P.

    1977-01-01

    Vanadiumless steel 12Kh2M1 (2.25%Cr, 1%Mo) known to be applied abroad has been used for production of 325x60 mm tubes. The technology involves heating of the blanks to 1270-1300 deg C, their piercing in a double-roller mill, rolling on a pilger mill 8-16'' in thick wall caliber rolls, thermal treatment (normalizing at 930-960 deg C for 1 hour and tempering at 730+-10 deg C for 4 hours and etching (12-22% H 2 SO 4 and up to 143 g/l FeSO 4 ) for 3-4 hours at 55-65 deg C. Good technological properties of the steel and its capacity of working at 540-580 deg C are confirmed. Vanadium alloying of boiler steels does not provide for essential improvement of oxydation resistance and long term strength, but decreases the workability and enhances scatter of working parameters on account of minor variations of chemical composition

  12. Fracture toughness of steel--aluminum deformation welds

    International Nuclear Information System (INIS)

    Albright, C.E.

    1978-11-01

    A study of the fracture toughness (in this case, G/sub Ic/) of steel--aluminum deformation welds using a specially developed double cantilever beam fracture toughness specimen is presented. Welds made at 350 0 C were heat treated at 360, 380, 400, 420, and 440 0 C. An intermetallic reaction product layer of Fe 2 Al 5 is formed at the steel--aluminum interface with increasing heat treating temperature and time by a process of nucleation and growth of discrete particles. A transition in toughness from a higher average G/sub Ic/ value (6097 N/m) to a very low average G/sub Ic/ value (525 N/m) is observed. The decrease in toughness is accompanied by an increase in Fe 2 Al 5 particle diameter from 4 to 8 μm. Failure at the higher toughness values is characterized by ductile rupture through the aluminum. At the lower toughness values, failure occurs between the aluminum and the Fe 2 Al 5 reaction product layer. A void layer forming by a vacancy condensation mechanism in the aluminum adjacent to the Fe 2 Al 5 is shown to cause the embrittlement

  13. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    Science.gov (United States)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  14. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  15. Study of the M23C6 precipitation in AISI 304 stainless steel by small angle neutron scattering

    International Nuclear Information System (INIS)

    Boeuf, A.; Caciuffo, R.G.M.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Melone, S.; Puliti, P.; Rustichelli, F.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Coppola, R.

    1985-01-01

    The results of some small-angle neutron scattering (SANS) experiments on M 23 C 6 (M=Fe, Cr) carbide precipitation in AISI 304 stainless steel, aged at different temperatures during different times, are presented. The total volume fraction, the total surface of precipitates per unit sample volume and the size distribution functions of the M 23 C 6 carbides were determined. (orig.)

  16. Opuntia ficus-indica Extract as Green Corrosion Inhibitor for Carbon Steel in 1 M HCl Solution

    Directory of Open Access Journals (Sweden)

    J. P. Flores-De los Ríos

    2015-01-01

    Full Text Available The effect of Opuntia ficus-indica (Nopal as green corrosion inhibitor for carbon steel in 1 M HCl solution has been investigated by using weight loss tests, potentiodynamic polarization curves, and electrochemical impedance spectroscopy measurements. Also, scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FT-IR analysis were performed. The inhibitor concentrations used ranged from 0 to 300 ppm at 25, 40, and 60°C. Results indicated the inhibition efficiency increases with increasing extract concentration and decreases with the temperature, and the inhibitor acted as a cathodic-type inhibitor which is physically absorbed onto the steel surface. In fact, the adsorption of the inhibitor on the steel surface follows the Langmuir adsorption isotherm, indicating monolayer adsorption. The presence of heteroatoms such as C, N, and O and OH groups were responsible for the corrosion inhibition.

  17. Electrochemical decontamination of Pu contaminated stainless steel

    International Nuclear Information System (INIS)

    Turner, A.D.; Pottinger, J.S.; Junkison, A.R.

    1983-08-01

    Electrochemical decontamination has been demonstrated to be very effective in removing plutonium nitrate contamination (0.5 μg cm -2 ) on stainless steels. The amount of metal dissolved to achieve a DF of 10 2 to 10 3 was 2 to 7 μm depending on the electrolyte used. In unstirred electrolytes 1M HNO 3 , 1M HNO 3 /0.1M NaF, 5M HNO 3 perform best. Under stirred electrolyte conditions, there is a general marginal fall in effectiveness except for 5M HNO 3 where there is a slight improvement. The optimum performance is a compromise between maximizing the electrolyte throwing power and minimizing substrate surface roughening during decontamination. (author)

  18. Modification of steel surface by plasma electrolytic saturation with nitrogen and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kusmanov, S.A., E-mail: sakusmanov@yandex.ru; Kusmanova, Yu.V., E-mail: yulia.kusmanova@yandex.ru; Smirnov, A.A., E-mail: sciencealexsm@gmail.com; Belkin, P.N., E-mail: belkinp@yandex.ru

    2016-06-01

    The effect of the electrolyte composition with ammonia, acetone, and ammonium chloride on the structure and properties of low carbon steel was studied in anode plasma electrolytic nitrocarburising. An X-ray diffractometer, a scanning electron microscopy (SEM) and an optical microscope were used to characterize the phase composition of the modified layer and its surface morphology. Surface roughness was studied with a profilometer–profilograph. The hardness of the treated and untreated samples was measured using a microhardness tester. The sources of nitrogen and carbon are shown to be the products of evaporation and thermal decomposition of the electrolyte components. It is established that the influence of concentration of ammonia, acetone, and ammonium chloride on the size of the structural components of the hardened layer is explained by the competition of the anode dissolution, high-temperature oxidation and diffusion of the saturating component. The electrolyte composition (10–12.5% ammonium chloride, 5% acetone, 5% ammonia) and processing mode (800 °C, 5–10 min) of low carbon steels allowing to obtain the hardened surface layer up to 0.2 mm with microhardness 930 HV and with decrease in the roughness (R{sub a}) from 1.013 to 0.054 μm are proposed. The anode plasma electrolytic nitricarburising is able to decrease friction coefficient of the treated low carbon steel from 0.191 to 0.169 and wear rate from 13.5 mg to 1.0 mg. - Highlights: • Aqueous solution (12.5% NH{sub 4}Cl, 5% ammonia, 5% acetone) is proposed for PEN/C steels. • Microhardness of steel (0.2% C) is 930 HV due to PEN/C for 5–10 min at 800 °C. • Anode PEN/C of low carbon steel decreases its roughness (R{sub a}) from 1.013 to 0.054 μm. • Anode PEN/C decreases friction coefficient of low carbon steel from 0.191 to 0.169 • Anode PEN/C decreases wear loss of low carbon steel from 13.5 mg to 1.0 mg.

  19. Ballistic Characterization Of A Typical Military Steel Helmet

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Maher

    2017-08-01

    Full Text Available In this study the ballistic limit of a steel helmet against a FMJ 919 mm caliber bullet is estimated. The helmet model is the typical polish helmet wz.31.The helmet material showed high strength low alloy steel material of 0.28 carbon content and 9.125 kgm2 areal density. The tensile test according to ASTM E8 showed a tensile strength of 1236.4 MPa .The average hardness value was about HV550. First shooting experiment has been executed using a 9 mm pistol based on 350 ms muzzle velocity at 5m against the simply supported helmet complete penetrations rose in this test were in the form of cracks on the helmet surface and partial penetrations were in the form of craters on the surface whose largest diameter and depth were 43 mm and 20.2 mm consequently .The second experiment was on a rifled gun arrangement 13 bullets of 919 mm caliber were shot on the examined simply supported steel helmet at a zero obliquity angle at different velocities to determine the ballistic limit velocity V50 according to MIL-STD-662F. Three major outcomes were revealed 1 the value V50 which found to be about 390 ms is higher than the one found in literature 360 ms German steel helmet model 1A1. 2 The smallest the standard deviation of the mixed results zone data the most accurate the ballistic limit is. 3Similar to the performance of blunt-ended projectiles impacting overmatching targets tD near 11 or larger It was found that the dominating failure mode of the steel helmet stuck by a hemispherical-nose projectile was plugging mode despite of having tD ratio of about 19 undermatching.

  20. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    International Nuclear Information System (INIS)

    Novick, V.J.; Brodrick, C.J.; Crawford, S.; Nasiatka, J.; Pierucci, K.; Reyes, V.; Sambrook, J.; Wrobel, S.; Yeary, J.

    1996-01-01

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D ampersand D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D ampersand D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 μm and the other at about 10 μm. The average Mass Median Aerodynamic Diameters (MMAD's) for these tests are 0.36 ±0.08 μm for stainless steel, 0.48 ±0.17μm for aluminum and 0.52±0.12 μm for carbon steel

  1. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Science.gov (United States)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  2. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meng, L.J. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Sun, J., E-mail: jsun@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Xing, H. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China)

    2012-08-15

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M{sub 23}C{sub 6}, M{sub 6}C, {sigma} phase and Laves phase. The M{sub 23}C{sub 6} carbides were observed at grain boundaries in the steel after creep at 873 K. The M{sub 6}C, {sigma} phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of {sigma} and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  3. Corrosion study of API 5L x-series pipeline steels in 3.5% NaCl solution under varying conditions

    International Nuclear Information System (INIS)

    Shahid, M.; Qureshi, M.I.; Farooq, M.U.; Khan, M.I.

    2003-01-01

    Pipelines provide convenient and efficient means for mass transportation of variety of fluids, such as oil and gas, over varying distances. In the last two decades or so, pipeline designers focused mainly on the usage of larger sizes and higher operating pressures for achieving higher transportation efficiency. This has been accomplished through the provision of steels with progressive increase in yield strength coupled with good weldability and sufficient toughness to restrict crack propagation. In addition to higher strength and toughness, developing pipeline technologies have required improved resistance to corrosion, which has been tried with specific alloy additions and special control over non-metallic inclusions. Corrosion investigations were carried out on various grades of pipeline steels (API 5L X-46, X-52, X-56, X-60 and X- 70) under varying environmental conditions. This paper describes the results pertaining to corrosion behavior of the steels in 3.5% NaCl solutions in stagnant, turbulent and deaerated conditions. It was found that all grades corrode in this solution and their corrosion potentials and corrosion currents are in close vicinity of each other. Turbulent solutions, however, have shown an increase in corrosion rates whereas deaeration has revealed a relative decrease in aggressivity of the electrolyte. (author)

  4. Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2010-01-01

    Long-term oxidation behaviour of eight ferritic steels with 20–29 wt.% chromium (F 20 T, TUS 220 M, AL 453, Crofer 22 APU, Crofer 22 H, Sanergy HT, E-Brite and AL 29-4C) has been studied. The samples were cut into square coupons, ground and annealed for 140–1000 h at 1173 K in flowing, wet hydrogen...

  5. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations

    Science.gov (United States)

    Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru

    2008-02-01

    Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.

  6. Towards commercialization of fast gaseous nitrocarburising stainless steel

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    A novel method for fast and versatile low temperature nitrocarburising of stainless steel has recently been invented by the present authors. Selected results obtained with this new surface hardening process are presented. It is shown that it is possible to obtain a case thickness of 20 μm...... on austenitic AISI 316 within a process cycle time of 90 minutes, and a case thickness of 35 μm on martensitic AISI 420 within a process cycle time of 75 minutes....

  7. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  8. Influence of alloying elements on the corrosion properties of shape memory stainless steels

    International Nuclear Information System (INIS)

    Della Rovere, C.A.; Alano, J.H.; Silva, R.; Nascente, P.A.P.; Otubo, J.; Kuri, S.E.

    2012-01-01

    Highlights: ► The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape-memory stainless steels (SMSSs) were compared with those of a type 304 (SS 304) austenitic stainless steel. ► A considerably high Si content (about 40 at%) is present in the anodic passive films formed on SMSSs in 0.5 M H 2 SO 4 solution. ► The high protectiveness of the anodic passive film formed on SMSSs in 0.5 M H 2 SO 4 solution results from a protective film consisting of a (Fe, Cr)–mixed silicate. ► The SMSSs exhibited higher corrosion resistance than SS 304 in highly oxidizing environments. ► The SMSSs showed poor corrosion resistance in 3.5% NaCl solution compared to that of SS 304. - Abstract: The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape memory stainless steels were studied based on X-ray photoelectron spectroscopy (XPS) analyses, immersion and polarization tests. The test results were compared with those of a type 304 austenitic stainless steel. The XPS analyses indicated substantial Si content in the anodic passive films formed on shape memory stainless steels in sulfuric acid solution and that the high protectiveness of these films results from a protective film consisting of a (iron, chromium)–mixed silicate. The corrosion rate of the shape memory stainless steels in boiling nitric acid solution was lower than that of austenitic stainless steel. The high silicon content was found to play an important role in the corrosion behavior of these shape memory alloys in highly oxidizing environments. Due to their high manganese content, the shape memory stainless steels showed poor corrosion behavior in 3.5% sodium chloride solution when compared with austenitic stainless steel.

  9. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  10. Radiation-induced sensitisation of stainless steels

    International Nuclear Information System (INIS)

    Norris, D.I.R.

    1987-01-01

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  11. Emissivity model of steel 430 during the growth of oxide layer at 800-1100 K and 1.5 μm

    Science.gov (United States)

    Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-01-01

    This work studied the variation in spectral emissivity with growth of oxide layer at the different temperatures. For this reason, we measured the normal spectral emissivity during the growth of oxide layer on the sample surface at a wavelength of 1.5 μm over a temperature range 800-1100 K. In the experiment, the temperature was measured by the two thermocouples, which were symmetrically welded onto the front surface of specimens. The average of their readings was regarded as the true temperature. The detector should be perpendicular to the specimen surface as accurately as possible. The variation in spectral emissivity with growth of oxide layer was evaluated at a certain temperature. Altogether 11 emissivity models were evaluated. The conclusion was gained that the more the number of parameters used in the models was, the better the fitting accuracy became. On the whole, all the PEE models, the four-parameter LEE model and the five-parameter PFE, PLE and LEE models could be employed to well fit this kind of variation. The variation in spectral emissivity with temperature was determined at a certain thickness of oxide film. Almost all the models studied in this paper could be used to accurately evaluate this variation. The approximate models of spectral emissivity as a function of temperature and oxide-layer thickness were proposed. The strong oscillations of spectral emissivity were observed, which were affirmed to arise from the interference effect between the two radiations stemming from the oxide layer and from the substrate. The uncertainties in the temperature of steel 430 generated only by the surface oxidization were approximately 4.1-10.7 K in this experiment.

  12. Corrosion behavior of austenitic steels and their components in niobium-containing chloride melts

    Science.gov (United States)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Volkovich, V. A.; Lisienko, D. G.

    2014-02-01

    The mechanism of corrosion of austenitic steels 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 and metals Cr, Fe, Ni, and Mo in a NaCl-KCl-NbCl n ( n = 3.5, Nb content is 5 ± 0.1 wt %) melt at 750°C is studied. The metal and steel corrosion rates under these conditions are determined. The character of material fracture and the mechanisms of material corrosion are found.

  13. Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance

    Science.gov (United States)

    Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.

    2018-01-01

    The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.

  14. Feasibility study on decontamination of the contaminated stainless steel with HBF4 solution

    International Nuclear Information System (INIS)

    Dong Ruilin; Zhang Yuan; Qiu Dangui; Huang Yuying; Ren Xianwen

    2002-01-01

    Decontamination experiments were carried out with HBF 4 solution on the following four kinds of sample: 1Cr18Ni9Ti stainless steel with and without welding line, 1Cr18Ni9Ti stainless steel with oxide layer formed in boiling concentrated nitric acid solution, natural uranium and 230 Th contaminated stainless steel pipe sample from one decommissioning nuclear facility. The results indicated that the oxide layer, the welding line of the 1Cr18Ni9Ti stainless steel and itself can be dissolved in the HBF 4 decontamination solution. The solubility of the 1Cr18Ni9Ti stainless steel in the HBF 4 solution used in the test is more than 5 g/L, which means that the 0.13 m 2 stainless steel could be dissolved up to a thickness of 5 μm in one liter of decontamination solution. The decontamination efficiency is more than 85% in 30 minutes for the 230 Th contaminated sample, and 87% in 2 hours for the natural uranium contaminated sample. Both samples could be decontaminated to the background level after several runs of the decontamination

  15. Effect of silicon on the structure, tribological behaviour, and mechanical properties of nitrogen-containing chromium-manganese austenitic steels

    International Nuclear Information System (INIS)

    Korshunov, L.G.; Chernenko, N.L.; Gojkhenberg, Yu.N.

    2003-01-01

    The effect of silicon in quantity of 3.5-4.5 mass. % on tribological behaviour is studied for nitrogen-bearing (0.20-0.52 mass. % of nitrogen) chromium-manganese austenitic steels (10Kh15G23S4A0.20, 10Kh16G17N3S4A0.30, 10Kh19G20NS4A0.50, 12Kh19G19NS2A0.50, 10Kh18G19A0.50, 08Kh16G8N10S4A0.18). Mechanical properties and corrosion resistance of the steels are determined. Using metallographic, x-ray diffraction and electron microscopical methods a study is made into structural transformations running in the steels considered under friction and static tension. It is shown that additional silicon alloying of nitrogen-bearing chromium-manganese austenitic steels results in an essential increase of adhesion wear resistance of the materials on retention of low friction coefficient (f=0.25-0.33). A strong silicon effect on steel tribological behaviour is related with planar slip activation and with an increase of austenite strength and heat resistance [ru

  16. Prospects of weldable steels for nuclear power engineering

    International Nuclear Information System (INIS)

    Pilous, V.

    1985-01-01

    In nuclear power plants with WWER reactors a medium-alloyed CrNiMoV steel is considered for the pressure vessel and a MnNiMoV steel for the primary pipes, the pressurizer and other systems. The chemical composition of both steels is given and briefly discussed are the results of tests carried out within a study of the weldability of the steels. Attention is also devoted to the causes of cracks under austenite-based overlays occurring when medium-alloyed CrNiMoV steels are overlaid with strip electrodes using high thermal input submerged arc welding, and in the process of heat treatment. It appears that austenitic overlays reduce the life span by 5 to 15% as compared with the basic steel. If, however, the overlay is not part of the cross section critical with regard to strength, the reduced life span need not be considered and both types of steel will be suitable for primary circuits of nuclear power plants because they guarantee the required mechanical and physical properties of the welded joints. (Z.M.)

  17. Development of x-ray computed tomographic scanner for iron and steel

    International Nuclear Information System (INIS)

    Taguchi, Isamu; Nakamura, Shigeo.

    1985-01-01

    X-ray computed tomography is extensively used in medicine, but has rarely been applied to non-medical purposes. Steel specimens pose particularly difficult problems-very poor transmission of X-rays and the need for high resolving capability. There has thus been no effective tomographic method of examining steel specimens. Due to the growing need for non-destructive, non-contact methods for observing and analyzing the internal conditions of steel microscopically, however, we have developed an X-ray Computed Tomographic Scanner for Steel (CTS) system, specifically for examination of steel specimens. Its major specifications and functions are as follows. Type: the second-generation CT, 8-channels, Scanning method: 6 0 revolution, 30-times traversing, Slice width: 0.5 mm, Resolving capability: 0.25 x 0.25 mm, X-ray source: 420 kV, 3 mA, X-ray detector: BGO scintillator, Standard specimen shape: 50 mm dia., 100 mm high, Measuring time: 10.5 min. Porosity of a stainless steel (SUS 304) bloom was examined three-dimensionally by the CTS system. Corrosion procedure of a steel slab was also examined. (author)

  18. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    International Nuclear Information System (INIS)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent

  19. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    Energy Technology Data Exchange (ETDEWEB)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent.

  20. Use of Neural Networks for Damage Assessment in a Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorithm for detecting location and size of a damage in a civil engineering structure is investigated. The structure considered is a 20 m high steel lattice mast subjected to wind excita...... as well as full-scale tests where the mast is identified by an ARMA-model. The results show that a neural network trained with simulated data is capable for detecting location of a damage in a steel lattice mast when the network is subjected to experimental data.·...

  1. Spectroscopic investigation of 2.0 μm emission in Ho3+-doped fluoroindate glasses

    International Nuclear Information System (INIS)

    Oliveira, S L; Bell, M J V; Florez, A; Nunes, L A O

    2006-01-01

    In this paper we report the optical characterization of Ho 3+ -doped fluoroindate glasses with the following composition (40 - x)InF 3 -20SrF 2 -16BaF 2 -20ZnF 2 -2GdF 3 -2NaF-xHoF 3 with x = 1.0, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0 and 9.0 mol%. This investigation was done by means of absorption, fluorescence and lifetime measurements. The phenomenological intensity parameters Ω λ (λ = 2, 4, 6) were calculated using the standard Judd-Ofelt theory. In order to evaluate potential applications of the 5 I 7 → 5 I 8 Ho 3+ emission at 2.0 μm, the radiative lifetime, total transition rate and emission cross section were determined. The effect of Ho 3+ concentration on the fluorescence intensity and lifetimes was analysed. It was concluded that the non-radiative losses of the 5 I 7 level are mainly due to energy migration among Ho 3+ ions followed by energy transfer to quenching impurities

  2. The Structure of the Silumin Coat on Alloy Cast Steels

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2012-04-01

    Full Text Available The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T and GX39Cr13 (LH14. The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10 and Cr (GX39Cr13. The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

  3. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Li, Xiaodong; Chang, Ying; Wang, Cunyu; Hu, Ping; Dong, Han

    2017-01-01

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M s temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  4. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodong [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Chang, Ying, E-mail: yingc@dlut.edu.cn [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Wang, Cunyu [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China); Hu, Ping [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Dong, Han [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China)

    2017-01-02

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M{sub s} temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  5. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Ehrnsten, U.; Toivonen, A.; Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H.

