WorldWideScience

Sample records for steel strip rolling

  1. The Influence of Vanadium Microalloying on the Production of Thin Slab Casting and Direct Rolled Steel Strip

    Science.gov (United States)

    Li, Yu; Milbourn, David

    Vanadium microalloying is highly effective in high strength strip steels produced by thin slab casting and direct rolled process. Because of the high solubility of V(C,N) in austenite, vanadium is likely to remain in solution during casting, equalisation and rolling. Vanadium microalloyed steels have better hot ductility and are less prone to transverse cracking than niobium containing steels. Despite a coarse as-cast austenite grain size before rolling, significant grain refinement can be achieved in vanadium microalloyed steels by repeated recrystallization during rolling, resulting in a fine uniform ferrite microstructure in final strip. Almost all vanadium present in microalloyed steels is available to precipitate in ferrite as very fine particles, contributing to precipitation strengthening. Vanadium microalloyed steels show less sensitivity to rolling process variables and exhibit excellent combination of strength and toughness.

  2. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang, E-mail: wy069024019@163.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States); Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size ~100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size ~20–50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size ~10–40 mm were formed and the final magnetic induction, B{sub 8}, was as high as 1.9 T. - Highlights: • A novel chemical composition base on strip casting silicon steel was proposed. • The ultra-low carbon design could shorten the processing routes. • The novel composition and processes were beneficial to obtain more inhibitors. • The magnetic induction of grain oriented silicon steel was significantly improved.

  3. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect.

    Science.gov (United States)

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-05-21

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.

  4. Review of the continuous casting of steel by strip casting technology. Twin roll method system

    International Nuclear Information System (INIS)

    Ibarrondo, I.

    2008-01-01

    In order to compete in the future steel market and to maintain market share, the steel makers will need to use new efficient technologies capable of supplying steel strip products of high quality at low cost. In this way, the strip casting technology by twin rol method is one of the most important research are in the iron and steel industry today. This review makes a general description of the strip casting technology as well as its different steps, such us; metal delivery and casting, solidification process, hot rolling reduction step, etc. Through mathematical and physical models, the influence on microstructure texture surface quality and mechanical properties of the materials obtained by this method are described as a function of processing parameters, specially the roughness of the rolls. the manufacturing of carbon, stainless and electrical steels involves smaller capital and operating cost, lower gas emissions, and an opportunity to create new grades due to a faster solidification rate that leads to a different solidification structures. In sight of all this it is likely that Strip Casting technology will make a profound impact on the manufacturing landscape of the 21 s t century. (Author) 177 refs

  5. Cold-rolled steel strip X-ray thickness gauge

    International Nuclear Information System (INIS)

    Tong Jianmin; Cong Peng; Li Litao

    2010-01-01

    This paper introduces a cold-rolled steel strip X-ray thickness gauge. This gauge uses two-detector construction including penetrating ionization chamber and measuring ionization chamber. Standard magazine box is composed of three rotating plates driving by stepper motor, including 13 pieces of standard sample to build up 154 thickness value, obtaining standard sample curve covering thickness range of 0.1 mm to 5 mm. Automation system include Siemens S7-200 PLC as key controlling unit, embedded controlling system for data acquisition and computing, and PC as man-machine interface, and employ Ethernet (TCP/IP) or RS485/232 as communication protocol. Reversing Cold mill AGC closed-loop control operation test demonstrates that the gauge can adapt to the severe production environment, operate stably and reliably, measurement precision can reached to ±0.19%, reproducibility to ±0.09%, and stability to ±0.06%, response time range from 4 ms to 200 ms and be adjustable. So it can meet the high demanding of cold-rolled plate/strip production. (authors)

  6. Roll force prediction of high strength steel using foil rolling theory in cold skin pass rolling

    International Nuclear Information System (INIS)

    Song, Gil Ho; Jung, Jae Chook

    2013-01-01

    Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high strength steel below TS 980 MPa in skin pass rolling

  7. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  8. Model for prediction of strip temperature in hot strip steel mill

    International Nuclear Information System (INIS)

    Panjkovic, Vladimir

    2007-01-01

    Proper functioning of set-up models in a hot strip steel mill requires reliable prediction of strip temperature. Temperature prediction is particularly important for accurate calculation of rolling force because of strong dependence of yield stress and strip microstructure on temperature. A comprehensive model was developed to replace an obsolete model in the Western Port hot strip mill of BlueScope Steel. The new model predicts the strip temperature evolution from the roughing mill exit to the finishing mill exit. It takes into account the radiative and convective heat losses, forced flow boiling and film boiling of water at strip surface, deformation heat in the roll gap, frictional sliding heat, heat of scale formation and the heat transfer between strip and work rolls through an oxide layer. The significance of phase transformation was also investigated. Model was tested with plant measurements and benchmarked against other models in the literature, and its performance was very good

  9. Model for prediction of strip temperature in hot strip steel mill

    Energy Technology Data Exchange (ETDEWEB)

    Panjkovic, Vladimir [BlueScope Steel, TEOB, 1 Bayview Road, Hastings Vic. 3915 (Australia)]. E-mail: Vladimir.Panjkovic@BlueScopeSteel.com

    2007-10-15

    Proper functioning of set-up models in a hot strip steel mill requires reliable prediction of strip temperature. Temperature prediction is particularly important for accurate calculation of rolling force because of strong dependence of yield stress and strip microstructure on temperature. A comprehensive model was developed to replace an obsolete model in the Western Port hot strip mill of BlueScope Steel. The new model predicts the strip temperature evolution from the roughing mill exit to the finishing mill exit. It takes into account the radiative and convective heat losses, forced flow boiling and film boiling of water at strip surface, deformation heat in the roll gap, frictional sliding heat, heat of scale formation and the heat transfer between strip and work rolls through an oxide layer. The significance of phase transformation was also investigated. Model was tested with plant measurements and benchmarked against other models in the literature, and its performance was very good.

  10. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    Science.gov (United States)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  11. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F., E-mail: fangfengdbdx@163.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Lu, X.; Zhang, Y.X.; Wang, Y.; Jiao, H.T.; Cao, G.M.; Yuan, G.; Xu, Y.B. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, EL Paso, TX 79968 (United States); Wang, G.D. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region. - Highlights: • Inclined cold rolling was adopted to process strip-cast grain-oriented silicon steel. • Influence of inclination angles on texture, inhibitor and magnetic properties was studied. • The initial texture was changed with respect to the inclination angle. • Homogeneous inhibitors were obtained after primary annealing at various inclination angles.

  12. 75 FR 19369 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of...

    Science.gov (United States)

    2010-04-14

    .... Hot-rolled dual phase steel, phase-hardened, primarily with a ferritic-martensitic microstructure.... See Preliminary Results of Antidumping Duty Administrative Review: Stainless Steel Sheet and Strip in... Antidumping Duty Administrative Review: Stainless Steel Sheet and Strip in Coils From France, 68 FR 69379...

  13. Control of surface thermal scratch of strip in tandem cold rolling

    Science.gov (United States)

    Chen, Jinshan; Li, Changsheng

    2014-07-01

    The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.

  14. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Guoqing, E-mail: gz854@uowmail.edu.au [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zhang, Xiaoming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Wang, Yuqian [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Yan, Yi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Li, Chengang; Cao, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Jiang, Zhengyi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2017-02-15

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong <100>//ND texture and present high magnetic inductions and low iron losses after finial annealing. - Highlights: • 4.5 wt% Si as-cast sheet with excellent workability was produced by strip casting. • Three 4.5 wt% Si thin sheets were effectively fabricated by warm and cold rolling. • The microstructure and macro-texture of the thin sheets were elucidated. • High magnetic inductions and low iron losses were achieved simultaneously.

  15. AISI/DOE Advanced Process Control Program Vol. 3 of 6: MICROSTRUCTURAL ENGINEERING IN HOT-STRIP MILLS Part 2 of 2: Constitutive Behavior Modeling of Steels Under Hot-Rolling Conditions; FINAL

    International Nuclear Information System (INIS)

    Yi-Wen Cheng; Patrick Purtscher

    1999-01-01

    This report describes the development of models for predicting (1) constitutive behaviors and (2) mechanical properties of hot-rolled steels as functions of chemical composition, microstructural features, and processing variables. The study includes the following eight steels: A36, DQSK, HSLA-V, HSLA-Nb, HSLA-50/Ti-Nb, and two interstitial-free (IF) grades. These developed models have been integrated into the Hot-Strip Mill Model (HSMM), which simulates the hot strip rolling mills and predicts the mechanical properties of hot-rolled products. The HSMM model has been developed by the University of British Columbia-Canada as a part of project on the microstructural engineering in hot-strip mills

  16. Development of microstructure and texture in strip casting grain oriented silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Xu, Yun-Bo, E-mail: yunbo_xu@126.com; Zhang, Yuan-Xiang; Fang, Feng; Lu, Xiang; Liu, Hai-Tao; Wang, Guo-Dong

    2015-04-01

    Grain oriented silicon steel was produced by strip casting and two-stage cold rolling processes. The development of microstructure and texture was investigated by using optical microscopy, X-ray diffraction and electron backscattered diffraction. It is shown that the microstructure and texture evolutions of strip casting grain oriented silicon steel are significantly distinct from those in the conventional processing route. The as-cast strip is composed of coarse solidification grains and characterized by pronounced 〈001〉//ND texture together with very weak Goss texture. The initial coarse microstructure enhances {111} shear bands formation during the first cold rolling and then leads to the homogeneously distributed Goss grains through the thickness of intermediate annealed sheet. After the secondary cold rolling and primary annealing, strong γ fiber texture with a peak at {111}〈112〉 dominates the primary recrystallization texture, which is beneficial to the abnormal growth of Goss grain during the subsequent high temperature annealing. Therefore, the secondary recrystallization of Goss orientation evolves completely after the high temperature annealing and the grain oriented silicon steel with a good magnetic properties (B{sub 8}=1.94 T, P{sub 1.7/50}=1.3 W/kg) can be prepared. - Highlights: • Grain oriented silicon steel was developed by a novel ultra-short process. • Many evenly distributed Goss “seeds” were originated from cold rolled shear bands. • More MnS inhibitors were obtained due to the rapid cooling of strip casing. • The magnetic induction of grain oriented silicon steel was significantly improved.

  17. Image recognition of shape defects in hot steel rolling

    NARCIS (Netherlands)

    Balmashnova, E.; Bruurmijn, L.C.M.; Dissanayake, R.; Duits, R.; Kampmeijer, L.; Noorden, van T.L.; Boon, M.A.A.

    2013-01-01

    A frequently occurring issue in hot rolling of steel is so-called tail pinching. Prominent features of a pinched tail are ripple-like defects and a pointed tail. In this report two algorithms are presented to detect those features accurately in 2D gray scale images of steel strips. The two ripple

  18. Adaptive neural network controller for the molten steel level control of strip casting processes

    International Nuclear Information System (INIS)

    Chen, Hung Yi; Huang, Shiuh Jer

    2010-01-01

    The twin-roll strip casting process is a steel-strip production method which combines continuous casting and hot rolling processes. The production line from molten liquid steel to the final steel-strip is shortened and the production cost is reduced significantly as compared to conventional continuous casting. The quality of strip casting process depends on many process parameters, such as molten steel level in the pool, solidification position, and roll gap. Their relationships are complex and the strip casting process has the properties of nonlinear uncertainty and time-varying characteristics. It is difficult to establish an accurate process model for designing a model-based controller to monitor the strip quality. In this paper, a model-free adaptive neural network controller is developed to overcome this problem. The proposed control strategy is based on a neural network structure combined with a sliding-mode control scheme. An adaptive rule is employed to on-line adjust the weights of radial basis functions by using the reaching condition of a specified sliding surface. This surface has the on-line learning ability to respond to the system's nonlinear and time-varying behaviors. Since this model-free controller has a simple control structure and small number of control parameters, it is easy to implement. Simulation results, based on a semi experimental system dynamic model and parameters, are executed to show the control performance of the proposed intelligent controller. In addition, the control performance is compared with that of a traditional Pid controller

  19. Simulation of accelerated strip cooling on the hot rolling mill run-out roller table

    International Nuclear Information System (INIS)

    Muhin, U.; Belskij, S.; Makarov, E.; Koinov, T.

    2013-01-01

    Full text: A mathematical model of the thermal state of the metal on the run-out roller table of a continuous wide hot-strip mill is presented. The mathematical model takes into account the heat generation during the polymorphic γ → α transformation of super cooled austenite phase and the influence of chemical composition on the physical properties of the steel. The model allows the calculation of modes of accelerated cooling of strips on the run-out roller table of a continuous wide hot strip mill. Winding temperature calculation error does not exceed 20 °C for 98.5 % of the strips from low-carbon and low-alloyed steels. key words: hot rolled, wide-strip, accelerated cooling, run-out roller table, polymorphic transformation, mathematical modeling

  20. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-15

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15–90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B{sub 8} and iron loss P{sub 10/400} was 1.79 T and 6.9 W/kg, respectively. - Highlights: • Ultra-thin grain-oriented silicon steel was produced by strip casting process. • Microstructure, texture and inhibitor evolution was briefly investigated. • Goss texture was absent in primary recrystallization annealed sheet. • MnS precipitates with a size range of 15–90 nm formed after normalizing. • A complete secondary recrystallization microstructure was produced.

  1. A feasibility study on different NDT techniques used for testing bond quality in cold roll bonded Al-Sn alloy/steel bimetal strips

    Directory of Open Access Journals (Sweden)

    Tallafuss Philipp Johannes

    2017-01-01

    Full Text Available This paper presents non-destructive testing (NDT results for the detection of bond defects in aluminium-tin (Al-Sn alloy/steel bimetal strips. Among all types of bimetal strip that are used in the automotive industry for plain journal engine bearings, Al-Sn alloys cold roll bonded (CRB onto steel backing is the most common type. The difficulty to evaluate the metallurgical bond between the two dissimilar metals is a major industrial concern, which comprises the risk that bearings fail in the field. Considering the harsh performance requirements, 100% online non-destructive testing would be desirable to significantly reduce the business risk. Nowadays bimetal strip manufacturers still rely on destructive testing through different peel-off tests. This work offers the results from four independent NDT studies, using active thermography, shearography, ultrasound and guided wave electromagnetic acoustic transducers (EMATs and samples with different artificially implanted defects, to explore the feasibility to qualitatively indicate the occurrence of bond defects. A destructive peel off test was used to correlate the NDT results with known bond quality. The studies were done under laboratory conditions, and in case of ultrasound also online under production conditions. During the ultrasound online test, the requirements that a NDT technique has to fulfil for online inspection of Al-Sn alloy/steel bimetal strip were established. For active thermography, shearography and guided wave EMAT techniques, it was theoretically analysed, if the laboratory test results could be transferred to testing under production conditions. As a result, guided waves using EMATs, among the four tested methods, are best suited for online inspection of Al-Sn alloy/steel bimetal strip. This research was carried out in collaboration with MAHLE Engine Systems UK Ltd., an Al-Sn alloy/steel bimetal strip manufacturer for the automotive industry.

  2. Effects of Cold Rolling Reduction and Initial Goss Grains Orientation on Texture Evolution and Magnetic Performance of Ultra-thin Grain-oriented Silicon Steel

    Directory of Open Access Journals (Sweden)

    LIANG Rui-yang

    2017-06-01

    Full Text Available The ultra-thin grain-oriented silicon steel strips with a thickness of 0.06-0.12mm were produced by one-step-rolling methods with different Goss-orientation of grain-oriented silicon steel sheets. The effect of cold rolling reduction and initial Goss-orientation of samples on texture evolution and magnetic performance of ultra-thin grain-oriented silicon steel strips was studied by EBSD. The result shows that with the increase of cold rolling reduction and decrease of strips thickness, the recrystallization texture is enhanced after annealing.When the cold rolling reduction is 70%,RD//〈001〉 recrystallization texture is the sharpest, and the magnetic performance is the best. The higher degree of Goss orientation in initial sample is, the better magnetic performance of ultra-thin grain-oriented silicon steel.Therefore, for producing an ultra-thin grain-oriented silicon steel with high performance, a material with a concentrated orientation of Goss grains can be used.

  3. Rolling force prediction for strip casting using theoretical model and artificial intelligence

    Institute of Scientific and Technical Information of China (English)

    CAO Guang-ming; LI Cheng-gang; ZHOU Guo-ping; LIU Zhen-yu; WU Di; WANG Guo-dong; LIU Xiang-hua

    2010-01-01

    Rolling force for strip casting of 1Cr17 ferritic stainless steel was predicted using theoretical model and artificial intelligence.Solution zone was classified into two parts by kiss point position during casting strip.Navier-Stokes equation in fluid mechanics and stream function were introduced to analyze the rheological property of liquid zone and mushy zone,and deduce the analytic equation of unit compression stress distribution.The traditional hot rolling model was still used in the solid zone.Neural networks based on feedforward training algorithm in Bayesian regularization were introduced to build model for kiss point position.The results show that calculation accuracy for verification data of 94.67% is in the range of+7.0%,which indicates that the predicting accuracy of this model is very high.

  4. Service behaviour of high speed steel rolling rolls used in hot strip mills; Comportamiento en servicio de los aceros rapidos utilizados en la fabricacion de los cilindros de trabajo de los trenes de bandas en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Ziadi, A.; Belzunce, F. J.; Rodriguez, C.; Fernandez, I.

    2005-07-01

    Work rolls used in hot strip mills may be able to carry out severe actions: very high thermal stresses and wear, along with mechanical stresses due to normal rolling loads, which develop in the presence of cracks, produced by the former actions. The microstructure and the mechanical behaviour (strength and toughness) of high speed steels, which recently have been introduced in this applications, were studied in this work in comparison with high chromium cast irons. (Author) 7 refs.

  5. Texture and magnetic properties of non-oriented electrical steels processed by an unconventional cold rolling scheme

    Energy Technology Data Exchange (ETDEWEB)

    He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON (Canada); Hilinski, Erik J. [Formerly Research and Technology Centre, United States Steel Corporation, Munhall, PA (United States); Now Tempel Steel Co., Chicago, IL (United States)

    2016-05-01

    Two non-oriented electrical steels containing 0.9 wt% and 2.8 wt% of silicon were processed using an unconventional cold rolling scheme, i.e. the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) so that the initial texture before cold rolling and the rotation paths of crystals during cold deformation were both altered as compared to conventional cold rolling along the original HRD. The cold-rolled steel strips were then annealed, skin-pass rolled and final annealed. The texture and microstructure of the materials were characterized by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and optical microscopy, and considerable differences in average grain size and texture were observed at different inclination angles. The magnetic properties of the steel strips were measured at 400 Hz and 1.0 T/1.5 T using a specially designed Epstein frame, and apparent differences were also noticed at various angles. The magnetic quality of texture was evaluated using different texture factors/parameters and compared to the measured magnetic properties. Although apparent improvement on the magnetic quality of texture can be noted by inclining the CRD to HRD, the trend does not match the measured magnetic properties at 400 Hz, which may have been affected by other parameters in addition to crystallographic texture. - Highlights: • The cold rolling direction is inclined an angle to the hot rolling direction. • The deformation and annealing textures are both changed by the inclined rolling. • Magnetic quality of texture is improved at specific inclination angles. • Low silicon steel is more sensitive in texture change than high silicon steel. • High frequency core loss does not follow the computed magnetic quality of texture.

  6. Tribological study in roll forming of lean duplex stainless steel sheets

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Strogaard; Bay, Niels

    2012-01-01

    . Production tests show that galling can be a problem but pick-up formation on the tools seems to reach a consistent level. Improvements to tool surfaces and lubricant quality are proposed with a view to optimizing the tribo-system in order to increase the produced length before galling initiates and tool...... are relatively low and surface expansion is more or less non-existent, long roll forming production runs imply large sliding/contact lengths due to relative movement between steel strip and rolls. This requires an efficient tribological system to prevent pick-up formation on the forming tools. The present work...... focus on tribological issues are galling and pick-up formation as well as tool life in roll forming of stainless duplex steel sheets. The roll forming process is exemplified by production of an s-shaped profile used in interlock carcass production for flexible pipes used in off-shore oil extraction...

  7. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel

    Directory of Open Access Journals (Sweden)

    Yanan Meng

    2018-02-01

    Full Text Available In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM, respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS. The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.

  8. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  9. Determination of residual stresses in roll compacted titanium strips

    CSIR Research Space (South Africa)

    Mothosi, KL

    2017-01-01

    Full Text Available residual stresses using x-ray diffraction (XRD) surface probing technique. Preliminary results were obtained for the surface residual stress at the center of the titanium strips for the 100 and 325 mesh strips rolled at 0.1 roll gap for 20 and 50 mm set...

  10. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Feng [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Xu, Yun-Bo, E-mail: yunbo_xu@126.com [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Wang, Yang; Lu, Xiang [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials Research and Innovation and Department of Metallurgical and Materials Engineering, University of Texas at El Paso, 500W, University Avenue, El Paso, TX 79968 (United States); Wang, Guo-Dong [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2015-05-01

    Non-oriented electrical steel as-cast strip was produced by twin roll strip casting process, and subsequently cold rolled and annealed at heating rates in the range of 3–450 °C/s with the aim to elucidate the effect of heating rate on the evolution of recrystallized microstructure and texture. The average grain size was rapidly increased when the heating rate was increased from 3 to 25 °C/s, and decreased when the heating rate was greater than 25 °C/s. The average grain size did not increase linearly with heating rate, which was related to different degree of nucleation and growth rate. The recrystallization texture exhibited pronounced improvement during rapid annealing. At high heating rate, the Goss and Cube had a higher probability of nucleation of shear bands with high stored energy, while the intensity of the γ-fiber texture was significantly reduced. The highest B{sub 50} value attained was 1.803 T at a heating rate of 300 °C/s. The study indicates that rapid heating has strong effect on the recrystallization behavior in non-oriented electrical steels, which facilitates optimization of microstructure and texture, especially in the coarse-grained structure. - Highlights: • The effects of heating rate on the microstructure and texture of non-oriented steel were investigated. • The average grain size did not change monotonically with heating rate. • Recrystallization texture exhibited pronounced improvement in the as-cast strip. • Superior magnetic properties were obtained in twin-rolled strip casting process.

  11. Rolling process simulation of a pair-crossed hot strip mill

    International Nuclear Information System (INIS)

    Chen Shaojie; Xu Jianzhong; Liu Xianghua; Wang Guodong

    2000-01-01

    Process simulation can help optimize the operating parameters aiming to improve the quality of rolled products. In this paper, software in Visual Basic language is developed to simulate the hot rolling process of a pair-crossed mill. The strip temperature is calculated by considering air cooling, water cooling, heat generation and conduction.The production parameters including rolling speeds, resistance to deformation, rolling forces, drive torques and powers are evaluated by mathematical models and their parameter identification support tools. The deformation of roll stack is calculated by influential function method. The roll temperature and expansion are calculated by finite differential method, and the roll wear is described by empirical formula. Based on these calculations as well as the effect of heredity is taken into account, the strip crown and flatness then can be obtained. The results show that the simulation software has friendly user interface, high accuracy and practicability. It can be served as a basis for the mill design and optimization of process parameters to acquire high quality of hot rolled strip. (author)

  12. Microstructure, texture and magnetic properties of strip-cast 1.3% Si non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuanxiang, E-mail: yunboxu@126.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang (China); Xu Yunbo; Liu Haitao; Li Chenggang; Cao Guangming; Liu Zhenyu; Wang Guodong [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang (China)

    2012-10-15

    In this work, the evolution of microstructure, texture and magnetic properties of non-oriented 1.3% silicon steel processed using the twin-roll strip casting was investigated, especially under different solidification structures. A number of microstructures about the as-cast strips show that the initial solidification structure of casting a strip can be controlled by the melt superheats. The microstructures with the average grain size of {approx}100-400 {mu}m can be obtained in strips when the melt superheats are from 20 to 60 Degree-Sign C. A nearly random, diffuse, homogeneous texture under a low melt superheat, but comparatively developed {l_brace}100{r_brace} oriented grains are formed under a high melt superheat through the cast strip thickness. The relatively low core loss and high magnetic induction can be obtained in the cold rolled and annealed sheets when increasing the initial grain size of cast-strip. The textures in annealed sheets with coarse initial grain size are characterized by the relatively strong Goss component and {l_brace}001{r_brace} fiber but weak {gamma}-fiber component, which lead to the high permeability. - Highlights: Black-Right-Pointing-Pointer The superheat has an evident effect on the grain size and orientation of strip. Black-Right-Pointing-Pointer Developed Cube and Goss textures were formed in the annealed sheet. Black-Right-Pointing-Pointer High magnetic properties were obtained in the twin-rolled strip casting process.

  13. Hot coiled steel strip with elevated niobium content for pipelines and its weldability

    International Nuclear Information System (INIS)

    Brozda, J.; Zeman, M.

    2010-01-01

    Examinations and tests have been performed on thermomechanically rolled and hot coiled 14 mm thick steel strips with a low carbon and elevated niobium content, assigned for the production of pipelines. There were examined basic mechanical properties of the steels, brittle fracture resistance of the parent material and simulated HAZ's, susceptibility to cold cracking as well as properties of MMA and GMA welded joints. It was found that the tested steels are characterized by a good weldability, are not prone to cold cracking, have a low brittle fracture transition temperature and the HAZ of welded joints shows a sufficient high brittle fracture resistance. (authors)

  14. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Yao, Sheng-Jie [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 264209 (China); Sun, Yu; Gao, Fei; Song, Hong-Yu; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Lei; Geng, Dian-Qiao [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-08-15

    In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initial as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.

  15. Effect of heating and deformation conditions on the depth of surface defects in alloyed steel rolling

    International Nuclear Information System (INIS)

    Malygin, R.Z.; Karyakin, B.P.; Grosman, A.B.; Simovskikh, V.N.; Storozhev, V.I.

    1978-01-01

    The effect of heating and deformation conditions on the depth change of artificial defects in the 50 KhFA alloyed steel rolling on the 850 blooming and 450 section mill was studied. Quite a definite regularity in the arrangement of defects (cracks and hairlines) along the circumference of the round steel bar and obvious relation with the defect distribution on the bloom faces are established. Oxidation is shown to diminish defect depth while ingot and billet heating especially on the faces under direct firing. Blooms should be placed in the furnace with 90 deg canting in relation to the faces position while ingot heating. Round rolling must be performed with one or several 45 deg strip cantings. The defect depth for the ingots to be rolled without chipping is set up

  16. Method of making steel strapping and strip

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Reilly

    2000-02-16

    The technical progress obtained for this time frame consisted of the awarding of two contracts for determination of metallurgical parameters for heat treatment of strapping and strip which are unavailable from current technology and/or published data in this field. The two contractors were Bricmont, Inc. and the Department of Materials Science and Engineering at the Technological Institute of Northwestern University, Evanston, IL. Phase 1 of the two stage contract with Bricmont, Inc. which provided a computer analysis of the cooling rates of a typical range of thickness' of strapping was completed. This study was developed for the purpose of determining the time parameters for quenching low carbon steels to a martensitic microstructure within the time frame of the design of the proposed process. It also provides design criteria for cooling to ambient for the total process. This data is required for Phase 2 of the Bricmont proposal which completes the design and specifications of the total heat treating and cooling system for the process. This becomes the basis for developing the cost and space requirements for this component of the production line. The authors do not intend to award Phase 2 until the work done at Northwestern University discussed hereafter is completed. On or about May 1, 1999 a contract for a project entitled ``Effects of Steel Composition and Quench Rate on Microstructure and Mechanical Properties of Strapping'' to be performed at the Department of Materials Science and Engineering was awarded. The delay in initiating this project was due to the legal interpretation and final agreement of the intellectual provisions of the award by the author's attorneys, Northwestern's attorneys and the legal representative in the Chicago office of the DOE. The work to date includes rapid quenching of a number of different steel compositions and microstructure on an existing drop quench test apparatus. It was initially assumed that this

  17. A Coupled Model for Work Roll Thermal Contour with Subsectional Cooling in Aluminum Strip Cold Rolling

    Directory of Open Access Journals (Sweden)

    Shao Jian

    2014-10-01

    Full Text Available Little attention had been given to the evaluation of subsectional cooling control ability under complicated working conditions. In this paper, heat generation was calculated by using finite difference method. Strip hardening, work roll elastic deformation and elastic recovery of strip were taken into account. The mean coefficient of convective heat transfer on work roll surface was simulated by FLUENT. Calculation model had used the alternative finite difference scheme, which improved the model stability and computing speed. The simulation result shows that subsectional cooling control ability is different between different rolling passes. Positive and negative control abilities are roughly the same in the same pass. The increase of rolled length, working pressure of header and friction coefficient has positive effect on subsectional cooling control ability, and the rolling speed is on the contrary. On the beginning of the pass, when work roll surface has not reached the stable temperature, control ability of subsectional cooling is mainly affected by rolled length. The effect of mean coefficient of convective heat transfer and coefficient of friction is linear. When rolling speed is over 500 m/min, control ability of subsectional cooling becomes stable.

  18. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    International Nuclear Information System (INIS)

    Chen, S.; Butler, J.; Melzer, S.

    2014-01-01

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  19. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S., E-mail: Shangping.chen@tatasteel.com [Tata Steel, 1970 CA IJmuiden (Netherlands); Butler, J. [Tata Steel, S60 3AR South Yorkshire (United Kingdom); Melzer, S. [Tata Steel, 1970 CA IJmuiden (Netherlands)

    2014-11-15

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  20. Metallurgical analysis of spalled work roll of hot strip mill

    International Nuclear Information System (INIS)

    Khan, M.M.; Khan, M.A.

    1993-01-01

    In this study failure analysis of four work roll of the Hot Strip Mill is carried out. The microstructure is correlated with the chemical composition of shell and roll-life. It was concluded that for the longer service of the roll, cementite, graphite and martensite should be balanced (as per working requirement of the mill). (author)

  1. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  2. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-10-12

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...

  3. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn; Wang, Guo-Dong

    2015-05-15

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.

