WorldWideScience

Sample records for steel structures

  1. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  2. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  3. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  4. Optimum design of steel structures

    CERN Document Server

    Farkas, József

    2013-01-01

    This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads...

  5. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  6. Evaluation criteria of structural steel reliability

    International Nuclear Information System (INIS)

    Zav'yalov, A.S.

    1980-01-01

    Different low-carbon and medium-carbon structural steels are investigated. It is stated that steel reliability evaluation criteria depend on the fracture mode, steel suffering from the brittle fracture under the influence of the stresses (despite their great variety) arising in articles during the production and operation. Fibrous steel fracture at the given temperature and article thickness says about its high ductility and toughness and brittle fractures are impossible. Brittle fractures take place in case of a crystalline and mixed fracture with a predominant crystalline component. Evaluation methods of article and sample steel structural strength differing greatly from real articles in a thickness (diameter) or used at temperatures higher than possible operation temperatures cannot be reliability evaluation criteria because at a great thickness (diameter) and lower operation temperatures steel fracture and its strain mode can change resulting in a sharp reliability degradation

  7. Symbolic aesthetics in steel structural systems

    Directory of Open Access Journals (Sweden)

    Usama Abdul-Mun'em Khuraibet

    2015-02-01

    Full Text Available The aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility and accuracy in manufacture of structural elements as visual items, structural interest in the forms of spaces which have long span systems or in high buildings are different forms of expression and influence. So the research focuses on the study of those expressive patterns related with the steel construction properties, including the advantages of these systems at the level of strength and firmness, flexibility and economy as well as aesthetic and expression. Accordingly, the research problem concentrated on educational shortage in the study of the structural steel system aspects concerning constructional characteristic, expressive and aesthetic features, and how to deal with them as a language bearing the symbols and meanings which have clear structural style, because it the best ways to make those systems as communication means with users, by premise that the use of expressional symbol in steel construction increases the aesthetic value. Therefore the research aims to reveal the most structural and expressive patterns by analysis the expressional means and steel structural aesthetics.

  8. PLASTIC ANALYSIS OF STEEL FRAME STRUCTURE

    Directory of Open Access Journals (Sweden)

    M. Rogac

    2013-05-01

    Full Text Available This paper presents the plastic analysis of steel frame structure loaded by gravity loads. By applying the cinematic theorem of ultimate analysis, the ultimate load for the case of elastic - ideally plastic material is calculated. The identical structure was treated in the computer program SAP2000 where the zone of material reinforcement in the plastic area was covered. Keywords: Steel frame structure, plastic analysis, ultimate gravity load, material reinforcement.

  9. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  10. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  11. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  12. Diffusion zinc plating of structural steels

    International Nuclear Information System (INIS)

    Kazakovskaya, Tatiana; Goncharov, Ivan; Tukmakov, Victor; Shapovalov, Vyacheslav

    2004-01-01

    The report deals with the research on diffusion zinc plating of structural steels when replacing their cyanide cadmium plating. The results of the experiments in the open air, in vacuum, in the inert atmosphere, under various temperatures (300 - 500 deg.C) for different steel brands are presented. It is shown that diffusion zinc plating in argon or nitrogen atmosphere ensures obtaining the qualitative anticorrosion coating with insignificant change of mechanical properties of steels. The process is simple, reliable, ecology pure and cost-effective. (authors)

  13. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  14. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses......Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude and variable amplitude fatigue...

  15. Fire-induced collapses of steel structures

    DEFF Research Database (Denmark)

    Dondera, Alexandru; Giuliani, Luisa

    Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....

  16. Generic Inspection Planning for Steel Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, Michael H.

    2002-01-01

    This paper presents a simplified and practically applicable approach for risk based inspection planning of fatigue sensitive structural details in steel structures. The basic idea is that the fatigue sensitive details are categorized according to their Fatigue Design Factor (FDF) and SN curve. When...

  17. Blast resistance behaviour of steel frame structures

    NARCIS (Netherlands)

    Varas, J.M.; Soetens, F.

    2010-01-01

    The effect of a blast explosion on a typical steel frame building is investigated by means of computer simulations. The simulations help to identify possible hot spots that may lead to local or global failure. The blast energy is transferred to the structure by means of the façade. In particular

  18. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  19. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.

  20. Machinability of structural steels with calcium addition

    International Nuclear Information System (INIS)

    Pytel, S.; Zadecki, M.

    2003-01-01

    The machinability of the plain carbon and low alloy structural steels with carbon content of 0.1-0.6% is briefly discussed in the first part of the paper. In the experimental part a dependence between the addition of calcium and some changes in sulphide and oxide inclusions morphology is presented. The Volvo test for measurement of machinability index B i has been applied. Using the multiple regression methods two relationships between machinability index B i and stereological parameters of non-metallic inclusions as well as hardness of the steels have been calculated. The authors have reached the conclusion that owing to the changes in inclusion chemical composition and geometry as result of calcium addition the machinability index of the steel can be higher. (author)

  1. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  2. Modal Based Fatigue Monitoring of Steel Structures

    DEFF Research Database (Denmark)

    Graugaard-Jensen, J.; Brincker, Rune; Hjelm, H. P.

    2005-01-01

    In this paper it is shown how the accumulated fatigue in steel structures can be estimated with high accuracy by continuously measuring the accelerations in a few points of the structure. First step is to obtain a good estimate of the mode shapes by performing a natural input modal analysis. The so...... by applying the mode shapes of the calibrated Finite Element model and strains are obtained using the shape functions for the actual elements. The technique has been applied on a model frame structure in the laboratory and on a wind loaded lattice pylon structure. In both cases the estimated stresses has been...

  3. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  4. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).

  5. Structure of three Zlatoust bulats (Damascus-steel blades)

    Science.gov (United States)

    Schastlivtsev, V. M.; Gerasimov, V. Yu.; Rodionov, D. P.

    2008-08-01

    Chemical composition, structure, and hardness of samples of three Zlatoust bulats (Damascus steels), namely, an Anosov bulat blade (1841), Obukhov bulat blade (1859), and a Shvetsov forged bulat-steel blank (crucible steel) have been investigated. The Anosov bulat possesses all signs of the classical Damascus steel; this is a hypereutectoid carbon steel with a structure formed from chains of carbides against the background of fine pearlite (troostite). A banded pattern is revealed on the surface of the blade. The Obukhov blade cannot be referred to classical Damascus steel. The pattern on the surface of the blade is absent, despite the fact that the initial steel is hypereutectoid. The structure of the blade does not correspond to the structure of classical Damascus steel; this is bainite with numerous cementite particles. The Shvetsov sample cannot be regarded as Damascus steel since it is made from a hypereutectoid steel alloyed by managanese and tungsten. The pattern on the surface of the metal is a consequence of the dendritic structure of the ingot which is developed during forging. The structure of this pattern differs from classical damascene pattern, since the latter is formed due to a specific arrangement of a variety of carbide particles against the pearlitic or some other background obtained during heat treatment.

  6. Kawasaki Steel Giho, Vol. 27, No. 4, 1995. Special issue on steel structure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    ;Contents (Partial): Vertical Gust Prediction of Cable-Stayed Bridges in Yawed Wind; Design and Construction of a Super Platform Structure Made of Steel; Prefabricated Steel Deck of Battledeck Floor Type for Redecking; Aesthetic Design of Structures; and Lift-up Construction Method for Multi-layer Building.

  7. 46 CFR 154.172 - Contiguous steel hull structure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this...

  8. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  9. Relationships of quenching stresses to structural transformations in steel

    International Nuclear Information System (INIS)

    Loshkarev, V.E.

    1985-01-01

    Technique for accountancy of the effect of stresses on structural transformations in steel when solving problems of thermoplasticity is suggested. It is revealed on the basis of the conducted calculations that accountancy of interrelation of stressed and structural states of 20Kh2MF steel essentially affects forecasting of results of quenching

  10. Influence of titanium on the tempering structure of austenitic steels

    International Nuclear Information System (INIS)

    Ghuezaiel, M.J.

    1985-10-01

    The microstructure of titanium-stabilized and initially deformed (approximately 20%) austenitic stainless steels used in structures of fast neutrons reactors has been studied after one hour duration annealings (500 0 C) by X-ray diffraction, optical microscopy, microhardness and transmission electron microscopy. The studied alloys were either of industrial type CND 17-13 (0.23 to 0.45 wt% Ti) or pure steels (18% Cr, 14% Ni, 0 or 0.3 wt% Ti). During tempering, the pure steels presented some restauration before recristallization. In the industrial steels, only recristallization occurred, and this only in the most deformed steel. Precipitation does not occur in the titanium-free pure steel. In industrial steels, many intermetallic phases are formed when recristallization starts [fr

  11. Certain peculiarities of structural inheritance in phase recrystallization of steel

    International Nuclear Information System (INIS)

    Mukhamedov, A.A.

    1978-01-01

    The structural inheritance in phase recrystallization of previously overheated to various temperatures industrially melted 40Kh steel and of Armco-iron has been investigated. The steels have been heated to 100O, 11O0, 1200 and 1260 deg C and cooled in the air, and in some instances, hardened (quenched) in water. The physical broadening of X-ray lines points to a nonmonotonous variation of fine structure parameters as a function of the temperature and the heating time. The inheritance effect of fine structure defects affects the steel properties obtained in a final heat treatment. The structural inheritance effect has an important bearing upon the wear resistance of steel. A purpose-oriented use of the structural inheritance effect can enhance service properties of steel parts

  12. Utilization of structural steel in buildings.

    Science.gov (United States)

    Moynihan, Muiris C; Allwood, Julian M

    2014-08-08

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is 'rationalization'-providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in 'embodied' carbon emissions.

  13. Technical features of steel structure construction by Kawasaki Steel; Kawasaki Seitetsu no kokozo gijutsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Urata, I.; Okata, S. [Kawasaki Steel Corp., Tokyo (Japan)

    1996-03-01

    In the steel structure technology of Kawasaki Steel, the joint technique (e.g., welding) is added to them while developing or improving the products that meet the social needs as a material supplier. Moreover, the execution technique that manufactures materials or constructs them as an integrated structure, the structural analysis that conforms to the function and application of a structure, and the design technique on dynamic properties or durability such as earthquake resistance, fatigue, and corrosion resistance are synthetically expanded for engineering. In this paper, a building steel frame, non-residence building, bridge, and harbor structure as steel structure in the building and construction fields were described for each structure genre. The structural technology of a building steel frame is summarized to the products of pillar materials. An earthquake brace, using a dead soft steel, with high earthquake energy absorption capability and a damping wall were also developed. The design and execution technique of a large roof was systematized. The exchange technique of a road bridge RC floor and the technique of an unstiffened suspension bridge for pipeline were developed. A new technique was also developed for a suspension monorail track and offshore structure. 30 refs., 5 figs.

  14. Some special problems of steel reinforcement in nuclear structural engineering

    International Nuclear Information System (INIS)

    Bazant, B.; Smejkal, P.; Vetchy, J.

    1986-01-01

    A comparison is made of the mechanical and design characteristics of reinforcing steels for reinforced concrete structures of classes A-0 to A-IV under Czechoslovak State Standard CSN 73 1201 and Soviet standard SNiP II-21-75. Tests were performed to study changes in the values of the yield point, breaking strength, the tensile strength limit and the module of elasticity in selected Czechoslovak steels. The comparison showed that the steels behave in the same manner at high temperatures as Soviet steels of corresponding strength characteristics. Dynamic design strength of Czechoslovak materials also corresponds to values given in the Soviet standard. The technology and evaluation of welded joints equal for both Czechoslovak and Soviet steels. The manufacture was started of tempered wires with a high strength limit for prestressed wire reinforcement. All tests and comparisons showed that Czechoslovak reinforcing steels meet Soviet prescriptions, in some instances Czechoslovak standards are even more strict. (J.B.)

  15. Properties of 40N3M powder structural steel

    International Nuclear Information System (INIS)

    Moskvina, T.P.; Gulyaev, A.P.; Gulyaev, I.A.; Byakov, S.V.; Melent'ev, I.V.; Morgun, G.N.

    1984-01-01

    Effect of the fabrication technique of compact slabs made of the 40N3M powder structural steel on mechanical properties with determination of a cold brittleness threshold was studied. It is established that after a thermal treatment at a density close to 100% a powder steel is sufficiently close to steel, rolled of an ingot, but is second in reference to steel in its ductility and impact strength. Properties of powder steel obtained by the method of dynamic hot forming (DHF) and hot extrusion are practically equal, but the first method has definite advantages as it allows to obtain details with a definitive form. The above investigation permits to recommend an application of the 40N3M powder steel fabricated by the DHF methods. The optimum thermal treatment course is: quenching+high annealing

  16. Use of stainless steel as structural materials in reactor cores

    International Nuclear Information System (INIS)

    Teodoro, C.A.

    1990-01-01

    Austenitic stainless steels are used as structural materials in reactor cores, due to their good mechanical properties at working temperatures and high generalized corrosion resistance in aqueous medium. The objective of this paper is to compare several 300 series austenitic stainless steels related to mechanical properties, localized corrosion resistance (SCC and intergranular) and content of delta ferrite. (author)

  17. Structural inheritance in cast 30KhGNM-type steel

    International Nuclear Information System (INIS)

    Sadovskij, V.D.; Bershtejn, L.I.; Mel'nikova, A.A.; Polyakova, A.M.; Schastlivtsev, V.M.

    1980-01-01

    Structural inheritance in the cast 30KhGNM-type steel depending on the heating rate and the temperature of preliminary tempering is investigated. When eating the cast steel with a beinite structure at the rate of 1-150 deg/min, the restoration of austenite grain and the following recrystallization due to the phase cold work, are observed. Slow heating from room temperature or preliminary tempering hinder grain restoration during heating. A non-monotonous effect of tempering temperature on the structural inheritance is established which can be connected with the kinetics of decomposition of residual austenite in steel

  18. Assessment of fracture toughness of structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Junyor, José Onésimo; Faria, Stéfanno Bruno; Rocha, Nirlando Antônio; Reis, Emil; Vilela, Jefferson José, E-mail: ze_onezo@hotmail.com, E-mail: sbrunofaria@gmail.com, E-mail: nar@cdtn.br, E-mail: emilr@cdtn.br, E-mail: jjv@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro Universitário de Belo Horizonte (UNIBH), MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The fracture toughness parameters are applied to estimate the lifetime of mechanical components and define the criteria of safe failure and tolerable damages. This information allows equipment to be used longer with a high degree of safety. These techniques are applied in the Leak-Before-Break (LBB) concept that is accepted for designing the piping system of the primary circuit of the pressurized water reactor (PWR). In this work, fracture toughness tests such as J{sub IC} and CTOD were performed on some structural steels. The fracture toughness parameters were determined using SE(B) and C(T) test specimens. The fracture toughness values for the same material varied according to the type specimen. The parameter δ{sub 1c} showed different values when it was calculated using the ASTM E1820 standard and using the BS 7448: Part 1 standard. These results indicate that procedures of these standards need to be improved. Two systems with different sensitivity in the force measurement were used that showed similar results for toughness fracture but the dispersion was different. (author)

  19. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  20. Mixed structures in continuously cooled low-carbon automotive steels

    International Nuclear Information System (INIS)

    Khalid, F.A.; Edmonds, D.V.

    1993-01-01

    Mixed microstructures have been studied in low- carbon microalloyed steels suitable for automotive applications, after continuous cooling from the hot-rolled condition. Microstructural features such as polygonal ferrite, bainitic and acicular ferrite and microphase constituent are identified using transmission electron microscopy. The influence of these mixed structures on the tensile strength, impact toughness and fracture behaviour is examined. It is found that improvements in impact toughness as compared with microalloyed medium- carbon ferrite/pearlite steels can be achieved from these predominantly acicular structures developed by controlling alloy composition and continuous cooling of these lower carbon steels. (orig.)

  1. The structure of the alphinizing coat on alloy steels

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper results of the structure of the coat alphinizing in AlSi5 silumin on alloy steels: acid-proof 1H18N9T (X6CrNiTi18-10 and high speed SW18 (HS18-0-1 were presented. The temperature of the alphinizing bath was amounts to750±5°C, and immersion time of the element τ = 180s. It was shown, that there is the different “g” coat thickness on testing steels. On the 1H18N9T steel it amounts to g = 52μm, and on the SW18 steel – g = 203μm. Regardless of a grade of testing alloy steels the coat consist of three layers with diversified phasic structure. There is different chemical composition of coat layers on testing steels. The first layer from the base consist of AlFe phase containing alloy addictions of steels: Cr and Ni (1H18N9T and W, V and Cr (SW18. On this layer crystallize the second layer of intermetallic phases. It is the phase containing the main alloy addiction of steels: AlFeCr (1H18N9T and AlFeW (SW18. The last, outside layer consist of silumin containing AlFeNi intermetallic phases on the 1H18N9T steel and AlFeW on the SW18 steel. Regardless of the grade of testing steels there is Si element in all layers of the coat. There are morphological differences in tested layers. The second layer (AlFeW phase inside the coat on the SW18 steel consist of faced crystals growing into in outside silumin layer. On the 1H18N9T steel a boundary between transient and outside layer is more uniform. Free separations of intermetallic phases inside silumin layer on the 1H18N9T steel have lamellar and on the SW18 steel – faced form.

  2. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1982-01-01

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  3. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  4. Fracture Characteristics of Structural Steels and Weldments

    Science.gov (United States)

    1975-11-01

    CARACTERISTICS 0F.$ýTRUCTURAL TEL/ - "AD E NTSA .INAL 1 A7 sk S. CONTRACT OR GRANT NUMBER(&) Y.2G. im 9. PERFORMING ORGANIZATION NAME AND ADDRESS -017...36, T- 1,and HY-Y130 Steel and AX. Il 30 15 I Tensile F~racture Surface of A-36 Steel, 12x 31 16 Dimple Rupture in A-6Sel 0X 31 17 Plastic ...sites and the relative plasticity of thle The objective of this study was to use a scanning metal. If many fracture icleation sites initiate mticro

  5. Simulation of Structural Transformations in Heating of Alloy Steel

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-07-01

    Amathematical model for computer simulation of structural transformations in an alloy steel under the conditions of the thermal cycle of multipass welding is presented. The austenitic transformation under the heating and the processes of decomposition of bainite and martensite under repeated heating are considered. Amethod for determining the necessary temperature-time parameters of the model from the chemical composition of the steel is described. Published data are processed and the results used to derive regression models of the temperature ranges and parameters of transformation kinetics of alloy steels. The method developed is used in computer simulation of the process of multipass welding of pipes by the finite-element method.

  6. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Cochrane, D.J.

    1998-01-01

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  7. Multicriteria Analysis of Assembling Buildings from Steel Frame Structures

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.

  8. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  9. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests......Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude...

  10. Parametric study for the fire safety design of steel structures

    DEFF Research Database (Denmark)

    Aiuti, Riccardo; Giuliani, Luisa

    2013-01-01

    the considered time of fire exposure. A deeper knowledge on the failure mode of steel structure is however important in order to ensure the safety of the people and properties outside the building. Aim of this paper is to analyze the behaviour of single elements, sub-assemblies and frames exposed to fire...... or hindered thermal expansion induced on the element by the rest of the structure. Nevertheless, restrained thermal expansion is known to significantly affect the behaviour of steel structures in fire, and the compliance with a prescribed resistance class doesn’t ensure the integrity of the building after...... and find out the basic collapse mechanisms of structural elements in fire conditions, considering the rest of the construction with appropriate constraints. The analysis is carried out taking into account material and geometrical nonlinearities as well as the degradation of steel properties at high...

  11. Steel skin - SMC laminate structures for lightweight automotive manufacturing

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo

    2017-09-01

    In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.

  12. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    International Nuclear Information System (INIS)

    Cruz, Magnus G.H.; Viecelli, Alexandre

    2008-01-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation

  13. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Magnus G.H. [Marcopolo S.A., Unidade Ana Rech, Av. Rio Branco, 4889, Ana Rach, 95060-650 Caxias do Sul (Brazil)], E-mail: magnus@verbonet.com.br; Viecelli, Alexandre [Mechanical Engineering Department, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, 95070-560 Caxias do Sul, RS (Brazil)], E-mail: avieceli@ucs.br

    2008-07-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation.

  14. Universal method for opnimal design main structural assemblies of steel structures stationary conveyor with hanging ribbon

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2015-10-01

    Full Text Available The technique and the detailed algorithm for optimal design of steel structures hospitaltion of the conveyor with hang-ing ribbon. Developed a universal objective function together with the system-limited-subject to limits of main components of steel structures of stationary conveyor with hanging ribbon.

  15. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from...

  16. Microstructure and toughness of structural steels

    International Nuclear Information System (INIS)

    Chipperfield, C.G.; Knott, J.F.

    1975-01-01

    The effects of notch acuity, inclusion content, and strength level on the toughness of a variety of ductile steels have been investigated in fully plastic single edge notched bend testpieces. Results for specimens containing fatigue precracks and sharp notches indicate that accurate predictions of a material's resistance to the initiation of fibrous fracture ahead of a fatigue crack may be inferred from tests on notched testpieces and from a knowledge of the microstructure of the material; an experimental procedure has been proposed whereby this may be achieved for quality control and material evaluation purposes. The spacing of optically visible inclusions is found essentially to define both the unit of ductile crack extension and, for low-strength steels, the limiting lateral dimensions of the high-strain field ahead of the crack tip. As a consequence, the notch-tip ductility is found to be invariant with the changes in notch acuity for sharp stress concentrators. The effect of increasing the purity and/or strength level is to alter the mechanism of fibrous fracture from one involving void growth and coalescence to one of predominantly shear character. (author)

  17. The Structure of the Silumin Coat on Alloy Cast Steels

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2012-04-01

    Full Text Available The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T and GX39Cr13 (LH14. The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10 and Cr (GX39Cr13. The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

  18. Fatigue design of steel and composite structures Eurocode 3 : design of steel structures, part 1-9 fatigue ; Eurocode 4 : design of composite steel and concrete structures

    CERN Document Server

    Nussbaumer, Alain; Davaine, Laurence

    2012-01-01

    This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

  19. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    OpenAIRE

    Na Yang; Fan Bai

    2017-01-01

    Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and e...

  20. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  1. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  2. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  3. Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    In this work, the influence of dry sliding between a steel counterpart ball and polytetrafluoroethylene (PTFE) plate sample on the transformation of PTFE molecular structure is investigated. With X-ray diffraction, differential scanning calorimetry, Fourier transform infrared (FT-IR) spectroscopy

  4. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    In modern structural steel frame design, the modelling of joints between beams and columns are based on very simple assumptions. The joints are most often assumed to behave as a perfect hinge or as a rigid joint. This means that in the overall static analysis relative rotations and changes...

  5. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Seabed sediment (SBS) is a special soil that is covered by seawater. With the developments in marine oil exploitation and engineering, more and more steel structures have been buried in SBS. SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this ...

  6. Phosphorus effect on fracture properties of structural steels

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Guseva, I.A.

    1985-01-01

    Phosphorus content is studied for its effect on fracture peculiarities and fracture toughness. It is supposed that the phosphorus effect on ductile fractures is associated with phosphorus segregation on the ferrite-carbide interfaces. An increase of the phosphorus content in heat-treated 10KhSND steel from 0.020 up to 0.043 wt.% results in a decrease of the pore size and asub(p) value. Close linear correlation is established between critical temperature of embrittlement T 50 and √ asub(p) or √ KC values for a number of structural steels with different phosphorus content

  7. Dynamic fracture toughness testing of structural steels

    International Nuclear Information System (INIS)

    Debel, C.P.

    1978-01-01

    Two candidate test methods aimed at producing materials properties of interest in connection with crack arrest assessments are currently under evaluation. These methods and the significance of the results are described. The quasi-static as well as the dynamic fracture toughness of a plain C-Mn steel in the as-quenched and tempered condition have been examined at temperatures between -115 0 C and the ambient temperature. Wedge-loaded duplex DCB-specimens were used in dynamic tests. The crack extension velocity was measured using a surface deposited grid and a registration circuit based on TTL-electronics. The toughness transition-temperature at quasi-static loading rate is found to be low; but during dynamic crack-extension a substantial shift of the transition-region to higher temperatures is produced, and fast fracture was obtained even at ambient temperature. Even though the dynamic fracture toughness Ksub(ID) increases with temperature, it decreases with increasing crack-extension velocity at a given temperature and the rate of decrease with respect to crack-extension velocity seems to be independent of temperature. Ksub(ID) appears to be insensitive to heat treatments. Test results indicate insufficient load-train stiffness, and problems due to crack branching were encountered. (author)

  8. Hot ductility and fracture mechanisms of a structural steel

    International Nuclear Information System (INIS)

    Calvo, J.; Cabrera, J. M.; Prado, J. M.

    2006-01-01

    The hot ductility of a structural steel produced from scrap recycling has been studied to determine the origin of the transverse cracks in the corners that appeared in some billets. Samples extracted both from a billet with transverse cracks and from a billet with no external damage were tested. To evaluate the influence of residual elements and inclusions, the steel was compared to another one impurity free. Reduction in area of the samples tensile tested to the fracture was taken as a measure of the hot ductility. The tests were carried out at temperatures ranging from 1000 degree centigree to 650 degree centigree and at a strain rate of 1.10-3 s-1. The fracture surfaces of the tested samples were observed by scanning electron microscopy in order to determine the embrittling mechanisms that could be acting. The steel with residuals and impurities exhibited lower ductility values for a wider temperature range than the clean steel. The embrittling mechanisms also changed as compared to the impurity free steel. (Author)

  9. Seismic damage identification for steel structures using distributed fiber optics.

    Science.gov (United States)

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  10. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    International Nuclear Information System (INIS)

    Koone, Neil; Condren, Brian

    2003-01-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and 'build' a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented

  11. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  12. Influence of isothermal thermomechanical treatment on structure and properties of structural steels

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Kaletin, A.Yu.; Schastlivthev, V.M.; Kaletina, Yu.V.

    1997-01-01

    A study is made into the structure and mechanical properties of steel 35KhGSA and 37KhN3A after isothermal hardening resulting in bainitic structure formation as well as after low-temperature thermomechanical treatment (LTTMT) combining the plastic deformation at the temperature of bainitic transformation and subsequent isothermal hardening. It is shown that LTTMT permits and essential enhancement of strength properties in steel 35KhGSA, high plasticity and impact strength being reserved. This is associated with bainitic structure refinement. In steel 37KhN3A the process of carbide formation takes place along with bainitic transformation, and LTTMT results in lesser strengthening. LTTMT is fount to not practically affect the tendency of structural steels to bainitic brittleness. This treatment promotes some shift of brittleness manifestation to lower temperatures

  13. Environmentally Preferable Coatings for Structural Steel Project

    Science.gov (United States)

    Lewis, Pattie L. (Editor)

    2014-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.

  14. Dynamic response analysis of a 24-story damped steel structure

    Science.gov (United States)

    Feng, Demin; Miyama, Takafumi

    2017-10-01

    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  15. Stochastic Analysis of Offshore Steel Structures An Analytical Appraisal

    CERN Document Server

    Karadeniz, Halil

    2013-01-01

    Stochastic Analysis of Offshore Steel Structures provides a clear and detailed guide to advanced analysis methods of fixed offshore steel structures using 3D beam finite elements under random wave and earthquake loadings. Advanced and up-to-date research results are coupled with modern analysis methods and essential theoretical information to consider optimal solutions to structural issues. As these methods require and use knowledge of different subject matters, a general introduction to the key areas is provided. This is followed by in-depth explanations supported by design examples, relevant calculations and supplementary material containing related computer programmers. By combining this theoretical and practical approach Stochastic Analysis of Offshore Steel Structures cover a range of key concepts in detail including: ·         The basic principles of standard 3D beam finite elements and special connections, ·         Wave loading - from hydrodynamics to the calculation of wave load...

  16. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  17. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  18. Radiation swelling of steels with lath martensite-austenic structure

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Pavlov, V.A.; Alyab'ev, V.M.; Lapin, S.S.; Ermishkin, V.A.; Antonova, O.V.

    1987-01-01

    Influence of electron radiation in the column of the JEM-1000 electron microscope on radiation swelling of austenite as austenitic fields and thin plates surrounded by α-martensite crystals is investigated. Formation of lath structure of alternating dispersive plates of martensite and invert austenite formed as a result of partial inverse martensite transformation α→γ is shown to restrain radiation swelling and formation of vacancy voids in stainless steels

  19. Engineering of Nanoscale Antifouling and Hydrophobic Surfaces on Naval Structural Steel HY-80 by Anodizing

    Science.gov (United States)

    2015-06-01

    stainless steel by anodization. The oxide structures produced under these conditions granted the material significant visible light photo catalytic...metallurgically classified as quenched and tempered martensitic steels . They have a martensitic microstructure resulting from the 9 combination of...producing a martensitic structure is carbon. The as-quenched steel manifests high strength and hardness but also is brittle and susceptible to hydrogen

  20. Structural characterization and magnetic properties of steels subjected to fatigue

    International Nuclear Information System (INIS)

    Lo, C.C.H.; Tang, F.; Biner, S.B.; Jiles, D.C.

    2000-01-01

    Studies have been made on the effects of residual stress and microstructure on the variations of magnetic properties of steels during fatigue. Strain-controlled fatigue tests have been conducted on 0.2wt% C steel samples which were (1) cold-worked (2) cold-worked and annealed at 500 deg. C to relieve residual stress, and (3) annealed at 905 deg. C to produce a ferrite/pearlite structure. The changes of surface microstructure were studied by SEM replica technique. The dislocation structures of samples fatigued for different numbers of cycle were studied by TEM. In the initial stage of fatigue coercivity was found to behave differently for samples which have different residual stress levels. In the intermediate stage the magnetic hysteresis parameters became stable as the dislocation cell structure developed in the samples. In the final stage the magnetic parameters decreased dramatically. The decrease rate is related to the propagation rate of fatigue cracks observed in the SEM study, which was found to be dependent on the sample microstructure. The present results indicate that the magnetic inspection technique is able to differentiate the residual stress effects from the fatigue damage induced by cyclic loading, and therefore it is possible to detect the onset of fatigue failure in steel components via measurements of the changes in magnetic properties.--This work was sponsored by the National Science Foundation, under grant number CMS-9532056

  1. Structural transformations in amorphous electrical steels

    International Nuclear Information System (INIS)

    D'yakonova, N.B.; Molotilov, B.V.; Vlasova, E.N.; Lyasotskij, I.V.

    2000-01-01

    The sequence of structural reactions at initial sages of crystallization of Fe-B-Si and Fe-B-Si-P amorphous ribbons is studied in the bulk and near the surface. It is shown that partial substitution of boron with phosphorus in Fe-Si-B-P alloys retards the surface crystallization a rising on annealing at temperatures typical for heat treatments applied to enhance magnetic properties. In spite of lower temperature of a bulk crystallization onset in phosphorus bearing alloys the beginning of surface crystallization shifts to high temperatures or to more long-term holding at given temperatures. This fact alloys varying annealing temperature and time in a wide range to attain needed magnetic properties as well as using retarded heating and cooling. It is of special importance when massive magnetic cores are heat treated [ru

  2. Problem statement for optimal design of steel structures

    Directory of Open Access Journals (Sweden)

    Ginzburg Aleksandr Vital'evich

    2014-07-01

    task it can be offered to use informational technologies and opportunities of automated systems. For this purpose it is necessary to develop the automated system of steel designs, allowing to consider some criteria of optimality and a wide range of the restrictions for steel structural designs. This will allow to accelerate projection process, to reduce labor input of a designer and essentially increase the quality of design solutions for steel designs.

  3. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  4. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  5. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  6. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  7. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  8. Image-based corrosion recognition for ship steel structures

    Science.gov (United States)

    Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng

    2018-03-01

    Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.

  9. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  10. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  11. The parameters controlling the strength of soil-steel structures

    International Nuclear Information System (INIS)

    Barkhordari, M. A.; Abdel-Sayed, G.

    2001-01-01

    The present paper examines the ultimate load carrying capacity of soil-steel structures taking into consideration the sequence of the developments of plastic hinges, their location, and their sustained plastic moment. Non-linear analysis has been conducted using a micro-computer program in which a structural model is applied with the soil replaced by normal and tangential springs acting at the nodal points of a polygon representing the conduit wall. A comparative study has been conducted for the parameters which affect the load carrying capacity of soil-steel structure, leading to the following conclusions: (1) the load carrying capacity of the composite structure is significantly affected by the shear stiffness (or friction) of the surrounding soil; (2) the conduit span may be used when calculating the buckling load rather than the local radius of the conduit wall; (3) circular arches with sector angle of less than 180 d eg have higher load carrying capacity than equivalent re-entrant arches, i.e. arches with sector angle of more than 180 d eg; (4) the buckling load of the conduit is slightly affected by the rigidity of the lower zone of the conduit wall; (5) eccentric application of the load has practically little effect on its load carrying capacity

  12. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  13. Crack monitoring method for an FRP-strengthened steel structure based on an antenna sensor

    NARCIS (Netherlands)

    Liu, Z.; Chen, Kai; Li, Z.; Jiang, X.

    2017-01-01

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it

  14. Structure of Fe-Ni-Cr steel welded joints

    International Nuclear Information System (INIS)

    Bratukhin, A.G.; Maslenkov, S.B.; Logunov, A.V.

    1993-01-01

    Properties of a welded joint depend on the structure of metal of the joint and near the joint areas subjected to thermal effect in the process of welding. The well-known phenomena, accompanying the welding (grain growth in near the joint area, intergrain slip, stressed state related to crystallization and rapid cooling), as well as certain other processes, which have been insufficiently studied either due to their poor pronouncement or owing to imperfection of the equipment and methods employed, were analyzed, as applied to stainless hihg-strength Fe-Ni-Cr steels

  15. The heat treatment effect on the structural changes and properties of high-nitrogen chromium steels

    International Nuclear Information System (INIS)

    Blinov, V.M.; Elistratov, A.A.; Kolesnikov, A.G.; Rakhshtadt, A.G.; Plokhikh, A.I.; Morozova, E.I.; Kostina, M.V.

    2000-01-01

    The structural transformations in the steels with 0.4-1.3 %N and 15-24 %Cr content, originating by thermal treatment, are studied. The dependences of the phase composition of the high-chromium steels (18 %Cr) on the nitrogen content are established. The ratio of the unchanged austenite increases and the martensite quantity decreases correspondingly with growth of the nitrogen concentration from 0.4 up to 1.2 %. The effect of strengthening the steels with the initial martensite structure as well as austenite and martensite steels is observed in the process of steels tempering due to the hardening on the account of the martensite dispersion hardening [ru

  16. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  17. Micromechanics based simulation of ductile fracture in structural steels

    Science.gov (United States)

    Yellavajjala, Ravi Kiran

    The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under

  18. Comprehensive benefits analysis of steel structure modular residence based on the entropy evaluation

    Science.gov (United States)

    Zhang, Xiaoxiao; Wang, Li; Jiang, Pengming

    2017-04-01

    Steel structure modular residence is the outstanding residential industrialization. It has many advantages, such as the low whole cost, high resource recovery, a high degree of industrialization. This paper compares the comprehensive benefits of steel structural in modular buildings with prefabricated reinforced concrete residential from economic benefits, environmental benefits, social benefits and technical benefits by the method of entropy evaluation. Finally, it is concluded that the comprehensive benefits of steel structural in modular buildings is better than that of prefabricated reinforced concrete residential. The conclusion of this study will provide certain reference significance to the development of steel structural in modular buildings in China.

  19. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  20. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  1. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Unknown

    corrosion mechanism, measurement of metal corrosion rate, corrosion ... cables, steel rigs, pipelines and other marine facilities, is ..... make high strength steel material to crack with stress ... of SBS has yet been very limited, and selection of.

  2. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-03-01

    Full Text Available Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and evaluation of light steel structures caused by strong winds, which include connection failure, fatigue failure, purlin buckling, and primary frame component instability problems. Moreover, this review will mention some applications of structure damage assessment methods in this area, such as vulnerability analysis and performance-based theory, etc.

  3. Methods to Evaluate Corrosion in Buried Steel Structures: A Review

    Directory of Open Access Journals (Sweden)

    Lorena-de Arriba-Rodriguez

    2018-05-01

    Full Text Available Around the world, there are thousands of metal structures completely or partially buried in the soil. The main concern in their design is corrosion. Corrosion is a mechanism that degrades materials and causes structural failures in infrastructures, which can lead to severe effects on the environment and have direct impact on the population health. In addition, corrosion is extremely complex in the underground environment due to the variability of the local conditions. The problem is that there are many methods to its evaluation but none have been clearly established. In order to ensure the useful life of such structures, engineers usually consider an excess thickness that increases the economic cost of manufacturing and does not satisfy the principles of efficiency in the use of resources. In this paper, an extended revision of the existing methods to evaluate corrosion is carried out to optimize the design of buried steel structures according to their service life. Thus, they are classified into two categories depending on the information they provide: qualitative and quantitative methods. As a result, it is concluded that the most exhaustive methodologies for estimating soil corrosion are quantitative methods fed by non-electrochemical data based on experimental studies that measure the mass loss of structures.

  4. Resistance to fracture of carbon weldable structural steel with ferrite-pearlite and widmanstaetten structure

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Guzovskaya, M.A.