    2004-01-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  6. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  7. Study of the damage processes induced by thermal fatigue in stainless steels F17TNb and R20-12 for automobile application; Etude de l'endommagement en fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, L.

    2004-12-15

    Thermal cycling is the main cause of fatigue failure in automobile exhaust manifolds for which the use of stainless steel now rivals that of cast iron which has been traditionally used. An original fatigue test has been developed by Ugine and ALZ, a stainless steel producer, so as to be able to compare different grades of stainless steel alloys. This test is representative of the thermal conditions encountered in the critical zones of exhaust manifolds. However, it has revealed significant differences in damage processes in the ferritic and austenitic grades tested. The subject of this thesis is the damage processes induced by thermal fatigue in stainless steels used for automotive exhaust manifolds. Two stainless steels were studied: a ferritic grade, F17TNb (17%Cr and stabilized with Ti and Nb), and an austenitic grade, R20-12, containing 20% Cr and 12% Ni. The first objective was to understand the different damage processes induced by thermal fatigue in the ferritic and austenitic grades. The second was to develop a numerical design tool of the thermally tested structures. (author)

  8. Technological change and industrial energy efficiency : Exploring the low-carbon transformation of the German iron and steel industry

    NARCIS (Netherlands)

    Arens, M.

    2017-01-01

    Climate change is a key challenge of our time. The iron and steel industry emits 6.5 % of global anthropogenic CO2 that is likely to drive global warming. Greenhouse gases, among these CO2, are to be reduced to 5-20% of today’s level in industrialised countries. Thus, the steel sector must make

  9. [Factors influencing electrocardiogram results in workers exposed to noise in steel-making and steel-rolling workshops of an iron and steel plant].

    Science.gov (United States)

    Li, Y H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Jiao, J

    2016-02-20

    To investigate the factors influencing the electrocardiogram results in the workers exposed to noise in steel-making and steel rolling workshops of an iron and steel plant. From September to December, 2013, cluster sampling was used to select 3 150 workers exposed to noise in the steel-making and steel-rolling workshops of an iron and steel plant, and a questionnaire survey and physical examinations were performed. The number of valid workers was 2 915, consisting of 1 606 workers in the steel-rolling workshop and 1 309 in the steel-making workshop. The electrocardiogram results of the workers in steel-making and steel-rolling workshops were analyzed. The overall abnormal rate of electrocardiogram was 26.35%, and the workers in the steel-making workshop had a significantly higher abnormal rate of electrocardiogram than those in the steel-rolling workshop(32.24% vs 21.54%, Pelectrocardiogram than female workers(27.59% vs 18.61%, Pelectrocardiogram than those who did not drink(28.17% vs 23.75%, Pelectrocardiogram than those who were not exposed to high temperature(29.43% vs 20.14%, Pelectrocardiogram in the workers with cumulative noise exposure levels of electrocardiogram results. High cumulative noise exposure, alcohol consumption, and high temperature may affect the abnormal rate of electrocardiogram in the workers exposed to noise in steel-making and steel-rolling workshops.

  10. The influence of drawing speed on surface topography of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2017-01-01

    Full Text Available In this work the influence of the drawing speed on surface topography of high carbon steel wires has been assessed. The drawing process of f 5,5 mm wire rod to the final wire of f 1,7 mm was conducted in 12 passes by means of a modern Koch multi-die drawing machine. The drawing speeds in the last passes were: 5, 10, 15, 20 and 25 m/s. For final wires f 1,7 mm the three-dimensional analysis of the wire surface topography investigation was determined. It has been proved that the wire topography in the drawing process is characterized by a random anisotropy and the amount of directing the geometrical structure of the surface depends on the drawing speed.

  11. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ambrish [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Department of Chemistry, LFTS, Lovely Professional University, Phagwara, Punjab 144402 (India); Lin, Yuanhua, E-mail: yhlin28@163.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Obot, I.B. [Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ebenso, Eno E. [Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735 (South Africa); Material Science Innovation & Modelling (MaSIM) Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735 (South Africa); Ansari, K.R.; Quraishi, M.A. [Department of Applied Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh (India)

    2015-11-30

    Graphical abstract: SECM studies revealed decrease of steady current in the presence of inhibitor while it increased for 3.5% NaCl solution that acted as the conductor. - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO{sub 2} by HPT. • Potentiodynamic polarization curves reveal that the actions of HPT are mixed type. • The adsorption of HPT obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. - Abstract: 1,2,4,7,9,10-Hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone (HPT) a macrocyclic compound has been studied using electrochemical methods and scanning electrochemical microscopy (SECM) techniques. The R{sub ct} values increased and C{sub dl} values decreased with the increase in concentration of the inhibitor. The corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO{sub 2} by polarization studies revealed that HPT acted as a mixed type inhibitor. The adsorption of HPT on the J55 steel surface obeyed the Langmuir adsorption isotherm. The thermodynamic parameters (K{sub ads}, ΔG°{sub ads}) were also computed and discussed.

  12. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor

    International Nuclear Information System (INIS)

    Singh, Ambrish; Lin, Yuanhua; Obot, I.B.; Ebenso, Eno E.; Ansari, K.R.; Quraishi, M.A.

    2015-01-01

    Graphical abstract: SECM studies revealed decrease of steady current in the presence of inhibitor while it increased for 3.5% NaCl solution that acted as the conductor. - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO 2 by HPT. • Potentiodynamic polarization curves reveal that the actions of HPT are mixed type. • The adsorption of HPT obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. - Abstract: 1,2,4,7,9,10-Hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone (HPT) a macrocyclic compound has been studied using electrochemical methods and scanning electrochemical microscopy (SECM) techniques. The R ct values increased and C dl values decreased with the increase in concentration of the inhibitor. The corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO 2 by polarization studies revealed that HPT acted as a mixed type inhibitor. The adsorption of HPT on the J55 steel surface obeyed the Langmuir adsorption isotherm. The thermodynamic parameters (K ads , ΔG° ads ) were also computed and discussed.

  13. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  14. Health physics aspects of the 1.5M cyclotron

    International Nuclear Information System (INIS)

    Song, W.J.; Du, H.L.; Wei, Z.Q.; Xia, X.S.; Zheng, H.Z.; Jiang, G.F.; Liu, Y.Y.

    1987-01-01

    The 1.5m cyclotron in Institute of Modern Physics, Academia Sinica had operated for about 20 years until 1984 then converted to 1.7m sector focusing cyclotron. In this period it mainly used for fast neutron physics, light ion induced nucleus reactions, radioisotope production and heavy ion reactions. The health physics performed on this cyclotron including personnel dose monitoring, area monitoring (radiation field, radioactive aerosol, surface contamination and activated components etc.), maintenance inspection, environment survey and waste disposal is presented in this paper

  15. Accumulation of radioactive corrosion products on steel surfaces of VVER type nuclear reactors. I. 110mAg

    CSIR Research Space (South Africa)

    Hirschberg, G

    1999-03-01

    Full Text Available contaminants in the passive layer formed on austenitic stainless steel. In the first part of the series the accumulation of 110mAg has been investigated. Potential dependent sorption of Ag+. ions (cementation) is found to be the predominant process...

  16. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  17. Performance of three 4.5 m dipoles for SSC reference design D

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Fernow, R.

    1985-01-01

    Three 4.5 m long dipoles for Reference Design D of the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos theta coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6T with little training, or the short sample limit of the conductor, and in subcooled (2.6 to 2.4 K) liquid, 8T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated at eight times the required current without training

  18. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    Science.gov (United States)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  19. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

    Science.gov (United States)

    2018-01-01

    Objectives To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal (60° angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase. PMID:29765904

  20. Hydrogen transport in iron and steel

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Derrick, R.G.; Donovan, J.A.; Caskey, G.R. Jr.

    1975-01-01

    The permeabilities of protium, deuterium, and tritium in iron and T-1 steel at temperatures as low as 260 0 K are in agreement with the equation proposed by Gonzalez. However, the permeabilities of HP-9-4-20 and 4130 steel to hydrogen are typically lower than predicted. The present data also show that, within experimental accuracy, the isotope effect on the permeability of hydrogen in HP-9-4-20, 4130 and T-1 steel, and high purity iron can be estimated by an inverse square root of mass correction. Trapping effects prevent the development of diffusivity and solubility equations. (auth)

  1. INFLUENCE OF PLASMA NITRIDING ON THE CORROSION BEHAVIOUR AND ADHESION OF DLC COATINGS DEPOSITED ON AISI 420 STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Jorge N. Pecina

    2016-06-01

    Full Text Available In this work the corrosion behavior and adhesion of two DLC (“Diamond Like Carbon” films (“Soft” and “Hard” were studied. Both coatings were deposited by PACVD (“Plasma Assisted Chemical Vapour Deposition” on plasma-nitrided and non-nitrided AISI 420 stainless steel. Raman spectroscopy was conducted and surface hardness was measured. The microstructure by OM and SEM, was observed. Adhesion tests were performed with C. Rockwell indentation test. Salt Spray and immersion were performed in HCl. The “Soft” coating was 20 μm thick, the “Hard” film was about 2.5 μm. The hardness was of 500 HV in the “Soft” DLC and 1400 HV in the “Hard” DLC. Both coatings presented low friction coefficient and good adhesion when they were deposited on nitrided steel. Also presented good resistance to atmospheric corrosion. HCl DLC degradation slowed rapidly introduced uncoated samples.

  2. Environmental Fatigue Behaviors of CF8M Stainless Steel in 310 .deg. C Deoxygenated Water - Effects of Hydrogen and Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Cho, Pyungyeon; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kim, Tae Soon [Korea Hydro and Nuclear Power Corporation, Seoul (Korea, Republic of)

    2014-01-15

    The effects of environment and microstructure on low cycle fatigue (LCF) behaviors of CF8M stainless steels containing 11% of ferrites were investigated in a 310 .deg. C deoxygenated water environment. The reduction of LCF life of CF8M in a 310 .deg. C deoxygenated water was smaller than 316LN stainless steels. Based on the microstructure and fatigue surface analyses, it was confirmed that the hydrogen induced cracking contributed to the reduction in LCF life for CF8M as well as for 316LN. However, many secondary cracks were found on the boundaries of ferrite phases in CF8M, which effectively reduced the stress concentration at the crack tip. Because of the reduced stress concentration, the accelerated fatigue crack growth by hydrogen induced cracking was less significant, which resulted in the smaller environmental effects for CF8M than 316LN in a 310 .deg. C deoxygenated water.

  3. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    International Nuclear Information System (INIS)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk; Jeong, Jong Ryul; Maeng, Cheol Soo; Lee, Myoung Goo

    2016-01-01

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10"-"5 dpa.

  4. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk [KAIST, Daejeon (Korea, Republic of); Jeong, Jong Ryul [Chungnam University, Daejeon (Korea, Republic of); Maeng, Cheol Soo; Lee, Myoung Goo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10{sup -5} dpa.

  5. CORROSION RATE OF STEELS DX51D AND S220GD IN DIFFERENT CORROSION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Alina Crina CIUBOTARIU

    2016-06-01

    Full Text Available Corrosion in the marine environment is an important issue because the costs causes by marine corrosion increased year upon year. It is necessary a correctly approach to materials selection, protection and corrosion control to reduce this burden of wasted materials, wasted energy and wasted money. Many different types of corrosion attack can be observed to structures, ships and other equipment used in sea water service. Shipping containers are exposed to various corrosive mediums like as airborne salt, industrial pollutants, rain and saltwater. Transport damage during loading onto and unloading off trucks, train beds and ships breaches the paint coating which further contributes to corrosion. The result is shortened container life and high costs for container repair or replacement. The paper intends to evaluate, by gravimetric method, the corrosion rate and corrosion penetration rate of two types of carbon steel DX51D and S220GD. Carbon steel DX51D and hot-dip galvanized steel S220GD are used in marine and industrial applications for buildings cargo vessels, container ships and oil tankers. For testing it was used different corrosive environments: 5% NaOH solution; 5% HCL solution and 0.5M NaCl solution. The samples were immersed in 400mL of testing solution for exposure period of 28 days. Periodically at 3 days, 7 days, 14 days, 21 days and 28 days was measured de mass loss and evaluate the corrosion rate and corrosion stability coefficient. The steel DX51D was stable in 5% NaOH solution for 28 days, the values of corrosion stability coefficient was 7 after 3 days and 6 after 28 days of immersion in corrosive medium. In 5% HCL solution steels DX51D and S220GD was completely corroded in 21 days with a corrosion stability coefficient equal with 9 for 7 days and 8 for 21 days of immersion in corrosive solution. It was observed a good resistance for 3 days in 0.5M NaCl solution with a corrosion stability coefficient equal with 5, but after that

  6. 20 CFR 900.5 - Staff.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Staff. 900.5 Section 900.5 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES STATEMENT OF ORGANIZATION § 900.5 Staff. (a) The... the Act and performs such other functions as the Board may delegate to him. (b) Members of the staffs...

  7. Design Optimization of Long-Span Cold-Formed Steel Portal Frames Accounting for Effect of Knee Brace Joint Configuration

    OpenAIRE

    Thanh Duoc Phan; James B. P. Lim; Meheron Selowara Joo; Hieng-Ho Lau

    2017-01-01

    The application of cold-formed steel channel sections for portal frames becomes more popular for industrial and residential purposes. Experimental tests showed that such structures with long-span up to 20 m can be achieved when knee brace joints are included. In this paper, the influence of knee brace configuration on the optimum design of long-span cold-formed steel portal frames is investigated. The cold-formed steel portal frames are designed using Eurocode 3 under ultimate limit states. A...

  8. Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565 deg. C-675 deg. C

    International Nuclear Information System (INIS)

    Mustata, R.; Hayhurst, D.R.

    2005-01-01

    A two damage state variable model is used to describe the softening mechanisms, damage initiation and growth for a low alloy ferritic steel 1/2Cr-1/2Mo-1/4V at 565 and 590 deg. C within the Continuum Damage Mechanics framework. The level of complexity of the constitutive equations and the degree of coupling through damage is high and it is difficult to calibrate values of the constitutive constants without recourse to optimisation techniques. A methodology for the analysis of uni-axial experimental data, coupled with a traditional gradient-based optimisation technique, is presented for the unique determination of the constitutive constants. Two sets of experimental data on parent material are used for inversion purposes: at 565 deg. C, c.f. Cane [Cane BJ. Collaborative programme on the corelation of test data for high temperature design of welded steam pipes. Presentation and analysis of the material data. Note No. RD/L/2101N81, March, CEGB Laboratory; 1981]; and, at 590 deg. C, c.f. Miller [Miller DA. Private communication: 'Creep rupture testing of Cr M V pipe steel. ERA Project 63-01-040320009'. Barnwood, Gloucs, UK: British Energy; 2000]. The variation of the constitutive parameters with temperature in the range 565-590 deg. C has been deduced by considering the values of constitutive parameters for the same alloy deduced by Perrin and Hayhurst [Perrin IJ, Hayhurst DR. Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steel in the temperature range 600-675 deg. C. J Strain Anal 1996;31:299-314] in the temperature range 620-675 deg. C

  9. Detection and evaluation of embedded mild steel can material into 18 Cr-oxide dispersion strengthened steel tubes by magnetic Barkhausen emission

    Science.gov (United States)

    Kishore, G. V. K.; Kumar, Anish; Rajkumar, K. V.; Purnachandra Rao, B.; Pramanik, Debabrata; Kapoor, Komal; Jha, Sanjay Kumar

    2017-12-01

    The paper presents a new methodology for detection and evaluation of mild steel (MS) can material embedded into oxide dispersion strengthened (ODS) steel tubes by magnetic Barkhausen emission (MBE) technique. The high frequency MBE measurements (125 Hz sweep frequency and 70-200 kHz analyzing frequency) are found to be very sensitive for detection of presence of MS on the surface of the ODS steel tube. However, due to a shallow depth of information from the high frequency MBE measurements, it cannot be used for evaluation of the thickness of the embedded MS. The low frequency MBE measurements (0.5 Hz sweep frequency and 2-20 kHz analyzing frequency) indicate presence of two MBE RMS voltage peaks corresponding to the MS and the ODS steel. The ratio of the two peaks changes with the thickness of the MS and hence, can be used for measurement of the thickness of the MS layer.

  10. Tribology of steel/steel interaction in oil-in-water emulsion; a rationale for lubricity.

    Science.gov (United States)

    Kumar, Deepak; Daniel, Jency; Biswas, S K

    2010-05-15

    Oil droplets are dispersed in water by an anionic surfactant to form an emulsion. The lubricity of this emulsion in steel/steel interaction is explored in a ball on flat nanotribometer. The droplet size and charge are measured using dynamic light scattering, while the substrate charge density is estimated using the pH titration method. These data are combined to calculate the DLVO forces for the droplets generated for a range of surfactant concentration and two oil to water volume ratios. The droplets have a clear bi-modal size distribution. The study shows that the smaller droplets which experience weak repulsion are situated (at the highest DLVO barrier) much closer to the substrate than the bigger droplets, which experience the same DLVO force, are. We suggest that the smaller droplets thus play a more important role in lubricity than what the bigger droplets do. The largest volume of such small droplets occurs in the 0.5 mM-1 mM range of surfactant concentration and 1% oil to water volume ratio, where the coefficient of friction is also observed to be the least. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Estimates of margins in ASME Code strength values for stainless steel nuclear piping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1995-01-01

    The margins in the ASME Code stainless steel allowable stress values that can be attributed to the variations in material strength are evaluated for nuclear piping steels. Best-fit curves were calculated for the material test data that were used to determine allowable stress values for stainless steels in the ASME Code, supplemented by more recent data, to estimate the mean stresses. The mean yield stresses (on which the stainless steel S m values are based) from the test data are about 15 to 20% greater than the ASME Code yield stress values. The ASME Code yield stress values are estimated to approximately coincide with the 97% confidence limit from the test data. The mean and 97% confidence limit values can be used in the probabilistic risk assessments of nuclear piping

  12. Synthesis of 20-14C 3β-hydroxy-5β-pregnan-20-one

    International Nuclear Information System (INIS)

    Garraffo, H.M.; Gros, E.G.

    1982-01-01

    20 - 14 C 3β-hydroxy-5β-pregnan-20-one was synthesised by condensing 3β-acetoxy-5β-androstan-17-one with potassium 14 C cyanide to produce cyanohydrin. This was dehydrated and the resulting unsaturated nitrile treated with methylmagnesiumiodide to produce hydroxypregnenone. Hydrogenation of this gave 14 C 3β-hydroxy-5β-pregnan-20-one. (U.K.)

  13. Evaluation of microstructure and mechanical properties of 50Cr5NiMoV steel for forged backup roll

    Energy Technology Data Exchange (ETDEWEB)

    Song, X.Y.; Zhang, X.J.; Fu, L.C.; Yang, H.B.; Yang, K.; Zhu, L., E-mail: zl508@126.com

    2016-11-20

    The microstructure and mechanical properties of forged 50Cr5NiMoV steel backup roll were evaluated in this study. The microstructure characteristics from surface to center along radial direction of the backup roll were carefully observed by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the chemical composition, hardness, tensile property, impact and fracture toughness in different position of the backup roll were also examined. The results indicate that the finely precipitated carbides at different matrix during heat treatment process strongly influence mechanical properties of the backup roll. Especially, the spheroidized pearlite at the inner regions which consists of large globular or rod-like M{sub 7}C{sub 3} and a little of small globular M{sub 23}C{sub 6} possesses much better toughness and fracture resistance properties than those of the lamellar pearlite with lamellar M{sub 23}C{sub 6} and a little of globular M{sub 7}C{sub 3}.

  14. Calibrated acoustic emission system records M -3.5 to M -8 events generated on a saw-cut granite sample

    Science.gov (United States)

    McLaskey, Gregory C.; Lockner, David A.

    2016-01-01

    Acoustic emission (AE) analyses have been used for decades for rock mechanics testing, but because AE systems are not typically calibrated, the absolute sizes of dynamic microcrack growth and other physical processes responsible for the generation of AEs are poorly constrained. We describe a calibration technique for the AE recording system as a whole (transducers + amplifiers + digitizers + sample + loading frame) that uses the impact of a 4.76-mm free-falling steel ball bearing as a reference source. We demonstrate the technique on a 76-mm diameter cylinder of westerly granite loaded in a triaxial deformation apparatus at 40 MPa confining pressure. The ball bearing is dropped inside a cavity within the sample while inside the pressure vessel. We compare this reference source to conventional AEs generated during loading of a saw-cut fault in a second granite sample. All located AEs occur on the saw-cut surface and have moment magnitudes ranging from M5.7 down to at least M −8. Dynamic events rupturing the entire simulated fault surface (stick–slip events) have measurable stress drop and macroscopic slip and radiate seismic waves similar to those from a M −3.5 earthquake. The largest AE events that do not rupture the entire fault are M5.7. For these events, we also estimate the corner frequency (200–300 kHz), and we assume the Brune model to estimate source dimensions of 4–6 mm. These AE sources are larger than the 0.2 mm grain size and smaller than the 76 × 152 mm fault surface.