  4. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel

    International Nuclear Information System (INIS)

    Liu, Hai-Tao; Li, Hao-Ze; Li, Hua-Long; Gao, Fei; Liu, Guo-Huai; Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin; Cao, Guang-Ming; Liu, Zhen-Yu; Wang, Guo-Dong

    2015-01-01

    Fe-6.5 wt% Si non-oriented electrical steel sheets with a thickness of 0.50 mm were produced by using a new processing route: strip casting followed by hot rolling, intermediate temperature (150–850 °C) rolling and final annealing. The present study focused on exploring the effects of rolling temperature varying from 150 to 850 °C on the microstructure and texture evolution, the formability and final magnetic properties. The microstructure and texture evolution at the various processing steps were investigated in detail by using OM, XRD, EBSD and TEM. It was found that the formability during rolling, the microstructure and texture before and after annealing and final magnetic properties highly depended on rolling temperature. The formability during rolling was gradually improved with increasing rolling temperature due to the slipping of dislocation. In particular, the rolling temperature dominated the formation of in-grain shear bands in the rolled microstructure, which played an important role in the development of final recrystallization microstructure and texture. In the case of lower temperature (150–450 °C) rolling, an inhomogeneous microstructure with a large amount of in-grain shear bands was formed in the rolled sheets, which finally resulted in a fine and inhomogeneous annealing microstructure dominated by mild λ-fiber texture composed of cube and {001}〈210〉 components and α*-fiber texture concentrated on {115}〈5–10 1〉 component. By contrast, in the case of higher temperature (650–850 °C) rolling, a relatively homogeneous microstructure without in-grain shear bands was formed instead in the rolled sheets, which finally led to a coarse and relatively homogeneous annealing microstructure characterized by strong α-fiber and γ-fiber texture. Accordingly, on the whole, both the magnetic induction (B 8 and B 50 ) and iron loss (P 15/50 and P 10/400 ) decreased with raising rolling temperature. - Highlights: • Fe−6.5 wt% Si sheet was

  5. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Li, Hao-Ze [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Gao, Fei; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin [National Engineering Research Center for Silicon Steel, Wuhan Iron & Steel (Group) Corp, Wuhan 430083 (China); Cao, Guang-Ming; Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-10-01

    Fe-6.5 wt% Si non-oriented electrical steel sheets with a thickness of 0.50 mm were produced by using a new processing route: strip casting followed by hot rolling, intermediate temperature (150–850 °C) rolling and final annealing. The present study focused on exploring the effects of rolling temperature varying from 150 to 850 °C on the microstructure and texture evolution, the formability and final magnetic properties. The microstructure and texture evolution at the various processing steps were investigated in detail by using OM, XRD, EBSD and TEM. It was found that the formability during rolling, the microstructure and texture before and after annealing and final magnetic properties highly depended on rolling temperature. The formability during rolling was gradually improved with increasing rolling temperature due to the slipping of dislocation. In particular, the rolling temperature dominated the formation of in-grain shear bands in the rolled microstructure, which played an important role in the development of final recrystallization microstructure and texture. In the case of lower temperature (150–450 °C) rolling, an inhomogeneous microstructure with a large amount of in-grain shear bands was formed in the rolled sheets, which finally resulted in a fine and inhomogeneous annealing microstructure dominated by mild λ-fiber texture composed of cube and {001}〈210〉 components and α*-fiber texture concentrated on {115}〈5–10 1〉 component. By contrast, in the case of higher temperature (650–850 °C) rolling, a relatively homogeneous microstructure without in-grain shear bands was formed instead in the rolled sheets, which finally led to a coarse and relatively homogeneous annealing microstructure characterized by strong α-fiber and γ-fiber texture. Accordingly, on the whole, both the magnetic induction (B{sub 8} and B{sub 50}) and iron loss (P{sub 15/50} and P{sub 10/400}) decreased with raising rolling temperature. - Highlights: • Fe−6

  6. 75 FR 64246 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of...

    Science.gov (United States)

    2010-10-19

    ...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...

  7. A study of roll-bonding MS90 alloy to steel utilizing chromized interlayer

    International Nuclear Information System (INIS)

    Tolaminejad, B.; Arabi, H.

    2008-01-01

    This article describes a study of the application of a roll bonding technique to MS90(CuZn10) alloy strips and steel sheets using a chromized interlayer. It was found that the overall bond between these two metals resulted from two different types of bonds: a block bond, linking the MS90 alloy strips and chromium topcoat layer, and a blank bond, linking the MS90 alloy strips and bare steel surface in the area where the chromium coating has been fragmented. This study investigated the effects of plating time on the thickness of the coating layers and of the area fraction of the blank bond on the bond strength. The overall bond strength depends mainly on the strength and the area fraction of the blank bond. A linear relationship model exists between the overall bond strength and the area fraction of the blank bond. The bond strength of the blank bond was eight times greater than that of the block bond. The area fraction of the blank bond increased with increasing the coating thickness up to 55 μm, but thereafter decreased due to the rotation of the chromium blocks

  8. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-12-14

    ...-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit for Final Results of...-Rolled Carbon Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...

  9. Microstructure analysis of AISI 304 stainless steel produced by twin-roll thin strip casting process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microstructure of AISI 304 austenite stainless steel fabricated by the thin strip casting process were investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD).The microstructures of the casting strips show a duplex structure consisting of delta ferrite and austenite. The volume fraction of the delta ferrite is about 9.74vol% at the center and 6.77vol% at the surface of the casting thin strip, in vermicular and band shapes. On account of rapid cooling and solidification in the continuous casting process, many kinds of inclusions and precipitates have been found. Most of the inclusions and precipitates are spherical complex compounds consisting of oxides, such as, SiO2, MnO, Al2O3,Cr2O3,and FeO or their multiplicity oxides of MnO·Al2O3,2FeO·SiO2, and 2MnO·SiO2. Many defects including dislocations and stacking faults have also formed during the rapid cooling and solidification process, which is helpful to improve the mechanical properties of the casting strips.

  10. Optimization of the process of steel strip perforation and nickel platting for the purpose of elimination of trichloroethylene from the cleaning process of perforated steel strip

    Directory of Open Access Journals (Sweden)

    Petrović Aleksandra B.

    2009-01-01

    Full Text Available In the production of pocket type electrodes for Ni-Cd batteries perforation of proper steel strips and then nickel platting of perforated steel strips were made. In the nickel platting process, the organic solvent, trichloroethylene, has previously been used for cleaning. Due to the carcinogenic nature of trichloroethylene and the many operations previously required during cleaning, it was considered to do cleaning of perforated steel strips without use of the mentioned organic solvent. In the purpose of elimination of trichloroethylene from the cleaning process of perforated steel strips, the tests of perforation of steel strips with use of oils of different viscosity were made. It was shown that there was no dysfunction during the work of the perforation plants, meaning there was no additional heating of the strips, deterring of the steel filings, nor excessive wearing of the perforation apparatus. The perforation percent was the same irrelevant of the viscosity of the used oil. Before being perforated using the oils with different viscosity, the nickel platting steel strips were cleaned in different degreasers (based on NaOH as well as on KOH. It was shown that efficient cleaning without the use of trichloroethylene is possible with the use of oil with smaller viscosity in the perforated steel strips process and the degreaser based on KOH in the cleaning process, before nickel platting. It also appeared that the alkali degreaser based on KOH was more efficient, bath corrections were made less often and the working period of the baths was longer, which all in summary means less quantity of chemicals needed for degreasing of perforated steel strips.

  11. Properties isotropy of magnesium alloy strip workpieces

    Directory of Open Access Journals (Sweden)

    Р. Кавалла

    2016-12-01

    Full Text Available The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling and annealing. The principal causes of anisotropic mechanical properties of metal strips produced by the combined casting and rolling technique are the character of distribution of intermetallic compounds in the strip, orientation of phases of metal defects and the residual tensions. One of the tasks in increasing the output of fit products during stamping operations consists in minimizing the amount of defects. To lower the level of anisotropy in mechanical properties various ways of treating the melt during casting are suggested. Designing the technology of producing strips of magnesium alloys opens a possibility of using them in automobile industry to manufacture light-weight body elements instead of those made of steel.

  12. PECULIAR FEATURES PERTAINING TO STRIP FORMATION FROM BAR

    Directory of Open Access Journals (Sweden)

    G. N. Zdor

    2010-01-01

    Full Text Available The paper describes results of calculations and presents experimental substantiation of the dependence of a strip width being rolled out of a 10-mm diameter bar on its final thickness. It has been shown that the formation technology of thin steel strips out of a round bar makes it possible without any difficulties to obtain rolled products with the given cross-section dimensions due to proper selection of single drafting.

  13. Application of the Finite Element Method to Reveal the Causes of Loss of Planeness of Hot-Rolled Steel Sheets during Laser Cutting

    Science.gov (United States)

    Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.

    2018-01-01

    A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.

  14. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-06-07

    ...-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit for Preliminary Results of...-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot... duty order on certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Initiation...

  15. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Harald; Mattissen, Dorothea; Schaumann, Thomas Wilhelm [ThyssenKrupp Steel AG, Center of Materials Excellence, Dortmund (Germany)

    2009-01-15

    Advanced high-strength steels offer a great potential for the further development of automobile bodies-in-white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash-relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex-phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (orig.)

  16. The Effects of Finish Rolling Temperature and Niobium Microalloying on the Microstructure and Properties of a Direct Quenched High-Strength Steel

    Directory of Open Access Journals (Sweden)

    Kaijalainen A.

    2017-06-01

    Full Text Available This paper comprehends the effects of finish rolling temperature (FRT and Nb-microalloying on the microstructural evolution and resultant properties of a low carbon direct quenched steel in the yield strength category of ≥900 MPa. Results indicate that a decrease in FRT close to Ar3 temperature significantly influenced the microstructure following phase transformation, especially at the subsurface (~50-400 μm of the rolled strip. On decreasing the FRT, the subsurface microstructure revealed a fine mixture of ferrite and bainite obviously as a result of strain-induced transformation, whereas the structure at the centreline remained essentially martensitic. Further, Nb-microalloying promoted the formation of ferrite and bainite even at higher FRTs, thus influencing the mechanical properties. The microstructures of the hot-rolled strips were further corroborated with the aid of CCT diagrams.

  17. Refinement of the microstructure of steel by cross rolling

    International Nuclear Information System (INIS)

    Tsay, Kira; Arbuz, Alexandr; Gusseynov, Nazim; Nemkaeva, Renata; Ospanov, Nurlan; Krupen'kin, Ivan

    2016-01-01

    One of the most effective ways for refinement of metal microstructure is a severe plastic deformation. The cross rolling is the one of most perspective methods of severe plastic deformation, because it allows to get the long billets, unlike equal angular pressing and other popular methods. This fact provides some industrial expectation for this method. However, deformation and motion path of the metal is very heterogeneous across the section of the rolled piece. This paper presents the finite element modeling of hot cross rolling of steel in the software package DEFORM-3D features implemented and studied the stress-strain state. An experimental study of the effect of the cross rolling on a three-roll mill on the microstructure of structural alloy steel and stainless steel AISI321 in different zones of the bar. Analysis of microsections made after rolling with high total stretch and the final pass temperature 700°C, shows the formation of equiaxial ultrafinegrain structure on the periphery of an elongated rod and “rolling” texture in the central zone. The resulting microstructure corresponds to that obtained in models of stress-strain state. Keywords: cross rolling, ultra-fine grain structure, steel.

  18. Properties of hot rolled steels for enamelling

    International Nuclear Information System (INIS)

    Gavrilovski, Dragica; Gavrilovski, Milorad

    2003-01-01

    The results of an investigation of the structure and properties of experimental produced hot rolled steels suitable for enamelling are presented in the paper. Hot rolled steels for enamelling represent a special group of the steels for conventional enamelling. Their quality has to be adapted to the method and conditions of enamelling. Therefore, these steels should meet some specific requirements. In addition to usual investigation of the chemical composition and mechanical properties, microstructure and quality of the steel surface also were investigated. The basic aim was to examine steels capability for enamelling, i. e. steels resistance to the fish scales phenomena, by trial enamelling, as well as quality of the steel - enamel contact surface, to evaluate the binding. Also, the changes of the mechanical properties, especially the yield point, during thermal treatment, as a very specific requirement, were investigated, by simplified method. Good results were obtained confirming the steels capability for enamelling. (Original)

  19. Texture evolution of experimental silicon steel grades. Part I: Hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Robles, J.A., E-mail: jsandoval.uanl@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Salas Zamarripa, A.; Guerrero Mata, M.P. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Cabrera, J. [Universitat Politècnica de Catalunya, Departament de Ciència dels Materials I Enginyeria Metal-lúrgica, Av. Diagonal 647, Barcelona 08028 (Spain)

    2017-05-01

    The metallurgical understanding of the deformation processes during the fabrication of non-oriented electrical steels plays a key role in improving their final properties. Texture control and optimization is critical in these steels for the enhancement of their magnetic properties. The aim of the present work is to study the texture evolution of six non-oriented experimental silicon steel grades during hot rolling. These steels were low carbon steel with a silicon content from 0.5 to 3.0 wt%. The first rolling schedule was performed in the austenitic (γ-Fe) region for the steel with a 0.5 wt% of silicon content, while the 1.0 wt% silicon steel was rolled in the two-phase (α+γ) region. Steels with higher silicon content were rolled in the ferritic (α-Fe) region. The second rolling schedule was performed in the α-Fe region. Samples of each stage were analyzed by means of Electron Backscatter Diffraction (EBSD). Findings showed that the texture was random and heterogeneous in all samples after 60% of rolling reduction, which is due to the low deformation applied during rolling. After the second rolling program, localized deformation and substructured grains near to surface were observed in all samples. The Goss {110}<001>texture-component was found in the 0.5 and 1.0 wt.-%silicon steels. This is due to the thermomechanical conditions and the corresponding hot band microstructure obtained after the first program. Moreover, the α<110>//RD and the γ <111>//ND fiber components of the texture presented a considerable increment as the silicon content increases. Future research to be published soon will be related to the texture evolution during the cold-work rolling process. - Highlights: • We analyze six silicon steel experimental grades alloys trough the rolling process. • Material was subjected to a hot deformation process in the α-γ region. • No recrystalization was observed during-after the rolling schedules. • Rise of the magnetic texture components

  20. [Factors influencing electrocardiogram results in workers exposed to noise in steel-making and steel-rolling workshops of an iron and steel plant].

    Science.gov (United States)

    Li, Y H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Jiao, J

    2016-02-20

    To investigate the factors influencing the electrocardiogram results in the workers exposed to noise in steel-making and steel rolling workshops of an iron and steel plant. From September to December, 2013, cluster sampling was used to select 3 150 workers exposed to noise in the steel-making and steel-rolling workshops of an iron and steel plant, and a questionnaire survey and physical examinations were performed. The number of valid workers was 2 915, consisting of 1 606 workers in the steel-rolling workshop and 1 309 in the steel-making workshop. The electrocardiogram results of the workers in steel-making and steel-rolling workshops were analyzed. The overall abnormal rate of electrocardiogram was 26.35%, and the workers in the steel-making workshop had a significantly higher abnormal rate of electrocardiogram than those in the steel-rolling workshop(32.24% vs 21.54%, Pelectrocardiogram than female workers(27.59% vs 18.61%, Pelectrocardiogram than those who did not drink(28.17% vs 23.75%, Pelectrocardiogram than those who were not exposed to high temperature(29.43% vs 20.14%, Pelectrocardiogram in the workers with cumulative noise exposure levels of electrocardiogram results. High cumulative noise exposure, alcohol consumption, and high temperature may affect the abnormal rate of electrocardiogram in the workers exposed to noise in steel-making and steel-rolling workshops.

  1. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    Science.gov (United States)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  2. ABOUT RATIONING MAXIMUM ALLOWABLE DEFECT DEPTH ON THE SURFACE OF STEEL BILLETS IN PRODUCTION OF HOT-ROLLED STEEL

    Directory of Open Access Journals (Sweden)

    PARUSOV E. V.

    2017-01-01

    Full Text Available Formulation of the problem. Significant influence on the quality of rolled steel have various defects on its surface, which in its turn inherited from surface defects of billet and possible damage to the surface of rolled steel in the rolling mill line. One of the criteria for assessing the quality indicators of rolled steel is rationing of surface defects [1; 2; 3; 6; 7]. Current status of the issue. Analyzing the different requirements of regulations to the surface quality of the rolled high-carbon steels, we can conclude that the maximum allowable depth of defects on the surface of billet should be in the range of 2.0...5.0 mm (depending on the section of the billet, method of its production and further the destination Purpose. Develop a methodology for calculating the maximum allowable depth of defects on the steel billet surface depending on the requirements placed on the surface quality of hot-rolled steel. Results. A simplified method of calculation, allowing at the rated depth of defects on the surface of the hot-rolled steel to make operatively calculation of the maximum allowable depth of surface defects of steel billets before heating the metal in the heat deformation was developed. The findings shows that the maximum allowable depth of surface defects is reduced with increasing diameter rolled steel, reducing the initial section steel billet and degrees of oxidation of the metal in the heating furnace.

  3. Effects of thermo-mechanical treatment and microalloying with Cr, Nb and Ti on phase transformation in C-Mn steel strips produced by compact strip production process

    International Nuclear Information System (INIS)

    Zhu, Y.Z.; Liang, D.M.; Li, J.C.; Xu, J.P.; Xue, Z.L.

    2011-01-01

    Highlights: → The order of solid solution of carbides influences phase transformation of C-Mn steel in cooling. → Evidences of early stage of solid solution of carbides were provides in the paper. → Transitional state evidences such as carbon enriched regions were observed in this study. - Abstract: The C-Mn steel strips microalloyed with Cr, Nb, Ti was produced by compact strip production process and then heat-treated under different conditions. Optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy were used to investigate phase transformations in the steel after different treatments. It was revealed that the phase transformations upon quenching were greatly affected by the austenization temperature and time. When the steel was annealed at 950 deg. C, carbides of Cr, Mn and Fe were dissolved dramatically, while carbides of Nb and Ti are relatively stable at this temperature. When the temperature increases to 1100 deg. C, the carbides of Nb were dissolved rapidly, while the carbides of Ti still show somewhat stable (partial dissolution). Annealing time influences both the amount and the shapes of carbides in the steel, which leads to different phase transformations in the following air cooling processes. Grain growth in the steel in annealing process strongly depends on the dissolution of carbides on grain boundaries. Additionally, a subsequent rolling after annealing treatment at 950 deg. C lead to obvious precipitation of carbides of Ti and Nb in the steel.

  4. Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samaraseker; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1998-09-30

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evaluation and mechanical properties of steel strip in a hot-strip mill. This achievement results from a join research effort that is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American steel makers.

  5. Adaptive Automatic Gauge Control of a Cold Strip Rolling Process

    Directory of Open Access Journals (Sweden)

    ROMAN, N.

    2010-02-01

    Full Text Available The paper tackles with thickness control structure of the cold rolled strips. This structure is based on the rolls position control of a reversible quarto rolling mill. The main feature of the system proposed in the paper consists in the compensation of the errors introduced by the deficient dynamics of the hydraulic servo-system used for the rolls positioning, by means of a dynamic compensator that approximates the inverse system of the servo-system. Because the servo-system is considered variant over time, an on-line identification of the servo-system and parameter adapting of the compensator are achieved. The results obtained by numerical simulation are presented together with the data taken from real process. These results illustrate the efficiency of the proposed solutions.

  6. Research and Development Trend of Shape Control for Cold Rolling Strip

    Science.gov (United States)

    Wang, Dong-Cheng; Liu, Hong-Min; Liu, Jun

    2017-09-01

    Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape control system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll optimization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully industrial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general, the four expected development trends of shape control for cold rolling strip in the future are intelligentization, coordination, refinement, and standardization. The proposed research provides new breakthrough directions for improving shape quality.

  7. Application of powder metallurgy and hot rolling processes for manufacturing aluminum/alumina composite strips

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, Majed, E-mail: m.zabihi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Toroghinejad, Mohammad Reza, E-mail: toroghi@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shafyei, Ali, E-mail: shafyei@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-01-10

    In this study, aluminum matrix composites (AMC) with 2, 4, 6 and 10 wt% alumina were produced using powder metallurgy (PM), mechanical milling (MM) and vacuum hot pressing (VHP) techniques; then, this was followed by the hot-rolling process. During hot rolling, AMCs with 6 and 10 wt% Al{sub 2}O{sub 3} were fractured whereas strip composites with 2 and 4 wt% Al{sub 2}O{sub 3} were produced successfully. Microstructure and mechanical properties of the samples were investigated by optical and scanning electron microscopes and tensile and hardness tests, respectively. Microscopic evaluations of the hot-rolled composites showed a uniform distribution of alumina particles in the aluminum matrix. It was found that with increasing alumina content in the matrix, tensile strength (TS) and hardness increased and the percentage of elongation also decreased. Scanning electron microscope (SEM) was used to investigate aluminum/alumina interfaces and fracture surfaces of the hot rolled specimens after tensile test. SEM observations demonstrated that the failure mode in the hot-rolled Al-2 wt% Al{sub 2}O{sub 3} composite strips is a typical ductile fracture, while the failure mode was shear ductile fracture with more flat surfaces in Al-4 wt% Al{sub 2}O{sub 3} strips.

  8. Effect of nano-sized precipitates on the crystallography of ferrite in high-strength strip steel

    Institute of Scientific and Technical Information of China (English)

    Jing-jing Yang; Run Wu; Wen Liang; Meng-xia Tang

    2014-01-01

    For strip steel with the thickness of 1.6 mm, the yield and tensile strengths as high as 760 and 850 MPa, respectively, were achieved using the compact strip production technology. Precipitates in the steel were characterized by scanning and transmission electron microscopy to elucidate the strengthening mechanism. In addition, intragranular misorientation, Kernel average misorientation, and stored energy were measured using electron backscatter diffraction for crystallographic analysis of ferrite grains containing precipitates and their neighbors without precipitates. It is found that precipitates in specimens primarily consist of TiC and Ti4C2S2. Ferrite grains containing pre-cipitates exhibit the high Taylor factor as well as the crystallographic orientations with{012},{011},{112}, or{221}plane parallel to the rolling plane. Compared with the intragranular orientation of adjoining grains, the intragranular misorientation of grains containing precipi-tates fluctuates more frequently and more mildly as a function of distance. Moreover, the precipitates can induce ferrite grains to store a rela-tively large amount of energy. These results suggest that a correlation exists between precipitation in ferrite grains and grain crystallographic properties.

  9. Effect of the cold-rolling parameters and the yield strength of the strip material on the friction stresses in a deformation zone

    Science.gov (United States)

    Garber, E. A.; Yagudin, I. V.; Ermilov, V. V.; Traino, A. I.

    2009-10-01

    The reliability of the methods of determining the friction coefficient is analyzed, since the friction stresses in the deformation zone during cold rolling significantly affect the quality of cold-rolled sheets and the energy consumption. The well-known experimental data and empirical dependences are shown to contradict each other, and the statistical assurance of these dependences is absent. A database on the interrelated technological and energy-force parameters of a five-stand cold-rolling mill, which includes a wide range of steel grades and strip sizes and shapes, is analyzed. Regression analysis is used to obtain a statistically reliable regression dependence of the friction coefficient in the deformation zone on the most significant technological parameters. The application of this dependence decreases the error of energy-force calculations by more than two times.

  10. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2011-06-10

    ...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. The Commission further...

  11. On rolling of alloyed steels on the continuous light-section mill 250

    International Nuclear Information System (INIS)

    Grigor'ev, V.K.; Antipov, V.F.; Zamotin, V.M.; Kuznetsov, Yu.M.

    1976-01-01

    Using the method of computed ratios, the expected loads (torques) have been calculated in the rolling of alloyed steels on the light-section mill 250 of the Chelyabinsk metallurgical works. The deviation of the computed torques from those measured for steels 35GS and St5ps does not exceed -6%. Data are given on changes in torques during the rolling of alloyed steels in the different stands as compared with the actual data for the rolling of ordinary steel. Calculations show, and experimental data confirm, that, according to the torque value, it is possible to roll alloyed steels of sufficiently wide assortment on mill 250

  12. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied in carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.

  13. Fabrication of high edge-definition steel-tape gratings for optical encoders

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  14. Force prediction in cold rolling mills by polynomial methods

    Directory of Open Access Journals (Sweden)

    Nicu ROMAN

    2007-12-01

    Full Text Available A method for steel and aluminium strip thickness control is provided including a new technique for predictive rolling force estimation method by statistic model based on polynomial techniques.

  15. Fabrication of high permeability non-oriented electrical steels by increasing 〈0 0 1〉 recrystallization texture using compacted strip casting processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Schneider, J. [Institut für Metallformung, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta-Str. 4, D-09596 Freiberg (Germany); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Sun, Yu; Gao, Fei; Lu, Hui-Hu; Song, Hong-Yu [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China); Li, Lei; Geng, Dian-Qiao [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China)

    2015-01-15

    In this paper we will report on the application of the twin-roll casting technique to get a 2 mm thick material of Fe-3.2%Si alloy, which was finally hot rolled, cold rolled and annealed. After a mild hot rolling to a thickness of 1 mm and a mild cold rolling to a thickness of 0.35 mm, we obtained a high intensity of λ-fiber (〈0 0 1〉|| ND) and η-fiber (〈0 0 1〉|| RD) texture concentrated on cube ({0 0 1}〈0 1 0〉) component and a diminishing intensity of the γ-fiber (〈1 1 1〉|| ND) texture, and a large average grain size in the final processed material. The experimental results for the evolution of the microstructure and texture along the used processing routes were described within the paper in detail. The formation mechanism for the desired recrystallization textures were explained in terms of oriented nucleation, micro-growth selection, accumulated deformation stored energy, geometric softening and orientation pinning. It will be demonstrated that this new processing route using the compact strip casting offers the possibility to fabricate high permeability non-oriented electrical steels without additional fabrication steps like hot band annealing or two step cold rolling with intermediate annealing as in the case of conventional processing route. - Highlights: • High permeability non-oriented electrical steel was fabricated by strip casting processes. • Hot band annealing or two step cold rolling with intermediate annealing was eliminated. • Prevailing of 〈0 0 1〉|| ND and 〈0 0 1〉|| RD textures over diminishing 〈1 1 1〉|| ND texture was realized. • Evolution of microstructure and texture along the used processing routes were described.

  16. Recent Developments in On-Line Assessment of Steel Strip Properties

    International Nuclear Information System (INIS)

    Meilland, P.; Kroos, J.; Buchholtz, O. W.; Hartmann, H.-J.

    2006-01-01

    On-line non-destructive assessment of steel strip properties is a subject of growing interest amongst European manufacturers, as it provides information all along the products length, without slowing down the production. Arcelor, Salzgitter and TKS recently undertook a collective effort to assess the performance of 3 systems for flat carbon steel strips mechanical properties at the exit of galvanizing lines

  17. New progress of FEM simulation and AI application in rolling at RAL

    International Nuclear Information System (INIS)

    Liu Xianghua; Wang Guodong; Zhao Kun

    2000-01-01

    New progresses on FEM simulation and AI application in rolling have been achieved at RAL recently. The existence and uniqueness of the extreme point of total functional for rolling problem has been proved. Different rolling processes, such as H-beam rolling, ribbing strip rolling, slab sizing, have been solved by our in-house FEM software package. The simulation results have been put into production use to improve the precision of math models. The Artificial Neural Network has been used to predict rolling force, coiling temperature, microstructure and properties of the rolled products. An expert system for deviation diagnoses of strip thickness has been developed for industry use. Synergetic Artificial Intelligence has also been applied to rolling scheduling. We are making continuous efforts to develop AI applications for rolling line co-operating in China steel industry. (author)

  18. Simulation of accelerated strip cooling on the hot rolling mill run-out roller table

    Directory of Open Access Journals (Sweden)

    E.Makarov

    2016-07-01

    Full Text Available A mathematical model of the thermal state of the metal in the run-out roller table continuous wide hot strip mill. The mathematical model takes into account heat generation due to the polymorphic γ → α transformation of supercooled austenite phase state and the influence of the chemical composition of the steel on the physical properties of the metal. The model allows calculation of modes of accelerated cooling strips on run-out roller table continuous wide hot strip mill. Winding temperature calculation error does not exceed 20°C for 98.5 % of strips of low-carbon and low-alloy steels

  19. Study of mechanism on microstructure refinement during compact strip production process

    International Nuclear Information System (INIS)

    Yu Hao; Kang Yonglin; Wang Kelu; Fu Jie; Wang Zhongbing; Liu Delu

    2003-01-01

    In this study, microstructures of 1.9 mm hot strip steel produced by compact strip production (CSP) are investigated by using optical metallograph observation and electron back-scattered diffraction (EBSD) data to deduce the status of hot rolled austenite before phase transformation, because the evolution of hot rolled austenite is important to provide information for the microstructure refinement. The experimental results show that the finishing hot rolled microstructure is a mixture of recrystallized and deformed austenite, and the percentage of recrystallized austenite is greater than that of the deformed austenite. At last, microstructure evolution of austenite is modeled based on chemical compositions and techniques of producing 1.9 mm hot strip. The simulation results agree well with experimental data. Analysis shows that microstructure refinement, recrystallization and supercooling rate are the primary causes to fine microstructure

  20. Experiment and simulation analysis of roll-bonded Q235 steel plate

    International Nuclear Information System (INIS)

    Zhao, G.; Huang, Q.; Zhou, C.; Zhang, Z.; Ma, L.; Wang, X.

    2016-01-01

    Heavy-gauge Q235 steel plate was roll bonded, and the process was simulated using MARC software. Ultrasonic testing results revealed the presence of cracks and lamination defects in an 80-mm clad steel sheet, especially at the head and tail of the steel plate. There were non-uniform ferrite + pearlite microstructures and unbound areas at a bond interface. Through scanning electron microscopy analysis, long cracks and additional inclusions in the cracks were observed at the interface. A fracture analysis revealed non-uniform inclusions that pervaded the interface. Moreover, MARC simulations demonstrated that there was little equivalent strain at the centre of the slab during the first rolling pass. The equivalent centre increased to 0.5 by the fourth rolling pass. Prior to the final pass, the equivalent strain was not consistent across the thickness direction, preventing bonding interfaces from forming consistent deformation and decreasing the residual stress. The initial rolling reduction rate should not be very small (e.g. 5%) as it is averse to the coordination of rolling deformation. Such rolling processes are averse to the rolling bond. (Author)

  1. Engineering of rolled constructional microalloyed steel products

    International Nuclear Information System (INIS)

    Adamczyk, J.

    2003-01-01

    Flexibility of the microalloyed steels on manufacturing of products with high mechanical and technological properties at not exaggerated production costs, it caused of their application for different constructions and machines in many branches of economy. It is a reason of the big interest of this steel group and the improvement of metallurgical and technological processing. In the work the examples of applications of C-Mn microalloyed steels with V and N microadditions for production of long shape products of R p0.2 > 650 MPa and KCU2 > 57 Jcm -2 are presented. They are manufactured in the controlled rolling process. Moreover this work presents liquid metal treatment in ladlemann process and influence of ingots solidification conditions, controlled rolling of weldable plates with Nb, Ti, V and B microadditions which after quenching and tempering have R p0.2 > 870 MPa, KV -50 o C > 27 J and plastic strain ratio equals 1.2. This work also presents the energy saving rolling technology with controlled recrystallization (method of thermomechanical treatment) of improved Weldox 960 steel plates with Mb, Ti, V and B microadditions which have after high-temperature tempering R p0.2 > 100 MPa, KV -50 o C >90 J and plastic strain ratio is less than 1.2. The introduction of microalloyed constructional steels and the appropriate technology in the domestic industry will contribute to high-processed products with properties competitive to products manufactured in high-industrialized countries. Thanks to that it will be possible to increase the technical level as well as to reduce production costs and import. (author)

  2. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  3. Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Jian Zhou; Yonglin Kang; Xinping Mao

    2008-01-01

    Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti mieroalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S>2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.