    1977-01-01

    Consideration is given to mechanical properties of St3 steel with varying ferritic-peartilic and widmanstaetten structures typical of a weld seam and adjacent zones. It has been found that mechanical properties determined at static tension are sensitive to structure variation in the limits under study. A considerable difference has been detected during impact tests CT 50 , asub(p)). The highest resistance to breakage is observed for the steel with a fine-grain ferritic-pearlitic structure (T 50 =-10 deg C, asub(p)=4.3 kgxm/cm 2 ). The enlargement of such a structure enhances transition temperature (T 50 =+20 deg C) and reduces resistance to crack development (asub(p)2.4 kgxm/cm 2 ). The appearance of widmanstaetten zones in the fine-grain structure leads also to a higher T 50 , up to +10 deg C, and at a completely widmanstaetten structure T 50 =+25 deg C. An especially unfavorable effect on the resistance of steel to breakage is produced by structure nonuniformity, i.e. accumulation of loop-like pearlitic and ferritic zones

  5. Application of the S690QL class steels in responsible welded structures

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2013-12-01

    Full Text Available In this paper are considered the most important properties of a special class of high strength steels S690QL, which can be classified into the group of special low alloyed steels. The high strength steels belong into a group of high quality steels. They possess exceptional mechanical properties, especially tensile strength and toughness. Those favorable properties are being achieved by application of special procedures of thermo-mechanical processing and simultaneous alloying with adequate elements. The advantages that the S690QL steels have with respect to other steels are being presented here. However, possibilities for application of those steels in responsible welded structures are limited due to their only relatively good weldability.  The special procedures for improving it are discussed here, primarily preheating, controlled heat input during welding and additional heat treatment of the welded joint.

  6. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    In modern structural steel frame design, the modelling of joints between beams and columns are based on very simple assumptions. The joints are most often assumed to behave as a perfect hinge or as a rigid joint. This means that in the overall static analysis relative rotations and changes...... the rotational stiffness of a connection. Based on a modelling of any beam-to-column joint using finite shell elements and springs for single components such as bolts, it is the primary hypothesis that it is possible to formulate a generalized connection model with few degrees of freedom related to a relevant...... set of deformation modes. This hypothesis is based on the idea of modal decomposition performed in generalized beam theories (GBT). The question is – is it possible to formulate an eigenvalue problem with a solution corresponding to mode shapes for the deformation of the joint by using the finite...

  7. Influence of austenitisation temperature on the structure and properties of weather resistant steels

    International Nuclear Information System (INIS)

    Prasad, S.N.; Mediratta, S.R.; Sarma, D.S.

    2003-01-01

    The influence of austenitisation temperature on the structure and properties of three experimental weather resistant steels has been studied. All these steels contain 1% Mn, 0.3% Ni, 0.47% Cr and 0.47% Cu. In addition, steel no. 1 has 0.1% C, 0.1% P, steel no. 2 has 0.1% C, 0.05% P and 0.024% Nb while steel 3 has 0.2% C, 0.054% Nb and 0.046% V. It has been found that the hardness, yield strength and tensile strength do not change significantly with austenitisation temperature over the range 900-1200 deg. C for steel no. 1 but they increase considerably when austenitised above 1000 deg. C for steels 2 and 3. Similarly, the ductility decreases with increasing temperature of austenitisation. All the steels austenitised up to 1000 deg. C exhibit sharp yield points. None of these steels shows sharp yield point after 1200 deg. C. At 1100 deg. C, however, sharp yield points were observed in steels 1 and 2. There has been a noticeable change in optical microstructure. In steels 2 and 3 the pearlite is gradually replaced by granular bainite when austenitised above 1000 deg. C. The transmission electron microscopy study reveals that the granular bainite consists of acicular ferrite and martensite/austenite constituent

  8. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  9. Phase change predictions for liquid fuel in contact with steel structure using the heat conduction equation

    Energy Technology Data Exchange (ETDEWEB)

    Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO{sub 2} brought into contact with solid steel using up-to-date materials properties. The solutions predict criteria for fuel crust formation and steel melting and provide a simple algorithm to determine the interface temperature when one or both of the materials is undergoing phase change. The predicted steel melting criterion is compared with available experimental results. (author)

  10. Phase change predictions for liquid fuel in contact with steel structure using the heat conduction equation

    International Nuclear Information System (INIS)

    Brear, D.J.

    1998-01-01

    When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO 2 brought into contact with solid steel using up-to-date materials properties. The solutions predict criteria for fuel crust formation and steel melting and provide a simple algorithm to determine the interface temperature when one or both of the materials is undergoing phase change. The predicted steel melting criterion is compared with available experimental results. (author)

  11. Realization methodology for optimal design of steel structures conveyors with hanging belt

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2016-03-01

    Full Text Available Presents the results of optimum design of metal structures of the fixed conveyor with hanging belt. The analysis results optimum design of steel structures of stationary conveyor with hanging belt.

  12. Problem statement for optimal design of steel structures

    OpenAIRE

    Ginzburg Aleksandr Vital'evich; Vasil'kin Andrey Aleksandrovich

    2014-01-01

    The presented article considers the following complex of tasks. The main stages of the life cycle of a building construction with the indication of process entrance and process exit are described. Requirements imposed on steel constructions are considered. The optimum range of application for steel designs is specified, as well as merits and demerits of a design material. The nomenclature of metal designs is listed - the block diagram is constructed. Possible optimality criteria of steel desi...

  13. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    Serna, M.M.; Galego, E.; Rossi, J.L.

    2005-01-01

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  14. Welding stainless steels for structures operating at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  15. Welding stainless steels for structures operating at liquid helium temperature

    International Nuclear Information System (INIS)

    Witherell, C.E.

    1980-01-01

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2 0 K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2 0 K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness

  16. Structure and properties of powder metallurgy constructional steel of different densities

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Moskvina, T.P.

    1986-01-01

    A specific feature of powder metallurgy steels is porosity, the degree of which depends upon the method of their production. This article establishes the influence of a small amount of porosity on the mechanical properties of powder metallurgy constructional steel. The structure of heat-treated cast and powder metallurgy steels with different porosities are shown. The results of mechanical tests of the experimental steels with different porosities are shown. With an increase in porosity the nonmetallic inclusion rating of the powder metallurgy constructional steel increases, primarily as the result of the increase in the coarse particles, which is caused by the lower degree of plastic deformation in pressing. With an increase in porosity the mechanical properties of the powder metallurgy steel become poorer: the hardness and strength properties with a porosity of more than 3-5%, the plasticity with more than 1-2%, and the toughness even with a porosity of 1%

  17. Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation

    Science.gov (United States)

    Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.

    2017-10-01

    The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.

  18. Use of fracture mechanics for estimation of cold resistance of structural steels

    International Nuclear Information System (INIS)

    Vikulin, A.V.; Solntsev, Yu.P.

    1988-01-01

    Structural steel cold resistance diagrams are developed and constructed in the form of testing temperature dependences on critical length of crack in endless plate. The diagrams allow one to determine critical temperature using steel samples without conducting complex and labour-consuming testings

  19. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  20. RESEARCH OF SYNERGETIC RELIABILITY OF PEARLITE-REDUCED STRUCTURAL STEEL 09G2FB

    Directory of Open Access Journals (Sweden)

    Gustov Yuriy Ivanovich

    2012-10-01

    Full Text Available The primary objective of the research is the synergetic reliability of perlite-reduced structural steel 09G2FB exposed to various thermal and mechanical treatments. In the aftermath of the above exposure, the steel in question has proved to assume a set of strength-related and plastic mechanical properties (σσδ and ψ.

  1. A quality approach to maintain the properties of S235 JR structural carbon steel in Lebanon

    International Nuclear Information System (INIS)

    Sidawi, J.A.; Al Khatib, H.

    2004-01-01

    Full text.S235JR carbon steel is one of the most popular steels used in Lebanon. It is imported by steel dealers and is widely used by all fabricators and manufacturers of steels for many structural purposes and applications. This kind of steel has good ductile properties as well as excellent weldability. It is still known by its previous designation St 37-2 or E 24-2. S235JR is produced in many shapes and thicknesses such as steel plates, sheets, angles and different other geometric shapes. Standard chemical and mechanical tests were conducted and reported on S235JR hot-rolled structural low-carbon mild steel specimens collected from Lebanese steel market. The main objective of this work is to assure the compliance of these properties with those set by the steel manufacturer. The above mentioned tests were performed at the laboratories of the Industrial Research Institute (IR) in Lebanon to assure the quality and credibility of the results. related European and American standards were presented as references and compared with the achieved results. Discussion was presented to show the similarities and differences between S235JR steel samples and standard requirements. Some of the reasons for such differences were discussed. Sufficient data was furnished through this work for the public and mainly for the Lebanese Standard Organization LIBNOR to easily adopt and implement the EN 10025:1993 European standard that can be applied in Lebanon concerning the most commonly used hot rolled low carbon structural steel. A follow up concerning adopting and implementing EN 10025:1993 will be briefed

  2. Flexural fatigue behavior of steel fiber reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, G.I.; Chai, W.K.; Park, C.W.; Min, I.K.

    1993-01-01

    In this thesis, the fatigue tests are performed on a series of SFRC (steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varing with the steel fiber contents and the steel fiber aspect ratios. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  3. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  4. Mechanical properties of CO2/MIG welded structural rolled steel and stainless steel

    International Nuclear Information System (INIS)

    Lim, Jong Young; Yoon, Myong Jin; Kim, Sang Youn; Kim, Tae Gyu; Shin, Hyeon Seung

    2015-01-01

    To accomplish long-term use of specific parts of steel, welding technology is widely applied. In this study, to compare the efficiency in improving mechanical properties, rolled steel (SS400) was welded with stainless steel (STS304) by both CO 2 welding method and MIG (metal inert gas) welding method, respectively. Multi-tests were conducted on the welded specimen, such as X-ray irradiation, Vickers' Hardness, tensile test, fatigue test and fatigue crack growth test. Based on the fatigue crack growth test performed by two different methods, the relationship of da/dN was analyzed. Although the hardness by the two methods was similar, tensile test and fatigue properties of MIG welded specimen are superior to CO 2 welded one.

  5. Structure and radiation induced swelling of steels and alloys

    International Nuclear Information System (INIS)

    Parshin, A.M.

    1983-01-01

    Regularities of vacancy void formation and radiation induced swelling of austenitic chromium-nickel steels and alloyse ferritic steels as well as titanium α-alloys under radiation by light and heavy ions and neutrons are considered. Possible methods for preparation of alloys with increased resistance to radiation swelling are described. Accounting for investigations into ferritic steels and α-alloys of titanium the basic way of weakening vacancy smelling is development of continuous homogeneous decomposition of solid solution using alloying with vividly expressed incubation period at a certain volumetric dilatation as well as decompositions of the type of ordering, K-state, lamination of solid solutions, etc. Additional alloying of solid solutions is also shown to be necessary for increasing recrystallization temperature of cold-deformed steel

  6. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  7. EXPERIMENTAL RESEARCH OF THE THREE-DIMENSIONAL PERFORMANCE OF COMPOSITE STEEL AND CONCRETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Zamaliev Farit Sakhapovich

    2012-12-01

    steel-concrete slabs limits their use in the construction of residential housing. This article describes the composition, geometry, reinforcement, and anchors to enable the use of concrete slabs and steel beams. The article contains photographs that illustrate the load distribution model. Methods of testing of fiber strains of concrete slabs and steel profiles, deflections of beams, shear stresses in the layers of the "steel-to-concrete" contact area that may involve slab cracking are analyzed. Dynamics of fiber deformations of concrete slabs, steel beams, and layers of the "steel-to-concrete" contact areas, deflection development patterns, initial cracking and crack development to destruction are analyzed. The author also describes the fracture behavior of the floor model. Results of experimental studies of the three-dimensional overlapping of structural elements are compared to the test data of individual composite beams. Peculiarities of the stress-strain state of composite steel and concrete slabs, graphs of strains and stresses developing in sections of middle and external steel-and-concrete beams, deflection graphs depending on the loading intensity are provided. The findings of the experimental studies of the three-dimensional performance of composite steel-and-concrete slabs are provided, as well.

  8. Advanced metallic structural materials and a new role for microalloyed steels

    International Nuclear Information System (INIS)

    Korchynsky, M.

    2004-01-01

    The recent worldwide surge of steel consumption, mainly of low-strength carbon grades, has created raw-materials shortages and price increases. These supply-demand strains could be relaxed by satisfying engineering needs with less steel. However, materials used for such a substitution must combine high weight reducing potential with low cost. Microalloyed (MA) steels are cost-effective substitutes, since their high strength is the result of grain refinement and precipitation hardening. These two strengthening mechanisms are developed by the interaction of micro-additives: niobium or vanadium with the deformation occurring during hot rolling followed by cooling. The physical metallurgy of these phenomena is discussed in the paper. The optimum alloy design of MA steels combines superior properties with lowest processing cost. In many applications, the versatility and adaptability of vanadium steels provides an economic advantage. The monetary value of weight production is sufficient to increase the profitability of steel makers and to lower the material cost to steel users. This 'win-win' situation is financed by the elimination of efforts spent in producing inefficient steel, yielding an increase in wealth formation. The gain acceptance of substitution by the consumer, a long-term strategic plan is needed to be implemented by the beneficiaries - both steel producers and steel users. The successful substitution is of importance to the national economy, resources and energy conservation, and the environment. Since microalloyed steels, used as a replacement for carbon steels, offer low cost weight savings, they deserve to be classified as advanced structural materials. (author)

  9. ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE

    OpenAIRE

    Cuenca Asensio, Estefanía

    2013-01-01

    Cuenca Asensio, E. (2012). ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/18326. Palancia

  10. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; Busby, J.T. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States); Gussev, M.N., E-mail: gussevmn@ornl.gov [Nuclear Fuel & Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6136 (United States); Maziasz, P.J.; Hoelzer, D.T.; Rowcliffe, A.F.; Vitek, J.M. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States)

    2017-01-15

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14–0.36%) and Mn (2–5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  11. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  12. Structure, mechanical and corrosion properties of powdered stainless steel Kh13

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Napara-Volgina, S.G.; Orlova, L.N.; Apininskaya, L.M.

    1982-01-01

    Structure, mechanical and corrosion properties are studied for compact powdered stainless steel, Grade Kh13, produced from prealloyed powder and a mixture of chromium and iron powders by hot vacuum pressing (HVP) following four schemes: HVP of unsintered billets; HVP of presintered billets; HVP of unsintered billets followed by diffusion annealing; HVP of sintered billets followed by diffusion annealing. Analysis of the structure, mechanical and corrosion properties of Kh13 steel produced according to the four schemes confirmed that production of this steel by the HVP method without presintering of porous billets and diffusion annealing of compact stampings is possible only when prealloyed powder of particular composition is used as a starting material

  13. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    Science.gov (United States)

    2016-10-12

    Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 2. O. Grong, Metallurgical Modelling of Welding , 2ed., Materials Modelling...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6394--16-9690 Validation of Temperature Histories for Structural Steel Welds Using...PAGES 17. LIMITATION OF ABSTRACT Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges S.G. Lambrakos

  14. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple

  15. Review of Differences of Steel related Properties between Proposals of European Structural Codes

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    Differences of Steel related Properties between fire chapters of the Proposals of European Structural Codes are indicated for the same physical properties, the right properties are found and it is proposed to use these properties in all codes.......Differences of Steel related Properties between fire chapters of the Proposals of European Structural Codes are indicated for the same physical properties, the right properties are found and it is proposed to use these properties in all codes....

  16. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  17. Structural transformations in austenitic stainless steel induced by deuterium implantation: irradiation at 100 K.

    Science.gov (United States)

    Morozov, Oleksandr; Zhurba, Volodymyr; Neklyudov, Ivan; Mats, Oleksandr; Rud, Aleksandr; Chernyak, Nikolay; Progolaieva, Viktoria

    2015-01-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic stainless steel 18Cr10NiTi preimplanted at 100 K with deuterium ions in the dose range from 3 × 10(15) to 5 × 10(18) D/cm(2). The kinetics of structural transformation development in the implantation steel layer was traced from deuterium thermodesorption spectra as a function of implanted deuterium concentration. At saturation of austenitic stainless steel 18Cr10NiTi with deuterium by means of ion implantation, structural-phase changes take place, depending on the dose of implanted deuterium. The maximum attainable concentration of deuterium in steel is C = 1 (at.D/at.met. = 1/1). The increase in the implanted dose of deuterium is accompanied by the increase in the retained deuterium content, and as soon as the deuterium concentration attains C ≈ 0.5 the process of shear martensitic structural transformation in steel takes place. It includes the formation of bands, body-centered cubic (bcc) crystal structure, and the ferromagnetic phase. Upon reaching the deuterium concentration C > 0.5, the presence of these molecules causes shear martensitic structural transformations in the steel, which include the formation of characteristic bands, bcc crystal structure, and the ferromagnetic phase. At C ≥ 0.5, two hydride phases are formed in the steel, the decay temperatures of which are 240 and 275 K. The hydride phases are formed in the bcc structure resulting from the martensitic structural transformation in steel.

  18. Nuclear microanalysis of oxide films on structural steel

    International Nuclear Information System (INIS)

    Istomin, I.V.; Karabash, V.A.; Maisyukov, V.D.; Sosnin, A.N.; Shorin, V.S.

    1989-01-01

    Studies of the behavior of structural materials in nuclear power plants have indicated the important role of oxide films on metals, especially metals of the iron group. The films may be formed as a result of the corrosion of the metal in an aggressive coolant. At the same time, some oxide films have anticorrosive properties and can be produced specially by the introduction of inhibitor-passivators, e.g., molecular oxygen, into the aggressive medium. Experimental data on the film growth rate make it possible to determine the kinetics of the oxidation process, the nature of the diffusion of the main components through the film, and the role of the phase transitions (crystal-chemical transformations) and point defects during the migration of oxygen and metal ions through the oxide. In this study nuclear microanalysis is used to measure the parameters of oxide films formed on 10Cr2Mo and 1Cr18Ni10Ti steels in steam in the temperature range 320-620C. In this method the film parameters in the general analysis of the energy spectra of deuterons back-scattered from iron nuclei and protons in the case of the 16 O(d,p 1 ) 17 O nuclear reaction. With this approach and an initial deuteron energy E o = 0.9 MeV the range of the measurable thickness t of the films is 0.001-1.5 mg/cm 2 . The data obtained not only confirm the high sensitivity of the nuclear microanalysis method but also demonstrate that it can be used for nondestructive quality control of the surface

  19. Hydrogen embrittlement of ASTM A 203 D nuclear structural steel

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Prasad, G.E.; Sinha, T.K.; Asundi, M.K.

    1986-01-01

    The influence of hydrogen on the mechanical properties of ASTM A 203 D nuclear structural steel has been studied by tension, bend and delayed-failure tests at room temperature. While the tension tests of hydrogen charged unnotched specimens reveal no change in ultimate strength and ductility, the effect of hydrogen is manifested in notched specimens (tensile and bend) as a decrease in ultimate strength (maximum load in bend test) and ductility; the effect increases with increasing hydrogen content. It is observed that for a given hydrogen concentration, the decrease in bend ductility is remarkably large compared to that in tensile ductility. Hydrogen charging does not cause any delayed-failure upto 200 h under an applied tensile stress, 0.85 times the notch tensile strength. However delayed failure occurs in hydrogen charged bend samples in less than 10 h under an applied bending load of about 0.80 times of the uncharged maximum load. Fractographs of hydrogen charged unnotched specimens show ductile dimple fracture, while those of notched tension and bend specimens under hydrogen-charged conditions show a mixture of ductile dimple and quasi-cleavage cracking. The proportion of quasi-cleavage cracking increases with increasing hydrogen content and this fracture mode is more predominant in bend specimens. The changes in tensile properties and fracture modes can reasonably be explained by existing theories of hydrogen embrittlement. An attempt is made to explain the significant difference in the embrittlement susceptibility of bend and tensile specimens in the light of difference in triaxiality and plastic zone size near the notch tip. (orig.)

  20. Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures

    International Nuclear Information System (INIS)

    Zhao, Y.

    1996-01-01

    Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed

  1. Seismic damage sensing of bridge structures with TRIP reinforcement steel bars

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki

    2001-07-01

    Intelligent reinforced concrete structures with transformation-induced-plasticity (TRIP) steel rebars that have self-diagnosis function are proposed. TRIP steel is special steel with Fe-Cr based formulation. It undergoes a permanent change in crystal structure in proportion to peak strain. This changes from non-magnetic to magnetic steel. By using the TRIP steel rebars, the seismic damage level of reinforced concrete structures can be easily recognized by measuring the residual magnetic level of the TRIP rebars, that is directly related to the peak strain during a seismic event. This information will be most helpful for repairing the damaged structures. In this paper, the feasibility of the proposed intelligent reinforced concrete structure for seismic damage sensing is experimentally studied. The relation among the damage level, peak strain of rebars, and residual magnetic level of rebars of reinforced concrete beams implemented with TRIP steel bars was experimentally studied. As the result of this study, this intelligent structure can diagnose accumulated strain/damage anticipated during seismic event.

  2. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  3. Formation of Outburst Structure in Hot Dip Galvannealed Coatings on IF Steels

    Directory of Open Access Journals (Sweden)

    Kollárová, M.

    2007-01-01

    Full Text Available Outburst structure in two industrially produced hot dip galvanized interstitial free steel sheets for automotive industry after additional annealing has been examined. Ti IF steel was found to form weak outburst structure in the early stage of annealing, followed by frontal growth of Fe-Zn phases during further heating. The high reactivity of this steel was confirmed by rapid G-phase formation. Under the same conditions, Ti-Nb-P IF steel exhibited frontal growth of Fe-Zn compounds without G-phase formation due to relatively high phosphorous content, which is known as inhibitor of Fe-Zn reaction, but simultaneously significant occurrence of undesired outburst structures was recorded. It was assumed that the phosphorous content was insufficient and/or ferrite grain was very fine.

  4. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.

    Science.gov (United States)

    Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli

    2017-10-20

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  5. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor

    Directory of Open Access Journals (Sweden)

    Zhiping Liu

    2017-10-01

    Full Text Available Fiber-reinforced polymer (FRP has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP. FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  6. Nano structure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    International Nuclear Information System (INIS)

    Zhang, K.M.; Zou, J.X.; Zou, J.X.; Grosdidier, T.; Zou, J.X.; Grosdidier, T.; Grosdidier, T.

    2013-01-01

    The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels

  7. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  8. Quality of structural steel melted by single-slag process

    International Nuclear Information System (INIS)

    Levin, A.M.; Andreev, V.I.; Monastyrskij, A.V.; Drozdova, M.F.; Pashchenko, V.E.; Orzhekh, M.B.

    1982-01-01

    The 40Kh and 12KhN3A steels were used to compare the quality of the metal manufactured according to several variants of a single-slag process with the metal of a conventional melting technology. Investigation results show, that a single-slag process metal has higher sulfides and oxides contents as well as an increased anisotropy of mechanical properties while its tendency to flake formation is weaker due to a less degree of gas saturation. It is marked that anisotropy in the properties and a sulfide content may be decreased by out-of-furnace treatment of steels

  9. Structure of maraging steel after thermomechanical treatment at high temperature

    International Nuclear Information System (INIS)

    Prokoshkina, V.G.; Kaputkina, L.M.; Mozzhukhin, V.E.

    1981-01-01

    Developed polygonized substructure is formed in austenite of maraging Cr-Ni steels under the selected conditions of hot deformation during high temperature mechanical treatment (HTMT). Substructure of hot deformed austenite is inherited by packet martensite during cooling. Presence of developed polygonized substructure in austenite results in grinding and high uniformity of packet sizes of martensite crystals. Substructure of α-phase of the investigated steels after HTMT, as well as the one inherited from hot deformed austenite, is inherited at α→γ-transformation in the process of repetitive austenization, and it can be preserved within a limited temperature-time range of heating in γ-region [ru

  10. Chromium surface alloying of structural steels during laser treatment

    International Nuclear Information System (INIS)

    Kurov, I.E.; Nagornykh, S.N.; Sivukhin, G.A.; Solenov, S.V.

    1987-01-01

    Results of matrix alloying from the surface layer and creation of considerably increased chromium concentration in the depth which permits to increase the efficiency of laser treatment of steels (12Kh18N10T and 38KhN3M) in the process of their further mechanical polishing, are presented. The treatment was realized by continuous CO 2 -laser at different power densities and scanning rates are presented. A model describing the creation of anomalous distributions of the alloying element in steels is plotted

  11. Study on comparison of special moment frame steel structure (SMF) and base isolation special moment frame steel structure (BI-SMF) in Indonesia

    Science.gov (United States)

    Setiawan, Jody; Nakazawa, Shoji

    2017-10-01

    This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.

  12. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-01-01

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members. PMID:28773347

  13. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-03-23

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.

  14. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  15. Calculation and design of steel bearing structure for wind turbine

    Directory of Open Access Journals (Sweden)

    Bešević Miroslav

    2014-01-01

    Full Text Available Wind represents directed movement of the air and is caused by differences in atmospheric pressure which are caused by uneven heating of air masses. Global and local winds can be distinguished. Global winds have high altitude, while local winds occur in the ground layer of the atmosphere. Given that the global wings have high altitude they cannot be used as propellant for wind generators, but they should be known for their effects on the winds in the lower atmosphere. Modern wind turbines are made with a horizontal axle that has a system for the swiveling axis in the horizontal plane for tracking wind direction changes. They can have different number of blades, but for larger forces three blades are commonly used because they provide the greatest efficiency. Rotor diameter of these turbines depends on the strength and it ranges from 30 m for the power of 300 kW to 115 m for the power of 5 MW. Wind turbines are mounted on vertical steel tower which can be high even more than 100 m. Depending on the diameter of the turbine rotor, column is usually built as steel conical and less often as a steel-frame. This study includes analysis and design of steel tower for wind generator made by manufacturer Vestas, type V112 3MW HH 119 (power 3.2 MW for the construction of wind farm 'Kovačica'.

  16. Structural Characterization of Highly Corrosion-resistant Steel

    Czech Academy of Sciences Publication Activity Database

    Lančok, Adriana; Kmječ, T.; Štefánik, M.; Sklenka, L.; Miglierini, M.

    2015-01-01

    Roč. 88, č. 4 (2015), s. 355-361 ISSN 0011-1643 R&D Projects: GA ČR(CZ) GA14-12449S Institutional support: RVO:61388980 Keywords : Mossbauer spectroscopy * corrosion-resistant steel * LC200 * CEMS Subject RIV: CA - Inorganic Chemistry Impact factor: 0.732, year: 2015

  17. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  18. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... these investigations. A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula.Furthermore, in general longer fatigue lives were obtained for the test...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  19. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    . In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two...... recent research reports, Refs. 15 and 16, from these investigations.A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  20. Development of rational design technique for frame steel structure combining seismic resistance and economic performance

    International Nuclear Information System (INIS)

    Kato, Motoki; Morishita, Kunihiro; Shimono, Masaki; Chuman, Yasuharu; Okafuji, Takashi; Monaka, Toshiaki

    2015-01-01

    Anti-seismic designs have been applied to plant support steel frames for years. Today, a rational structure that further improves seismic resistance and ensures economic performance is required in response to an increase of seismic load on the assumption of predicted future massive earthquakes. For satisfying this requirement, a steel frame design method that combines a steel frame weight minimizing method, which enables economic design through simultaneous minimization of multiple steel frame materials, and a seismic response control design technology that improves seismic resistance has been established. Its application in the design of real structures has been promoted. This paper gives an overview of this design technology and presents design examples to which this design technology is applied. (author)

  1. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  2. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2014-01-01

    Full Text Available Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  3. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1996-01-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  4. Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures

    Science.gov (United States)

    2010-02-01

    Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry

  5. Refinement of grain structure in 20 MnNiMo (SA508C) steel

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Zou Min

    1997-04-01

    The size of prior austenite grains and bainitic colonies of 20 MnNiMo (SA508C) steel (a reactor pressure vessel steel) after normal heat treatment is measured and its controlling factors are discussed. Results show that low aluminium content can induce serious mixed structure with fine and coarse grains in prior austenite. Fast cooling rate can promote refinement of bainitic colonies. Further refinement of grains can be obtained by inter-critical quenching. (5 figs., 1 tab.)

  6. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1994-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (74-90 mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments. Under severe accident loading conditions, the steel containment vessel in a typical Mark-I or Mark-II plant may deform under internal pressurization such that it contacts the inner surface of a shield building wall. (Thermal expansion from increasing accident temperatures would also close the gap between the SCV and the shield building, but temperature effects are not considered in these analyses.) The amount and location of contact and the pressure at which it occurs all affect how the combined structure behaves. A preliminary finite element model has been developed to analyze a model of a typical steel containment vessel con-ling into contact with an outer structure. Both the steel containment vessel and the outer contact structure were modelled with axisymmetric shell finite elements. Of particular interest are the influence that the contact structure has on deformation and potential failure modes of the containment vessel. Furthermore, the coefficient of friction between the two structures was varied to study its effects on the behavior of the containment vessel and on the uplift loads transmitted to the contact structure. These analyses show that the material properties of an outer contact structure and the amount

  7. Application of concrete filled steel bearing wall to inner concrete structure fro PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Tanaka, Mamoru; Inoue, Kunio; Fukihara, Masaaki; Akiyama, Hiroshi.

    1992-01-01

    'Concrete filled steel bearing wall', applied to the inner concrete structure for PWR nuclear power plant, was developed for rationalization of construction procedure at site. It was concluded through preliminary studies that this new type of wall, where concrete is placed between steel plates, is best suited for the strength members of the above structure, due to the high strength and ductility of surface steel plates and the confinement effect of filled concrete. To verify the behavior from the elastic range to the inelastic range, the ultimate strength and the failure mechanism, and to clarify experimentally the structural integrity of the inner concrete structure, which was composed of a concrete filled steel bearing wall, against seismic lateral loads, horizontal loading tests using a 1/10th scale model of the inner concrete structure for PWR nuclear power plant were conducted. As a result of the tests, the inner concrete structure composed of a concrete filled steel bearing wall appeared to have a larger load carrying capacity and a higher ductility as compared with that composed of a reinforced concrete wall. (author)

  8. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  9. Design of joints in steel and composite structures Eurocode 3 : design of steel structures : part 1-8 : design of joints, Eurocode 4 : design of composite steel and concrete structures : part 1-1 : general rules and rules for buildings

    CERN Document Server

    Jaspart, Jean-Pierre

    2016-01-01

    This book details the basic concepts and the design rules included in Eurocode 3 Design of steel structures Part 1-8 Design of joints. Joints in composite construction are also addressed through references to Eurocode 4 Design of composite steel and concrete structures Part 1-1 General rules and rules for buildings. Attention has to be duly paid to the joints when designing a steel or composite structure, in terms of the global safety of the construction, and also in terms of the overall cost, including fabrication, transportation and erection. Therefore, in this book, the design of the joints themselves is widely detailed, and aspects of selection of joint configuration and integration of the joints into the analysis and the design process of the whole construction are also fully covered. Connections using mechanical fasteners, welded connections, simple joints, moment-resisting joints and lattice girder joints are considered. Various joint configurations are treated, including beam-to-column, beam-to-beam, ...

  10. Application of the boron autoradiography in structural steels

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de

    1984-01-01

    The development of boron containing steels requires a knowledge of the microstructural state of that element, determined by the competition between precipitation and solution.An example of the use of the autoradiographic method for obtaining boron distribution images is described and showed. The technique is based on an α emitting nuclear reaction, which leaves a latent track in cellulose. This detector material is revealed by chemical etching and observed by optical and electron transmission microscopy. (Author) [pt

  11. Thermomechanical Processing of Structural Steels with Dilute Niobium Additions

    Science.gov (United States)

    Cui, Z.; Patel, J.; Palmiere, E. J.

    The recrystallisation behaviour of medium carbon steels with dilute Nb addition was investigated by means of plane strain compression tests and the observation of prior austenite microstructures during different deformation conditions. It was found that complete suppression of recrystallisation did not occur in the deformation temperature range investigated. At lower deformation temperatures, partial recrystallisation occurred in the higher Nb sample. This gives the potential to obtain a full suppression of recrystallisation at lower deformation temperatures.

  12. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Science.gov (United States)

    Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina

    2018-03-01

    There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  13. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Directory of Open Access Journals (Sweden)

    Bagautdinov Ruslan

    2018-01-01

    Full Text Available There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  14. Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration

    Science.gov (United States)

    Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian

    2018-01-01

    In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.

  15. Assessment of martensitic steels as structural materials in magnetic fusion devices

    International Nuclear Information System (INIS)

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600 0 C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  16. Effect of zirconium on the structure and phase composition of steel 03Kh8SYu

    International Nuclear Information System (INIS)

    Tarzhumanova, V.A.; Ryabchenkov, A.V.; Shatunova, A.V.; Yoganova, S.A.

    1986-01-01

    Previously, the authors determined the optimum zirconium content providing retention of a fine-grained structure for steel 03Kh8SYu during high-temperature heating. It was suggested that this was caused by separation in the steel of intermetallic phase Fe 3 Zr. This paper presents results of further studies in this direction. X-ray analysis results for the anodic residues of the steels are presented. It can be seen that in steel without zirconium, carbides of the type M 23 C 6 and M 7 C 3 and aluminum nitride are present. On adding 0.05% Zr, zirconium nitride forms in addition to the existing aluminum nitride and carbides of the type M 7 C 3 . The authors also investigated the effect of zirconium on the tendency of the steel toward grain growth at higher temperature; they studied the structure of steel 03Kh8SYu with 0.61% Zr after soaking specimens for 100 h at 950-1100 C. Results are presented

  17. Study about the structural behavior of WStE-36N steel

    International Nuclear Information System (INIS)

    Santos Pinto, M. dos; Trindade, M.B.

    1985-01-01

    The influence of a stress relaxation heat treatment in welding done by submerged-arc-welding is studied. This influence was studied in a structural steel, WStE-36N, niobium alloy, made in Brazil, through Charpy V test, hardness measurements, micro-structural aspects and X-ray diffraction. (E.G.) [pt

  18. Structural properties and out-of-plane stability of roller bent steel arches

    NARCIS (Netherlands)

    Spoorenberg, R.C.

    2011-01-01

    In contemporary architecture the use of steel arches has seen a significant increase. They are applied in buildings and large span bridges, combining structural design with architectural merits. For arches lacking lateral support (or freestanding arches) the out-of-plane structural stability

  19. Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao-Hua; Bai, Yu; Cao, Yue; Xu, Zhen-Liang [East China University of Science and Technology, Shanghai (China)

    2014-08-15

    Porous stainless steel hollow fiber has been widely used due to its high mechanical strength, excellent thermal conductivity and good sealing properties compared with other porous supports. We successfully prepared porous stainless steel hollow fibers using polyacrylonitrile (PAN) as polymer via dry-wet spinning followed by sintering through temperature programming method. The PAN concentration had an obvious impact on the structure and property of porous stainless steel hollow fiber even if it would be burned off during sintering. The results showed that the morphology could be tuned by adjusting the concentration of PAN. With increasing PAN concentration in casting solution for spinning, the viscosity was increased dramatically, resulting in much compact structures with high pure water flux (higher than 3x10{sup 5} L·m{sup -2}·h{sup -1}·Pa{sup -1}). A more dense structure could be obtained by adding additive polyvinylpyrrolidone (PVP) as viscosity enhancer.

  20. Effect of the isothermal transformation temperature on the fine structure of steel-12Kh1MF

    International Nuclear Information System (INIS)

    Mints, I.I.; Berezina, T.G.; Lanskaya, K.A.

    1976-01-01

    For detailed analysis of bainite and pearlite in steel 12Kh1MF, homogeneous structures were obtained by isothermal annealing at 350, 450, 500, and 650 0 for 1 h. Isothermal transformation of austenite leads to the formation of bainite at 350-500 0 and pearlite at 650 0 . The austenitizing temperature was 980 0 for both types of samples, with holding for 20 min. For comparison, the plates were quenched from 980 0 and 1050 0 in ice-cold brine. The investigation was conducted with use of light and electron microscopes and x-ray analysis. The long-term strength was also determined. Isothermal treatment of steel 12Kh1MF at 350-500 0 C leads to the formation of a structure consisting of upper and lower bainite. At 500 0 the structure consists primarily of upper bainite, and at 350 0 of lower bainite. With tempering of the steel with a structure of upper and lower bainite at 730 0 for 3 h the dislocations undergo redistribution of the polygonization type within ferrite needles, with development of a cellular substructure. The acicular structure of the matrix is retained in this case. The density and evenness of the distribution of carbides is higher in upper bainite than in lower bainite. Steel 12Kh1MF with a structure of upper bainite is more susceptible to recrystallization as compared with a structure of lower bainite, which is responsible for the higher heat resistance of the latter

  1. Hierarchical Structure and Strengthening Mechanisms in Pearlitic Steel Wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Huang, Xiaoxu

    Microstructure evolution and strengthening mechanisms have been analyzed in a cold-drawn pearlitic steel wire (the strongest engineering materials in the world) with a nanostructure down to 10 nm and a flow stress up to 5.4 GPa. The interlamellar spacing and the cementite lamellae thickness...... are reduced during drawing in accordance with the change in wire diameter up to a strain of 2.5. At a higher strain enhanced thinning of cementite lamellae points to decomposition and carbon enrichment of the ferrite lamellae. Dislocations are stored as individual dislocations and in low angle boundaries...

  2. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  3. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  4. Modeling of the structural response to fire of a high-rise steel building

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2011-01-01

    Observations from the tests and the real fire investigations have consistently shown that the performance of a whole steel-framed building in fire is very different from the performance of its individual members (Usmani et al, 2000). In this context, it is of interest to investigate the failures...... problems due to the triggering of local mechanism should be overcome to this purpose. In this paper, a steel structure has been considered as case study and the response of the structural system to fire and fire effects has been investigated with the avail of a finite element commercial code. These kinds...