  15. Properties of low-alloy steel with tellurium

    International Nuclear Information System (INIS)

    Popova, L.V.; Lebedev, D.V.; Litvinenko, D.A.; Nasibov, A.G.

    1983-01-01

    The results of investigations into 09G2 and 09G2F steels alloyed with tellurium after controlled rolling are presented. 0.002-0.011% tellurium additions did not change strength and plastic properties of the steels after controlled rolling. Tellurium additions results in 40-50% increase of the steel impact strength on samples With circular and sharp cuts in brittle-viscous region. 0.002-0.003% of tellurium is considered to be the optimum content from the view point of increa=. sing steel strength. Increase of impact strength takes place at the expense of growth of both work function of crack formation and work function of crack propagation but in different temperature ranges: at the expense of firstone at 80-40 deg C, at the expense of second one at 20-40 deg C. 0.002-0.011% teilurium additions mainly at the expense of sulphide globularization bring about decrease of anisotropy of steet properties by impact strength reducing anisotropy factor from 2 to 1.5

  16. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    Science.gov (United States)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  17. Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel

    Science.gov (United States)

    Lian, Yong; Huang, Jinfeng; Zhang, Jin; Zhang, Cheng; Gao, Wen; Zhao, Chao

    2015-11-01

    The effect that a 0, 0.2, and 0.5 wt.% titanium content has on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel was investigated using an optical microscope, transmission electron microscope, and X-ray diffraction. The resultant microstructures of the three steels were tempered martensite with a reversed austenite dispersed throughout the matrix. Additionally, the formation of Cr-rich carbides was suppressed by stable Ti(C, N), which improved the strength without severely decreasing in the Ti-microalloyed steel toughness. Nano-precipitation of Ni3Ti was found for the 0.5 wt.% Ti steel during tempering, which significantly increased the strength, but decreased the toughness. The reversed austenite volume fraction also significantly influenced the mechanical properties.

  18. Steel corrosion in tributyl phosphate in the presence of water and ethyl mercaptan

    International Nuclear Information System (INIS)

    Pischik, L.M.; Tsinman, A.I.

    1979-01-01

    Studied is the corrosion of steels St3, 15Kh5M, 08Kh13, 10Kh14G14N4T, 08Kh18G8N2T, 10Kh17N13M2T in TBP, in mixtures of TBP with ethyl mercaptan (EM) and two-phase systems TBP-water and TBP-water-EM at 50-150 deg. In pure TBP St3 corrosion rate is low even at 150 deg. In the presence of water St 3 strongly corrodes at above 50 deg temperature in organic and water layers and also in gas phase. The steel-08Kh18G8N2T at 90 deg in acid TBP is passive and its corrosion rate is lower than 0.01 mm/year. In identical conditions the resistance of stainless steels increases together with chromium content but in TBP with acid number 100 and above at 150 deg all tested steels including steel-10Kh17N13M2T are slightly resistant. Thus, even in absence of corrosion active additions of EM the mixture of TBP-water at higher temperature is agressive in relation not only to carbon steel but also to stainless steels

  19. Structural characterization of “carbide-free” bainite in a Fe–0.2C–1.5Si–2.5Mn steel

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Christina, E-mail: christina.hofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Leitner, Harald [Böhler Edelstahl GmbH & Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria); Winkelhofer, Florian [voestalpine Stahl Linz GmbH, voestalpine-Straße 3, 4020 Linz (Austria); Clemens, Helmut; Primig, Sophie [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-04-15

    Low-alloyed, low C containing carbide-free bainitic steels are attractive candidates for applications in the automotive industry due to their well-balanced combination of high strength and ductility achieved in an economic way. In this work, their complex microstructure consisting of a mixture of bainitic ferrite, austenite with different morphologies and stabilities, martensite, M/A constituent and a few carbides has been investigated with metallographic and high-resolution techniques. After specific isothermal heat treatments in a dilatometer, a combination of LePera and Nital etching was applied to distinguish between bainite and martensite. Site-specific atom probe tips were prepared by means of scanning electron microscopy, electron backscatter diffraction and focused ion beam, revealing that “carbide-free” bainite consists of C depleted bainitic ferrite, C enriched retained austenite and occasional ε-carbides. Furthermore, it was found that the M/A constituent is highly dislocated and mainly martensitic. Its C content is increased compared to the nominal composition, but below the values obtained for retained austenite, explaining the lower transformation resistance. - Highlights: • Detailed top-down characterization of low C “carbide-free” bainitic steel • APT of all constituents in “carbide-free” bainite • Identification of ε-carbide based on its C content determined by APT • M/A constituent is mainly martensitic with austenitic areas at the boundaries • Lower C content of M/A constituent explains its lower stability.

  20. Corrosion inhibition efficiency of linear alkyl benzene derivatives for carbon steel pipelines in 1M HCl

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available Linear alkyl benzene sulfonic acid (L and three of its ester derivatives (L1, L2, L3 were prepared, followed by quaternization of these esters (L1Q, L2Q, L3Q. The corrosion inhibition effect on carbon steel in 1 M HCl was studied using weight loss and potentiodynamic polarization measurements. The adsorption of the inhibitors on carbon steel surface obeyed the Langmuir’s adsorption isotherm. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy (ΔH∗, entropy (ΔS∗ of activation, adsorption–desorption equilibrium constant (Kads, standard free energy of adsorption (ΔGoads, heat (ΔHoads, and entropy of adsorption (ΔSoads were calculated to elaborate the corrosion inhibition mechanism.

  1. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    Directory of Open Access Journals (Sweden)

    Hussien Aldeeky

    2017-01-01

    Full Text Available The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA were added and mixed into the prepared soil samples. The effectiveness of the FSSA was judged by the improvement in consistency limits, compaction, free swell, unconfined compression strength, and California bearing ratio (CBR. From the test results, it is observed that 20% FSSA additives will reduce plasticity index and free swell by 26.3% and 58.3%, respectively. Furthermore, 20% FSSA additives will increase the unconfined compressive strength, maximum dry density, and CBR value by 100%, 6.9%, and 154%. By conclusion FSSA had a positive effect on the geotechnical properties of the soil and it can be used as admixture in proving geotechnical characteristics of subgrade soil, not only solving the waste disposal problem.

  2. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  3. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    Science.gov (United States)

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Superheat effect on bainite steel hardenability

    International Nuclear Information System (INIS)

    Kubachek, V.V.; Sklyuev, P.V.

    1978-01-01

    The bainite hardenability of 34KhN1M and 35 KhN1M2Ph steels has been investigated by the end-face hardening technique. It is established that, as the temperature of austenitization rises from 900 to 1280 deg C, the temperature of bainite transformation increases and bainite hardenability of the steels falls off. A repeated slow heating to 900 deg C of previously overheated 34KhN1M steel breaks up grain, lowers the temperature of the bainite transformation and raises the hardenability to values obtained with ordinary hardening from 900 deg C. A similar heating of previously overheated 35KhN1M2Ph steel is accompanied by restoration of initial coarse grains and maintenance of both the elevated bainite transformation temperature and to lower hardenability corresponding to hardening from the temperature of previous overheating

  5. Extractive-photometric determination of niobium with N-benzoylphenylhydroxylamine and lumogallion in alloyed steels

    International Nuclear Information System (INIS)

    Patratij, Yu.V.; Pilipenko, A.T.

    1978-01-01

    An extractive-photometric method has been developed to determine niobium (5) present as a heteroligand complex with N-benzoylphenylhydroxylamine (BPH) and lumogallion in alloyed steels. The method is based on preliminary extraction of niobium in a complex with BPH from concentrated HCl and subsequent determination of niobium in a 5-n (with respect to HCl) solution with lumogallion added. Sensitivity of the method is 2.0 μg of niobium in 10 ml of extract. The method has been tested on standard steels specimens

  6. Influence of tempering temperature on mechanical properties of cast steels

    Directory of Open Access Journals (Sweden)

    G. Golański

    2008-12-01

    Full Text Available The paper presents results of research on the influence of tempering temperature on structure and mechanical properties of bainite hardened cast steel: G21CrMoV4 – 6 (L21HMF and G17CrMoV5 – 10 (L17HMF. Investigated cast steels were taken out from internal frames of steam turbines serviced for long time at elevated temperatures. Tempering of the investigated cast steel was carried out within the temperature range of 690 ÷ 730 C (G21CrMoV4 – 6 and 700 ÷ 740 C (G17CrMoV5 – 10. After tempering the cast steels were characterized by a structure of tempered lower bainite with numerous precipitations of carbides. Performed research of mechanical properties has shown that high temperatures of tempering of bainitic structure do not cause decrease of mechanical properties beneath the required minimum.oo It has also been proved that high-temperature tempering (>720 oC ensures high impact energy at the 20% decrease of mechanical properties.

  7. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  8. Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel

    International Nuclear Information System (INIS)

    Liu, J.

    2012-01-01

    This study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200 C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200 C has higher fracture toughness than pure martensitic 15-5PH at 200 C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated

  9. Hot-Dip Coating of Lead-free Aluminum on Steel Substrates with Ultrasonic Vibration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hot-dip coating has been practically employed in manufacturing zinc alloy coated steel sheets. However, it is difficult to coat aluminum alloy on a bulky steel substrate without sufficient preheating, because a rapidly solidified layer containing gas babbles is formed on a substrate surface. A variety of iron-aluminides are also formed at the interface of a steel and aluminum hot-dip coating system, which is the main difficulty in joining of steel with aluminum. Ultrasonic vibration was applied to a steel substrate during hot-dip coating of aluminum alloy to control a rapidly solidified layer and a brittle reaction layer. Hot dipping of columnar steel substrates into molten aluminum alloy (Al-2.7 mass fraction Si-4.6 mass fraction Sn) was carried out through the use of a Langevin oscillator with resonant frequency of 19.5 kHz. The application of ultrasonic vibration is quite effective to control a rapidly solidified layer and a surface oxide layer from a substrate surface by the sonocapillary effect based on a cavitation phenomenon, so that the intimate contact is achieved at the beginning of hot-dip coating. The application of ultrasonic vibration to hot-dipping is effective to control a reaction layer with less than 5μm in thickness. An impact test exhibits that the good adhesive strength is approved in hot-dipped aluminum coatings with a thin reaction layer of approximately 5μm.

  10. Measurement and analysis of polarization curves of mild steel in sodium carbonate/bicarbonate solution under erosion-corrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q. [Taiyuan University of Technology, Taiyuan (China). Research Institute of Surface Engineering

    2002-06-01

    The polarization curves of mild steel in de-aerated 0.5 and mol NaHCO{sub 3} + 0.5 mol Na{sub 2}CO{sub 3} solution with and without erodent particles of 300 g/L of 100 {mu}m alumina have been measured using a rotating cylinder electrode (RCE) apparatus over the range of rotation speeds fro 0 to 4,000 r/min. The results show that the mild steel in the de-aerated slurry exhibits classical active/passive polarization behavior. The speed of cylinder rotation has a great effect in the presence of particles on the active dissolution current density. The erosion-corrosion process is severely erosion-dominated for the mild steel. However, the poor corrosion resistance of the mild steel in such turbulent slurries is also significant, especially at lower than 4 m/s. 19 refs., 5 figs.

  11. 0.20-m (8-in.) primary burner development report

    International Nuclear Information System (INIS)

    Stula, R.T.; Young, D.T.; Rode, J.S.

    1977-12-01

    High-Temperature Gas-Cooled Reactors (HTGRs) utilize graphite-base fuels. Fluidized-bed burners are being employed successfully in the experimental reprocessing of these fuels. The primary fluidized-bed burner is a unit operation in the reprocessing flowsheet in which the graphite moderator is removed. A detailed description of the development status of the 0.20-m (8-in.) diameter primary fluidized-bed burner as of July 1, 1977 is presented. Experimental work to date performed in 0.10; 0.20; and 0.40-m (4, 8, and 16 in.) diameter primary burners has demonstrated the feasibility of the primary burning process and, at the same time, has defined more clearly the areas in which additional experimental work is required. The design and recent operating history of the 0.20-m-diameter burner are discussed, with emphasis placed upon the evolution of the current design and operating philosophy

  12. Corrosion of austenitic steels and their components in vanadium-containing chloride melts

    Science.gov (United States)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Lisienko, D. G.

    2014-08-01

    The corrosion of austenitic 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 steels and their components (Cr, Fe, Ni, Mo) in NaCl-KCl-VCl2 melts with 5 wt % V at 750°C is studied. The rates and mechanisms of corrosion of the materials under these conditions are determined. The processes that occur during contact of the metals and steels with vanadium-containing chloride electrolytes are investigated.

  13. Tribological behavior of 440C martensitic stainless steel from -184 C to 750 C

    Science.gov (United States)

    Slifka, A. J.; Compos, R.; Morgan, T. J.; Siegwarth, J. D.; Chaudhuri, Dilip K.

    1992-01-01

    Characterization of the coefficient of friction and wear rate of 440C stainless steel is needed to understand the effects of frictional heating in the bearings of the High Pressure Oxygen Turbopump of the Space Shuttle Main Engine. The coefficient of friction and wear rate have been measured over a range of temperature varying from liquid oxygen temperature (-184 C) to 750 C. The normal load has also been varied resulting in a variation of Hertzian stress from 0.915 to 3.660 GPa while the surface velocity has been varied from 0.5 to 2.0 m/s.

  14. Radiation blistering of stainless steel

    International Nuclear Information System (INIS)

    Yoshii, Naritsugu; Tanabe, Tetsuo; Imoto, Shosuke

    1980-01-01

    Surface blistering of stainless steels due to 20 keV He + ion bombardment has been investigated by examination of surface topography with a scanning electron microscope (SEM) and an optical microscope. Blisters of 0.1 to 2 μm in diameter are observed in all samples irradiated with fluence of about 1 x 10 18 He + /cm 2 at any temperature between -80 0 C and 500 0 C. With increasing the fluence blister covers are ruptured and exfoliated and finally the surface becomes rough surface without traces of blister formation. The surface effect is severer at 500 0 C than at 100 0 C irradiation. Also in double-phase stainless steel DP-3, similar surface topography to 316 SS is observed. But by the difference of the erosion rate by sputtering of the surface between α-phase and γ-phase, a striped pattern appears in DP-3 with heavy irradiation of about 2 x 10 19 He + /cm 2 . (author)

  15. Annealing effect on restoration of irradiation steel properties

    International Nuclear Information System (INIS)

    Vishkarev, O.M.; Kolesova, T.N.; Myasnikova, K.P.; Pecherin, A.M.; Shamardin, V.K.

    1986-01-01

    The effect of temperature and annealing time on the restoration of properties of the 15Kh2NMFAA and 15Kh2MFA steels after irradiation at 285 deg with the fluence of 6x10 23 neutr/m 2 (E>0.5 MeV) is studied. Microhardness (H μ ) restoration in the irradiated 15Kh2NMFAA steel is shown to start from 350 deg C annealing temperature. The complete microhardness restoration is observed at the annealing temperature of 500 deg C for 10 hours

  16. Holographic cosmology from a system of M2–M5 branes

    International Nuclear Information System (INIS)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2016-01-01

    In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  17. Holographic cosmology from a system of M2–M5 branes

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Setare, Mohammad Reza, E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Ali, Ahmed Farag, E-mail: afali@fsu.edu [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt)

    2016-05-15

    In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  18. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Directory of Open Access Journals (Sweden)

    Abdul Amir H. Kadhum

    2014-06-01

    Full Text Available A new coumarin derivative, N,N′-((2E,2′E-2,2′-(1,4-phenylenebis (methanylylidenebis(hydrazinecarbonothioylbis(2-oxo-2H-chromene-3-carboxamide PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear  magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR. The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.

  19. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Science.gov (United States)

    Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.

    2014-01-01

    A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680

  20. Conversion electron Moessbauer study of low carbon steel polarized in aqueous sulfate solution containing sulfite in low concentration

    International Nuclear Information System (INIS)

    Vertes, Cs.; Lakatos-Varsanyi, M.; Vertes, A.; Kuzmann, E.; Meisel, W.; Guetlich, P.

    1992-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5 M Na 2 SO 4 +0.001 M NaHSO 3 at pH=3.5 and 6.5. The found major components at pH=3.5 were: γ-FeOOH and Fe 3 C, and also FeSO 4 .H 2 O could be identified on the surface of the low carbon steel as a minor component. At pH=6.5, the passive film contained only amorphous iron(III)-oxide or oxyhydroxide. (orig.)

  1. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20... galvanized steel wire from China and Mexico were sold at LTFV within the meaning of 733(b) of the Act (19 U.S...

  2. Stress corrosion cracking of 350 maraging steel in 3.5 Wt. % NaCl solution

    International Nuclear Information System (INIS)

    Hussain, I.; Hussain, T.; Tauqir, A.; Hashmi, F.H.; Khan, A.Q.

    1993-01-01

    Stress corrosion behavior of 350 maraging steel in 3.5 wt.% NaCl solution was investigated. The results suggest that the steel is susceptible to stress corrosion cracking as the time to failure was always considerably shorter, as compared to those in air at the same stress level. The fracture mode was nearly intergranular and occasionally transgranular. There was no definite trend for the different modes of failure. The strain rate effect was also considered and the results show that the stress corrosion cracks were absent at strain rate high than 1.97 x 10/sup -4/S/sup -1/ and lower than 1.29 x 10/sup -7/S/sup -1/. The critical strain rate range was found to be between 6.4 x 10/sup -7/ to 3.24 x10/sup -5/S /sup -1/. (author)

  3. Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building

    Directory of Open Access Journals (Sweden)

    Lacki Piotr

    2017-12-01

    Full Text Available The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab and truss elements (reinforcement bars. The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.

  4. Composite Bonding to Stainless Steel Crowns Using a New Universal Bonding and Single-Bottle Systems

    OpenAIRE

    Mohammad Ali Hattan; Sharat Chandra Pani; Mohammad AlOmari

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), ...

  5. Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

    Science.gov (United States)

    Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung

    2017-01-01

    In Fe-3%Si-0.3%C steel sheet, a relatively strong //ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the //ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the //ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

  6. Evaluation of protective effect of deposits formed by naphthenic corrosion and sulfidation on carbon steel and steel 5Cr-0.5Mo exposed in atmospheric distillation fractions

    Directory of Open Access Journals (Sweden)

    Gloria Duarte

    2017-05-01

    Full Text Available Refining of so-called opportunity crude oils with a high level of naphthenic acids and sulfur compounds has been increasing interest due to limited availability of light crude oils, however, considerable corrosive effects in the processing to high temperature on pipes and distillation towers mainly by the attack of naphthenic acids and sulfur compounds; sulfur compounds could be corrosive or can reduce the attack of naphthenic acids due to the formation of sulfides layers on the metal surface. In this work was evaluated the performance of deposits formed on the surface of carbon steel AISI SAE 1020 and 5% Cr-0.5% Mo steel exposed in crude oil fractions obtained from atmospheric distillation tower. For this, gravimetric tests were performed in dynamic autoclave using metal samples pre-treated in a crude oil fraction obtained from the atmospheric distillation tower of the Crude Distillation Unit (CDU # 1 in order to form layers of sulfides on the surface of the two materials and subsequently to expose pre-treated and non-pretreated samples in two different crude oil fractions obtained from atmospheric distillation tower of Crude Distillation Unit (CDU # 2. The evaluation showed that the samples pretreated decreased tendency to corrosion by naphthenic acids and sulfidation compared to untreated samples.

  7. Effect of mechanical pre-loadings on corrosion resistance of chromium-electroplated steel rods in marine environment

    Science.gov (United States)

    Shubina Helbert, Varvara; Dhondt, Matthieu; Homette, Remi; Arbab Chirani, Shabnam; Calloch, Sylvain

    2018-03-01

    Providing high hardness, low friction coefficient, as well as, relatively good corrosion resistance, chromium-plated coatings (∼20 μm) are widely used for steel cylinder rods in marine environment. However, the standardized corrosion test method (ISO 9227, NSS) used to evaluate efficiency of this type of coatings does not take into account in-service mechanical loadings on cylinder rods. Nevertheless, the uniform initial network of microcracks in chromium coating is changing under mechanical loadings. Propagation of these microcracks explains premature corrosion of the steel substrate. The aim of the study was to evaluate relationship between mechanical loadings, propagation of microcracks network and corrosion resistance of chromium coatings. After monotonic pre-loading tests, it was demonstrated by microscopic observations that the microcracks propagation started at stress levels higher than the substrate yield stress (520 MPa). The microcracks become effective, i.e. they have instantly undergone through the whole coating thickness to reach the steel substrate. The density of effective microcracks increases with the total macroscopic level, i.e. the intercrack distance goes from 60 ± 5 μm at 1% of total strain to approximately 27 ± 2 μm at 10%. Electrochemical measurements have shown that the higher the plastic strain level applied during mechanical loading, the more the corrosion potential of the sample decreased until reaching the steel substrate value of approximately ‑0.65 V/SCE after 2 h of immersion. The polarization curves have also highligthed an increase in the corrosion current density with the strain level. Therefore, electrochemical measurements could be used to realize quick and comprehensive assesment of the effect of monotonic pre-loadings on corrosion properties of the chromium coating.