  4. Effects of microalloying on hot-rolled and cold-rolled Q&P steels

    Science.gov (United States)

    Azevedo de Araujo, Ana Luiza

    Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in

  5. Formability of high-alloy dual-phase Cr-Ni steels

    International Nuclear Information System (INIS)

    Elfmark, J.

    2004-01-01

    The formability of dual-phase high-alloy Cr-Ni steel within the temperature range from 900 to 1250 C was studied using laboratory tensile and torsion tests. The dual-phase steels on 24% Cr basis are characterized by poor hot formability due to very low stable deformation values and slow recrystallization. Mathematical description of deformation stability exhaustion was derived, as well as a model of formability control based on analysis of the gradual diffuse deformation stability from the stability limit to the moment when the deformation starts to concentrate in a small volume of the test piece. Rolling simulation of dual-phase steel strip was used as an example demonstrating the draught scheme optimization technique which avoids the danger of crack occurrence during the rolling of dual-phase steel strip. (orig.)

  6. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel

    International Nuclear Information System (INIS)

    Liu, Hai-Tao; Wang, Yin-Ping; An, Ling-Zi; Wang, Zhao-Jie; Hou, Dao-Yuan; Chen, Jun-Mou; Wang, Guo-Dong

    2016-01-01

    In this work, a 0.71 wt%Si+0.44 wt%Al as-cast strip was produced by novel twin-roll casting. Some as-cast samples were respectively reheated and hot rolled at different temperatures in order to obtain different microstructure prior to cold rolling and annealing. The effects of the hot rolled microstructure on microstructure, texture evolution and magnetic properties were investigated in detail. A coarse deformed microstructure with λ-fiber texture was formed after hot rolling at 850–1050 °C, finally leading to an inhomogeneous recrystallization microstructure with strong λ-fiber, Goss and extremely weak γ-fiber texture. By contrast, a fine transformed microstructure was formed after hot rolling at 1150–1250 °C, finally leading to a fine and homogeneous recrystallization microstructure with stronger α-fiber, γ-fiber and much weaker λ-fiber texture. It should be noted that both the magnetic induction and core loss non-monotonically decreased or increased according to the hot rolling temperature. The unfavorable α-fiber and γ-fiber textures in the annealed sheets were much weaker than those of the conventional products regardless of the hot rolling temperature, thus contributing to a much higher magnetic induction. However, the average grain size in the annealed sheets was much lower than those of the conventional products regardless of the hot rolling temperature, thus leading to a higher core loss except the case of 1050 °C. Hence, it is underscored that better integrated magnetic properties than those of the conventional products can be obtained by optimizing the hot rolled microstructure to produce final desirable recrystallization microstructure and texture. - Highlights: • Non-oriented silicon steel was fabricated using twin-roll casting route. • Microstructure and texture evolution were clarified. • Effects of the hot rolled microstructure were investigated in detail. • Formation mechanism of the recrystallization texture was explored.

  7. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; An, Ling-Zi; Wang, Zhao-Jie; Hou, Dao-Yuan; Chen, Jun-Mou; Wang, Guo-Dong

    2016-12-15

    In this work, a 0.71 wt%Si+0.44 wt%Al as-cast strip was produced by novel twin-roll casting. Some as-cast samples were respectively reheated and hot rolled at different temperatures in order to obtain different microstructure prior to cold rolling and annealing. The effects of the hot rolled microstructure on microstructure, texture evolution and magnetic properties were investigated in detail. A coarse deformed microstructure with λ-fiber texture was formed after hot rolling at 850–1050 °C, finally leading to an inhomogeneous recrystallization microstructure with strong λ-fiber, Goss and extremely weak γ-fiber texture. By contrast, a fine transformed microstructure was formed after hot rolling at 1150–1250 °C, finally leading to a fine and homogeneous recrystallization microstructure with stronger α-fiber, γ-fiber and much weaker λ-fiber texture. It should be noted that both the magnetic induction and core loss non-monotonically decreased or increased according to the hot rolling temperature. The unfavorable α-fiber and γ-fiber textures in the annealed sheets were much weaker than those of the conventional products regardless of the hot rolling temperature, thus contributing to a much higher magnetic induction. However, the average grain size in the annealed sheets was much lower than those of the conventional products regardless of the hot rolling temperature, thus leading to a higher core loss except the case of 1050 °C. Hence, it is underscored that better integrated magnetic properties than those of the conventional products can be obtained by optimizing the hot rolled microstructure to produce final desirable recrystallization microstructure and texture. - Highlights: • Non-oriented silicon steel was fabricated using twin-roll casting route. • Microstructure and texture evolution were clarified. • Effects of the hot rolled microstructure were investigated in detail. • Formation mechanism of the recrystallization texture was explored.

  8. Continuum Mechanical Modelling of Skin-pass Rolling

    DEFF Research Database (Denmark)

    Kijima, Hideo; Bay, Niels

    2007-01-01

    The special contact conditions in skin-pass rolling of steel strip is analyzed by studying plane strain upsetting of thin sheet with low reduction applying long narrow tools and dry friction conditions. An extended sticking region is estimated by an elasto-plastic FEM analysis of the plane strain...

  9. Assessment of recovery and recrystallisation behaviours of cold rolled IF steel through non-destructive electromagnetic characterisation

    Science.gov (United States)

    Roy, Rajat K.; Dutta, Siuli; Panda, Ashis K.; Rajinikanth, V.; Das, Swapan K.; Mitra, Amitava; Strangwood, M.; Davis, Claire L.

    2018-07-01

    The recovery and recrystallisation behaviours of cold rolled IF steel have been investigated by destructive (optical microscopy and hardness) and non-destructive electromagnetic sensor, (which allows direct measurement of strip samples with no surface preparation) techniques. The onset and completion of recrystallisation are clearly monitored through destructive techniques of optical microscopy and hardness measurements. The nucleation of new recrystallised grains is observed in the sample annealed at 600 °C/15 min, while completion of recrystallisation takes place at 700 °C/15 min. The destructive techniques are not very accurate in monitoring recovery, for example, changes in hardness of accounting for ≈60% change in the coercivity value. Therefore, the measurement of magnetic softening through an electromagnetic sensor acts a crucial role for understanding recovery and recrystallisation behaviours of steels during industrial processing. The present investigation is aimed not only for controlling product quality but also saving characterisation time through off line monitoring during steel processing at industry.

  10. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  11. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-09-28

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY: United States... duty orders on stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan... stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to...

  12. Dimensional ranges and rolling efficiency in a tandem cold rolling mill

    Energy Technology Data Exchange (ETDEWEB)

    Larkiola, J.

    1997-12-31

    In this work, physical models and a neural network theory have been combined in order to predict the properties of a steel strip and to optimise the process parameters in cold rolling. The prediction of the deformation resistance of the material and the friction parameter is based on the physical model presented by Bland, Ford and Ellis and artificial neural network computing (ANN). The accuracy of these models has been tested and proved by using a large amount of the measured data. With the aid of these models it has been shown that (a) the small change to the relative reduction distribution can have a clear effect upon the rolling efficiency, (b) the dimensional ranges of the tandem cold roll mill can be determined and optimised and (c) the possibility to cold roll a new product of new width, strength or thickness can be determined and the parameters of the tandem cold rolling process can be optimised. (orig.) 43 refs.

  13. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    Energy Technology Data Exchange (ETDEWEB)

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  14. A computer system to aid in the planning of steel rolls cuts

    Directory of Open Access Journals (Sweden)

    Nelson Maculan

    2007-03-01

    Full Text Available The planning of cuts in steel rolls is a combinatory optimization problem. Some companies of the metallurgical industry use the steel cold lamination process so that it acquires the necessary physical properties. In this case, the cutting patterns should consist of compartments of items compatible with the lamination process, hindering the task of cuts planning. A compartment represents an intermediate roll to be laminated, so that it is possible to combine intermediate rolls with different lamination needs in the same roll of the stock. In this work the prototype of the RollCut System will be presented to aid with the cuts planning.

  15. Rolling contact fatigue of low hardness steel for slewing ring application

    Science.gov (United States)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium

  16. 78 FR 11901 - Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and Ukraine; Notice of...

    Science.gov (United States)

    2013-02-20

    ... 906-908 (Second Review)] Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and... determine whether revocation of the countervailing duty orders on hot-rolled steel products from India, Indonesia, and Thailand and the revocation of the antidumping duty orders on hot-rolled steel products from...

  17. Effects of alloying elements on sticking occurring during hot rolling of ferritic stainless steels

    International Nuclear Information System (INIS)

    Ha, Dae Jin; Kim, Yong Jin; Lee, Yong Deuk; Lee, Sung Hak; Lee, Jong Seog

    2008-01-01

    In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content

  18. Non-Contact Thickness and Profile Measurements of Rolled Aluminium Strip Using EMAT

    International Nuclear Information System (INIS)

    Hobbis, A.; Aruleswaran, A.

    2006-01-01

    Accurate measurement of strip thickness is a very high priority for the aluminium rolled product industry. This paper presents the findings of trials to measure the thickness of aluminium strip using a send-receive, radially polarised Electromagnetic Acoustic Transducer (EMAT). A broadband EMAT system, developed at Warwick University, UK with a centre frequency of approximately 5 MHz and frequency content up to 12 MHz was used. The resultant ultrasonic waveforms have been processed using Fourier analysis. Static measurements of aluminium alloy samples in the thickness range between 0.28 mm to 2.8 mm have been measured using this non-contact approach at stand-offs of up to 2 mm. Measurements across the aluminium strip width to evaluate its profile for quality control was also carried out successfully. Some of the experiments and results obtained are described in detail

  19. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    International Nuclear Information System (INIS)

    Yasuyama, Masanori; Ogawa, Kazuhiro; Taka, Takao; Nakasuji, Kazuyuki; Nakao, Yoshikuni; Nishimoto, Kazutoshi.

    1996-01-01

    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  20. Surface finishing and levelling of thermomechanically hardened rolled steel

    International Nuclear Information System (INIS)

    Grosval'd, V.G.; Bashchenko, A.P.; Grishkov, A.I.; Gutnik, M.V.; Kanevskij, B.L.; Nikozov, A.I.; Sedov, N.D.; Prosin, K.A.; Safonov, L.I.

    1975-01-01

    The finishing of high-strength merchant shapes from alloy steel was tried out under industrial conditions with the equipment of metallurgical plants. After thermomechanical hardening in the production line of the rolling mill, 30KhGSN2A and 40Kh1NVA steel rounds 32 and 31 mm in diameter were straightened on a two-roller straightening machine designed by the All-Union Scientific Research Institute for Metallurgical Machinery (VNII Metmash). This made possible subsequent turning and grinding of the rods. The conditions of straightening, turning and grinding have been worked so as to obtain thermomechanically strengthened and ground rolled products approximating the gauged and ground metal in shape geometry and surface finish. It is shown that the labour-consuming operation of turning can be eliminated by reducing the machining pass of the rolled product, and this lowers the labour required for the finishing operations by 75%. After grinding with 40- and 25-grain abrasive wheels, high strength rolled shapes were obtained with a diameter of 30-0.20 mm and a surface finish of class 6-5 satisfying the technical specifications. (author)

  1. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, H. [ThyssenKrupp Steel AG, Eberhardstrasse 12, 44145 Dortmund (Germany); Mattissen, D.; Schaumann, T.W. [ThyssenKrupp Steel AG, Duisburg (Germany)

    2006-09-15

    Advanced multiphase steels offer a great potential for bodies-in-white through their combination of formability and achievable component strength levels. They are first choice for strength and crash-relevant parts of challenging geometry. The intensive development of high-strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [German] Fortschrittliche Multiphasen-Staehle eroeffnen wegen der inzwischen erreichbaren Kombination aus Umformbarkeit und Bauteilfestigkeit ein enormes Potenzial fuer Rohkarosserien. Sie stellen eine erste Wahl dar, wenn es um Festigkeit und um Crashsicherheit geht und besondere Anforderungen an die Bauteilgeometrien gestellt werden. Bei ThyssenKrupp hat die Entwicklung hochfester Multiphasen-Staehle in Verbindung mit dem Feuerverzinken zur Realisierung von Blechhalbzeugen gefuehrt, die hervorragend formbar sind. Es werden heute feuerverzinkte Komplexphasenstaehle neben den bewaehrten kaltgewalzten Dualphasen(DP) - und Retained Austenit(RA)-Staehlen produziert. Die neuen kontinuierlich gegluehten Stahlvarianten mit Festigkeiten bis zu 1000 MPa in Kombination mit der bei Strukturbauteilen im Automobilbau geforderten Duktilitaet nutzen sowohl die klassischen Vorteile des Mikrolegierens aus und dazu die Prinzipien, die man bei DP- und TRIP-Staehlen anwendet. Eine weitere Verbesserung des Eigenschaftsprofils wird mit dem

  2. Low carbon manganese-nickel-niobium steel

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Hulka, K.

    1983-11-01

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 1100 0 C to 1300 0 C and of finish rolling temperatures between 710 0 C and 930 0 C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author) [pt

  3. Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mehdi [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada); He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Hilinski, Erik J. [Tempel Steel Co., Chicago, IL 60640-1020 (United States); Edrisy, Afsaneh [Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada)

    2017-05-01

    In order to promote the magnetically favourable <001>//ND texture (θ-fibre) and minimize the unfavourable <111>//ND fibre (γ-fibre) in non-oriented electrical steel, an unconventional cold rolling scheme was employed in this study, in which the cold rolling was carried out at an angle (i.e. 30°, 45°, 60°, and 90°) to the hot rolling direction (HRD). After annealing, two steel sheets (i.e. those after cold rolling at 60° and 45° to the HRD) were found to have considerably different textures from other sheets, i.e. showing the strongest and the weakest θ-fibre textures, respectively. These two sheets were then subjected to skin pass rolling to various reduction rates from 5–20% to investigate the effect of rolling reduction on the evolution of texture. It was found that during skin pass rolling, the cube texture ({001}<100>) was gradually weakened and the rotated cube orientation ({001}<110>) was strengthened. With the increase of the reduction rate, the {112}<110> orientation on the α-fibre became a major component. Upon final annealing, the cube texture was slightly restored, but the volume fraction was considerably lower than that before skin pass rolling. - Highlights: • Inclined cold rolling optimizes the textures of non-oriented electrical steels. • A 60° angle to the hot rolling direction results in the largest improvement of the favorable texture. • Skin pass rolling weakens the cube texture and promotes the {112}<110> texture. • Final annealing restores some of the cube texture and strengthens the rotated cube texture. • Low Taylor factor of the cube orientation leads to its easy deformation in skin pass rolling.

  4. Effect of rolling temperature on 12Kh18N10T steel tube hardening

    International Nuclear Information System (INIS)

    Yushkevich, P.M.; Stepanovich, V.E.; Manankova, L.V.; Usenko, V.N.; Semenov, I.A.

    1984-01-01

    Mechanical properties and substructure of tubes at the constant reduction degree k(the ratio of deformation over wall thickness to deformation over diameter), depending on strain degree during cold and hot tube rolling, have been studied. The investigations are carried out using hot-rolled tubes with the dimensions 88x8 mm of 12Kh1hN10T steel. With the decrease of strain over the wall of the tube, produced of 12Kh18N10T steel as to strain over diameter the values of yield strength and ultimate strength increase with simultaneous decrease in ductility during warm rolling and yield strength and ultimate strength decrease with the increase in ductility-during cold rolling. During warm rolling of the tubes at 250 deg C the hardening of 12Kh18N10T steel is higher, than at the rolling temperature 150 deg C. The optimum temperature range of warm rolling is 120-150 deg C. Grain orientation in the metal of the tubes and degree of texture perfection increase with the temperature increase of the tube warm drolling as compared with col rolli

  5. Advanced automobile steels subjected to plate rolling at 773 K or 1373 K

    Science.gov (United States)

    Torganchuk, Vladimir; Belyakov, Andrey; Kaibyshev, Rustam

    2017-12-01

    The high manganese steels exhibiting the effects of twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) demonstrate an excellent combination of enhanced formability, strength and ductility. Such unique mechanical properties make high-manganese steel the most attractive material for various applications, including the segment of advanced automobile steels. The strain hardening in such steels can be achieved through martensitic transformation, when the stacking fault energy (SFE) is about 10 mJ m-2, and/or twinning, when SFE is about 20 to 50 mJ m-2. The actual mechanical properties of high-Mn steels could vary, depending on the conditions of thermo-mechanical processing. In the present study, the effect of rolling temperature on the microstructure and mechanical properties of 18% Mn steels was clarified. The steels hot rolled at 1373 K were characterized by uniform almost equiaxed grains with near random crystallographic orientations that resulted in relatively low yield strengths of 300-360 MPa, followed by pronounced strain hardening that led to the total elongation above 60%. In contrast, the steels warm rolled at 773 K were characterized by flattened grains with a strong rolling texture and high yield strengths of 850-950 MPa combined with a total elongation of about 30%.

  6. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  7. ADVANTAGES OF RAPID METHOD FOR DETERMINING SCALE MASS AND DECARBURIZED LAYER OF ROLLED COIL STEEL

    Directory of Open Access Journals (Sweden)

    E. V. Parusov

    2016-08-01

    Full Text Available Purpose. To determine the universal empirical relationships that allow for operational calculation of scale mass and decarbonized layer depth based on the parameters of the technological process for rolled coil steel production. Methodology. The research is carried out on the industrial batches of the rolled steel of SAE 1006 and SAE 1065 grades. Scale removability was determined in accordance with the procedure of «Bekaert» company by the specifi-cations: GA-03-16, GA-03-18, GS-03-02, GS-06-01. The depth of decarbonized layer was identified in accordance with GOST 1763-68 (M method. Findings. Analysis of experimental data allowed us to determine the rational temperature of coil formation of the investigated steel grades, which provide the best possible removal of scale from the metal surface, a minimal amount of scale, as well as compliance of the metal surface color with the require-ments of European consumers. Originality. The work allowed establishing correlation of the basic quality indicators of the rolled coil high carbon steel (scale mass, depth of decarbonized layer and inter-laminar distance in pearlite with one of the main parameters (coil formation temperature of the deformation and heat treatment mode. The re-sulting regression equations, without metallographic analysis, can be used to determine, with a minimum error, the quantitative values of the total scale mass, depth of decarbonized layer and the average inter-lamellar distance in pearlite of the rolled coil high carbon steel. Practical value. Based on the specifications of «Bekaert» company (GA-03-16, GA-03-18, GS-03-02 and GS-06-01 the method of testing descaling by mechanical means from the surface of the rolled coil steel of low- and high-carbon steel grades was developed and approved in the environment of PJSC «ArcelorMittal Kryvyi Rih». The work resulted in development of the rapid method for determination of total and remaining scale mass on the rolled coil steel

  8. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn; Lu, Hui-Hu; Song, Hong-Yu; Wang, Guo-Dong

    2014-02-15

    An Fe-6.5 wt.% Si-0.3 wt.% Al as-cast sheet was produced by twin-roll strip casting process, then treated with hot rolling, warm rolling and annealing. A detailed study of the microstructure and texture evolution at different processing stages was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. The initial as-cast strip showed strong columnar grains and pronounced < 001 >//ND texture. The hot rolled and warm rolled sheets were characterized by large amounts of shear bands distributed through the thickness together with strong < 110 >//RD texture and weak < 111 >//ND texture. After annealing, detrimental < 111 >//ND texture almost disappeared while beneficial (001)<210 >, (001)<010 >, (115)<5 − 10 1 > and (410) < 001 > recrystallization textures were formed, thus the magnetic induction of the annealed sheet was significantly improved. The recrystallization texture in the present study could be explained by preferred nucleation and grain growth mechanism. - Highlights: • A high silicon as-cast strip with columnar structure was produced. • A thin warm rolled sheet without large edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Beneficial (001)<210 >, (001)<010 >, (410)<001 > recrystallization textures were formed. • The magnetic induction of annealed sheet was significantly improved.

  9. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1999-07-31

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  10. Effects by the microstructure after hot and cold rolling on the texture and grain size after final annealing of ferritic non-oriented FeSi electrical steel

    Science.gov (United States)

    Schneider, J.; Stöcker, A.; Franke, A.; Kawalla, R.

    2018-04-01

    The magnetic properties of fully processed non-oriented FeSi electrical steel are characterized by their magnetization behavior and specific magnetic losses. The magnetic properties are determined by the texture and microstructure. Less gamma fiber intensity and a high intensity of preferable texture components, especially cube fiber texture, are desirable to obtain an excellent magnetizing behavior. Furthermore, large grain sizes are necessary to reach low values of the specific magnetic losses. The fabrication route of the fully processed non-oriented electrical steels comprises a heavy cold rolling of the hot rolled material before final annealing. To fulfill the requirements on large grain size for low loss materials, grain growth, which appears after complete recrystallization, plays an important role. In this paper we will analyze the influence of different microstructures of the hot strip and the resulting microstructure after cold rolling on the appearance of recrystallization and grain growth after final annealing. The evolution of texture reflects the present ongoing softening processes: recovery, recrystallization and finally grain growth at the given annealing conditions. It will be shown that the image of texture at recrystallization is remarkable different from the texture at grain growth. Substantially grain growth is obtained at lower annealing temperatures for an optimum microstructure of the hot rolled material.

  11. Effects by the microstructure after hot and cold rolling on the texture and grain size after final annealing of ferritic non-oriented FeSi electrical steel

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2018-04-01

    Full Text Available The magnetic properties of fully processed non-oriented FeSi electrical steel are characterized by their magnetization behavior and specific magnetic losses. The magnetic properties are determined by the texture and microstructure. Less gamma fiber intensity and a high intensity of preferable texture components, especially cube fiber texture, are desirable to obtain an excellent magnetizing behavior. Furthermore, large grain sizes are necessary to reach low values of the specific magnetic losses. The fabrication route of the fully processed non-oriented electrical steels comprises a heavy cold rolling of the hot rolled material before final annealing. To fulfill the requirements on large grain size for low loss materials, grain growth, which appears after complete recrystallization, plays an important role. In this paper we will analyze the influence of different microstructures of the hot strip and the resulting microstructure after cold rolling on the appearance of recrystallization and grain growth after final annealing. The evolution of texture reflects the present ongoing softening processes: recovery, recrystallization and finally grain growth at the given annealing conditions. It will be shown that the image of texture at recrystallization is remarkable different from the texture at grain growth. Substantially grain growth is obtained at lower annealing temperatures for an optimum microstructure of the hot rolled material.

  12. X-ray diffraction analysis of cold rolled strip from jewelry 585 gold alloy

    Directory of Open Access Journals (Sweden)

    Karastojković Zoran

    2017-01-01

    Full Text Available Here is investigated an golden alloy 585 as one of widely used gold alloy in jewelry production. Insufficient data, even in nowadays, exist about the production schedule of gold alloys, including melting, rolling and heat treatment regimes. The structures of complex alloys, such as used golden alloy, are less known and/or investigated. Principally, the constitutional diagram of Au-Ag-Cu system is known, as a (metastable equilibrium diagram. But, after relatively fast cooling from liquid state during casting will be obtained polycrystalline grains, different from equilibrium conditions. Such polycrystalline material frequently undergoes to rolling for obtaining a desired shape of (semiproduct. Those processes, casting and rolling, will show the influence on the final structure to be obtained, also on properties of such treated alloy. The structural changes and obtained phases in metal working processes of 585 gold alloy still are not well examined, so here is provided an XRD examination after heavy reduction at cold rolling of a strip. The castings were in the flat form in dimension of 4,5x50x50mm, than cold rolled to 1,5mm, intermediate annealed and finally cold rolled to thickness of 0,5mm with height reduction of 66,7%.

  13. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    Science.gov (United States)

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  14. Numerical simulation of the roll levelling of third generation fortiform 1050 steel using a nonlinear combined hardening material model

    Science.gov (United States)

    Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.; Silvestre, E.

    2017-09-01

    The roll levelling is a flattening process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process, the metal sheet is subjected to cyclic tension-compression deformations leading to a flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding reliable tools for the dimensioning of the levelling facilities. Like in other metal forming fields, finite element analysis seems to be the most widely used solution to understand the occurring phenomena and to calculate the processing loads. In this paper, the roll levelling process of the third generation Fortiform 1050 steel is numerically analysed. The process has been studied using the MSC MARC software and two different material laws. A pure isotropic hardening law has been used and set as the baseline study. In the second part, tension-compression tests have been carried out to analyse the cyclic behaviour of the steel. With the obtained data, a new material model using a combined isotropic-kinematic hardening formulation has been fitted. Finally, the influence of the material model in the numerical results has been analysed by comparing a pure isotropic model and the later combined mixed hardening model.

  15. Promoting Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation during asymmetrical hot rolling to improve r value and advantaged texture in Ti stabilized IF steel

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Futao, E-mail: dongft@sina.com [College of Metallurgy and Energy, Hebei United University, Tangshan 063000 (China); Xue, Fei [College of Electrical Engineering, Hebei United University, Tangshan 063000 (China); Du, Linxiu; Liu, Xianghua [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2015-01-25

    Highlights: • We study Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation in Ti stabilized IF steel. • The PTT diagram is obtained by plotting 1/A{sub r}–time curves. • Hot rolling at the nose of P{sub s} line effectively promotes Ti{sub 4}C{sub 2}S{sub 2} precipitation. • Annealed sheet with promoted Ti{sub 4}C{sub 2}S{sub 2} exhibits higher r value and stronger γ fiber texture. • Adverse impact of tiny TiC has been significantly mitigated. - Abstract: The kinetic of Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation in a Ti stabilized IF steel was investigated using two stage interrupted compression test with high true strain (0.5). The PTT (precipitation–time–temperature) diagram was obtained by plotting 1/A{sub r}–time curves. TEM (transmission electron microscopy) observation confirmed that the evolution of Ti{sub 4}C{sub 2}S{sub 2} precipitate in the quenched samples of thermal simulation is in good agreement with the PTT diagram. Hot strips were produced at three different rolling temperatures with high strain and slight shear deformation. It was found that hot rolling at the nose temperature of the P{sub s} line of the PTT diagram can effectively promote the precipitation of Ti{sub 4}C{sub 2}S{sub 2} and retard the precipitation of TiC. Cold rolled and annealed sheets from hot strip containing higher volume fraction of Ti{sub 4}C{sub 2}S{sub 2} exhibited higher r value and stronger γ fiber texture with equal {1 1 1}〈1 1 2〉 and {1 1 1}〈1 1 0〉 components. By contrast, cold rolled and annealed sheets from hot strips containing lower volume fraction of Ti{sub 4}C{sub 2}S{sub 2} represented lower r values and weaker γ fiber texture with significant drops from {1 1 1}〈1 1 2〉 to {1 1 1}〈1 1 0〉 component.

  16. Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process

    Science.gov (United States)

    Yang, Wen; Guo, Changbo; Zhang, Lifeng; Ling, Haitao; Li, Chao

    2017-10-01

    The evolution of oxide inclusions in Si-Mn killed steels refined by slags of different basicity during a four-pass industrial hot-rolling process was investigated using an automated microscopy system. High-basicity refining slag induced the formation of CaO- and Al2O3-containing inclusions, while refining slag with 0.8 basicity induced dominant inclusions of SiO2 and MnO-SiO2. CaO-SiO2-Al2O3 inclusions mainly formed endogenously during solidification and cooling of Ca-containing steels, where Ca originated from slag-steel reactions. However, the larger-sized higher-CaO inclusions originated from slag entrainment. Different inclusions presented different hot-rolling behaviors. The inclusion composition changed by deformation and new phase formation. The dominant oxide types were unchanged under refinement by low-basicity slag; however, they changed under refinement with high-basicity slag. The deformation index of inclusions decreased with increasing accumulated reduction (AR) of the steel. The difference in deformation index between different inclusion types was the largest in the first rolling stage and decreased in subsequent stages. SiO2-CaO and SiO2-MnO-CaO inclusions had larger deformation indices during hot rolling but smaller indices in the last two stages. High-basicity slag increased inclusion complexity; from the perspective of cold-drawing performance, low-basicity refining slag is better for the industrial production of tire-cord steels.

  17. 76 FR 46323 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2011-08-02

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan Determination On the... injury to an industry in the United States within a reasonably foreseeable time and that revocation of... antidumping duty orders on stainless steel sheet and strip from Japan, Korea, and Taiwan \\3\\ would be likely...

  18. Direct strip casting of steel - historical perspective and future direction

    International Nuclear Information System (INIS)

    Manohar, P.A.; Hunter, A.; Ferry, M.

    2000-01-01

    The commercialisation of direct strip casting (DSC) of steel represents the realisation of a dream cherished by engineers for over one hundred and fifty years. The story of the global competition for DSC of steel, that has ingredients of romanticism of chasing of a dream, adventure and intrigue, is being played out across continents over dozens of decades with an interplay of setbacks and successes. At this stage, DSC is set to make a profound impact on the steelmaking landscape. This paper reviews the important milestones in this compelling story, presents the current status and then gazes into the crystal ball in an attempt to predict which turn the story may take in the near future. The constraints and critical challenges for the successful commercialisation of DSC are highlighted. Recent results are discussed relating the production process to quality control and properties of unalloyed, low carbon strip-cast steels. future metallurgical challenges include a better understanding of solidification mechanism during high-speed casting and secondary processing variables affecting the final microstructure of austenitic grains

  19. Fabrication of cold-rolled bands of the alloy-ehi 702 in rolls

    International Nuclear Information System (INIS)

    Zhuchin, V.N.; Gindin, A.Sh.; Shaburov, V.E.; Vladimirov, S.M.; Sokolov, V.A.; Shavkun, V.V.; Perepelitsa, I.V.; Markov, V.V.; Naymov, E.P.; Evstaf'ev, P.P.

    1977-01-01

    The questions are discussed, connected with the manufacture of cold-rolled strip of alloy EI702 in reels from strip blanks. It has been established that in the manufacture of hot-rolled stock from EI702 slabs it is necessary to use powerful rolling equipment because of high resistance to deformation. The reel method for manufacturing EI702 alloy improves the rolled stock and increases percentage of serviceable stock, as well as the output

  20. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    OpenAIRE

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-01-01

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plat...

  1. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  2. 75 FR 62104 - Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and...

    Science.gov (United States)

    2010-10-07

    ... trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also excluded from...-831] Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and... duty orders on certain stainless steel sheet and strip in coils from Germany, Italy, Japan, the...

  3. Using CCT Diagrams to Optimize the Composition of an As-Rolled Dual-Phase Steel

    Science.gov (United States)

    Coldren, A. Phillip; Eldis, George T.

    1980-03-01

    A continuous-cooling transformation (CCT) diagram study was conducted for the purpose of optimizing the composition of a Mn-Si-Cr-Mo as-rolled dual-phase (ARDP) steel. The individual effects of chromium, molybdenum, and silicon on the allowable cooling rates were determined. On the basis of the CCT diagram study and other available information, an optimum composition was selected. Data from recent mill trials at three steel companies, involving steels with compositions in or near the newly recommended range, are presented and compared with earlier mill trial data. The comparison shows that the optimized composition is highly effective in making the steel's properties more uniform and reproducible in the as-rolled condition.