  5. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    International Nuclear Information System (INIS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-01-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels

  6. Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures

    International Nuclear Information System (INIS)

    Li, Peifeng

    2015-01-01

    The emerging selective laser melting (SLM) technology makes possible the manufacturing of metallic microlattice structures with better tailorability of properties. This work investigated the constitutive formulation of the parent material and the failure mechanism in the SLM stainless steel microlattice structure. The constitutive behaviour of SLM stainless steel was quantitatively formulated using the Johnson–Cook hardening model. A finite element model incorporating the constitutive formula was developed and experimentally validated to predict the localised stress evolution in an SLM stainless steel microlattice structure subjected to uniaxial compression. The predicted stresses were then linked to the fracture process in the SLM steel observed by scanning electron microscope. It was found that the tensile and compressive stress state is localised in the strut members of the microlattice, and determines the macroscopic cracking mode. The tensile opening and shear cracking dominate the tension and compression zones, respectively. However, the microscopic examination on the fracture surfaces reveals the formation of substantial slip bands in both the tension and compression zones, implying that the ductile fracture in the SLM stainless steel is transgranular

  7. Steel-concrete bond model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Mang, Chetra

    2015-01-01

    Reinforced concrete structure behavior can be extremely complex in the case of exceeding the cracking threshold. The composite characteristics of reinforced concrete structure should be finely presented especially in the distribution stress zone between steel-concrete at their interface. In order to compute the industrial structures, a perfect relation hypothesis between steel and concrete is supposed in which the complex phenomenon of the two-material relation is not taken into account. On the other hand, this perfect relation is unable to predict the significant disorders, the repartition, and the distribution of the cracks, which is directly linked to the steel. In literature, several numerical methods are proposed in order to finely study the concrete-steel bond behavior, but these methods give many difficulties in computing complex structures in 3D. With the results obtained in the thesis framework of Torre-Casanova (2012), the new concrete-steel bond model has been developed to improve performances (iteration numbers and computational time) and the representation (cyclic behavior) of the initial one. The new model has been verified with analytical solution of steel-concrete tie and validated with the experimental results. The new model is equally tested with the structural scale to compute the shear wall behavior in the French national project (CEOS.fr) under monotonic load. Because of the numerical difficulty in post-processing the crack opening in the complex crack formation, a new crack opening method is also developed. This method consists of using the discontinuity of relative displacement to detect the crack position or using the slip sign change between concrete-steel. The simulation-experiment comparison gives validation of not only the new concrete-steel bond model but also the new crack post-processing method. Finally, the cyclic behavior of the bond law with the non-reduced envelope is adopted and integrated in the new bond model in order to take

  8. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  9. Changes in structure and phase composition of chromium diffusion layer on stainless steels after long annealing

    International Nuclear Information System (INIS)

    Knyazev, E.V.; Voshedchenko, B.M.; Voskresenskij, Yu.A.

    1985-01-01

    A study was made on the effect of elevated temperatures UU and long holdings at heat on structure, phase composition and properties of chromium diffusion layer on austenitic chromium-nickel stainless steels 10Kh18N10TVD, 10Kh15N30M4B, 10Kh11N23T3MR, 10Kh21N28V6M3. The following mechanism of processes taking place in diffusion chromium layer is presented. The steady drop of chromium concentrations is observed after diffusion saturation. Chromium redistribution related with system transformation to more equilibrium state and simultaneous decarburization of steel surfaces takes place in diffusion layers of 10Kh15N30M4B and 10Kh21N28V6M3 steels after annealing at different temperatures and holdings at heat. Decarburization of steel surface layers is practically excluded in diffusion layers of 10Kh18N10T-VD and 10Kh11N23T3MR steels. Diffusion chromium-saturated layer stays effective only on 10Kh18N10T-VD and 10Kh11N23T3MR steels on heating up to 1000 deq C with holding up to 250 h

  10. Effect of nanoprecipitates and grain size on the mechanical properties of advanced structural steels

    International Nuclear Information System (INIS)

    Suarez, M.A.; Alvarez-Perez, M.A.; Alvarez-Fregoso, O.; Juarez-Islas, J.A.

    2011-01-01

    Highlights: → The composition of the steel responded positively to the thermomechanical processing. → Yield strength was increased due to micrometric grain size of 2.2 μm. → Mechanical properties were improved due to nanometric precipitates of 5 nm. → Yield strength values of the API steel were improved up to 877.9 MPa. - Abstract: The microstructure and nanometric precipitates present in advanced structured steel have been studied by high resolution transmission electron microscopy equipped with energy dispersion X-ray microanalysis, in order to relate the nanometric precipitates and grain size with the improvement of the yield strength value of the API steel. The microstructure and nanometric precipitates of the advanced steel were obtained by a combination of thermo-mechanical controlled hot rolling and accelerated cooling procedures. The API steel composition consisted of hot rolled Nb-Ti microalloyed with: 0.07C, 1.40Mn, 0.24Si, 0.020Al, 0.009P, 0.001S, 0.05Mo, 0.5Cr, 0.05Nb, 0.25Ni, 0.10Cu, 0.012Ti, 0.05N in wt%. As a result, this hot rolled steel tested at a strain rate of 5 x 10 -3 s -1 showed an improved yield strength from 798 MPa to 878 MPa due to the micrometric grain size of 2.2 μm and to the nanometric precipitates with a size of around 5 nm in the microstructure of the steel studied.

  11. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1993-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (50--90mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments

  12. Effect of steel structure and defects on reliability of parts of impact mechanisms

    Science.gov (United States)

    Popelyukh, AI; Repin, AA; Alekseev, SE

    2018-03-01

    The paper discusses selection of materials suitable for manufacturing critical parts of impact mechanisms. It is shown that in order to extend life of parts exposed to high dynamic loading, it is expedient to use medium- and high-carbon alloy-treated steels featuring low impurity with nonmetallic inclusions and high hardening characteristics. Application of thermally untreated parts is undesirable as steel having ferrite–pearlite structure possesses low fatigue strength. Aimed to ensure high reliability of parts with a hardness of 42–55 HRC, steel should be reinforced by thermal treatement with the formation of multicomponent martensite–bainite structure. High-quality production should include defectoscopy and incoming material control.

  13. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  14. Vacuum Plasma Spraying W-coated Reduced Activation Structural Steels for Fusion Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Tungsten (W) and its alloys are considered as candidate materials for plasma facing materials of the first wall and diverter components in fusion reactor systems because of high sputtering resistance and low tritium retention in a fusion environment. Therefore, it is considered that the joining between W and reduced activation structural steels, and its evaluation, are critical issues for the development of fusion reactors. However, the joining between these materials is a very challenging process because of significant differences in their physical properties, particularly the mismatch of coefficients of thermal expansion (CTE). For instance, the CTE of pure W is known to be about 4.3Χ10{sup -6}K{sup -1}; however, that of martensitic steels reaches over three times, about 12-14Χ10{sup -6}K{sup -1} at room temperature even up to 373K. Nevertheless, several joining techniques have been developed for joining between W and structural steels, such as a vapor deposition method, brazing and diffusion bonding. Meanwhile, vacuum plasma spraying (VPS) is supposed to be one of the prospective methods to fabricate a sufficient W layer on the steel substrates because of the coating of a large area with a relatively high fabricating rate. In this study, the VPS method of W powders on reduced activation steels was employed, and its microstructure and hardness distribution were investigated. ODS ferritic steels and F82H steel were coated by VPS-W, and the microstructure and hardness distribution were investigated. A microstructure analysis revealed that pure W was successfully coated on steel substrates by the VPS process without an intermediate layer, in spite of a mismatch of the CTE between dissimilar materials. After neutron irradiation, irradiation hardening significantly occurred in the VPSW. However, the hardening of VPS-W was lesser than that of bulk W irradiated HFIR at 773K. Substrate materials, ODS ferritic steels, and F82H steel, did not show irradiation hardening

  15. Mechanism of Fatigue Crack Growth of Bridge Steel Structures

    Directory of Open Access Journals (Sweden)

    Zhu H.

    2016-12-01

    Full Text Available This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.

  16. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2015-07-01

    Full Text Available Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  17. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.

    Science.gov (United States)

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-07-30

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  18. Study on Collapse Mechanism of Steel Frame Structure under High Temperature and Blast Loading

    Science.gov (United States)

    Baoxin, Qi; Yan, Shi; Bi, Jialiang

    2018-03-01

    Numerical simulation analysis for collapsing process and mechanism of steel frame structures under the combined effects of fire and explosion is performed in this paper. First of all, a new steel constitutive model considering fire (high temperature softening effect) and blast (strain rate effect) is established. On the basis of the traditional Johnson-Cook model and the Perzyna model, the relationship between strain and scaled distance as well as the EOUROCODE3 standard heating curve taking into account the temperature effect parameters is introduced, and a modified Johnson-Cook constitutive model is established. Then, the influence of considering the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the steel column for the same scaled distance under the combined effects of fire and blast; the damage will be serious with decreasing of the scaled distance of the steel column under the same temperature under the combined effects of fire and blast; in the case of the combined effects of fire and blast happening in the side-spans, the partial progressive collapse occurs as the scaled distance is less than or equal to 1.28; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.

  19. Comparative analysis of steel structures stationary conveyors with hanging belt

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2016-06-01

    Full Text Available Presents the results of computation of metal structures LLC «Сonveyor» with the subsequent analysis of its main struc-tural units. The analysis results of the metal structures, LLC «Сonveyor» with a similar metal structure obtained in the optimal design process.

  20. Effects of niobium addition on the structure and properties of medium and high carbon steels. v. 1,2

    International Nuclear Information System (INIS)

    Mei, P.R.

    1983-01-01

    An evaluation about the use of niobium in medium and high carbon steels, with ferritic-pearlitic structure, through the understanding of niobium actuaction mechanism in the structure, and consequently in the mechanical properties of those steels is done. (E.G.) [pt

  1. Crystallization, the cast structure and the formation of gas blowholes in high-nitrogen steels and alloy steels

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Prokoshkina, V.; Kaputkina, L.M.; Siwka, J.; Skuza, Z.

    2001-01-01

    In the paper, the results of experimental research concerning the precipitation of nitrogen in the form of gas blowholes during the crystallization of supersaturated Fe-N, Fe-O-S-N alloys and 1Cr13 and Cr18Ni10 steels have been described. It has been found that the precipitation of nitrogen gas blowholes is more intensive and the pressure p N 2 is higher at low contents of surface active elements, i.e. oxygen and sulfur. At the concentration ([%O] +0.5%[%S]) ≥ 300 ppm, microingots exhibited a compact microstructure without gas blowholes. The result of kinetic analysis of the process of desorption of nitrogen and the thermodynamics of the investigated solution (including surface tension) confirm that the surface reaction plays a decisive role in the formation of gas blowholes. For this reason, it is possible to eliminate the formation of blowholes in ingots of ferritic and ferritic-austenitic steels by introducing such SAE admixtures, as Sb, Te or Se. Analytical expression have been obtained, which define the amount of nitrogen releasing into gas blowholes and describe the conditions of producing ingots or castings of an compact structure at cooling rates of approximately 10 3 K/s. (author)

  2. The Morphology of Intermediate Structures Formed During Bainite Transformation in HSLA Steels

    Science.gov (United States)

    Seidurov, Mikhail N.; Kovalev, Sergey V.; Zubkov, Alexander S.

    2017-10-01

    The paper deals with the structure of bainite formed under the influence of thermal deformation cycles of welding in low-carbon bainitic class steels. Morphology features associated with the formation of mesoferrite and granular bainite determines the high cold resistance of welded joints.

  3. Dislocation structures in 16MND5 pressure vessel steel strained in uniaxial tension

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Robertson, Ch.; Marini, B.

    2005-01-01

    Roč. 342, - (2005), s. 35-41 ISSN 0022-3115 R&D Projects: GA AV ČR(CZ) 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : bainitic steels * dislocation structure * low temperature deformation Subject RIV: JG - Metallurgy Impact factor: 1.414, year: 2005

  4. Discussion on the fracutre microscopic resistance by cleavage in structural steels

    International Nuclear Information System (INIS)

    Darwish, F.A.I.; Teixeira, J.C.G.; Ouro, C.R.

    1982-01-01

    An analysis on the physical significance of the microscopic resistance of a structural steel is presented. The theorethical and experimental aspects involved in the determination of this resistance are still presented. The results obtained with low, medium and high mechanical resistance are showed and discussed. (E.G.) [pt

  5. Control over Coating Structure during Electromagnetic Welding and Application of HighSpeed Steel Powder

    Directory of Open Access Journals (Sweden)

    L. M. Kozhuro

    2004-01-01

    Full Text Available The paper considers peculiar features concerning coating formation in the process of electromagnetic welding of high-speed steel powder. The paper reveals how to control coating structure that ensures the required operational properties of working surfaces of machine parts. 

  6. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  7. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    Science.gov (United States)

    2017-09-01

    ER D C/ CE RL T R- 17 -3 0 DoD Corrosion Prevention and Control Program Demonstration of Thermally Sprayed Metal and Polymer Coatings...and Polymer Coatings for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Larry D. Stephenson, Alfred D. Beitelman, Richard G...5 2.1.2 Thermoplastic polymer coating (flame spray

  8. Application of ab initio electronic structure calculations for prediction of phase equilibria in superaustenitic steels

    Czech Academy of Sciences Publication Activity Database

    Vřešťál, J.; Kroupa, Aleš; Šob, Mojmír

    2006-01-01

    Roč. 38, č. 11 (2006), s. 298-302 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GA106/03/1354; GA AV ČR(CZ) IBS2041105 Institutional research plan: CEZ:AV0Z20410507 Keywords : electronic structure * Phase diagrams * Steel Subject RIV: BJ - Thermodynamics Impact factor: 1.104, year: 2006

  9. Different approaches of European regulations for fire design of steel structural elements

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Budny, Iwona

    2010-01-01

    how both safety issues (avoid people injuries and preserve integrity of constructions) are addressed in the framework of European structural fire safety design of steel constructions. Some relevant differences can be found both in the procedures and in the philosophy of national and community...

  10. Structural response of steel high rise buildings to fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    Due to the significant vertical elevation and complexity of the structural system, high rise buildings may suffer from the effects of fire more than other structures. For this reason, in addition to evacuation strategies and active fire protection, a careful consideration of structural response t...

  11. Influence of quantity of non-martensite products of transformation on resistance to fracture of improving structural steel

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Golovanenko, Yu.S.; Zikeev, V.N.

    1978-01-01

    18KhNMFA, low-carbon, alloyed steel and 42KhMFA medium-carbon, alloyed steel have been examined. For the purpose of obtaining different structures in hardening the steel, different cooling rates, different temperatures and isothermal holding times are applied. The following has been shown: on tempering to the same hardness (HV 300), the presence of non-martensite structures in hardened state does not practically influence the standard mechanical properties of steel (sigmasub(B), sigmasub(0.2), delta, PSI). The resistance of steel to the brittle failure is enhanced by the uniform, fine-disperse distribution of the carbide phase in the structure of lower bainite (up to 80 % bainite in martensite for 42KhMF steel to be improved), as well as strongly fragmented packages of rack martensite-bainite (up to 50 % lower bainite in martensite of 18KhNMFA steel). The formation of the upper bainite in the structure of the hardened steels 18KhNMFA and 42KhMF results on tempering in the formation of coarse, non-uniform, branched carbide inclusions, and this, in its turn, leads to raising the cold-shortness threshold and to lowering the amount of work as required for propagation of a crack. The presence of ferritic-pearlitic structures in the structural steels hardened to martensite and bainite results in reducing the resistance of steel to the brittle failure; the presence of every 10 % ferritic-pearlitic component in martensite of the structural steels 18KhNMFA and 42KhMFA to be thermally improved, raises T 50 by 8 deg and 20 deg C, respectively

  12. Crack arrest toughness of structural steels evaluated by compact test

    International Nuclear Information System (INIS)

    Nakano, Yoshifumi; Tanaka, Michihiro

    1982-01-01

    Crack arrest tests such as compact, ESSO and DCB tests were made on SA533B Cl. 1, HT80 and KD32 steels to evaluate the crack arrest toughness. The main results obtained are as follows: (1) The crack arrest toughness could be evaluated by K sub(Ia) which was obtained by the static analysis of compact test. (2) K sub(ID) determined by the dynamic analysis of compact test was greater than K sub(Ia), though K sub(ID) became close to K sub(Ia)/K sub(Q) became a unity where K sub(Q) is the stress intensity factor at the crack initiation. (3) No significant difference was observed between K sub(Ia) and K sub(ca) obtained by ESSO and DCB tests, though K sub(ca) obtained by DCB test tended to be smaller than K sub(Ia) at lower temperatures. (4) K sub(Ia) was smaller than K sub(Ic) in the transition temperature range, while it was greater than K sub(Id). In the temperature range where K sub(Ic), which was determined from J sub(Ic), decreased with temperature increase, however, it was smaller than K sub(Ia). (5) The fracture appearance transition temperature and the absorbed energy obtained by 2 mm V-notch Charpy test were appropriate parameters for representing the crack arrest toughness, while the NDT temperature was not. (author)

  13. The evolution of ferrite grain size in structural steels

    International Nuclear Information System (INIS)

    Hodgson, P.D.

    1999-01-01

    The refinement of the ferrite grain size is the main aim of modern thermomechanical processes for hot rolled steels. The ferrite grain size is determined by the composition, the state of the austenite at the point of transformation and the cooling rate through transformation. By adding microalloying additions of Ti for grain refinement and Nb to retard recrystallisation, it is possible to reduce the ferrite grain size to less than 5μm at moderate to high cooling rates. However, it is not possible under even the most extreme traditional controlled rolling and accelerated cooling conditions to produce an equiaxed ferrite grain size of less than 3μm. More recent work, though, involving rolling with high undercooling and friction conditions that lead to high shear, suggests that it is possible to produce microstructures in a single rolling pass with an average grain size less than 1μm. This appears to involve a dynamic (ie strain induced) transformation process. The current understanding of static and dynamic transformation and the resultant grain size is reviewed and areas requiring further research are highlighted

  14. Deep Defect Detection within Thick Multilayer Aircraft Structures Containing Steel Fasteners Using a Giant-Magneto Resistive (GMR) Sensor (Preprint)

    National Research Council Canada - National Science Library

    Ko, Ray T; Steffes, Gary J

    2007-01-01

    Defect detection within thick multilayer structures containing steel fasteners is a challenging task in eddy current testing due to the magnetic permeability of the fasteners and overall thickness of the structure...

  15. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    International Nuclear Information System (INIS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-01-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  16. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  17. Effect of elevated temperature on the composition, structure, and mechanical properties of diffusion chromized steel

    International Nuclear Information System (INIS)

    Osintsev, V.D.

    1986-01-01

    The author studies the effect of operating temperature for equipment in contact sections of sulfuric acid workshops on the structure and mechanical properties of the chromized coatings and core of chromized articles. The ferrite lattice spacing was determined in a DRON-0.5 diffractometer according to the line in copper K /sub alpha/ radiation exposure was carried out after layer-by-layer anodic etching of the coating in an aqueous solution. It was shown that diffusion chromizing may lead to a reduction in strength properties compared with those of unchromized steel. As a base for chromized articles intended for operation at temperatures up to 475 0 C it is desirable to use steels 09G2 or 09G25, or for operation at temperatures up to 540 0 C, steels 12KhM and 12MKh

  18. Enhancement of low temperature toughness of nanoprecipitates strengthened ferritic steel by delamination structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu; Xu, Songsong; Li, Junpeng; Zhang, Jian [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China); Sun, Liangwei; Chen, Liang; Sun, Guangai; Peng, Shuming [Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 621999 (China); Zhang, Zhongwu, E-mail: zwzhang@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China)

    2017-04-13

    This study investigated the effects of aging and thermomechanical treatments on the microstructure evolution and mechanical properties of a nanoprecipitates strengthened ferritic steel. The toughness of steel at various temperatures was measured carefully and correlated with microstructural features. Tensile tests show that aging can improve the mechanical strength without scarifying the ductility. With high yield strength of ~1000 MPa, excellent low temperature Charpy impact energy more than 300 J at −80 °C can be obtained. The ductile brittle transition temperature (DBTT) is lower than −80 °C. The high strength can be contributed by the nanocluster precipitation as determined by small angle neutron scattering and transmission electron microscopy. The excellent low temperature toughness is attributed to the delamination structure of the steel, which blunts the cracks and restrains the crack propagation.

  19. Constructive fire protection of steel corrugated beams of buildings and other structures

    Directory of Open Access Journals (Sweden)

    Ilyin Nikolay

    2017-01-01

    Full Text Available The research introduces a methodology of establishing indicators of fire safety of a building in relation to a guaranteed duration of steel fire-proof corrugated beams resistance in conditions of standard fire tests. Indicators of fire safety are also established in the assessment of design limits of steel fire-proof corrugated beams during design process, construction or maintenance of the building as well as in reducing economic costs when testing steel structures for fire resisting property. The suggested methodology introduces the system of actions aimed to design constructive fire protection of steel corrugated beams of buildings. Technological effect is achieved by conducting firing tests of steel construction by non-destructive methods; the evaluation of fire resistance of fire-proof elements of corrugated beams (corrugated web, upper and lower shelves is identified by the least fire-proof element of a welded I-beam. In this methodology fire resistance duration of the constituent elements of a welded I-beam with account of its fire protection ability is described with an analytic function taken as variables. These variables are intensity strength of stresses and the degree of fire protection of a compound element.

  20. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  1. Experimental assessment of an RFID-based crack sensor for steel structures

    Science.gov (United States)

    E Martínez-Castro, R.; Jang, S.; Nicholas, J.; Bansal, R.

    2017-08-01

    The use of welded steel cover plates had been a common design practice to increase beam section capacity in regions of high moment for decades. Many steel girder bridges with cover plates are still in service. Steel girder bridges are subject to cyclic loading, which can initiate crack formation at the toe of the weld and reduce beam capacity. Thus, timely detection of fatigue cracks is of utmost importance in steel girder bridge monitoring. To date, crack monitoring methods using in-house radio frequency identification (RFID)-based sensors have been developed to complement visual inspection and provide quantitative information of damage level. Offering similar properties at a reduced cost, commercial ultra-high frequency (UHF) passive RFID tags have been identified as a more financially viable option for pervasive crack monitoring using a dense array of sensors. This paper presents a study on damage sensitivity of low-cost commercial UHF RFID tags for crack detection and monitoring on metallic structures. Using backscatter power as a parameter for damage identification, a crack sensing system has been developed for single and multiple tag configurations for increased sensing pervasiveness. The effect on backscatter power of the existence and stage of crack propagation has been successfully characterized. For further automation of crack detection, a damage index based on the variation of backscatter power has also been established. The tested commercial RFID-based crack sensor contributes to the usage of this technology on steel girder bridges.

  2. Structural sensitivity of cyclic crack resistance of rotor steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Kozak, L.Yu.

    1984-01-01

    Comparative evaluation of cyclic crack resistance of hardened rotor set steel 35KhN3MFA in different cstructural states during tesis in agea geseous hydrogen, in the air and in vacuum, has been mde made. It is shown, that structural sensitivity of near-threshold crack resistance of the studied rotor steel in gaseous hydrogen is to a high extent determined by the closing and morphology of fatigue crack. The decrease in crack closing (CC) observed during tests in hydrogen in low-strenght and crack branching in high-strength steels results in the fact, that in contrast to well-known notions on a higher sensitivity to hydrogen embrittlement of high-strenght alloys the negative effect of hydrogen on the near-threshold cyclic crack resistance is manifested only in steel in low-strenght state. The considered regularities in crack growth in low-alloyed steel under the effect of gaseous hydrogen are just only for high-frequency loading. In all probability in the case of fatigue crack growth (GCG) at low frequencies of loading not only the medium activity, but also the role o, closing and crack geometty in the kinetics of fatigue fracture, the clarifying of which requires further studieds, will change

  3. On the adsorption-induced fatigue of structural steels in the presence of alcohols

    International Nuclear Information System (INIS)

    Loboiko, V.I.; Karpenko, G.V.; Vasilenko, I.I.

    1976-01-01

    The purpose of the work was to study he effect of anhydrous alcohols on the cyclic fatigue of steels in the absence of contact of the alcohol with atmospheric moisture during the testing process. A vacuum was created in the operating space and then the vacuum annealing was carried out in a bath with the sample and through metal vacuum connection the bath was filled with anhydrous alcohol. Studies were made on several construction steels (20Kh, 40Kh, 50Kh, and ShKh15); steels 40Kh, 50Kh, and ShKh15 were quenched from 840-860 0 C in oil and then tempered at 200 0 C (2 h), steel 20Kh was studied in the as-received state. It was shown that with increase in the carbon content of steel with a martensite structure, the decrease in strength in the presence of anhydrous alcohol was greater than in dry air. Experiments showed that anhydrous alcohol causes an adsorption decrease in the strength both of samples with preliminarily formed cracks and V-shaped stress concentrators and of smooth samples. The greatest adsorption effect of alcohols in our case, as in static fatigue, was observed in samples with cracks. A dependence was shown between the length of the carbon chain and the fatigue limit. This dependence indicates the monotone nature of the decrease in the fatigue limit with transfer from methyl to butyl and then to octyl alcohol

  4. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  5. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  6. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  7. On cobalt effect on structural and phase transformations during tempering carbon-containing steels of Fe-Ni-Mo system

    International Nuclear Information System (INIS)

    Rakhshtadt, A.G.; Khovova, O.M.; Kan, A.V.; Perkas, M.D.; Kudryavtsev, A.N.; Rodionov, Yu.L.

    1990-01-01

    Methods of resistometry, colorimetry, X-ray diffraction chemical and electrochemical phase analyses, Moessbauer spectroscopy and field-ion mass spectrometry are used to study the nature of precipitation hardening of carbon containing Fe-Ni-Mo martensitic steels. Cobalt contribution to formation of phase composition and structural state of steels during tempering is analyzed. Realization conditions of effective combined (carbide-intermetallide) hardening of the investigated system steels are determined

  8. Characterization of 316L Steel Cellular Dodecahedron Structures Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2016-10-01

    Full Text Available The compression behavior of different 316L steel cellular dodecahedron structures with different density values were studied. The 316L steel structures produced using the selective laser melting process has four different geometries: single unit cells with and without the addition of base plates beneath and on top, and sandwich structures with multiple unit cells with different unit cell sizes. The relation between the relative compressive strength and the relative density was compared using different Gibson-Ashby models and with other published reports. The different aspects of the deformation and the mechanical properties were evaluated and the deformation at distinct loading levels was recorded. Finite element method (FEM simulations were carried out with the defined structures and the mechanical testing results were compared. The calculated theory, simulation estimation, and the observed experimental results are in good agreement.

  9. Predictability of steel containment response near failure track 3 - structural integrity, dynamic behavior, and seismic design

    International Nuclear Information System (INIS)

    Costello, J.F.; Ludwigsen, J.S.; Luk, V.K.; Hessheimer, M.F.

    2000-01-01

    The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms

  10. Assessment of thermo-mechanical behavior in CLAM steel first wall structures

    International Nuclear Information System (INIS)

    Liu Fubin; Yao Man

    2012-01-01

    Highlights: ► China Low Activation Martensitic steel (CLAM) as FW the structural material. ► The thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating. ► The temperature dependence of the material physical properties of CLAM is summarized. - Abstract: The temperature and strain distributions of the mockup with distinct structural material (SS316L or China Low Activation Martensitic steel (CLAM)) in two-dimensional model were calculated and analyzed, based on a high heat flux (HHF) test recently reported with heat flux of 3.2 MW/m 2 . The calculated temperature and strain results in the first wall (FW), in which SS316L is as the structural material, showed good agreement with HHF test. By substituting CLAM steel for SS316L the contrast analysis indicates that the thermo-mechanical property for CLAM steel is better than that of SS316 at the same condition. Furthermore, the thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating.

  11. Assessment of thermo-mechanical behavior in CLAM steel first wall structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fubin, E-mail: liufubin_1216@126.com [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning (China); Yao Man, E-mail: yaoman@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer China Low Activation Martensitic steel (CLAM) as FW the structural material. Black-Right-Pointing-Pointer The thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating. Black-Right-Pointing-Pointer The temperature dependence of the material physical properties of CLAM is summarized. - Abstract: The temperature and strain distributions of the mockup with distinct structural material (SS316L or China Low Activation Martensitic steel (CLAM)) in two-dimensional model were calculated and analyzed, based on a high heat flux (HHF) test recently reported with heat flux of 3.2 MW/m{sup 2}. The calculated temperature and strain results in the first wall (FW), in which SS316L is as the structural material, showed good agreement with HHF test. By substituting CLAM steel for SS316L the contrast analysis indicates that the thermo-mechanical property for CLAM steel is better than that of SS316 at the same condition. Furthermore, the thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating.

  12. Computer-aided load monitoring system for nuclear power plant steel framing structures

    International Nuclear Information System (INIS)

    Skaczylo, A.T.; Fung, S-J; Hooks, R.W.

    1984-01-01

    The design of nuclear power plant steel framing structures is a long and involved process. It is often complicated by numerous changes in design loads as a result of additions, deletions and modifications of HVAC hangers, cable tray hangers, electric conduit hangers, and small bore and large bore mechanical component supports. Manual tracking of load changes of thousands of supports and their impact to the structural steel design adequacy is very time-consuming and is susceptible to errors. This paper presents a computer-aided load monitoring system using the latest technology of data base management and interactive computer software. By linking the data base to analysis and investigation computer programs, the engineer has a very powerful tool to monitor not only the load revisions but also their impact on the steel structural floor framing members and connections. Links to reporting programs allow quick information retrieval in the form of comprehensive reports. Drawing programs extract data from the data base to draw hanger load system drawings on a computer-aided drafting system. These capabilities allow engineers to minimize modifications by strategically locating new hangers or rearranging auxiliary steel configuration

  13. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels

    International Nuclear Information System (INIS)

    Cornide, J.; Garcia-Mateo, C.; Capdevila, C.; Caballero, F.G.

    2013-01-01

    A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), leads to a nano-scale microstructure, known as NANOBAIN. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). These advanced steels present the highest strength/toughness combinations ever recorded in bainitic steels. Their properties are mainly a consequence of the formation of nanoscale bainitic ferrite plates at very low temperatures. Transmission electron microscopy observations have shown that plastic relaxation in the austenite adjacent to the bainite plates may control the final size of the bainitic ferrite plates. The dislocation debris generated in this process resists the advance of the bainitic ferrite–austenite interface, the resistance being greatest for strong austenite. The yield strength of the austenite must then feature in any assessment of plate size. In this scenario, the plates are expected to become thicker at high temperatures because the yield strength of the austenite will then be lower. The goal of this study is to evaluate the influence of yield strength of austenite to the nanoscale structural refinement of advanced bainitic steels. In this sense, in situ measurements of austenite strength before bainite formation using a deformation dilatometer Bähr 805D have been performed in a medium carbon high silicon steel transforming at intermediate temperatures (325–400 °C) to a submicron structure of bainite and in a high carbon high silicon steel transforming at low temperatures (200–350 °C) to nanostructured bainite. The role of the transformation driving force on the bainite plate thickness will be also discussed

  14. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Cornide, J., E-mail: jca@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Garcia-Mateo, C., E-mail: cgm@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Capdevila, C., E-mail: ccm@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Caballero, F.G., E-mail: fgc@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain)

    2013-11-15

    A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), leads to a nano-scale microstructure, known as NANOBAIN. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). These advanced steels present the highest strength/toughness combinations ever recorded in bainitic steels. Their properties are mainly a consequence of the formation of nanoscale bainitic ferrite plates at very low temperatures. Transmission electron microscopy observations have shown that plastic relaxation in the austenite adjacent to the bainite plates may control the final size of the bainitic ferrite plates. The dislocation debris generated in this process resists the advance of the bainitic ferrite–austenite interface, the resistance being greatest for strong austenite. The yield strength of the austenite must then feature in any assessment of plate size. In this scenario, the plates are expected to become thicker at high temperatures because the yield strength of the austenite will then be lower. The goal of this study is to evaluate the influence of yield strength of austenite to the nanoscale structural refinement of advanced bainitic steels. In this sense, in situ measurements of austenite strength before bainite formation using a deformation dilatometer Bähr 805D have been performed in a medium carbon high silicon steel transforming at intermediate temperatures (325–400 °C) to a submicron structure of bainite and in a high carbon high silicon steel transforming at low temperatures (200–350 °C) to nanostructured bainite. The role of the transformation driving force on the bainite plate thickness will be also discussed.

  15. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  16. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  17. Composite structures of steel and concrete beams, slabs, columns, and frames for buildings

    CERN Document Server

    Johnson, R P

    2008-01-01

    This book sets out the basic principles of composite construction with reference to beams, slabs, columns and frames, and their applications to building structures. It deals with the problems likely to arise in the design of composite members in buildings, and relates basic theory to the design approach of Eurocodes 2, 3 and 4.The new edition is based for the first time on the finalised Eurocode for steel/concrete composite structures.

  18. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  19. Acoustic events during fatigue test of structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Por, Gabor; Fekete, Balazs; Csicso, Gabor; Trampus, Peter [College of Dunaujvaros (Hungary)

    2014-11-01

    Acoustic emission sensors were applied recording noises during low cycle fatigue tests in steel materials. The test specimens were machined from the base metal (15H2MFA) and the anticorrosive cladding metal (08H18N10T) of the VVER-440/V-213 (Russian designed PWR) reactor pressure vessel. During the first period, the measurements were carried out with isothermal condition at 260 C on GLEEBLE 3800 servo-hydraulic thermal-mechanical simulator. The tests were run under uniaxial tension-compression loading with total strain control. The programmed waveform was triangular for all the fatigue tests with the frequency of 0.08 Hz. The cyclic loading was started from the compressed side. It was observed that besides rare acoustic emission events regular 10 msec Acoustic Barkhausen Noise (ABN) burst were recorded due to 50Hz AC current drive for heating and maintaining the constant temperature. The amplitude of MABN was higher under pressure than during relaxing and drawing-out by a factor of 2-5. We have carried out also thermo-mechanical fatigue experiment with the same strain-controlled mechanical cycle and simultaneous thermal cycle between 150 C and 270 C. The total number of cycles was terminated, when the force level necessary for the original elongation had been reduced to 75% of its original value. Visual examination showed always some at least surface cracks after stopping the fatigue test. ABN events registered during the beginning cycle exhibited different spectra from the middle and especially from the last cycles before the end of the test, where also double ABN bursts could be recorded. At the end of the test explicit AE events could be found by a new technique. The most interesting result is the possibility to use ABN for testing reactor materials, which could have practical application for fatigue testing.

  20. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  1. Formation of local nanocrystalline structure in a boron steel induced by electropulsing

    International Nuclear Information System (INIS)

    Ma, Bingdong; Zhao, Yuguang; Ma, Jun; Guo, Haichao; Yang, Qing

    2013-01-01

    Highlights: ► The local NC structures in the uniform size of ∼15 nm were obtained by electropulsing. ► The NC structures were made up of γ-Fe without any other phases coexisting. ► The reduction in nucleation barrier of the γ-Fe helped form the local γ-Fe NC structure. ► The steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties. - Abstract: Nanocrystalline γ-Fe was obtained locally in a cold-rolled boron steel as a result of transient high-energy electropulsing. The nano-grains of γ-Fe were uniformly about 15 nm in size. No phases other than γ-Fe have been found in the nanocrystalline structure. It is believed that the pulse current enhances the nucleation rate of γ-Fe phase during the phase transformation from α-Fe to γ-Fe, resulting in the formation of local nanostructure. Moreover, in this study the steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties.

  2. Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working

    International Nuclear Information System (INIS)

    Lauprecht, W.; Imgrund, H.; Coldren, P.

    1975-01-01

    A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm 2 the transition temperature T 50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm 2 . As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm 2 . On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm 2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm 2 . Because of low carbon content, this steel is characterized by good

  3. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for

  4. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  5. Design, fabrication and erection of steel structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety Standard for Civil Engineering Structures Important to Safety of Nuclear Facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design, fabrication and erection of steel structures important to safety

  6. Damage Identification of a Derrick Steel Structure Based on the HHT Marginal Spectrum Amplitude Curvature Difference

    Directory of Open Access Journals (Sweden)

    Dongying Han

    2017-01-01

    Full Text Available For the damage identification of derrick steel structures, traditional methods often require high-order vibration information of structures to identify damage accurately. However, the high-order vibration information of structures is difficult to acquire. Based on the technology of signal feature extraction, only using the low-order vibration information, taking the right front leg as an example, we analyzed the selection of HHT marginal spectrum amplitude and the calculation process of its curvature in practical application, designed the damage conditions of a derrick steel structure, used the index and intrinsic mode function (IMF instantaneous energy curvature method to perform the damage simulation calculation and comparison, and verified the effect of identifying the damage location in a noisy environment. The results show that the index can accurately determine the location of the damage element and weak damage element and can be used to qualitatively analyze the damage degree of the element; under the impact load, the noise hardly affects the identification of the damage location. Finally, this method was applied to the ZJ70 derrick steel structure laboratory model and compared with the IMF instantaneous energy curvature method. We verified the feasibility of this method in the damage location simulation experiment.

  7. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility

    International Nuclear Information System (INIS)

    Wu, X.L.; Yang, M.X.; Yuan, F.P.; Chen, L.; Zhu, Y.T.

    2016-01-01

    We report a design strategy to combine the benefits from both gradient structure and transformation-induced plasticity (TRIP). The resultant TRIP-gradient steel takes advantage of both mechanisms, allowing strain hardening to last to a larger plastic strain. 304 stainless steel sheets were treated by surface mechanical attrition to synthesize gradient structure with a central coarse-grained layer sandwiched between two grain-size gradient layers. The gradient layer is composed of submicron-sized parallelepiped austenite domains separated by intersecting ε-martensite plates, with increasing domain size along the depth. Significant microhardness heterogeneity exists not only macroscopically between the soft coarse-grained core and the hard gradient layers, but also microscopically between the austenite domain and ε-martensite walls. During tensile testing, the gradient structure causes strain partitioning, which evolves with applied strain, and lasts to large strains. The γ → α′ martensitic transformation is triggered successively with an increase of the applied strain and flow stress. Importantly, the gradient structure prolongs the TRIP effect to large plastic strains. As a result, the gradient structure in the 304 stainless steel provides a new route towards a good combination of high strength and ductility, via the co-operation of both the dynamic strain partitioning and TRIP effect.