  8. Effect of Controlled Cooling on Microstructure and Tensile Properties of Low C Nb-Ti-Containing HSLA Steel for Construction

    Directory of Open Access Journals (Sweden)

    Yi Fan

    2017-01-01

    Full Text Available The thermo-mechanical control processing (TMCP of low carbon (C Nb-Ti-containing HSLA steel with different cooling rates from 5 to 20 °C/s was simulated using a Gleeble 3500 system. The samples’ microstructure was characterized and the tensile properties measured. The results show that a microstructure mainly consisting of quasi-polygonal ferrite (QPF, granular bainitic ferrite (GBF, and martensite/austenite (M/A constituent formed in each sample. Furthermore, the accelerated cooling led to a significant grain refinement of the QPF and GBF, and an increase in the density of dislocations, as well as suppressed the precipitation of nanoscale particles; however, the overall yield strength (YS still increased obviously. The accelerated cooling also brought about a decrease in amount of M/A constituent acting as a mixed hard phase, which weakened the overall strain-hardening capacity of the QPF + GBF + M/A multiphase steel and simultaneously elevated yield-to-tensile strength ratio (YR. In addition, the mechanisms in dominating the influence of controlled cooling on the final microstructure and tensile properties were discussed.

  9. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  10. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  11. Performance of six 4.5 m SSC [Superconducting Super Collider] dipole model magnets

    International Nuclear Information System (INIS)

    Willen, E.; Dahl, P.; Cottingham, J.

    1986-01-01

    Six 4.5 m long dipole models for the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6 T with little training, or the short sample limit of the conductor, and in subcooled (2.6 - 2.4 K) liquid, 8 T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated well above the required current with little training

  12. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments

    International Nuclear Information System (INIS)

    Bala Srinivasan, P.; Sharkawy, S.W.; Dietzel, W.

    2004-01-01

    Supermartensitic stainless steel (SMSS) grades are gaining popularity as an alternate material to duplex and super duplex stainless steels for applications in oil and gas industries. The weldability of these steels, though reported to be better when compared to conventional martensitic stainless steels, so far has been addressed with duplex stainless steel electrodes/fillers. This work addresses the stress-cracking behaviour of weldments of a high-grade supermartensitic stainless steel (11% Cr, 6.5% Ni and 2% Mo) in the presence of hydrogen. Welds were produced with matching consumables, using electron beam welding (EBW) process. Weldments were subjected to slow strain rate tests in 0.1 M NaOH solution, with introduction of hydrogen into the specimens by means of potentiostatic cathodic polarisation at a potential of -1200 mV versus Ag/AgCl electrode. Reference tests were performed in air for comparison, and the results suggest that both the SMSS base material and the EB weld metal are susceptible to embrittlement under the conditions of hydrogen charging

  13. Irradiation damage behavior of low alloy steel wrought and weld materials

    International Nuclear Information System (INIS)

    Stofanak, R.J.; Poskie, T.J.; Li, Y.Y.; Wire, G.L.

    1993-01-01

    A study was undertaken to evaluate the irradiation damage response of several different types of low alloy steel: vintage type ASTM A302 Grade B (A302B) plates and welds containing different Ni and Cu concentrations, 3.5% Ni steels similar to ASTM A508 Class 4, welds containing about 1% Ni (similar to type 105S), and 3.5% Ni steels with ''superclean'' composition. All materials were irradiated at several different irradiation damage levels ranging from 0.0003 to 0.06 dpa at 232C (450F). Complete Charpy V-notch impact energy transition temperature curves were generated for all materials before and after irradiation to determine transition temperature at 4IJ (30 ft-lb) or 47J (35 ft-lb) and the upper shelf energy. Irradiation damage behavior was measured by shift in Charpy 41J or 47J transition temperature (ΔTT4 41J or ΔTT 47J ) and lowering of upper shelf Charpy energy at a given irradiation damage level. It was found that chemical composition greatly influenced irradiation damage behavior; highest irradiation damage (greatest ΔTT) was found in an A302B type weld containing 1.28% Ni and 0.20% Cu while the least damage was found in 3.5% Ni, 0.05% Cu, superclean wrought materials. Combination of Ni and Cu was found to affect irradiation damage behavior at higher irradiation damage levels in the A302B welds where the 1.28% Ni, 0.20% Cu weld showed more damage than a 0.60% Ni, 0.31% Cu weld. For the 3.5% Ni steels, fabrication influenced irradiation behavior in that a silicon (Si) killed material showed greater irradiation damage than a low silicon material. In general, the 3.5% Ni materials with low copper showed less irradiation damage than the A302B materials

  14. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel

    International Nuclear Information System (INIS)

    Kaneko, Kenji; Fukunaga, Tatsuya; Yamada, Kazuhiro; Nakada, Nobuo; Kikuchi, Masao; Saghi, Zineb; Barnard, Jon S.; Midgley, Paul A.

    2011-01-01

    Graphical abstract: Precipitate formation during the in situ annealing experiment at 650 o C. -- Formation of M 23 C 6 carbides and chromium-depleted zones in commercially available type 304L stainless steel were investigated by in situ transmission electron microscopy and analytical transmission electron microscopy. It was found that each individual small M 23 C 6 carbide starts to grow with a clear orientation relationship with the matrix, and film-like carbide was subsequently observed at the interfaces with asymmetric Cr-depleted zones. From these experimental results, a model describing the precipitation of M 23 C 6 and the formation of the Cr-depleted zone was proposed.

  15. Morphology and Performance of 5Cr5MoV Casting Die Steel in the Process of Surfacing

    Science.gov (United States)

    Song, Yulai; Kong, Xiangrui; Yang, Pengcong; Fu, Hongde; Wang, Xuezhu

    2017-12-01

    To investigate the microstructures and mechanical properties of the deposited metal on surface of die steel, two layer of weld-seam were prepared on the surface of 5Cr5MoV die steel by arc surfacing. The surface microstructures and microhardness were characterized by scanning electron microscopy, energy dispersive spectrometer and Vickers microhardness tester, respectively. The effect of load on the abrasion resistance and wear mechanism of the base metal and surfacing metal was studied by pin-on-disk tribometer. The results showed that martensite and retained austenite exist in weld-seam, both of them grow up in the form of dendrites and equiaxed grains and microhardness reach 774.2HV. The microstructures of the quenching zone mainly consist of martensite and retained austenite, while tempered martensite is the dominant phase in partial quenching zone. The abrasion resistance of the surfacing metal is superior to the base metal based on the results of wear test. The wear rates of surfacing metal and base metal raise with the increase of load. The wear rates of base metal raise extremely when the load reach 210N. Both of two kinds of materials have the similar wear mechanism, namely, abrasive wear at low load, oxidative wear and adhesive wear at high load.

  16. Improved fatigue behavior of low-carbon steel 20GL by applying ultrasonic impact treatment combined with the electric discharge surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mordyuk, B.N., E-mail: mordyuk@imp.kiev.ua [Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky blvd., UA-03142, Kyiv (Ukraine); Prokopenko, G.I.; Volosevich, P.Yu. [Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky blvd., UA-03142, Kyiv (Ukraine); Matokhnyuk, L.E.; Byalonovich, A.V. [Pisarenko Institute for Strength of Materials, NAS of Ukraine, 2 Timiryazevs’ka str., UA-01014, Kyiv (Ukraine); Popova, T.V. [Ukrainian Research Institute Rail carriage building, 33 Prikhodko str., UA-39621, Kremenchuk (Ukraine)

    2016-04-06

    The effects of severe plastic deformation induced by ultrasonic impact treatment (UIT) and the electric discharge surface alloying (EDSA) with chromium on the stress-controlled fatigue response of low-carbon steel 20GL are studied. The surface microrelief and integrity were analyzed using light microscopy and scanning electron microscopy (SEM). The structural formations in the sub-surface layers were characterized by means of X-ray diffraction analysis and transmission electron microscopy (TEM). The steel specimens underwent UIT, and complex UIT+EDSA and UIT+EDSA+UIT processes demonstrate the fatigue strength magnitudes increased respectively by ~15, ~5 and ~30% on the base of 10{sup 7} cycles in comparison with that for the pristine specimen. SEM analysis of fracture surfaces reveals the subsurface crack nucleation in the UIT-processed specimens instead of superficial crack initiation observed in the pristine and EDSA-processed ones. TEM studies demonstrate that a dislocation-cell structure forms in ferrite grains and partial dissolution of cementite occurs in pearlite grains both at the surface after UIT and in the layer at a depth of 15–25 µm after the UIT+EDSA+UIT process. The enhanced fatigue strength and prolonged lifetime of the low-carbon steel specimens after UIT and UIT+EDSA+UIT processes are concluded to be associated with the subsurface crack nucleation achieved by the following factors: (i) minimized surface roughness and improved integrity of the modified layer; (ii) compressive residual stresses; and (iii) surface hardening coupled with the alloying by chromium and with the formation of the dislocation-cell structure containing the cell walls impenetrable to moving dislocations at cyclic loading.

  17. Casting technology for ODS steels - the internal oxidation approach

    Science.gov (United States)

    Miran, S.; Franke, P.; Möslang, A.; Seifert, H. J.

    2017-07-01

    The formation of stainless ODS steel by internal oxidation of as-cast steel has been investigated. An alloy (Fe-16Cr-0.2Al-0.05Y, wt.%) was embedded in a (VO/V2O3) powder mixture serving as an oxygen activity buffer and heat treated at 1450 °C for 20 h. After this procedure no oxide scale was present on the surface of the sample but a zone of internal oxidation with a depth of about 2000 μm was formed in its interior. The precipitates within this zone consisted of two types of oxides. Discrete aluminium oxide particles with a size of a few micrometres were formed in outer regions of the specimen. Finer aluminium-yttrium oxides with a size of some hundred nanometres were mainly precipitated in inner regions of the sample. The results can be considered as a promising step towards an alternative production route for ODS steels.

  18. Corrosion control of carbon steel using inhibitor of banana peel extract in acid diluted solutions

    Science.gov (United States)

    Komalasari; Utami, S. P.; Fermi, M. I.; Aziz, Y.; Irianti, R. S.

    2018-04-01

    Issues of corrosion happened in pipes, it was used as fluid transportation in the chemical industry. Corrosion cannot be preventing, however it could be controlled or blocked. Inhibitor addition is one of the method to control the corrosion inside the pipe. Corrosion inhibitors consisted of inorganic and organic compound inhibitors. Organic inhibitor is composed from synthetic and natural material. This study focused to evaluate the inhibition’s efficiency from banana peel to carbon steel in different concentration of inhibitor and immersing time in acid solution variation. The research employed inhibitor concentration of 0 gram/liter, 2 gram/liter, 4 gram/liter and 6 gram/liter, immersed time of carbon steel for 2, 4, 6, 8 and 10 hours. It was immersed in chloride acid solution of 0.5 M and 1.5 M. Carbon Steel AISI 4041 was used as specimen steel. Results were analyzed using corrosion rate evaluation for each specimens and inhibitor efficiencies determination. It was found that the specimen without inhibitor yielded fast corrosion rate in long immersing time and high concentration of HCl. However, the specimens with inhibitor gave lowest corrosion rate which was 78.59% for 6 gram/litre and 10 hours in 0.5 M HCl.

  19. Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H{sub 2}SO{sub 4} solutions

    Energy Technology Data Exchange (ETDEWEB)

    Deng Shuduan, E-mail: dengshuduan@163.com [Faculty of Materials Engineering, Southwest Forestry University, Kunming 650224 (China); Li Xianghong [Faculty of Science, Southwest Forestry University, Kunming 650224 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Ginkgo leaves extract (GLE) acts as a good inhibitor for steel in HCl and H{sub 2}SO{sub 4} media. Black-Right-Pointing-Pointer The inhibition efficiency follows the order: HCl > H{sub 2}SO{sub 4}. Black-Right-Pointing-Pointer The adsorption of GLE on steel surface obeys Langmuir adsorption isotherm. Black-Right-Pointing-Pointer GLE behaves as a mixed-type inhibitor in 1.0 M HCl, while cathodic inhibitor in 0.5 M H{sub 2}SO{sub 4}. - Abstract: The inhibition effect of Ginkgo leaves extract (GLE) on the corrosion of cold rolled steel (CRS) in 1.0-5.0 M HCl and 0.5-2.5 M H{sub 2}SO{sub 4} solutions was investigated for the first time by weight loss, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) methods. The results show that GLE is a good inhibitor, and exhibits more efficient in 1.0 M HCl than 0.5 M H{sub 2}SO{sub 4}. The adsorption of GLE on CRS surface obeys Langmuir adsorption isotherm. GLE acts as a mixed-type inhibitor in 1.0 M HCl, while a cathodic inhibitor in 0.5 M H{sub 2}SO{sub 4}.

  20. Thulium fiber laser induced vapor bubbles using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.

  1. Microstructure and properties of high chrome steel roller after laser surface melting

    International Nuclear Information System (INIS)

    Li Meiyan; Wang Yong; Han Bin; Zhao Weimin; Han Tao

    2009-01-01

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO 2 laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M 23 C 6 carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  2. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  3. Performance of steel wool fiber reinforced geopolymer concrete

    Science.gov (United States)

    Faris, Meor Ahmad; Abdullah, Mohd Mustafa Al Bakri; Ismail, Khairul Nizar; Muniandy, Ratnasamy; Ariffin, Nurliayana

    2017-09-01

    In this paper, performance of geopolymer concrete was studied by mixing of Class F fly ash from Manjung power station, Lumut, Perak, Malaysia with alkaline activator which are combination of sodium hydroxide and sodium silicate. Steel wool fiber were added into the geopolymer concrete as reinforcement with different weight percentage vary from 0 % - 5 %. Chemical compositions of Malaysian fly ash was first analyzed by using X-ray fluorescence. All geopolymer concrete reinforced with steel wool fiber with different weight percentage were tested in terms of density, workability, and compression. Result shows Malaysian fly ash identified by using XRF was class F. Density of geopolymer concrete close to density of OPC which is approximately 2400 kg/m3 and the density was increase gradually with the additions of steel fiber. However, the inclusions of steel fibers also shows some reduction to the workability of geopolymer concrete. Besides, the compressive strength was increased with the increasing of fibers addition until maximum of 18.6 % improvement at 3 % of steel fibers.

  4. Alkaloids extract of Retama monosperma (L.) Boiss. seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and surface studies

    Energy Technology Data Exchange (ETDEWEB)

    El Hamdani, Naoual; Fdil, Rabiaa [Laboratoire de Chimie Bioorganique, Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Tourabi, Mustapha [Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Jama, Charafeddine [UMET-PSI, CNRS UMR 8207, ENSCL, Université Lille 1, CS 90108, F-59652 Villeneuve d’Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.fr [Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); UMET-PSI, CNRS UMR 8207, ENSCL, Université Lille 1, CS 90108, F-59652 Villeneuve d’Ascq Cedex (France)

    2015-12-01

    Graphical abstract: - Highlights: • AERS is good eco-friendly corrosion inhibitor for carbon steel in 1 M HCl. • AERS acts as mixed-type inhibitor in 1 M HCl medium. • AERS adsorption is well described by Langmuir isotherm. • Surface analyses were used to explain the AERS mechanism of carbon steel corrosion inhibition. - Abstract: Current research efforts now focus on the development of non-toxic, inexpensive and environmentally friendly corrosion inhibitors as alternatives to different organic and non-organic compounds. In this field, alkaloids extract of Retama monosperma (L.) Boiss. seeds (AERS) was tested for the first time as corrosion inhibitor for carbon steel in 1 M HCl medium using electrochemical and surface characterization techniques. The obtained results showed that this plant extract's acts as an efficient corrosion inhibitor for carbon steel in 1 M HCl and an inhibition efficiency of 94.4% was reached with 400 mg/L of AERS at 30 °C. Ac impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. Impedance results demonstrated that the addition of the AERS in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Polarization curves indicated that AERS is a mixed inhibitor. Adsorption of such alkaloid extract on the steel surface obeyed to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) showed that the inhibition of steel corrosion in normal hydrochloric solution by AERS is mainly controlled by a physisorption process and the inhibitive layer is composed of an iron oxide/hydroxide mixture where AERS molecules are incorporated.

  5. Identification of Precipitates in Cr-Mn-N Based Steel After Thermal Exposures

    Directory of Open Access Journals (Sweden)

    Ondruška Michal

    2014-06-01

    Full Text Available The paper deals with the identification of precipitates in the Cr-Mn-N steels after thermal exposure. The purpose of the study is to clarify the M2N precipitation by isothermal annealing at the temperatures of 750 and 900 °C with a holding time of 5, 10, 30 min, 1 hr. and 10 hrs. Microstructure of austenitic steel was characterised by the typical presence of annealing twins. Stepwise etching was observed at the holding time of 5 and 10 minutes, but at the holding time of 30 minutes, secondary particles were precipitated at the grain boundaries. Corrosion tests revealed that holding time significantly affected steel structure. M2N is the dominant precipitate, but the occurrence of σ-phase was occasionally observed especially at the interface of discontinuous precipitation and austenitic matrix. Slight increase of hardness at the grain boundaries was caused due to the precipitation of secondary phases during isothermal holding. The maximum hardness of 294 HV was measured on the sample isothermally annealed at 750 °C and holding for 10 hrs. The research provides theoretical basis for the heat affecting of steels, such as, for example, in welding.

  6. Evolution of mechanical properties of boron/manganese 22MnB5 steel under magnetic pulse influences

    International Nuclear Information System (INIS)

    Falaleev, A P; Meshkov, V V; Vetrogon, A A; Shymchenko, A V

    2016-01-01

    The boron/manganese 22MnB5 steel can be noted as the widely used material for creation of details, which must withstand high amount of load and impact influences. The complexity and high labor input of restoration of boron steel parts leads to growing interest in the new forming technologies such as magnetic pulse forming. There is the investigation of the evolution of mechanical properties of 22MnB5 steel during the restoration by means of magnetic pulse influence and induction heating. The heating of 22MnB5 blanks to the temperature above 900 0 C was examined. The forming processes at various temperatures (800, 900 and 950 0 C) were performed during the experiments. The test measurements allowed to obtain the relationships between the strain and the operation parameters such as induced current, pulse discharge time and the operation temperature. Based on these results the assumption about usage of these parameters for control of deformation process was made. Taking into account the load distribution and the plasticity evolution during the heating process, the computer simulation was performed in order to obtain more clear strain distribution through the processed area. The measurement of hardness and the comparison with the properties evolution during hot stamping processes confirmed the obtained results. (paper)

  7. Corrosive effect of oil's accompanying water polluted with H2S over steel (API 5L X-52)

    International Nuclear Information System (INIS)

    Cueli Corugedo, Alexander; Adames Montero, Yosmari; Rivera Beltran, Yischy; Davis Harriet, Juan

    2013-01-01

    The corrosion from the steel to the carbon in the sale oil pipage conduction, is a serious problem, due to the material and economical looses they cause, damaging even in some cases the productive field. The purpose of this study is to determine the aggressiveness of the oil's water layer, polluted with H 2 S ( g) , over the steel of pipelines' construction (API 5L X-52), taking into account the temperature variations which take place during the transportation of the oil, using the electrochemical techniques of polarisation resistance (LPR) and electrochemical noise. It is pretended to determine the velocity of steel corrosion in the oil's water layer polluted with H 2 S through electrochemical techniques. It was shown that the temperature increases and the concentration of H 2 S to 500 ppm in the oil's accompanying water emphasizes the corrosion phenomenon experienced by the steel (9, 188 0 mm/year to 70℃).The results of the electrochemical noise spectrums and the values of the localisation ?s index calculated, shown the presence of corrosion on the steel surface (API 5L X-52).This result was complemented through optic Microscopy which permits to corroborate the poor adherence of the sulphur layers deposited on the metal that increase the appearance of events found with the temperature increase and the concentration of H 2 S in the environment studied

  8. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    International Nuclear Information System (INIS)

    Huguenin, P.

    2012-01-01

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σ max max/YV) 11,5 . The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress

  9. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  10. Development of CSS-42L{trademark}, a high performance carburizing stainless steel for high temperature aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, H.I.; Milam, L. [Timken Co., Canton, OH (United States); Tomasello, C.M.; Balliett, S.A.; Maloney, J.L. [Latrobe Steel Co., Latrobe, PA (United States); Ogden, W.P. [MPB Corp., Lebanon, NH (United States)

    1998-12-31

    Today`s aerospace engineering challenges demand materials which can operate under conditions of temperature extremes, high loads and harsh, corrosive environments. This paper presents a technical overview of the on-going development of CSS-42L (US Patent No. 5,424,028). This alloy is a case-carburizable, stainless steel alloy suitable for use in applications up to 427 C, particularly suited to high performance rolling element bearings, gears, shafts and fasteners. The nominal chemistry of CSS-42L includes: (by weight) 0.12% carbon, 14.0% chromium, 0.60% vanadium, 2.0% nickel, 4.75% molybdenum and 12.5% cobalt. Careful balancing of these components combined with VIM-VAR melting produces an alloy that can be carburized and heat treated to achieve a high surface hardness (>58 HRC at 1mm (0.040 in) depth) with excellent corrosion resistance. The hot hardness of the carburized case is equal to or better than all competitive grades, exceeding 60 HRC at 427 C. The fracture toughness and impact resistance of the heat treated core material have likewise been evaluated in detail and found to be better than M50-NiL steel. The corrosion resistance has been shown to be equivalent to that of 440C steel in tests performed to date.