  4. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    Science.gov (United States)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  5. 76 FR 49726 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

    Science.gov (United States)

    2011-08-11

    ... martensitic precipitation-hardenable stainless steel, and (12) three specialty stainless steels typically used...\\ ``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is...-831] Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

  6. Contact conditions in skin-pass rolling

    DEFF Research Database (Denmark)

    Kijima, Hideo; Bay, Niels

    2007-01-01

    The special contact conditions in skin-pass rolling of steel strip is analysed by studying plane strain upsetting of thin sheet with low reduction applying long narrow tools and dry friction conditions. An extended sticking region is estimated by an elasto-plastic FEM analysis of the plane strain...... upsetting. This sticking region causes a highly inhomogeneous elasto-plastic deformation with large influence of work-hardening and friction. A numerical analysis of skin-pass rolling shows the same contact conditions, i.e. an extended sticking region around the center of the contact zone. The calculated...... size of the sticking region with varying contact length and pressure/reduction is experimentally verified by plane strain upsetting tests measuring the local surface deformation of the work pieces after unloading....

  7. Mechanical properties of CO2/MIG welded structural rolled steel and stainless steel

    International Nuclear Information System (INIS)

    Lim, Jong Young; Yoon, Myong Jin; Kim, Sang Youn; Kim, Tae Gyu; Shin, Hyeon Seung

    2015-01-01

    To accomplish long-term use of specific parts of steel, welding technology is widely applied. In this study, to compare the efficiency in improving mechanical properties, rolled steel (SS400) was welded with stainless steel (STS304) by both CO 2 welding method and MIG (metal inert gas) welding method, respectively. Multi-tests were conducted on the welded specimen, such as X-ray irradiation, Vickers' Hardness, tensile test, fatigue test and fatigue crack growth test. Based on the fatigue crack growth test performed by two different methods, the relationship of da/dN was analyzed. Although the hardness by the two methods was similar, tensile test and fatigue properties of MIG welded specimen are superior to CO 2 welded one.

  8. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    Science.gov (United States)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  9. Influence of different kinds of rolling on the crystallographic texture and magnetic induction of a NOG 3 wt% Si steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.M.; Baêta Júnior, E.S.; Moraes, N.R.D.C.; Botelho, R.A. [Department of Mechanical and Materials Engineering, Military Institute of Engineering (IME), Praça General Tibúrcio, 80,Urca, Rio de Janeiro/RJ (Brazil); Felix, R.A.C. [Scientific Instrumentation and Mechanical Technology Laboratory, Brazilian Center for Physics Research (CBPF), Rua Dr. Xavier Sigaud, 150-Urca, Rio de Janeiro-RJ (Brazil); Brandao, L., E-mail: brandao@ime.eb.br [Department of Mechanical and Materials Engineering, Military Institute of Engineering (IME), Praça General Tibúrcio, 80,Urca, Rio de Janeiro/RJ (Brazil)

    2017-01-01

    The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes. - Highlights: • The B{sub 50} of NOG steels was evaluated via texture for different rolling processes. • On comparison to all processes used, the cross-rolling led to highest average B{sub 50}. • Cross-rolling enhances Goss and γ-fiber after annealing. • The better B{sub 50} values were obtained for symmetrical and cross-rolling processes. • For asymmetric rolling process, cylinder diameter ratio changed slightly the texture.

  10. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    Science.gov (United States)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  11. 75 FR 81308 - Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan

    Science.gov (United States)

    2010-12-27

    ...)] Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan AGENCY: United States... and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan. SUMMARY: The Commission hereby gives... strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to lead to continuation or...

  12. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    Science.gov (United States)

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  13. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen

    2015-01-27

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  14. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen

    2016-05-03

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  15. Cold-rolled sheets production of stainless martensite-ageing steel smelted by vacuum arc and electroslag techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, A A; Grishkov, A I; Suslin, A P; Nesterenko, A A; Lola, V N [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-05-01

    In cooperation with a number of metallurgical works the production of a high strength sheet stainless maraging steel EHP678 (000KH11N10M2T) has been tested by rolling cylindrical ingots of vacuum arc smelting at the blooming (the mass of rough ingots was 5.1 to 6.0 t, that of cleaned ingots - 3.8 to 5.1 t) or rectangular ingots of electroslag smelting (13 t) at the slabbing. The recommended regimes of heating and deformation are much similar to those used for the steel-KH18N10T. The output of valid cold-rolled sheets proved to be rather low (0.24 t/t for the vacuum arc smelting and 0.30 t/t for the electroslag smelting) mainly due to the losses on cleaning and a considerable portion of wrong-size slabs. The data are presented on the steel-EHP678 properties after various heat treatments. For the production of wide cold-rolled sheets of the steel EHP678 it is recommended to use steelmaking procedure with electroslag smelting including open-hearth melting in arc furnaces, rolling of ingots at the slabbing with heating up to 1260-1280 deg C (hold-up of 4.5 to 5 hrs); electroslag smelting for rectangular section slabs, rolling of ingots of electroslag smelting at the slabbing with their heating up to 1250 deg C (hold-up of 5.5 to 6 hrs), rolling at the 1680-type mill with heating up to 1250-1260 deg C (hold-up of 4 to 4.5 hrs ensuring the rolling temperature after a rough group not below 1100 deg C), quenching of hot-rolled sheets heating up to 920-940 deg C (hold-up of 3 to 3.5 min/mm), shot peening of sheets for descaling (provided the respective equipment is available) with a subsequent short-time pickling in an acid solution and cold rolling with a summary deformation of 35 to 45 %. The steelmaking with the electroslag smelting is much more profitable as regards to the fine technology of number of the main procedures, convenient cooperation of the works and a considerably greater output of the final products out of one ton of the steel produced.

  16. Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopei [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China); Tang, Guoyi; Kuang, Jie; Li, Xiaohui [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhu, Jing, E-mail: jzhu@tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China)

    2014-08-26

    The effect of electroplastic rolling (ER) on the mechanical properties, microstructure and texture in the AZ31 magnesium alloy strips has been investigated by tensile testing and electron back scattered diffraction (EBSD) methods. It is shown that the mechanical properties, microstructure, and texture are highly current frequency-dependent. Best mechanical properties are obtained from the 500 Hz ER specimen by carrying out tensile tests for all the rolled strips. Besides, the frequencies of twin boundaries, which are reduced to the minimum at 500 Hz, vary with the current frequency. Moreover, it can be seen from the calculated (0001) and (101{sup ¯}0) pole figures that texture evolved into an obvious off-basal texture, and non-basal slip systems are activated under 500 Hz. The mechanisms of twinning growth and texture evolution in AZ31 magnesium alloy strips during ER are considered to be responsible for the experimental results.

  17. FATIGUE BEHAVIOR OF HOT-ROLLED STEEL INTENDED FOR COLD FORMING

    Directory of Open Access Journals (Sweden)

    Gejza Rosenberg

    2011-07-01

    Full Text Available In the work, there are presented measured tension and fatigue properties of eight low-carbon steels moulded in form of 20 kg ingots that were processed by controlled regime of rolling /cooling and then exposed to simulated effect of two coiling temperatures. The experimental results presented in the work show, that steels with ferrite-martensite or ferrite-bainitic microstructure have in comparison to ferrite-pearlitic or ferrite-carbidic microstructure better strength-plastic properties, but worse resistance to cyclic loading.

  18. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    Energy Technology Data Exchange (ETDEWEB)

    Zaid, Md; Bhattacharjee, P.P., E-mail: pinakib@iith.ac.in

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. The microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001

  19. Secondary recrystallization behavior in a twin-roll cast grain-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-04-15

    The microstructure and texture evolution along the processing was investigated with a particular focus on the secondary recrystallization behavior in a 0.23 mm-thick twin-roll cast grain-oriented electrical steel. A striking feature is that Goss orientation originated during twin-roll casting as a result of shear deformation and it was further enhanced during hot rolling and normalizing. After primary recrystallization annealing, a homogeneous microstructure associated with a sharp γ-fiber texture was produced. During secondary recrystallization annealing, the γ-fiber texture was first strengthened and weakened with increasing temperature prior to the onset of secondary recrystallization. Goss grains always exhibited more 20–45° misoriented boundaries than the matrix. The matrix was quite stable during secondary recrystallization with the aid of dense inhibitors. Finally, a complete secondary recrystallization microstructure consisting of large Goss grains was produced. The grain boundary characteristics distribution indicated that the high energy model was responsible for the abnormal growth of Goss grains under the present conditions. - Highlights: • A 0.23 mm twin-roll cast grain-oriented silicon steel sheet was produced. • Goss orientation originated during twin-roll casting. • Secondary recrystallization behavior was briefly investigated. • γ-fiber texture was enhanced prior to the onset of secondary recrystallization. • A complete secondary recrystallization microstructure was produced.

  20. Soil Contamination with Heavy Metals around Jinja Steel Rolling Mills in Jinja Municipality, Uganda

    Directory of Open Access Journals (Sweden)

    Noel Namuhani

    2015-01-01

    Conclusions. The concentration levels of heavy metals around the steel rolling mills did not appear to be of serious concern, except for copper and cadmium, which showed moderate pollution and moderate to strong pollution, respectively. All heavy metals were within the limits of the United States Environmental Protection Agency (USEPA residential soil standards and the Dutch intervention soil standards. Overall, soils around the Jinja steel rolling mills were slightly polluted with heavy metals, and measures therefore need to be taken to prevent further soil contamination with heavy metals.

  1. Effect of cold-rolling on pitting corrosion of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Peguet, L.; Malki, B.; Baroux, B.

    2004-01-01

    Full text of publication follows: This paper deals with a not very often investigated topic on relation between cold-working and stainless steels localized corrosion resistance. It is devoted to the study of the cold-rolling effects on the pitting corrosion behavior of a 304 stainless steel grade in chloride containing aqueous electrolytes. It focus particularly on the analysis of metastable pitting transients observed at Open Circuit Potential using an experimental protocol including two identical working electrodes connected through a zero-impedance. As received the used specimens were heat-treated at 1100 C for 30 s and cold-rolled at 10%, 20%, 30% up to a final reduction pass of 70% inducing a large amount of α'-martensite. Then, current-potential fluctuations measurements were performed at OCP in NaCl 0.1 M + FeCl 3 2.10 -4 M containing aqueous solution during 24 h from the immersion time. As expected, a detrimental effect on corrosion behavior induced by cold rolling has been confirmed. Surprisingly, this is a nonlinear effect as a function of cold-rolling rate which controverts the hypothesis that strain induced martensite is the principal factor to explain this kind of sensibilizing. In particular, the results show a maximum of the metastable pits initiation frequency at 20% of cold-rolling rate. Moreover, the passive film/electrochemical double layer resistance and capacity deduced from the transients study show an analog nonlinear behavior. So, the transfer resistance show a minimum around 10-20% of cold-rolling rate where one can assume an increase of the electrons transfer kinetics through the interface. Conversely, the interfacial capacity is the highest at 20% of cold-rolling rate. Finally, It is expected a combined effect of the cold-rolled induced martensite and the dislocations arrangement via the mechano-chemical theory discussed by Gutman. (authors)

  2. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  3. 75 FR 64254 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil; Final Results of...

    Science.gov (United States)

    2010-10-19

    ...-Rolled Carbon Quality Steel Products From Brazil; Final Results of Antidumping Duty Administrative Review... for the Final Results, 75 FR 19369 (April 14, 2010) (Preliminary Results). This review covers sales of... Products from Brazil,'' dated June 22, 2010 (USIMINAS Sales Verification Report). Following the release of...

  4. Influence of different kinds of rolling on the crystallographic texture and magnetic induction of a NOG 3 wt% Si steel

    Science.gov (United States)

    Silva, J. M.; Baêta Júnior, E. S.; Moraes, N. R. D. C.; Botelho, R. A.; Felix, R. A. C.; Brandao, L.

    2017-01-01

    The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes.

  5. Influence of the Radiation Shield on the Temperature of Rails Rolled in the Reversing Mill

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2015-04-01

    Full Text Available The paper presents a mathematical model of heat transfer during cooling of hot-rolled rails in the reversing mill. The influence of the radiation shield on the temperature of rolled rails has been analyzed. The heat transfer model for cooling a strip covered by the thermal shield has been presented. The two types of shields build of steel and aluminum sheets separated with insulating layer have been studded. Calculations have been performed with self developed software which utilizes the finite element method.

  6. Adhesiveness of cold rolled steels for car body parts

    Directory of Open Access Journals (Sweden)

    Kleiner Marques Marra

    2007-09-01

    Full Text Available The aim of this work was to evaluate the adhesiveness of uncoated and zinc-electrogalvanized steel sheets used in the automotive industry. Three types of adhesives, one acrylic and two epoxy resins, were employed to join low carbon cold rolled steels, one uncoated and another electrogalvanized, both previously degreased or chemically pickled. Mechanical strength of the joints was evaluated by the T-peel and tensile strength tests. Steel grade, surface condition and heating below the cure temperatures did not influence the joints' mechanical strength. However, their shear strength decreased drastically as the test temperature increased. The exposure of the joints to an atmosphere with 90% relative humidity at 40 °C caused reduction of their shear strength. Epoxy adhesives showed higher mechanical strength, but exhibited higher degradation by humidity.

  7. Rietveld and impedance analysis of cold and hot rolled duplex and lean duplex steels for application in paper and pulp industry

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Luiza; Lins, Vanessa de Freitas Cunha, E-mail: luizaeq@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Quimica; Paiva, Paulo Renato Perdigao [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Viana, Adolfo Kalergis do Nascimento [APERAM South America, Timoteo, MG (Brazil)

    2017-01-15

    In this study, X-Ray Diffraction (XRD) and Rietveld Refinement were performed to identify and quantify the ferrite and austenite phase of cold and hot rolled duplex stainless steels (UNS S31803) and lean duplex stainless steels (UNS S32304). Electrochemical impedance spectroscopy (EIS) was applied to evaluate the chemical behavior of duplex and lean duplex stainless steels in white, green, and black liquors of paper and pulp industry. Rietveld analysis results showed a higher austenite content than the standard limit for duplex steels in the hot rolled condition. The hot rolling condition plays a major role in improving corrosion resistance in white liquor mainly for the lean duplex steel. (author)

  8. Rietveld and impedance analysis of cold and hot rolled duplex and lean duplex steels for application in paper and pulp industry

    International Nuclear Information System (INIS)

    Esteves, Luiza; Lins, Vanessa de Freitas Cunha; Viana, Adolfo Kalergis do Nascimento

    2017-01-01

    In this study, X-Ray Diffraction (XRD) and Rietveld Refinement were performed to identify and quantify the ferrite and austenite phase of cold and hot rolled duplex stainless steels (UNS S31803) and lean duplex stainless steels (UNS S32304). Electrochemical impedance spectroscopy (EIS) was applied to evaluate the chemical behavior of duplex and lean duplex stainless steels in white, green, and black liquors of paper and pulp industry. Rietveld analysis results showed a higher austenite content than the standard limit for duplex steels in the hot rolled condition. The hot rolling condition plays a major role in improving corrosion resistance in white liquor mainly for the lean duplex steel. (author)

  9. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    International Nuclear Information System (INIS)

    Cui, W.F.; Zhang, S.X.; Jiang, Y.; Dong, J.; Liu, C.M.

    2011-01-01

    Highlights: → Mechanical properties and microstructures of low carbon bainite steel are examined. → Cu-P alloying promotes strengthening and uniform plastic deformation. → Cu-P alloying delays recovery process during rolling interval. → Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  10. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: wenfangcui@yahoo.com.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Zhang, S.X. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Jiang, Y. [School of Chemical Engineering, University of Queensland, Brisbane 4072 (Australia); Dong, J. [Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Liu, C.M. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2011-08-15

    Highlights: {yields} Mechanical properties and microstructures of low carbon bainite steel are examined. {yields} Cu-P alloying promotes strengthening and uniform plastic deformation. {yields} Cu-P alloying delays recovery process during rolling interval. {yields} Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  11. Microstructural research on hot strips of low carbon steel produced by a compact strip production line under different thermal histories

    International Nuclear Information System (INIS)

    Yu Hao; Chen Qixiang; Kang Yonglin; Sun Yi

    2005-01-01

    Coupons with the same composition and thickness (4.0 mm nominal gauge) obtained from hot strips of low carbon steel underwent a series of investigations to analyze the microstructural characteristics and mechanisms responsible for their differences in mechanical properties. Two different industrial technologies were adopted, although the strips used in this research were produced on the same Compact Strip Production (CSP) line. One of the strips was produced with a routine γ→α CSP thermal history, but the other with a γ→α→γ* conventional thermal history. The only difference between them was that one technology had a α→γ* thermal history. Different specimens of both types of strips were prepared for metallographic observation, tensile tests, electron back-scattered diffraction tests and positron annihilation technique tests. Experimental results showed that the differences in mechanical properties could be ascribed to dissimilarities not only in the grain size and textural components but also in dislocation density

  12. Deformation in Micro Roll Forming of Bipolar Plate

    Science.gov (United States)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  13. Mechanical Behaviour of 304 Austenitic Stainless Steel Processed by Room Temperature Rolling

    Science.gov (United States)

    Singh, Rahul; Goel, Sunkulp; Verma, Raviraj; Jayaganthan, R.; Kumar, Abhishek

    2018-03-01

    To study the effect of room temperature rolling on mechanical properties of 304 Austenitic Stainless Steel, the as received 304 ASS was rolled at room temperature for different percentage of plastic deformation (i.e. 30, 50, 70 and 90 %). Microstructural study, tensile and hardness tests were performed in accordance with ASTM standards to study the effect of rolling. The ultimate tensile strength (UTS) and hardness of a rolled specimen have enhanced with rolling. The UTS has increased from 693 MPa (as received) to 1700 MPa (after 90% deformation). The improvement in UTS of processed samples is due to combined effect of grain refinement and stress induced martensitic phase transformation. The hardness values also increases from 206 VHN (as received) to 499 VHN (after 90% deformation). Magnetic measurements were also conducted to confirm the formation of martensitic phase.

  14. 75 FR 76700 - Stainless Steel Sheet and Strip in Coils From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-12-09

    ... is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also... DEPARTMENT OF COMMERCE International Trade Administration [A-583-831] Stainless Steel Sheet and... antidumping duty order on stainless steel sheet and strip in coils (SSSSC) from Taiwan. This review covers...

  15. Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin

    2015-12-29

    A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.

  16. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    International Nuclear Information System (INIS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-01-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  17. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  18. The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments

    International Nuclear Information System (INIS)

    Chiang, M.F.; Young, M.C.; Huang, J.Y.

    2011-01-01

    Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at 85 degrees Celsius and 200 degrees Celsius with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at 85 degrees Celsius for 2000 hours differed greatly from those at 200 degrees Celsius. The weight loss of NSS specimens was not significant at 85 degrees Celsius but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at 85 degrees Celsius and 200 degrees Celsius are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

  19. 75 FR 6631 - Stainless Steel Sheet and Strip in Coils from Japan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-02-10

    ...\\``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is... DEPARTMENT OF COMMERCE International Trade Administration [A-588-845] Stainless Steel Sheet and... antidumping duty order on stainless steel sheet and strip in coils (SSSSC) from Japan. This review covers two...

  20. Possible influences on textures in unalloyed steels and their effects on steel properties

    International Nuclear Information System (INIS)

    Grossterlinden, R.; Imlau, K.P.; Kawalla, R.; Lotter, U.; Reip, C.-P.

    1996-01-01

    Textures in steels play an essential role for applications where anisotropic properties are favourable. For the example of deep-drawing steel sheet the correlation between parameters characterising the behaviour in the deep-drawing process, as Lankford r-value and planar anisotropy Δr, and the crystallographic texture is considered. Furthermore, the development of texture in the course of manufacturing cold strip is followed for unalloyed and microalloyed deep-drawing grades. For representation of typical features of textures the method of orientation distribution functions (ODF) together with the description of texture by characteristic fibres is used. In detail, the parameters influencing textures, such as chemical composition, finishing temperature in the hot-rolling mill (in relation to the austenite or ferrite region), transformation behaviour, cold-rolling reduction and the course of temperature during recrystallizing annealing, are discussed. From the given survey it may be concluded, that in the manufacturing process there are many possibilities to control the texture of the finished product. Finally, it is shown that the impact of textures on the r-value can be calculated with high precision. On the other hand, the formation of texture itself, particularly during hot-rolling, transformation and recrystallization after cold-rolling, at present can be calculated and modelled only in simple cases. (orig.)

  1. 75 FR 6627 - Stainless Steel Sheet and Strip in Coils From Mexico; Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-02-10

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822] Stainless Steel Sheet and... review of the antidumping duty order on stainless steel sheet and strip (S4) in coils from Mexico. See...

  2. 78 FR 16252 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results...

    Science.gov (United States)

    2013-03-14

    ... Indonesia P.T. Krakatau Steel 10.21 All Others 10.21 Thailand Sahaviriya Steel Industries Public Company...] Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results of... products (``HR steel'') from India, Indonesia, and Thailand pursuant to section 751(c) of the Tariff Act of...

  3. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  4. daptive Filter Used as a Dynamic Compensator in Automatic Gauge Control of Strip Rolling Processes

    Directory of Open Access Journals (Sweden)

    N. ROMAN

    2010-12-01

    Full Text Available The paper deals with a control structure of the strip thickness in a rolling mill of quarto type (AGC – Automatic Gauge Control. It performs two functions: the compensation of errors induced by unideal dynamics of the tracking systems lead by AGC system and the control adaptation to the change of dynamic properties of the tracking systems. The compensation of dynamical errors is achieved through inverse models of the tracking system, implemented as adaptive filters.

  5. Annealing effects on the microstructure and mechanical properties of hot-rolled 14Cr-ODS steel

    Science.gov (United States)

    Gao, R.; Zhang, T.; Ding, H. L.; Jiang, Y.; Wang, X. P.; Fang, Q. F.; Liu, C. S.

    2015-10-01

    The oxide dispersion strengthened ferritic steels with nominal composition (weight percent) of Fe-14Cr-2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y2O3 were fabricated by sol-gel method, mechanical alloying, and hot isostatic pressing techniques. The evolution of microstructure and mechanical properties of the hot-rolled specimens with heat treatment was investigated. Tensile strength and hardness of hot-rolled ODS steel are significantly enhanced due to the formation of mechanical twins and high density dislocations. Uniformly dispersed oxide particles (10-40 nm) and fine-grained structure (200-400 nm) are responsible for the superior mechanical properties of the hot-rolled specimen annealed between 650 °C and 850 °C. With further increasing annealing temperature, the grain size of the hot-rolled specimens increases while the size of oxide particles decreases, which leads to lower strength and hardness but better ductility. The tensile strength and total elongation of samples in the rolling direction are higher than those in the transverse direction after the same treatments owing to the grain anisotropy induced by the large mechanical deformation.

  6. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  7. 75 FR 81221 - Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of the Five-Year...

    Science.gov (United States)

    2010-12-27

    ... trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also excluded from... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822 ] Stainless Steel Sheet and... of the antidumping duty order on stainless steel sheet and strip (``SSSS'') in coils from Mexico...

  8. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  9. Enhancement of strength properties of hot rolled 10KHSND steel

    International Nuclear Information System (INIS)

    Nasibov, A.G.; Popova, L.V.; Pikulin, S.A.; Globa, N.I.

    1989-01-01

    To find out the reasons of low hot rolling yield for 10KhSND steel sheets in mechanical properties, titanium effect in the range of 0.008-0.03% concentrations is studied. It is established that the titanium content in a solid solution is conserved within 0.003-0.005%, the rest of titanium is bound to carbonitrides Ti(C, N). It is shown that alloys with 0.025-0.03% titanium content possess the increased values of ultimate and yield strength the necessary level of impact strength and good wealdability. The good steel yield, when the titanium content is sustained at the given level, increases from 40 to 85%

  10. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel

    International Nuclear Information System (INIS)

    Zheng, H.; Ye, X.N.; Li, J.D.; Jiang, L.Z.; Liu, Z.Y.; Wang, G.D.; Wang, B.S.

    2010-01-01

    Research highlights: → Hot-rolled ultra low carbon martensite is characterized by dislocation cells substructure. → The formation of dislocation cells is attributed to high Ms and low interstitial atoms content. → Hot-rolled ultra low carbon 12Cr-Ni stainless steel has excellent impact toughness. → Delta ferrite deteriorates the impact toughness of hot-rolled 12Cr-Ni stainless steel. - Abstract: 12Cr-Ni stainless steels containing different carbon contents from 0.004 wt.% to 0.034 wt.% were hot-rolled and air-cooled. Their corresponding microstructures were observed with optical microscope and transmission electron microscope, and the Vickers hardness, tensile and impact tests were also carried out. It was found that the martensitic morphology was significantly influenced by carbon content. The as-received ultra low carbon martensite in the steel containing 0.004 wt.% C is characterized by dislocation cells substructure. The formation of dislocation cells is attributed to high martensite finishing point (above 400 deg. C) and low interstitial atoms content. On the other hand, the martensite in the steel containing 0.034 wt.% C consists mainly of typical martensite laths because of low martensite finishing point and high interstitial atoms content which hinder dislocation motion. Furthermore, carbon content has an evident effect on the mechanical properties of 12Cr-Ni steels. The hardness and strength of the as-received steels increase with an increase in carbon content, but their elongation and impact toughness decrease with the carbon content. The steel containing 0.004 wt.% C has excellent impact toughness due to the ultra low carbon content in the martensite composed of dislocation cells.

  11. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  12. New technology for the production of magnesium strips and sheets

    Directory of Open Access Journals (Sweden)

    R. Kawalla

    2008-07-01

    Full Text Available A new production technology for magnesium strip, based on twin-roll-casting and strip rolling was developed in Freiberg Germany. By means of this economic method it is possible to produce strips in deep drawing quality with good forming properties in order to satisfy the request for low cost Mg sheets in the automotive and electronic industry. Both, coils as single sheets, were manufactured and rolled to a thickness of 1mm(0,5 mm. The technology of the new process and the properties of the twin-roll-casted material and the final sheets are presented.

  13. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2016-11-01

    Full Text Available In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  14. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.

    Science.gov (United States)

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-11-25

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  15. Lubrication in cold rolling : Numerical simulation using multigrid techniques

    NARCIS (Netherlands)

    Lugt, Pieter Martin

    1992-01-01

    In the cold rolling process a lubricant is applied on the rolls and/or the strip mate­rial. Due to the velocities of the rolls and the strip, part of the lubricant is sheared into the contact causing, amongst others, a reduction of the friction. In this thesis a physical-mathematical model is

  16. Microstructure and mechanical properties of Mg-Al-Mn-Ca alloy sheet produced by twin roll casting and sequential warm rolling

    International Nuclear Information System (INIS)

    Wang Yinong; Kang, Suk Bong; Cho, Jaehyung

    2011-01-01

    Research highlights: → This work, taking AM30 + 0.2Ca alloy as experimental material, will provide some new information as follows: one is microstructural difference between twin roll cast and ingot cast AM31-0.2Ca alloy. The other is the comparison of tensile properties after warm rolling and annealing. Suggesting the possibility of the development of wrought magnesium alloy sheets by strip casting. - Abstract: Microstructural evolution and mechanical properties of twin roll cast (TRC) Mg-3.3 wt.%Al-0.8 wt.%Mn-0.2 wt.%Ca (AM31 + 0.2Ca) alloy strip during warm rolling and subsequent annealing were investigated in this paper. The as-TRC alloy strip shows columnar dendrites in surface and equiaxed dendrites in center regions, as well as finely dispersed primary Al 8 Mn 5 particles on interdendritic boundaries which result in the beneficial effect on microstructural refinement of strip casting. The warm rolled sheets show intensively deformed band or shear band structures, as well as finely and homogeneously dispersed Al-Mn particles. No evident dynamic recrystallization (DRX) takes place during warm rolling process, which is more likely attributed to the finely dispersed particle and high solid solution of Al and Mn atoms in α-Mg matrix. After annealing at 350 deg. C for 1 h, the warm rolled TRC sheets show fine equiaxed grains around 7.8 μm in average size. It has been shown that the present TRC alloy sheet has superior tensile strength and comparative elongation compared to commercial ingot cast (IC) one, suggesting the possibility of the development of wrought magnesium alloy sheets by twin roll strip casting processing. The microstructural evolution during warm rolling and subsequent annealing as well as the resulting tensile properties were analyzed and discussed.

  17. Analytical solution for shear bands in cold-rolled 1018 steel

    Science.gov (United States)

    Voyiadjis, George Z.; Almasri, Amin H.; Faghihi, Danial; Palazotto, Anthony N.

    2012-06-01

    Cold-rolled 1018 (CR-1018) carbon steel has been well known for its susceptibility to adiabatic shear banding under dynamic loadings. Analysis of these localizations highly depends on the selection of the constitutive model. To deal with this issue, a constitutive model that takes temperature and strain rate effect into account is proposed. The model is motivated by two physical-based models: the Zerilli and Armstrong and the Voyiadjis and Abed models. This material model, however, incorporates a simple softening term that is capable of simulating the softening behavior of CR-1018 steel. Instability, localization, and evolution of adiabatic shear bands are discussed and presented graphically. In addition, the effect of hydrostatic pressure is illustrated.

  18. 75 FR 62101 - Stainless Steel Sheet and Strip in Coils From the Republic of Korea: Final Results of Expedited...

    Science.gov (United States)

    2010-10-07

    ...\\ ``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is... DEPARTMENT OF COMMERCE International Trade Administration [C-580-835] Stainless Steel Sheet and... countervailing duty order (``CVD'') on stainless steel sheet and strip in coils from the Republic of Korea...

  19. 75 FR 81214 - Stainless Steel Sheet and Strip in Coils From Italy: Preliminary Results of the Full Second Five...

    Science.gov (United States)

    2010-12-27

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-475-824] Stainless Steel Sheet and... sunset review of the antidumping duty order on stainless steel sheet and strip in coils from Italy...

  20. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters

    International Nuclear Information System (INIS)

    Carretero Olalla, V.; Bliznuk, V.; Sanchez, N.; Thibaux, P.; Kestens, L.A.I.; Petrov, R.H.

    2014-01-01

    The yield strength of different pipeline steel grades, rolled under four different conditions, was correlated with calculated strengthening contributions. Slabs with the same composition were rolled under identical roughing conditions but varied finish rolling temperature (FRT). Two cooling routes, consisting of accelerated water cooling condition (ACC) followed by slow cooling in an oven to simulate coiling and air cooling were applied after the last rolling pass. The microstructures obtained after each thermo mechanical controlled process (TMCP) schedule, were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Electron backscatter diffraction (EBSD). The mechanical properties of the plates were determined by means of tensile tests and Charpy V-notch impact test. It was confirmed that a combination of fast cooling rate and low finish rolling temperature produces higher strength than the slow cooling rate and high finish rolling temperature. Contributions to the strengthening arising from the various microstructural features like solid solution strengthening, grain size, dislocation density and precipitation hardening, were analyzed using Taylor, Hall–Petch and Ashby–Orowan approaches. The root of the sum of the squares method was applied to link the experimental with the model-predicted strength. It is believed that this approach provides a better understanding of the effect of TMCP parameters on the microstructure and strengthening mechanisms in pipeline steels

  1. Effect of hot rolling on the structure and the mechanical properties of nitrogen-bearing austenitic-martensitic 14Kh15AN4M steel

    Science.gov (United States)

    Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.