  8. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  9. Shot-peening effect on the structure, microhardness, and compressive stresses of the austenitic steel 1.4539

    Directory of Open Access Journals (Sweden)

    Barbara Nasiłowska

    2015-06-01

    Full Text Available This article presents shot-peening effect on the structure, microhardness, and compressive stresses of the austenitic steel 1.4539. The research shows strengthening of the top layer and the formation of compressive stresses in the subsurface layers of the shot-peening elements.[b]Keyword[/b]: austenitic steel 1.4539, residual stresses, Waisman-Phillips’a method

  10. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  11. On buckling of double-shell-stiffened cylindrical steel structures

    International Nuclear Information System (INIS)

    Chen, S.J.; Chiu, K.D.; Odar, E.

    1981-01-01

    Buckling analysis methods and acceptance criteria for single shells of various configurations are well documented and adequately covered by many codes. There are, however, no guidelines or criteria for large Double-Shell-Stiffened (DSS) structures, which have been used recently in nuclear power plant applications. The existing codes for buckling analysis cannot be directly utilized because of the uniqueness of structural configuration and complexity of loading. This paper discusses a method for determining the critical buckling loads for this type of structure under a multitude load and suggests buckling criteria for the design of DSS structures. The method commonly used to determine the critical buckling loads for a single shell with or without stiffeners applies reduction factors to the theoretical results. The capacity reduction factors, which are often obtained from experimental results, include plasticity corrections and account for the difference between actual and theoretical buckling loads resulting from the effects of imperfections and nonlinearities. The interaction formulas derived from experimental results can be used to compute the interaction effects of three stress components. This paper extends these concepts and discusses their applicability to a DSS cylindrical structure. (orig./HP)

  12. Detection of Interfacial Debonding in a Rubber-Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers.

    Science.gov (United States)

    Feng, Qian; Kong, Qingzhao; Jiang, Jian; Liang, Yabin; Song, Gangbing

    2017-09-01

    Rubber-steel-layered structures are used in many engineering applications. Laminated rubber-steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber-steel-layered structures. Interfacial debonding in rubber-steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber-steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel-rubber debonding. When the rubber-steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber-steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber-steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber-steel debonding failure in real time. The active sensing

  13. Influences of spray parameters on the structure and corrosion resistance of stainless steel layers coated on carbon steel by plasma spray treatment

    International Nuclear Information System (INIS)

    Yeom, Kyong An; Lee, Sang Dong; Kwon, Hyuk Sang; Shur, Dong Soo; Kim, Joung Soo

    1996-01-01

    Stainless steel powders were sprayed on the grit-blasted SM45C carbon steel substrates using a plasma spray method. The influences of the spray parameters on the structure and corrosion resistance of the layers coated on the carbon steel were investigated. Corrosion behavior of the layers were analyzed by the anodic polarization tests in deaerated 0.1 M NaCl + 0.01 M NaOH solution at 80 deg C. The surface roughness and porosity were observed to decrease with decreasing the particle size. The surface hardness of the coating was always higher than that of the matrix, SM45C, implying that the higher resistance of the coating to erosion-corrosion than that of matrix, and increased as the spray power and the spray distance increase. Stainless steel coats showed more corrosion resistance than the carbon steel did, due to their passivity. The corrosion resistance of the coats, however, were inferior to that of the bulk stainless steels due to the inherent defects formed in the coats. The defects such as rough surface and pores provided the occluded sites favorable for the initiation of localized corrosion, resulting in the conclusion that finer the powder is, higher the corrosion resistance is. And the Cr oxides formation resulting in Cr depletion around the oxides reduced the corrosion resistance of the coats. (author)

  14. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    Science.gov (United States)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  15. Study of effect of austenite prehistory of 03Ch20N16AG6 steel on it structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Demchuk, I S; Krakhmalev, V I; Manninen, A I [Leningradskij Politekhnicheskij Inst. (USSR)

    1981-01-01

    Effect of preliminary cold working and different procedures of thermal treatment on structure and mechanical properties of stable austenite of 03Kh20N16AG6 steel is found out. It is shown that the degree of defectability of initial austenite structure predetermines the further deformation behaviour of the steel (level of strength characteristics, plasticity storage, hardening degree etc.) in the wide temperature range. Close connection of structural changes with properties should determine the choice of preliminary treatment of stable austenitic steel as applied to concrete condition of operation.

  16. Dislocation structure and cold resistance of low-carbon steel

    International Nuclear Information System (INIS)

    Gul', Yu.P.; Karnaukh, A.I.

    1975-01-01

    In the formation of the dislocation structure of a small (10%) deformation, the determining effect on the cold brittleness temperature is exerted by the degree of uniformity in the distribution of dislocations and microvolumes. The overall density of the dislocations is of secondary importance here. By pretreatment to achieve more uniform distribution and dispersion of particles of the excess phase, the degree of uniformity of dislocation distribution in microvolumes can be increased, the cold brittleness temperature lowered and the effect of various deformation patterns on resistance to cold counterbalanced. The formation of a cell-type dislocation structure in the case of a nonuniform distribution of relatively large particles of the excess phase and in that of a large overall density of dislocations does not result in low brittleness temperatures. The formation of a cell-type dislocation structure in the case of uniform distribution of particles of the excess phase and of a comparatively small overall density of dislocations is accompanied by a very pronounced decrease in cold brittleness temperature not only by comparison with other types of dislocation structure but also with the normalized state. At the same time the formation of this kind of a cell structure leads to a substantial (factor of 2-5) increase in resistance to plastic deformation. The prerequisites for obtaining an optimum dislocation are fulfilled either by a combination of hardening from the austenitic region and prompt, small-scale (5%) deformation, or by a combination of accelerated cooling from the austenitic region, 30-40% deformation and high yield. The size of the dislocation cells observed under the electron microscope does not exhibit - within the limits investigated - any direct effect on the cold brittleness temperature. (author)

  17. ALICE's main austenitic stainless steel support structure (the Space Frame)

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This structure is constructed to hold the large volume detectors, such as the Time Projection Chamber, Transition Radiation Detector and Time of Flight inside the ALICE solenoid magnet. After the final assembly at CERN, two large mobile cranes were needed for the job of lifting and turning the 14 tonne frame onto its side. Once shifted, it was placed in Building SX2, one of the surface assembly areas designated for ALICE.

  18. STM study on surface relief, ultra-fine structure and transformation mechanism of bainite in steels

    International Nuclear Information System (INIS)

    Fang, H.S.; Yang, Z.G.; Wang, J.J.; Zheng, Y.K.

    1995-01-01

    The surface reliefs accompanying lower bainite transformation in steels have been studied by scanning tunneling microscopy (STM). With the exclusive vertical resolution of STM, we observed that the surface relief associated with bainite is a group of surface reliefs related to subplates, subunits and sub-subunits. From the bainite plate to the sub-subunit in it, the reliefs are in a tent shape, not of invariant plane strain (IPS) type. The fine structure of bainite in a steel has also been shown by STM and TEM that bainite plate is composed of subplates, subunits and sub-subunits. On the basis of the fine structure inside a bainitic ferrite plate observed under STM, sympathetic-ledgewise mechanism of bainite formation is proposed. (orig.)

  19. Structure and properties of the tool steel after electron beam treatment and following tempering

    International Nuclear Information System (INIS)

    Kozyr', I.G.; Borodin, R.V.; Voropaev, A.V.; Potapov, V.G.

    1998-01-01

    The possibility of changing the surface structure of chromium tool steel has been considered. The given properties were reached through the surface remelting by electron beam with following tempering of strengthened layer. The found distinguished zones with different structure and properties are formed as the result of this treatment. It is shown that for hipereutectoid steel the thermal furnace annealing at 300 deg C is necessary for strengthened surface layer forming after electron beam remelting. The same result can be had by means of short-term heating with electronic beam up to higher temperatures, but is not higher A 1 . The evaluation of temperature fields was carried out by numerical solution of nonstationary heat conductivity equation

  20. Structural changes in surface layer of steel 08Kh18N10T during machining

    International Nuclear Information System (INIS)

    Palenik, J.; Vodarek, V.

    1989-01-01

    The results are reported of a study of the surface layer of steel 08Kh18N10T affected by machining. Structural changes were studied caused by finish turning and by additional roller burnishing. Multiple deformation bands were observed to occur under the given cutting conditions; they mainly consisted of deformation doublets and only in isolated cases of ε-martensite. The presence of α'-martensite was not shown in the specimen surface layer following finish turning. The deformation shear bands in the roller-burnished specimen consisted of both ε-martensite and of deformation doublets. The amount of ε-martensite in the structure was significantly higher than in the specimen worked by turning. Local presence of α'-martensite formations was observed inside the deformation bands. It thus follows that roller burnishing is unsuitable as part of the manufacture of components from steel 08Kh18N10T. (J.B.). 5 figs., 1 tab., 9 refs

  1. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Repond, J.; Schlereth, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Arfaoui, A.; Benoit, M.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Fagot, A.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Ueno, H.; Yoshioka, T.; Dauncey, P.D.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Ete, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kozlov, V.; Soloviev, Y.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Popova, E.; Tikhomirov, V.; Gabriel, M.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti di Lorenzo, S.; Cornebise, P.; Fleury, J.; Frisson, T.; van der Kolk, N.; Richard, F.; Pöschl, R.; Rouene, J.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Ruan, M.; Tran, T.H.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Chai, J.S.; Song, H.S.; Lee, S.H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-01

    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.

  2. Tailoring the gradient ultrafine-grained structure in low-carbon steel during drawing with shear

    Directory of Open Access Journals (Sweden)

    G. I. Raab

    2016-04-01

    Full Text Available Conventional drawing and drawing with shear were conducted on the rods of low-carbon steel. Deformation by simple drawing forms basically a homogenous structure and leads to a uniform change in microhardness along the billet volume. A comparative analysis of the models of these processes showed that shear drawing of steel at room temperature reduces energy characteristics in half, normal forces on the die – by 1,8, and enhances the strain intensity from 0,5 to 1,6. During drawing with shear, strain-induced cementite dissolution occurs and a gradient structure is formed, which increases the microhardness of the surface layer up to values close to 7 000 MPa.

  3. Heat treatment effect on structure and properties of 16GNMA steel

    International Nuclear Information System (INIS)

    Balakhovskaya, M.B.; Nadtsyna, L.V.; Efimov, A.M.; Guseva, N.V.

    1984-01-01

    The effect of heating for hot deformation test and of subsequent tempering on the structure, strength and ductility properties of the 16 GNMA sttel used for fabricating pressure vessels has been investigated. It has been found that in the 850-1200 deg C temperature range abrupt umps in the grain growth at 1050 and 1200 deg C occur. In case of tempering in the 500-630 deg C range the yield strength increases while the ultimate resistance to fracture decreases. At 700 deg C the ductility and toughness drop while the fracture becomes totally crystalline. The 16 GNMA steel structure following normalizing and tempering presents a mixture of ferrite and granular bainite. Steel aging at the operation temperature (450 deg C) leads to its strengthening without embrittlement

  4. Effect of process time on structural and tribological properties of ferritic plasma nitrocarburized AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Karakan, Mehmet; Alsaran, Akguen; Celik, Ayhan

    2004-06-15

    AISI 4140 steel was plasma nitrocarburized at a gas mixture of 49%N{sub 2} + 49%H{sub 2} + 2%CO{sub 2}, for different process times (1, 2, 4, 8 and 12 h), at a temperature of 570 deg. C. The structural, mechanical and tribological properties of nitrocarburized steel were analyzed using a X-ray diffraction, microhardness tester, scanning electron microscopy, optical microscopy and pin-on-disk tribotester. The results have shown that the compound layer was composed of the {epsilon} and {gamma} iron carbonitrides. In addition, the compound layer included pores having a columnar structure. These pores are open to the surface. The nitrocarburizing process increases surface hardness, roughness and friction coefficient. The wear rate improves after plasma nitrocarburizing, and decreases with increasing surface hardness.

  5. Effect of process time on structural and tribological properties of ferritic plasma nitrocarburized AISI 4140 steel

    International Nuclear Information System (INIS)

    Karakan, Mehmet; Alsaran, Akguen; Celik, Ayhan

    2004-01-01

    AISI 4140 steel was plasma nitrocarburized at a gas mixture of 49%N 2 + 49%H 2 + 2%CO 2 , for different process times (1, 2, 4, 8 and 12 h), at a temperature of 570 deg. C. The structural, mechanical and tribological properties of nitrocarburized steel were analyzed using a X-ray diffraction, microhardness tester, scanning electron microscopy, optical microscopy and pin-on-disk tribotester. The results have shown that the compound layer was composed of the ε and γ iron carbonitrides. In addition, the compound layer included pores having a columnar structure. These pores are open to the surface. The nitrocarburizing process increases surface hardness, roughness and friction coefficient. The wear rate improves after plasma nitrocarburizing, and decreases with increasing surface hardness

  6. Kinetic and energetic approaches to analysis of scabbing fracture of structural steels under thermal shock

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2002-01-01

    The regularities of the scabbing fracture of nine brands of structural steels under the conditions of the impact of the nuclear explosion X-ray irradiation are studied. The time dependences of the scabbing strength of the structural materials under thermal shock, initiated by the X-ray irradiation, are established within the frames of the approach to the problem on the scabbing fracture. The time dependences of the critical specific energy of the steels fracture under the conditions of the X-ray irradiation effect are determined within the frames of the energetic approach to the problem on the scabbing fracture, based on the comparison of the sample energy reserve and fracture work [ru

  7. Structure and properties of Hardox 450 steel with arc welded coatings

    Science.gov (United States)

    Ivanov, Yu. F.; Konovalov, S. V.; Kormyshev, V. E.; Gromov, V. E.; Teresov, A. D.; Semina, O. A.

    2017-12-01

    The paper reports on a study of the surface structure, phase composition, and microhardness of Hardox 450 steel with coatings deposited by arc welding of powder wires differing in chemical composition. The study shows that to a depth of 6-8 mm, the microhardness of the thus formed coatings is more than two times the microhardness of the base metal and that their higher mechanical properties are provided by martensite structure containing Nb2C and NbC carbides and Fe2B borides as eutectic lamellae with a transverse size of 30-70 nm; their volume reveals a net-like dislocation substructure with a scalar dislocation density of 1011 cm-2. The highest surface hardness is found for the steel coated with boron-containing wire material. Some ideas are suggested on possible mechanisms and temperature for the formation of Nb and B carbides during the process.

  8. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    Science.gov (United States)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  9. A study on martensitic structure in Fe-4Cr-0.4C steel

    International Nuclear Information System (INIS)

    Won, S.B.

    1980-01-01

    Morphology, dependence of prior austenite grain size and packet size upon austenitizing temperature, distribution of lath width, and habit plane of martensitic structure in Fe-4Cr-0.4C steel has been studied by optical microscopy and transmission electron microscopy. The results obtained are as follows. 1) Optical microstructures of martensitic Fe-4Cr-0.4C steel consist of lath martensite and lens martensite. Also the four types of morphology are observed by electron microscopy. The most common morphologies are a regular paralleled martensite and an irregular dovetailed lath martensite, while the remainder of microstructures consists mainly of groups of internally twinned martensite and autotempered laths. 2) Prior austenite grain size and packet size increased with austenizing temperature, and also the numbers of lath contained in a prior austenite grain or a packet are increased with austenizing temperature. 3) The mean width of lath in Fe-4Cr-0.4C steel is about 0.23μm and most of lath widths are below 0.5μm. 4) Martensite habit plane of Fe-4Cr-0.4C steel is nearly [110]α'. (author)

  10. Evaluation of toughness degradation by small punch (SP) tests for neutron irradiated structural steels

    International Nuclear Information System (INIS)

    Misawa, Toshihei; Hamaguchi, Yoshikazu; Kimura, Akihiko; Eto, Motokuni; Suzuki, Masahide; Nakajima, Nobuya.

    1992-01-01

    The small punch (SP) test as one of the useful small specimen testing technique (SSTT) has been developed to evaluate the fracture toughness, ductile-brittle transition temperature (DBTT) and tensile properties for neutron irradiated structural materials. The SP tests using the miniaturized specimens of φ3 mm TEM disk and 10 mm 2 coupon were performed for six kinds of ferritic steels of F-82, F-82H, HT-9, JFMS, 2.25-1Mo and SQV2A. It was shown that the temperature dependence of SP fracture energies with scatter in miniaturized testing can give reliable information on the DBTT by use of the statistical analysis based on the Weibull distribution. A good correlation between the DBTT of the SP tests and that of the standard CVN test has been obtained for the various nuclear ferritic steels. The SP test was performed for cryogenic austenitic steels as a way of evaluating elastic-plastic fracture toughness, J IC , on the basis of a universal empirical relationship between J IC and SP equivalent fracture strain, ε-bar qf . The SP testing using the neutron irradiated specimens of 2.25Cr-1Mo, F-82, F-82H and HT-9 steels was successfully applied and presented the neutron radiation induced changes on the DBTT, fracture toughness and tensile properties. (author)

  11. The use of concrete-filled steel structures for modular construction of advanced reactors

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.; Graves, H.

    1997-01-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. This paper presents the results of a research program which evaluated the use of modular construction for safety-related structures in advanced nuclear power plant designs. The research program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules

  12. Forecasting of mechanical - and structural behavior of 316 austenitic stainless steels by deformation charts

    International Nuclear Information System (INIS)

    Monteiro, S.N.

    1980-01-01

    The utilization of deformation charts applied to AISI 316 austenitic stainless steel with the purpose of foreseeing its behavior associated with structural and mechanical phenomena, is evaluated. The ocurrence of phenomena such as dynamic aging, martensite transformation, static aging, failure at creep curve, cells, subgrains and boundary slips is discussed in the different regions of the chart. A practical example of the charts' utilization for components of fast reactors is finally presented. (Author) [pt

  13. The consequences of recovery for the analysis of creep in steel structures

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.ne [Rugby, Warks CV22 5HW (United Kingdom)

    2010-05-15

    Creep strain and recovery data for ferritic steels are used to construct a simple model that separates permanent strain from visco-elastic, recoverable strain. The model is shown to be consistent with data from tests under gradually varying stress. The implications of this model are examined for the design analysis of representative structures. It is shown that the modelling of recovery is important in some circumstances and not in others.

  14. Metallographic and autoradiographic investigation of the structure of centrifugally cast steel

    International Nuclear Information System (INIS)

    Singh, K.N.; Krishna Rao, P.

    1981-01-01

    Metallographic and autoradiographic investigations were carried out on the structure of steel tubes cast in a horizontal axis centrifugal casting machine. In chill castings the chill and columnar zones showed significantly lower sulphur contents than the equiaxed zone. Mould rotational speed was found to have an important influence on sulphur segregation. Sulphur-depleted bands, which were often observed in the castings were found to arise due to minor variations in the mould rotational speed. (auth.)

  15. Evaluating response modification factor (R for some types of steel structure

    Directory of Open Access Journals (Sweden)

    Doralba Valencia Restrepo

    2008-01-01

    Full Text Available Response modification factor (R, tabulated in the Colombian Design Code as NSR-98, is used in this paper for eva-luating internal member forces produced by design earthquake action on steel structures and the inconsistencies pre-sent when designing structures when 1% drift limits must be complied with. The article presents the design of 45 frames corresponding to the seismic resistance system of 5 buildings: 15 special moment frames (SMF, 15 special concentrically-braced frames (CBF and 15 eccentrically-braced frames (EBF. External loads and their combination were used in estimating internal loads and rigidity demands (1% drift were evaluated in line with NSR-98 requi-rements. Member strength requirements were evaluated by using the AISC-2005 seismic provisions for steel structu-red buildings. Modal pushover analysis was used for evaluating the response modification factor for the 45 given frames at different structural performance levels. It was found that this factor was not constant for any of the three structural systems (SMF, CBF and EBF suggested by NSR-98 and that the values of the response modification factor found in the present investigation were smaller than those tabulated in this design code governing everyday structural design. This would lead to significant errors being made in evaluating design forces, not only in the structures but in the support elements (base-plates, foundations, shear walls and any structures attached to buildings constructed in line with the seismic resistance system.

  16. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  17. Seismic Response of Steel Braced Building Frame Considering Soil Structure Interaction (SSI): An Experimental Study

    Science.gov (United States)

    Hirave, Vivek; Kalyanshetti, Mahesh

    2018-02-01

    Conventional fixed-base analysis ignoring the effect of soil-flexibility may result in unsafe design. Therefore, to evaluate the realistic behavior of structure the soil structure interaction (SSI) effect shall be incorporated in the analysis. In seismic analysis, provision of bracing system is one of the important option for the structure to have sufficient strength with adequate stiffness to resist lateral forces. The different configuration of these bracing systems alters the response of buildings, and therefore, it is important to evaluate the most effective bracing systems in view point of stability against SSI effect. In present study, three RC building frames, G+3, G+5 and G+7 and their respective scaled down steel model with two types of steel bracing system incorporating the effect of soil flexibility is considered for experimental and analytical study. The analytical study is carried out using Elastic continuum approach and the experimental study is carried out using Shake Table. The influence of SSI on various seismic parameters is presented. The study reveals that, steel bracing system is beneficial to control SSI effect and it is observed that V bracing is more effective, in resisting seismic load considering SSI.

  18. Structure and properties of PbO2-CeO2 anodes on stainless steel

    International Nuclear Information System (INIS)

    Song, Yuehai; Wei, Gang; Xiong, Rongchun

    2007-01-01

    The lack of ideal anodes with excellent activity and stability is one of the critical problems in electrochemical oxidation for organic wastewater treatment. It is reported in this paper that the PbO 2 -CeO 2 films electrodeposited on stainless steel were used as catalytic electrodes for treating antibiotic wastewater. The PbO 2 -CeO 2 films on stainless steel were proved to be high stability, good activity and relatively low cost. Because of these properties, the films are more attractive than any other electrocatalytic materials among conventional dimensionally stable anodes (DSA). Experimental results showed that the PbO 2 -CeO 2 electrode has a service life of 1100 h in 3 M H 2 SO 4 solution under a current density of 1 A cm -2 at 35 o C, compared with 300 h for PbO 2 under the same conditions. The X-ray diffraction (XRD) patterns and SEM images indicated that the PbO 2 -CeO 2 films on stainless steel have a dense structure and the preferred crystalline orientation on the substrate surface was changed. Color and chemical oxygen demand (COD) of antibiotics wastewater were studied by electrolysis by using these electrodes as anode and stainless steel as cathode. The results indicated that the anodes have excellent activity in antibiotic wastewater treatment. The PbO 2 -CeO 2 electrodes have high chemical stability which contributed by the superstable nature of the electrode, dense microstructure, good conductivity and the improvement of bonding with the stainless steel during electrodeposition

  19. Structural changes in complex steels with 12 % Cr during welding thermal cycle

    International Nuclear Information System (INIS)

    Ul'yanova, N.V.; Kurnosova, N.D.

    1981-01-01

    The structural changes in the heat affected zones of welded steam tubes of the 12Kh11V2MF and 18Kh12VMBFR steels, are investigated. A short-time heating of thin samples up to 1300-900 deg C with the aim of imitating the thermal welding cycle permits to determine temperatures of specific region formation in heat affeced zones of 12% Cr steels. The difference in the amounts and structure of σ-ferrite and γ-phase in these regions is established. A ''tongue'' nature of γ-phase grain growth is found in the temperature range of 1150-1100 deg C, while at 1300-1250 deg C σ-ferrite growth with the formation of saw-shape boundaries is observed. It is shown that tensile properties of imitated heat affected zone of 12Kh12VMBFP steel increase with heating temperature with the insignificant plasticity decrease. Impact strength on longitudinal samples decreases but remains higher than that determined by specifications [ru

  20. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    Science.gov (United States)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  1. Virtual Testing of Composite Structures Made of High Entropy Alloys and Steel

    Directory of Open Access Journals (Sweden)

    Victor Geantă

    2017-11-01

    Full Text Available High entropy alloys (HEA are metallic materials obtained from a mixture of at least five atomic-scale chemical elements. They are characterized by high mechanical strength, good thermal stability and hardenability. AlCrFeCoNi alloys have high compression strength and tensile strength values of 2004 MPa, respectively 1250 MPa and elongation of about 32.7%. These materials can be used to create HEA-steel type composite structures which resist to dynamic deformation during high speed impacts. The paper presents four different composite structures made from a combination of HEA and carbon steel plates, using different joining processes. The numerical simulation of the impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. For analyzing each constructive variant, three virtual shootings were designed, using a 7.62 × 39 mm cal. incendiary armor-piercing bullet and different impact velocities. The best ballistic behavior was provided by the composite structures obtained by welding and brazing that have good continuity and rigidity. The other composite structures, which do not have good surface adhesion, show high fragmentation risk, because the rear plate can fragment on the axis of shooting due to the combination between the shock waves and the reflected ones. The order of materials in the composite structure has a very important role in decreasing the impact energy.

  2. Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review

    Directory of Open Access Journals (Sweden)

    Mehmet Polat Saka

    2013-01-01

    Full Text Available The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.

  3. Vision-based stress estimation model for steel frame structures with rigid links

    Science.gov (United States)

    Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan

    2017-07-01

    This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.

  4. Investigation of R-Factor for steel moment frame combined with cold-formed steel structures under different load patterns using pushover analysis

    Directory of Open Access Journals (Sweden)

    Siavash Sadeghi

    2017-08-01

    Full Text Available The use of Lightweight Steel Frames (LSF has grown considerably in recent years all over the world due to its unique advantages such as being cost-effective and light-weight, easy and quick installment. Another application is to use them in order to increase the number of new floors on the existing buildings. But since the behavior of the combined structure is not clear, there is no possibility of increasing new floors with Lightweight Steel Frames. Therefore, through selecting and modeling three buildings of three, five and seven floors with steel moment frames in SAP2000 software and adding one or two new floors using Lightweight Steel Frames (LSF and conducting a non-linear static analysis with three different lateral load pattern, we dealt with the seismic behavior and determined the behavior coefficient of each of the combined structures. The results indicated that the use of cold-formed structures in order to add story do not have a significant impact on R-factor. In addition, R-factor depends on the type of the side loading pattern.

  5. Overview of 9Cr steels properties for structural application in sodium fast reactors

    International Nuclear Information System (INIS)

    Cabet, Celine; Courouau, Jean-Louis; Dalle, France; Desgranges, Clara; Forest, Laurent; Martinelli, Laure; Sauzay, Maxime

    2015-01-01

    A research and development programme has been launched by CEA, EDF and AREVA for the choice and qualification of material for sodium fast reactor (SFR) structural components. The requirements on steam generator (SG) are demanding, with operating temperatures ranging from 240 deg. C to 530 deg. C in water/steam and in sodium for an extended design life of several decades. The selection of the SG materials is based on many characteristics: fabrication, welding, thermal properties, mechanical strength at low and high temperature, environmental resistance. 9%Cr steels which are relevant candidate alloys for different designs of SGs have been extensively studied in the past decade. The objective of this paper is to review some advances made at CEA on determining properties of the X10CrMoVNb9-1 steel (hereafter named 'grade 91'): welding, modelling of cyclic softening, modelling of long-term creep, compatibility with liquid sodium, corrosion in steam. (authors)

  6. Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China

    International Nuclear Information System (INIS)

    Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui

    2008-01-01

    The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research

  7. Steel, specially for the fabrication of welded structure working under pressure in nuclear installations

    International Nuclear Information System (INIS)

    Dolbenko, E.T.; Astafiev, A.A.; Kark, G.S.

    1981-01-01

    The present invention is in the field of metallurgy. Steels have found an increasing number of applications in mechanical constructions, and notably in the construction of materials for the production of energy and for the fabrication of welded structures operating under pressure at temperatures as high as 450 0 C. A possible application is the pressurized vessels of nuclear facilities. The steels of interest contain carbon, silicon, manganese, nickel, molybdenum, vanadium, aluminium, nitrogen, phosphorus and iron, but are characterized by the fact that they also contain arsenic, tin and calcium. The sum of the weighted percentages of nickel and manganese and the weighted percentage of phosphorous are related as follows: (Ni + Mn) . P [fr

  8. Structure and strength of carbide-steel cermet and their changes during heat treatment

    International Nuclear Information System (INIS)

    Dariel, M.P.; Frage, N.R.; Kaputkina, L.M.; Kaputkin, D.M.; Sverdlova, N.R.

    2004-01-01

    Both homogeneous and 'graded' materials were produced by pressing and sintering of titanium carbide TiC x (0.7 x takes place during the joining. If the titanium carbide is carbon deficient that the carbon goes from the steel binder to TiC x , and this redistribution intensity with the x decreases. So-named graded cermets were produced on controlled distribution of TiC x with different x. An additional flow of carbon from C-rich to C-poor TiC x layers was obtained in these cermets. These changes both in the steel and TiC x compositions result in changes in such processes as austenitization, carbide dissolution and precipitation, and martensitic transformation. Both general strength of the material and the gradient of properties in graded cermets can be increased using kinetic factors of element redistribution and structure changes resulted from the heat treatment. (author)

  9. Acoustic Emission Assessment of Impending Fracture in a Cyclically Loading Structural Steel

    Directory of Open Access Journals (Sweden)

    Igor Rastegaev

    2016-11-01

    Full Text Available Using the advanced acoustic emission (AE technique, we address the problem of early identification of crack initiation and growth in ductile structural steels under cyclic loading. The notched 9MnSi5 steel specimens with weld joints were fatigue tested at room and lower temperatures with concurrent AE measurements. Detection of AE in ductile materials where fatigue crack initiation and propagation is mediated by local dislocation behavior ahead of the notch or crack tip is challenging because of an extremely low amplitude of the AE signal. With account of this issue, two new practically oriented criteria for recognition of different stages of fatigue are proposed on the basis of AE data: (1 a power spectrum-based criterion and (2 a pattern recognition-based criterion utilizing modern clustering algorithms. The applicability of both criteria is verified using obtained AE data. A good correspondence between AE outcomes and experimental observations of the fatigue behavior was obtained and is discussed.

  10. A study on the fracture strength of steel fiber reinforced concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong Il; Chai, Won Kyu; Lee, Myeong Gu

    1991-01-01

    Fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Reinforced Concrete) structures with initial cracks. Sixty three SFRC beams were used in the tests. And the fracture mode, and relations between loading and mid-span deflection of the beams were observed. On the base of test results, fracture behavior of SFRC beams resulted from steel fiber content and initial crack length to beam depth ratio were found out, and the stress intensity factors, the modulus of rupture and the fracture energy of SFRC beams may then be calculated. According to the results of regression analysis, prediction formulas for the modulus of rupture and the fracture energy of SFRC beams are also suggested. (Author)

  11. Experimental Modal Test of the Laboratory Model of Steel Truss Structure

    Directory of Open Access Journals (Sweden)

    Kortiš Ján

    2016-12-01

    Full Text Available The experimental modal analysis is often used to validate the accuracy of dynamic numerical models. It is also a good tool to obtain valuable information about current condition of the structures that could help to determine residual lifetime. The quality of modal testing results is highly dependent on the proper estimation of the natural frequencies from the frequency response function. This article presents the experimental modal test of the laboratory steel structure in which the natural frequencies and mode shapes are determined.

  12. The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels

    Science.gov (United States)

    Deng, Yu; Li, Zhe; Chen, Juan; Qi, Xin

    2018-04-01

    This study has been done by separately measuring Magnetic Barkhausen noise (MBN) under different structure characteristics, namely the carbon content, hardness, roughness, and elastic modulus in commercial steels. The result of the experiments shows a strong dependence of MBN parameters (peak height, Root mean square (RMS), and average value) on structure characteristics. These effects, according to this study, can be explained by two kinds of source mechanisms of the MBN, domain wall nucleation and wall propagation. The discovery obtained in this paper can provide basic knowledge to understand the existing surface condition problem of Magnetic Barkhausen noise as a non-destructive evaluation technique and bring MBN into wider application.

  13. A study on the fatigue strength characteristics of ship structural steel with gusset welds

    Directory of Open Access Journals (Sweden)

    Sung-Jo Park

    2012-06-01

    Full Text Available This study aims to assess fatigue property by the static overload and average load in the fillet welded joints which is on the ship structural steel having gusset welds. To this end, a small specimen was made, to which the same welding condition for the actual ship structure was applied, to perform fatigue tests. In this study, a method to simply assess changes in welding residual stress according to different static overload was suggested. By measuring actual strain at the weld toe, the weld stress concentration factor and property which is determined by recrystallization in the process of welding were estimated to investigate the relation between overload and fatigue strength.

  14. Effect of the wave shocking treatment on the structure and strengthening of austenitic steels

    International Nuclear Information System (INIS)

    Blinov, V.M.; Chernogorova, O.P.; Drozdova, E.I.; Afanas'ev, I.A.

    2006-01-01

    The structure and hardening of austenitic manganese steels after shock wave treatment are studied. It is shown that the treatment results in the structure where an elementary cell size decreases with a pressure increase. The strain hardening resulted from shock wave loading can be estimated using a Hall-Petch equation. It is established that at similar degree of residual strains the shock wave loading compared to cold rolling gives rise to higher strengthening which value grows as austenite stacking fault energy decreases [ru

  15. Structural Parameters and Strengthening Mechanisms in Cold-Drawn Pearlitic Steel Wires

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andy; Huang, Xiaoxu

    2012-01-01

    Pearlitic steel wires have a nanoscale structure and a strength which can reach 5 GPa. In order to investigate strengthening mechanisms, structural parameters including interlamellar spacing, dislocation density and cementite decomposition, have been analyzed by transmission electron microscopy...... and high resolution electron microscopy in wires cold drawn up to a strain of 3.7. Three strengthening mechanisms, namely boundary strengthening, dislocation strengthening and solid solution hardening have been analyzed and good agreement has been found between the measured flow stress and the value...

  16. Quantitative description of changes in the structure in austenitic steels after hot temperature deformation

    International Nuclear Information System (INIS)

    Kuc, D.; Rodak, K.; Niewielski, G.; Hetmanczyk, M.

    1998-01-01

    An investigation on the structural changes in austenitic hard deformable Cr-Mn and Cr-Ni steels during dynamic recrystallization has been presented in the paper. The influence of the factors (strain rate, deformation, temperature) on the geometric characteristic of grains has been taken into consideration. Investigation of the structure were performed using metallographic microscope and transmission electron microscope. The results of researched should widen the theoretical background in order to the model of phenomena, which accompany the dynamic recovery and dynamic recrystallization. (author)

  17. Formation of the self-assembled structures by the ultrasonic cavitation erosion-corrosion effect on carbon steel

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-11-01

    Full Text Available The cavitation erosion-corrosion effect on the metal surface always forms irregular oxide structures. In this study, we reported the formation of regular self-assembled structures of amorphous nanoparticles around the cavitation erosion pits on carbon steel upon the ultrasonic cavitation in methylene blue solution. Each self-assembled structure was composed of linearly aligned nanoparticles of about 100 nm. The formation of self-assembled structures might be due to the combined effect of corrosion, specific sonochemical reaction in methylene blue solution, and the magnetic domain structures on the carbon steel.

  18. Specification for carbon and low alloy steel containment structures for stationary nuclear power reactors. [Now obsolescent (by Amendment No. 1)

    Energy Technology Data Exchange (ETDEWEB)

    1967-01-01

    This British Standard covers the design, construction, inspection and testing of steel reactor containment structures made of carbon and low alloy steel for temperatures not exceeding 300 deg C. Such structures are not in contact with the reactor coolant during normal operation. Pressure-relieved structures are not excluded, provided they are of a form that contains the fission products or ensures their safe disposal. Attachments such as air-locks or piping that is or may become directly connected between the interior of the containment structure and a closure, and may therefore contain radioactive material released during accidents, is considered part of the containment structure.

  19. Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Jing, Hongyang; Zhao, Lei; Han, Yongdian; Lv, Xiaoqing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072 (China)

    2017-04-06

    Dislocation structures and their evolution of 304L stainless steel and weld metal made with ER308L stainless steel welding wire subjected to uniaxial symmetric strain-controlled loading and stress-controlled ratcheting loading were observed by transmission electron microscopy (TEM). The correlation between the cyclic response and the dislocation structure has been studied. The experiment results show that the cyclic behaviour of base metal and weld metal are different. The cyclic behaviour of the base metal consists of primary hardening, slight softening and secondary hardening, while the weld metal shows a short hardening within several cycles followed by the cyclic softening behaviour. The microscopic observations indicate that in base metal, the dislocation structures evolve from low density patterns to those with higher dislocation density during both strain cycling and ratcheting deformation. However, the dislocation structures of weld metal change oppositely form initial complicated structures to simple patterns and the dislocation density gradually decrease. The dislocation evolution presented during the strain cycling and ratcheting deformation is summarized, which can qualitatively explain the cyclic behaviour and the uniaxial ratcheting behaviour of two materials. Moreover, the dislocation evolution in the two types of tests is compared, which shows that the mean stress has an effect on the rate of dislocation evolution during the cyclic loading.

  20. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    .... Chemical compositions, heat treatments, and some properties and uses are presented for structural steels, tool steels, stainless and heat-resisting steels, precipitation-hardenable stainless steels...

  1. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  2. Alfinated coating structure on HS6-5-2 (SW7M high speed steel

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2010-10-01

    Full Text Available The paper presents the results of immersion alfinated coating structure in AlSi5 silumin on HS6-5-2 (SW7M high speed steel. Alfinating bath temperature was 750 ± 5 ° C, time of sample immersion was τ = 180s. Thickness of obtained coating under specified conditions was g = 150μm. Manufactured coating consists of three layers of different construction phase. The first layer from the substrate „g1`” constructed with a AlFe phase consist of alloy additives constituents of HS6-5-2 (SW7M steel: W, Mo, V, Cr and Si. On it crystallizes the second layer „g1``” of AlFeWMoCr intermetallic phases also containing Si and small amount of V. Last, the outer layer „g2” of the coating is composed with silumin including AlFeWMoCrVSi intermetallic phases. Within all layers of the coating occurs carbides. Penetration of carbides to individual coating layers is mainly due to steel surface partial melting and crystallizing layers „g1`” and „g1``” by alfinating liquid and shifting into her of carbides as well as partial carbides rejection by crystallization front of intermetallic phases occurs in coating.