  11. Structural changes of carbides in a high-speed steel - M2 - after hardness and drawing back

    International Nuclear Information System (INIS)

    Santos, D.B.; Luz Ferreira, O. da; Ribeiro, O.L.R.

    1984-01-01

    The microstructure of a high-speed steel was studied through the scanning electron microscope. The carbide chemical composition was determined by the X-ray energy spectroscopy. The analyses were done in situ and in precipitate extracted from carbon replica. The phases were shown through the X-ray diffraction in the wastes from electrolytic use. In the annealed structure, some carbides as M 6 C, MC and M 23 C 6 and in the annealed and drawing back structure, carbide as M 6 C and MC were seen. The volumetric fraction of each type was calculated by quantitative metalography. The utilization of the replica technique allows the analysis of carbides smaller than 1 μm without the matrix interference. (E.G.) [pt

  12. Microstructure and mechanical properties of unirradiated low activation ferritic steel

    International Nuclear Information System (INIS)

    Hsu, C.Y.; Lechtenberg, T.A.

    1986-01-01

    Transmission electron micrographs of normalized and tempered 9Cr-2.5W-0.3V-0.15C low activation ferritic steel showed tempered lath-type martensite with precipitation of rod and plate-like carbides at lath and grain boundaries. X-ray diffraction analysis of the extracted replicas revealed nearly 100% M 23 C 6 carbides (a=1.064 nm), with no indication of Fe 2 W-type Laves phase even after thermal aging at 600 0 C/1000 h. Thermal aging increased the number density of rod-like M 23 C 6 along prior austenite grain boundaries and martensite lath boundaries. The elevated-temperature tensile strengths of this steel are about 10% higher than the average strengths of commercial heats of 9Cr-1Mo and modified 9Cr-1Mo steels up to 650 0 C, with equivalent uniform elongation and ∝50% decrease in total elongation. The DBTT was determined to be -25 0 C which is similar to other 9Cr-1Mo steels. Fractographic examination of tensile tested specimens shows a mixed mode of equiaxed and elongated dimples at test temperatures above 400 0 C. Modification of the Ga3X alloy composition for opimization of materials properties is discussed. However, the proposed low activation ferritic steel shows the promise of improved mechanical properties over 9Cr-1Mo steels. (orig.)

  13. Modeling and simulation of Charpy impact test of maraging steel 300 using Abaqus

    Science.gov (United States)

    Madhusudhan, D.; Chand, Suresh; Ganesh, S.; Saibhargavi, U.

    2018-03-01

    This work emphasizes the modeling and simulation of Charpy impact test to evaluate fracture energy at different pendulum velocities of armor maraging steel 300 using ABAQUS. To evaluate the fracture energy, V-notch specimen is fractured using the Johnson and Cook Damage model. The Charpy impact tests are of great importance related to fracture properties of steels. The objective of this work is to present absorbed energy variation at pendulum velocities of 5 m/sec, 6 m/sec, 7 m/sec and 9 m/sec in addition to stress distribution at v-notch. Finite Element Method of modeling for three dimensional specimens is used for simulation in commercial software of ABAQUS.

  14. Microstructural characteristics and corrosion behavior of a super duplex stainless steel casting

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-01-01

    The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material's yield strength, promoting plastic strain. Stress relief heat treatments at 520 deg. C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 deg. C and water quenching, stress relief at 520 deg. C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 deg. C, 25 deg. C and 60 deg. C

  15. Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells.

    Science.gov (United States)

    Stulov, Sergey V; Mankevich, Olga V; Dugin, Nikita O; Novikov, Roman A; Timofeev, Vladimir P; Misharin, Alexander Yu

    2013-04-01

    Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. M-theory inflation from multi M5-brane dynamics

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2005-01-01

    We derive inflation from M-theory on S 1 /Z 2 via the non-perturbative dynamics of N M5-branes. The open membrane instanton interactions between the M5-branes give rise to exponential potentials which are too steep for inflation individually but lead to inflation when combined together. The resulting type of inflation, known as assisted inflation, facilitates considerably the requirement of having all moduli, except the inflaton, stabilized at the beginning of inflation. During inflation the distances between the M5-branes, which correspond to the inflatons, grow until they reach the size of the S 1 /Z 2 orbifold. At this stage the M5-branes will reheat the universe by dissolving into the boundaries through small instanton transitions. Further flux and non-perturbative contributions become important at this late stage, bringing inflation to an end and stabilizing the moduli. We find that with moderate values for N, one obtains both a sufficient amount of e-foldings and the right size for the spectral index

  17. mGluR5

    DEFF Research Database (Denmark)

    Mølck, Christina; Harpsøe, Kasper; Gloriam, David E

    2014-01-01

    Since its discovery in 1992, mGluR5 has attracted significant attention and been linked to several neurological and psychiatric diseases. Ligand development was initially focused on the orthosteric binding pocket, but lack of subtype selective ligands changed the focus to the transmembrane...... allosteric binding pocket. This strategy has resulted in several drug candidates in clinical testing. In the present article we explore the orthosteric and allosteric binding pockets in terms of structure and ligand recognition across the mGluR subtypes and groups, and discuss the clinical potential...... of ligands targeting these pockets. We have performed binding mode analyses of non- and group-selective orthosteric ligands based on molecular docking in mGluR crystal structures and models. For the analysis of the allosteric binding pocket we have combined data from all mGluR5-mutagenesis studies...

  18. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  19. Crystallography of carbide-free bainite in a hard bainitic steel

    International Nuclear Information System (INIS)

    Zhang, M.-X.; Kelly, P.M.

    2006-01-01

    The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is(111) A 0.70±0.45 o from(101) B ,[1-bar 01] A 2.5+/-1.5 o from[1-bar 11] B However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 deg. of (221) A or of (259) A . The latter only corresponds with a habit plane that is within 5 deg. of (259) A . The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/-0.5 deg. in lath martensite in an Fe-20wt.% Ni-6wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19wt.% Ni-3.5wt.% Mn-0.15wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation

  20. Microstructure and Mechanical Properties of Fe-18Mn-18Cr-0.5N Austenitic Nonmagnetic Stainless Steel in Asymmetric Hot Rolling

    Science.gov (United States)

    Song, Y. L.; Li, C. S.; Ma, B.; Han, Y. H.

    2017-05-01

    Asymmetric hot rolling (ASHR) with a mismatch speed ratio of 1.15 in a single pass was applied to Fe-18Mn-18Cr-0.5N steel and was compared with symmetric hot rolling (SHR). The results indicated that a through-thickness microstructure gradient was formed in the plate due to the shear strain (0.36) introduced by ASHR. A fine-grained layer with the average size of 3 μm was achieved at the top surface of ASHR plate, while numerous elongated grains with a few recrystallized grains were presented at the center layer. The texture was distributed randomly at the top surface of ASHR plate, and a weaker intensity of typical hot-rolled texture in austenitic steel was obtained at the center layer of ASHR plate compared to SHR plate. An excellent combination of microhardness, strength and ductility was obtained in the ASHR plate, which was attributed to gradient microstructure induced by ASHR.

  1. Heavy-Section Steel Irradiation Program. Volume 5, No. 2, Progress report, April 1994--September 1994

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-07-01

    The Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness curve shift in high-copper weldments (Series 5 and 6), (3) K lc and K la curve shifts in low upper-shelf (LUS) welds (Series 8), (4) irradiation effects in a commercial LUS weld (Series 10), (5) irradiation effects on weld heat-affected zone and plate materials (Series 11), (6) annealing effects in LUS welds (Series 9), (7) microstructural and microfracture analysis of irradiation effects, (8) in-service irradiated and aged material evaluations, (9) Japan Power Development Reactor (JPDR) steel examination, (10) fracture toughness curve shift method, (11) special technical assistance, (12) technical assistance for Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Working Groups 3 and 12, (13) correlation monitor materials, and (14) test reactor coordination. Progress on each task is reported

  2. Erosion-oxidation behavior of thermal sprayed Ni20Cr alloy and WC and Cr3C2 cermet coatings

    Directory of Open Access Journals (Sweden)

    Clarice Terui Kunioshi

    2005-06-01

    Full Text Available An apparatus to conduct high temperature erosion-oxidation studies up to 850 °C and with particle impact velocities up to 15 m.s-1 was designed and constructed in the Corrosion Laboratories of IPEN. The erosion-oxidation behavior of high velocity oxy fuel (HVOF sprayed alloy and cermet coatings of Ni20Cr, WC 20Cr7Ni and Cr3C2 Ni20Cr on a steel substrate has been studied. Details of this apparatus and the erosion-oxidation behavior of these coatings are presented and discussed. The erosion-oxidation behavior of HVOF coated Cr3C2 25(Ni20Cr was better than that of WC 20Cr7Ni, and the erosion-oxidation regimes have been identified for these coatings at particle impact velocity of 3.5 m.s-1, impact angle of 90° and temperatures in the range 500 to 850 °C.

  3. Determination of residual stresses in steel 20 comparison of the results obtained by the Barkhausen noise and X-ray diffraction

    International Nuclear Information System (INIS)

    Fernandez, L. M.; Herrera, V.; Suarez, J.C.; Merino, F.J.

    1997-01-01

    During a heat treatment (quenching, surface hardening, Thermochemical treatment) the metallic alloys undergo temperature variations and phase transformation. The resulting changes give rise to internal stresses in the piece. Phase transformation modifies the thermomechanical behavior of the material through the change of mechanical properties ( hardness, fatigue-behaviour, corrosion resistance, electric resistivity, etc.) The aim of this paper is residual stress measurements in specimens of steel-20 submitted to different heat treatment, by two non destructive methods: Barkhausen and X-ray diffraction. Brakhausen Effects utilizes the magnetic properties of ferromagnetic materials such as ferritic and perlitic steels and provides a practical tool for surface streets evaluation. X-ray streets analysis is based on the measurement of lattice strains in different directions of specimen The results obtained by two techniques are compared, avowing a good agreement

  4. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  5. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu

    2014-01-01

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  6. Cymbopogon citratus and NaNO2 Behaviours in 3.5% NaCl-Immersed Steel-Reinforced Concrete: Implications for Eco-Friendly Corrosion Inhibitor Applications for Steel in Concrete

    Directory of Open Access Journals (Sweden)

    Joshua Olusegun Okeniyi

    2018-01-01

    Full Text Available This paper studies behaviours of Cymbopogon citratus leaf-extract and NaNO2, used as equal-mass admixture models, in 3.5% NaCl-immersed steel-reinforced concrete by nondestructive electrochemical methods and by compressive-strength improvement/reduction effects. Corrosion-rate, corrosion-current, and corrosion-potential constitute electrochemical test-techniques while compressive-strength effect investigations followed ASTM C29 and ASTM C33, in experiments using positive-controls for the electrochemical and compressive-strength studies. Analyses of the different electrochemical test-results mostly portrayed agreements on reinforcing-steel anticorrosion effects by the concentrations of natural plant and of chemical admixtures in the saline/marine simulating-environment and in the distilled H2O (electrochemical positive control of steel-reinforced concrete immersions. These indicated that little amount (0.0833% cement for concrete-mixing of Cymbopogon citratus leaf-extract was required for optimal inhibition efficiency, η = 99.35%, on reinforcing-steel corrosion, in the study. Results of compressive-strength change factor also indicated that the 0.0833% Cymbopogon citratus concentration outperformed NaNO2 admixture concentrations also in compressive-strength improvement effects on the NaCl-immersed steel-reinforced concrete. These established implications, from the study, on the suitability of the eco-friendly Cymbopogon citratus leaf-extract for replacing the also highly effective NaNO2 inhibitor of steel-in-concrete corrosion in concrete designed for the saline/marine service-environment.

  7. Microstructure and properties of high chrome steel roller after laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Li Meiyan, E-mail: lmy_102411@163.com [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China); Wang Yong; Han Bin; Zhao Weimin; Han Tao [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China)

    2009-06-15

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO{sub 2} laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M{sub 23}C{sub 6} carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  8. Penentuan konsentrasi stainless steel 316L dan kobalt kromium remanium GM-800 pada uji GPMT

    Directory of Open Access Journals (Sweden)

    Ikmal Hafizi

    2016-12-01

    Full Text Available Concentration determination of stainless steel 316L and cobalt chromium remanium GM - 800 on GPMT test. Dentistry had used metals such as cobalt chromium and stainless steel in maxillofacial surgery, cardiovascular, and as a dental material. 316L stainless steel is austenistic stainless steel which has low carbon composition to improve the corrosion resistance as well as the content of molybdenum in the material. Cobalt chromium (CoCr is a cobaltbased alloy with a mixture of chromium. Density of a metal cobalt chromium alloy is about 8-9 g/cm3 that caused metal interference relatively mild. Remanium GM-800 is one type of a cobalt chromium alloy with the advantages of having high resistance to fracture and high modulus of elasticity. This study aims to determine the exact concentration used in 316L stainless steel and cobalt chromium GM-800 as the GPMT test material. Subjects were cobalt chromium Remanium GM-800 and 316L stainless steel concentration of 5%, 10%, 20%, 40% and 80%. Patch containing stainless steel or cobalt chromium paste was af xed for 24 hours each on three experimental animals, then the erythema and edema were observed using the Magnusson and Kligman scale. In the study, concentration of 5% is the concentration recommended for stainless steel 316L and cobalt chromium GM-800 as material in challenge phase GPMT test, while the concentration of 40% is the concentration recommended for stainless steel 316L and cobalt chromium GM-800 in the induction phase. ABSTRAK Dunia kedokteran gigi banyak menggunakan logam pada pembedahan maxillofacial, cardiovascular, dan sebagai material dental. Logam yang banyak digunakan antara lain adalah kobalt kromium dan stainless steel. Stainless steel 316L merupakan austenistic stainless steel yang memiliki komposisi karbon rendah sehingga dapat meningkatkan ketahanan terhadap korosi sama halnya dengan kandungan molybdenum pada material tersebut. Kobalt kromium (CoCr adalah cobalt-based alloy dengan

  9. Tritium diffusivity and solubility measurements in Z 5 NCTD 26-15 (A 286) austenitic stainless steel

    International Nuclear Information System (INIS)

    Broudeur, R.; Fidelle, J.P.; Devaux, J.; Rapin, M.

    A method of calculation that allows the diffusion coefficient and solubility of a gas in a metal to be expressed by analysis of its entry kinetics during a metal charging test under given temperature and pressure is cited. This method is applied to tritium charging of Z 5 NCTD 26-15 (A 286) austenitic stainless steel. The special equipment necessary for such tests is described. The diffusion coefficient and solubility of tritium in this steel are determined in tests made between 350 and 450 0 C under a pressure of 10 bars. (U.S.)

  10. Simultaneous visualization of pH and Cl"− distributions inside the crevice of stainless steel

    International Nuclear Information System (INIS)

    Nishimoto, Masashi; Ogawa, Junichiro; Muto, Izumi; Sugawara, Yu; Hara, Nobuyoshi

    2016-01-01

    Highlights: • A pH and Cl"− sensing plate was fabricated. • The pH and Cl"− distributions inside the crevice of stainless steel was visualized. • The initial morphology of crevice corrosion of stainless steel was pitting. • Gradual acidification and Cl"− accumulation occurred before pit initiation. • The generation of pit caused a sharp decrease in pH and an increase in Cl"− concentration. - Abstract: A sensing plate for the simultaneous measurements of pH and Cl"− concentration was fabricated. Terbium–dipicolinic acid complex (Tb–DPA) and quinine sulphate were used to measure the pH and Cl"− concentration, respectively. In the incubation period of the crevice corrosion, the pH inside the crevice gradually decreased from 3.0 to ca. 2.0, and the Cl"− concentration increases from 0.01 to ca. 0.18 M. The generation of the micro-pit led to a sharp decrease in pH to below 0.5 and an increase in the Cl"− concentration to above 4 M. This situation allowed the crevice corrosion to proceed without spontaneously stopping.

  11. M2- and M5-branes in E11 current algebra formulation of M-theory

    Science.gov (United States)

    Shiba, Shotaro; Sugawara, Hirotaka

    2018-03-01

    Equations of motion for M2- and M5-branes are written down in the E11 current algebra formulation of M-theory. These branes correspond to currents of the second and the fifth rank antisymmetric tensors in the E11 representation, whereas the electric and magnetic fields (coupled to M2- and M5-branes) correspond to currents of the third and the sixth rank antisymmetric tensors, respectively. We show that these equations of motion have solutions in terms of the coordinates on M2- and M5-branes. We also discuss the geometric equations, and show that there are static solutions when M2- or M5-brane exists alone and also when M5-brane wraps around M2-brane. This situation is realized because our Einstein-like equation contains an extra term which can be interpreted as gravitational energy contributing to the curvature, thus avoiding the usual intersection rule.

  12. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  13. The effect of thermal treatment on corrosion properties of 0Kh15N16M3B stainless steel tested in the N2O4 boiling medium

    International Nuclear Information System (INIS)

    Kamenev, A.Ya.; Kopets, Z.V.; Mel'nikova, N.N.; Dergaj, A.M.; Fedyushin, E.E.

    1985-01-01

    The experimental data on the effect of thermal treatment on corrosion properties of stainless steel 00Kh16n15m3b tested in the N 2 O 4 boiling medium at 8.0 MPa and 433 K are presented. The electron microscope data on steel microstructure after different heat treatments and phase composition of oxide films emerging at corrosion test are given. It is shown, that the rise of the heat treatment temperature from 823 up to 1023 K increases total corrosion of 00Kh16n15m3b steel under given test conditions and practically does't affect intercrystalline corrosion. Developed oxide layers are of deposited nature and doesn't affect markedly the rate of progress of the corrosive processes. Taking into account high chromium volatility in vacuum one can assume that at the initial stages of the coolant effect, the process of depletion of steel surface by chromium durng heat treatment affects markedly steel corrosion stability

  14. Corrosion behavior of duplex polyaniline/epoxy coating on mild steel in 3% NaCl

    Directory of Open Access Journals (Sweden)

    Gvozdenović Milica M.

    2005-01-01

    Full Text Available The corrosion behavior and thermal stability of epoxy coatings electrodeposited on mild steel and on mild steel with electrochemically deposited polyaniline (PANI film were investigated by electrochemical impedance spectroscopy (EIS and thermo gravimetric analysis (TGA. The aim of the paper was to present new findings on the corrosion protection of mild steel by a duplex PANI/-epoxy coating in 3% NaCI solution and to determine the effect of thin PANI film on the protective properties of the coating. PANI film was deposited electrochemically on mild steel from an aqueous solution of 0.5 mol dm"3 sodium benzoate and 0.1 mol dm"3 aniline at a constant current density of 1.5 mA cm"2. Non-pigmented epoxy coatings on mild steel and on mild steel with PANI film were obtained by cathodic electrode position at constant voltage and stirring conditions. The resin concentration in the electrode position bath was 10 wt.% solid dispersion in water at pH 5.7. The applied voltage was 250 V, the temperature 26°C and the deposition time 3 min. It was shown that thin PANI film could be used to modify the surface of mild steel prior to epoxy coating deposition, due to the increased corrosion protection of a duplex PANI/epoxy coating comparing to an epoxy coating on mild steel in 3% NaCl solution.

  15. Long-term Stability of 9- to 12 % Cr Steels

    DEFF Research Database (Denmark)

    Hald, John

    2004-01-01

    In the recent 25 years creep rupture strength of 9- to 12 %Cr steels for steam pipes and turbines has been doubled by development of new alloys. This development has formed a basis for improved efficiency of fossil fired steam power plants by introduction of advanced steam temperatures...... and pressures. Newly developed steam pipe steels are based on modifications of well-established steels like the X 20CrMoV12 1. Balanced addition of V, Nb and N to a 9Cr 1 Mo steel led to the Modified 9 Cr steel P 91. Addition of 1% W to a 9Cr 1 MoVNbN base composition led to steel E 911 and partial replacement...... of Mo with 1.8 % W combined with a slight amount of Boron led to steel P 92. The creep rupture strength of these new alloys are now secured with long-term tests up to 100,000 hours, which demonstrate improvements of 50% (P 91), 75 % (E 911) and 100 % (P 92) in strength compared to X 20CrMoV12 1....

  16. ) m /SrVO3 ( m = 5, 6) Superlattices

    KAUST Repository

    Dai, Qingqing

    2018-05-04

    The (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C‐type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A‐type antiferromagnetic states for both superlattices are found due to epitaxial strain. At the interfaces, however, the V spins couple antiferromagnetically for m = 5 and ferromagnetically for m = 6 (m‐dependence of the magnetization). Electronic reconstruction in form of charge ordering is predicted to occur with V3+ and V4+ states arranged in a checkerboard pattern on both sides of the SrO layer. As compared to bulk LaVO3, the presence of V4+ ions introduces in‐gap states that strongly reduce the bandgap and influence the orbital occupation and ordering.