    2016-04-01

    The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.

  2. NON-CENTRAL ROLLING OF FLAT WORKS WITH TAPERED THICKNESS

    Directory of Open Access Journals (Sweden)

    I. A. Isaevich

    2010-01-01

    Full Text Available The way of forming of variable shape strips with rolling in non-drive waves with rounding by the movable arbor strip is analyzed. The way of rolling with derivation of speeds of deforming instruments is offered.

  3. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    International Nuclear Information System (INIS)

    Schmidtchen, M; Kawalla, R; Rimnac, A; Bragin, S; Linzer, B; Warczok, P; Kozeschnik, E; Bernhard, C

    2016-01-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness. (paper)

  4. Effect of Rolling and Subsequent Annealing on Microstructure, Microtexture, and Properties of an Experimental Duplex Stainless Steel

    Science.gov (United States)

    Mandal, Arka; Patra, Sudipta; Chakrabarti, Debalay; Singh, Shiv Brat

    2017-12-01

    A lean duplex stainless steel (LDSS) has been prepared with low-N content and processed by different thermo-mechanical schedules, similar to the industrial processing that comprised hot-rolling, cold-rolling, and annealing treatments. The microstructure developed in the present study on low-N LDSS has been compared to that of high-N LDSS as reported in the literature. As N is an austenite stabilizer, lower-N content reduced the stability of austenite and the austenite content in low-N LDSS with respect to the conventional LDSS. Due to low stability of austenite in low-N LDSS, cold rolling resulted in strain-induced martensitic transformation and the reversion of martensite to austenite during subsequent annealing contributed to significant grain refinement within the austenite regions. δ-ferrite grains in low-N LDSS, on the other hand, are refined by extended recovery mechanism. Initial solidification texture (mainly cube texture) within the δ-ferrite region finally converted into gamma-fiber texture after cold rolling and annealing. Although MS-brass component dominated the austenite texture in low-N LDSS after hot rolling and cold rolling, that even transformed into alpha-fiber texture after the final annealing. Due to the significant grain refinement and formation of beneficial texture within both austenite and ferrite, good combination of strength and ductility has been achieved in cold-rolled and annealed sample of low-N LDSS steel.

  5. Characterizing the stretch-flangeability of hot rolled multiphase steels

    International Nuclear Information System (INIS)

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-01-01

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  6. Annealing effects on the microstructure and mechanical properties of hot-rolled 14Cr-ODS steel

    International Nuclear Information System (INIS)

    Gao, R.; Zhang, T.; Ding, H.L.; Jiang, Y.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2015-01-01

    The oxide dispersion strengthened ferritic steels with nominal composition (weight percent) of Fe–14Cr–2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y_2O_3 were fabricated by sol–gel method, mechanical alloying, and hot isostatic pressing techniques. The evolution of microstructure and mechanical properties of the hot-rolled specimens with heat treatment was investigated. Tensile strength and hardness of hot-rolled ODS steel are significantly enhanced due to the formation of mechanical twins and high density dislocations. Uniformly dispersed oxide particles (10–40 nm) and fine-grained structure (200–400 nm) are responsible for the superior mechanical properties of the hot-rolled specimen annealed between 650 °C and 850 °C. With further increasing annealing temperature, the grain size of the hot-rolled specimens increases while the size of oxide particles decreases, which leads to lower strength and hardness but better ductility. The tensile strength and total elongation of samples in the rolling direction are higher than those in the transverse direction after the same treatments owing to the grain anisotropy induced by the large mechanical deformation.

  7. Multivariable H force/level control of the twin-roller strip caster

    International Nuclear Information System (INIS)

    Cavazos, A.; Edwards, J.B.

    2005-01-01

    Twin-roller steel strip casters may offer some advantages with respect to classical continuous casting hot rolling processes. Some works have reported control aspects of this process and although the process has been found to be highly interactive and non-linear, little or no attention has been given to its multivariable characteristics. The purpose of this work is to design a multivariable control capable of decoupling the system. This paper presents some important aspects of the strip caster modeling and reports the simulation results of the application of the multivariable H-optimal control for nominal performance to force/level control. Various controllers have been designed for different pool level heights and it is shown that they can decouple the system, allowing the application of PI decentralized controllers to considerably improve performance. (author)

  8. Thin slab processing of acicular ferrite steels with high toughness

    Energy Technology Data Exchange (ETDEWEB)

    Reip, Carl-Peter; Hennig, Wolfgang; Hagmann, Rolf [SMS Demag Aktiengesellschaft, Duesseldorf (Germany); Sabrudin, Bin Mohamad Suren; Susanta, Ghosh; Lee, Weng Lan [Megasteel Sdn Bhd, Banting (Malaysia)

    2005-07-01

    Near-net-shape casting processes today represent an important option in steelmaking. High productivity and low production cost as well as the variety of steel grades that can be produced plus an excellent product quality are key factors for the acceptance of such processes in markets all over the world. Today's research focuses on the production of pipe steel with special requirements in terms of toughness at low temperatures. The subject article describes the production of hot strip made from acicular ferritic / bainitic steel grades using the CSP thin-slab technology. In addition, the resulting strength and toughness levels as a function of the alloying concepts are discussed. Optimal control of the CSP process allows the production of higher-strength hot-rolled steel grades with a fine-grain acicular-ferritic/bainitic microstructure. Hot strip produced in this way is characterized by a high toughness at low temperatures. In a drop weight tear test, transition temperatures of up to -50 deg C can be achieved with a shear-fracture share of 85%. (author)

  9. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José, E-mail: luana_alves_barbosa@hotmail.com, E-mail: wrrc@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B., E-mail: estevess@demet.ufmg.br, E-mail: marchezini@demet.ufmg.br, E-mail: dsantos@demet.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  10. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    International Nuclear Information System (INIS)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José; Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B.

    2017-01-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  11. 78 FR 15703 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, the People's Republic of...

    Science.gov (United States)

    2013-03-12

    ... Others 20.28 Thailand Sahaviriya Steel Industries 7.35 Public Co., Ltd. Siam Strip Mill Public Co., 20.30... People's Republic of China, Taiwan, Thailand, and Ukraine; Final Results of the Expedited Second Sunset... steel flat products from India, Indonesia, the People's Republic of China (PRC), Taiwan, Thailand, and...

  12. Medium carbon steel deep drawing: A study on the evolution of mechanical properties, texture and simulations, from cold rolling to the end product

    Energy Technology Data Exchange (ETDEWEB)

    Plaut, Ronald L. [University of Sao Paulo, Sao Paulo (Brazil)], E-mail: rlplaut@usp.br; Padilha, Angelo F. [University of Sao Paulo, Sao Paulo (Brazil); Lima, N.B. [IPEN-CNEN/SP, Sao Paulo (Brazil); Herrera, Clara [Max-Planck-Institut fuer Eisenforschung (Germany); Filho, Antenor Ferreira [Industrial Director, Brasmetal Waelzholz S/A, Diadema (Brazil); Yoshimura, Leandro H. [CCS Consulting, Sao Paulo (Brazil)

    2009-01-15

    Medium carbon steels are mostly used for simple applications; nevertheless new applications have been developed for which good sheet formability is required. This class of steels has an inherent low formability. A medium carbon hot rolled SAE 1050 steel has been selected for this study. It has been cold rolled with reductions in the 7-80% range. Samples have been used to assess the cold work hardening curve. For samples with a 50 and 80% thickness reduction, an annealing heat treatment has been performed to obtain recrystallization. The material has been characterized in the 'as received', cold rolled and annealed conditions, using several methods: optical microscopy, X-ray diffraction (texture), Vickers hardness and tensile testing. The 50% cold rolled and recrystallized material has been further studied in terms of sheet metal formability and texture evolution during the actual stamping of a steel toecap that has been used to validate the finite element simulations.

  13. Overall model of the dynamic behaviour of the steel strip in an annealing heating furnace on a hot-dip galvanizing line

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-de-Pison, F.J.; Pernia, A.; Jimenez-Macias, E.; Fernandez, R.

    2010-07-01

    Predicting the temperature of the steel strip in the annealing process in a hot-dip galvanizing line (HDGL) is important to ensure the physical properties of the processed material. The development of an accurate model that is capable of predicting the temperature the strip will reach according to the furnaces variations in temperature and speed, its dimensions and the steels chemical properties, is a requirement that is being increasingly called for by industrial plants of this nature. This paper presents a comparative study made between several types of algorithms of Data Mining and Artificial Intelligence for the design of an efficient and overall prediction model that will allow determining the strips variation in temperature according to the physico-chemical specifications of the coils to be processed, and fluctuations in temperature and speed that are recorded within the annealing process. The ultimate goal is to find a model that is effectively applicable to coils of new types of steel or sizes that are being processed for the first time. This model renders it possible to fine-tune the control model in order to standardise the treatment in areas of the strip in which there is a transition between coils of different sizes or types of steel. (Author).

  14. Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance

    Science.gov (United States)

    Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.

    2018-01-01

    The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.

  15. Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    N. Askarizadeh

    2017-12-01

    Full Text Available Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, passage of time, damaging environmental factors, patch of rebar in plastic hinges and in some cases failures and weaknesses caused by previous earthquakes or explosion loads. Recently, Fiber Reinforced Polymer (FRP components have been extensively and successfully used in seismic improvement. This study reinforces FRP reinforced concrete shear walls and steel strips. CFRP and steel strips are evaluated by different yield and ultimate strength. Numerical and experimental studies are done on walls with scale 1/2. These walls are exposed to cyclic loading. Hysteresis curves of force, drift and strain of FRP strips are reviewed in order to compare results of numerical work and laboratory results. Both numerical and laboratory results show that CFRP and steel strips increase resistance, capacity and ductility of the structure.

  16. Orthogonal decomposition of core loss along rolling and transverse directions of non-grain oriented silicon steels

    Directory of Open Access Journals (Sweden)

    Xuezhi Wan

    2017-05-01

    Full Text Available Rotational core loss of the silicon steel laminations are measured under elliptical rotating excitation. The core loss decomposition model is very important in magnetic core design, in which the decomposition coefficients are calculated through the measurement data. By using the transformation of trigonometric function, the elliptical rotational magnetic flux can be decomposed into two parts along two directions. It is assumed that the rotating core loss is the sum of alternating core losses along rolling and transverse directions. The magnetic strength vector H of non-grain oriented (NGO silicon steel 35WW270 along rolling and transverse directions is measured by a novel designed 3-D magnetic properties tester. Alternating core loss along the rolling, transverse directions and rotating core loss in the xoy-plane of this specimen in different frequencies such as 50 Hz, 100 Hz, and 200 Hz. Experimental results show that the core loss model is more accurate and useful to predict the total core loss.

  17. Effect of Asymmetric Rolling on Plastic Anisotropy of Low Carbon Steels during Simple Shear Tests

    International Nuclear Information System (INIS)

    Gracio, J. J.; Vincze, G.; Panigrahi, B. B.; Kim, H. J.; Barlat, F.; Rauch, E. F.; Yoon, J. W.

    2010-01-01

    Simple shear tests are performed on low carbon steel pre-deformed in conventional, asymmetric and orthogonal-asymmetric rolling. The simple-shear tests were carried out at 0 deg. , 45 deg. and 135 deg. with respect to the previous rolling direction. For a reduction ratio of 15%, a transient stagnation in the hardening rate is observed at reloading for all changes in strain path. The shear stress level, the hardening rate and extent of the plateau appear to be insensitive to the preliminary applied rolling conditions. After a reduction ratio of 50%, plastic instability was detected at reloading for all the changes of strain path and rolling conditions studied. A specific heat treatment was then designed allowing the material to become ductile after rolling while retaining the fine microstructure and therefore the high strength. Promising results were obtained essentially for 45 deg. shear tests.

  18. Practical measurement of silicon in low alloy steels by differential pulse stripping voltammetry

    International Nuclear Information System (INIS)

    Rahier, A.; Lunardi, S.; Triki, C.

    2005-01-01

    A sensitive differential pulse anodic stripping voltammetry has been adapted to allow the determination of Si in low-alloy steels using a hanging mercury drop electrode. The method has been qualified using certified ASTM standards and is now running in routine. The present report describes the experimental details, thereby allowing the reader to carry out the measurements precisely. (author)

  19. A model for prediction of profile and flatness of hot and cold rolled flat products in four-high mills

    Science.gov (United States)

    Overhagen, Christian; Mauk, Paul Josef

    2018-05-01

    For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.

  20. ANALYSIS ON THE BEHAVIOR OF PRECIPITATES IN ULTRA-THIN HOT STRIP OF PLAIN LOW CARBON STEEL PRODUCED BY COMPACT STRIP PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    H. Yu; Y.L. Kang; H.B. Dong; D.L. Liu; J. Fu

    2002-01-01

    This paper investigated the mechanism of precipitation and its influence upon prop-erties of ultra-thin hot strips of low carbon steel produced by CSP techniques usingexperiment and thermodynamics theory. The experimental results show that thereare lots of fine and dispersive precipitates in microstructures. By analysis, most ofaluminum nitrides are in grains, while coexisted precipitates of MnS are along grainboundaries. Coexisted precipitates compose cation-vacancy type oxides such as Al2O3in the core, while MnS is at the fringe of surface. The precipitation behavior of AlNand MnS in the hot strip is studied by thermodynamic calculation. At last, implica-tions between strengthening effect and techniques are analyzed using obtained solubilityproducts.

  1. 76 FR 42679 - Certain Hot-Rolled Carbon Steel Flat Products From India: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-07-19

    .... Steel''), Nucor Corporation (``Nucor''), and ArcelorMittal USA Inc. DATES: Effective Date: July 19, 2011..., 2011. We received briefs from U.S. Steel and Nucor and a rebuttal brief from Tata.\\5\\ On May 17, the... India, dated April 14, 2011; Letter from Nucor to the Department, regarding Certain Hot-Rolled Carbon...

  2. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    Science.gov (United States)

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.

  3. Tribo-chemical behavior of eutectoid steel during rolling contact friction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Cai, Z.B. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China); Peng, J.F. [Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Cao, B.B. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China); Jin, X.S. [Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, M.H., E-mail: zhuminhao@swjtu.cn [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China); Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-12-01

    Highlights: • Tribo-chemical behavior was investigated during rolling contact friction. • Tribo-film may weaken the absorptive ability of O/C atoms on the surface. • Tribo-film is related to a low friction coefficient at rolling friction condition. - Abstract: The tribo-chemical behavior of the eutectoid steel during rolling contact friction is investigated via scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and electron probe X-ray microanalysis. The worn surface is divided into three zones: matrix zone (without friction), tribo-film zone (formed during friction) and delamination zone (tribo-film spalling). The different chemical states of atoms between those three zones and the air were investigated using the XPS analysis. The results showed that the matrix zone is composed of Fe{sub 2}O{sub 3}, FeO and metallic Fe, while the tribo-film and delamination zones only contain Fe{sub 2}O{sub 3} and FeO. Where the tribo-film is formed, the absorptive ability of O and C atoms on the top 2–3 atomic layers is probably weakened, while the exposed fresh metal in the delamination zone tends to be continuously oxidized and form tribo-film. The tribo-chemical reaction in the delamination zone is more activated than that in the other two zones. The protective nature of the tribo-film probably maintains a low friction coefficient under rolling contact friction condition.

  4. 76 FR 25670 - Stainless Steel Sheet and Strip in Coils From Italy: Final Results of the Full Five-Year (“Sunset...

    Science.gov (United States)

    2011-05-05

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-475-824] Stainless Steel Sheet and... duty order on stainless steel sheet and strip (``SSSS'') in coils from Italy would be likely to lead to...

  5. Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanjeev, E-mail: sanjeevdas80@gmail.com [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); Barekar, N.S. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); El Fakir, Omer; Wang, Liliang [Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Prasada Rao, A.K.; Patel, J.B.; Kotadia, H.R.; Bhagurkar, A. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); Dear, John P. [Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Fan, Z. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2015-01-03

    In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. Detailed optical microscopy studies were carried out on as-cast and homogenized TRC and MC-TRC strips. The results showed uniform, fine and equiaxed grain structure was observed for MC-TRC samples in as-cast condition. Whereas, coarse columnar grains with centreline segregation were observed in the case of as-cast TRC samples. The solidification mechanisms for TRC and MC-TRC have been found completely divergent. The homogenized TRC and MC-TRC samples were subjected to tensile test at elevated temperature (250–400 °C). At 250 °C, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. The mechanism of deformation has been explained by detailed fractures surface and sub-surface analysis carried out by scanning electron and optical microscopy. Homogenized MC-TRC samples were formed (hot stamping) into engineering component without any trace of crack on its surface. Whereas, TRC samples cracked in several places during hot stamping process.

  6. Numerical cooling strategy design for hot rolled dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Suwanpinij, Piyada; Prahl, Ulrich; Bleck, Wolfgang [RWTH Aachen (DE). Dept. of Ferrous Metallurgy (IEHK); Togobytska, Nataliya; Weiss, Wolf; Hoemberg, Dietmar [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)

    2010-10-21

    In this article, the Mo-Mn dual phase steel and its process parameters in hot rolling are discussed. The process window was derived by combining the experimental work in a hot deformation dilatometer and numerical calculation of process parameters using rate law models for ferrite and martensite transformation. The ferrite formation model is based on the Leblond and Devaux approach while martensite formation is based on the Koistinen- Marburger (K-M) formula. The carbon enrichment during ferrite formation is taken into account for the following martensite formation. After the completion of the parameter identification for the rate law model, the evolution of phases in multiphase steel can be addressed. Particularly, the simulations allow for predicting the preferable degree of retained strain and holding temperature on the run out table (ROT) for the required ferrite fraction. (orig.)

  7. Effects of thermomechanical processing on titanium aluminide strip cast by the melt overflow process

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, T.A. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Hackman, L.E. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Batawi, E. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland)); Peters, J.A. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland))

    1994-05-01

    The objective of this research project was to investigate the feasibility of producing titanium aluminide foils from direct cast strip using ribbon technology''s plasma melt overflow process. Niobium-modified Ti[sub 3]Al alloys were melted in a cold copper crucible using a transferred plasma arc and then direct cast into strip on a rotating chill roll.Samples cut from the as-cast Ti[sub 3]Al-Nb ([alpha][sub 2]) titanium aluminide strip were encapsulated into a pack. The packs were heated to the rolling temperature and then hot rolled at low strain rates. Foils 70 [mu]m (0.003 in) thick, having a uniform [alpha][sub 2]-B2 microstructure with oxygen contents as low as 900 wt.ppm were obtained after pack rolling. The strips and foils were characterized in terms of microstructure and chemical composition in the as-received, heat-treated and pack-rolled conditions.The results indicated that it was technically feasible to produce foils from direct cast titanium aluminide strip using pack-rolling technology. The advantage of this technology lies in its cost-effectiveness, since the relatively low cost direct-cast titanium aluminide strip was thermomechanically processed into foil with the desired microstructure without any intermediate processing steps. ((orig.))

  8. Microstructural changes after control rolling and interrupted accelerated cooling simulations in pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Mourino, Nuria; Petrov, Roumen [Department of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Ghent (Belgium); Bae, Jin-Ho; Kim, Kisoo [Sheet Products and Process Research Group, POSCO, Jeonnam, 545-090 (Korea, Republic of); Kestens, Leo A.I. [Department of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft (Netherlands)

    2011-04-15

    The {gamma}-{alpha} transformation and final microstructure in pipeline steel was studied by carrying out a number of physical simulations of industrial hot rolling schedules. Particularly, the effect of the reheating temperature, deformation and cooling parameters on the transformation temperatures and final grain size were considered with a goal to obtain an appropriate thermo-mechanical processing route which will generate appropriate microstructures for pipeline applications. The CCT diagram of the steel was derived experimentally by means of dilatometric tests. Hot torsion experiments were applied in a multi-deformation cycle at various temperatures in the austenite region to simulate industrial rolling schedules. By variation of the reheating temperature, equivalent strain, and accelerated cooling, different types of microstructures were obtained. It was found that the deformation increases the transformation temperatures whereas the higher cooling rates after deformation decrease them. Post-deformation microstructure consists of fine bainitic-ferrite grains with dispersed carbides and small amount of dispersed martensite/austenite islands which can be controlled by varying the reheating temperature, deformation and post-deformation cooling. The detailed microstructure characteristics obtained from the present work could be used to optimize the mechanical properties, strength and toughness of pipeline steel grades by an appropriate control of the thermo-mechanical processing. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Cold rolling texture development of α/γ duplex stainless steels

    International Nuclear Information System (INIS)

    Akdut, N.; Foct, J.; Gottstein, G.

    1996-01-01

    The cold rolling texture development of two α/γ duplex stainless steels (DSS) with similar volume fractions of both phases but with totally different microstructures were investigated. Due to the limited number of available pole figures using X-rays, for the calculation of the ODFs both a direct method and a recent iterative series expansion method were used. The results were checked by neutron diffraction measurements. The austenitic phases of both DSS behave similarly to single phase materials with a low stacking fault energy which develop a brass-type rolling texture. In contrast, the texture development of the ferritic phases strongly differs from those of single phase ferrites. Instead of a fibre type texture the α-phase in both DSS exhibits a peak dominated texture regardless of whether it is the matrix phase or not. These differences, as well as the sharpness of both phases, are explained by the presence of the second phase. (orig.)

  10. Solutions for Safe Hot Coil Evacuation and Coil Handling in Case of Thick and High Strength Steel

    Directory of Open Access Journals (Sweden)

    Sieberer Stefan

    2016-01-01

    Full Text Available Currently hot rolling plants are entering the market segment for thick gauges and high strength steel grades where the elastic bending property of the strip leads to internal forces in the coil during coiling operation. The strip tends to open. Primetals is investigating several possibilities to facilitate safe coil evacuation and coil handling under spring-back conditions. The contribution includes finite element models of such mechanical solutions. Results of parameter variation and stability limits of case studies are presented in the paper.

  11. A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel

    International Nuclear Information System (INIS)

    Felfer, Peter J.; Killmore, Chris R.; Williams, Jim G.; Carpenter, Kristin R.; Ringer, Simon P.; Cairney, Julie M.

    2012-01-01

    Most modern HSLA steels rely on the effect of Nb in steels to achieve the properties desired for a specific application. While the role of Nb in forming precipitates has been well characterized, its role in a solid solution is less well understood due to the difficulty of obtaining quantitative experimental data. In the current work, site-specific atom probe tomography was used to quantify the amount of Nb present at prior austenite grain boundaries in a commercial strip-cast steel, produced via the Castrip ® process. This was compared to the amount of Nb found at ferrite–ferrite grain boundaries that had formed during the transformation from austenite to ferrite. With the interfacial excess Nb measured, thermodynamic calculations were carried out and compared to the change in transformation temperature obtained by dilatometry, with reference to a comparable Nb free, strip-cast steel.

  12. Cold rolled texture and microstructure in types 304 and 316L austenitic stainless steels

    International Nuclear Information System (INIS)

    Wasnik, D.N.; Samajdar, I.; Gopalakrishnan, I.K.; Yakhmi, J.V.; Kain, V.

    2003-01-01

    Two grades of austenitic stainless steel (ASS), types 304 (UNS S 30400) and 316L (UNS S 31603), were cold rolled to different reductions by unidirectional and by cross-rolling. The steels had reasonable difference in stacking fault energy (estimated respectively as 15 and 61 mJ/m 2 in types 304 and 316L) and also in starting (or pre-deformation) crystallographic texture-being relatively weak and reasonably strong in types 304 and 316L respectively. The cold rolling increased texturing in type 304, but not in type 316L ASS. The more significant effect of cold rolled texture development was in the relative increase of Brass ({011} ) against Copper ({112} ) and S ({231} ) orientations. In type 304 the increase in Brass was significant, while in type 316L the increase in Copper and S was stronger. This effect could be captured by Taylor type deformation texture simulations considering stronger twinning contributions in type 304 - for example the respective 'best-fits' (in terms of matching the changes in the volume fractions of Brass against Copper and S) were obtained by full constraint Taylor model with 1:100 and 1:10 slip:twin activities in types 304 and 316L ASS respectively. Microstructural developments during cold rolling were generalized as strain induced martensite formation and developments of dislocation substructure. The former, as estimated by vibrating sample magnetometer (VSM), increased with cold reduction, being significantly more in type 304 and was also noticeably stronger in both grades under cross-rolling. The most significant aspect of substructural developments was the formation of strain localizations. These were observed as dense dislocation walls (DDWs), micro-bands (MBs) and twin lamellar structures (TLS). The TLS contribution gained significance at higher reductions and during cross-rolling, especially in type 304. Large misorientation development and the accompanying grain splittings were always associated with such strain localizations

  13. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    Science.gov (United States)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  14. 76 FR 48143 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2011-08-08

    ..., 75 FR 81565 (December 28, 2010). \\3\\ Certain Oil Country Tubular Goods from the People's Republic of..., from Steven Hampton, International Trade Analyst, ``Certain Hot-Rolled Carbon Steel Flat Products from...

  15. 78 FR 24435 - Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and Ukraine

    Science.gov (United States)

    2013-04-25

    ... Ukraine Scheduling of full five-year reviews concerning the countervailing duty orders on hot-rolled steel... China, India, Indonesia, Taiwan, Thailand, and Ukraine. AGENCY: United States International Trade..., India, Indonesia, Taiwan, Thailand, and Ukraine would be likely to lead to continuation or recurrence of...

  16. Development and industrial mastering hot rolling procedure for low-ductile steels and alloys

    International Nuclear Information System (INIS)

    Degterenko, V.K.; Sokolov, V.A.

    1980-01-01

    The technique for the development of the sheet hot rolling procedure for low-ductile steels and alloys (0Kh17N14M2, 12Kh21N5T, 20Kh25N20C2,40Kh13, 36NKhTYu etc.) is proposed, using plastometer which permits to obtain the data on the deformation resistance in the wide range of temperatures (800-1300 deg C), of deformation degrees (0.1-0.3) and deformation rates (0.001-300 c -1 ). With the help of the plastometric data processed on the computer the calculation of the rolling regimes for the sheet with improved surface quality is carried out at the more uniform loading on the mill stands

  17. 76 FR 31938 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Preliminary Results of 2009...

    Science.gov (United States)

    2011-06-02

    ... the File from Christopher Hargett, International Trade Compliance Analyst, through Melissa Skinner... Skinner, Office Director, concerning ``Certain Hot-Rolled Carbon Steel Flat Products from India: Customs...

  18. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

    Science.gov (United States)

    Mukherjee, Monideepa; Tiwari, Sumit; Bhattacharya, Basudev

    2018-02-01

    In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

  19. Corrosion behaviour of Fe-Mn-Si based shape memory steels trained by cold rolling

    International Nuclear Information System (INIS)

    Soederberg, O.; Liu, X.W.; Ullakko, K.; Lindroos, V.K.

    1999-01-01

    Fe-Mn-Si based high nitrogen steels have been studied in recent years for potential industrial applications. These steels show good shape memory properties, high strength and excellent ductility. In the present study, the effects of training history on the corrosion properties of Fe-Mn-Si-Cr-Ni based high nitrogen steels were investigated. The corrosion behaviour of shape memory alloys was analyzed by implementing anodic polarisation measurements and immersion tests. The shape memory steels in annealed, deformed and recovered conditions were studied to examine the training effect on their corrosion behaviour. The features of the anodic polarisation curves indicated a general corrosion type of these steels. The experimental results showed that Cr and Mn had a marked influence on the corrosion behaviour of the steels, followed by Ni, N and V. It was also apparent that the deformation during the shape memory training by cold rolling decreased the corrosion stability, and the recovery heating reduced further their corrosion resistance. However, further studies are needed in order to better understand the corrosion behaviour of the investigated alloys. (orig.)

  20. 78 FR 69371 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Preliminary...

    Science.gov (United States)

    2013-11-19

    ... this investigation are flat-rolled, cold-reduced steel products, regardless of chemistry; whether or... 7210.70.6090, 7212.40.1000, 7212.40.5000, 7219.90.0020, 7219.90.0025, 7219.90.0060, 7219.90.0080, 7220.... Results of the DP Analysis f. Export Price g. Normal Value h. Level of Trade i. Affiliated Party...

  1. Numerical and experimental study on multi-pass laser bending of AH36 steel strips

    Science.gov (United States)

    Fetene, Besufekad N.; Kumar, Vikash; Dixit, Uday S.; Echempati, Raghu

    2018-02-01

    Laser bending is a process of bending of plates, small sized sheets, strips and tubes, in which a moving or stationary laser beam heats the workpiece to achieve the desired curvature due to thermal stresses. Researchers studied the effects of different process parameters related to the laser source, material and workpiece geometry on laser bending of metal sheets. The studies are focused on large sized sheets. The workpiece geometry parameters like sheet thickness, length and width also affect the bend angle considerably. In this work, the effects of width and thickness on multi-pass laser bending of AH36 steel strips were studied experimentally and numerically. Finite element model using ABAQUS® was developed to investigate the size effect on the prediction of the bend angle. Microhardness and flexure tests showed an increase in the flexural strength as well as microhardness in the scanned zone. The microstructures of the bent strips also supported the physical observations.

  2. Calculation and experimental technique of determination of rolling procedure for cold-rolling tube mills

    International Nuclear Information System (INIS)

    Igoshin, V.F.; Aleshin, V.A.; Khoroshikh, Yu.G.; Bogatov, A.A.; Mizhiritskij, O.I.

    1983-01-01

    Calculation and experimental technique of determination of tube cold rolling procedure has been developed. Rolling procedure based on the usage of regression equation epsilon=1.24 psi, where psi is the relative reduction of area, delta-permissible reduction during rolling, has been tested on 08Kh18N10T steel. The effect of tube geometry, tool calibration parameters, lubrication conditions etc. on metal deformability in taking into account experimentally. The use of the technique proposed has allowed to shorten the time of mastering of the production of tubes from different steels

  3. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, H; Shirazi, H [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 14395-731 (Iran, Islamic Republic of); Nili-Ahmadabadi, M, E-mail: sut.caster.81710018@gmail.co, E-mail: nili@ut.ac.i [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 14395-731 (Iran, Islamic Republic of) and Center of Excellence for High Performance Materials, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of)

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was {epsilon} {approx}7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  4. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    Science.gov (United States)

    Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  5. EBSD characterization of an IF steel processed by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Cruz-Gandarilla, F; Salcedo-Garrido, A M; Avalos, M; Bolmaro, R; Baudin, T; Cabañas-Moreno, J G; Dorantes-Rosales, H J

    2015-01-01

    The objective of this work is to study the texture and microstructure evolution of an IF steel deformed by Accumulative Roll Bonding (ARB) using Electron Backscatter Diffraction. Texture changes occur with increasing number of ARB cycles. For the early cycles, the main components are the α and γ fiber components characteristic of steels. With increasing the number of ARB cycles a tendency towards a random texture is obtained. In the initial state, the mean grain size is 30 μm and after 5 cycles it decreases to 1.2 μm. For the first ARB cycles, the fraction of high angle grain boundary is low but it increases with the number of cycles to about 80% for 5 cycles. The Kernel Average Misorientation (KAM) has no appreciable changes with the number of ARB cycles for all the texture components. (paper)

  6. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Directory of Open Access Journals (Sweden)

    Jankowiak Iwona

    2017-12-01

    Full Text Available One of the methods to increase the load carrying capacity of the reinforced concrete (RC structure is its strengthening by using carbon fiber (CFRP strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments. The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  7. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Science.gov (United States)

    Jankowiak, Iwona; Madaj, Arkadiusz

    2017-12-01

    One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  8. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...