  3. Transmission electron microscopy characterization of the interfacial structure of a galvanized dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, I., E-mail: ia31@msstate.edu [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Mechanical Engineering, Mississippi State University, MS 39762 (United States); Li, B. [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557 (United States); Martens, R.L.; Goodwin, J.R. [Central Analytical Facility, the University of Alabama, Tuscaloosa, AL 35487 (United States); Rhee, H.J. [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Mechanical Engineering, Mississippi State University, MS 39762 (United States); Goodwin, F. [International Zinc Association, Durham, NC 27713 (United States)

    2016-10-15

    Site-specific studies were carried out to characterize the interface of a galvanized dual-phase (DP) steel. Focused ion beam (FIB) was used to prepare specimens in the interface region (~ 100 nm thick) between the coating and the substrate. Transmission electron microscopy (TEM), scanning TEM (STEM), and high resolution TEM (HRTEM) were performed to resolve the phases and the structures at the interface between the zinc (Zn) coating and the steel substrate. The STEM and TEM results showed that a continuous manganese oxide (MnO) film with a thickness of ~ 20 nm was present on the surface of the substrate while no silicon (Si) oxides were resolved. Internal oxide particles were observed as well in the sub-surface region. Despite the presence of the continuous oxide film, a well-developed inhibition layer was observed right on top of the oxide film. The inhibition layer has a thickness of ~ 100 nm. Possible mechanisms for the growth of the inhibition layer were discussed. - Highlights: •Site-specific examinations were performed on the Zn/steel interface. •Continuous external MnO oxides (20 nm) were observed at the interface. •No Si oxides were observed at the interface. •Internal oxide particles were distributed in the subsurface. •A continuous inhibition layer grew on top of the external oxides.

  4. Deformation and fracture of Cu alloy-stainless steel layered structures under dynamic loading

    International Nuclear Information System (INIS)

    McCoy, J.H.; Kumar, A.S.

    1998-01-01

    Fracture resistance of the current ITER first wall configuration, a copper alloy-stainless steel layered structure, is a major design issue. The question of dynamic crack propagation into and through the first wall structure is examined using dynamic finite element modeling (FEM). Several layered configurations that incorporate both strain and frictional energy dissipation during the fracture process are considered. With fixed overall specimen geometry, the energy required to extend a precrack is examined as a function of material properties, and the layer structure. It is found that the crack extension energies vary dramatically with the fracture strain of materials, and to a much lesser extent with the number of layers. In addition, it is found that crack propagation through the lower ductility copper alloy layer may be deflected at the stainless steel-copper interface and not result in total fracture of the structure. Although the total energy required is affected only to a small degree by the interface properties, the time to extend the precrack is strongly affected. By making proper selections of the interface and the layered material, crack propagation rates and the possibility of full fracture can be substantially reduced. (orig.)

  5. Hardness and structure changes at surface in electrical discharge machined steel C 3840

    International Nuclear Information System (INIS)

    Karastojkovic, Z.; Janjusevic, Z.

    2003-01-01

    The electrical discharge machining (EDM) of both hard and soft materials became an important technique in industrial applications. This technique has an advantage in producing of structural/tool parts of complex geometry. The EDM is based on electrical phenomena, when the treated surface undergoes to erosion. The first step in EDM, the melting of thin surface layer, frequently is neglected. In this paper the changes of hardness and structure at surface layer, after EDM is applied on steel C 3840, will be discussed. The steel C- 3840 was quenched and tempered to hardness of 63 HRC, at surface, and than machined by electrical discharging. The changed, white, layer is just a product of melting and decarburization processes. The white layer is registered at surface by using a metallographic investigation. Hardness profile is measured from surface to the interior of material. The achievement of local high temperatures during EDM is resulting on melt and erosion of material. Besides of these effects, during EDM were happened some minor but not a neglectible effects, primary on structure changes on treated surface. It would be expected that melting, even an evaporation of melted metal, and further the phase transformation have an important influence on the starting structure. (Original)

  6. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    International Nuclear Information System (INIS)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk; Jeong, Jong Ryul; Maeng, Cheol Soo; Lee, Myoung Goo

    2016-01-01

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10"-"5 dpa.

  7. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk [KAIST, Daejeon (Korea, Republic of); Jeong, Jong Ryul [Chungnam University, Daejeon (Korea, Republic of); Maeng, Cheol Soo; Lee, Myoung Goo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10{sup -5} dpa.

  8. Computer modelling system of the chemical composition and treatment parameters influence on mechanical properties of structural steels

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2009-01-01

    Purpose: This paper presents Neuro-Lab. It is an authorship programme, which use algorithms of artificial intelligence for structural steels mechanical properties estimation.Design/methodology/approach: On the basis of chemical composition, parameters of heat and mechanical treatment and elements of geometrical shape and size this programme has the ability to calculate the mechanical properties of examined steel and introduce them as raw numeric data or in graphic as influence charts. Possibl...

  9. Investigation of phase transformation for ferrite–austenite structure in stainless steel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Merakeb, Noureddine [Laboratory of Physical Metallurgy and Property of Materials (LM2PM), Metallurgy and Materials Engineering Department, Badji Mokhtar University, P.O. Box 12, Annaba 23000 (Algeria); Messai, Amel [Laboratoire d' Ingénierie et Sciences des Matériaux Avancés (ISMA), Institut des Sciences et Technologie, Abbès Laghrour University, Khenchela 40000 (Algeria); Ayesh, Ahmad I., E-mail: ayesh@qu.edu.qa [Department of Mathematics, Statistics and Physics, Qatar University, Doha (Qatar)

    2016-05-01

    In this work we report on phase transformation of 304 stainless steel thin films due to heat treatment. Ex-situ annealing was applied for evaporated 304 stainless steel thin films inside an ultra-high vacuum chamber with a pressure of 3 × 10{sup −7} Pa at temperatures of 500 °C and 600 °C. The structure of thin films was studied by X-ray diffraction (XRD) and conversion electron Mössbauer spectroscopy (CEMS) techniques. The results revealed a transformation from α-phase that exhibits a body-centered cubic structure (BCC) to γ-phase that exhibits a face-centered cubic (FCC) due to annealing. In addition, the percentage of γ-phase structure increased with the increase of annealing temperature. Annealing thin films increased the crystal size of both phases (α and γ), however, the increase was nonlinear. The results also showed that phase transformation was produced by recrystallization of α and γ crystals with a temporal evolution at each annealing temperature. The texture degree of thin films was investigated by XRD rocking curve method, while residual stress was evaluated using curvature method. - Highlights: • Stainless steel thin films were fabricated by thermal evaporation on quartz. • Alpha to gamma phase transformation of thin films was investigated. • Annealing of thin films reduces disruption in crystal lattice. • The stress of as-grown thin films was independent on the thin film thickness. • The stress of the thin films was reduced due to annealing.

  10. Structure and delayed failure behaviour of 0.25C-Ni-Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Kang, C.H.; Maeng, S.C.

    1980-01-01

    Delayed failure behaviour of the different transformation structures of 0.25C-2.5Ni-2.5Cr-0.5Mo-0.1V low alloy steel has been studied. The studied microstructures are martensite, lower bainite, and mixed structure of 50% martensite and 50% lower bainite. All these structures have been tempered at 450 deg C for 40 min to have the same tensile strength level of 143 kg/mm 2 . Delayed failure testing has been carried out with cantilever bend tester, in distilled water at 25 deg C. By comparing K 1 sub(scc) values, lower bainitic structure has shown the highest value, although it is only slightly higher than that of the martensitic structure. Mixed structure has the lowest resistance to delayed failure. The fracture modes of both martensitic and mixed structures have been observed as intergranular. In the martensitic structure, however, it is noticeable that there is a larger amount of ductile tearing between intergranular facets. The fracture mode of lower bainitic structure is the mixed topography of microplastic tearing and microvoid coalescence. The above experimental results are discussed in terms of Oriani's decohesion theory of hydrogen embrittlement. The lowest resistance of the mixed structure to delayed failure may be due to the enhanced decohesion by hydrogen at the phase boundaries of martensite and lower bainite. (author)

  11. A study on the fatigue behavior of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Chai, Won-Kyu; Son, Young-Hyun; Park, Cheol-Woo

    1992-01-01

    Fatigue tests are performed in order to investigate the fatigue behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  12. Role of grain refinement in hardening of structural steels at preliminary thermomechanical treatment

    International Nuclear Information System (INIS)

    Bukhvalov, A.B.; Grigor'eva, E.V.; Davydova, L.S.; Degtyarev, M.V.; Levit, V.I.; Smirnova, N.A.; Smirnov, L.V.

    1981-01-01

    The hardening mechanism during preliminary thermomechanical treatment with deformation by cold rolling or hydroextrusion is studied on structural 37KhN3M1 and 38KhN3MFA steels. Specimens have been tested on static tension, impact strength and fracture toughness. It is shown that hydroextrusion application instead of rolling does not change the hardening effect of preliminary thermomechanical treatment (PTMT). It is established that the increase of preliminary deformation degree and the use of accelerated short term hardening heating provides a bett er grain refinement and the increase of PTMT hardening effect [ru

  13. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.; Hadryś D.; Wszołek Ł.

    2017-01-01

    The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD) was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite) and low amount of MAC (self-tempered martensite, retained austenite, carbide) phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Mic...

  14. Evaluation of seismic behavior of a braced tubular steel structure by pseudodynamic testing

    International Nuclear Information System (INIS)

    Shiny, P.B.; Javadian-Gilani, A.S.; Mahin, S.A.

    1984-01-01

    The inelastic seismic behavior of an X-braced, tubular steel frame is studied experimentally by means of pseudodynamic testing. The pseudodynamic method, which utilizes a numerical algorithm in the on-line computer control of a test specimen, can realistically simulate the seismic response of a structural model. This paper presents a brief outline of the experimental procedure and the results of the tubular frame tests, including the global responses, the inelastic energy-dissipation capabilities, and the failure mechanism of the frame at various excitation levels. Correlation of these results with previous experimental studies illustrates the feasibility and accuracy of the new test method

  15. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.I.

    1995-01-01

    Fracture and fatigue tests were performed in order to investigate the fracture and fatigue behavior of steel-fibre-reinforced concrete (SFRC) structures. 33 SFRC beams were used in the fracture and fatigue tests. The relationship between loading, strain and midspan deflection of the beams was observed under the three-point loading system.From the test results, the effects of the fiber content, fiber aspect ratio and notch-to-depth ratio on the concrete fracture and fatigue behavior were studied, and the fatigue strengths of SFRC beams were calculated. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams were also suggested. (orig.)

  16. A study on the fracture energy of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Sim Jongsung; Chai, Won-Kyu; Lee, Myeong-Gu

    1991-01-01

    Fracture test is performed in order to investigate the fracture behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty six SFRC beams are used in this test. The relationships between loading, strain, and mid-span deflection of the beams are observed under the three point loading system. From the test results, the effects of the fiber content, the fiber aspect ratio and the initial crack ratio on the concrete fracture behavior were studied, and the flexural strength and the fracture energy of SFRC beams were also calculated. According to the regression technique, some empirical formulae for predicting the flexural strength and the fracture energy of SFRC beams are also suggested. (author)

  17. Effect of quenching techniques on the mechanical properties of low carbon structural steel

    Directory of Open Access Journals (Sweden)

    K. Miernik

    2010-07-01

    Full Text Available The paper presents the results of the impact of incomplete quenching technique on the mechanical properties of low carbon structural steel.Significant influence of the heating method to the α + γ field was observed on the strength and plasticity after hardening process. The best combination of mechanical properties was obtained for the 3th technique consisting of pre-heating the material to the austenite field, next cooling to the appropriate temperature in the α + γ and hardening from that dual phase region. The high level of toughness with relatively high strength were observed, compared to the properties obtained for the two other ways to quench annealing (incomplete hardening.

  18. Structural Component Fabrication and Characterization of Advanced Radiation Resistant ODS Steel for Next Generation Nuclear Systems

    International Nuclear Information System (INIS)

    Noh, Sang Hoon; Kim, Young Chun; Jin, Hyun Ju; Choi, Byoung Kwon; Kang, Suk Hoon; Kim, Tae Kyu

    2016-01-01

    In a sodium-cooled fast reactor (SFR), the coolant outlet temperature and peak temperature of the fuel cladding tube will be about 545 .deg. C and 700 .deg. C with 250 dpa of a very high neutron dose rate. To realize this system, it is necessary to develop an advanced structural material having high creep and irradiation resistance at high temperatures. Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling severely occurred to 120dpa at high temperatures and this eventually leads to a decrease of the mechanical properties and dimensional stability. Advanced radiation resistant ODS steel (ARROS) has been newly developed for the in-core structural components in SFR, which has very attractive microstructures to achieve both superior creep and radiation resistances at high temperatures [4]. Nevertheless, the use of ARROS as a structural material essentially requires the fabrication technology development for component parts such as sheet, plate and tube. In this study, plates and tubes were tentatively fabricated with a newly developed alloy, ARROS. Microstructures as well as mechanical properties were also investigated to determine the optimized condition of the fabrication processes.

  19. A comparison of models for measurable deterioration: An application to coatings on steel structures

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Robin P. [Econometric Institute and Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam (Netherlands)]. E-mail: rnicolai@few.eur.nl; Dekker, Rommert [Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam (Netherlands); Noortwijk, Jan M. van [HKV Consultants, P.O. Box 2120, NL-8203 AC Lelystad (Netherlands); Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, NL-2600 GA Delft (Netherlands)

    2007-12-15

    Steel structures like bridges, tanks and pylons are exposed to outdoor weathering conditions. In order to prevent them from corrosion they are protected by organic coating systems. This paper focuses on modelling the deterioration of the organic coating layer that protects steel structures from corrosion. Only if there is sufficient knowledge of the condition of the coating on these structures, maintenance actions can be done in the most efficient way. Therefore the course of the deterioration of the coating system and its lifetime, which is also of importance for doing maintenance, have to be assessed accurately. In this paper, three different stochastic processes, viz. Brownian motion with non-linear drift, the non-stationary gamma process and a two-stage hit-and-grow physical process, are fitted to two real data sets. In this way we are the first who compare the three stochastic processes empirically on criteria such as goodness-of-fit, computational convenience and ease of implementation. The first data set is based on expert judgement; the second consists of inspection results. In the first case the model parameters are obtained by a least-squares approach, in the second case by the method of maximum likelihood. A meta-analysis is performed on the two-stage hit-and-grow model by means of fitting Brownian motion and gamma process to the outcomes of this model.

  20. A comparison of models for measurable deterioration: An application to coatings on steel structures

    International Nuclear Information System (INIS)

    Nicolai, Robin P.; Dekker, Rommert; Noortwijk, Jan M. van

    2007-01-01

    Steel structures like bridges, tanks and pylons are exposed to outdoor weathering conditions. In order to prevent them from corrosion they are protected by organic coating systems. This paper focuses on modelling the deterioration of the organic coating layer that protects steel structures from corrosion. Only if there is sufficient knowledge of the condition of the coating on these structures, maintenance actions can be done in the most efficient way. Therefore the course of the deterioration of the coating system and its lifetime, which is also of importance for doing maintenance, have to be assessed accurately. In this paper, three different stochastic processes, viz. Brownian motion with non-linear drift, the non-stationary gamma process and a two-stage hit-and-grow physical process, are fitted to two real data sets. In this way we are the first who compare the three stochastic processes empirically on criteria such as goodness-of-fit, computational convenience and ease of implementation. The first data set is based on expert judgement; the second consists of inspection results. In the first case the model parameters are obtained by a least-squares approach, in the second case by the method of maximum likelihood. A meta-analysis is performed on the two-stage hit-and-grow model by means of fitting Brownian motion and gamma process to the outcomes of this model

  1. A new dual bracing system for improving the seismic behavior of steel structures

    International Nuclear Information System (INIS)

    Kari, A; Ghassemieh, M; Abolmaali, S A

    2011-01-01

    Shape memory alloy braces and buckling restrained braces have been shown to exhibit favorable energy dissipating characteristics in steel structures. However, buckling restrained braces are unable to recover their original shape after unloading and consequently experience large residual inter-story drifts after the earthquake, which leads to large permanent deformations in the structure. On the other hand, shape memory braces possess the recentering feature which enables them to recover their original shape. Nevertheless, compared to buckling restrained braced frames, the shape memory bracing frame usually experiences larger maximum inter-story drifts during the earthquake. This paper presents the results of a numerical study conducted to investigate the benefit of using the combination of buckling restrained braces and shape memory braces (dual bracing) in one structure, for the new design as well as retrofitting purposes. The superelastic model of shape memory alloy and plasticity model of steel are incorporated into the nonlinear finite element program particularly developed for this research. Results revealed that, with the proper configuration, both aims, namely minimizing both residual and maximum inter-story drifts, can be attained

  2. Fatigue assessment for selected connections of structural steel bridge components using the finite elements method

    Science.gov (United States)

    Śledziewski, Krzysztof

    2018-01-01

    Material fatigue it is one of the most frequent causes of steel bridge failures, particularly the bridges already existing. Thus, the procedure of fatigue life assessment is one of the most relevant procedures in a comprehensive assessment of load-carrying capacity and service life of the structure. A reliable assessment of the fatigue life is predominantly decisive for estimation of the remaining service life. Hitherto, calculation methods of welded joints took into account only stresses occurring in cross sections of whole elements and did not take into account stress concentration occurring in the vicinity of the weld, caused by geometrical aspects of the detail. At present, use of the Finite Element Analysis, makes possible looking for more accurate approach to the fatigue design of steel structures. The method of geometrical stresses is just such approach which is based on definition of stresses which take into account geometry of the detail. The study presents fatigue assessment of a representative type of welded joint in welded bridge structures. The testing covered longitudinal attachments. The main analyses were carried out on the basis of FEM and the method of local stresses, so-called "hot-spot" stresses. The obtained values of stresses were compared with the values obtained in accordance with the method of nominal stress.

  3. Development of new CAD system for steel structures of nuclear power plants

    International Nuclear Information System (INIS)

    Morii, Yasuhiro; Kudou, Takashi; Kouno, Kenichi; Yamada, Koutarou

    2000-01-01

    IHI has developed a new Three-Dimensional Computer-Aided Design (3D-CAD) system to improve the design efficiency and quality of the steel structure of nuclear power plants. This system covers every design phase from the initial arrangement of structure to the production design sharing the same database. The system incorporates the design rules and professional expertise of designers, and enable easy and efficient design. The system can easily generate the three-dimensional data for structures, model data for stress analyses and composite arrangement data. The system has already been applied to several plants under construction and has achieved excellent results. The outline of the new CAD system is introduced. (author)

  4. Optimally analyzing and implementing of bolt fittings in steel structure based on ANSYS

    Science.gov (United States)

    Han, Na; Song, Shuangyang; Cui, Yan; Wu, Yongchun

    2018-03-01

    ANSYS simulation software for its excellent performance become outstanding one in Computer-aided Engineering (CAE) family, it is committed to the innovation of engineering simulation to help users to shorten the design process. First, a typical procedure to implement CAE was design. The framework of structural numerical analysis on ANSYS Technology was proposed. Then, A optimally analyzing and implementing of bolt fittings in beam-column join of steel structure was implemented by ANSYS, which was display the cloud chart of XY-shear stress, the cloud chart of YZ-shear stress and the cloud chart of Y component of stress. Finally, ANSYS software simulating results was compared with the measured results by the experiment. The result of ANSYS simulating and analyzing is reliable, efficient and optical. In above process, a structural performance's numerical simulating and analyzing model were explored for engineering enterprises' practice.

  5. Structural response of a nuclear power plant steel containment under H2 detonation

    International Nuclear Information System (INIS)

    Maresca, G.; Milella, P.P.; Pino, G.

    1993-01-01

    To get a better understanding of the containment wall behaviour under a detonation a simple but complete model is analysed in order to study the fluid-structure interaction during the explosion. The structure is represented by a single degree of freedom (SDOF) elastic-plastic system. This system is coupled to a monodimensional model of the containment atmosphere excited by hydrogen bursting. The atmosphere modeling allows to represent the shock propagation and the reflected wave effects. In the model a cylindrical geometry is used as reference. The obtained results are compared with data adopted in Italy to assess the structural integrity of the Alto Lazio NPP steel containment in the case of a severe accident. The limits of the model as well as the possible extensions are discussed in the paper together with a possible application in an experimental program directed to the assessment of failure criteria under severe accident conditions. (orig./HP)

  6. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    Magnier-Monin, L.

    2007-12-01

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  7. Enamel coated steel reinforcement for improved durability and life-cycle performance of concrete structures: microstructure, corrosion, and deterioration

    Science.gov (United States)

    Tang, Fujian

    This study is aimed (a) to statistically characterize the corrosion-induced deterioration process of reinforced concrete structures (concrete cracking, steel mass loss, and rebar-concrete bond degradation), and (b) to develop and apply three types of enamel-coated steel bars for improved corrosion resistance of the structures. Commercially available pure enamel, mixed enamel with 50% calcium silicate, and double enamel with an inner layer of pure enamel and an outer layer of mixed enamel were considered as various steel coatings. Electrochemical tests were respectively conducted on steel plates, smooth bars embedded in concrete, and deformed bars with/without concrete cover in 3.5 wt.% NaCl or saturated Ca(OH)2 solution. The effects of enamel microstructure, coating thickness variation, potential damage, mortar protection, and corrosion environment on corrosion resistance of the steel members were investigated. Extensive test results indicated that corrosion-induced concrete cracking can be divided into four stages that gradually become less correlated with corrosion process over time. The coefficient of variation of crack width increases with the increasing level of corrosion. Corrosion changed the cross section area instead of mechanical properties of steel bars. The bond-slip behavior between the corroded bars and concrete depends on the corrosion level and distribution of corrosion pits. Although it can improve the chemical bond with concrete and steel, the mixed enamel coating is the least corrosion resistant. The double enamel coating provides the most consistent corrosion performance and is thus recommended to coat reinforcing steel bars for concrete structures applied in corrosive environments. Corrosion pits in enamel-coated bars are limited around damage locations.

  8. INFLUENCE OF STRUCTURAL PARAMETERS OF LOW-CARBON STEEL ON ELECTRIC ARC BURNING

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2017-10-01

    Full Text Available Purpose. The article is aimed to evaluate the influence of structural parameters of low-carbon steel on arcing process. Methodology. The values of the micro- and substructure characteristics of the electrode wire metal were changed by varying the parameters of heat treatment and cold deformation by drawing. The degree of plastic deformation was obtained by drawing blanks from different initial diameter to final dimension of 1 mm. The thermal treatment was carried out in electric chamber furnace of the SNOL-1,6.2,5.1/11-IZ type. The temperature was measured by chromel-alumel thermocouple and the electromotive force was determined using the DC potentiometer. In order to obtain the substructure of different dispersion degree the steel (after quenching from temperatures and tempering at 650°C for 1 hour was subjected to cold drawing to reduction 17 – 80%. To form structure with different ferrite grain size the steel after drawing was annealed at 680°C for 1 hour. The microstructure was examined under a light and electron transmission microscope UEMV-100K at the accelerating voltage 100 kV. The grain and subgrain sizes were evaluated using the methodologies of quantitative metallography. A welding converter of the PSG-500 type was used to study the arc welding process of direct and reverse polarities. Findings. The experimentally detected value of the welding current, which depends on the degree of deformation during wire drawing, under conditions of stable arc burning of direct polarity is about an order of magnitude lower than the calculated value. Similar difference was found for the arc of reverse polarity: the experimental value of the welding current is 5...6 times less than the calculated value. Dependence analysis shows that, regardless of the polarity of the welding arc, a good enough agreement between the calculated and experimental values of the welding current is limited to deformations of 60%. For deformation degrees of more than 60

  9. Influence of the Soil-Structure Interaction on the Design of Steel-Braced Building Foundation

    International Nuclear Information System (INIS)

    Azarbakht, Alireza; Ashtiany, Mohsen Ghafory

    2008-01-01

    The modeling and analysis of the superstructure and the foundation for the seismic lateral loads are traditionally done separately. This assumption is an important issue in the design/rehabilitate procedures especially for the short period structures, i.e. steel braced or shear wall systems, which may result to a conservative design. By using more advance procedures, i.e. nonlinear static method, and the incorporation of the soil-structure interaction (SSI), the seismic demand in the lateral resisting system decreases and the design will become more economic. This paper includes an investigation about the influence of the SSI effect on the design of the steel-braced building foundation. The presented example is a three-bay three-storey steel braced frame. Three design methods based on the FEMA 356 guideline and the UBC 97 code are taken in to consideration. The three methods are: (1) linear static analysis based on the UBC 97 code assuming the fixed based condition; (2) linear static analysis based on the FEMA 356 guideline assuming the fixed based condition; and (3) nonlinear static analysis assuming both fixed and flexible based assumptions. The results show that the influence of the SSI on the input demand of the short period building foundations is significant and the foundation design based on the linear static method with the fixed base assumption is so conservative. A simple method is proposed to take the SSI effect in to consideration in the linear static procedure with the fixed base assumption, which is a common method for the engineers. The advantage of this proposed method is the simplicity and the applicability for the engineering purposes

  10. Assessment of the high-temperature crack behavior for a 316L stainless steel structure with defects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon; Koo, Gyeong Hoi; Lee, Jae Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-02-15

    An assessment of creep-fatigue crack initiation and growth for a 316L stainless steel structure has been carried out according to the current (2007 edition) and previous (2002 edition) versions of the French RCC-MR A16 procedure. Some significant changes have been made in terms of the formulae and material properties, which may cause big differences in the assessment. In this study, the changes in the A16 guide have been quantified for a 316L austenitic stainless steel structure, and the assessment results were compared with those of the observed images from a structural test for a welded component

  11. Modal Identification of A Tested Steel Frame using Linear ARX Model Structure

    Directory of Open Access Journals (Sweden)

    Yavuz Kaya

    2009-07-01

    Full Text Available This study contains the identification of modal dynamic properties of a 3-story large-scale steel test frame structure through shaking table measurements. Shaking table test is carried out to estimate the modal properties of the test frame such as natural frequencies, damping ratios and mode shapes. Among many different model structures, ARX (Auto Recursive Exogenous model structure is used for modal identification of the frame structure system. The unknown parameters in the obtained ARX model structure are estimated by Least-Square method by minimizing the AIC criteria with the help of a program coded in advanced computing software MATLAB®. The adopted model structure is then tested out in time domain to verify the validity of the model with the selected model parameters. Then the modal characteristics of test frame and the story stiffness are estimated using the white noise shakings. An attempt is done to determine the change of modal characteristics and the story stiffness of test frame according to the velocity, which the test frame structure experienced during the shaking schedule and also during the input shaking of El Centro 1940 NS. Results shows that there is an increase in damping ratio and a decrease in both story stiffness and natural frequency for all modes when the damage forms at cementitious device and the test frame structure itself during the shaking schedule.

  12. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    Science.gov (United States)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  13. Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C-Mn steels

    International Nuclear Information System (INIS)

    Hossein Nedjad, S.; Zahedi Moghaddam, Y.; Mamdouh Vazirabadi, A.; Shirazi, H.; Nili Ahmadabadi, M.

    2011-01-01

    Research highlights: → Bainite showed weak property improvement after rolling and annealing. → Additions of titanium and titanium oxide stimulated acicular ferrite. → Acicular ferrite obtained by nanoparticles exhibited very high strength. → Rolling and annealing of acicular ferrite gave substantial property improvement. - Abstract: The propensity of bainite and acicular ferrite structures of experimental C-Mn steels for enhanced grain refinement by combining phase transformation and plastic deformation has been investigated. Formation of acicular ferrite structures were stimulated with a small amount of titanium and titanium oxide nanoparticles added into the molten steels of high Mn concentrations. Isothermal transformations into the bainite and acicular ferrite structures were performed for 1.8 ks at 823 K after preliminary austenitization for 1.8 ks at 1523 K. Cold rolling for 50% thickness reduction was conducted on the isothermally transformed structures. Subsequent annealing of the deformed structures was conducted for 3.6 ks at 773, 873 and 973 K. Optical microscopy, scanning electron microscopy and tensile test were used for characterization of the studied steels. Cold rolling and annealing of the transformed structures at 873 K resulted in strengthening at the expense of ductility where an initial stage of recrystallization is realized. Acicular ferrite obtained by the addition of titanium into the molten steel exhibited the remarkable improvement of tensile properties. Discontinuous recrystallization of the deformed structures at 973 K leads to the formation of fine grains wherein acicular structures represented more enhanced grain refinement than bainite.

  14. CONSTRUCTIVE ASPECTS INFLUENCE ON STIFFNESS OF DIAPHRAGM WALLS IN FRAME CONSTRUCTIONS WITH (LIGHT STEEL THIN –WALLED STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. V. Savytskyi

    2010-10-01

    Full Text Available The dependences of influence of structural features of diaphragms of lightweight steel framing braced wall structures on their stiffness are determined. On the basis of dependences the procedure for estimation of stiffness of a diaphragm of any configuration that allows making decisions for maintenance of building stiffness is developed.

  15. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    Science.gov (United States)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  16. Estimation of Structure-Borne Noise Reduction Effect of Steel Railway Bridge Equipped with Floating Ladder Track and Floating Reinforced-Concrete Deck

    Science.gov (United States)

    Watanabe, Tsutomu; Sogabe, Masamichi; Asanuma, Kiyoshi; Wakui, Hajime

    A number of steel railway bridges have been constructed in Japan. Thin steel members used for the bridges easily tend to vibrate and generate structure-borne noise. Accordingly, the number of constructions of steel railway bridges tends to decrease in the urban areas from a viewpoint of environmental preservation. Then, as a countermeasure against structure-borne noise generated from steel railway bridges, we have developed a new type of the steel railway bridge equipped with a floating-ladder track and a floating reinforced-concrete (RC) deck. As a result of train-running experiment, it became apparent that the new steel railway bridge installed by double floating system has reduced a vibration velocity level by 10.5 dB(A) at main girder web as compared with a steel railway bridge installed by directly fastened track. This reduction effect was achieved by the ladder track and RC deck supported by resilient materials.

  17. Numerical analysis of nonlinear behavior of steel-concrete composite structures

    Directory of Open Access Journals (Sweden)

    Í.J.M. LEMES

    Full Text Available Abstract This paper presents the development of an effective numerical formulation for the analysis of steel-concrete composite structures considering geometric and materials nonlinear effects. Thus, a methodology based on Refined Plastic Hinge Method (RPHM was developed and the stiffness parameters were obtained by homogenization of cross-section. The evaluation of structural elements strength is done through the Strain Compatibility Method (SCM. The Newton-Raphson Method with path-following strategies is adopted to solve nonlinear global and local (in cross-section level equations. The results are compared with experimental and numerical database presents in literature and a good accuracy is observed in composite cross sections, composite columns, and composite portal frames.

  18. Creep deformation and rupture behavior of type 304/308 stainless steel structural weldments

    International Nuclear Information System (INIS)

    McAfee, W.J.; Richardson, M.; Sartory, W.K.

    1977-01-01

    The creep deformation and rupture of type 304/308 stainless steel structural weldments at 593 0 C (1100 0 F) was experimentally investigated to study the comparative behavior of the base metal and weld metal constituents. The tests were conducted in support of ORNL's program to develop high-temperature structural design methods applicable to liquid-metal fast breeder reactor (LMFBR) system components that operate in the creep range. The specimens used were thin-walled, right circular cylinders capped with either flat or hemispherical heads and tested under internal gas pressure. Circumferential welds were located in different regions of the cylinder or head and, with one exception, were geometrically duplicated by all base metal regions in companion specimens. Results are presented on the comparative deformation and rupture behavior of selected points in the base metal and weldment regions of the different specimens and on the overall surface strains for selected specimens

  19. Structure analysis of cation selective Cr-goethite as protective rust of weathering steel

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    We have performed extended X-ray absorption fine structure (EXAFS) analysis for artificial Cr-goethite to elucidate the local structure around Cr in Cr-goethite. The spectra were obtained using synchrotron radiation X-rays at the Photon Factory in Tsukuba. The first shell contributions were isolated by Fourier filtering EXAFS data, and the inverse Fourier transformed single-shell data were analyzed using a curve fitting method. The results show that Cr is coordinated with (7±1)O 2- ions. The protective characteristics of the Cr-goethite protective rust layer on weathering steel can be interpreted in terms of the O 2- coordination around Cr 3+ resulting in the creation of negative fixed charge in the Cr-goethite particles. (author)

  20. THE STUDY OF STRUCTURE AND HARDNESS OF STEEL-MOLIBDENUMAL COVERING

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2015-10-01

    Full Text Available Purpose. The new methods of surface hardening and creation of special materials are appealed for problem solving of the increasing of exploitation characteristic of materials. Among them a special place is gas-thermal coating. They are used in the different branches of machine-building for protection of the surface of details and machine assemblies from abrasion wearout. In addition, these parts and components during operation can be restored by repeatedly re-coating, that significantly reduces the cost of repair of equipment, reduces the consumption of materials to manufacture new details. Purpose of the work is to establish the influence of the gas-thermal spraying on the hardness of surface coating and to determine the connection between microhardness and structural state. The results. The value of measurements of the microhardness of molybdenum and steel in the surface layer are consistent with character of structural components. The major characteristic of the deposited layer, determining the success work of the coating is its relationship with the substrate surface. Rapid crystallization under the pressure help to create of fine-grained structure. Scientific novelty. The mechanism of formation of the coating by sequentially packaging of greatly deformed particles and the formation of the layered structure are shown. High hardness of the particles of molybdenum of sprayed layer is stipulated by several factors: the ultrafine grain, hardening particles and change of their chemical composition, being created the conditions for senescence hardening. The hardness of steel parts is determined by micro dispersive carbides and hardening of austenite.

  1. Influence of deformation on structural-phase state of weld material in St3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander, E-mail: galvas.kem@gmail.ru; Ababkov, Nicolay, E-mail: n.ababkov@rambler.ru; Ozhiganov, Yevgeniy, E-mail: zhigan84@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); LLC “Kuzbass Center of Welding and Control”, 33/2, Lenin Str., 650055, Kemerovo (Russian Federation); Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Zboykova, Nadezhda, E-mail: tezaurusn@gmail.com; Koneva, Nina, E-mail: koneva@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample.

  2. LOADS INTERACTION DOMAINS METHODOLOGY FOR THE DESIGN OF STEEL GREENHOUSE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2007-03-01

    Full Text Available Aim of this research is to develop a design methodology which correlates main structural design parameters, whose production is characterised by high levels of standardization, such as the height of gutter or the distance between frames, with actions on the greenhouse. The methodology, based on the use of charts and abacus, permits a clear and a direct interpretation of the structural response to design load combinations and allows the design of structural improvements with the aim of the optimization of the ratio benefits (structural strength/costs. The study of structural interaction domains allowed a clear and a direct interpretation of the structural response to design load combinations. The diagrams highlight not only if the structure fulfils the standard requirements but also the safety levels with respect to design load combinations and allow the structural designer how to operate in order to optimize the structural response with standard requirements achieving the best ratio benefits (structural safety/ costs. The methodology was developed basing on criteria assigned by EN13031 on two different kinds of greenhouse structures: an arched greenhouse with a film plastic covering and a duo pitched roof greenhouse cover with rigid plastic membranes. Structural interaction domains for arched greenhouse showed a better capability of the structure to resist to vertical loads then to horizontal one. Moreover, the climatic load distribution on the structure assigned by EN13031 is such that the combination of climatic actions is less dangerous for the structure then their individual application. Whilst, duo pitched roof steel greenhouse interaction domains, showed a better capability of the structure to resist to vertical loads then to horizontal one and that, in any case, the serviceability limit states analysis is more strict then the ULS one. The shape of structural domains highlighted that the combination of actions is more dangerous for the

  3. Effect of Thermal Fields on the Structure of Corrosion-Resistant Steels Under Different Modes of Laser Treatment

    Science.gov (United States)

    Tarasova, T. V.; Gusarov, A. V.; Protasov, K. E.; Filatova, A. A.

    2017-11-01

    The influence of temperature fields on the structure and properties of corrosion-resistant chromium steels under different modes of laser treatment is investigated. A model of heat transfer under laser impact on target is used to plot thermal fields and cycles and cooling rates. It is shown that the model used for computing thermal fields gives tentative geometric sizes of the fusion zones under laser treatment and selective laser fusion. The cooling rate is shown to have decisive influence on the structure of corrosion-resistant steels after laser treatment with surface fusion in devices for pulsed, continuous, and selective laser melting.

  4. A study of outliers in statistical distributions of mechanical properties of structural steels

    International Nuclear Information System (INIS)

    Oefverbeck, P.; Oestberg, G.

    1977-01-01

    The safety against failure of pressure vessels can be assessed by statistical methods, so-called probabilistic fracture mechanics. The data base for such estimations is admittedly rather meagre, making it necessary to assume certain conventional statistical distributions. Since the failure rates arrived at are low, for nuclear vessels of the order of 10 - to 10 - per year, the extremes of the variables involved, among other things the mechanical properties of the steel used, are of particular interest. A question sometimes raised is whether outliers, or values exceeding the extremes in the assumed distributions, might occur. In order to explore this possibility a study has been made of strength values of three qualities of structural steels, available in samples of up to about 12,000. Statistical evaluation of these samples with respect to outliers, using standard methods for this purpose, revealed the presence of such outliers in most cases, with a frequency of occurrence of, typically, a few values per thousand, estimated by the methods described. Obviously, statistical analysis alone cannot be expected to shed any light on the causes of outliers. Thus, the interpretation of these results with respect to their implication for the probabilistic estimation of the integrety of pressure vessels must await further studies of a similar nature in which the test specimens corresponding to outliers can be recovered and examined metallographically. For the moment the results should be regarded only as a factor to be considered in discussions of the safety of pressure vessels. (author)

  5. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2018-06-01

    The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

  6. Radiation damage structure in irradiated and annealed 440 WWER-Type reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Kocik, J.; Keilova, E.