  17. Corrosion of a carbon steel in simulated liquid nuclear wastes

    International Nuclear Information System (INIS)

    Saenz Gonzalez, Eduardo

    2005-01-01

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO 3 , NaCl, NaF, NaNO 2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  18. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    Science.gov (United States)

    Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.

    2017-07-01

    A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.

  19. Mechanical Characterization of High-Performance Steel-Fiber Reinforced Cement Composites with Self-Healing Effect

    Science.gov (United States)

    Kim, Dong Joo; Kang, Seok Hee; Ahn, Tae-Ho

    2014-01-01

    The crack self-healing behavior of high-performance steel-fiber reinforced cement composites (HPSFRCs) was investigated. High-strength deformed steel fibers were employed in a high strength mortar with very fine silica sand to decreasing the crack width by generating higher interfacial bond strength. The width of micro-cracks, strongly affected by the type of fiber and sand, clearly produced the effects on the self-healing behavior. The use of fine silica sand in HPSFRCs with high strength deformed steel fibers successfully led to rapid healing owing to very fine cracks with width less than 20 μm. The use of very fine silica sand instead of normal sand produced 17%–19% higher tensile strength and 51%–58% smaller width of micro-cracks. PMID:28788471

  20. Larson-Miller Constant of Heat-Resistant Steel

    Science.gov (United States)

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  1. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2016-01-01

    The tensile properties and the deformation microstructure of pearlitic steel (0.8 wt % C) have been quantified in wires drawn to strains in the range from 3.7 to 5.4, having a flow stress in the range from 3.5 to 4.5 GPa. With increasing strain the interlamellar spacing (ILS) decreases from about...... mechanism in the wire and three strengthening mechanisms are applied: boundary strengthening, dislocation strengthening and solid solution hardening with their relative contributions to the total flow stress which change as the strain is increased. Based on linear additivity good correspondence between...

  2. The Polatron: A Millimeter-Wave Cosmic Microwave Background Polarimeter for the OVRO 5.5 m Telescope

    OpenAIRE

    Philhour, B. J.; Keating, B. G.; Ade, P. A. R.; Bhatia, R. S.; Bock, J. J.; Church, S. E.; Glenn, J.; Hinderks, J. R.; Hristov, V. V.; Jones, W. C.; Kamionkowski, M.; Kumar, D. E.; Lange, A. E.; Leong, J. R.; Marrone, D. P.

    2001-01-01

    We describe the development of a bolometric receiver designed to measure the arcminute-scale polarization of the cosmic microwave background (CMB). The Polatron will be mounted at the Cassegrain focus of the 5.5 m telescope at the Owens Valley Radio Observatory (OVRO). The receiver will measure both the Q and U Stokes parameters over a 20% pass-band centered near 100 GHz, with the input polarization signal modulated at ~0.6 Hz by a rotating, birefringent, quartz half-wave plate. In six months...

  3. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  4. Current status of stainless steel industry and development of stainless steel

    International Nuclear Information System (INIS)

    Lee, Yong Deuk; Lee, Chan Soo; Kim Kwang Tae

    2000-01-01

    Stainless steel is not only clean and smooth in its surface, but also it is superior in quality in terms of corrosion resistance and strength. So that, it is widely in use in the field of construction, chemical installations, and other industries. Growth of stainless steel industry started since the steel technology was developed for mass production in 1960s. Since then stainless steel industry grew rapidly on account of diversified development in this field and growth rate went up to 5.8% per year comparable to 2.3% of steel growth. The rapid growth is attributed to significant industry developments in Europe and Japan in the years of 1970s and 1980s. In addition to these the expansion of stainless steel industry in Korea and Taiwan. Presently Korea produces about 120,000 tons of stainless steel and occupies about 8% of international market. This means Korea become the second largest single country in world in stainless steel production. Moreover Korea is to reinforce its domestic production line by affiliating production companies, increasing of production capability, and specializing in types of stainless steel. This paper is to describe activity of material development, and types of stainless steel for industry use. (Hong, J. S.)

  5. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology program series 4 and 5)

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.; Thoms, K.R.; Menke, B.H.

    1985-01-01

    This report presents studies on the irradiation effects in low-alloy reactor pressure vessel steels. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (''current practice welds''). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds. 27 refs., 22 figs

  6. The analysis of ion nitriding and nitrogen ion implantation on tribological properties of steels 33H3MF and 36H3M

    International Nuclear Information System (INIS)

    Zandecki, R.

    1993-01-01

    Surface properties of two kinds of steel 33H3MF and 36H3M have been investigated. Three different methods of steel surface treatment have been used: ion nitriding, nitrogen ion implantation and mixing method being the sum of the first and second ones. The microstructure, microhardness distribution, fatigue strength, friction coefficient and other tribological properties have been measured and compared. 60 refs, 74 figs, 19 tabs

  7. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  8. Effect of heat treatment and irradiation temperature on mechanical properties and structure of reduced-activation Cr-W-V steels of bainitic, martensitic, and martensitic-ferritic classes

    International Nuclear Information System (INIS)

    Gorynin, I.V.; Rybin, V.V.; Kursevich, I.P.; Lapin, A.N.; Nesterova, E.V.; Klepikov, E.Yu.

    2000-01-01

    Effects of molybdenum replacement by tungsten in steels of the bainitic, martensitic, and martensitic-ferritic classes containing 2.5%, 8% and 11% Cr, respectively, were investigated. The phase composition and structure of the bainitic steels were varied by changing the cooling rates from the austenitization temperature (from values typical for normalization up to V=3.3 x 10 -2 deg. C/s) and then tempering. The steels were irradiated to a fluence of 4x10 23 n/m 2 (≥0.5 MeV) at 270 deg. C and to fluences of 1.3x10 23 and 1.2x10 24 n/m 2 (≥0.5 MeV) at 70 deg. C. The 2.5Cr-1.4WV and 8Cr-1.5WV steels have shown lower values of the shifts in ductile-brittle transition temperature (DBTT) under irradiation in comparison with corresponding Cr-Mo steels. Radiation embrittlement at elevated irradiation temperature was lowest in bainitic 2.5Cr-1.4WV steel and martensitic-ferritic 11Cr-1.5WV steel. The positive effect of molybdenum replacement by tungsten at irradiation temperature ∼300 deg. C is reversed at T irr =70 deg. C

  9. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    Science.gov (United States)

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  10. Assessment of dust exposure in a steel plant in the eastern coast of peninsular Malaysia.

    Science.gov (United States)

    Nurul, Ainun Hamzah; Shamsul, Bahri Mohd Tamrin; Noor Hassim, Ismail

    2016-11-22

    Steel manufacturing produces dust, fumes, and pollutant gases that may give adverse health effects to the respiratory function of workers. Improper occupational hygiene practice in the workplace will affect both workers wellbeing and productivity. To assess the level of particulate matter [(PM2.5, PM10, and Total Particulate Matter (TPM)], and trace metal dust concentrations in different sections of a steel plant and compare with the occupational exposure values. The work environmental parameters of the particulate matters were evaluated using Indoor Air Quality, while metal dust concentrations were measured using portable personal air sampler. A total of 184 personal samples were randomly collected from workers in three major sections; steel making plant, direct reduced plant, and support group. Trace metal dust concentrations were subjected to wet mineral acid mixture digestion and analysed by atomic absorption spectrophotometer (AAS). The overall average PM2.5 concentration observed was varied according to the section: steel making plant was 0.18 mg/m3, direct reduced iron plant was 0.05 mg/m3, and support plant was 0.05 mg/m3. Average PM 10 concentration in steel making shop (SMS) plant, direct reduced (DR) plant, and support plant were 0.70 mg/m3, 0.84 mg/m3, and 0.58 mg/m3, respectively. The average TWA8 of trace metal dusts (cobalt and chromium) in all the sections exceeded 1 to 3 times the ACGIH prescribed values, OSHA PELs, NIOSH RELs as well as USECHH OSHA, whereas TWA8 concentration of nickel for each section did not exceed the occupational exposure values. The average PM2.5, PM10 and TPM did not exceed the prescribed values, while average trace metal dust concentration TWA8 for cobalt and chromium in all plants exceeded occupational exposure prescribed values. However, the nickel found did not exceed the prescribed values in all the plants except for NIOSH RELs.

  11. Validation of an HPLC-UV method for the determination of ceftriaxone sodium residues on stainless steel surface of pharmaceutical manufacturing equipments.

    Science.gov (United States)

    Akl, Magda A; Ahmed, Mona A; Ramadan, Ahmed

    2011-05-15

    In pharmaceutical industry, an important step consists in the removal of possible drug residues from the involved equipments and areas. The cleaning procedures must be validated and methods to determine trace amounts of drugs have, therefore, to be considered with special attention. An HPLC-UV method for the determination of ceftriaxone sodium residues on stainless steel surface was developed and validated in order to control a cleaning procedure. Cotton swabs, moistened with extraction solution (50% water and 50% mobile phase), were used to remove any residues of drugs from stainless steel surfaces, and give recoveries of 91.12, 93.8 and 98.7% for three concentration levels. The precision of the results, reported as the relative standard deviation (RSD), were below 1.5%. The method was validated over a concentration range of 1.15-6.92 μg ml(-1). Low quantities of drug residues were determined by HPLC-UV using a Hypersil ODS 5 μm (250×4.6 mm) at 50 °C with an acetonitrile:water:pH 7:pH 5 (39-55-5.5-0.5) mobile phase at flow rate of 1.5 ml min(-1), an injection volume of 20 μl and were detected at 254 nm. A simple, selective and sensitive HPLC-UV assay for the determination of ceftriaxone sodium residues on stainless steel surfaces was developed, validated and applied. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Significance of steel electrical resistance method in the evaluation of reinforcement corrosion in cementitious systems

    Directory of Open Access Journals (Sweden)

    Krajci, L.

    2004-06-01

    Full Text Available The suitable detection system of steel reinforcement corrosion in concrete structures contributes to the reduction of their maintenance costs. Method of steel electrical resistance represents non-destructive monitoring of steel in cementitious systems. Specially prepared and arranged test specimen of steel as a corrosion sensor is embedded in mortar specimen. Verification tests of this method based on chloride corrosion of steel in mortars as well as its visual inspection are introduced. Significance of steel electrical resistance method lies in the expression of steel corrosion by these quantitative parameters: reduction of cross-section of steel, thickness of corroded layer and loss of weight of steel material. This method is an integral method that allows the indirect determination of mentioned corrosion characteristics. The comparison of verified method with gravimetric evaluation of steel corrosion gives a good correspondence. Test results on mortars with calcium chloride dosages between 0.5% and 4.0% by weight of cement prove high sensitiveness and reliability of steel electrical resistance method.

    La utilización de un sistema de detección de la corrosión de las armaduras en estructuras de hormigón puede contribuir a la reducción de sus costes de mantenimiento. El método de la resistencia eléctrica del acero consiste en la monitorización no-destructiva realizada sobre el acero en sistemas cementantes. Dentro de la muestra de mortero se coloca el sistema de detección, especialmente preparado y fijado, actuando como un sensor de la corrosión. En este trabajo se presentan ensayos de verificación de este método, junto con inspecciones visuales, en morteros sometidos a corrosión de armaduras por efecto de los cloruros. La efectividad de este método de la resistencia eléctrica del acero se expresa, en la corrosión de armaduras, de acuerdo a los siguientes parámetros cuantitativos: reducción de la sección transversal del

  13. Comparative assessment of microstructure and texture in the Fe-30.5Mn-8.0Al-1.2C and Fe-30.5Mn-2.1Al-1.2C steels under cold rolling

    Directory of Open Access Journals (Sweden)

    Fabrício Mendes Souza

    Full Text Available Abstract Investigation of microstructure and texture has been done for cold rolled Fe-30.5Mn-8.0Al-1.2C (8Al and Fe-30.5Mn-2.1Al-1.2C (2Al (wt.% steels. They were rolled to a strain of ~0.70. Refinement of a crystallographic slip band substructure in low to medium rolling strain and nucleation of twins on the mature slip bands at a higher strain were suggested as deformation mechanisms in the 8Al steel. Mainly shear banding contributed to the formation of a Copper texture in such steel. Brass-texture development in the 2Al steel is mainly due to deformation twinning and shear banding formation. Detailed images of KAM maps showed that the stored deformation energy was mainly localized in the twinned areas and shear bands, which generated the inhomogeneous deformation microstructures in both steels at a higher strain. Goss and Brass texture intensity decreases and Cu-texture intensity increases as the Al wt.% increases in different cold rolled High-Mn (Mn ~30 wt.% steels.

  14. EBSD study of hydrogen-induced cracking in API-5 L-X46 pipeline steel

    International Nuclear Information System (INIS)

    Venegas, V.; Caleyo, F.; Gonzalez, J.L.; Baudin, T.; Hallen, J.M.; Penelle, R.

    2005-01-01

    The spatial distribution of plastic deformation and grain orientation surrounding hydrogen-induced cracks (HIC) is investigated in samples of API-5L-X46 pipeline steel using scanning electron microscopy and electron backscattering diffraction (EBSD). This work shows direct experimental evidence of the influence of microstructure, microtexture and mesotexture on HIC crack path

  15. Tribological Response of Heat Treated AISI 52100 Steels Against Steel and Ceramic Counterparts

    Directory of Open Access Journals (Sweden)

    Türedi E.

    2017-09-01

    Full Text Available AISI 52100 bearing steels are commonly used in applications requiring high hardness and abrasion resistance. The bearing steels are working under dynamic loads in service conditions and their toughness properties become important. In order to provide the desired mechanical properties, various heat treatments (austenizing, quenching and tempering are usually applied. In this study, AISI 52100 bearing steel samples were austenized at 900°C for ½ h and water quenched to room temperature. Then tempering was carried out at 795°C, 400°C and 200°C for ½ h. In order to investigate the effect of heat treatment conditions on wear behavior, dry friction tests were performed according to ASTM G99-05 Standard with a ‘ball-on-disk’ type tribometer. The samples were tested against steel and ceramic counterparts using the parameters of 100 m distance and 30 N load and 0.063 m/s rotational speed. After wear test, the surface characterization was carried out using microscopy. Wear loss values were calculated using a novel optical method on both flat and counterpart specimens.

  16. Fatigue fracture of steel after mechanical and ultrasonic strengthening

    International Nuclear Information System (INIS)

    Stotskij, I.M.

    1978-01-01

    Fatigue fracture surfaces of samples after mechanical and ultrasonic strengthening have been studied metallographically and by electron fractography. Studied was the 40Kh steel hardened from 850 deg and then tempered at 180 deg or at 550 deg C. The ultrasound power was 25 kWt, the frequency was 20 kHz, the sample rotation velocity was 39.5 m/min. Mechanical and ultrasonic treatment was found to cause structural changes (formation of a white layer) and deformation of the material under the layer. The fatigue cracks were extending beyond the white layer; their propagation involved generation and coalescence of microcracks on account of segregation of carbides. It is concluded that mechanical and ultrasonic treatment should be used for increasing the fatigue strength of low and average strength materials rather than hardened or low-tempered ones

  17. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NARCIS (Netherlands)

    Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.

    2015-01-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent

  18. Hardening of Fe-Cr-Mn steels cold plastic working

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop-Lyashko, V.I.; Nikoporets, N.M.

    1983-01-01

    The dependence is established between the level of proper-- ties obtained after cold plastic working and development of martensite transformations when loading in Fe-Cr-Mn steels containing 0.1-0.5% C, 13% Cr, 8-12% Mn, as well as in a number of complex alloyed steels. It is shown that the highest level of mechanical properties can be obtained after cold plastic working only in steels with definite austenite stability. Cold plastic working can both activize and stabilize austenite relatively to martensite formation during loading. The first thing is found when under the effect of preliminary cold working dislocation splitting takes place, as well as the formation of a small amount of E-phase and martensite. The second thing manifests itself when under the effect of cold working performed above Md (Md<20 deg C) cell dislocation structure is formed and dislocation pinning takes place

  19. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David F., E-mail: david.williams@surrey.ac.uk [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Kellar, Ewen J.C. [TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Jesson, David A.; Watts, John F. [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2017-05-01

    Highlights: • Reduction in carbon contamination from ∼80 at.% to 40 at.% after 15 s treatment. • Associated carbon thickness reduction from 4.5 nm to 0.5 nm. • Area treated by torch has a diameter of 11 mm measured using imaging XPS. - Abstract: The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m{sup −1} to >72 mJ m{sup −1} after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  20. Corrosion behaviors and contact resistances of the low-carbon steel bipolar plate with a chromized coating containing carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China); Wu, Min-Sheng [Department of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China)

    2009-08-15

    This work improved the surface performance of low-carbon steel AISI 1020 by a reforming pack chromization process at low temperature (700 C) and investigated the possibility that the modified steels are used as metal bipolar plates (BPP) of PEMFCs. The steel surface was activated by electrical discharge machining (EDM) with different currents before the chromizing procedure. Experimental results indicate that a dense and homogenous Cr-rich layer is formed on the EDM carbon steels by pack chromization. The chromized coating pretreated with electrical discharge currents of 2 A has the lowest corrosion current density, 5.78 x 10{sup -8} Acm{sup -2}, evaluated by potentiodynamic polarization in a 0.5 M H{sub 2}SO{sub 4} solution and the smallest interfacial contact resistance (ICR), 11.8 m{omega}-cm{sup 2}, at 140 N/cm{sup 2}. The carbon steel with a coating containing carbides and nitrides is promising for application as metal BPPs, and this report presents the first research in producing BPPs with carbon steels. (author)

  1. ) m /SrVO3 ( m = 5, 6) Superlattices

    KAUST Repository

    Dai, Qingqing; Lü ders, Ulrike; Fré sard, Raymond; Eckern, Ulrich; Schwingenschlö gl, Udo

    2018-01-01

    The (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C‐type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A‐type antiferromagnetic states

  2. Stainless Steel 2.0-mm Locking Compression Plate Osteosynthesis System for the Fixation of Comminuted Hand Fractures in Asian Adults

    Directory of Open Access Journals (Sweden)

    Hing-Cheong Wong

    2011-12-01

    Conclusions: The stainless steel 2.0-mm LCP is useful for the fixation of unstable comminuted hand fractures, especially in metacarpal bones, because of its advantage of better stability, which allows more aggressive rehabilitation. However, its design is not very versatile and, therefore, limits its use in the finger region. Its bulkiness frequently causes implant impingement. The patients must be informed about the chance of implant removal later.

  3. Construction and characterization of an anti-CD20 mAb nanocomb with exceptionally excellent lymphoma-suppressing activity

    Directory of Open Access Journals (Sweden)

    Li H

    2015-07-01

    Full Text Available Hua-Fei Li,1–3,* Cong Wu,4,* Ting Chen,5,* Ge Zhang,1 He Zhao,1 Chang-Hong Ke,1 Zheng Xu21International Joint Cancer Institute, Translation Medicine Institute, 2Planning Division, Scientific Research Department, 3Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, 4Department of Laboratory Diagnosis, Changhai Hospital, 5Department of Cardiology, Changhai Hospital, the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The CD20-directed monoclonal antibody rituximab (RTX established a new era in the treatment of non-Hodgkin lymphoma (NHL; however, suboptimal response and/or resistance to RTX still limit its clinical merits. Although four effector mechanisms are validated to participate in CD20-based immunotherapy, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, caspase-dependent apoptosis, and lysosome-mediated programmed cell death (PCD, they could hardly be synchronously activated by any anti-CD20 mAb or mAb derivative until now. Herein, a novel mAb nanocomb (polyethylenimine polymer–RTX–tositumomab [PPRT nanocomb] was firstly constructed through mass arming two different anti-CD20 mAbs (RTX and tositumomab to one polymer by nanotechnology. Comparing with free mAbs, PPRT nanocomb possesses a comparable binding ability and reduced “off-rate” to surface CD20 of NHL cells. When treated by PPRT nanocomb, the caspase-dependent apoptosis was remarkably enhanced except for concurrently eliciting complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and lysosome-mediated PCD. Besides, “cross-cell link”-assisted homotypic adhesion by PPRT nanocomb further enhanced the susceptibility to PCD of lymphoma cells. Pharmacokinetic assays revealed that PPRT nanocomb experienced a relatively reduced clearance from peripheral blood compared with free antibodies. With

  4. Toxin MqsR Cleaves Single-Stranded mRNA with Various 5 Ends

    Science.gov (United States)

    2016-08-24

    either protein ORIGINAL RESEARCH Toxin MqsR cleaves single- stranded mRNA with various 5’ ends Nityananda Chowdhury1,*, Brian W. Kwan1,*, Louise C...in which a single 5′- GCU site was predicted to be single- stranded (ssRNA), double- stranded (dsRNA), in the loop of a stem - loop (slRNA), or in a...single- stranded 5′- GCU sites since cleavage was approximately 20- fold higher than cleavage seen with the 5′- GCU site in the stem - loop and

  5. Development of fully dense and high performance powder metallurgy HSLA steel using HIP method

    Science.gov (United States)

    Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping

    2018-05-01

    In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.