  9. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in 't Veld, A.J.; Hosson, J.T. de

    1998-01-01

    Titanium-nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  10. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  11. Microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Rui [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China); School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Li, Shengli, E-mail: lishengli@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China); Zhu, Xinde [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Ao, Qing [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China)

    2015-10-15

    In order to further reveal the microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel, the microstructure of this type steel was intensively studied with Scanning Auger Microprobe (SAM), etc. The results show that severe C–Mn segregation exists in the abnormal segregation band region at the center of hot rolled ferrite/pearlite steel, which results from the Mn segregation during solidification process of the continuous casting slab. The C–Mn segregation causes relative displacement of pearlite transformation curve and bainite transformation curve of C curve in the corresponding region, leading to bay-like shaped C curve. The bay-like shaped C curve creates conditions for the transformation from supercooling austenite to bainite at relatively lower cooling rate in this region. The Fe–Mn–C Atomic Segregation Zone (FASZ) caused by C–Mn segregation can powerfully retard the atomic motion, and increase the lattice reconstruction resistance of austenite transformation. These two factors provide thermodynamic and kinetic conditions for the bainite transformation, and result in the emergence of granular bainitic abnormal segregation band at the center of steel plate, which leads to lower plasticity and toughness of this region, and induces the layered fracture. - Highlights: • Scanning Auger Microprobe (SAM) is applied in the fracture analysis. • The abnormal segregation band region appears obvious C–Mn segregation. • The C–Mn segregation leads to bay-like shaped C curve. • The C–Mn segregation leads to Fe–Mn–C Atomic Segregation Zone.

  12. Online Surface Defect Identification of Cold Rolled Strips Based on Local Binary Pattern and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-03-01

    Full Text Available In the production of cold-rolled strip, the strip surface may suffer from various defects which need to be detected and identified using an online inspection system. The system is equipped with high-speed and high-resolution cameras to acquire images from the moving strip surface. Features are then extracted from the images and are used as inputs of a pre-trained classifier to identify the type of defect. New types of defect often appear in production. At this point the pre-trained classifier needs to be quickly retrained and deployed in seconds to meet the requirement of the online identification of all defects in the environment of a continuous production line. Therefore, the method for extracting the image features and the training for the classification model should be automated and fast enough, normally within seconds. This paper presents our findings in investigating the computational and classification performance of various feature extraction methods and classification models for the strip surface defect identification. The methods include Scale Invariant Feature Transform (SIFT, Speeded Up Robust Features (SURF and Local Binary Patterns (LBP. The classifiers we have assessed include Back Propagation (BP neural network, Support Vector Machine (SVM and Extreme Learning Machine (ELM. By comparing various combinations of different feature extraction and classification methods, our experiments show that the hybrid method of LBP for feature extraction and ELM for defect classification results in less training and identification time with higher classification accuracy, which satisfied online real-time identification.

  13. Effect of Hot Rolling on the Microstructure and Mechanical Properties of Nitrogen Alloyed Austenitic Stainless Steel

    Science.gov (United States)

    Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.

    2018-05-01

    In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.

  14. Axial Force Analysis and Roll Contour Configuration of Four-High CVC Mill

    Directory of Open Access Journals (Sweden)

    Guang-ming Liu

    2018-01-01

    Full Text Available In order to analyze the influence of technical parameters on work roll axial force of four-high continuous variable crown (CVC mill, the deformation analyzing model with top roll system and strip was established based on influence function method. Then a CVC work roll curve designing scheme was proposed and it was carried out on some cold rolling mill considering the requirement of comprehensive work roll axial force minimization. The status of comprehensive work roll axial force is improved considering the rolling schedule that is beneficial to the roller bearing. Corresponding to the newly designed work roll contour, the backup roll end chamfer was designed considering comprehensive performance of interroll stress concentration, comprehensive work roll axial force, and strip shape control ability. The distribution of roll wear with newly designed backup roll contour is more even according to the field application data. The newly established roll configuration scheme is beneficial to four-high CVC mill.

  15. γ→α′ Martensitic transformation and magnetic property of cold rolled Fe–20Mn–4Al–0.3C steel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Biao; Li, Changsheng, E-mail: lics@ral.neu.edu.cn; Han, Yahui; Wang, Jikai

    2016-12-01

    Direct γ→α′ martensitic transformation during cold rolling deformation was investigated for a high-Mn non-magnetic steel. Its influence on magnetic property was also analyzed. The magnetization under rolling reduction less than 50% almost presents a linear increase with the applied magnetic field. With deformation up to 73% and 93% thickness reductions, strain induced α′-martensite transformation starts to occur, causing the steel to be slightly magnetized. The α′-martensite prefers to nucleate directly at either microband–microband or microband-twin intersections without participation of intermediate ε-martensite. The volume fraction of α′-martensite is estimated as 0.070% and 0.17%, respectively, based on the magnetic hysteresis loops. Such a small fraction of ferromagnetic α′-martensite shows little influence on the magnetic induction intensity and low relative permeability. - Highlights: • Magnetic property of high-Mn austenitic steel was examined after cold rolling. • Nucleation mode for direct γ→α′ martensitic transformation was observed and discussed. • Volume fraction of strain induced α′-martensite was estimated by magnetic measurement.

  16. Microstructure control during twin roll casting of an AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Huang, Y; Bayandorian, I; Fan, Z

    2012-01-01

    The existing twin roll casting technique for magnesium alloys suffers heterogeneity in both microstructure and chemistry and downstream processing is required to improve the strip quality, resulting in cost rise. In the present work, twin roll casting was carried out using an AZ31 magnesium alloy, with the application of intensive shearing melt conditioning prior to casting. The effect of process parameters such as pouring temperature and casting speed on microstructure control during casting and subsequent downstream processing was studied. Experimental results showed that the melt conditioning treatment allowed the production of AZ31 strips with uniform and refined microstructure free of centreline segregations. It was also shown that an optimized combination of pouring temperature and casting speed, in conjunction with a strip thickness control operation, resulted in uniformly distributed stored energies due to enhanced plastic deformation, which promoted recrystallization during casting and subsequent heat treatment. Strips prepared by twin roll casting and homogenization developed similar microstructural features to those prepared by twin roll casting followed by lengthy downstream processing by homogenization, hot rolling and annealing and displayed a weaker basal texture, exhibiting a potentially better formability.

  17. Texture evolution during the recrystallization of a warm-rolled low-carbon steel

    International Nuclear Information System (INIS)

    Sanchez-Araiza, M.; Godet, S.; Jacques, P.J.; Jonas, J.J.

    2006-01-01

    The texture changes taking place during the recrystallization of a warm-rolled low-carbon steel were examined using electron backscattered diffraction. The deformation textures of the warm-rolled material are similar in shape to those of cold-rolled materials, but are somewhat more intense. The recrystallization textures resemble the deformation textures but with a more extended α fibre that includes the {1 1 3} orientation; the γ fibre extends to the {5 5 4} orientation. These two orientations are related to the {1 1 2} deformed grains by near 26 deg, rotations about selected axes. Nevertheless, both orientations appear in the early stages of recrystallization, an observation that does not support the oriented growth theory. The {1 1 1} orientations are the first to recrystallize while the α fibre is present until the end of recrystallization. It is finally consumed by all types of grains as well as by subgrain coalescence. The similarities in the growth rates for the {1 1 1} and random orientations and the late disappearance of the α fibre suggest that recrystallization takes place according to the high stored energy oriented nucleation concept

  18. Microstructure, Tensile and Fatigue Properties of Al-5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

    Science.gov (United States)

    Heo, Joon-Young; Baek, Min-Seok; Euh, Kwang-Jun; Lee, Kee-Ahn

    2018-04-01

    This study investigated the microstructure, tensile and fatigue properties of Al-5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al-5 wt.%Mg based on the findings.

  19. Measurements of Residual Stresses In Cold-Rolled 304 Stainless Steel Plates Using X-Ray Diffraction with Rietveld Refinement Method

    International Nuclear Information System (INIS)

    Parikin; Killen, P; Rafterry, A.

    2009-01-01

    The determination of the residual stresses using X-ray powder diffraction in a series of cold-rolled 304 stainless steel plates, deforming 0, 34, 84, 152, 158, 175 and 196 % reduction in thickness has been carried out. The diffraction data were analyzed using the Rietveld structure refinement method. The analysis shows that for all specimens, the martensite particles are closely in compression and the austenite matrix is in tension. Both the martensite and austenite, for a sample reducing 34% in thickness (containing of about 1% martensite phase) the average lattice strains are anisotropic and decrease approximately exponential with an increase in the corresponding percent reduction (essentially phase content). It is shown that this feature can be qualitatively understood by taking into consideration the thermal expansion mismatch between the martensite and austenite grains. Also, for all cold-rolled stainless steel specimens, the diffraction peaks are broader than the unrolled one (instrumental resolution), indicating that the strains in these specimens are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-mean square strain, which describes the distribution of the inhomogeneous strain field, was predicted. The average residual stresses in cold-rolled 304 stainless steel plates showed a combination effect of hydrostatic stresses of the martensite particles and the austenite matrix. (author)

  20. 78 FR 64008 - Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and Ukraine; Revised...

    Science.gov (United States)

    2013-10-25

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-405, 406, and 408 and 731-TA-899-901 and 906-908 (Second Review)] Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and Ukraine; Revised Schedule for the Subject Five Year Reviews AGENCY: United States International Trade...

  1. Screening the performance of lubricants for ironing of stainless steel with a strip reduction test

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Bay, Niels; Andersen, Mette Merete

    1997-01-01

    A laboratory strip reduction test simulating the tribological conditions of an ironing process is proposed. The test is capable of simulating varying process conditions such as reduction, drawing speed, tool temperature and sliding length. The test makes it possible to quantify the onset of break...... of breakdown of the lubricant film and subsequent galling. Experimental investigations of stainless steel show the influence of varying process conditions and the performance of different lubricants.......A laboratory strip reduction test simulating the tribological conditions of an ironing process is proposed. The test is capable of simulating varying process conditions such as reduction, drawing speed, tool temperature and sliding length. The test makes it possible to quantify the onset...

  2. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting

    Science.gov (United States)

    Gao, Rui; Ge, Wen-jun; Miao, Shu; Zhang, Tao; Wang, Xian-ping; Fang, Qian-feng

    2016-03-01

    The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30-40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.

  3. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  4. Hydrogen effect on mechanical properties and flake formation in the 10KhSND steel rolled plates

    Energy Technology Data Exchange (ETDEWEB)

    Muradova, R G; Zakharov, V A; Kuzin, A P; Gol' tsov, V A; Podgajskij, M S [Donetskij Politekhnicheskij Inst. (Ukrainian SSR); Donetskij Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii (Ukrainian SSR))

    1982-01-01

    The effect of hydrogen on mechanical properties of the 10KhSND steel rolled plates during natural aging is studied. Optimum period of metal acceptance tests, which are advisable to conduct after 5-7 day natural aging of finished products, are found out. The technique is worked out and a safe hydrogen content to prevent flake formation in the 10KhSND steel is determined. It is shown that a safe hydrogen content is dependent on the experiment conditions (sample dimensions, conditions of cooling, and prehistory).

  5. Hydrogen effect on mechanical properties and flake formation in the 10KhSND steel rolled plates

    International Nuclear Information System (INIS)

    Muradova, R.G.; Zakharov, V.A.; Kuzin, A.P.; Gol'tsov, V.A.; Podgajskij, M.S.

    1982-01-01

    The effect of hydrogen on mechanical properties of the 10KhSND steel rolled plates during natural aging is studied. Optimum period of metal acceptance tests, which are advisable to conduct after 5-7 day natural aging of finished products, are found out. The technique is worked out and a safe hydrogen content to prevent flake formation in the 10KhSND steel is determined. It is shown that a safe hydrogen content is dependent on the experiment conditions (sample dimensions, conditions of cooling, and prehistory)

  6. Transient thermal stresses of work roll by coupled thermoelasticity

    Science.gov (United States)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  7. Model of mechanical properties change of steel during rolling with use of hightemperature thermomechanical treatment

    International Nuclear Information System (INIS)

    Zhadan, V.T.; Gubenko, V.T.; Bernshtejn, M.L.; Binarskij, M.S.

    1975-01-01

    A mathematical model is proposed of changes in the mechanical properties of the steel-50KHGA in the process of rolling with application of a high-temperature thermomechanical treatment (HTTMT). The model accounts for all the main particularities of the structure formation processes during a high temperature deformation of metals and alloys. The nonmonotonic dependence of the steel mechanical properties on the deformation velocity can be presented as a result of a summary effect of three parallel processes on the formation of these properties: hot working, softening and substructural hardening. The mathematical model has been constructed by the iteration method

  8. Finite Element Modeling of an Aircraft Tire Rolling on a Steel Drum: Experimental Investigations and Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Iulian Rosu

    2018-04-01

    Full Text Available The aim of this study is to investigate the thermal evolution of an aircraft tire rolling at high velocities up to take off values. As this kind of experiment is difficult to realize on a real runway, experimental tests were realized on aircraft tires rolling on a steel drum. The rotating drum facility allows to apply variable velocities beyond the take off limits, at fixed skidding angles and loadings. The rolling conditions, vertical loading, velocity and cornering conditions were adopted to correspond to the real conditions of an aircraft tire running or skidding on a flat runway. In the experimental part, the influence of skidding angle, velocity and loading on the thermal evolution of the tire tread were investigated. The thermo-mechanical finite element analysis of a pneumatic radial tire structure was performed taking into account the hyper-viscoelastic rubber behavior, with heating mechanisms developed by the inelastic deformation and by friction. Three-dimensional finite element simulations of an aircraft tire rolling on a steel drum were carried out using Abaqus/Standard finite element solver. The comparison of the temperature distribution on the tire tread between numerical results and the experimental data shows the same overall tendencies. The good correlation between numerical and experimental data shows that numerical simulation could predict the thermal evolution of the tire in critical situations. The authors would like to mention that for confidentiality reason, certain numerical data could not be revealed.

  9. A New Solution for the Compression of a Two-Layer Strip and Its Application to Analysis of Bonding by Rolling

    Directory of Open Access Journals (Sweden)

    Sergei Alexandrov

    2014-01-01

    Full Text Available The paper presents a theoretical study on the compression of a two-layer strip of strain-hardening rigid-plastic materials between rigid platens. Semianalytical solutions are obtained for stress and velocity fields in each layer. Special attention is devoted to the conditions corresponding to the beginning of cold bond formation between the layers. Depending on input parameters various general deformation patterns are possible. In particular, there exists such a range of process parameters that the soft metal layer yields while the hard metal layer is rigid at the beginning of the process. As the deformation proceeds, yielding also starts in the hard metal layer and the entire strip becomes plastic. This is a typical deformation pattern adopted in describing the process of joining by rolling. However, at a certain range of input parameters plastic deformation of the entire strip begins at the initial instant. Moreover, it is possible that only the hard metal layer yields while the soft metal layer does not. This deformation pattern takes place when the thickness of the soft metal layer is much smaller than that of the hard metal layer.

  10. Reversed Microstructures and Tensile Properties after Various Cold Rolling Reductions in AISI 301LN Steel

    Directory of Open Access Journals (Sweden)

    Antti Järvenpää

    2018-02-01

    Full Text Available Heavy cold rolling is generally required for efficient grain size refinement in the martensitic reversion process, which is, however, not desirable in practical processing. In the present work, the influence of cold rolling reductions of 32%, 45% and 63% on the microstructure evolution and mechanical properties of a metastable austenitic AISI 301LN type steel were investigated in detail adopting scanning electron microscopy with the electron backscatter diffraction method and mechanical testing. A completely austenitic microstructure and a partially reversed counterpart were created. It was found that the fraction of grains with a size of 3 µm or larger, called medium-sized grains, increased with decreasing the prior cold rolling reduction. These grains are formed mainly from the shear-reversed austenite, transformed from slightly-deformed martensite, by gradual evolution of subgrains to grains. However, in spite of significant amounts of medium-sized grains, the tensile properties after the 32% or 45% cold rolling reductions were practically equal to those after the 63% reduction. The austenite stability against the formation of deformation-induced martensite in subsequent straining was reduced by lowering the cold rolling reduction, due to the larger grain size of medium-sized grains and the shift of their orientation towards {211} .

  11. Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model

    International Nuclear Information System (INIS)

    Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.

    2007-01-01

    Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem

  12. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    Science.gov (United States)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-08-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  13. Effect of microstructural anisotropy on fracture toughness of hot rolled 13Cr ODS steel - The role of primary and secondary cracking

    Science.gov (United States)

    Das, A.; Viehrig, H. W.; Bergner, F.; Heintze, C.; Altstadt, E.; Hoffmann, J.

    2017-08-01

    ODS steels have been known to exhibit anisotropic fracture behaviour and form secondary cracks. In this work, the factors responsible for the anisotropic fracture behaviour have been investigated using scanning electron microscopy and electron backscatter microscopy. Fracture toughness of hot rolled 13Cr ODS steel was determined using unloading compliance method for L-T and T-L orientations at various temperatures. L-T orientation had higher fracture toughness than T-L orientation and also contained more pronounced secondary cracking. Secondary cracks appeared at lower loads than primary cracks in both orientations. Primary crack propagation was found to be preferentially through fine grains in a bimodal microstructure. Grains were aligned and elongated the most towards rolling direction followed by T and S directions resulting in fracture anisotropy. Crystallographic texture and preferential alignment of Ti enriched particles parallel to rolling direction also contributed towards fracture anisotropy.

  14. Research on the Microstructures and Mechanical Properties of Ti Micro-Alloyed Cold Rolled Hot-Dip Galvanizing DP980 Steel

    Science.gov (United States)

    Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui

    Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.

  15. Nanograined Ti–Nb microalloy steel achieved by Accumulative Roll Bonding (ARB) process

    International Nuclear Information System (INIS)

    Tohidi, A.A.; Ketabchi, M.; Hasannia, A.

    2013-01-01

    Over the last decade, nanocrystalline and ultra-fine grained (UFG) materials with grain size less than 1 μm have aroused considerable interest due to their superior mechanical properties compared to conventionally grained materials. In this work Ti–Nb microalloy steel was processed by the severe plastic deformation (SPD) technique called Accumulative Roll Bonding (ARB) in order to produce an ultra-fine grained microstructure and improve the mechanical properties. After initial preparation to achieve good sheet bonding, 8 cycles of ARB at 550 °C were successfully performed. Observation of optical microstructure, scanning electron microscopy (SEM) micrographs, and X-Ray Diffraction (XRD) peak broadening analysis were used for the characterization of grain structure of the ARB processed sample. The mechanical attributes after rolling and cooling were examined. It was calculated that metal's yield and tensile strength increased by 334% and 215% respectively, while the ductility dropped from as-received value of 34% to 2.9%. Microhardness of the material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of the ARB process. At the 8th pass, the hardness values increased by 230%. The rolling process was stopped at 8th cycle when cracking of the edge became pronounced

  16. Evaluation of Fire Resistance for H-Section Columns Made of Rolled Steels for General Structures and for Welded Structures by Analytic Method

    International Nuclear Information System (INIS)

    Kwon, In-Kyu

    2014-01-01

    Fire resistance is an important factor in sustaining the structural stability of steel framed buildings on fire. However, evaluation of the fire resistance of steel columns has been conducted using rolled steels for general structures, SS 400. Recently, rolled steels for welded structures, such as SM 400 and SM 490, have been used frequently because they have better performance of welding than the SS 400. However, there has been doubt about how much fire resistance SM 400 and SM 490 have. To evaluate by calculation the fire resistance of an H-section column made of SS 400 its mechanical and thermal properties were derived and suggested respectively in the form of regressive equations and the analysis was done based on heat transfer and thermal stress analysis. In this study, the results of the evaluation of H-section columns made of SS 400 with loaded fire tests turned out to be conservative. As a result, a new guideline is required to get the exact fire resistance of another structural steel.

  17. Refinement of ferrite grain size during hot direct rolling of hsla steel

    International Nuclear Information System (INIS)

    Ajmal, M.

    2001-01-01

    Steel ingots containing 0.04 wt % Nb and varying contents of carbon were made in laboratory, that simulated thin slab casting. Mn and Si content were kept constant at 1.35 % and 0.25 % respectively. After each casting the mould assembly was transferred to the rolling mill and the temperature of the ingot was monitored. Each ingot was rolled to 4mm thickness in three passes. The first pass of 43% reduction for all the ingots were given at 1140 degree C. The second pass (reduction, 35 %) for all the ingots were given at 1040 degree C. However the temperature for third pass (reduction, 30 %) was varied to retain more strain in the austenite prior to transformation. It was shown that third pass at lower temperature i.e. 810 degree C in the austenite range yields a ferrite grains size of 2-3 micrometer. A yield strength of 465 Mpa and tensile strength of 530 Mpa can also be achieved in these plates. (author)

  18. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  19. Optimal control of conditions of deformation during rolling the bar alloy from alloy steel

    International Nuclear Information System (INIS)

    Inatovich, Yu.V.; Shilov, V.A.; Shvarts, D.L.; Kudelin, S.P.

    2001-01-01

    A complex of programs for determining the optimal gaps between rollers during rolling of simple merchant sections of alloy steels of a wide brand assortment (12KhN3A, Kh17N2, Kh18N10T) was elaborated. Experience in calculations made according to the programs suggests advisability of their use in the automated design systems for roller calibration and for adjustment of section mills [ru

  20. Microscopic analysis and simulation of check-mark stain on the galvanized steel strip

    Science.gov (United States)

    So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon

    2010-11-01

    When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.

  1. Estimation of residual stresses in reactor pressure vessel steel specimens clad by stainless steel strip electrodes

    International Nuclear Information System (INIS)

    Schimmoeller, H.A.; Ruge, J.L.

    1978-01-01

    The equations to determine a two-dimensional state of residual stress in flat laminated plates are well known from an earlier work by one of the authors. The derivation of these equations leads to a linear, inhomogeneous system of Volterra's integral equations of the second kind. To ascertain the unknown residual stresses from these equations it is necessary to cut down the thickness of the test plate layer by layer. This results in two-dimensional deformation reactions in the rest of the test plate, which can be measured, e.g. by a strain gauge rosette applied to the opposite side of the plate. The above-mentioned stress analysis has been transferred to 86mm thick reactor pressure vessel steel specimens (Type 22NiMoCr 37, DIN-No. 1.6751, similar to ASTM A508, Class 2) double-run clad by austenitic stainless steel strip electrodes (first layer 24/13 Cr-Ni steel, second layer 21/10 Cr-Ni steel). The overall dimensions of the clad specimens investigated amounted to 200 x 200 x (86+4.5+4.5)mm. At the surface of the austenitic cladding there is a two-dimensional tensile normal stress state of about 200N/mm 2 parallel, and about 300N/mm 2 transverse, to the welding direction. The maximum tensile stress was 8mm below the interface (fusion line, material transition) in the parent material. The stress distributions of the specimens investigated, determined on the basis of the above-mentioned combined experimental mathematical procedure, are presented graphically for the as-welded (as-delivered) and annealed (600 0 C/12hr) conditions. (author)

  2. Comparative assessment of microstructure and texture in the Fe-30.5Mn-8.0Al-1.2C and Fe-30.5Mn-2.1Al-1.2C steels under cold rolling

    Directory of Open Access Journals (Sweden)

    Fabrício Mendes Souza

    Full Text Available Abstract Investigation of microstructure and texture has been done for cold rolled Fe-30.5Mn-8.0Al-1.2C (8Al and Fe-30.5Mn-2.1Al-1.2C (2Al (wt.% steels. They were rolled to a strain of ~0.70. Refinement of a crystallographic slip band substructure in low to medium rolling strain and nucleation of twins on the mature slip bands at a higher strain were suggested as deformation mechanisms in the 8Al steel. Mainly shear banding contributed to the formation of a Copper texture in such steel. Brass-texture development in the 2Al steel is mainly due to deformation twinning and shear banding formation. Detailed images of KAM maps showed that the stored deformation energy was mainly localized in the twinned areas and shear bands, which generated the inhomogeneous deformation microstructures in both steels at a higher strain. Goss and Brass texture intensity decreases and Cu-texture intensity increases as the Al wt.% increases in different cold rolled High-Mn (Mn ~30 wt.% steels.

  3. Microstructure and Mechanical Properties of Fe-18Mn-18Cr-0.5N Austenitic Nonmagnetic Stainless Steel in Asymmetric Hot Rolling

    Science.gov (United States)

    Song, Y. L.; Li, C. S.; Ma, B.; Han, Y. H.

    2017-05-01

    Asymmetric hot rolling (ASHR) with a mismatch speed ratio of 1.15 in a single pass was applied to Fe-18Mn-18Cr-0.5N steel and was compared with symmetric hot rolling (SHR). The results indicated that a through-thickness microstructure gradient was formed in the plate due to the shear strain (0.36) introduced by ASHR. A fine-grained layer with the average size of 3 μm was achieved at the top surface of ASHR plate, while numerous elongated grains with a few recrystallized grains were presented at the center layer. The texture was distributed randomly at the top surface of ASHR plate, and a weaker intensity of typical hot-rolled texture in austenitic steel was obtained at the center layer of ASHR plate compared to SHR plate. An excellent combination of microhardness, strength and ductility was obtained in the ASHR plate, which was attributed to gradient microstructure induced by ASHR.

  4. Ductility of reinforced concrete columns confined with stapled strips

    International Nuclear Information System (INIS)

    Tahir, M.F.; Khan, Q.U.Z.; Shabbir, F.; Sharif, M.B.; Ijaz, N.

    2015-01-01

    Response of three 150x150x450mm short reinforced concrete (RC) columns confined with different types of confining steel was investigated. Standard stirrups, strips and stapled strips, each having same cross-sectional area, were employed as confining steel around four comer column bars. Experimental work was aimed at probing into the affect of stapled strip confinement on post elastic behavior and ductility level under cyclic axial load. Ductility ratios, strength enhancement factor and core concrete strengths were compared to study the affect of confinement. Results indicate that strength enhancement in RC columns due to strip and stapled strip confinement was not remarkable as compared to stirrup confined column. It was found that as compared to stirrup confined column, stapled strip confinement enhanced the ductility of RC column by 183% and observed axial capacity of stapled strip confined columns was 41 % higher than the strip confined columns. (author)

  5. Simultaneous Co-deposition of Zn-Mg Alloy Layers on Steel Strip by PVD Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yeob [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of); Goodenough, Mark [Strategic Marketing, Tata Steel, Warwickshire (United Kingdom)

    2011-12-15

    This is the first release of an interim report on the development of coating technology of Zn-Mg alloy layers on steel strip by EML-PVD (electromagnetic levitation - physical vapor deposition) process in an air-to-air type continuous PVD pilot plant. It intends to introduce a basic principle of the EML-PVD process together with the high speed PVD pilot plant built in Posco. Due to the agitation effect provided by the high frequency induction coil, simultaneous evaporation of Zn and Mg from a droplet could produce alloy coating layers with Mg content of 6% to 12% depending on the composition of the droplet inside the coil. For its superior corrosion resistance, Zn-Mg alloy coated steel would be a very promising material for automotive, electrical appliances, and construction applications.

  6. Simultaneous Co-deposition of Zn-Mg Alloy Layers on Steel Strip by PVD Process

    International Nuclear Information System (INIS)

    Kim, Tae Yeob; Goodenough, Mark

    2011-01-01

    This is the first release of an interim report on the development of coating technology of Zn-Mg alloy layers on steel strip by EML-PVD (electromagnetic levitation - physical vapor deposition) process in an air-to-air type continuous PVD pilot plant. It intends to introduce a basic principle of the EML-PVD process together with the high speed PVD pilot plant built in Posco. Due to the agitation effect provided by the high frequency induction coil, simultaneous evaporation of Zn and Mg from a droplet could produce alloy coating layers with Mg content of 6% to 12% depending on the composition of the droplet inside the coil. For its superior corrosion resistance, Zn-Mg alloy coated steel would be a very promising material for automotive, electrical appliances, and construction applications

  7. On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083

    Energy Technology Data Exchange (ETDEWEB)

    Reza Toroghinejad, Mohammad; Ashrafizadeh, Fakhreddin [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Young Researchers Club, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of)

    2013-01-20

    In the present study, the effect of accumulative roll bonding (ARB) process at room temperature on the microstructure and mechanical properties of AA5083 strip was investigated. Microstructural observations were done by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Also, mechanical properties were performed by tensile, hardness, and microhardness tests. It was observed that accumulative roll bonding is a promising process for production of nanostructured (80 nm) AA5083 strips. Nano shear bands were formed in the microstructure after the fourth cycles. When the number of cycles increased, the tensile strength and hardness of the accumulatively roll bonded strips increased. However, by increasing the number of cycles, the elongation value decreased except for the last (sixth) cycle. It was found that when the number of cycles increased, the distribution of microhardness values became more uniform. After the tensile test, debonding can be observed especially in the interface formed in the last cycle. Observations revealed that the failure mode in the accumulatively roll bonded AA5083 strip was a shear ductile rupture with elongated shallow shear dimples.

  8. Investigation of the structure dependence of diffusivity, solubility and permeability of hydrogen in hot-rolled low-carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Forcey, K S; Ross, D K [Birmingham Univ. (UK). Dept. of Physics; Iordanova, I A [Sofia Univ. (Bulgaria). Dept. of Solid State Physics

    1989-01-01

    A time-lag method for estimating the diffusivity, permeability and solubility of hydrogen in low-carbon hot-rolled steels has been applied. Oriani's model has been used to investigate and explain the effects of microstructure on the trapping of hydrogen. The results show that the initial microstructure of steel significantly affects the behaviour of hydrogen atoms. Of the three sites, namely: Dislocations, interstitial atoms and particles, the most effective traps seem to be interfaces between coarse particles and the matrix. (orig.).

  9. Investigation of the structure dependence of diffusivity, solubility and permeability of hydrogen in hot-rolled low-carbon steels

    International Nuclear Information System (INIS)

    Forcey, K.S.; Ross, D.K.; Iordanova, I.A.