    1993-01-01

    A review of irradiation damages in WWER-type RPV steels based on conventional Transmission Electron Microscopy investigations in a power reactor and a research reactor, is presented; the samples consist in Cr-Mo-V ferritic steel (15Kh2MFA type). The visible part of radiation-induced defects consists of very fine vanadium carbide precipitates, small dislocation loops and black dots (presumably corresponding to clusters and particle embryos formed from vacancies and solute-atoms (vanadium, copper, phosphorus) and carbon associated with vanadium. Radiation-induced defects are concentrated at dislocation substructure during irradiation in a power reactor, revealing the role of radiation-enhanced diffusion in damage structure forming process. Contrarily, the distribution of defects resulting from annealing of specimens irradiated in the research reactor is pre-determined by an homogenous distribution of radiation-induced defects prior to annealing. Increasing the number of re-irradiation and annealing cycles, the amount of dislocation loops among all defects seems to be growing. Simultaneously, the dislocation substructure recovers considerably. (authors). 14 refs., 11 figs., 3 tabs

  7. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    Science.gov (United States)

    de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.

    2015-01-01

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754

  8. X-ray fractographic study on fatigue fracture surface of structural steels

    International Nuclear Information System (INIS)

    Ogura, Keiji; Miyoshi, Yoshio; Kawaguchi, Masahiro; Kayama, Masahiro.

    1985-01-01

    An X-ray fractographic study was made on the fatigue fracture surface of the structural steels with various strength levels. An emphasis was put on examining the effect of strength level on the residual stress and half-value breadth on and under the fracture surface. It was found that the residual stress on the fracture surface was controlled by Ksub(max) in a low Ksub(max) or ΔK region (Region I), while it was controlled by ΔK rather than Ksub(max) in a high Ksub(max) or ΔK region (Region III). It was also found that another transitional region (Region II) was observed between these two regions in SNCM 815 steel. An explanation for all these behavior was discussed by a proposed model. The distribution of the residual stress and half-value breadth under the fracture surface was found to be usefull for estimating the value of Ksub(max), although the distribution itself was strongly influenced by strength level, particularly the work-softening behavior, of the materials. (author)

  9. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2018-03-01

    The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

  10. Radiation damage structure in irradiated and annealed 440 WWER-Type reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Kocik, J; Keilova, E [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    A review of irradiation damages in WWER-type RPV steels based on conventional Transmission Electron Microscopy investigations in a power reactor and a research reactor, is presented; the samples consist in Cr-Mo-V ferritic steel (15Kh2MFA type). The visible part of radiation-induced defects consists of very fine vanadium carbide precipitates, small dislocation loops and black dots (presumably corresponding) to clusters and particle embryos formed from vacancies and solute-atoms (vanadium, copper, phosphorus) and carbon associated with vanadium. Radiation-induced defects are concentrated at dislocation substructure during irradiation in a power reactor, revealing the role of radiation-enhanced diffusion in damage structure forming process. Contrarily, the distribution of defects resulting from annealing of specimens irradiated in the research reactor is pre-determined by an homogenous distribution of radiation-induced defects prior to annealing. Increasing the number of re-irradiation and annealing cycles, the amount of dislocation loops among all defects seems to be growing. Simultaneously, the dislocation substructure recovers considerably. (authors). 14 refs., 11 figs., 3 tabs.

  11. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    International Nuclear Information System (INIS)

    Šafka, J; Ackermann, M; Voleský, L

    2016-01-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample. (paper)

  12. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    Science.gov (United States)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  13. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    Directory of Open Access Journals (Sweden)

    Naasson P. de Alcantara

    2015-12-01

    Full Text Available This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  14. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    Science.gov (United States)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  15. Ultrasonic assessment of service life of concrete structures subject to reinforcing steel corrosion

    Science.gov (United States)

    Udegbunam, Ogechukwu Christian

    Over half of the bridges in the United States were built before 1970. Such bridges and the network of roads that they carry include the Inter State system, which was built as part of the great public works program, following the end of the Second World War. During that era, the emphasis was on strength design and economical construction of new structures, and not much premium was placed on durability and maintainability concerns. Since the end of this construction boom in the early 1970s, the concern for the durability of transportation infrastructure has steadily gained prominence among those agencies that must secure, program and administer funds for maintaining highway networks. The objective of this research was to develop a nondestructive method of assessing the durability of concrete bridge decks susceptible to damage from corrosion of embedded reinforcing steel. This was accomplished by formulating a holistic approach that accounts for the major factors that influence corrosion based deterioration of reinforced concrete. In this approach, the assessment of the durability of concrete bridge decks is based on a model that estimates the time it takes for the cover concrete to fail a result of stresses caused by expansion of reinforcing steel bars, due to corrosion activities. This time to failure is comprised of two distinct periods that must be evaluated before the problem can be solved. The research consisted of an experimental program and an analytical study. In the experimental program concrete specimens were cast and tested to determine their diffusivity and mechanical properties. The diffusivity was used to evaluate the period it takes for corrosion of the reinforcing bars to commence. In the analytical study, the resistance of the concrete structure against the internal forces caused by corrosion was evaluated with the finite element techniques. This resistance was used to evaluate the period defining the failure of the cover concrete. These two periods

  16. Steel Processing Properties and Their Effect on Impact Deformation of Lightweight Structures

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S

    2003-09-23

    The objective of the research was to perform a comprehensive computational analysis of the effects of material and process modeling approaches on performance of UltraLight Steel Auto Body (ULSAB) vehicle models. The research addressed numerous material related effects, impact conditions as well as analyzed the performance of the ULSAB vehicles in crashes against designs representing the current US vehicle fleet. This report is organized into three main sections. The first section describes the results of the computational analysis of ULSAB crash simulations that were performed using advanced material modeling techniques. The effects of strain-rate sensitivity on a high strength steel (HSS) intensive vehicle were analyzed. Frontal and frontal offset crash scenarios were used in a finite element parametric study of the ULSAB body structure. Comparisons are made between the crash results using the piece-wise-linear isotropic plasticity strain-rate dependent material model, and the isotropic plasticity material model based on quasi-static properties. The simulation results show the importance of advanced material modeling techniques for vehicle crash simulations due to strain-rate sensitivity and rapid hardening characteristics of advanced high strength steels. Material substitution was investigated for the main frontal crush structure using the material of similar yield stress a significantly different strain-rate and hardening characteristics. The objective of the research presented in Section 2 was to assess the influence of stamping process on crash response of ULSAB vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of

  17. Steel bridges structural health monitoring based on operational modal analysis accommodating evaluation of uncertainty

    Directory of Open Access Journals (Sweden)

    Saeid Jahan

    2017-11-01

    Full Text Available Structural damage detection is based on that the dynamic response of structure will change because of damage. Hence, it is possible to estimate the location and severity of damage leads to changes in the dynamic response before and after the damage. In this study, the genetic fuzzy system has been used for bridge structural health monitoring. A key objective of using genetic algorithms is to automate the design of fuzzy systems. This method is used for damage detection of a single span railway bridge with steel girders and a concrete bridge. For studying damage detection, the numerical models of these two bridges are built with the measured dynamic characteristics. A three-dimensional finite element model and a single two-dimensional girders model of the bridge have been constructed to study usefulness of the genetic fuzzy system for damage detection and the effectiveness of modeling. After analysis to control the uncertainties, the measured frequencies are contaminated with some noise and the effect of that on the achievement of damage detection method is evaluated. The present study has shown that the natural frequency has appropriate sensitivity to different damage scenarios in the structure. In addition, the natural frequency in comparison with other modal parameters, is less affected by random noise. Increasing the number of measurement modes and using torsional modes, will lead to an accurate damage diagnosis even in symmetrical structures.

  18. Structural evolution of Fe-18Ni-16Cr-4Al steel during aging at 950 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Man; Jang, Jinsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Zhou, Zhangjian [School of Materials Science and Engineering, USTB, Beijing (China)

    2015-05-15

    Austenitic stainless steels are also among important structural materials for in-core components of nuclear reactors, and the performance, the oxidation resistance as well as the mechanical strength at high temperature are further expected after Fukushima accident. Alumina-forming austenitic (AFA) steel was first developed by Y. Yamamoto et al. , which showed a good combination of oxidation resistance and creep resistance. The strengthening is achieved through nano-sized MX and Laves. Microstructural evolution of Fe-18Ni-16Cr-4Al during aging at 950 .deg. C was studied. This steel consists of two phases of austenite and ferrite. During aging, needle-shaped NiAl precipitates in austenite, while round shaped NiAl form in ferrite, which is supposed to be due to different crystal structural parameters.

  19. Quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants

    International Nuclear Information System (INIS)

    1975-04-01

    This guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants. This guide applies to all types of nuclear power plants. (U.S.)

  20. Supplementary quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel during the construction phase of nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    This standard sets forth the supplementary quality assurance requirements for installation, inspection, and testing of structural concrete and structural steel for nuclear power plant construction. The requirements may also be extended to other appropriate parts of nuclear power plants when specified in contract documents. This standard is intended to be used in conjunction with ANSI N45.2

  1. Formation of Quenching Structures in the Steel 35 by Deform Cutting

    Directory of Open Access Journals (Sweden)

    A. G. Degtyareva

    2014-01-01

    Full Text Available In industry different methods of surface hardening are widely used to increase reliability and durability of friction unit parts. Among these methods are areas of focus based on deformcutting technology (DC i.e. method of chip-free mechanical treatment.It is shown that DC method allows us to produce through- or partial-hardening surface layers of a large thickness (0,4…1.5mm on steel with no additional heat sources. The standard metal-cutting equipment and common tools are used for deform-cutting process.The significant heat generation in the deform-cutting zone and mechanical effect from the tool allow us to heat undercut layers to the phase transformation point to have the hardening structure as a result of heat removal to the cold balk. The hardening structure formation occurs at significant heating and cooling rate (106C/c with large degrees and rates of strain.The deform-cutting modes and working face tool grinding determine the type and properties of the hardening structure. To produce the hardening structure would require the heat transfer and force action augmentation while treatment.These researches deal with through- and partial surface hardening samples produced by turning steel 35 shafts. While through hardening the phase transformation carry among the whole thickness of the undercut layer; while partial hardening the hardening interlayer formed on the side of the cutting tool contact.The depth of hardening zone of samples with through hardening layers is 0,5 mm; the depth of hardening zone of partial hardening samples is 0,8 mm. Micro-hardness of the through hardening layers is 653 HV0,1 and 485 HV0,1 for the partial hardening layers. The metallographic analysis shows that the hardening zone formed while deform cutting has disperse structure; there are ferrite ghosts in it.The tempering at temperatures of 200 – 700C showed that the micro-hardness of the hardening structures formed while deform cutting is larger than the micro

  2. Evaluation of Fire Resistance for H-Section Columns Made of Rolled Steels for General Structures and for Welded Structures by Analytic Method

    International Nuclear Information System (INIS)

    Kwon, In-Kyu

    2014-01-01

    Fire resistance is an important factor in sustaining the structural stability of steel framed buildings on fire. However, evaluation of the fire resistance of steel columns has been conducted using rolled steels for general structures, SS 400. Recently, rolled steels for welded structures, such as SM 400 and SM 490, have been used frequently because they have better performance of welding than the SS 400. However, there has been doubt about how much fire resistance SM 400 and SM 490 have. To evaluate by calculation the fire resistance of an H-section column made of SS 400 its mechanical and thermal properties were derived and suggested respectively in the form of regressive equations and the analysis was done based on heat transfer and thermal stress analysis. In this study, the results of the evaluation of H-section columns made of SS 400 with loaded fire tests turned out to be conservative. As a result, a new guideline is required to get the exact fire resistance of another structural steel.

  3. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  4. Fatigue fracture analysis in medium carbon structural steel and austenitic stainless steel by X-ray fractography

    International Nuclear Information System (INIS)

    Rao, N.N.; Azmi bin Rahmat

    1994-01-01

    Apart from the reidual stresses present in the bulk material, a growing fatigue crack may develop its own stress field ahead of the crack tip which in turn could influence the crack propagation behaviour. A fracture surface analysis through measurement of the residual stress of a failed component may provide some additional useful information to that obtained through conventional metallurgical and fracture mechanics investigations. This method of fracture surface analysis using x-ray diffraction technique is known as X -ray Fractography . Residual stress (ρ sub γ) and the full width at half maximum (FWHM) of the x-ray diffraction profile of any reflection are determined at different crack lengths on the fracture surface. These are then corelated to the fracture toughness parameters such as fracture toughness K sub I sub C, the maximum stress intensity factor K sub max and the stress intensity factor range δK. The present investigation aims at detailed x-ray analysis of the fatigue fractured surfaces of the compact tension specimens prepared from ferritic and austenitic stainless steels. The ferritic steel has been subjected to various heat treatments to obtain different microstructures and mechanical properties. The overall observations are analyzed through fatigue (cumulative) damage and material science concepts

  5. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels

    Science.gov (United States)

    Tomita, Yoshiyuki

    1990-09-01

    Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.

  6. Hybrid structure in civil engineering construction. Composite types of steel and concrete; Doboku bun`ya ni okeru fukugo kozo. Kozai to concrete no ittai keishiki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [JR Railway Technical Research Inst. Tokyo (Japan)

    1995-03-30

    In connection with hybrid structures in civil engineering construction, classification and application of composite types of steel and concrete are discussed. H steel embedded beam is a composite beam in which the H shape steel of the main beam is connected to rolled or welded H shape steel using cross beams. Composite structure columns are grouped into the composite column and the steel pipe concrete column. SRC piers are often adopted from the viewpoints of constraints for execution of works and vibration proof. Steel and concrete hybrid structure is a kind of structural system in which various kinds of materials such as steel, RC, or PC members are connected. The cable stayed bridge utilizes characteristics of steel and concrete effectively. For the piers of municipal expressway viaducts, there are executed cases of mixed structures which have RC, SRC columns for T shape piers and S structure for the bridges. SRC structure and composite columns are adopted often for structures of subway stations. 7 refs., 7 figs.

  7. Modeling elasto-plastic behavior of polycrystalline grain structure of steels at mesoscopic level

    International Nuclear Information System (INIS)

    Kovac, Marko; Cizelj, Leon

    2005-01-01

    The multiscale model is proposed to explicitly account for the inhomogeneous structure of polycrystalline materials. Grains and grain boundaries are modeled explicitly using Voronoi tessellation. The constitutive model of crystal grains utilizes anisotropic elasticity and crystal plasticity. Commercially available finite element code is applied to solve the boundary value problem defined at the macroscopic scale. No assumption regarding the distribution of the mesoscopic strain and stress fields is used, apart the finite element discretization. The proposed model is then used to estimate the minimum size of polycrystalline aggregate of selected reactor pressure vessel steel (22 NiMoCr 3 7), above which it can be considered macroscopically homogeneous. Elastic and rate-independent plastic deformation modes are considered. The results are validated by the experimental and simulation results from the literature

  8. Effectiveness of creative and productive instructional method towards students' learning achievement in steel structure course

    Science.gov (United States)

    Sugiyanto, Pribadi, Supriyanto, Bambang

    2017-09-01

    The purpose of this study was to investigate the effectiveness of Creative & Productive instructional method compared with conventional method. This research was a quasi-experimental study involving all Civil Engineering students at Universitas Negeri Malang who were taking a course of Steel Structure. The students were randomly assigned to two different treatment groups, 30 students in experimental group and 37 students in the control group. It was assumed that these groups were equal in all relevant aspects; they differed only in the treatment administered. We used the t-test to test the hypothesis. The results of this research suggest that: (l) the use of Creative & Productive instructional method can significantly improve students' learning achievement, (2) the use of Creative & Productive instructional method can significantly improve students' retention, (3) students' motivation has a significant effect on their learning achievement, and (4) students' motivation has a significant effect on their retention.

  9. Structure and properties of joints of two-ply steel using ''elastic'' explosives

    International Nuclear Information System (INIS)

    Gel'man, A.S.; Savel'ev, S.A.; Kulakevich, Ya.S.; Sharypov, N.A.; Drogovejko, I.Z.; Domolego, I.E.

    1980-01-01

    Some experimental data on structure and properties of compounds during cladding of sheets made of St3 with sheets of nichrome and steel 12Kh18N10T with the use of ''elastic'' explosives are presented. It is shown that the use of ''elastic'' explosives permits to decrease r parameter sufficiently, (where r - is the ratio of explosive mass to the mass of throwen phate) that reduces considerably the specific consumption explosives in comparison with the consumption conventional mixture explosives. Peculiarities of tested ''elastic'' explosives make their application perspective in two cases - at cladding of complex curved surfaces (drums, tube blanks etc.), as sell as at applications of burst chambers, where explosive mass limits dimensions of cladding blanks and details [ru

  10. Structure and phase composition of titanium nitride coating on austenitic steel

    International Nuclear Information System (INIS)

    Dubovitskaya, N.V.; Kolenchenko, L.D.; Larikov, L.N.

    1989-01-01

    Structure and phase composition of titanium nitride coating deposited on 08Kh18N10T steel substrate using ''Bulat'' device are studied. Use of complex investigation methods permitted despite small coating thickness (1μm) to aquire information on hardness, porosity, to study phase composition in all coating thickness. The surface layer (∼0.1 μm) consists of ε-Ti 2 N, TiN 0.6 , TiC 0.35 , that is formed with carbon participation from oil vacuum. In more deeper layers beside ε-Ti 2 N TiC 0.14 N 0.77 is present. Effect of carbon diffusion from substrate to forming coating is stated. Gradient of element concentrations in the substrate-coating interface causes recrystallization of austenite

  11. Influence of duplex treatment on the structure and surface properties of steel 3

    International Nuclear Information System (INIS)

    Prokhorenkova, N.V.; Alontseva, D.L.; Pogrebnyak, A.D.

    2005-01-01

    Purpose of the work is study of influence of powder coverings on the Ni base on the microstructure, phase content and steel properties. The coverings were deposited by the plasma-detonation method with electron beam. By the results of mechanical tests the microhardness after deposition increases in 5 times. In the same time the microhardness dispersion increases from the deposited side. This evidences about phase heterogeneity of the covering. By the X-ray structural-phase analysis it is shown, that deposited layer is multi-phase: there are in the large amounts Fe and compounds both Ni 2 Si, FeCr. It is suggested, that such multi-phase content is resulting of corrosion resistivity of the examined alloys

  12. The hardiness of numerical simulation of TIG welding. Application to stainless steel 316L structures

    International Nuclear Information System (INIS)

    El-Ahmar, Walid; Jullien, Jean-Francois; Gilles, Philippe; Taheri, Said; Boitout, Frederic

    2006-01-01

    The welding numerical simulation is considered as one of the mechanics problems the most un-linear on account of the great number of the parameters required. The analysis of the hardiness of the welding numerical simulation is a current questioning whose expectation is to specify welding numerical simulation procedures allowing to guarantee the reliability of the numerical result. In this work has been quantified the aspect 'uncertainties-sensitivity' imputable to different parameters which occur in the simulation of stainless steel 316L structures welded by the TIG process: that is to say the mechanical and thermophysical parameters, the types of modeling, the adopted behaviour laws, the modeling of the heat contribution.. (O.M.)

  13. Analysis of the resistance to the stable propagation of fissures in structural steels

    International Nuclear Information System (INIS)

    Alvarez Villar, Nelson; Aquino, Daniel; Aguera, Francisco; Fierro, Victor; Ansaldi, Andrea; Chomik, Enrique; Iorio, Antonio

    2008-01-01

    Linear Elastic Fracture Mechanic (LEFM) is applied to the analysis of highly resistant materials, with correction for plasticity. For moderately ductile materials, structural analysis and design methodologies based on Elastoplastic Fracture Mechanics (EPFM) still have to be developed. The J integral is used in EPFM as a parameter to characterize tenacity to the fracture, following the ASTM standard. It is important to obtain J-Resistant curves, since the use of the stable propagation initiation value (J IC ) as failure criteria, leads to results that are too conservative in most design situations. The application of direct methods allows for results under conditions where the standard methods for obtaining the J-Resistant curve are not applicable. This work analyzes the application of direct methods that are alternatives for the standard, in ferritic-perlitic steels used in gas transport pipes. Experimental results are presented with numerical analysis (FEA) for the adjustment of J-Resistant curves (au)

  14. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2017-03-01

    Full Text Available The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite and low amount of MAC (self-tempered martensite, retained austenite, carbide phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Micro-jet cooling after welding can find serious application in automotive industry very soon. Until that moment only argon, helium and nitrogen were tested as micro-jet gases. In that paper first time various gas mixtures (gas mixtures Ar-CO2 were tested for micro-jet cooling after welding.

  15. Evaluating the effectiveness of heat-resistant cast steel filtration from the results of structure examinations

    Directory of Open Access Journals (Sweden)

    Asłanowicz M.

    2007-01-01

    Full Text Available Filtration guarantees castings characterised by high quality and free from any non-metallic inclusions, which are formed at the stage of melting and pouring of liquid metal. This article discusses the problem of the effectiveness of filtration process taking as an example heat-resistant cast steel poured into ceramic moulds. In investigations, foamed zircon filters made by FerroTerm Sp. z o.o. The effectiveness of filtration was described and examined using the results of metallographic examinations, including macro- and micro-structure examinations of metal and of cast metal/ceramic filter interface, and measurements of the content of non-metallic inclusions. The methods of investigations were presented, the obtained results were described, and relevant conclusions were drawn, all of them unmistakably indicating a very beneficial effect that filtration has on molten metal quality. Łódź, Poland, were used.

  16. Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool

    International Nuclear Information System (INIS)

    Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.

    1995-01-01

    The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity

  17. Effect of the Annealing Temperature on the Structure and Magnetic Properties of 2% Si Steel

    Directory of Open Access Journals (Sweden)

    Cunha Marco A. da

    2002-01-01

    Full Text Available To study the effect of the annealing temperature on the structure and magnetic properties of a 2%Si non-oriented steel cold rolled samples were submitted to final annealing in the temperature range of 540 °C to 980 °C in hydrogen atmosphere. The samples had received cold rolling reduction of 75% to a final thickness of 0.50 mm. Recovery and recrystallization resulted in significant improvement of magnetic properties, with decrease of iron loss (W1.5 and increase of polarisation (J50 and relative permeability (µ1.5. On further grain growth, after recrystallization, there was simultaneous decrease of iron loss, polarisation and relative permeability. Texture evolution on grain growth accounts for the observed decrease of J50 and µ1.5. The beneficial effect of increasing grain size on core loss overcomes the detrimental effect of texture resulting in decrease of W1.5.

  18. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Xhoffer, Chris; Van De Putte, Tom; Galceran, Montserrat; Godet, Stéphane

    2013-01-01

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters of aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn 2+ and Mn 3+ are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN) x (SiMn 0.25 N y O z ) 1−x with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn 2+ and Mn 3+ . • Oxygen

  19. Test and analysis of thermal ratcheting deformation for 316L stainless steel cylindrical structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon; Kim, Jong Bum; Lee, Jae Han

    2002-01-01

    In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 550 degree C with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79 mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests

  20. Weight optimization of large span steel truss structures with genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Mojolic, Cristian; Hulea, Radu; Pârv, Bianca Roxana [Technical University of Cluj-Napoca, Faculty of Civil Engineering, Department of Structural Mechanics, Str. Constantin Daicoviciu nr. 15, Cluj-Napoca (Romania)

    2015-03-10

    The paper presents the weight optimization process of the main steel truss that supports the Slatina Sport Hall roof. The structure was loaded with self-weight, dead loads, live loads, snow, wind and temperature, grouped in eleven load cases. The optimization of the structure was made using genetic algorithms implemented in a Matlab code. A total number of four different cases were taken into consideration when trying to determine the lowest weight of the structure, depending on the types of connections with the concrete structure ( types of supports, bearing modes), and the possibility of the lower truss chord nodes to change their vertical position. A number of restrictions for tension, maximum displacement and buckling were enforced on the elements, and the cross sections are chosen by the program from a user data base. The results in each of the four cases were analyzed in terms of weight, element tension, element section and displacement. The paper presents the optimization process and the conclusions drawn.

  1. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Yasuhiro, E-mail: chimi.yasuhiro@jaea.go.jp [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kitsunai, Yuji [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Kasahara, Shigeki [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chatani, Kazuhiro; Koshiishi, Masato [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Nishiyama, Yutaka [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2016-07-15

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%–2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps. - Highlights: • Visible step structures depend on the neutron dose and the applied strain. • Local strain at grain boundaries was accumulated with the neutron dose. • Oxide thickness increases with neutron dose and local strain at grain boundaries. • No penetrative oxidation was observed along grain boundaries or surface steps.

  2. Effect of Heat Treatment on the Structure and Properties of Die Steel 70Kh3G2FTR

    Science.gov (United States)

    Krylova, S. E.; Kletsova, O. A.; Gryzunov, V. I.; Fot, A. P.; Tavtilov, I. Sh.

    2018-01-01

    The effect of heat treatment parameters on the properties and structural and phase composition of a promising die steel 70Kh3G2FTR for hot deformation is studied. The temperature-and-stress state of a hammer die under a heat treatment is simulated.

  3. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  4. INFLUENCE OF MODIFICATION ON THE STRUCTURE AND CHARACTERISTICS OF THE STAINLESS STEEL 12X18H10TL

    Directory of Open Access Journals (Sweden)

    I. V. Zemskov

    2004-01-01

    Full Text Available There are given the results of investigation of influence of modification by ferrocerium, FS30RZM30B, FSMG, modifier MN, developed in BNTU, ferromolybdenum on the structure and characteristics of the steel 12X18H10TL.

  5. Changes in mechanical properties and structure of electrolytic plasma treated X 12 CrNi 18 10 Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanbekov, Sherzod; Baklanov, Viktor; Karakozov, Batyrzhan [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan). Inst. of Atomic Energy Branch; Skakov, Mazhyn [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan)

    2017-05-01

    The paper addresses findings regarding the influence of electrolytic plasma treatment on the mechanical properties as well as structural and phase states of X 12 CrNi 18 10 Ti steel. Electrolytic plasma treatment is based on carburizing of stainless steel heated in electrolytes. Treatment of steel samples has been performed as follows: the samples were heated up to a temperature between 850 and 950 C and then they were cured for 7 minutes in an electrolyte of an aqueous solution containing 10 % glycerol (C{sub 3}H{sub 8}O{sub 3}) and 15 % sodium carbonate (Na{sub 2}CO{sub 3}). It is found that, after plasma electrolytic treatment, the surface of X 12 CrNi 18 10 Ti steel had a modified structure and high hardness. Increasing wear resistance of X 12 CrNi 18 10 Ti steel has been observed after carburizing and the coefficient of friction has been reduced. X-ray analysis showed that retained austenite γ-Fe is a main phase, and there are some diffraction lines of orthorhombic Fe{sub 3}C phase as well as Fe{sub 3}O{sub 4} cubic phase. It has been determined, that, after plasma electrolytic treatment, a carbide phase in the modified surface layer, irrespective of the location in the steel structure has the chemical composition Fe{sub 3}C. High concentration of carbon atoms in a solid solution based on γ- and α-iron, a large dislocation density, presence of particles of carbide phase and retained austenite layers have been found.

  6. Mechanical characterization of auxetic stainless steel thin sheets with reentrant structure

    Science.gov (United States)

    Lekesiz, H.; Bhullar, S. K.; Karaca, A. A.; Jun, M. B. G.

    2017-08-01

    Smart materials in auxetic form present a great potential for various medical applications due to their unique deformation mechanisms along with durable infrastructure. Both analytical and finite element (FE) models are extensively used in literature to characterize mechanical response of auxetic structures but these structures are mostly thick enough to be considered as bulk material and 3D inherently. Auxetic plates in very thin form, a.e. foil, may bring numerous advantages such as very light design and better biodegradability when needed. However, there is a gap in literature on mechanical characterization of auxetic thin plates. In this study, structural analysis of very thin auxetic plates under uniaxial loading is investigated using both FE method and experimental method. 25 μm thick stainless steel (316L) plates are fabricated with reentrant texture for three different unit cell dimensions and tested under uniaxial loading using universal testing machine. 25 and 50 μm thick sheets with same cell dimensions were analyzed using implicit transient FE model including strain hardening and failure behaviors. FE results cover all the deformation schemes seen in actual tests and total deformation level matches with test results. Effect of plate thickness and cell geometry on auxetic behavior is discussed in detail using FE results. Finally, based on FE analysis results, an optimum geometry for prolonged auxetic behavior, high flexibility and high durability is suggested for future potential applications.

  7. Structure changes in steels and hard metal induced by nanosecond and femtosecond laser processing

    Science.gov (United States)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Haefke, Henry; Gerbig, Yvonne; Sentis, Marc L.; Hermann, Joerg; Bruneau, Sebastien

    2003-11-01

    Investigations on the occurrence of structure and hardness changes (for two sorts of steel and for a hard metal substrate) in the immediate vicinity of laser induced craters are presented in this work. Experiments with femtosecond pulses were performed in air with a Ti:sapphire laser (800 nm, 100 fs) at mean fluences of 2, 5 and 10 J/cm2. Series of microcraters were induced with 100 to 5,000 laser pulses per hole. Experiments with similar fluences, but 10 to 40 pules per hole, were performed on the same materials using a Nd:YAG delivering 100 ns pulese. After laser irradiation, cuts were made through the processed samples and the changes occurred in the crystalline structure of the target materials were evidenced by metallographical analysis of the resulting cross-sections. Hardness measurements were performed in points situated in the immediate vicinity of the laser-induced pores. Affected zones in the material surrounding laser induced pores were always found in the ns-regime, however with different properties for various laser parameters. In the fs-regime, zones of modified materials were also found and in such zones a significant hardness increasing was evidenced; the limit of the low fluences regime, where no structure changes occurred, was found to be slightly above 2 J/cm2.

  8. Experimental Assessment of a Skyhook Semiactive Strategy for Seismic Vibration Control of a Steel Structure

    Directory of Open Access Journals (Sweden)

    Nicola Caterino

    2018-01-01

    Full Text Available Sky-hook damping is one of the most promising techniques for feedback control of structural vibrations. It is based on the idea of connecting the structure to an ideal fixed point of the space through passive dissipative devices. Herein the benefit of semiactive (SA sky-hook (SH damping is investigated for seismic protection of a two-storey steel frame via shaking table tests. This kind of SA control is achieved implementing a continuous monitoring of selected structural response parameters and using variable dampers. The damping properties of the latter are changed in real-time so as to make the force provided by the damper match the desired SH damping force as closely as possible. To this aim, two prototype magnetorheological dampers have been installed at the first level of the frame and remotely driven by a SH controller. The effectiveness of the control strategy is measured as response to reduction in terms of floor accelerations and interstory drift in respect to the uncontrolled configuration. Two different calibrations of the SH controller have been tested. The experimental results are deeply discussed in order to identify the optimal one and understand the motivations of its better performance.

  9. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    Science.gov (United States)

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  10. Residual creep life assessment by change of martensitic lath structure in modified 9Cr-1Mo steels

    International Nuclear Information System (INIS)

    Sawada, Kota; Takeda, Masaaki; Maruyama, Kouichi; Komine, Ryuji; Nagae, Yuji

    1998-01-01

    Mod.9Cr-1Mo steel has a martensitic lath structure. Recovery of the lath structure takes place in the course of creep. Microstructural degradation due to the recovery results in the acceleration of creep rate and the subsequent failure of a specimen. Change of lath width during creep of the steel was quantitatively investigated to propose a residual life assessment methodology based on the recovery process. Since the steel was tempered at 1053 K, the lath structure is thermally stable at the testing temperatures (848 K - 923 K). However, recovery of lath structure readily takes place during creep, indicating that the recovery is induced by creep deformation. Lath width d increases with creep strain and saturates to a value d s determined by creep stress. The increase of d is faster at a higher stress and temperature. A normalized change in lath width, Δd/Δd s , was introduced to explain the variation of lath growth rate with creep stress and temperature. Δd is the change in lath width from the initial value d 0 , and Δd s is the difference between d s , and d 0 . Δd/Δd s is uniquely related to creep strain ε and the relationship is independent of creep stress as well as creep temperature. This Δd/Δd s -ε relationship obtained by an accelerated creep test at a higher temperature or stress is applicable to any creep condition including service conditions of engineering plants. Creep strain can be evaluated from the measurement of Δd/Δd s based on the Δd/Δd s -ε relationship. A creep curve under any creep condition can readily be calculated by creep data of the steel. Combining these information one can assess residual life of a structural component made of the steel. (author)

  11. submitter Physical Properties of a High-Strength Austenitic Stainless Steel for the Precompression Structure of the ITER Central Solenoid

    CERN Document Server

    Sgobba, Stefano; Arauzo, Ana; Roussel, Pascal; Libeyre, Paul

    2016-01-01

    The ITER central solenoid (CS) consists of six independent coils kept together by a precompression support structure that must react vertical tensile loads and provide sufficient preload to maintain coil-to-coil contact when the solenoid is energized. The CS precompression system includes tie plates, lower and upper key blocks, load distribution and isolation plates and other attachment, support and insulating hardware. The tie plates operating at 4 K are manufactured starting from forgings in a high-strength austenitic stainless steel (FXM-19) with a stringent specification. Moreover, forged components for the lower and upper key blocks have to be provided in the same FXM-19 grade with comparably strict requirements. FXM-19 is a high-nitrogen austenitic stainless steel, featuring high strength and toughness, ready weldability, and forgeability. It features as well higher integral thermal contraction down to 4 K compared with the very high Mn steel grade selected for the CS coil jackets, hence providing an ad...

  12. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Laboratoire de Mecanique des Contacts et des Structures (LaMCoS), INSA Lyon, 20 Avenue des Sciences, F-69621 Villeurbanne Cedex (France); Li, H. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Li, M.Q., E-mail: zc9997242256@126.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-05-15

    Graphical abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural component. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different applied bonding pressures. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail. - Highlights: • A high quality hollow structural component has been fabricated by diffusion bonding. • Surface asperity deformation not only expands the interfacial contact areas, but also causes deformation heat and defects to improve the atomic diffusion. • Surface asperity deformation introduces the stored energy difference between the two opposite sides of interface grain boundary, leading to strain induced interface grain boundary migration. • The void exerts a dragging force on the interface grain boundary to retard or stop interface grain boundary migration. - Abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to

  13. New developments in the fabrication of fine-grained structural steels; practical applications in welding engineering

    International Nuclear Information System (INIS)

    Uwer, D.

    1986-01-01

    The paper briefly demonstrates the development of weldable construction steels in the FRG exemplified by the development of steel grade St 37 to StE 960. Improvements of steel quality, especially weldability, is expected from the ladle metallurgy process, thermomechanical rolling, intensive cooling after rolling and direct annealing by using rolling heat. Positive effects were achieved above all in lamellar tearing strength, cold cracking behaviour and in the heat-affected zone. (DG) [de

  14. Effect of silicon on the structure, tribological behaviour, and mechanical properties of nitrogen-containing chromium-manganese austenitic steels

    International Nuclear Information System (INIS)

    Korshunov, L.G.; Chernenko, N.L.; Gojkhenberg, Yu.N.

    2003-01-01

    The effect of silicon in quantity of 3.5-4.5 mass. % on tribological behaviour is studied for nitrogen-bearing (0.20-0.52 mass. % of nitrogen) chromium-manganese austenitic steels (10Kh15G23S4A0.20, 10Kh16G17N3S4A0.30, 10Kh19G20NS4A0.50, 12Kh19G19NS2A0.50, 10Kh18G19A0.50, 08Kh16G8N10S4A0.18). Mechanical properties and corrosion resistance of the steels are determined. Using metallographic, x-ray diffraction and electron microscopical methods a study is made into structural transformations running in the steels considered under friction and static tension. It is shown that additional silicon alloying of nitrogen-bearing chromium-manganese austenitic steels results in an essential increase of adhesion wear resistance of the materials on retention of low friction coefficient (f=0.25-0.33). A strong silicon effect on steel tribological behaviour is related with planar slip activation and with an increase of austenite strength and heat resistance [ru

  15. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  16. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Luo, K.Y.; Lu, J.Z.; Zhang, Y.K.; Zhou, J.Z.; Zhang, L.F.; Dai, F.Z.; Zhang, L.; Zhong, J.W.; Cui, C.Y.

    2011-01-01

    Highlights: → Effects of LSP on mechanical properties of stainless steel ANSI 304 are evaluated. → LSP can clearly enhance the values of mechanical properties in the shocked region. → Martensite transformation does not take place in the surface layer subjected to LSP. → Enhancement mechanisms of LSP on mechanical property of stainless steel are revealed. → The results can provide some insights on the surface modification of stainless steel. - Abstract: The aim of this article is to address the effects of a single laser shock processing (LSP) impact on the nano-hardness, elastic modulus, residual stress and phase transformation of ANSI 304 austenitic stainless steel. Residual stress distribution of the LSP-shocked region is determined by X-ray diffraction (XRD) with sin 2 ψ method, and the micro-structural features in the near-surface layer are characterized by using cross-sectional optical microscopy (OM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). By comparing with the untreated samples, LSP can clearly improve nano-hardness, elastic modulus, and residual stress in the LSP-shocked region. The underlying enhancement mechanisms of LSP on nano-hardness, elastic modulus and residual stress of stainless steel ANSI 304 are also revealed. These studies may provide some important insights into surface modification for metal materials.