  6. File list: ALL.PSC.20.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.mESCs,_differentiated mm9 All antigens Pluripotent stem cell mESCs, differentia...barchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.20.AllAg.mESCs,_differentiated.bed ...

  7. Corrosion fatigue crack growth in clad low-alloy steels. Part 2: Water flow rate effects in high-sulfur plate steel

    International Nuclear Information System (INIS)

    James, L.A.; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1997-01-01

    Corrosion fatigue crack propagation tests were conducted on a high-sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 C, under loading conditions (ΔK, R, cyclic frequency) conducive to environmentally assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/s or 4.7 m/s was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi-stagnant conditions, but water flow rates at 1.7 m/s and 5.0 m/s parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity

  8. Estimates of time-dependent fatigue behavior of Type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1978-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irradiated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63*10 26 neutrons (n)/m 2 (E>0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20 percent cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradiations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadings ranging from 2 to 5 MW/m 2 were used. 27 refs

  9. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  10. Effect of hydrogen on the fracture toughness of 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    Capeletti, T.L.

    1976-01-01

    Fracture toughness (K/sub c/) of 17-4 PH stainless steel decreased significantly with increased hydrogen test pressure for a variety of heat treatment conditions: solution annealed, underaged, peak-aged, and overaged. Minimum toughness (13 MPa√m) was obtained with peak-aged samples tested in 69.5-MPa hydrogen; toughness was maximum (100 MPa√m) for samples tested in helium. Aging treatments increased the hardness from 28 R/sub c/ for solution-annealed material to 42 R/c/ for peak-aged material and correspondingly decreased the fracture toughness in high-pressure hydrogen (K/sub H/) from 31 to 13 MPa√m. However, increased hardness had no substantial effect on the K/sub c/ in helium. Fracture mechanism changed from predominantly ductile rupture in helium to cleavage in 69.5-MPa hydrogen, with mixed-mode fractures at lower hydrogen pressure (3.5-MPa). On the basis of these data, 17-4 PH stainless steel is not recommended for hydrogen service

  11. Development of Ferrium S53 High-Strength, Corrosion-Resistant Steel

    Science.gov (United States)

    2009-01-01

    or any other high-strength steel. No special tools or grinding wheels are required. The only significant differences with S53 are  Machining... runout point and ** point) Fit for 4330 in Air (w/o runout points) Fit for S53 in Salt Fit for 300M in Salt Fit for 4330 in Salt MIL HNBK 5 for 300M in

  12. Effect of axial stress on the transient mechanical response of 20%, cold-worked Type 316 stainless-steel cladding

    International Nuclear Information System (INIS)

    Yamada, H.

    1979-01-01

    To understand the effects of the fuel-cladding mechanical interaction on the failure of 20% cold-worked Type 316 stainless-steel cladding during anticipated nuclear reactor transients, the transient mechanical response of the cladding was investigated using a transient tube burst method at a heating rate of 5.6 0 C/s and axial-to-hoop-stress ratios in the range of 1/2 to 2. The failure temperatures were observed to remain essentially constant for the transient tests at axial-to-hoop-stress ratios between 1/2 and 1, but to decrease with an increase in axial-to-hoop-stress ratios above unity. The uniform diametral strains to failure were observed to decrease monotonically with an increase in axial-to-hoop-stress ratio from 1/2 to 2, and in general, the uniform axial strains to failure were observed to increase with an increase in axial-to-hoop-stress ratio. The fracture of the cladding during thermal transients was found to be strongly affected by the maximum principal stress but not by the effective stress

  13. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Koenig, H [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  14. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  15. File list: Unc.PSC.20.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.mESCs,_differentiated mm9 Unclassified Pluripotent stem cell mESCs, differentia...ted http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.mESCs,_differentiated.bed ...

  16. The Effects of Shallow Cryogenic Process On The Mechanical Properties of AISI 4140 Steel

    Directory of Open Access Journals (Sweden)

    Eşref KIZILKAYA

    2018-03-01

    Full Text Available In this study, shallow cryogenic treatments were carried out for various holding time to AISI 4140 steel and the effects of heat treatment parameters on wear behavior, impact strength and tensile strength were investigated. Three different holding times were used for cryogenic heat treatments. After the cryogenic process, single tempering was applied. In addition, the abrasion tests were carried out at three different forces (5N, 10N and 15N at a constant slip speed (3.16 m / s and at three different slip distances (95 m, 190 m, 285 m. It has been determined that the shallow cryogenic process parameters significantly influence the mechanical properties of the AISI 4140 steel as a result of experimental studies., Low heat treatment times in cryogenic heat treatment have been found to have a positive effect on many mechanical properties, especially wear. The mechanical properties of the AISI 4140 steel can be optimized by controlling the shallow cryogenic heat treatment parameters.

  17. Comparison between steel and lead shieldings for radiotherapy rooms regarding neutron doses to patients

    International Nuclear Information System (INIS)

    Silva, M.G.; Rebello, W.F.; Andrade, E.R.; Medeiros, M.P.C.; Mendes, R.M.S.; Braga, K.L.; Gomes, R.G.

    2015-01-01

    The NCRP Report No. 151, Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities, considers, in shielding calculations for radiotherapy rooms, the use of lead and/or steel to be applied on bunker walls. The NCRP Report calculations were performed foreseeing a better protection of people outside the radiotherapy room. However, contribution of lead and steel to patient dose should be taken into account for radioprotection purposes. This work presents calculations performed by MCNPX code in analyzing the Ambient Dose Equivalent due to neutron, H *(10) n , within a radiotherapy room, in the patients area, considering the use of additional shielding of 1 TVL of lead or 1 TVL of steel, positioned at the inner faces of walls and ceiling of a bunker. The head of the linear accelerator Varian 2100/2300 C/D was modeled working at 18MeV, with 5 x 5 cm 2 , 10 x 10 cm 2 , 20 x 20 cm 2 , 30 x 30 cm 2 and 40 x 40 cm 2 openings for jaws and MLC and operating in eight gantry's angles. This study shows that the use of lead generates an average value of H *(10) n at patients area, 8.02% higher than the expected when using steel. Further studies should be performed based on experimental data for comparison with those from MCNPX simulation. (author)

  18. Testing of Ni-plated ferritic steel interconnect in SOFC stacks

    DEFF Research Database (Denmark)

    Nielsen, K.A.; Dinesen, A.R.; Korcakova, L.

    2006-01-01

    heating to 1,030 °C. During this time, 20–70 μm thick surface layers of austenitic steel were formed, which were covered by a 1–4 μm chromia layer on the anode side and by a layer of mixed Cr-Fe-Ni-spinels over a 1–4 μm chromia layer on the cathode side. The microstructure and composition...... of the protective scale on the cathode side was susceptible to pitting-type corrosion patterns, which may limit the life expectancy to less than 2,000 hours for the 200 μm thick interconnect tested. The initial area-specific resistances (ASR) at the interconnect/cathode current collector interface...

  19. File list: DNS.PSC.20.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESCs,_differentiated mm9 DNase-seq Pluripotent stem cell mESCs, differentia...ted http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESCs,_differentiated.bed ...

  20. Precipitation in 20 Cr-25 Ni type stainless steel irradiated at low temperatures in a thermal reactor (AGR)

    International Nuclear Information System (INIS)

    Taylor, C.

    1983-01-01

    The effects of irradiation on the microstructure of AGR fuel rod cladding have been studied by analytical electron microscopy. Two alloys were investigated, the standard 20 Cr-25 Ni steel stabilised with Nb and a variant containing less Nb but strengthened with a dispersion of TiN precipitates. Irradiation at 360 deg C to 480 deg C produced (Ni, Si)-rich precipitates in both alloys; additionally the standard alloy contained (Ni, Nb, Si)-rich precipitates when irradiated at 440 deg C to 640 deg C. While similar features have been observed in other austenitic stainless steels irradiated in fast reactors, where the lattice-damage rate is greater than in a thermal reactor, their formation is not predicted by isothermal equilibrium diagrams. It is suggested here that the phases are irradiation-induced and that the total displacement damage is the controlling factor. Cladding solution-treated above 1050 deg C then irradiated at 2 -based reactor coolant occurred in cladding with low levels of cold-work at the outer surface, also resulting in Cr-rich carbide formation. (author)

  1. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  2. EBSD characterization of an IF steel processed by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Cruz-Gandarilla, F; Salcedo-Garrido, A M; Avalos, M; Bolmaro, R; Baudin, T; Cabañas-Moreno, J G; Dorantes-Rosales, H J

    2015-01-01

    The objective of this work is to study the texture and microstructure evolution of an IF steel deformed by Accumulative Roll Bonding (ARB) using Electron Backscatter Diffraction. Texture changes occur with increasing number of ARB cycles. For the early cycles, the main components are the α and γ fiber components characteristic of steels. With increasing the number of ARB cycles a tendency towards a random texture is obtained. In the initial state, the mean grain size is 30 μm and after 5 cycles it decreases to 1.2 μm. For the first ARB cycles, the fraction of high angle grain boundary is low but it increases with the number of cycles to about 80% for 5 cycles. The Kernel Average Misorientation (KAM) has no appreciable changes with the number of ARB cycles for all the texture components. (paper)

  3. Residual stress determination by neutron diffraction in a car gear-shaft made of 20NiCrMo2 alloyed case hardening steel

    Czech Academy of Sciences Publication Activity Database

    Rogante, M.; Mazzanti, M.; Mikula, Pavol; Vrána, Miroslav

    2012-01-01

    Roč. 50, č. 4 (2012), s. 213-220 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP204/12/1360 Institutional support: RVO:61389005 Keywords : 20NiCrMo2 steel * gear-shaft * caser hardening * residual stress * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.687, year: 2012

  4. Effect of hot rolling on the structure and the mechanical properties of nitrogen-bearing austenitic-martensitic 14Kh15AN4M steel

    Science.gov (United States)

    Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.

    2016-04-01

    The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.

  5. Biomechanical cadaveric comparison of patellar ligament suture protected by a steel cable versus a synthetic cable.

    Science.gov (United States)

    Bouget, P; Breque, C; Beranger, J S; Faure, J P; Khiami, F; Vendeuvre, T

    2017-12-01

    Purpose and hypothesis: Patellar ligament rupture is a rare disabling pathology requiring a surgical ligament suture protected by a frame. The gold standard is the steel cable, but its rigidity and the necessity of a surgical re-intervention for its removal render it unsatisfactory. The objective of this paper is to quantify the mechanical protection provided by the terylene® in comparison with steel. Twenty-four knees of 12 fresh frozen cadaveric subjects were divided into 2 homogeneous groups (terylene and steel) of 12 knees (mean age = 69.3 years). Proximal ligament repair was performed according to a three-tunnel transosseous reinsertion technique. Mechanical tests were performed in flexion to simulate movement of the knee. The interligament gap and the amplitude angulation of the knee were measured by a system of extensometer and optical goniometer. Mechanical analysis permitted calculation of flexion amplitude for a ligament gap of 1 and 2 mm taking as initial angle the adjusting angle of pretension of the protection frame. Study of deformations of frames was performed. Statistical analysis was performed with a Wilcoxon Mann Whitney test. There is no significant difference in protection of the ligament suture between the "terylene" and "steel" groups. Mean flexion amplitudes (mΔF) show no significant differences between the 2 groups for a distension of the suture of 1 mm (m ΔF terylene1 = 4.74 °; mΔF steel1 = 5.91°; p = 0.198) and 2 mm (mΔF terylene2 = 8.71°; mΔF steel2 = 10.41°; p = 0.114). Elastic deformation of terylene was significantly greater than that of steel (p = 0.0004). Suture protection of the patellar ligament by a terylene wire is not significantly different from that provided by steel frame. The elastic properties of terylene and absence of a need for re intervention to secure its removal lead us towards its use in acute ruptures of the patellar ligament. The main limits involve the properties of

  6. Corrosion fatigue investigation of a high nitrogen 12% Cr-steel and of a high strength martensitic PH 13-8 Mo steel under simulated steam turbine conditions. Final report

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Schweigart, H.

    1992-01-01

    This report summarizes the results of the corrosion fatigue investigations of two martensitic stainless steels (PH 13-8 Mo, X20 CrMoV 12 1; corrosion medium: 0,01 m NaCl or 22 wt% NaCl; pH value 3 or 7). The working programm includes electrochemical and corrosion fatigue tests. Also chemical analysis, mechanical-technological and metallographical as SEM investigations were performed. (orig.)

  7. Efficiency and corrosion rate analysis of organic inhibitor utilization from bawang dayak leaves (EleutherineamericanaMerr.) on API 5L steel

    Science.gov (United States)

    Sari, Shaimah Rinda; Sari, Eli Novita; Rizky, Yoel; Sulistijono, Triana, Yunita

    2018-05-01

    This research studied the inhibition of corrosion by bawang dayak leaves extract (EleutherineamericanaMerr.) on API 5L steel in brine water environment (3.5% NaCl). The inhibitor was extracted using maceration process from bawang dayak leaves that was cultivated in Paser District, East Kalimantan. The test of antioxidant activity showed that bawang dayak leaves extract is a very powerful antioxidant with IC50 value of 27.30204. The results from FTIR test show the presence of electronegative atoms and double bonds of the alkenes groups that provide the potential of the extract as a corrosion inhibitor. Efficiency of inhibition reached up to 93.158% for the addition of inhibitor with 300 ppm concentration and 20 days of immersion time. This inhibitory behavior is also supported by polarization measurements where the lowest corrosion rate of 0.00128 mm/year is obtained at the same concentration and immersion time.

  8. File list: Pol.PSC.20.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.mESCs,_differentiated mm9 RNA polymerase Pluripotent stem cell mESCs, differentia...ted SRX590276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.20.AllAg.mESCs,_differentiated.bed ...

  9. Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints

    Science.gov (United States)

    de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra

    2018-01-01

    The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.

  10. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    Science.gov (United States)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  11. Microstructural influence on the local behaviour of 16MND5 steel

    International Nuclear Information System (INIS)

    Sekfali, S.

    2004-06-01

    16MND5 Steel or A508 Cl3 is used for manufacture by forging of nuclear reactor vessels. This material presents a good compromise in term of tenacity and yield stress, its microstructure is mainly bainitic tempered. Because of the chemical composition local variation and process of development, this material presents microstructural heterogeneities which can locally modify the properties of damage. In particular, some zones present a martensitic microstructure. The goal of this thesis is to bring some explanations on the influence of the microstructure; more particularly, size of the crystallographic entities and their spatial distribution on the local behaviour of 16MND5 steel. Two microstructures were elaborated for this purpose, a tempered bainitic microstructure and a tempered martensitic microstructure. An experimental characterization was carried out on the two microstructures in order to determine morphology, spatial distribution of the crystallographic orientations and tensile behaviour. A deposit of micro grid was carried out on tensile specimens to determine the experimental deformation field on a beforehand EBSD analyzed zone. The determination of the tensile behaviour allowed the identification of a multi crystalline behaviour law by a reverse method using the density of dislocation on each system of slip. This behaviour law was used in simulations with a finite element method to simulate the local mechanical field of the two microstructures and to compare with the obtained experimental deformation fields. It results, a good adequacy between simulations and experiments and the description of the influence of the neighbor grain's orientation on the local behaviour. (author)

  12. Dynamic Strain Aging Phenomena and Tensile Response of Medium-Mn TRIP Steel

    Science.gov (United States)

    Field, Daniel M.; Van Aken, David C.

    2018-04-01

    Dynamic strain aging (DSA) and rapid work hardening are typical behaviors observed in medium-Mn transformation-induced plasticity (TRIP) steel. Three alloys with manganese ranging from 10.2 to 13.8 wt pct with calculated room temperature stacking fault energies varying from - 2.1 to 0.7 mJ/m2 were investigated. Significant serrations were observed in the stress-strain behavior for two of the steels and the addition of 4.6 wt pct chromium was effective in significantly reducing the occurrence of DSA. Addition of chromium to the alloy reduced DSA by precipitation of M23(C,N)6 during batch annealing at 873 K (600 °C) for 20 hours. Three distinct DSA mechanisms were identified: one related to manganese ordering in stacking faults associated with ɛ-martensite and austenite interface, with activation energies for the onset and termination of DSA being 145 and 277 kJ/mol. A second mechanism was associated with carbon diffusion in γ-austenite where Mn-C bonding added to the total binding energy, and activation energies of 88 and 155 kJ/mol were measured for the onset and termination of DSA. A third mechanism was attributed to dislocation pinning and unpinning by nitrogen in α-ferrite with activation energies of 64 and 123 kJ/mol being identified. Tensile behaviors of the three medium manganese steels were studied in both the hot band and batch annealed after cold working conditions. Ultimate tensile strengths ranged from 1310 to 1404 MPa with total elongation of 24.1 to 34.1 pct. X-ray diffraction (XRD) was used to determine the transformation response of the steels using interrupted tensile tests at room temperature. All three of the processed steels showed evidence of two-stage TRIP where γ-austenite first transformed to ɛ-martensite, and subsequently transformed to α-martensite.

  13. A comparative study of the corrosion inhibition of mild steel in sulphuric acid by 4,4-dimethyloxazolidine-2-thione

    International Nuclear Information System (INIS)

    Musa, Ahmed Y.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Daud, Abdul Razak; Takriff, Mohd Sobri; Kamarudin, Siti Kartom

    2009-01-01

    The corrosion protection of mild steel in a 2.5 M H 2 SO 4 solution by 4,4-dimethyloxazolidine-2-thione (DMT) was studied at different temperatures by measuring changes in open circuit potential (OCP), potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). Corrosion current densities calculated from EIS data were comparable to those obtained from polarisation measurements. Results showed that DMT inhibited mild steel corrosion in a 2.5 M H 2 SO 4 solution and indicated that the inhibition efficiencies increased with the concentration of inhibitor, but decreased proportionally with temperature. Polarisation curves showed that DMT is a mixed-type inhibitor. Changes in impedance parameters suggested the adsorption of DMT on the mild steel surface, leading to the formation of protective films. The DMT adsorption on the mild steel surface followed the Langmuir adsorption isotherm. The kinetic and thermodynamic parameters for dissolution and adsorption were investigated. Comprehensive adsorption (physisorption and chemisorption) of the inhibitor molecules on the mild steel surface was suggested based on the thermodynamic adsorption parameters.

  14. Creep damage development in welded X20 and P91

    Energy Technology Data Exchange (ETDEWEB)

    Brett, Steve; Holmstrom, Stefan; Hald, John; Borg, Ulrik; Aakjaer Jensen, Soeren; Vulpen, Rijk Van; Degnan, Craig; Vinter Dahl, Kristian; Vilhelmsen, Tommy

    2011-03-15

    The Martensitic steel X20CrMoV121 (hereinafter called X20) and the modified 9Cr1Mo steel (hereinafter called P91) have been used for a number of years in high temperature applications since they posses superior creep strength compared to low alloyed steels. Due to the simple fact that very few failures were observed, almost no knowledge as to the evolution of creep damage in welds were available despite long operation times exceeding well over 100.000 hours. It has been suggested that X20 will develop creep damage in a different manner compared to low alloyed steel, i.e damage initiation should be slow followed by accelerated growth. The research work presented in this report included systematic investigations of the first components of X20, which has developed creep during long-term operation. All of the investigated components showed creep damage evolution similar to low alloy steels

  15. Evaluation of 99mTc(CO)5I as a potential lung perfusion agent

    International Nuclear Information System (INIS)

    Miroslavov, Alexander E.; Gorshkov, Nikolay I.; Lumpov, Alexander L.; Yalfimov, Anatoly N.; Suglobov, Dmitrii N.; Ellis, Beverley L.; Braddock, Rattana; Smith, Anne-Marie; Prescott, Mary C.; Lawson, Richard S.; Sharma, Harbans L.