    1989-01-01

    A time-lag method for estimating the diffusivity, permeability and solubility of hydrogen in low-carbon hot-rolled steels has been applied. Oriani's model has been used to investigate and explain the effects of microstructure on the trapping of hydrogen. The results show that the initial microstructure of steel significantly affects the behaviour of hydrogen atoms. Of the three sites, namely: Dislocations, interstitial atoms and particles, the most effective traps seem to be interfaces between coarse particles and the matrix. (orig.)

  10. Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Wang, Hui [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box No. 9-35, Huafengxincun, Jiangyou City, Sichuan Province 621908 (China); National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610041 (China); Liu, Yi; Gao, Fei; An, Ling-Zi; Zhao, Shi-Qi; Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2016-05-15

    An equiaxed grained as-cast strip and a columnar grained as-cast strip was produced by using twin-roll strip casting, respectively. Both as-cast strips mainly containing 0.71 wt%Si and 0.44 wt%Al were cold rolled and annealed with or without the hot rolling prior to cold rolling. Microstructure, texture evolution along the whole processing routes and the magnetic properties were investigated in detail. It was found that the equiaxed grained strip was characterized by almost random texture while the columnar grained strip was dominated by strong λ-fiber (<001>‖ND) texture. After cold rolling and annealing, all the final sheets of both the as-cast strips showed extremely weak γ-fiber (<111>‖ND) recrystallization texture. In addition, the finally annealed sheets of the equiaxed grained strip were dominated by relatively weak λ-fiber and strong Goss ({110}<001>) recrystallization texture while those of the columnar grained strip were dominated by much stronger λ-fiber and much weaker Goss recrystallization texture regardless of whether the hot rolling was adopted before cold rolling, thus the former showed much lower magnetic induction than the latter. On the other hand, even though the finally annealed sheets of the equiaxed grained strip showed a little more homogeneous recrystallization microstructure with a little bigger grain size than those of the columnar grained strip in the case of no hot rolling, a much higher iron loss was displayed. By contrast, in the case of hot rolling, the former exhibited a little lower iron loss than the latter as a result of the more significant increase in grain size and λ-fiber recrystallization texture. The introduction of the hot rolling could increase the grain size, strengthen λ-fiber texture and weaken Goss texture of the finally annealed sheets of both the as-cast strips, leading to a much improvement in both the magnetic induction and iron loss. - Highlights: • Equiaxed and columnar grained as-cast strips were

  11. Analysis of Startup Process and Its Optimization for a Two-Stand Reversible Cold Rolling Mill

    Directory of Open Access Journals (Sweden)

    Guangming Liu

    2017-01-01

    Full Text Available Dynamic characteristic analysis of a two-stand reversible cold rolling mill in the startup process was carried out. The delay algorithm of the interstand thickness was proposed. A new method combined with the accelerated secant and the tangent methods was established to solve the simultaneous equations. The thickness and interstand tension transition processes with different static tension establishing processes were analyzed. Both mills were operated under constant rolling force control mode in the above process. The results show that the strip thickness in the rolling gap reduces in the static mill screwdown process. The entry stand runs inversely to establish the static interstand tension. This area becomes an abnormal thickness reduction area of the incoming strip. It results in several abnormal interstand tension increases in the subsequent startup process. The tension increase leads to an impact force on the strip that is the main reason of the strip breakage in the startup process. So the static tension establishing process was optimized, and the interstand tension fluctuation and the strip breakage accidents both reduced significantly. The results are beneficial to the startup process of the two-stand reversible cold rolling mill.

  12. Influence of prior cold rolling reduction on microstructure and mechanical properties of a reversion annealed high-Mn austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Behjati, P., E-mail: p.behjatipournaki@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Karjalainen, L.P.; Järvenpää, A.; Jaskari, M. [Centre for Advanced Steels Research, University of Oulu, FIN-90014 Oulu (Finland); Samaei Baghbadorani, H. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, A. [Foulad Institute of Technology, Fouladshahr, Isfahan 84916-63763 (Iran, Islamic Republic of); Hamada, A. [Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721 (Egypt)

    2016-01-05

    The martensitic reversion is known to be effective in refining the grain size of metastable austenitic stainless steels. However, severe cold rolling reductions are generally required for this process. In this study, the influence of the degree of prior cold rolling and subsequent annealing on the microstructure and mechanical properties of a metastable high-Mn austenitic steel was investigated. Three cold rolling reductions of 20%, 35% and 50% were applied at ambient temperature before the annealing at 700 °C for the durations of 10, 100 and 1000 s. Microstructures were examined by optical, scanning and transmission electron microscopes. Mechanical properties were measured by hardness and tensile tests. The microstructure changes were followed by magnetic measurements and X-ray diffraction. It was shown that a relatively small reduction of 35% and 100 s annealing could provide efficient grain refinement (the average size of 0.5 µm) and accordingly an outstanding combination of strength-ductility properties with the yield strength 890 MPa, tensile strength 1340 MPa and elongation 41% was achieved. The occurrence of martensite reversion and recrystallization processes with different contributions in dependence on degree of prior deformation before annealing was discussed.

  13. Effect of Strength Coefficient of Bainite on Micromechanical Deformation and Failure Behaviors of Hot-Rolled 590FB Steel during Uniaxial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of); Kim, Sung Il [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2016-11-15

    The effect of the strength coefficient (K{sub B}) of bainite on micromechanical deformation and failure behaviors of a hot-rolled 590MPa steel (590FB) during uniaxial tension was simulated using the elasto-plastic finite element method (FEM). The spatial distribution of the constituent phases was obtained using a phase identification technique based on optical microstructure. Empirical equations which depend on chemical composition were used to determine the stress-strain relationship of the constituent phases of the 590FB steel. The stress-strain partitioning and failure behavior were analyzed by increasing the K{sub B} of bainite. The elasto-plastic FEM results revealed that effective strain in the ferrite-bainite boundaries, and maximum principal stress in fibrous bainite, were enhanced as the K{sub B} increased. The elasto-plastic FEM results also demonstrated that the K{sub B} significantly affects the micromechanical deformation and failure behaviors of the hot-rolled 590FB steel during uniaxial tension.

  14. Low friction slip-rolling contacts. Influences of alternative steels, high performance thin film coatings and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Christian

    2013-02-01

    Due to the growing environmental awareness worldwide, containment provisions for CO{sub 2} emissions in mobility systems and increasing performance requirements the demands on mechanical systems and their materials continuously rise. These high demands require the implementation of new technical approaches, for example of light-weight strategies in automotive powertrains, and directly raise questions about the suitability of the most promising technical solution. Two basic parameters, the surface hardness of the tooth flanks and the core fatigue strength of the tooth root, illustrate exemplarily increasing demands on material grades used for gear wheels in automotive powertrains. In addition to light-weight strategies, a reduction in friction and an increase of the fatigue lifetime are two other major development directions to strive the mentioned targets. It is clear that any kind of solution must show an equal application profile, preferably an improvement, compared to the state-of-the-art solutions. For tribological systems, the following paths may offer lower friction and higher load carrying capabilities: 1. Alternative base oils and additives (such as esters, polyglycols), 2. Thin film coatings (e.g. DLC) and/or 3. Novel steel metallurgies. In previous investigations on the slip-rolling resistance of thin film coatings (a-C, ta-C, Zr(C,N)) the substrates were mainly made of the bearing steels 100Cr6H and Cronidur 30. Applying contact pressures of up to P{sub 0max} = 2.9 GPa (F{sub N} = 2,000 N), the samples were tested up to 10 million load cycles in endurance tests. The aim of the present work is to broaden the research by varying the input parameters. Newly developed engine oil mixtures, high performance thin film coatings and alternative steel solutions are intensively investigated in highly stressed slip-rolling contacts at lubricant temperatures of 120 C. Specifically, in using new steel metallurgies, i.e. the high toughness and high strength steels V300

  15. IMPACT OF STRAIN RATE ON MICROALLOYED STEEL SHEET BREAKING

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2014-08-01

    Full Text Available Strain rate is a significant external factor and its influence on material behavior in forming process is a function of its internal structure. The contribution is analysis of the impact of loading rate from 1.6 x 10-4 ms-1 to 24 ms-1 to changes in the fracture of steel sheet used for bodywork components in cars. Experiments were performed on samples taken from HC420LA grade strips produced by cold rolling and hot dip galvanizing. Material strength properties were compared based on measured values, and changes to fracture surface character were observed.

  16. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  17. Hot forging of roll-cast high aluminum content magnesium alloys

    Science.gov (United States)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  18. INFLUENCE OF MICRO-SEGREGATION IN PB-S-ALLOYED FREE MACHINING STEELS ON THE SURFACE QUALITY OF THE ROLLED WIRE-ROD

    OpenAIRE

    Leuschke, U.; Rajesh Puvvada, N.; Puvvada, Rajesh

    2008-01-01

    Free machining steel billets were manufactured at the continuous casting machine. The manufactured billets did not exhibit any kind of surface defects but surface cracks and slivers appeared when the billets were rolled into wires and rods at the wire-rod mill. The defects on rolled wire-rod have been detected by a hot eddy current system. Further investigations in these defects with the help of microprobe analysis system and scanning electron microscope equipped with image analysis system re...

  19. Flow control inside a molten Zn pot for improving surface quality of zinc plated strips

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [Samsung Techwin Co., Ltd. (Korea); Koh, M.S.; Kim, S. [Pohang University of Science and Technology Graduate School, Pohang (Korea)

    2001-10-01

    The flow fields inside a molten Zn pot of continuous hot-chip galvanizing process were investigated experimentally. With varying several parameters including the strip speed V{sub s}, flow rate Q of induction heater, scrapper location and baffle configuration, instantaneous velocity fields were measured using a PIV velocity field measurement technique. Inside the strip region, counter-clockwise rotating flow is dominant. The general flow pattern inside the strip region is nearly not influenced by the trip speed V{sub 2}, flow rate Q and the scrapper location. In the exit region, the flow separated from the moving strip due to the existence of a stabilizing roll ascends to the free surface, for the cases of no scrapper and scrapper detached form the roll. On the other hand, the ascending flow to the free surface is decreased, as the flow rate Q of induction heater increases. By installing a baffle around the uprising strip, the flow moving up to the stabilizing roll decreases. In addition, B-type baffle is better than A-type baffle in reducing speed of flow around the stabilizing rolls. However, the flow ascended to the free surface is largely influenced by changing the flow rate Q, and the scrapper location, irrespective of the baffle type. (author). 14 refs., 11 figs.

  20. Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates

    Science.gov (United States)

    Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J. M.; Uranga, P.

    2018-03-01

    The use of microalloyed steels in the production of thick plates is expanding due to the possibility of achieving attractive combinations of strength and toughness. As market requirements for high strength plates are increasing and new applications require reduced weight and innovative designs, novel approaches to attaining cost-effective grades are being developed. The mechanism of precipitation strengthening has been widely used in thin strip products, since the optimization of the coiling strategy offers interesting combinations in terms of final properties and microalloying additions. Precipitation strengthening in thick plates, however, is less widespread due to the limitation of interphase precipitation during continuous cooling after hot rolling. With the main objective of exploring the limits of this strengthening mechanism, laboratory thermomechanical simulations that reproduced plate hot rolling mill conditions were performed using low carbon steels microalloyed with Nb, NbMo, and TiMo additions. After continuous cooling to room temperature, a set of heat treatments using fast heating rates were applied simulating the conditions of induction heat treatments. An important increase of both yield and tensile strengths was measured after induction treatment without any important impairment in toughness properties. A significant precipitation hardening is observed in Mo-containing grades under specific heat treatment parameters.

  1. Evaluation of microstructure and mechanical properties of 50Cr5NiMoV steel for forged backup roll

    Energy Technology Data Exchange (ETDEWEB)

    Song, X.Y.; Zhang, X.J.; Fu, L.C.; Yang, H.B.; Yang, K.; Zhu, L., E-mail: zl508@126.com

    2016-11-20

    The microstructure and mechanical properties of forged 50Cr5NiMoV steel backup roll were evaluated in this study. The microstructure characteristics from surface to center along radial direction of the backup roll were carefully observed by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the chemical composition, hardness, tensile property, impact and fracture toughness in different position of the backup roll were also examined. The results indicate that the finely precipitated carbides at different matrix during heat treatment process strongly influence mechanical properties of the backup roll. Especially, the spheroidized pearlite at the inner regions which consists of large globular or rod-like M{sub 7}C{sub 3} and a little of small globular M{sub 23}C{sub 6} possesses much better toughness and fracture resistance properties than those of the lamellar pearlite with lamellar M{sub 23}C{sub 6} and a little of globular M{sub 7}C{sub 3}.

  2. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  3. Modification of Banding in Dual-Phase Steels via Thermal Processing

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Thomas, L. S.; Bos, C.

    2014-01-01

    The potential to utilize controlled thermal processing to minimize banding in a DP780 steel with 2 wt pct Mn was evaluated on samples processed on a Gleeble® 3500 thermomechanical processing simulator. All processing histories were selected to result in final dual-phase steel microstructures...... simulating microstructures achievable during annealing of initially cold rolled sheet. Strip samples were processed to evaluate the effects of heating rate, annealing time, annealing temperature, and cooling rate. The degree of banding in the final microstructures was evaluated with standard light optical...... microscopic techniques. Results are presented to illustrate that the extent of banding depended on control of both heating and cooling rates, and a specific processing history based on a two-stage heating rate can be used to minimize visible banding in selected final heat treated products....

  4. Effects of retained austenite and hydrogen on the rolling contact fatigue behaviours of carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chunlei; Dan, Rui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Yan, Zhigang; Shan, Jun; Long, Xiaoyan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-31

    The effects of retained austenite and hydrogen on the rolling contact fatigue (RCF) behaviours of a new carbide-free bainitic steel (CFBS) were studied by means of the RCF testing, electrolytic hydrogen charging, transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the new carbide-free bainitic steels (CFBSs) exhibited very good RCF performance under the high contact stress of 1.7 GPa, and pitting and spalling were the main mode of the RCF failure. The RCF performance of the new CFBS was improved by the retained austenite content increasing, while obviously decreased by hydrogen.

  5. [Prevalence and influence factors of hypertension among the workers exposed to noise in steel making and steel rolling workshop of an iron and steel plant].

    Science.gov (United States)

    Li, Yanhong; Chen, Guoshun; Yu, Shanfa

    2015-05-01

    To investigate the prevalence and influence factors of hypertension among the workers exposed to noise in steel making and steel rolling workshop of an iron and steel plant. Using cluster sampling method, 3 150 workers exposed to noise participated in this study. According to do questionnaire survey and blood pressure measurement, 2 924 workers were tested, among which 1 313 workers were from steel making workshop and 1 611 workers were from steel rolling workshop. The relationships between different demographic characteristics, different habits, and different cumulative noise exposures of workers exposed to noise and hypertension were analyzed. For the hypertension prevalence rate, the total prevalence rate was 27.43% (802/2 924), the male was higher than the female (29.88 % (753/2 520) vs 12.13% (49/404), χ² = 55.13, P married ones were higher than the unmarried (29.84% (718/2 406) vs 16.22% (84/518), χ² = 39.76, P vs 24.61% (364/1 479), χ² = 11.93, P = 0.001), drinking ones were higher than the no drinking (31.53% (541/1 716) vs 21.61% (261/1 208), χ² = 35.05, P < 0.001). The hypertension prevalence rates among the subjects with education background in junior high school and below, high school (secondary) and university and above were separately 44.96%(125/278), 29.95%(455/1 519) and 19.70%(222/1 127) (χ² = 81.65, P < 0.001), among cumulative exposure groups 77-89, 90-94, 95-99, 100-104 and 105-113 were separately 8.43% (14/166), 14.48% (53/366), 24.28% (297/1 223), 36.65% (335/914) and 40.39%(103/255) (χ² = 127.58, P < 0.001). Multivariate logistic regression analysis showed that workers who exposed to cumulative noise in 95-99, 100-104 and 105-113 dB(A) ·year had the higher risk of hypertension, the OR (95%CI) were 1.84 (95% CI: 1.35-2.51), 1.74 (95% CI: 1.24-2.45) and 1.68 (95% CI: 1.09-2.58). Drinking (OR = 1.60, 95% CI: 1.32-1.95) and BMI ≥ 24.0 kg/m² (OR = 1.26, 95% CI: 1.22-1.30) were the risk factors for hypertension as well. Cumulative

  6. Investigation of Hot Rolling Influence on the Explosive-Welded Clad Plate

    Directory of Open Access Journals (Sweden)

    Guanghui ZHAO

    2016-11-01

    Full Text Available The microstructure, the shear strength and tensile strength of stainless steel explosive-welded clad plate at different rolling reduction were studied. The mechanical properties of the explosive-welded and explosive-rolled clad plates were experimentally measured. Simultaneously, the microstructures of the clad plate were investigated by the Ultra deep microscope and the tensile fracture surface were observed by the scan electron microscope (SEM. It was observed that the tensile strength has been increased considerably, whereas the elongation percentage has been reduced with the increase of hot rolling reduction. In the tensile shear test, the bond strength is higher than the strength of the ferritic stainless steel layer and meets the relevant known standard criterion. Microstructural evaluations showed that the grain of the stainless steel and steel refined with the increase of thickness reduction. Examination of the tensile fracture surfaces reveal that, after hot rolling, the fracture in the low alloy steel and ferritic stainless steel clad plates is of the ductile type.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12409

  7. Computer-aided roll pass design in rolling of airfoil shapes

    Science.gov (United States)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  8. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    International Nuclear Information System (INIS)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-01-01

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET

  9. Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Being part of a larger project on using different forms of nickel titanium (NiTi) in the surface modification of stainless steel for enhancing cavitation erosion resistance, the present study employs NiTi strips as the cladding material. Our previous study shows that laser surfacing using NiTi powder can significantly increase the cavitation erosion resistance of AISI 316 L stainless steel [K.Y. Chiu, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 392 (2005) 348-358]. However, from an engineering point of view, NiTi strips are more attractive than powder because NiTi powder is very expensive due to high production cost. In the present study, NiTi strips were preplaced on AISI 316 L samples and remelted using a high-power CW Nd:YAG laser to form a clad layer. To lower the dilution due to the substrate material, samples doubly clad with NiTi were prepared. The volume dilution ratio in the singly clad sample was high, being in the range of 13-30% depending on the processing parameters, while that of the doubly clad sample was reduced to below 10%. Analysis by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD) reveals that the clad layer is composed of a NiTi B2 based matrix together with fine precipitates of a tetragonal structure. Vickers indentation shows a tough cladding/substrate interface. The microhardness of the clad layer is increased from 200 HV of the substrate to about 750 HV due to the dissolution of elements like Fe, Cr and N in the matrix. Nanoindentation tests record a recovery ratio near to that of bulk NiTi, a result attributable to a relatively low dilution. The cavitation erosion resistance of the doubly clad samples is higher than that of 316-NiTi-powder (samples laser-surfaced with NiTi powder) and approaches that of NiTi plate. The high erosion resistance is attributed to a high hardness, high indentation recovery ratio and the absence of cracks or pores

  10. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  11. Evaluation of the mechanical properties after thermal treatment of a structural hot rolled multiphase steel

    Directory of Open Access Journals (Sweden)

    Asensio-Lozano, J.

    2007-12-01

    Full Text Available The present paper corresponds to the experimental study conducted on a hot rolled (HR multiphase (MP steel, in which hardness, tensile and toughness properties were measured after the application of a series of subcritical and intercritical heat treatments (HT to the hot rolled stock. The aforementioned values were compared to the corresponding ones in the as-rolled state and after normalizing. The microstructure in the longitudinal plane of the strip was analyzed by light optical microscopy in the as-rolled state and in the HT samples. Longitudinal (L and transverse (T tensile and toughness specimens were cut to characterize every condition studied. Toughness properties were evaluated by means of Charpy V-notch tests conducted at 20 °C, 0 °C, –20 °C, –40 °C, –60 °C and –80 °C . It was observed that the yield stress increased with the increase in the heat treatment temperature in the subcritical range, while the tensile strength decreased slightly over the same range of temperatures. Uniform and total elongation only showed a slight improvement when the treatment was conducted at 620 °C and 700 °C, while the best toughness response corresponded to the sample treated at 500 °C for operating temperatures comprised between –40 °C and room temperature (RT.

    El presente estudio corresponde al trabajo experimental desarrollado en un acero multifase laminado en caliente, en el que se evaluaron las propiedades de dureza, tracción y tenacidad a impacto, tras realizar tratamientos térmicos subcríticos e intercríticos al material laminado en caliente. Los valores precedentes se comparan con el material de partida laminado en caliente y tras tratamiento de normalizado. Se analiza la microestructura en microscopía óptica de reflexión, en el plano longitudinal tanto en el estado laminado como en las muestras tratadas térmicamente. Se estudiaron los comportamientos longitudinales y transversales en tracción y frente a impacto

  12. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels

    Science.gov (United States)

    Tomita, Yoshiyuki

    1990-09-01

    Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.

  13. A Study on the Low Temperature Brittleness by Cyclic Cooling-Heating of Low Carbon Hot Rolled Steel Plate

    International Nuclear Information System (INIS)

    Lee, Hyo Bok

    1979-01-01

    The ductile-brittle transition phenomenon of low carbon steel has been investigated using the standard Charpy V-notch specimen. Dry ice and acetone were used as refrigerants. Notched specimens were cut from the hot rolled plate produced at POSCO for the Olsen impact test. The effect of cyclic cooling and heating of 0.14% carbon steel on the embrittlement was extensively examined. The ductile-brittle transition temperature was found to be approximately-30 .deg. C. The transition temperature was gradually increased as the number of cooling-heating cycles increased. On a typical V-notch fracture surface it was found that the ductile fracture surface showed a thick and fibrous structure, while the brittle fracture surface a small and light grain with irregular disposition. As expected, the transition temperature was also increased as the carbon content of steel increased. Compared with the case of 0.14% carbon steel, the transition temperature of 0.17% carbon steel was found to be increased about 12 .deg. C

  14. Proposal for the award of a contract for the supply of austenitic steel strips for collars of the LHC superconducting dipole magnets

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply of 410 mm-wide austenitic steel strips for the collars of the LHC superconducting dipole magnets. Following a market survey carried out among 39 firms in twelve Member States and two firms in Japan, a call for tenders (IT-2618/LHC/LHC) was sent on 3 June 1999 to five firms in four Member States and two firms in Japan. The Council agreed to the Management?s proposal to invite Japanese industry to participate, where appropriate, in calls for tenders for supplies for the LHC Project (CERN/CC/2110). By the closing date, CERN had received six tenders. The Finance Committee is invited to approve the negotiation of a contract with the firm NIPPON STEEL CORPORATION (JP) for the supply of 11 000 tonnes of 410 mm-wide austenitic steel strips for the collars of the LHC superconducting dipole magnets for a total amount of 4 298 943 000 Japanese yen, subject to revision for contractual deliveries after 31 December 2000, with an option for the supply of up to 10...

  15. Pavement Stripping in Saudi Arabia: Prediction and Prevention

    Directory of Open Access Journals (Sweden)

    H.I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available Pavement weathering or stripping is a major distress in highway networks in arid regions. Using the Saudi Arabian road network as a case study area, seventeen road test sections were selected, out of which eight were stripped and nine were non-stripped. Aggregates from quarries used to build these sections were also collected and subjected to detailed physical and chemical tests to evaluate the ability of these tests to distinguish between stripped and non-stripped sections. The modified Lottman test was used to distinguish between compacted mixes. In addition, the Swedish Rolling Bottle test, was also found to be effective in being able to distinguish between different asphalt-aggregates for stripping potential. Eleven anti-stripping liquid additives, lime and cement, in addition to two polymers, were evaluated for their ability to reduce/eliminate stripping potential of stripping-prone aggregates. It was found that EE-2 Polymer, Portland cement, and their combination were effective with all aggregate sources.

  16. ROLLING PROCESS WITH OHSAS AND TEXTURE FORMATION– A REVIEW

    Directory of Open Access Journals (Sweden)

    P. CHANDRAMOHAN

    2009-03-01

    Full Text Available Rolling is a mechanical treatment, which plays an important part in the processing of ferrous and nonferrous alloys. Texturing is an important phenomenon that occurs after rolling process. Preferred orientation increases the strength of the material enormously. Hence the research is focused on the rolling studies and the texture formation, which occurs after rolling process. This review mainly focuses on rolling process carried out in different alloys. It also highlights the analysis made on various rolling parameters for improving the mechanical properties. Texture studies carried on various ferrous and non-ferrous alloys; particularly in nitrogen alloyed duplex stainless steel is discussed. Finally the need for implementation of occupational health and safety during a thermomechanical treatment is also discussed. The state of art in this field is encouraging and showing positive signs of commercializing rolled nitrogen alloyed duplex stainless steel after proper texture control.

  17. Experimental analysis of two-layered dissimilar metals by roll bonding

    Science.gov (United States)

    Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng

    2018-02-01

    Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.

  18. Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J.H.; Kim, M.S. [Department of Printed Electronics Engineering, Sunchon National University, 315 Maegok, Sunchon, Jeonnam 540-950 (Korea, Republic of); Kim, S.I.; Seo, S.J. [POSCO Technical Research Laboratories, Gwangyang 545-090 (Korea, Republic of); Choi, S.-H., E-mail: shihoon@sunchon.ac.kr [Department of Printed Electronics Engineering, Sunchon National University, 315 Maegok, Sunchon, Jeonnam 540-950 (Korea, Republic of)

    2016-08-15

    The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching process revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.

  19. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Science.gov (United States)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  20. Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips

    International Nuclear Information System (INIS)

    Ricci, M; Ficola, A; Fravolini, M L; Battaglini, L; Palazzi, A; Burrascano, P; Valigi, P; Appolloni, L; Cervo, S; Rocchi, C

    2013-01-01

    An on-line inspection system for stainless steel strips has been developed on an annealing and pickling line at the Acciai Speciali Terni S.p.A. steel mill. Besides a machine vision apparatus, the system contextually exploits a magnetic imaging system designed and realized for the specific application. The main goal of the research is represented by the fusion of the information provided by the two apparatuses that can improve the detection and classification tasks by enlarging the set of detectable defects. In this paper, the development, the calibration and the characteristics of the magnetic imaging apparatus are detailed and experimental results obtained both in laboratory and in situ are reported. A comparative analysis of the performances of the two devices is also reported based on preliminary results and some conclusions and perspectives are drawn. (paper)

  1. Effects of recrystallization annealing on mechanical properties of cold-rolled PdNi5 wires

    Directory of Open Access Journals (Sweden)

    Aleksandra Ivanović

    2016-03-01

    Full Text Available The aim of this investigation was to determine the influence of the recrystallization temperature and recrystallization time on the microstructure and mechanical properties of the PdNi5 alloy subjected to cold deformation in the process of rolling at a constant deformation degree. The samples of PdNi5 alloy were recrystallization annealed within the temperature range of 200-1000ºC and annealing time range of 20-45 min after cold rolling with deformation degree of 97%. The tensile test was carried out using universal material testing machine. The hardness was also measured on the combined device for measuring Vickers and Brinell hardness. Metallographic observations were performed on an optical microscope. The analysis of the results of investigations regarding the microstructural changes and corresponding mechanical properties of cold-rolled PdNi5 strips shows that annealing temperature of 500ºC was sufficient to activate the energy for various recrystallization processes causing a change in the mechanical properties of cold-rolled PdNi5 strips. The annealing time, at constant annealing temperature, almost did not affect a recrystallization temperature and the mechanical properties of the cold-rolled PdNi5 strips.

  2. Effect of intercritical deformation on microstructure and mechanical properties of a low-silicon aluminum-added hot-rolled directly quenched and partitioned steel

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiao-Dong, E-mail: tan.x@mpie.de [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Xu, Yun-Bo, E-mail: yunbo_xu@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Ponge, Dirk [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Yang, Xiao-Long; Hu, Zhi-Ping; Peng, Fei [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Ju, Xiao-Wei [CERI LONG PRODUCT CO., LTD., Beijing 100176 (China); Wu, Di [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Raabe, Dierk [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2016-02-22

    Here, we applied hot-rolling in conjunction with direct quenching and partitioning (HDQ&P) processes with different rolling schedules to a low-C low-Si Al-added steel. Ferrite was introduced into the steel by intercritical rolling and air cooling after hot-rolling. The effect of intercritcal deformation on the microstructure evolution and mechanical properties was investigated. The promotion of austenite stabilization and the optimization of the TRIP effect due to a moderate degree of intercritical deformation were systematically explored. The results show that the addition of 1.46 wt% of Al can effectively promote ferrite formation. An intercritical deformation above 800 °C can result in a pronounced bimodal grain size distribution of ferrite and some elongated ferrite grains containing sub-grains. The residual strain states of both austenite and ferrite and the occurrence of bainite transformation jointly increase the retained austenite fraction due to its mechanical stabilization and the enhanced carbon partitioning into austenite from its surrounding phases. An intercritical deformation below 800 °C can profoundly increase the ferrite fraction and promote the recrystallization of deformed ferrite. The formation of this large fraction of ferrite enhances the carbon enrichment in the untransformed austenite and retards the bainite transformation during the partitioning process and finally enhances martensite transformation and decreases the retained austenite fraction. The efficient TRIP effect of retained austenite and the possible strain partitioning of bainite jointly improve the work hardening and formability of the steel and lead to the excellent mechanical properties with relatively high tensile strength (905 MPa), low yield ratio (0.60) and high total elongation (25.2%).

  3. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  4. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  5. Influence of structure and properties of tubular billets of the 12 Kh 18N10T steel on deformability of tubes at cold-rolling mills

    International Nuclear Information System (INIS)

    Vil'yams, O.S.; Bol'shova, N.M.; Olejnik, O.V.; Velikotnaya, E.S.

    1979-01-01

    Metallographic analysis of the defects of the ''oblique cracks'' type on the surface of hot-rolled tubes of the 12Kh18N10T steel has been carried out. Recommended is the complex of mechanical properties and the structure factors (grain size) of conversion hot-rolled tubes, providing the combination of ductility and high rapture strength during rolling at pilger mills. At a grain size not coarser than number 5, a billet must have σsub(T) 5 >=40 %. Hot-rolled coarse-grained billet is not recommended for warm rolng because of high strain hardening

  6. Impact of as-cast structure on structure and properties of twin-roll cast AA8006 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Slamova, M.; Ocenasek, V. [Vyzkumny Ustav Kovu, Panenske Brezany (Czechoslovakia); Juricek, Z.

    2000-07-01

    Sheet production by twin-roll casting (TRC) process is a well established practice in the aluminium industry because it offers several advantages in comparison with DC casting and hot rolling, esp. lower production and investment costs. Thin strips exhibiting a combination of good strength and high ductility are required for various applications and for this reason alloys with higher Fe and Mn content such as AA 8006 displace AA 1xxx or AA 8011 alloys. However, TRC of AA 8006 strips involves several problems, e.g. casting conditions and subsequent treatment procedures need fine tuning. The results of an investigation of the effect of casting conditions on structure and properties of AA 8006 strips are presented. The influence of casting speed, grain refiner addition, molten metal level in the tundish, tip setback and roll separating force was investigated. The impact of imperfect as-cast structure on structure and properties of thin strips in H22 and O tempers was evaluated and compared with strips from good as-cast material. (orig.)