  17. Study of a steel strand tension sensor with difference single bypass excitation structure based on the magneto-elastic effect

    International Nuclear Information System (INIS)

    Tang Dedong; Huang Shanglian; Chen Weimin; Jiang Jianshan

    2008-01-01

    With many steel strands used in various important machines and architectural structures, health monitoring of strand tension becomes more and more important to ensure the equipment or structures' safety. Contrasted with the method of vibration frequency and strain gages, the method of measuring the steel strand tension based on the magneto-elastic effect is more capable of meeting the requirements of health monitoring. Yet the structure of the sensor is mainly a sleeve structure, and the steel strand to be measured serves as the core of primary and secondary solenoids. This structure is very difficult to fix and maintain. On the other hand, a change of temperature will strongly affect measurement results, and experiments prove that temperature error compensation by using a temperature compensation curve is not effective enough. Therefore in this paper the principle of a cable tension sensor based on the magneto-elastic effect is expounded, the theory of temperature influence is explored, a difference structure by single bypass excitation is devised, its magnetic loop is analyzed, an experiment is designed, and experiments on temperature compensation and pulling tension are carried out. The experiment results indicated that the structure of the sensor is feasible, temperature errors can be compensated for automatically, after which temperature errors become less than 0.012 MPa °C −1 , and repeating errors of tension are less than 0.15%, which meet the measurement requirements

  18. Strain Measurement of Steel Roof Truss Using FBG Sensor during Construction of Reverse Shell Shaped Reinforced Concrete Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Woo [Kyungpook National University, Daegu (Korea, Republic of); Rhim, Hong Chul; Seo, Tae Seok [Yonsei University, Seoul (Korea, Republic of)

    2011-08-15

    Application of FBG (Fiber Bragg Grating) sensors to measure strain of steel roof trusses has been performed. This is to check and confirm the structural integrity of an unusually shaped, reverse shell structure made of reinforced concrete. The issue was to place sensors at proper location and compare the measured values to the results from structural analysis. It has been learned that a deliberate measurement scheme is needed in order to monitor a complex structure during construction. In this study, the measured values were within allowable range of strain, thus confirming the safety of the structure during measurement and construction.

  19. The Effect of Hot Working on Structure and Strength of a Precipitation Strengthened Austenitic Stainless Steel

    Science.gov (United States)

    Mataya, M. C.; Carr, M. J.; Krauss, G.

    1984-02-01

    The development of microstructure and strength during forging in a γ' strengthened austenitic stainless steel, JBK-75, was investigated by means of forward extrusion of cylindrical specimens. The specimens were deformed in a strain range of 0.16 to 1.0, from 800°C to 1080°C, and at approximate strain rates of 2 (press forging) and 2 × 103 s-1 (high energy rate forging), and structures examined by light and transmission microscopy. Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited an extremely wide variety of structures and properties within the range of forging pzrameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of observed microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that the γ' precipitation process is not affected by substructure and that the strengthening contributions, from substructure and precipitation, were independent and additive. Applications for these findings are discussed in terms

  20. X-ray diffraction study on the evaluation of the damage of steel structures subjected to earthquake

    International Nuclear Information System (INIS)

    Kaneta, Kiyoshi; Nishizawa, Hidekazu; Koshika, Norihide.

    1985-01-01

    The purpose of this study is to investigate the behavior of steel structures subjected to a strong earthquake and to evaluate the damage from a microscopic point of view. For this purpose, the authors have adopted two kinds of research techniques. The first is the ''ON-LINE EARTHQUAKE RESPONSE SIMULATION SYSTEM (ON-LINE SIMULATION SYSTEM)'', which is composed of an electro-hydrauric testing machine controled by a computer and a full scale specimen. Since a term of restoring force in the equation of motion is to be substituted by the actual reaction of a specimen under test, we can obtain the non-linear response of structure without any assumption about the hysteretic characteristics. Based on this method, the dynamic behavior of simple steel structures subjected to an intense earthquakes were simulated. The second technique is the ''X-RAY DIFFRACTION METHOD''. Although this method is usually regarded an experimental technique particular to the material science, we have realized the good applicability for the study of structural engineering. Because X-ray diffraction method is advantageous in investigating the microscopic behavior of steel member such as the plastic deformation and the low cycle fatigue. From the view point stated above, we have adopted this method for the evaluation of low cycle fatigue damage of steel member subjected to an earthquake. The experiment has been performed by radiating the X-ray at several stages of the ON-LINE SIMULATION. As has been expected, the X-ray diffraction patterns have changed in a regular manner depending on the degree of fatigue damage, and the results have shown a good possibility that the X-ray diffraction approach can offer a powerful tool for the detection of the earthquake damage of steel members. (author)

  1. The effect of corrosion on the structural reliability of steel offshore structures

    International Nuclear Information System (INIS)

    Melchers, Robert E.

    2005-01-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions

  2. The effect of corrosion on the structural reliability of steel offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, Robert E. [Centre for Infrastructure Performance and Reliability, Department of Civil, Surveying and Environmental Engineering, School of Engineering, University of Newcastle, University Drive, Callaghan NSW 2300 (Australia)]. E-mail: rob.melchers@newcastle.edu.au

    2005-10-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions.

  3. Dynamic analysis of steel-concrete structure of TVO power plant containment building

    International Nuclear Information System (INIS)

    Hakala, M.; Karjunen, T.

    1996-08-01

    The report presents results from a study concerning the ability of the containment to withstand the loads caused by steams explosions which are possible during a severe accident at TVO plant (BWR). In the first phase, the suitability of the engineering mechanics code (FLAC) for modelling the dynamic response of damaging steel-concrete structures was tested by post-calculating a small scale test. As a result, a new dynamic material model taking account the fracture orientation was developed. In containment calculations both the developed and the best generally accepted material model were used. The loads against the containment were obtained from a simple model for steam explosions, which allowed the impulse of the pressure load to be fixed by tuning a few parameters. The ability of the containment to withstand the pressure pulses was analysed with loads of 5, 1 0, 20, 40, 60, and 80 kPa s impulse. As a results, the area and magnitude of permanent damage together with time histories of displacement and stress at critical points are presented. The estimations on the consequences of the observed structural damages as far as the containment leak tightness and stability are concerned and presented as conclusions. (9 refs.)

  4. Structural health monitoring in end-of-life prediction for steel bridges subjected to fatigue cracking

    NARCIS (Netherlands)

    Attema, T.; Courage, W.M.G.; Maljaars, J.; Meerveld, H. van; Paulissen, J.H.; Pijpers, R.J.M.; Slobbe, A.T.

    2015-01-01

    This paper presents a monitoring and modelling methodology to assess the current and future conditions of steel bridges subjected to fatigue cracking. Steel bridges are subjected to fatigue cracking as a result of fluctuating stresses caused by the crossing of heavy vehicles. Specifically for

  5. The effect of hot working on structure and strength of a precipitation strengthened austenitic stainless steel

    International Nuclear Information System (INIS)

    Mataya, M.C.; Carr, M.J.; Krauss, G.

    1984-01-01

    The development of microstructure and strength during forging a γ' strengthened austenitic stainless steel, JBK-75, was investigated. The specimens were deformed in a strain range of 0.16 to 1.0, from 800 0 C to 1080 0 C at approximate strain rates of 2 (press forging) and 2 X 10 3 S -1 (high energy rate forging). Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited a wide variety of structures and properties within the range of forging parameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that γ' precipitation is not affected by substructure and that the strengthening contributions were independent and additive. Applications for these findings are discussed in terms of process design criteria

  6. The Structure and Mechanical Properties of Ni-Mo PM Steels with Addition of Mn And Cu

    Science.gov (United States)

    Lichańska, E.; Kulecki, P.; Pańcikiewicz, K.

    2017-12-01

    The aim of the study was to evaluate the effect of chemical composition on the structure and mechanical properties of Mn-Ni-Mo and Ni-Mo-Cu PM steels. Pre-alloyed powder Astaloy 85Mo, diffusion alloyed powders Distaloy AQ and Distaloy AB produced by Höganäs, low carbon ferromanganese, carbonyl nickel powder T255 with three-dimensional filamentary structure and graphite CU-F have been used as the basic powders. Three mixtures with compositions of Fe-1%Mn-(0.5/1.75)%Ni-(0.5/0.85)%Mo-0.8%C and Fe-1.75%Ni-0.5%Mo-1.5%Cu-0.8%C were prepared in a Turbula mixer. Green compacts were single pressed in a steel die at 660 MPa according to PN-EN ISO 2740 standard. Sinterhardening was carried out at 1250°C in a mixture of 95% N2+5% H2 for 60 minutes. Mechanical tests (tensile, bend, hardness) and microstructural investigations were performed. Additionally, XRD and EDS analysis, fractographic investigations were carried out. The microstructures of steels investigated were mainly bainitic or bainitic-martensitic. Addition 1% Mn to Distaloy AQ based steel caused increase of tensile properties (YS from 422 to 489 MPa, UTS from 522 to 638 MPa, TRS from 901 to 1096 MPa) and decrease of plasticity (elongation from 3.65 to 2.84%).

  7. Research on structural dynamic characteristics of continuous steel box girder-bridge with lager ratio of wide-span

    Directory of Open Access Journals (Sweden)

    Yin Haijun

    2018-01-01

    Full Text Available Structure natural frequency and mode of vibration can not only reflect the structure modal parameters of dynamic properties, but also incarnate the dynamic evaluation characteristics of bridge structure. This paper applies ANSYS to establish the finite element model based on a continuous steel box girder bridge in order to obtain the corresponding modal analysis parameters. Through the environmental stimulation test, The results show that height of the steel box girder and the setting of diaphragm plate is reasonable, transverse space of piers not merely provide enough support but also ensure lateral stability of the bridge, as well as offering aside the maximum lateral clearance of the existing road. Meanwhile, the calculation results have important engineering practical values. which can provide basic data for the design, construction and maintenance of similar Bridges.

  8. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars

    International Nuclear Information System (INIS)

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-01-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  9. Application and validation of the notch master curve in medium and high strength structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Sergio; Garcia, Tiberio [Universidad de Cantabria, Santander (Spain); Madrazo, Virginia [PCTCAN, Santander (Spain)

    2015-10-15

    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches.

  10. RESEARCH OF INFLUENCE OF THE HIGH-SPEED THERMAL PROCESSING REGIMES ON STRUCTURE AND MECHANICAL PROPERTIES OF PIPE STEEL 32G2

    Directory of Open Access Journals (Sweden)

    A. I. Gordienko

    2012-01-01

    Full Text Available Researches on influence of high-speed heating temperature, regimes of cooling and temperature of abatement on structure and mechanical properties of pipe steel 32G2 are carried out. Recommendations on the regimes of high-speed thermal processing of steel 32G2 which can be used at manufacturing of seamless pipes are given.

  11. An investigation on vulnerability assessment of steel structures with thin steel shear wall through development of fragility curves

    Directory of Open Access Journals (Sweden)

    Mohsen Gerami

    2017-02-01

    Full Text Available Fragility curves play an important role in damage assessment of buildings. Probability of damage induction to the structure against seismic events can be investigated upon generation of afore mentioned curves. In current research 360 time history analyses have been carried out on structures of 3, 10 and 20 story height and subsequently fragility curves have been adopted. The curves are developed based on two indices of inter story drifts and equivalent strip axial strains of the shear wall. Time history analysis is carried out in Perform 3d considering 10 far field seismograms and 10 near fields. Analysis of low height structures revealed that they are more vulnerable in accelerations lower than 0.8 g in near field earthquakes because of higher mode effects. Upon the generated fragility curves it was observed that middle and high structures have more acceptable performance and lower damage levels compared to low height structures in both near and far field seismic hazards.

  12. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    OpenAIRE

    Ayse T. Daloglu; Musa Artar; Korhan Ozgan; Ali İ. Karakas

    2018-01-01

    Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped...

  13. Structural performance evaluation on aging underground reinforced concrete structures. Part 6. An estimation method of threshold value in performance verification taking reinforcing steel corrosion

    International Nuclear Information System (INIS)

    Matsuo, Toyofumi; Matsumura, Takuro; Miyagawa, Yoshinori

    2009-01-01

    This paper discusses applicability of material degradation model due to reinforcing steel corrosion for RC box-culverts with corroded reinforcement and an estimation method for threshold value in performance verification reflecting reinforcing steel corrosion. First, in FEM analyses, loss of reinforcement section area and initial tension strain arising from reinforcing steel corrosion, and deteriorated bond characteristics between reinforcement and concrete were considered. The full-scale loading tests using corroded RC box-culverts were numerically analyzed. As a result, the analyzed crack patterns and load-strain relationships were in close agreement with the experimental results within the maximum corrosion ratio 15% of primary reinforcement. Then, we showed that this modeling could estimate the load carrying capacity of corroded RC box-culverts. Second, a parametric study was carried out for corroded RC box culverts with various sizes, reinforcement ratios and levels of steel corrosion, etc. Furthermore, as an application of analytical results and various experimental investigations, we suggested allowable degradation ratios for a modification of the threshold value, which corresponds to the chloride induced deterioration progress that is widely accepted in maintenance practice for civil engineering reinforced concrete structures. Finally, based on these findings, we developed two estimation methods for threshold value in performance verification: 1) a structural analysis method using nonlinear FEM included modeling of material degradation, 2) a practical method using a threshold value, which is determined by structural analyses of RC box-culverts in sound condition, is multiplied by the allowable degradation ratio. (author)

  14. Brittle fracture in structural steels: perspectives at different size-scales.

    Science.gov (United States)

    Knott, John

    2015-03-28

    This paper describes characteristics of transgranular cleavage fracture in structural steel, viewed at different size-scales. Initially, consideration is given to structures and the service duty to which they are exposed at the macroscale, highlighting failure by plastic collapse and failure by brittle fracture. This is followed by sections describing the use of fracture mechanics and materials testing in carrying-out assessments of structural integrity. Attention then focuses on the microscale, explaining how values of the local fracture stress in notched bars or of fracture toughness in pre-cracked test-pieces are related to features of the microstructure: carbide thicknesses in wrought material; the sizes of oxide/silicate inclusions in weld metals. Effects of a microstructure that is 'heterogeneous' at the mesoscale are treated briefly, with respect to the extraction of test-pieces from thick sections and to extrapolations of data to low failure probabilities. The values of local fracture stress may be used to infer a local 'work-of-fracture' that is found experimentally to be a few times greater than that of two free surfaces. Reasons for this are discussed in the conclusion section on nano-scale events. It is suggested that, ahead of a sharp crack, it is necessary to increase the compliance by a cooperative movement of atoms (involving extra work) to allow the crack-tip bond to displace sufficiently for the energy of attraction between the atoms to reduce to zero. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuan; Liu, Leifeng [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Wikman, Stefan [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Cui, Daqing [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden)

    2016-03-15

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed. - Highlights: • The mechanical properties of SS316L made by selective laser melting fulfill RCC-MR. • SLM SS316L consists hierarchical structures of high heterogeneity. • Silicon rich oxide nano-inclusions are formed unexpectedly during SLM process. • Cellular structure and oxide nano-inclusions strengthen SLM SS316L.

  16. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  17. Effect of austenitization conditions on kinetics of isothermal transformation of austenite of structural steels

    International Nuclear Information System (INIS)

    Konopleva, E.V.; Bayazitov, V.M.; Abramov, O.V.; Kozlova, A.G.

    1987-01-01

    Effect of austenization of kinetics of pearlite and bainite transformations for steels with different carbon content differing by alloying character and degree has been investigated. Austenization temperature increase is shown to leads to retardation of ferrite-pearlite transformation in low- and medium-carbon alloyed steels. Step-like holding in the region of austenite stable state (850, 950 deg) after high-temperature heating (1100 deg C) increases the rate of transformation partially recovering its kinetics and decomposition velocity after low-temperature heating in steels alloyed advantageously with carbide-forming elements (08Kh2G2F, 30Kh3) and does not affect kinetics in the 35Kh, 30KhGSN2A, 45N5 steels. Increase of heating temperature and growth of an austenite grain cause considerable acceleration of bainite transformation, increase of the temperaure of bainite transformation beginning and increase of the transformation amplitude in the 08Kh2G2F, 30Kh3 steels and affect weakly kinetics in steels with mixed alloying (30KhGSN2A) or low-alloy one (35Kh). The bainite transformation rate in the 45N5 steelite does not depend on austenization. The effect of additional acceleration of bainite transformation as a result holding after high-temperature heating in those steels, where activation of transformation occurs with increase of heating temperature

  18. Estimation of structural strength of 38KhN3MFA steel, melted using different methods

    International Nuclear Information System (INIS)

    Kudrya, A.V.; Mochalov, B.V.; Fadeev, Yu.I.

    1982-01-01

    Quantity of steel melted by different methods using criteria of fracture mechanics is evaluated. Three technological variants of the 38KhN3MFA steel melting: acid Martin steel prepared by the duplex-process (melt 1); the main Martin steel melting with deoxidation and alloying in a ladle by liquid alloy and treatment with synthetic slag with argon purging after production (melt 2) and its electroslag remelt - ESP process (melt 3) are investigated. The analysis of the investigated melts has revealed that crack resistances of the acid Martin steel is higher than that of other melts at practically similar standard mechanical properties with 0.35 probability at 0.05 significance level in the low-tempered state; in the tempered state the best crack resistance is observed in the ESP main Martin steel. Metal of the main Martin melting has lower crack resistance as compared with other meltings at both strength levels. The results of the work point out the necessity of applying the criteria of fracture mechanics for obtaining an objective evaluation of the steel quality

  19. Evaluation of mechanical properties and nano-meso structures of 9–11%Cr ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, Takashi, E-mail: tanno.takashi@jaea.go.jp [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Ohtsuka, Satoshi; Yano, Yasuhide; Kaito, Takeji [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Oba, Yojiro; Ohnuma, Masato [National Institute for Materials Science, Tsukuba 305-1195 (Japan); Koyama, Shinichi; Tanaka, Kenya [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan)

    2013-09-15

    Highlights: • We successfully manufactured 11Cr-ODS steels with residual α-ferrite controlled. • Dispersion conditions of nano oxide particles were quantitatively characterized. • Tungsten solid solution could improve only tensile strength of ODS steels at 973 K. • Oxide dispersion strengthening was dominant in creep strength of ODS steels at 973 K. -- Abstract: This study carried out mechanical tests and microstructural characterizations of several 9Cr and 11Cr-ODS tempered martensitic steels. From those results, the appropriate chemical composition range of 11Cr-ODS tempered martensitic steel was discussed from the viewpoint of high temperature strength improvement. It was shown that the residual α-ferrite fraction in 11Cr-ODS steel was successfully controlled to the same level as the 9Cr-ODS steel, which has excellent high temperature strength, by selecting the chemical compositions on the basis of the multi-component phase diagram. The tensile strength decreased with decreasing W content from 2.0 to 1.4 wt%. On the other hand, creep strength at 973 K did not degrade by the decreasing W content. Both tensile strength and creep strength increased with increasing population of the nano-sized oxide particles. Small angle X-ray scattering analysis revealed that titanium and excess oxygen contents were key parameters in order to improve the dispersion conditions of nano-sized oxide particles.

  20. An investigation on vulnerability assessment of steel structures with thin steel shear wall through development of fragility curves

    OpenAIRE

    Mohsen Gerami; Saeed Ghaffari; Amir Mahdi Heidari Tafreshi

    2017-01-01

    Fragility curves play an important role in damage assessment of buildings. Probability of damage induction to the structure against seismic events can be investigated upon generation of afore mentioned curves. In current research 360 time history analyses have been carried out on structures of 3, 10 and 20 story height and subsequently fragility curves have been adopted. The curves are developed based on two indices of inter story drifts and equivalent strip axial strains of the shear wall. T...

  1. Method for detecting damage in carbon-fibre reinforced plastic-steel structures based on eddy current pulsed thermography

    Science.gov (United States)

    Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol

    2018-01-01

    Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.

  2. Studies on connecting structure between steel shell and steel reinforced concrete; Kokaku to tekkotsu tekkin concrete tono ketsugo kozo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, A. [Kinki University, Osaka (Japan). Faculty of Science and Engineering; Morikawa, H.; Ito, N. [Metropolitan Expressway Public Corp., Tokyo (Japan)

    1996-02-15

    On the insert reinforcing bar structure for the connecting part of the main tower of cable stayed bridges, this paper reports verification results on a load resistant safety with a full-scale model, structure analysis and construction work. The basic structure was composed of a drilled steel shell, inserted reinforcing bars, fixing structure of bars in lining concrete of the shell and a pressure bearing plate. As an experimental result, the connecting part had a sufficient load carrying capacity against both tensile and compressive loads. The shear stress of the insert reinforcing bar structure was estimated successfully under von Mises`s condition. The shear spring constant in deformation characteristics was linearly proportional to an inserted reinforcing bar ratio. In earthquake, nearly 60% of an allowable compressive load was transferred to concrete through the pressure bearing plate. The analytical results of load resistant deformation characteristics of the connecting part well agreed with experimental ones, and the proposed analytical model was applicable to estimation of a dynamic behavior. 5 refs., 22 figs., 4 tabs.

  3. Connection behaviour and the robustness of steel-framed structures in fire

    Directory of Open Access Journals (Sweden)

    Burgess Ian

    2018-01-01

    Full Text Available The full-scale fire tests at Cardington in the 1990s, and the collapse of at least one of the WTC buildings in 2001, illustrated that connections are potentially the most vulnerable parts of a structure in fire. Fracture of connections causes structural discontinuities and reduces the robustness provided by alternative load paths. An understanding of connection performance is essential to the assessment of structural robustness, and so to structural design against progressive collapse. The forces and deformations to which connectionscan be subjected during a fire differ significantly from those assumed in general design. The internal forces i generally start with moment and shear at ambient temperature, then superposing compression in the initial stages of a fire, which finally changes to catenary tension at high temperatures. If a connection does not have sufficient resistance or ductility to accommodate simultaneous large rotations and normal forces, then connections may fracture, leading to extensive damage or progressive collapse of the structure. Practical assessment of the robustness of steel connections in fire will inevitably rely largely on numerical modelling, but this is unlikely to include general-purpose finite element modelling, because of the complexity of such models. The most promising alternative is the component method, a practical approach which can be included within global three-dimensional frame analysis. The connection is represented by an assembly of individual components with known mechanical properties. Component characterization must include high-deflection elevated-temperature behaviour, and represent it up to fracture.In reality a connection may either be able to regain its stability after the initial fracture of one (or a few components, or the first failure may trigger a cascade of failures of other components, leading to complete detachment of the supported member. Numerical modelling must be capable of

  4. Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel

    Directory of Open Access Journals (Sweden)

    Luca Camilli

    2012-05-01

    Full Text Available We have taken advantage of the native surface roughness and the iron content of AISI-316 stainless steel to grow multiwalled carbon nanotubes (MWCNTs by chemical vapour deposition without the addition of an external catalyst. The structural and electronic properties of the synthesized carbon nanostructures have been investigated by a range of electron microscopy and spectroscopy techniques. The results show the good quality and the high graphitization degree of the synthesized MWCNTs. Through energy-loss spectroscopy we found that the electronic properties of these nanostructures are markedly different from those of highly oriented pyrolytic graphite (HOPG. Notably, a broadening of the π-plasmon peak in the case of MWCNTs is evident. In addition, a photocurrent was measured when MWCNTs were airbrushed onto a silicon substrate. External quantum efficiency (EQE and photocurrent values were reported both in planar and in top-down geometry of the device. Marked differences in the line shapes and intensities were found for the two configurations, suggesting that two different mechanisms of photocurrent generation and charge collection are in operation. From this comparison, we are able to conclude that the silicon substrate plays an important role in the production of electron–hole pairs.

  5. On the composition and structure of nanoprecipitates in irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.; Liu, C.L.; Wirth, B.D.

    1997-01-01

    Nanoscale Cu rich precipitates (CRPs) are widely believed to be the dominant hardening feature resulting in severe embrittlement in irradiated reactor pressure vessel (RPV) steels. However, this view has recently been challenged by interpretations of atom probe field ion microscopy (APFIM) measurements that describe the dominant nanofeatures as dilute solute atmospheres (DSAs). The practical impact of these differing views is very significant. This work compares and contrasts the CRP versus DSA descriptions to a wide variety of pertinent data. Mechanical property trends as well as small angle neutron scattering (SANS) and field emission scanning transmission electron microscopy (FEGSTEM) measurements support the presence of CRPs. CRPs are also consistent with the fundamental thermodynamic and kinetic laws. However, standard theory cannot provide the atomic level resolution needed to fully understand the nanofeatures. Therefore, a new Lattice Monte Carlo (LMC) atomistic method is used to simulate the complex chemical structures of the CRPs. The LMC method unifies the SANS/FEGSTEM and APFIM data within a well founded physical framework

  6. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    Directory of Open Access Journals (Sweden)

    J.A.F.O. Correia

    2015-01-01

    Full Text Available A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force assessment, allowing mean stresses and loading sequential effects to be modelled. An extension of the fatigue crack propagation model originally proposed by Noroozi et al. (2005 to derive probabilistic fatigue crack propagation data is proposed, in particular concerning the derivation of probabilistic da/dN-ΔK-R fields. The elastic-plastic stresses at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using an elasticplastic finite element analyses for specimens considered in the experimental program proposed to derive the fatigue crack propagation data. Using probabilistic strain-life data available for the S355 structural mild steel, probabilistic crack propagation fields are generated, for several stress ratios, and compared with experimental fatigue crack propagation data. A satisfactory agreement between the predicted probabilistic fields and experimental data is observed.

  7. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    Science.gov (United States)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  8. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    International Nuclear Information System (INIS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-01-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 10 17 ions/cm 2 . The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, Cr x C y phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties

  9. Friction Hydro-Pillar Processing of a High Carbon Steel: Joint Structure and Properties

    Science.gov (United States)

    Kanan, Luis Fernando; Vicharapu, Buchibabu; Bueno, Antonio Fernando Burkert; Clarke, Thomas; De, Amitava

    2018-04-01

    A coupled experimental and theoretical study is reported here on friction hydro-pillar processing of AISI 4140 steel, which is a novel solid-state joining technique to repair and fill crack holes in thick-walled components by an external stud. The stud is rotated and forced to fill a crack hole by plastic flow. During the process, frictional heating occurs along the interface of the stud and the wall of crack hole leading to thermal softening of the stud that eases its plastic deformation. The effect of the stud force, its rotational speed and the total processing time on the rate of heat generation and resulting transient temperature field is therefore examined to correlate the processing variables with the joint structure and properties in a systematic and quantitative manner, which is currently scarce in the published literature. The results show that a gentler stud force rate and greater processing time can promote proper filling of the crack hole and facilitate a defect-free joint between the stud and original component.

  10. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    Science.gov (United States)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  11. Numerical Study on the Structural Performance of Steel Beams with Slant End-plate Connections

    Directory of Open Access Journals (Sweden)

    Farshad Zahmatkesh

    Full Text Available Abstract Thermal effects can be one of the most harmful conditions that any steel structure should expect throughout its service life. To counteract this effect, a new beam, with a capability to dissipate thermally induced axial force by slanting of end-plate connection at both ends, is proposed. The beam was examined in terms of its elastic mechanical behavior under symmetric transverse load in presence of an elevated temperature by means of direct stiffness finite element model. The performance of such connection is defined under two resisting mechanisms; by friction force dissipation between faces of slant connection and by small upward crawling on slant plane. The presented numerical method is relatively easy and useful to evaluate the behavior of the proposed beam of various dimensions at different temperatures. Its applicability is evident through satisfactory results verification with those from experimental, analytical and commercially available finite element software. Based on the good agreement between theoretical and experimental methods, a series of design curves were developed as a safe-practical range for the slant end-plate connections which are depend on the conditions of the connection.

  12. Geometrically and material non-linear analysis of bubble condenser steel structure

    International Nuclear Information System (INIS)

    Gyoergyi, J.; Lenkei, P.

    2003-01-01

    In frame of the project funded by the European Commission (EC) through the Phare and Tacis Programmes experimentally investigate the behaviour of the bubble condenser system (BCS) during phenomena induced by postulated design basis accidents (DBA). The bubble condenser steel structure consists of 12 trays. To enable the Bubble Condenser Test Prototype to be representative of the majority of trays and sections, it was decided to model a typical tray. The test results demonstrate the integrity of the standard tray pressure retaining boundary (side wall, face wall, ceiling and bottom) against a differential pressure (30 kPa). The stability of the side wall and the face wall of tray level 12 was not assured for this differential pressure. The thermal-hydraulic tests demonstrate that the maximum differential pressure across the tray walls in the case of Large Break Loss of Coolant Accident (LBLOCA) is 20 kPa. We have got from the experiences the differential pressure in function of time. The results of the approximate calculations showed the effect of nonlinearly. In case of calculation by FEM model we have done the elastic and linear analyses, and calculated with the geometrically and material non-linearity. (author)

  13. A thermo-metallurgical constitutive law of steels for structural mechanics

    International Nuclear Information System (INIS)

    Waeckel, Francois

    1994-01-01

    The aim of this work is to include the metallurgical behaviour of steels (and specifically their phases transformations) into thermo-mechanical studies. For this, a new model of aniso-thermal phase transformations during the cooling stage is proposed. Developed in the thermodynamics framework of simple materials with memory variables, its originality lies in the choice of the temperature time derivative T as independent variable. The identification and the transformation rates computation use the C.C.T. diagrams which are considered as families of particular solutions of evolution equations. The validation shows ability of the model to simulate all C.C.T. deductible tests. Furthermore, for some tests not included into the C.C.T., the numerical results remain good and the model, from which evolution equation form has been let free, allows to incorporate them to the identification data without modifying the C.C.T. simulation accuracy. Lastly, to take into account structural transformations mechanical effects, some currently used models have been introduced, together with the metallurgical model, in a finite element code. They allow whole quenching or welding simulations (up to residual stresses) as demonstrated by application examples. (author) [fr

  14. Properties of structural steels melted out of high-purity charge

    International Nuclear Information System (INIS)

    Marchenko, V.N.; Sergeeva, T.K.; Kondakova, N.K.; Morozov, V.P.; Madorskij, L.L.

    1993-01-01

    A comparative evaluation has been made of impurities, mechanical properties and hydrogen embirittlement parameters for steels type 40Kh and 40KhS produced by electrometallurgical method with the use of direct reduced charge (DR-steels) and melted in an open-hearth furnace. Investigation results have shown that 40Kh and 40KhS Dr-steels have more coarse austenitic grains and experience more complete transformation of martensite into ferritic-pearlitic mixture on tempering. Threshold stresses increase 2.5 times due to purity enhancement at the expense of application of direct reduced charge

  15. Fatigue crack detection on structural steel members by using ultrasound excited thermography

    International Nuclear Information System (INIS)

    Plum, Robin Marc

    2015-01-01

    In the field of non-destructive testing (NDT), ultrasound excited thermography has been recognised as a promising technique that was successfully applied to metals, fibre composites and many more engineering materials in order to detect cracks, delaminations and other types of internal flaws. Dating back to the late 1970s, the idea of high-frequency vibration excitation of structural members combined with monitoring the surface temperature by means of infrared thermography aims at the localised energy dissipation at defect regions and its thermal detection. The purpose of this thesis is to investigate the potential use of ultrasound excited thermography for detecting surface breaking fatigue cracks in thick-walled components relevant to steel construction. The presented research is motivated by a lack of fast and imaging crack detection methods in the field and the growing acceptance and technological progress of active thermography techniques. After introducing the concept of ultrasound excited thermography or vibrothermography, its current state of the art is described by means of a comprehensive literature review focusing on research activities towards crack detection on metals. Owing to the interdisciplinarity of the test method, all relevant technical subdisciplines from the excitation of plate vibrations via potential heat generation mechanisms and heat transfer to infrared thermography are outlined. The experimental work starts with the manufacture and fatigue loading of suitable plate specimens made from low-carbon steel S355, mostly in the high cycle fatigue regime, to generate throughthickness cracks with specified depths. Using a modified high-power ultrasonic welding generator, basic dependencies of the defect heating on frequency, coupling location and excitation duration are clarified at first. Besides of an estimation of realistic detection limits depending on the plate thickness, main issues such as the relation between vibration intensity and

  16. Fatigue crack detection on structural steel members by using ultrasound excited thermography

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Robin Marc

    2015-07-01

    In the field of non-destructive testing (NDT), ultrasound excited thermography has been recognised as a promising technique that was successfully applied to metals, fibre composites and many more engineering materials in order to detect cracks, delaminations and other types of internal flaws. Dating back to the late 1970s, the idea of high-frequency vibration excitation of structural members combined with monitoring the surface temperature by means of infrared thermography aims at the localised energy dissipation at defect regions and its thermal detection. The purpose of this thesis is to investigate the potential use of ultrasound excited thermography for detecting surface breaking fatigue cracks in thick-walled components relevant to steel construction. The presented research is motivated by a lack of fast and imaging crack detection methods in the field and the growing acceptance and technological progress of active thermography techniques. After introducing the concept of ultrasound excited thermography or vibrothermography, its current state of the art is described by means of a comprehensive literature review focusing on research activities towards crack detection on metals. Owing to the interdisciplinarity of the test method, all relevant technical subdisciplines from the excitation of plate vibrations via potential heat generation mechanisms and heat transfer to infrared thermography are outlined. The experimental work starts with the manufacture and fatigue loading of suitable plate specimens made from low-carbon steel S355, mostly in the high cycle fatigue regime, to generate throughthickness cracks with specified depths. Using a modified high-power ultrasonic welding generator, basic dependencies of the defect heating on frequency, coupling location and excitation duration are clarified at first. Besides of an estimation of realistic detection limits depending on the plate thickness, main issues such as the relation between vibration intensity and

  17. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Mori, Kentaro, E-mail: kentaro_mori@mhi.co.jp [Mitsubishi Heavy Industries, Ltd, Kobe (Japan)

    2015-12-15

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  18. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    International Nuclear Information System (INIS)

    Booth, Peter N.; Varma, Amit H.; Sener, Kadir C.; Mori, Kentaro

    2015-01-01

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  19. Numerical thermal analysis of the vertical external partition made as the frame thin-walled steel structure

    Directory of Open Access Journals (Sweden)

    Major Maciej

    2017-01-01

    Full Text Available The article presents numerical thermal analysis of the vertical external partitions made in the lightweight steel framing technology. Steel posts that perform the structural role lead to the formation of linear thermal bridges and have a negative effect on the level of thermal transmittance U. Therefore, optimal solutions are being explored for such technologies. One of the solutions is to use perforated Thermo sections. The effect of perforated Thermo sections on energy loss was verified through comparison to the wall made of solid sections. Furthermore, the calculations analysed the effect of linear thermal bridges that are formed on wall connections in the corner. Computer simulation was employed to emphasize the significant differences in the temperature distribution in both analysed wall structures that resulted from constructional solutions.

  20. Isostatic lines’ study to optimize steel space grid envelope structures for tall buildings according to their solicitations

    OpenAIRE

    Señís López, Roger

    2013-01-01

    Based on the first study completed with wind tunnel tests, the aim of this paper is to define a second methodology for the optimization of steel space grid envelope structures for tall buildings according to their isostatic lines according to their solicitations. It is by means of the comparison NatHaz online database and numerical simulation research of wind flow repercussion in buildings, through Computational Fluid Dynamics (CDF), that we can understand and analyse the grid ...

  1. Viscous-Fluid-Spring Damper Retrofit of a Steel Moment Frame Structure

    International Nuclear Information System (INIS)

    Hussain, Saif; Van Benschoten, Paul; Al Satari, Mohamed; Lin, Silian

    2008-01-01

    The subject building is a peculiar pre-Northridge steel moment resisting frame building. Upon investigating the existing lateral resisting system, numerous significant deficiencies were identified; inherent lack of redundancy, poor geometry and inadequate stiffness of the lateral resisting system. All of which resulted in an extremely soft 5-story structure with a primary torsional mode of vibration at T 1 = 5.46 s. Significant structural modifications were deemed necessary to meet the ''life-safety'' performance objective as outlined in rehabilitation standards such as ASCE 41. Both increased stiffness and damping were required to adequately retrofit the building. Furthermore, adjacent building separation as well as deformation compatibility issues needed to be addressed and resolved. A three-dimensional computer model of the building was created using ETABS mathematically simulating the building's dynamic characteristics in its current condition. Multiple seismic retrofit systems were investigated such as Buckling Restrained Braced Frames (BRBF's). However, based on the performance effectiveness and constructability of the retrofit schemes studied, the Viscous-Fluid-Spring Damper (VFSD) system was proposed as the ''optimum'' solution for the building. The VFSD, was chosen because it combines the relatively compact size and minimally invasive constructability with the required properties (an elastomeric spring in parallel with a nonlinear velocity dependent viscous damper). A site-specific response spectrum was developed for the Design Basis Earthquake (DBE, 475 year return period) event, and three pairs of representative earthquake horizontal ground motion time-histories were scaled to match this DBE. The proposed scheme reduced the building maximum inter-story drift ratio from 5.4% to about 1%. Similarly, the maximum roof displacement was reduced by about 70% (23'' to 7'')

  2. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  3. Magnetic Properties and Structure of Non-Oriented Electrical Steel Sheets after Different Shape Processing

    Czech Academy of Sciences Publication Activity Database

    Bulín, Tomáš; Švábenská, Eva; Hapla, Miroslav; Ondrůšek, Č.; Schneeweiss, Oldřich

    2017-01-01

    Roč. 131, č. 4 (2017), s. 819-821 ISSN 0587-4246. [CSMAG 2016 - Czech and Slovak Conference on Magnetism /16./. Košice, 13.06.2016-17.06.2016] R&D Projects: GA TA ČR(CZ) TE02000232 Institutional support: RVO:68081723 Keywords : Magnetic properties * Silicon steel * Steel sheet Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  4. Design and experimental analysis of a new shear connector for steel and concrete composite structures

    OpenAIRE

    Veríssimo, G. S.; Paes, J. L. R.; Valente, Isabel; Cruz, Paulo J. S.; Fakury, R. H.

    2006-01-01

    This work presents the design of a new shear connector and the corresponding results obtained on push-out tests. This new shear connector consists on a steel rib with indented cut shape that provides resistance to longitudinal shear and prevents transversal separation between the concrete slab and the steel profile (uplift). Adding to this, the connector openings cut makes easier the arrangement of transversal reinforcement bars. The installation of the connectors is simple and requires only ...

  5. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma

    International Nuclear Information System (INIS)

    Becerril R, F.

    1999-01-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as γN which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  6. Effect of Structure Factor on High-Temperature Ductility of Pipe Steels

    Science.gov (United States)

    Kolbasnikov, N. G.; Matveev, M. A.; Mishnev, P. A.