    2009-01-01

    Introduction: The use of 99m Tc-macroggregated albumin for lung perfusion imaging is well established in nuclear medicine. However, there have been safety concerns over the use of blood-derived products because of potential contamination by infective agents, for example, Variant Creutzfeldt Jakob Disease. Preliminary work has indicated that Tc(CO) 5 I is primarily taken up in the lungs following intravenous administration. The aim of this study was to evaluate the biodistribution and pharmacokinetics of 99m Tc(CO) 5 I and its potential as a lung perfusion agent. Methods: 99m Tc(CO) 5 I was synthesized by carbonylation of 99m TcO 4- at 160 atm of CO at 170 deg. C in the presence of HI for 40 min. Radiochemical purity was determined by HPLC using 99 Tc(CO) 5 I as a reference. 99m Tc(CO) 5 I was administered by ear-vein injection to three chinchilla rabbits, and dynamic images were acquired using a gamma camera (Siemens E-cam) over 20 min. Imaging studies were also performed with 99m Tc-labeled macroaggregated albumin ( 99m Tc-MAA) and 99m TcO 4- for comparison. 99m Tc(CO) 5 I was administered intravenously to Sprague-Dawley rats, and tissue distribution studies were obtained at 15 min and 1 h postinjection. Comparative studies were performed using 99m Tc-MAA. Results: Radiochemical purity, assessed by HPLC, was 98%. The retention time was similar to that of 99 Tc(CO) 5 I. The dynamic images showed that 70% of 99m Tc(CO) 5 I appeared promptly in the lungs and remained constant for at least 20 min. In contrast, 99m TcO 4- rapidly washed out of the lungs after administration. As expected 99m Tc-MAA showed 90% lung accumulation. The percentage of injected dose per gram of organ ±S.D. at 1 h for 99m Tc(CO) 5 I was as follows: blood, 0.22±0.02; lung, 12.8±2.87; liver, 0.8±0.15; heart, 0.15±0.01; kidney, 0.47±0.08. The percentage of injected dose per organ ±S.D. at 1 h was as follows: lung, 22.47±2.31; liver, 10.53±1.8; heart, 0.18±0.01; kidney, 1.2±0.17. Tissue

  16. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  17. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Directory of Open Access Journals (Sweden)

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  18. Understanding Solidification Based Grain Refinement in Steels

    Science.gov (United States)

    2014-12-18

    tube that was placed on the ladle bottom prior to tapping. In another method, a 0.3 wt. % RE silicide addition was coated with zinc and then... ductility was observed for the steels treated with EGR. Due to the results of Task 4, Task 5 was not required as originally thought. Task 6 consisted of...5 ^m in size. Very few oxides were found with an oxide coating on them. One interesting observation was that the composition of the oxides changed as

  19. Precipitation of carbides in Cr – Mo – V cast steel after service and regenerative heat treatment

    Directory of Open Access Journals (Sweden)

    G. Golański

    2009-01-01

    Full Text Available The paper presents results of research on precipitation processes in chromium – molybdenum – vanadium cast steel. Theexamined material was the following cast steel grade: L21HMF and G17CrMoV5 – 10 (L17HMF after long-term operation at elevatedtemperatures and after regenerative heat treatment. Identification of precipitates was performed by means of the transmission electronmicroscope using carbon extraction replicas and thin foils. On the basis of identifications it has been proved that in the structure ofinvestigated cast steel grades, degraded by long-term operation, there are a few sorts of carbides with diverse stability, such as: M3C; M2C, M23C6, MC, M7C3. Moreover, the occurrence of compound complexes of precipitates – the so called “H-carbides” – has been revealed. Heat treatment of the examined cast steels contributed to changes in morphology and precipitation type. Whilst in the bainitic structure, obtained through heat treatment, only the occurrence of carbide types, such as: M3C; M23C6 and MC has been noticed.

  20. Recrystallization and modification of the stainless-steel surface relief under photonic heat load in powerful plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru; Martynenko, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation); Khimchenko, L. N. [Project Center ITER (Russian Federation); Zhitlukhin, A. M.; Klimov, N. S. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Pitts, R. A. [ITER Organization (France); Linke, J. [EURATOM Association, Forschungszentrum Jülich GmbH (Germany); Bazylev, B. [IHM, Karlsruhe Institute of Technology (Germany); Belova, N. E.; Karpov, A. V. [National Research Centre Kurchatov Institute (Russian Federation); Kovalenko, D. V.; Podkovyrov, V. L.; Yaroshevskaya, A. D. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2013-11-15

    Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40 μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (∼10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ∼1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.

  1. Effect of ion beam bombardment on the carbide in M2 steel modified by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y.; Wang, F.J.; Wang, Y.K. (Dept. of Materials Engineering, Dalian Univ. of Technology (China)); Ma, T.C. (National Lab. of Materials Modification by Beam Three, Dalian (China))

    1991-10-30

    Transmission electron microscopy was used to study the effect of nitrogen ion bombardment with different doses on the carbides in M2 high speed steel as the nitrogen ions penetrated into the nitride films during ion-beam-assisted deposition. With different doses of nitrogen, alterations in the morphological characteristics of the carbide M6C at the interface were observed. With lower doses, knitting-like contrast within the carbide showed subboundary structure defects in M6C. With increasing dose, the substructure defects were broken up into small fragments owing to heavy bombardment. The microstructures of carbides at the interface damaged by nitrogen ions are discussed in detail. (orig.).

  2. Material physical properties of 12 chromium ferritic steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Wakai, Takashi; Aoto, Kazumi

    2003-09-01

    High chromium ferritic steel is an attractive candidate for structural material of the next Fast Breeder Reactor, since both of thermal properties and high temperature strength of the steel are superior to those of conventional austenitic stainless steels. In this study, physical properties of 12Cr steels are measured and compared to those obtained in the previous studies to discuss about stochastic dispersions. The effect of measurement technique on Young's modulus and the influence of the specimen size on coefficient of thermal expansion are also investigated. The following conclusions are obtained. (1) Young's modulus of 12Cr steels obtained in this study tends to larger than those obtained in the previous studies especially in high temperature. Such a discrepancy is resulted from the difference in measurement technique. It was clarified that Young's modulus obtained by free vibration method is more adequate those obtained by the cantilever characteristic vibration method. Therefore, the authors recommend using the values obtained by free vibration method as Young's modulus of 12Cr steels. (2) Both instant and mean coefficient of thermal expansion of 12Cr steels obtained in this study is in a good agreement with those obtained in the previous studies. However, the obviously different values are obtained from the measurement by large size specimens. Such a discrepancy is resulted from heterogeneous during heating process of the specimens. Therefore, the authors recommend using the values obtained by φ4 x 20 mm specimens as instant and mean coefficient of thermal expansion of 12Cr steels. (3) Specific heat of 12Cr steels obtained in this study agree with those obtained in the previous studies with a few exceptions. (4)Thermal conductivity of 12Cr steels obtained in this study agree with those obtained in the previous studies. (5) It was confirmed that instant and mean coefficient of thermal expansion, density, specific heat and thermal conductivity of 12Cr steels

  3. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel

    Science.gov (United States)

    Chu, Rensheng; Mu, Shukun; Liu, Jingang; Li, Zhanjun

    2017-09-01

    In the current paper, it is analyzed for the influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel. It is observed for the structure for different heat input of the coarse-grained area. It is finest for the coarse grain with the high heat input of 200 kJ / cm and the coarse grain area with 400 kJ / cm is the largest. The performance with the heat input of 200 kJ / cm for -20 °C V-shaped notch oscillatory power is better than the heat input of 400 kJ / cm. The grain structure is the ferrite and bainite for different holding time. The grain structure for 5s holding time has a grain size of 82.9 μm with heat input of 200 kJ/cm and grain size of 97.9 μm for 10s holding time. For the inclusions for HSLA steel with adding rare earth, they are Al2O3-CaS inclusions in the Al2O3-CaS-CaO ternary phase diagram. At the same time, it can not be found for low melting calcium aluminate inclusions compared to the inclusions for the HSLA steel without rare earth. Most of the size for the inclusions is between 1 ~ 10μm. The overall grain structure is smaller and the welding performance is more excellent for adding rare earth.

  4. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  5. Diffusion creep and its inhibition in a stainless steel

    International Nuclear Information System (INIS)

    Crossland, I.G.; Clay, B.D.

    1977-01-01

    The creep of 20% Cr, 25% Ni, Nb stainless steel was examined at low stresses and temperatures around 0.55 T/sub m/. The initial creep behaviour was consistent with the Coble theory of grain boundary diffusion creep; however, steady state creep was not observed and the creep rates quickly fell below the Coble theoretical values although they still remained greater than the Herring--Nabarro predictions. This reduction in creep rate was attributable to an increase in the effective viscosity of the steel rather than to any change in threshold stress. A model is proposed which explains the initial creep rates as being due to Coble creep with elastic accommodation at grain boundary particles. At higher strains grain boundary collapse caused by vacancy sinking is accommodated at precipitate particles by plastic deformation of the adjacent matrix material. 11 figures

  6. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact

    Directory of Open Access Journals (Sweden)

    N. A. Rahman

    Full Text Available Abstract This paper presents the computational-based ballistic limit of laminated metal panels comprised of high strength steel and aluminium alloy Al7075-T6 plate at different thickness combinations to necessitate the weight reduction of existing armour steel plate. The numerical models of monolithic configuration, double-layered configuration and triple-layered configuration were developed using a commercial explicit finite element code and were impacted by 7.62 mm armour piercing projectile at velocity range of 900 to 950 m/s. The ballistic performance of each configuration plate in terms of ballistic limit velocity, penetration process and permanent deformation was quantified and considered. It was found that the monolithic panel of high-strength steel has the best ballistic performance among all panels, yet it has not caused any weight reduction in existing armour plate. As the weight reduction was increased from 20-30%, the double-layered configuration panels became less resistance to ballistic impact where only at 20% and 23.2% of weight reduction panel could stop the 950m/s projectile. The triple-layered configuration panels with similar areal density performed much better where all panels subjected to 20-30% weight reductions successfully stopped the 950 m/s projectile. Thus, triple-layered configurations are interesting option in designing a protective structure without sacrificing the performance in achieving weight reduction.

  7. The microstructure effect on the fracture toughness of ferritic Ni-alloyed steels

    International Nuclear Information System (INIS)

    Scheid, Adriano; Félix, Lorenzo Marzari; Martinazzi, Douglas; Renck, Tiago; Fortis Kwietniewski, Carlos Eduardo

    2016-01-01

    Production of oil and gas in the Brazilian pre-salt faces several technical challenges and one of them that is a major concern is the presence of CO_2 in high concentration. The aim of this work is to evaluate the fracture toughness of two nickel-containing steels as an alternative material to manufacture low-temperature toughness improved CO_2 transporting pipelines for Enhanced oil recovery (EOR). Optical and scanning electron microscopies were employed to characterize the steels microstructures. Electron back-scattered diffraction was used to estimate the effective grain size and the density of high-angle grain boundaries. Fracture toughness was determined by the use of the crack tip opening displacement methodology. The results indicated that for the as-rolled condition the large islands of the microconstituent M/A in the 5"1"/"2 Ni steel had a detrimental effect on fracture toughness at −100 °C, while finer M/A particles and lower effective grain size with higher density of high-angle grain boundaries in the 9 Ni steel turned its fracture toughness practically temperature independent. Additionally, heat treatment (quenching and tempering) has the potential to dissolve the M/A hard particles and consequently improve fracture toughness at low temperature.

  8. The microstructure effect on the fracture toughness of ferritic Ni-alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, Adriano, E-mail: scheid@ufpr.br [Programa de Pos-Graduação em Engenharia Mecânica, PGMec, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 210, Curitiba (Brazil); Félix, Lorenzo Marzari; Martinazzi, Douglas; Renck, Tiago; Fortis Kwietniewski, Carlos Eduardo [Programa de Pos-Graduação em Engenharia de Minas, Metalurgia e Materiais, PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre (Brazil)

    2016-04-20

    Production of oil and gas in the Brazilian pre-salt faces several technical challenges and one of them that is a major concern is the presence of CO{sub 2} in high concentration. The aim of this work is to evaluate the fracture toughness of two nickel-containing steels as an alternative material to manufacture low-temperature toughness improved CO{sub 2} transporting pipelines for Enhanced oil recovery (EOR). Optical and scanning electron microscopies were employed to characterize the steels microstructures. Electron back-scattered diffraction was used to estimate the effective grain size and the density of high-angle grain boundaries. Fracture toughness was determined by the use of the crack tip opening displacement methodology. The results indicated that for the as-rolled condition the large islands of the microconstituent M/A in the 5{sup 1/2} Ni steel had a detrimental effect on fracture toughness at −100 °C, while finer M/A particles and lower effective grain size with higher density of high-angle grain boundaries in the 9 Ni steel turned its fracture toughness practically temperature independent. Additionally, heat treatment (quenching and tempering) has the potential to dissolve the M/A hard particles and consequently improve fracture toughness at low temperature.

  9. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  10. Cladding nuclear steels - the application of plasma-arc hot wire surfacing

    International Nuclear Information System (INIS)

    Trarbach, K.O.

    1981-01-01

    The effect of one and two layer plasma-arc hot wire cladding on the HAZ microstructure of the fine grained structural steel 22 NiMoCr 3 7, which is similar to ASTM A 508, class 2, and steel 20 MnMoNi 5 5, similar to ASTM A 533, grade B, class 1 is determined. Attention is directed particularly to the behaviour of the susceptible region, and the consumables considered are cladding materials X 2 CrNiNb 19 9, similar to ER 347 Elc, and S-NiCr 20 Nb, similar to ER NiCr-3 (Inconel 82). Results of corrosion resistance tests show that this cladding technique can be recommended for manufacture of equipment for the chemical industry to avoid corrosion failure. Plasma-arc hot wire surfacing is also shown to be capable of depositing single or double clad layers to meet the highest safety requirements and could be applied to nuclear power plants for the special manufacture of wear resistant parts and for protection of equipment subject to a variety of corrosive environments. (U.K.)

  11. The inhibition effect of Azure A on mild steel in 1 M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects

    International Nuclear Information System (INIS)

    Özkır, Demet; Kayakırılmaz, Kadriye; Bayol, Emel; Gürten, A. Ali; Kandemirli, Fatma

    2012-01-01

    Highlights: ► Azure A molecule is found to be a good inhibitor for mild steel in HCl solution. ► SEM results clearly indicate that a protective film formation occurred on the mild steel surface. ► The long term corrosion tests are cleared that the Azure A has effectively protected the mild steel in HCl solution. ► The quantum chemical measurements were cleared the reactive sites and charges of atoms in the molecule. - Abstract: In this study, inhibition effect of Azure A on mild steel in 1.0 M HCl were evaluated by using electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization and scanning electron microscope (SEM) methods. These studies were carried out at different concentrations, temperatures and durations. The inhibitor molecules were chemisorbed on electrode surface according to the Langmuir adsorption isotherm. The quantum chemical calculations were employed to give further insight into the inhibition mechanism of Azure A.

  12. File list: Oth.PSC.20.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.mESCs,_differentiated mm9 TFs and others Pluripotent stem cell mESCs, differentia...4,SRX754570,SRX065538,SRX523453,SRX523451,SRX065537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.AllAg.mESCs,_differentiated.bed ...

  13. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500 C

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Koji [Institute of Nuclear Safety Systems, Inc., Mihama (Japan); Iijima, Yoshiaki [Tohoku Univ., Sendai (Japan). Dept. of Materials Science; Miyamoto, Tomoki [Kobe Material Testing Laboratory Co. Ltd., Harima (Japan)

    2017-10-15

    The diffusion coefficient of nickel in cold-worked Type 316 austenitic steel was determined by the diffusion couple method in the temperature range between 360 and 500 C. A diffusion couple was prepared by electroless nickel plating on the surface of a 20 % cold-worked Type 316 austenitic steel specimen. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time until 14 055 h. The diffusion coefficient of nickel (D{sub Ni}) in cold-worked Type 316 austenitic steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 11 at.% of nickel. The value of D{sub Ni} at 360 C was about 5 000 times higher than the lattice diffusion coefficient of nickel in Type 316 austenitic steel. The determined activation energy 117 kJ mol{sup -1} was 46.6 % of the activation energy 251 kJ mol{sup -1} for the lattice diffusion of nickel in Type 316 austenitic steel.

  14. Naked (C5Me5)(2)M cations (M = Sc, Ti, and V) and their fluoroarene complexes

    NARCIS (Netherlands)

    Bouwkamp, MW; Budzelaar, PHM; Gercama, J; Morales, ID; de Wolf, J; Meetsma, A; Troyanov, SI; Teuben, JH; Hessen, B; Budzelaar, Peter H.M.; Hierro Morales, Isabel Del; Troyanov, Sergei I.

    2005-01-01

    The ionic metallocene complexes [Cp*M-2][BPh4] (CP* = C5Me5) of the trivalent 3d metals Sc, Ti, and V were synthesized and structurally characterized. For M Sc, the anion interacts weakly with the metal center through one of the phenyl groups, but for M = Ti and V, the cations are naked. They each

  15. Irradiation Creep and Swelling of Russian Ferritic-Martensitic Steels Irradiated to Very High Exposures in the BN-350 Fast Reactor at 305-335 degrees C

    International Nuclear Information System (INIS)

    Konobeev, Yury V.; Dvoriashin, Alexander M.; Porollo, S.I.; Shulepin, S.V.; Budylkin, N.I.; Mironova, Elena G.; Garner, Francis A.

    2003-01-01

    Russian ferritic/martensitic (F/M) steels EP-450, EP-852 and EP-823 were irradiated in the BN-350 fast reactor in the form of gas-pressurized creep tubes. The first steel is used in Russia for hexagonal wrappers in fast reactors. The other steels were developed for compatibility with Pb-Bi coolants and serve to enhance our understanding of the general behavior of this class of steels. In an earlier paper we published data on irradiation creep of EP-450 and EP-823 at temperatures between 390 and 520C, with dpa levels ranging from 20 to 60 dpa. In the current paper new data on the irradiation creep and swelling of EP-450 and EP-852 at temperatures between 305 and 335C and doses ranging from 61 to 89 dpa are presented. Where comparisons are possible, it appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures <420C, but may be camouflaged somewhat by precipitation-related densification. These irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels.

  16. The interaction between nitride uranium and stainless steel

    Science.gov (United States)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  17. Corrosion behavior of TiO{sub 2}-NiO nanocomposite thin films on AISI 316L stainless steel prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, H., E-mail: hoch2020@yahoo.com [Materials Science and Engineering Department, Iran University of Science and Technology (IUST), P.O. Box: 16765163, Narrmak Street, Tehran (Iran, Islamic Republic of); Shahmiri, M., E-mail: mshahmiri@iust.ac.ir [Materials Science and Engineering Department, Iran University of Science and Technology (IUST), P.O. Box: 16765163, Narrmak Street, Tehran (Iran, Islamic Republic of); Sadeghian, Z. [Research Institute of Petroleum Industry (RIPI), P.O. Box: 14857-3311, West Blvd. Azadi Sport Complex, Tehran (Iran, Islamic Republic of)

    2012-11-01

    TiO{sub 2}-NiO nanocomposite thin films were deposited on the 316L stainless steel using sol-gel method by a dip coating technique. Different techniques such as differential thermal analysis, thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectrometry, scanning electron microscopy and scanning probe microscopy were carried out in order to characterize the structure of the coatings. The corrosion resistance of the coatings was evaluated by using Tafel polarization and electrochemical impedance spectroscopy tests of uncoated and coated specimens in a 3.5% NaCl solution at room temperature. It was found that to obtain desirable structure in coatings, the coatings should be calcined at 600 Degree-Sign C for one and half hour. NiTiO{sub 3}, anatase and rutile were the phases obtained in different calcination conditions in air atmosphere. The results of corrosion tests indicated that with increasing the dipping times from 2 to 4, the corrosion current density first decreases but when increasing the dipping times to 6, it increases. Also the corrosion current density decreased from 186.7 nA.cm{sup -2} (uncoated steel) to 34.21 nA.cm{sup -2} (80%TiO{sub 2}-20%NiO) and corrosion potential increased from - 150.2 mV (uncoated steel) to - 107.3 mV (67%TiO{sub 2}-33%NiO). - Highlights: Black-Right-Pointing-Pointer TiO{sub 2}-NiO thin films were deposited on the 316L stainless steel using sol-gel method. Black-Right-Pointing-Pointer Different compositions, annealing times and temperatures resulted in various phases. Black-Right-Pointing-Pointer Films having different compositions showed various surface morphologies. Black-Right-Pointing-Pointer Films having a composition of 80%TiO{sub 2}-20%NiO showed a good corrosion protection.

  18. Phobos MRO/CRISM visible and near-infrared (0.5-2.5 μm) spectral modeling

    Science.gov (United States)

    Pajola, Maurizio; Roush, Ted; Dalle Ore, Cristina; Marzo, Giuseppe A.; Simioni, Emanuele

    2018-05-01

    This paper focuses on the spectral modeling of the surface of Phobos in the wavelength range between 0.5 and 2.5 μm. We exploit the Phobos Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars (MRO/CRISM) dataset and extend the study area presented by Fraeman et al. (2012) including spectra from nearly the entire surface observed. Without a priori selection of surface locations we use the unsupervised K-means partitioning algorithm developed by Marzo et al. (2006) to investigate the spectral variability across Phobos surface. The statistical partitioning identifies seven clusters. We investigate the compositional information contained within the average spectra of four clusters using the radiative transfer model of Shkuratov et al. (1999). We use optical constants of Tagish Lake meteorite (TL), from Roush (2003), and pyroxene glass (PM80), from Jaeger et al. (1994) and Dorschner et al. (1995), as previously suggested by Pajola et al. (2013) as inputs for the calculations. The model results show good agreement in slope when compared to the averages of the CRISM spectral clusters. In particular, the best fitting model of the cluster with the steepest spectral slope yields relative abundances that are equal to those of Pajola et al. (2013), i.e. 20% PM80 and 80% TL, but grain sizes that are 12 μm smaller for PM80 and 4 μm smaller for TL (the grain sizes are 11 μm for PM80 and 20 μm for TL in Pajola et al. (2013), respectively). This modest discrepancy may arise from the fact that the areas observed by CRISM and those analyzed in Pajola et al. (2013) are on opposite locations on Phobos and are characterized by different morphological and weathering settings. Instead, as the clusters spectral slopes decrease, the best fits obtained show trends related to both relative abundance and grain size that is not observed for the cluster with the steepest spectral slope. With a decrease in slope there is general increase of relative percentage of

  19. Vibrational Based Inspection Of A Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination of accep......The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination...

  20. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).