    2016-05-01

    Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zone of secondary cooling in a Gleeble facility is performed. Technical recommendations are given for raising the hot ductility of steels under industrial conditions.

  7. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    International Nuclear Information System (INIS)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M.

    2016-01-01

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm"2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  8. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Calderon, M., E-mail: mmcalderon@ceit.es [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M. [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2016-06-30

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm{sup 2} were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  9. Modelling and simulation of the influence of forming processes on the structural behavior of high strength steels

    International Nuclear Information System (INIS)

    Gelin, J.C.; Thibaud, S.; Boudeau, N.

    2005-01-01

    The paper first describes experiments and modeling concerning the identification of material behavior for high strength steels with phase transformations associated to plastic deformation. The experiments consist of tensile and bulging tests carried out on 316L stainless steels and TRIP 700 steels used in automotive industry. These experiments have permitted to determine the hardening curves of such materials vs. the martensite volume fraction associated to plastic deformation. It has been demonstrated that the stress triaxiality has a major role in the martenstic transformation and a model is proposed to define the flow stress vs. effective strain accounting planar anisotropy and variation of martenstic volume fraction. Then a plasticity model has been proposed in an anisotropic form and the related flow rules have been defined. The resulting model has been implemented in different finite elements software, and applied in numerical simulations of stamping and hydroforming of typical components to prove the effects of forming processes on the resulting properties of the components. Finally, the structural behavior of the resulting components is investigated and the effects of forming processes on the resulting structural behaviour are analyzed. Two cases are presented, one concerns the deep drawing of a cylindrical cup and the other concerns the stamping of a closed U channel used as a structural part for crash frames. Is has been clearly proved that the variation of martensite volume fraction arising during processing has a strong influence on the resulting behaviour of the parts considering springback and crash resistance

  10. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL-MOLYBDENUM STEEL WITH WELDING FUNCTION

    OpenAIRE

    V. A. Lutsenko

    2012-01-01

    There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  11. Study on the Effect of Secondary Banded Structure on the Fatigue Property of Non-Quenched and Tempered Micro Alloyed Steel

    Science.gov (United States)

    Yajie, Cheng; Qingliang, Liao; Yue, Zhang

    Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.

  12. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.

    Science.gov (United States)

    Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T

    2013-04-01

    Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with

  13. A comparison of tensile, fracture and fatigue mechanical behaviour of structural reinforcing bars made with different steels

    Directory of Open Access Journals (Sweden)

    Rodríguez, C.

    2013-09-01

    Full Text Available The use of austenitic stainless steels as rebar is an option increasingly used in reinforced concrete structures exposed to aggressive environments and especially those that have to work in marine environments. The same is true for duplex stainless steel rebars, although nowadays they have a lower use, mainly due to the fact that their inclusion in the reinforced concrete standards was delayed 10 years compared to austenitic stainless steel ones, and consequently their in-service behavior is not as well known. A study of the mechanical properties, including fracture toughness, fatigue behaviour and corrosion resistance in saline alkaline environments of austenitic (AISI 304LN and 316LN and duplex (D2205 stainless steel reinforcing bars was performed in this work. Bars made on a high ductility carbon steel (B500SD that are normally used to reinforce concrete were also characterized and used as a comparison. Stainless steel reinforcing bars show mechanical properties at least similar but usually higher than one of the best carbon steel re-bars (B500SD, along with a significantly higher ductility and, of course, much better corrosion behaviour in saline alkaline environments.El uso de aceros inoxidables austeníticos como armaduras de refuerzo es una opción cada vez más utilizada en estructuras de hormigón armado expuestas a ambientes agresivos y especialmente en las que han de trabajar en ambientes marinos. Lo mismo cabe decir de las armaduras de acero inoxidable dúplex, si bien su uso es menor, debido sobre todo a que su inclusión en la normativa aplicable al armado de hormigón se retrasó 10 años con respecto a los inoxidables austeníticos y, consecuentemente, su comportamiento en servicio es menos conocido. En este trabajo se analiza el comportamiento mecánico, incluyendo fractura y fatiga, así como la resistencia a la corrosión en medios que simulan un hormigón contaminado de cloruros, de armaduras fabricadas tanto con

  14. Financial aspects of a seismic base isolation system for a steel high-rack structure

    Directory of Open Access Journals (Sweden)

    Kilar, V.

    2013-12-01

    Full Text Available The paper deals with the effects and costs of implementing a base isolation system for the mitigation of the seismic risk of an existing steel rack structure. Different realistic distributions of the payload mass and occupancy levels, which form different plan asymmetric variants, have been analysed. The results obtained by the pushover analysis (N2 method are presented as top floor envelopes and as plastic hinge damage patterns. In the presented cost study, the cost of the implementation of the proposed base isolation system is compared with the estimated costs of structural repairs to the damaged structural members of the superstructure, as well as with estimated expenses of the downtime period. The results have shown that base isolation is, in general, not economically feasible for lower ground motion intensities, whereas it could be of great benefit in the case of moderate and high intensities, especially if the downtime period is taken into account.El presente artículo trata sobre los efectos y costes de implementación de un sistema de aislamiento en cimentación para la mitigación del riesgo sísmico de la estructura de un bastidor de acero en altura prexistente. Se han analizado diferentes distribuciones realistas de la masa contribuyente y de los niveles de ocupación, conformando diferentes variantes asimétricas en planta. Se presentan los resultados obtenidos mediante el método N2 (análisis estático incremental no lineal como envolventes de las plantas superiores y como patrones de deterioro en estado plástico. En el estudio de costos presentado, el coste de implementación del sistema de aislamiento propuesto se compara con los costes estimados de reparación de los elementos superestructurales y los costes derivados del período de desocupación. Los resultados muestran que, en general, el aislamiento en la base no resulta viable económicamente para movimientos de baja intensidad, pero puede ser muy beneficioso en el caso de

  15. Specific Features of Structural-Phase State and Properties of Reactor Pressure Vessel Steel at Elevated Irradiation Temperature

    Directory of Open Access Journals (Sweden)

    E. A. Kuleshova

    2017-01-01

    Full Text Available This paper considers influence of elevated irradiation temperature on structure and properties of 15Kh2NMFAA reactor pressure vessel (RPV steel. The steel is investigated after accelerated irradiation at 300°C (operating temperature of VVER-1000-type RPV and 400°C supposed to be the operating temperature of advanced RPVs. Irradiation at 300°C leads to formation of radiation-induced precipitates and radiation defects-dislocation loops, while no carbide phase transformation is observed. Irradiation at a higher temperature (400°C neither causes formation of radiation-induced precipitates nor provides formation of dislocation loops, but it does increase the number density of the main initial hardening phase—of the carbonitrides. Increase of phosphorus concentration in grain boundaries is more pronounced for irradiation at 400°C as compared to irradiation at 300°C due to influence of thermally enhanced diffusion at a higher temperature. The structural-phase changes determine the changes of mechanical properties: at both irradiation temperatures irradiation embrittlement is mainly due to the hardening mechanism with some contribution of the nonhardening one for irradiation at 400°C. Lack of formation of radiation-induced precipitates at T = 400°C provides a small ΔTK shift (17°C. The obtained results demonstrate that the investigated 15Kh2NMFAA steel may be a promising material for advanced reactors with an elevated operating temperature.

  16. Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Silva Diniz, D.; Almeida Silva, A. [Federal University of Campina Grande, Campina Grande-PB (Brazil); Andrade Barbosa, J.M. [Federal University of Pernambuco, Recife-PE (Brazil); Palma Carrasco, J.

    2012-05-15

    This paper presents a numerical simulation of the effect of hydrogen atomic diffusion on fatigue crack propagation on structural steels. The simulation was performed with a specimen type CT of API 5CT P110 steel, loaded in the tensile opening mode, in plane strain state and under the effects of a cyclic mechanical load and the hydrogen concentration at the crack tip. As hydrogen source, a cathodic protection system was considered, commonly used in subsea pipelines. The equations of evolution of variables at the crack tip form a non-linear system of ordinary differential equations that was solved by means of the 4th order Runge-Kutta method. The solid-solid diffusion through the lattice ahead of the crack tip was simulated using the finite difference method. The simulations results show that under these conditions, the fatigue crack evolution process is enhanced by the hydrogen presence in the material, and that the start time of the crack propagation decreases as its concentration increases. These results show good correlation and consistency with macroscopic observations, providing a better understanding of hydrogen embrittlement in fatigue crack propagation processes in structural steels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    International Nuclear Information System (INIS)

    Zhao, Xuefeng; Cui, Yanjun; Kong, Xianglong; Wei, Heming; Zhang, Pinglei; Sun, Changsen

    2013-01-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost. (paper)

  18. Sensitivity of Microstructural Factors Influencing the Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure using Multiple Regression Analysis

    International Nuclear Information System (INIS)

    Lee, Seung-Yong; Lee, Sang-In; Hwang, Byoung-chul

    2016-01-01

    In this study, the effect of microstructural factors on the impact toughness of hypoeutectoid steels with ferrite-pearlite structure was quantitatively investigated using multiple regression analysis. Microstructural analysis results showed that the pearlite fraction increased with increasing austenitizing temperature and decreasing transformation temperature which substantially decreased the pearlite interlamellar spacing and cementite thickness depending on carbon content. The impact toughness of hypoeutectoid steels usually increased as interlamellar spacing or cementite thickness decreased, although the impact toughness was largely associated with pearlite fraction. Based on these results, multiple regression analysis was performed to understand the individual effect of pearlite fraction, interlamellar spacing, and cementite thickness on the impact toughness. The regression analysis results revealed that pearlite fraction significantly affected impact toughness at room temperature, while cementite thickness did at low temperature.

  19. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  20. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  1. Effects of Nb on microstructure and continuous cooling transformation of coarse grain heat-affected zone in 610 MPa class high-strength low-alloy structural steels

    International Nuclear Information System (INIS)

    Zhang, Y.Q.; Zhang, H.Q.; Liu, W.M.; Hou, H.

    2009-01-01

    Continuous cooling transformation diagrams of the coarse grain heat-affected zone and microstructure after continuous cooling were investigated for 610 MPa class high-strength low-alloy (HSLA) structural steels with and without niobium. For the steel without Nb, grain boundary ferrite, degenerate pearlite and acicular ferrite are produced at slower cooling rates. Bainite phase is formed at faster cooling rates. However, for the steel with Nb, granular bainite is dominant at a large range of cooling rates. At cooling rates 32 K/s, Nb addition has no obvious influence on transformation start temperature, but it influences microstructure transformation significantly. Martensite is observed in steel with Nb at faster cooling rates, but not produced in steel without Nb

  2. Structure of a Wear-Resistant Medium-Carbon Steel After Hot Deformation in Hammer Dies and Heat Treatment

    Science.gov (United States)

    Knyazyuk, T. V.; Petrov, S. N.; Ryabov, V. V.; Khlusova, E. I.

    2018-01-01

    The structure of model specimens and articles fabricated from medium-carbon high-strength steels is studied for developing modes of forming of working members of tilling machines with cutting edges thinned without the expensive operation of electromachining. The effect of the temperature of heating of billets on the grain size of austenite is determined. The kinetics of recrystallization is studied in the temperature, rate and strain ranges typical for hot forming. A quantitative crystallographic analysis of the microstructure is performed by the EBSD technique. The degrees of distortion of the crystal lattices of structural components and the mean sizes of martensite blocks are determined.

  3. The design of the frame structure used in integral hosting of the nuclear island steel lining cylinder module and problems analysis

    International Nuclear Information System (INIS)

    Yu Xinian; Liu Xiao; Wang Jianguo

    2011-01-01

    The use of the steel frame in the integral hosting of nuclear island steel lining cylinder module made a breakthrough in China's nuclear power construction. The deformation of the cylinder wall is the key issue in the integral lifting process of the nuclear island steel lining. Using the frame in lifting large and thin steel cylinder, the form of frame structure and its deformation will directly affect the radial deformation of the lifted cylinder, the buckling deformation of the distal cylinder, and the cylinder's deformation surround the penetrations. The diameter of nuclear island steel liner is 44 meters. The wall of the cylinder is thin, and the total weight of the cylinder itself and its attached penetrations, walkways and lifting tools, etc. is up to 120 tons, which not only increase the difficulty of lifting, but also have some risks. To ensure the cylinder deformation within the limits, this thesis establishes the parameter structure for the lifting frame, calculates the displacement and analyzes the axial stresses, based on the ANSYS finite element analysis software. The results showed that the models and parameters for integral hosting of the steel lining cylinder modular frame structure is reasonable and feasible, and analyzing the hosting-frame data is necessary, which lay the foundation for the design of the hosting frame and the eventual implementation of the integral hosting scheme of the steel lining cylinder module. (authors)

  4. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  5. Investigation of impact phenomena on the marine structures: Part II - Internal energy of the steel structure applied by selected materials in the ship-ship collision incidents

    Science.gov (United States)

    Prabowo, A. R.; Baek, S. J.; Lee, S. G.; Bae, D. M.; Sohn, J. M.

    2018-01-01

    Phenomena of impact loads on the marine structures has attracted attention to be predicted regarding its influences to structural damage. This part demands sustainable analysis and observation as tendency may vary from one to others since impact involves various scenario models and the structure itself experiences continuous development. Investigation of the damage extent can be conducted by observation on the energy behaviour during two entities involve in a contact. This study aimed to perform numerical investigation to predict structural damage by assessing absorbed strain energy represented by the internal energy during a series of ship collisions. The collision target in ship-ship interactions were determined on the single and double hulls part of a passenger ship. Tendency of the internal energy by the steel structures was summarized, and verification was presented by several crashworthiness criteria. It was found that steel structures applied by the material grades A and B produced different tendencies compared to the material grades D and E. Effect of the structural arrangement to structural responses in terms of strain and stress indicated that the single hull presented contour expansion mainly on the longitudinal directions.

  6. Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel

    Directory of Open Access Journals (Sweden)

    Huiru Wang

    2017-07-01

    Full Text Available This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m2. In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.

  7. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    Science.gov (United States)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  8. Safety conditions of using structural steels under high temperature and pressures in hydrogen containing environment

    International Nuclear Information System (INIS)

    Asviyan, M.B.

    1984-01-01

    The method for establishing full-strength conditions was suggested on the base of results of creep-rupture test of tube samples under hydrogen pressure and according to permissible stresses in neutral medium. Applicability of the method was considered taking St3 and 12KhM steels as examples. It was shown that the use of suggested dependences and special efficiency factors enables to forecast endurance limit for the given steel grade and assigned partial hydrogen pressure without labour-intensive test conducting

  9. Hot working effect on austenite transformations in structural steel in continuous cooling

    International Nuclear Information System (INIS)

    Zajmovskij, V.A.; Kisteh, N.V.; Samedov, O.V.

    1979-01-01

    Austenite transformations in 40, 40Kh, 40KhN and 40KhNMA steels under hot working at 900 deg C with 20% reduction degree and continuous cooling with 1,7-16 0 /s are investigated. Changing of cooling rate in various ways affects the temperature range of austenite transformation in pearlite and bainite regions. Regulating the cooling rate after hot working one can essentially change the impact strength and steel ductility as a result of high temperature thermomechanical treatment effect

  10. Mechanical properties of metastable austenitic steels, strengthened by hydroextruction and structural hardening

    International Nuclear Information System (INIS)

    Beresnev, B.I.; Georgieva, I.Ya.; Eshchenko, R.N.; Teplov, V.A.

    1981-01-01

    Different regimes of complex strengthening of steels of Fe-Ni-Mo-C system by phase hardening and plastic deformation by hydroextrusion are investigated. It is stated that the degree of strengthening depends on consequence of strengthening operations. Plastic deformation by hydroextrusion of steels stre--ngthened by phase hardening ensures increase of strength (Δσsub(0.2)=500 MPa) at high plasticity (delta=25%). Maximal values of strength properties can be achieved if hydroextrusion is conducted before and after thansverse α→γ-transformation [ru

  11. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels

    International Nuclear Information System (INIS)

    Certain, Alicia G.; Kuchibhatla, Satyanarayana; Shutthanandan, V.; Allen, T. R.

    2013-01-01

    Nanostructured oxide dispersion strengthened (ODS) steels are considered candidates for nuclear fission and fusion applications at high temperature and dose. The complex oxide nanoclusters in these alloys provide high-temperature strength and are expected to afford better radiation resistance. Proton, heavy ion, and neutron irradiations have been performed to evaluate cluster stability in 14YWT and 9CrODS steel under a range of irradiation conditions. Energy-filtered transmission electron microscopy and atom probe tomography were used in this work to analyze the evolution of the oxide population.

  12. A study of the formation of Cr-surface alloyed layer on structural alloy steel by Co2 laser

    International Nuclear Information System (INIS)

    Kim, T.H.; Han, W.S.

    1986-01-01

    In order to improve wear and erosion-resistances of a structural alloy steel (SNCM 8) during heat-cycling, chromium-alloyed layers were produced on the surface by irradiating Co 2 laser. Specimens were prepared either by electroplating of hard-chromium or coating of chromium powders on the steel followed by the laser treatment. Index values, which related the depth and the width of the alloyed layers to the scanning speed of laser, for both samples are experimentally measured. At a fixed scanning speed, while both samples resulted in a similar depth of the alloyed layers, the chromium powder coated specimen showed larger width of the alloyed layer than the chromium electroplated one. The hardness values of the alloyed layers in both samples were slightly lower than that of the martensitic region beneath the alloyed layers. But they are considerably higher than those of steel matrices. Regardless of the prior treatments before laser irradiation, distributions of chromium were fairly uniform throughout the alloyed layers. (Author)

  13. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    Science.gov (United States)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-07-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were systematically investigated by high-resolution transmission electron microscopy. The majority of oxide nanoparticles were identified to be orthorhombic YAlO3. During hot consolidation and extrusion, they develop a coherent interface and a near cuboid-on-cube orientation relationship with the ferrite matrix in the material. After annealing at 1200 °C for 1 h, however, the orientation relationship between the oxide nanoparticles and the matrix becomes arbitrary, and their interface mostly incoherent. Annealing at 1300 °C leads to considerable coarsening of oxide nanoparticles, and a new orientation relationship of pseudo-cube-on-cube between oxide nanoparticles and ferrite matrix develops. The reason for the developing interfaces and orientation relationships between oxide nanoparticles and ferrite matrix under different conditions is discussed.

  14. Effect Of Age And Concrete Cover Thickness On Steel Reinforcement Corrosion At Splash Zone In Reinforced Concrete Hydraulic Structures

    Directory of Open Access Journals (Sweden)

    Nada M. Al- Galawi

    2015-08-01

    Full Text Available Corrosion of reinforcing steel bars in reinforced concrete is considered as one of the biggest problems that face countries overlooking to the Arabian Gulf including Iraq. The research aims to study the effect of the corrosion of steel bars in concrete structures that are exposed to wetting and drying via waves. Reinforced concrete samples were exposed to marine simulated environment for 90 days using prepared system for this purpose. At the end of exposure period polarization test was implemented to measure the actual corrosion rate in each sample. After that the corrosion process was accelerated using impressed current technique by applying a constant electric current DC to the reinforcing bars. Depending on the corrosion current in natural conditions which was measured in polarization test periods of exposing samples to accelerated corrosion current so as to maintain virtual exposure ages of 5 and 25 years of exposure to natural corrosion were calculated. The results showed a remarkable increase in the corrosion current of steel bars in samples that had lower concrete cover thickness. The increase in the cover thickness from 20mm to 40 and 65 mm had a significant effect on reducing the corrosion current at the age of 90 days to about 70 of its original value in both cases. At the virtual exposure age of 5 years the reduction percentage in the corrosion current resulted from increasing cover thickness from 20mm to 40 and 65 mm were 43 and 79 respectively.

  15. Inverse Processing of Undefined Complex Shape Parts from Structural High Alloyed Tool Steel

    Czech Academy of Sciences Publication Activity Database

    Monková, K.; Monka, P.; Hloch, Sergej

    -, č. 1 (2014), s. 1-11 ISSN 1687-8132 Institutional support: RVO:68145535 Keywords : 3D digitization * complex shape parts * high alloyed tool steel Subject RIV: JQ - Machines ; Tools Impact factor: 0.575, year: 2014 http://www.hindawi.com/journals/ame/aip/478748/

  16. Scale structure of aluminised F82H-mod. steel after HIP treatment

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Stein-Fechner, K.; Konys, J.

    2000-01-01

    Coatings on low activation steels are required in fusion technology in order to reduce the tritium permeation rate through the steel into the cooling water system by a factor of at least 100. Alumina seems to be a promising coating material. However, an appropriate coating system must also have the potential for self-healing since the ceramic alumina scale tends to fail if mechanical stress is applied. A technology is introduced to form a ductile Al enriched surface scale on F82H-mod steel (Fe-7.7% Cr) and on top of it alumina. This technology consists of two main process steps. Hot dip aluminising has been performed at 700 deg. C for 30 s to the steel in order to introduce Al to the surface near zone by an easy way. The very hard intermetallic scale Fe 2 Al 5 which forms during the immersion process gets completely transformed into FeAl 2 , FeAl and α-Fe(Al) phases during a subsequent HIP process step at high pressure at 1040 deg. C and 30 min. The pressure chosen for the HIP experiment was 3000 bar. Compared to a heat treatment without superimposed high pressure pores formation due to the Kirkendall effect could be suppressed successfully. The influence of the high pressure on the heat treatment (1040 deg. C, 30 min) will be discussed in this paper

  17. Modelling the post-cracking behaviour of steel fibre reinforced concrete for structural design purposes

    NARCIS (Netherlands)

    Kooiman, A.G.; Walraven, C.

    2000-01-01

    With the increasing number of applications in practice, the demand for standardised test methods and design rules for Steel Fibre Reinforced Concrete (SFRC) arises. Test methods need to be practical, which means that they have to be relatively cheap and simple to carry out. Design models should be

  18. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  19. The effect of low temperatures on the fatigue of high-strength structural grade steels

    NARCIS (Netherlands)

    Walters, C.L.

    2014-01-01

    It is well-known that for fracture, ferritic steels undergo a sudden transition from ductile behavior at higher temperatures to brittle cleavage failure at lower temperatures. However, this phenomenon has not received much attention in the literature on fatigue. The so-called Fatigue Ductile-Brittle

  20. Effect of heat treatment regime on structural lamination in ferritic-austenitic steels

    International Nuclear Information System (INIS)

    Sizov, R.A.; Zakharova, M.I.; Novikov, I.I.; Bannykh, O.A.

    1983-01-01

    The effect of preliminary thermal treatment on lamination and viscosity of EhP-53 and KO-3 steels after durable aging at the temperature of 350 is studied. It is shown that preliminary heat treatment considerably affects lamination processes in the result of aging of 0Kh18G8N2T steel. The lowest rate of lamination and higher impact strength after aging at 350 deg C for 4500 hours corresponds to the following heat treatment: 10 hour aging at 650 deg C with cooling in the air, then quenching in water from 950 deg C after aging for 30 min and the following tempering (650 deg C, 5 hours). Unlike the 0Kh18G8N2T steel, lamination parameters of steel 0Kh22N6T practically do not change after the application of heat treatment. Nevertherless, taking into account results of impact strength, it is advisable to have thermal treatment according to the regime: quenching in water at 950 deg C after aging for 30 min

  1. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  2. Demonstration and Validation of Two Coat High Performance Coating System for Steel Structures in Corrosive Environments

    Science.gov (United States)

    2016-12-01

    Many of these steel buildings and equipment are tradi- tionally painted with an alkyd enamel or waterborne coating for a top coat. These paint systems...bridging minor cracks or for surfaces that have vi- bration and/or movement. These qualities are necessary in a barrier coat- ing primer for it to remain

  3. Resistivity, hysteresis, and magnetization of 9% Cr stainless steel as a function of temperature and its electromagnetic shielding effects in cylindrical structures

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1979-01-01

    Ferromagnetic stainless steels may offer significantly greater wall life-times for first wall/blanket and vacuum vessel structures than commonly used non-magnetic stainless steels. One steel under consideration has the following composition, in wt %, Fe(86.24), Cr(9), Mo(2), Mn(1), Si(0.75), Nb(0.50), V(0.30), C(0.15), P(0.3), S(0.30). There appears to be no literature on the electromagnetic properties of this material. Therefore, the resistivity, the hysteresis loops, and magnetization were measured as a function of temperature up to the Curie point

  4. The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wenchun [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: jiangwenchun@126.com; Gong Jianming; Chen Hu; Tu, S.T. [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2008-08-15

    Stainless-steel plate-fin heat exchanger (PFHE) has been used as a high-temperature recuperator in microturbine for its excellent qualities in compact structure, high-temperature and pressure resistance. Plate-fin structure, as the core of PFHE, is fabricated by vacuum brazing. The main component fins and the parting sheets are joined by fusion of a brazing alloy cladded to the surface of parting sheets. Owing to the material mismatching between the filler metal and the base metal, residual stresses can arise and decrease the structure strength greatly. The recuperator serves at high temperature and the creep would happen. The thickness of the filler metal plays an important role in the joint strength. Hence this paper presented a finite element (FE) analysis of the brazed residual stresses and creep for a counterflow stainless-steel plate-fin structure. The effect of the filler metal thickness on residual stress and creep was investigated, which provides a reference for strength design.

  5. Experimental Study on Welded Headed Studs Used In Steel Plate-Concrete Composite Structures Compared with Contactless Method of Measuring Displacement

    Science.gov (United States)

    Kisała, Dawid; Tekieli, Marcin

    2017-10-01

    Steel plate-concrete composite structures are a new innovative design concept in which a thin steel plate is attached to the reinforced concrete beam by means of welded headed studs. The comparison between experimental studies and theoretical analysis of this type of structures shows that their behaviour is dependent on the load-slip relationship of the shear connectors used to ensure sufficient bond between the concrete and steel parts of the structure. The aim of this paper is to describe an experimental study on headed studs used in steel plate-concrete composite structures. Push-out tests were carried out to investigate the behaviour of shear connectors. The test specimens were prepared according to standard push-out tests, however, instead of I-beam, a steel plate 16 mm thick was used to better reflect the conditions in the real structure. The test specimens were produced in two batches using concrete with significantly different compressive strength. The experimental study was carried out on twelve specimens. Besides the traditional measurements based on LVDT sensors, optical measurements based on the digital image correlation method (DIC) and pattern tracking methods were used. DIC is a full-field contactless optical method for measuring displacements in experimental testing, based on the correlation of the digital images taken during test execution. With respect to conventional methods, optical measurements offer a wider scope of results and can give more information about the material or construction behaviour during the test. The ultimate load capacity and load-slip curves obtained from the experiments were compared with the values calculated based on Eurocodes, American and Chinese design specifications. It was observed that the use of the relationships developed for the traditional steel-concrete composite structures is justified in the case of ultimate load capacity of shear connectors in steel plate-concrete composite structures.

  6. Heat affected zone structure in welded joints of 15Kh1M1FL, 25Kh2NMFA and 20KhN2MFA steels

    International Nuclear Information System (INIS)

    Levenberg, N.E.; German, S.I.; Fomina, O.P.; Netesa, E.M.; Tsaryuk, A.K.; Kornienko, T.A.

    1983-01-01

    Heat affected zone (HAZ) structure of thick-walled, nature joints of 15Kh1M1FL steel for block structure of power reactors and 25Kh2NMFA and 20KhN2MFA steels for rotors - is investigated. Multi-layer arc welding is performed under conditions being created for standard components of turbines. Thermokinetics diagrams of austenite decomposition are built, phase composition and character of the structure forming at HAZ in the process of welding with preheating are studied. It is shown that at HAZ in joints of the steels under consideration in the process of welding with preheating is formed a structure of a grained bainite which is uniform in its structure and phase composition. Small volumes of round and elongated forms consisting of martensite and residual austenite are distributed in α-solid solution of the bainite. The bainite of the HAZ in welded joints possesses high hardness and great stability in the process of tempering

  7. Analysis of the structural steels corrosion resistance in sour water from petroleum refineries; Analise da resistencia a corrosao de acos estruturais em aguas acidas de refinarias de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Proenca, Marcos B.; Freire, Celia M. de A. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica; Santos, Margatita B. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada

    1994-07-01

    The presence of H{sub 2} S in refineries FCC sour water provokes the formation of a passive Fe S scale. The cyanides present on sour water remove this scale, raising the corrosion rate in pipping and vessels. In this work it was measured the corrosion rate of structural steels in this water by electrochemical methods. Anodic polarization curves were plotted and the corrosion rates of the steels were determined. (author)

  8. Metallurgical interpretation of the change of notched bar impact strength in the heat-affected zone of weldable structural steels

    International Nuclear Information System (INIS)

    Forch, K.; Forch, U.; Piehl, K.H.

    1978-01-01

    Notched bar impact energy in the heat-affected zone of joint welds of the steels StE 36, StE 51 and 20 MnMoNi55. Manual arc welding and submerged arc welding with heat input between 10,000 and 35,000 J/cm, stress relieving between 530 and 600 0 C. Significance of the structure in the heat-affected zone, the effect of heat treatment, the precipitation processes and of temper embrittlement. (orig.) [de

  9. Mechanical response of local rapid cooling by spray water on constrained steel frame structure at high temperature in fire

    Directory of Open Access Journals (Sweden)

    Xia Yunchun

    2015-01-01

    Full Text Available Locally rapid cooling of spray water had strong impact on high temperature steel structure. When temperature of beam reached 600°C and cooling rate was more than 20°C/s, the maximum axial tension could reach more than 5 times of the originally compressive force. The compressive bending moment at joint of beam-to-column changed to tensile bending moment, and the maximum bending moment could reach above 4 times as that when heated. After rapid cooling by spray water, deflection at mid-span increased slightly.

  10. Effect of heat treatment and plastic deformation on the structure and the mechanical properties of nitrogen-bearing 04N9Kh2A steel

    Science.gov (United States)

    Blinov, V. M.; Bannykh, O. A.; Lukin, E. I.; Kostina, M. V.; Blinov, E. V.

    2014-11-01

    The effect of the conditions of heat treatment and plastic deformation on the structure and the mechanical properties of low-carbon martensitic nickel steel (9 wt % Ni) with an overequilibrium nitrogen content is studied. The limiting strain to failure of 04N9Kh2A steel is found to be 40% at a rolling temperature of 20°C and 80% at a rolling temperature of 900°C. Significant strengthening of the steel (σ0.2 = 1089 MPa) is obtained after rolling at a reduction of 40% at 20°C. The start and final temperatures of the α → γ transformation on heating and those of the γ → α transformation on cooling are determined by dilatometry. The specific features of the formation of the steel structure have been revealed as functions of the annealing and tempering temperatures. Electron-microscopic studies show that, after quenching from 850°C and tempering at 600°C for 1 h, the structure contains packet martensite with thin interlayers of retained austenite between martensite crystals. The strength of the nitrogen-bearing 04N9Kh2A steel after quenching from 850 and 900°C, cooling in water, and subsequent tempering at 500°C for 1 h is significantly higher than that of carboncontaining 0H9 steel used in cryogenic engineering.

  11. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Gregorčič, Peter, E-mail: peter.gregorcic@fs.uni-lj.si [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana (Slovenia); Sedlaček, Marko; Podgornik, Bojan [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Reif, Jürgen [Brandenburgische Technische Universitaet – BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)

    2016-11-30

    Highlights: • Low number of differently polarized ps laser pulses is superimposed on tool steel. • Last pulses determine the ripples orientation for single spot and coherent traces. • Previously formed structures are overridden by later incident pulses. • Ripples contrast depends on total exposure, independent on pulses’ polarization. • Weak role of pre-formed structures makes interference scenarios questionable. - Abstract: Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete – erasing the previous orientation – after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  12. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    International Nuclear Information System (INIS)

    Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W.

    2015-01-01

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample

  13. The use of methods of structural optimization at the stage of designing high-rise buildings with steel construction

    Science.gov (United States)

    Vasilkin, Andrey

    2018-03-01

    The more designing solutions at the search stage for design for high-rise buildings can be synthesized by the engineer, the more likely that the final adopted version will be the most efficient and economical. However, in modern market conditions, taking into account the complexity and responsibility of high-rise buildings the designer does not have the necessary time to develop, analyze and compare any significant number of options. To solve this problem, it is expedient to use the high potential of computer-aided designing. To implement automated search for design solutions, it is proposed to develop the computing facilities, the application of which will significantly increase the productivity of the designer and reduce the complexity of designing. Methods of structural and parametric optimization have been adopted as the basis of the computing facilities. Their efficiency in the synthesis of design solutions is shown, also the schemes, that illustrate and explain the introduction of structural optimization in the traditional design of steel frames, are constructed. To solve the problem of synthesis and comparison of design solutions for steel frames, it is proposed to develop the computing facilities that significantly reduces the complexity of search designing and based on the use of methods of structural and parametric optimization.

  14. Retrofitting the Structure of the Catalytic Cracking Reactor, from Petrobrazi Refinery, Ploieşti by Transforming the Steel Structure into a Moment Resisting Frame and Enhancing the Damping of the Structure by Means of Viscous Dampers

    Directory of Open Access Journals (Sweden)

    Vasilescu Ionuţ

    2015-12-01

    Full Text Available The present paper presents the structural and seismic retrofit solution for the structure of the Catalytic Cracking Reactor, from Petrobrazi Refinery, Ploiești, Romania. The spatial truss type steel structure was designed and built during 1965-1968, following United States codes of that time. The capacity of the reactor is intended to be increased, thus its weight increases by approx. 43%. The retrofit solution had to take into consideration many criteria, not only technical, but also technological. After analyzing several possibilities, it was decided that the only feasible solution in order to fulfill all these requirements was to significantly increase the viscous damping of the structure – by introducing viscous dampers in its diagonals, accompanied by the strengthening of steel structure and changing the structural system into a moment resisting frame.

  15. Aqueous stress corrosion of candidate austenitic steels for ITER structural applications

    International Nuclear Information System (INIS)

    Soppet, W.K.; French, D.M.; Kassner, T.F.

    1993-01-01

    Susceptibility of crevice-weldment specimens of Types 316L and 316NG stainless steel (SS) to SCC was investigated in slow-strain-rate-tensile (SSRT) tests in water that simulates important parameters anticipated in first-wall/blanket systems. The SSRT tests were performed in oxygenated water containing 0.06-10 ppm chloride at temperatures of 95 to 225 degrees C to establish the effects of water purity and temperature on SC resistance. These steels, including weldments, exhibit good resistance to SCC under crevice conditions at temperatures of 150 degrees C in oxygenated water containing 0.1-10 ppm chloride. Most specimens fractured in the base metal, and several others fractured in the heat-affected zone (HAZ) of the weld, but none failed in the weld metal

  16. Alloying effect on the structure and properties of austenitic heat-resistant steels

    International Nuclear Information System (INIS)

    Levitin, V.V.; Grabovskij, V.Ya.; Korostelev, V.F.; Ryvkin, Yu.A.

    1978-01-01

    Investigated have been mechanical properties at test temperatures of 20-95O deg C, wear resistance, softening at thermomechanical cycling and microstructure of cast austenitic chromium-nickel steels (13%Cr + 35%Ni), produced by electroslag remelting with variations in Ti, Mo, Nb and W contents. Regression equations for relationship of the investigated characteristics to alloying element content have been obtained. Titanium, molybdenum and niobium increasing hardness and strength limit at room and high temperatures promote a decrease in ductility. Tungsten increases strength properties, wear resistance and thermal stability of the steels without negative effect on the impact strength. The impact strength decrease with an increase in alloying is due to brittle precipitations along the boundaries of as-cast grains, containing Ti, Mo, Nb and Si

  17. Piv Method and Numerical Computation for Prediction of Liquid Steel Flow Structure in Tundish

    Directory of Open Access Journals (Sweden)

    Cwudziński A.

    2015-04-01

    Full Text Available This paper presents the results of computer simulations and laboratory experiments carried out to describe the motion of steel flow in the tundish. The facility under investigation is a single-nozzle tundish designed for casting concast slabs. For the validation of the numerical model and verification of the hydrodynamic conditions occurring in the examined tundish furniture variants, obtained from the computer simulations, a physical model of the tundish was employed. State-of-the-art vector flow field analysis measuring systems developed by Lavision were used in the laboratory tests. Computer simulations of liquid steel flow were performed using the commercial program Ansys-Fluent¯. In order to obtain a complete hydrodynamic picture in the tundish furniture variants tested, the computer simulations were performed for both isothermal and non-isothermal conditions.

  18. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels.

    Science.gov (United States)

    1981-11-30

    diagram of the material under consideration which is either known experimentally or can be derived from the TTT diagram. Using the CCT diagram and the...strains are incorporated into the finite element program ADINA replacing the conventional thermal strains, T TH e i" I Computed CCT Diagram . Experimentally...derived CCT diagrams exist today for several steel alloys, enabling one to predict the microstructure [history during the cooling stage of the

  19. Austenite stability in reversion-treated structures of a 301LN steel under tensile loading

    Czech Academy of Sciences Publication Activity Database

    Järvenpää, A.; Jaskari, M.; Man, Jiří; Karjalainen, L. P.

    2017-01-01

    Roč. 127, MAY (2017), s. 12-26 ISSN 1044-5803 R&D Projects: GA ČR GA13-32665S Institutional support: RVO:68081723 Keywords : austenitic stainless steel * austenite stability * grain size * reversion annealing * tensile straining * deformation induced martensite Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.714, year: 2016

  20. Dislocation structures in cyclically strained X10CrAl24 ferritic steel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Man, Jiří

    2006-01-01

    Roč. 54, č. 13 (2006), s. 3429-3443 ISSN 1359-6454. [Micromechanics and Microstructure Evolution : Modeling Simulation and Experiments. Madrid, 11.09.2005-16.09.2006] R&D Projects: GA ČR(CZ) GP106/05/P521 Institutional research plan: CEZ:AV0Z20410507 Keywords : Transmission electron microscopy * Ferritic steel * Fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.549, year: 2006