  7. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    OpenAIRE

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different sur...

  8. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    Khorosh, V.A.; Bulat, S.I.; Mukhina, M.A.; Sorokina, N.A.; Yushchenko, K.A.; Tsentral'nyj Nauchno-Issledovatel'skij Inst. Chernoj Metallurgii, Moscow; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1976-01-01

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  9. Effect of rolling on the residual stresses and magnetic properties of a 0.5% Si electrical steel

    International Nuclear Information System (INIS)

    Campos, M.F. de; Sablik, M.J.; Landgraf, F.J.G.; Hirsch, T.K.; Machado, R.; Magnabosco, R.; Gutierrez, C.J.; Bandyopadhyay, A.

    2008-01-01

    Cold-rolled (0-19% of reduction) 0.5% Si electrical steel sheets were studied in detail, including macro and micro residual stress measurements, crystallographic texture, dc-hysteresis curves and iron losses. Even for the smallest deformation, losses increase significantly, with large increase of the hysteresis losses, whereas the anomalous losses reduce slightly. The residual microstresses are ∼150-350 MPa, whereas residual macrostresses are compressive, ∼50 MPa. The large increase of the hysteresis losses is attributed to the residual microstresses. The dislocation density estimated by X-ray diffraction is in reasonable agreement with that predicted from the Sablik et al. model for effect of plastic deformation on hysteresis. The intensity of the texture fibers {1 1 1} and //RD (RD=rolling direction) increases with the reduction

  10. Semi-solid twin-roll casting process of magnesium alloy sheets

    International Nuclear Information System (INIS)

    Watari, H.; Davey, K.; Rasgado, M.T. Alonso; Haga, T.; Koga, N.

    2004-01-01

    An experimental approach has been performed to ascertain the effectiveness of semi-solid strip casting using a horizontal twin roll caster. The demand for light-weight products with high strength has grown recently due to the rapid development of automobile and aircraft technology. One key to such development has been utilization of magnesium alloys, which can potentially reduce the total product weight. However, the problems of utilizing magnesium alloys are still mainly related to high manufacturing cost. One of the solutions to this problem is to develop magnesium casting-rolling technology in order to produce magnesium sheet products at competitive cost for commercial applications. In this experiment, magnesium alloy AZ31B was used to ascertain the effectiveness of semi-solid roll strip casting for producing magnesium alloy sheets. The temperature of the molten magnesium, and the roll speeds of the upper and lower rolls, (which could be changed independently), were varied to find an appropriate manufacturing condition. Rolling and heat treatment conditions were changed to examine which condition would be appropriate for producing wrought magnesium alloys with good formability. Microscopic observation of the crystals of the manufactured wrought magnesium alloys was performed. It has been found that a limiting drawing ratio of 2.7 was possible in a warm deep drawing test of the cast magnesium alloy sheets after being hot rolled

  11. Influence of some additives to the kinetics of Zn-crystal growth onto continuous hot dip galvanized steel

    International Nuclear Information System (INIS)

    Arsovski, Angel; Sekuloski, Predrag; Georgievski, Mile; Mickovski, Jovan

    2003-01-01

    In this work we made attempt on determination of the gefree, of influence, of the different types of additives on zinc spangle growth during forming of zinc coating, at the process of continues hot deep galvanizing of steel strip. All investigations were made at cold rolling mill plant 'Ladna Valavnica'-Skopje - HDG line, Additives were implied manually using hand pump directly on full hard strip, just before annealing furnace. Three types of additives were used in unchanged state as well as their mixtures. Analysis of the results included macro photograph of the surface, microphotograph of the zinc coating as well as different attempts of mathematical models. During investigation all technological parameters (cleanness of the strip from the emulsion marks, temperatures of the different zones of the furnace, temperature of the molten zinc and chemical composition of the zinc pot) remained at their constant values. (Original)

  12. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    Science.gov (United States)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  13. Scientific and Technological Principles of Development of New Cold-Resistant Arc-Steels (Steels for Arctic Applications)

    Science.gov (United States)

    Sych, O. V.; Khlusova, E. I.; Yashin, E. A.

    2017-12-01

    The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.

  14. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    Guan, Mingfei; Yu, Hao

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  15. Corrosion Inhibition of Cold-rolled Low Carbon Steel with Pulse Fiber Laser Ablation in Water

    Science.gov (United States)

    Chan, Sze Ney; Wong, Wai Yin; Walvekar, Rashmi; Kadhum, Abdul Amir H.; Khalid, Mohammad; Lim, Kean Long

    2018-04-01

    This study aims at the use of a fiber laser for modifying the surface properties of cold-rolled low carbon steel via a pulse laser ablation technique in water. The effect on the corrosion behavior of the fiber laser-treated metal surface was investigated in NaCl and HCl environments. Electrochemical tests showed significant improvement in the corrosion resistance of the laser-treated sample in NaCl, with an increase in open-circuit potential (OCP) from - 0.65 to - 0.60 V and an inhibition efficiency of 89.22% as obtained from the impedance study. Such improvement was less significant in an acidic environment. Lower corrosion rates of 20.9 mpy and 5.819 × 103 mpy were obtained for the laser-treated samples in neutral and acidic electrolytes, respectively, than the corrosion rates obtained for the as-received samples (33.2 mpy and 11.98 × 103 mpy). Morphological analysis indicated a passive film built by spherical grains of regular size on the metal surface after laser treatment. The corrosion inhibition effects in NaCl were evident by the nonexistence of the common corrosion products of lepidocrocite and crystalline structures that were seen on as-received samples; only polyhedral crystals with micrograins grown on them were seen covering the laser-treated surface. Therefore, the laser treatment using a fiber laser source improved the corrosion resistance of cold-rolled low carbon steel.

  16. Mathematics simulation and experiments of continuous casting with strip feeding in mold

    Directory of Open Access Journals (Sweden)

    M. G. Shen

    2017-01-01

    Full Text Available Steel strip feeding technology can reduce the degree of superheat of the molten steel, change the solidification order of the molten steel; raise the equiaxed crystal rate of the slab and improve the continuous casting quality. The paper establishes the mathematical model of heat transfer and temperature field of casting billet of steel strip feeding in continuous casting mold. Results show that if Plate Billet is 1 000 mm × 220 mm and the steel strip is 100 mm × 3 mm, feeding position of parallel is 250 mm from the narrow side. When the feeding speed is 3,6 m/min, the superheat degree can be reduced by 5 °C, and the solidification length can be reduced by 2,9 m. When the feeding speed is 6 m/min, the superheat degree can be reduced by about 9 °C, and the solidification length can be reduced by 3,7 m. The results of the test in a steel plant are in good agreement with the experimental results.

  17. Mechanical Properties of a Bainitic Steel Producible by Hot Rolling

    Directory of Open Access Journals (Sweden)

    Rana R.

    2017-12-01

    Full Text Available A carbide-free bainitic microstructure is suitable for achieving a combination of ultra high strength and high ductility. In this work, a steel containing nominally 0.34C-2Mn-1.5Si-1Cr (wt.% was produced via industrial hot rolling and laboratory heat treatments. The austenitization (900°C, 30 min. and austempering (300-400°C, 3 h treatments were done in salt bath furnaces. The austempering treatments were designed to approximately simulate the coiling step, following hot rolling and run-out-table cooling, when the bainitic transformation would take place and certain amount of austenite would be stabilized due to suppression of carbide precipitation. The microstructures and various mechanical properties (tensile properties, bendability, flangeability, and room and subzero temperature impact toughness relevant for applications were characterized. It was found that the mechanical properties were highly dependent on the stability of the retained austenite, presence of martensite in the microstructure and the size of the microstructural constituents. The highest amount of retained austenite (~ 27 wt.% was obtained in the sample austempered at 375°C but due to lower austenite stability and coarser overall microstructure, the sample exhibited lower tensile ductility, bendability, flangeability and impact toughness. The sample austempered at 400°C also showed poor properties due to the presence of initial martensite and coarse microstructure. The best combination of mechanical properties was achieved for the samples austempered at 325-350°C with a lower amount of retained austenite but with the highest mechanical stability.

  18. Finite element method analysis of surface roughness transfer in micro flexible rolling

    OpenAIRE

    Qu Feijun; Xie Haibo; Jiang Zhengyi

    2016-01-01

    Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to...

  19. Experimental study and calculation of boiling heat transfer on steel plates during runout table operation

    International Nuclear Information System (INIS)

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.

    2002-01-01

    Within a hot strip steel mill, red hot steel is hot rolled into a long continuous slab that is led onto what is called the runout table. Temperatures of the steel at the beginning of this table are around 900 o C. Above and below the runout table are banks of water jets, sprays or water curtains that rapidly cool the steel slab. The heat transfer process itself may be considered one of the most complicated in the industrial world. The cooling process that occurs on the runout table is crucial and governs the final mechanical properties and flatness of a steel strip. However, very limited data of industrial conditions has been available and that which is available is poorly understood. To study heat transfer during runout table cooling, an industrial scale pilot runout table facility was constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement cooling by one circular water jet from industrial headers. The effect of cooling water temperature and initial steel plate temperature as well as varying water jet diameters on heat transfer was systematically investigated. A two-dimensional finite element scheme based inverse heat conduction model was developed to calculate surface heat transfer coefficients along the impinging surface. Heat flux curves at the stagnation area were obtained for selected tests. A quantitative relationship between adjustable processing parameters and heat transfer coefficients along the impinging surface during runout table operation is discussed. The results of the study were used to upgrade an extensive process model developed at UBC. The model ties in the cooling rate and hence two dimensional temperature gradients to the resulting microstructure and final mechanical properties of the steel. This process model is widely used by major steel industries in Canada and the United States. (author)

  20. Effect of an Intermediate Heat-treatment on a Change of the Corrosion Resistance and Hardness of a HANA-4 Outer Strip

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Jung, Yang Il; Park, Sang Yoon; Choi, Byoung Kwon; Park, Jeong Yong; Jeong, Yong Hwan; Eom, Kyong Bo; Park, Nam Gyu; Lim, Yoon Soo

    2008-01-01

    KAERI (Korea Atomic Energy Research Institute) in collaboration with KNF (Korea Nuclear Fuel) undertook some researches on the applicability of HANA-4 and HANA-6 alloys for the spacer grid for a PWR (Pressurized Water Reactor) nuclear fuel. As a part of the research, KAERI studied the effect of the final heat-treatment on the mechanical and corrosion properties of a HANA-4 inner strip. The strip was manufactured with a sheet which had been intermediately heat-treated at about 580 .deg. C for 2.5-4 hours after each cold rolling before being processed into the final strip product. It was mentioned that the process with the intermediate heat treatment needed reviewing to establish an improved manufacturing process for the cold rolling. So, this work tried to check the effect of an intermediate heat-treatment on the properties of a HANA-4 strip using a specimen that was taken from a second hot rolled material before a cold-rolling. The manufacturing processes, with three different kinds of annealings, were introduced to investigate the applicable intermediate heat-treatment process. After all the cold-rolling processes, the Vickers hardness was measured for the final annealed specimens and 60 days of corrosion tests were carried out to check on the effect of the intermediate heat-treatment. Finally, an appropriate intermediate heat-treatment was proposed to improve the manufacturability of the HANA-4 strip

  1. Apparatus for measuring profile thickness of strip material

    International Nuclear Information System (INIS)

    Hold, A.C.

    1982-01-01

    Apparatus for measuring the thickness profile of steel strip comprises a radiation source reciprocally movable in a stepwise fashion (by a belt) across the strip width on one side thereof and a single elongated detector on the other side of the strip aligned with the scanning source. This detector may be a fluorescent scintillator detector or an ionisation chamber. Means are provided for sensing the degree of excitation in the detector in synchronism with the scanning source whereby to provide an output representative of the thickness profile of the strip. (author)

  2. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of RAF ODS steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Kurzydlowski, K.J.; Baluc, N.

    2009-01-01

    Argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti oxide dispersion strengthened (ODS) ferritic steel powder was mechanically alloyed with 0.3Y2O3 (wt.%) nano-particles in attritor ball mill and consolidated by hot isostatic pressing (HIP) at 1150 deg. C under pressure of 200 MPa for 3 hrs. To improve mechanical properties of as HIPped ODS ingots the material was undergone further thermo-mechanical treatment (TMT), namely: hot rolling (HR) at 850 deg. C or high speed hot extrusion (HSHE) at 850 deg. C. After TMT both materials were annealed at 1050 deg. C for 1 h in vacuum. Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment exhibited elongated in a longitudinal direction grains with an average size of 75 μm. However, an equiaxed, smaller than 500 nm grains were also found in the microstructure of both materials. Different size and morphology of oxides particles were also observed. Bigger, about 150 nm Ti-Al-O particles were usually located at grain boundaries whereas Y-Ti-O nanoclusters of about 5 nm were uniformly distributed in ODS steel matrix. The Charpy impact tests revealed significantly better about 90% (5.8 J) upper shelf energy (USE) of material after HSHE but ductile to brittle transition temperature (DBTT) of both alloys was unsatisfactory. As-HR ODS steel has shown DBTT of about 55 deg. C whereas HSHE ODS steel has about 75 deg. C. This relatively high values of transition temperature were probably caused by oxides particles present at grain boundaries of the ODS alloys which decreased fracture properties of the ODS steels. High temperature tensile properties of both ODS alloys are found to be satisfactory in full range of the testing temperature from 23 up to 750 deg. C. However, about 15% better UTS and YS0.2 (1350 MPa and 1285 MPa, respectively) as well as ductility were measured in the case of the as-HSHE ODS steel. These results indicates that HSHE process of the ODS steel can be considered as more

  3. Effect of Cooling Rate on the Microstructure and Mechanical Properties of C-Mn-Al-Si-Nb Hot-Rolled TRIP Steels

    Science.gov (United States)

    Fu, B.; Y Lu, M.; Y Yang, W.; Li, L. F.; Y Zhao, Z.

    2017-12-01

    A novel thermomechanical process to manufacture hot-rolled TRIP steels has been proposed based on dynamic transformation of undercooled austenite (DTUA). The cooling rate between DTUA and isothermal bainitic treatment in the novel process is important. In the present study, effect of this cooling rate on the final microstructures and mechanical properties of a C-Mn-Al-Si-Nb TRIP steel was investigated. The results showed that the volume fractions of acicular ferrite and retained austenite were increased with the increment of cooling rate. As a consequence, higher yield strength and larger total elongation were obtained for the investigated steel with higher cooling rate. In addition, a value of 30.24 GPa% for the product of tensile strength and total elongation was acquired when the cooling rate was 25 K/s. This value has met the standard of the “Third Generation” of advanced high strength sheet steels.

  4. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe–Cr–Al–REM ferritic stainless steel sheets

    International Nuclear Information System (INIS)

    Qu, H.P.; Lang, Y.P.; Yao, C.F.; Chen, H.T.; Yang, C.Q.

    2013-01-01

    This study presents research works about the effects of heat treatment on recrystallized equiaxed grain size, precipitation, room temperature (RT) toughness and ductile to brittle transition temperature (DBTT) of Fe–Cr–Al–REM ferritic stainless steel (FSS) hot-rolled sheet. Results showed that the recrystallization of hot-rolled Fe–Cr–Al–REM FSS sheet could be completed after annealing treatment at 750 °C for 15 min with the equiaxed grain diameter of approximately 50 μm. Inappropriate annealing treatment would inevitably leads to the unexpected grain coarsening. On the other hand, a great deal of needle-like or spot-like fine aluminum–lanthanum compound Al 11 La 3 precipitates were observed in the ferrite matrix after 1 h aging treatment at 750 °C. The microstructure observation results associated with the impact test definitely illustrated that the Al 11 La 3 precipitates was the reason for the brittle crack in the as-casted ingot and as-forged slab. The real DBTT of the annealed Fe–Cr–Al–REM FSS sheet with average grain size of about 50 μm was −4 °C. Meanwhile, the DBTT of the hot-rolled Fe–Cr–Al–REM stainless steel sheet was evidently increased as the recrystallized grain size increased.

  5. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Qu, H.P., E-mail: quhuapeng0926@163.com [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Lang, Y.P. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Yao, C.F. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Zhuozhou Works, Central Iron and Steel Research Institute (CISRI), 2 HuoJuNan Road, Zhuozhou 072750, Hebei (China); Chen, H.T.; Yang, C.Q. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China)

    2013-02-01

    This study presents research works about the effects of heat treatment on recrystallized equiaxed grain size, precipitation, room temperature (RT) toughness and ductile to brittle transition temperature (DBTT) of Fe-Cr-Al-REM ferritic stainless steel (FSS) hot-rolled sheet. Results showed that the recrystallization of hot-rolled Fe-Cr-Al-REM FSS sheet could be completed after annealing treatment at 750 Degree-Sign C for 15 min with the equiaxed grain diameter of approximately 50 {mu}m. Inappropriate annealing treatment would inevitably leads to the unexpected grain coarsening. On the other hand, a great deal of needle-like or spot-like fine aluminum-lanthanum compound Al{sub 11}La{sub 3} precipitates were observed in the ferrite matrix after 1 h aging treatment at 750 Degree-Sign C. The microstructure observation results associated with the impact test definitely illustrated that the Al{sub 11}La{sub 3} precipitates was the reason for the brittle crack in the as-casted ingot and as-forged slab. The real DBTT of the annealed Fe-Cr-Al-REM FSS sheet with average grain size of about 50 {mu}m was -4 Degree-Sign C. Meanwhile, the DBTT of the hot-rolled Fe-Cr-Al-REM stainless steel sheet was evidently increased as the recrystallized grain size increased.

  6. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    International Nuclear Information System (INIS)

    1994-01-01

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Caster for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems

  7. Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Li Xianghong; Deng Shuduan; Fu Hui

    2010-01-01

    The inhibition effect of blue tetrazolium (BT) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution at 20 o C was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) methods. The results show that BT is a very good inhibitor, and the adsorption of BT on CRS surface obeys Langmuir adsorption isotherm. Polarization curves reveal that BT acts as a mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability. The inhibition action of BT is also evidenced by SEM images.

  8. Phenomenological Model Describing the Formation of Peeling Defects on Hot-Rolled Duplex Stainless Steel 2205

    Science.gov (United States)

    Yong-jun, Zhang; Hui, Zhang; Jing-tao, Han

    2017-05-01

    The chemical composition, morphology, and microstructure of peeling defects formed on the surface of sheets from steel 2205 under hot rolling are studied. The microstructure of the surface is analyzed using scanning electron and light microscopy. The zones affected are shown to contain nonmetallic inclusions of types Al2O3 and CaO - SiO2 - Al2O3 - MgO in the form of streak precipitates and to have an unfavorable content of austenite, which causes decrease in the ductility of the area. The results obtained are used to derive a five-stage phenomenological model of formation of such defects.

  9. Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.

  10. Effect of Silicon Nitride Balls and Rollers on Rolling Bearing Life

    Science.gov (United States)

    Zaretsky, Erwin V.; Vlcek, Brian L.; Hendricks, Robert C.

    2005-01-01

    Three decades have passed since the introduction of silicon nitride rollers and balls into conventional rolling-element bearings. For a given applied load, the contact (Hertz) stress in a hybrid bearing will be higher than an all-steel rolling-element bearing. The silicon nitride rolling-element life as well as the lives of the steel races were used to determine the resultant bearing life of both hybrid and all-steel bearings. Life factors were determined and reported for hybrid bearings. Under nominal operating speeds, the resultant calculated lives of the deep-groove, angular-contact, and cylindrical roller hybrid bearings with races made of post-1960 bearing steel increased by factors of 3.7, 3.2, and 5.5, respectively, from those calculated using the Lundberg-Palmgren equations. An all-steel bearing under the same load will have a longer life than the equivalent hybrid bearing under the same conditions. Under these conditions, hybrid bearings are predicted to have a lower fatigue life than all-steel bearings by 58 percent for deep-groove bearings, 41 percent for angular-contact bearings, and 28 percent for cylindrical roller bearings.

  11. Premature failure analysis of forged cold back-up roll in a continuous tandem mill

    International Nuclear Information System (INIS)

    Rad, Hamid Reza Bakhsheshi; Monshi, Ahmad; Idris, Mohd Hasbullah; Kadir, Mohammed Rafiq Abdul; Jafari, Hassan

    2011-01-01

    Highlights: → Metal wrapping and strip welding in work/back-up rolls contact zone caused spalling. → MnS inclusion and pore initiated crack which propagated in milling led to spalling. → Retained austenite conversion to α'-martensite accelerated spalling failure. → Needle shaped carbide (Fe,Mo,Cr) 7 C 3 , may cause poor service life of back-up roll. -- Abstract: In this paper, premature failure of a forged back-up roll from a continuous tandem mill was investigated. Microstructural evolutions of the spalled specimen and surface of the roll were characterized by optical microscopy, X-ray diffraction, scanning electron microscopy and ferritscopy, while hardness value of the specimen was measured by Vickers hardness testing. The results revealed that the presence of pore and MnS inclusion with spherical and oval morphologies were the main contributing factors responsible for the poor life of the back-up roll. In addition, metal pick up and subsequently strip welding on the surface of the work roll were found as the major causes of failure in work roll which led to spalling occurrence in the back-up roll. Furthermore, relatively high percentage of retained austenite, say 9%, in outer surface of the back-up roll contributed spalling due to conversion of this meta-stable phase to martensite and creation of volume expansion on the outer surface through work hardening during mill campaign.

  12. Research on Forming Mechanisms and Controlling Measurements for Surface Light Spot Defects of Galvanizing Steel Coils for Automobile Use

    Science.gov (United States)

    Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu

    When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.

  13. Texture Analysis using The Neutron Diffraction Method on The Non Standardized Austenitic Steel Process by Machining,Annealing, and Rolling

    Directory of Open Access Journals (Sweden)

    Tri Hardi Priyanto

    2016-04-01

    Full Text Available Austenitic steel is one type of stainless steel which is widely used in the industry. Many studies on  austenitic stainless steel have been performed to determine the physicalproperties using various types of equipment and methods. In this study, the neutron diffraction method is used to characterize the materials which have been made from  minerals extracted from the mines in Indonesia. The materials consist of a granular ferro-scrap, nickel, ferro-chrome, ferro-manganese, and ferro-silicon added with a little titanium. Characterization of the materials was carried out in threeprocesses, namely: machining, annealing, and rolling. Experimental results obtained from the machining process generally produces a texture in the 〈100〉direction. From the machining to annealing process, the texture index decreases from 3.0164 to 2.434.Texture strength in the machining process (BA2N sample is  8.13 mrd and it then decreases to 6.99 in the annealing process (A2DO sample. In the annealing process the three-component texture appears, cube-on-edge type texture{110}〈001〉, cube-type texture {001}〈100〉, and brass-type {110}〈112〉. The texture is very strong leading to the direction of orientation {100}〈001〉, while the {011}〈100〉is weaker than that of the {001}, and texture withorientation {110}〈112〉is weak. In the annealing process stress release occurred, and this was shown by more randomly pole compared to stress release by the machining process. In the rolling process a brass-type texture{110}〈112〉with a spread towards the goss-type texture {110}〈001〉 appeared,  and  the  brass  component  is markedly  reinforced  compared  to  the undeformed state (before rolling. Moreover, the presence of an additional {110} component was observed at the center of the (110 pole figure. The pole density of three components increases withthe increasing degree of thickness reduction. By increasing degrees

  14. Analysis of the influence of the anisotropy induced by cold rolling on duplex and super-austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Martino Labanti

    2010-07-01

    Full Text Available This report contains the results obtained from the mechanical characterization tests carried out on two different stainless steel (duplex 6%Ni, 22%Cr and super-austenitic 31%Ni, 28%Cr used for the manufacturing of pipes which are employed in the oil production. The activity has been performed in order to evaluate the effects of anisotropy, induced by cold rolling, on the mechanical characteristics of the investigated steels, measured in the three main directions. Considering the small size of the component, the method and the specimens used for the tests were not the standard one. The procedure carried out provided the strain measurement of the specimen during testing by means of resistive strain gages, bonded on the specimens.

  15. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    International Nuclear Information System (INIS)

    Chowdhury, Anirban; Iyyappan, Ramasamy; Majumdar, Dipanwita; Singha, Achintya

    2014-01-01

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al 2 O 3 ) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry

  16. The Effect of Nb on the Continuous Cooling Transformation Curves of Ultra-Thin Strip CASTRIP© Steels

    Directory of Open Access Journals (Sweden)

    Kristin R. Carpenter

    2015-10-01

    Full Text Available The effect of Nb on the hardenability of ultra-thin cast strip (UCS steels produced via the unique regime of rapid solidification, large austenite grain size, and inclusion engineering of the CASTRIP© process was investigated. Continuous cooling transformation (CCT diagrams were constructed for 0, 0.014, 0.024, 0.04, 0.06 and 0.08 wt% Nb containing UCS steels. Phase nomenclature for the identification of lower transformation product in low carbon steels was reviewed. Even a small addition of 0.014 wt% Nb showed a potent effect on hardenability, shifting the ferrite C-curve to the right and expanding the bainitic ferrite and acicular ferrite phase fields. Higher Nb additions increased hardenability further, suppressed the formation of ferrite to even lower cooling rates, progressively lowered the transformation start and finish temperatures and promoted the transformation of bainite instead of acicular ferrite. The latter was due to Nb suppressing the formation of allotriomorphic ferrite and allowing bainite to nucleate at prior austenite grain boundaries, a lower energy site than that for the intragranular nucleation of acicular ferrite at inclusions. Strength and hardness increased with increasing Nb additions, largely due to microstructural strengthening and solid solution hardening, but not from precipitation hardening.

  17. Radiometric study of creep in ingot rolling

    International Nuclear Information System (INIS)

    Kubicek, P.; Zamyslovsky, Z.; Uherek, J.

    The radiometric study of creep during ingot rolling performed in the rolling mill of the Vitkovice Iron and Steel Works and the first results are described. Selected sites in 3 to 8 ton ingots were labelled with 2 to 3.7x10 5 Bq of 60 Co and after rolling into blocks, the transposition of the labelled sites of the ingots was investigated. The results indicate creep during rolling, local extension in certain sites under study and help to determine the inevitable bottom crop incurred in the forming. Finally, the requirements put on the radiometric apparatus for the next stages of technological research are presented. (author)

  18. The influence of the hardening coolant agent on the properties of hot rolled bars of the steel 42CrMo4

    Directory of Open Access Journals (Sweden)

    M. Stańczyk

    2014-10-01

    Full Text Available In the work the influence results of two different hardening coolant agents on the basic mechanical proprieties and microstructure of the round hot rolled bars were presented. The bars of 42CrMo4 steel were exposed to analysis, and for those bars in the hardening process, water and modern pro-ecological polymer cooling agents Aqua Quench MK were used.

  19. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  20. Compressive Strength Properties of Natural Gas Hydrate Pellet by Continuous Extrusion from a Twin-Roll System

    Directory of Open Access Journals (Sweden)

    Yun-Hoo Lee

    2013-01-01

    Full Text Available This study investigates the compressive strength of natural gas hydrate (NGH pellet strip extruded from die holes of a twin-roll press for continuous pelletizing (TPCP. The lab-scale TPCP was newly developed, where NGH powder was continuously fed and extruded into strip-type pellet between twin rolls. The system was specifically designed for future expansion towards mass production of solid form NGH. It is shown that the compressive strength of NGH pellet strip heavily depends on parameters in the extrusion process, such as feeding pressure, pressure ratio, and rotational speed. The mechanism of TPCP, along with the compressive strength and density of pellets, is discussed in terms of its feasibility for producing NGH pellets in the future.

  1. An advanced dissymmetric rolling model for online regulation

    Science.gov (United States)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  2. Microstructural Evolution During Cold Rolling and Subsequent Annealing in Low-Carbon Steel with Different Initial Microstructures

    Science.gov (United States)

    Ogawa, Toshio; Dannoshita, Hiroyuki; Maruoka, Kuniaki; Ushioda, Kohsaku

    2017-08-01

    Microstructural evolution during cold rolling and subsequent annealing of low-carbon steel with different initial microstructures was investigated from the perspective of the competitive phenomenon between recrystallization of ferrite and reverse phase transformation from ferrite to austenite. Three kinds of hot-rolled sheet specimens were prepared. Specimen P consisted of ferrite and pearlite, specimen B consisted of bainite, and specimen M consisted of martensite. The progress of recovery and recrystallization of ferrite during annealing was more rapid in specimen M than that in specimens P and B. In particular, the recrystallized ferrite grains in specimen M were fine and equiaxed. The progress of ferrite-to-austenite phase transformation during intercritical annealing was more rapid in specimen M than in specimens P and B. In all specimens, the austenite nucleation sites were mainly at high-angle grain boundaries, such as those between recrystallized ferrite grains. The austenite distribution was the most uniform in specimen M. Thus, we concluded that fine equiaxed recrystallized ferrite grains were formed in specimen M, leading to a uniform distribution of austenite.

  3. Application of MySQL in instantaneous profile gauge system

    International Nuclear Information System (INIS)

    Guo Xiaojing; Miao Jichen; Wu Zhifang

    2011-01-01

    As equipment in the hot rolling plate plant for online measurement of strip steel, the instantaneous profile gauge is used to measure instant crown of hot rolling strips and feed back the crown to the rolling mill to adjust strip profile. During the measurement, a large amount of data need to be stored reasonably for query, display, computation and other processing, while a database management software can make it happen. Based on such features of MySQL as small size, fast speed, low cost and open source codes, a database function was implemented in the instantaneous profile gauge for data storage, query and maintenance, by applying MySQL database management system and integrating with the control interface. (authors)

  4. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Kurokawa, Hiroyuki; Nakasuji, Kazuyuki; Kajimura, Haruhiko; Nagai, Takayuki; Takeda, Seiichiro.

    1997-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  5. Regularities of ferritic-pearlitic structure formation during subcooled austenite decomposition

    International Nuclear Information System (INIS)

    Shkatov, V.V.; Frantsenyuk, L.I.; Bogomolov, I.V.

    1997-01-01

    Relationships of ferrite-pearlite structure parameters to austenite grain size and cooling conditions during γ -> α transformation are studied for steel 3 sp. A mathematical description has been proposed for grain evolution in carbon and low alloy steel cooling after hot rolling. It is shown that ferrite grain size can be controlled by changing temperature range of water spraying when the temperatures of rolling completion and strip coiling are the same

  6. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    Science.gov (United States)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  7. Development of Software for the Simulation of Rolling Steel Under the Coexistence of Liquid and Solid State / Rozwój Oprogramowania Do Symulacji Walcowania Stali W Warunkach Współistnienia Fazy Ciekłej I Stałej

    Directory of Open Access Journals (Sweden)

    Jędrzejczyk D.

    2015-12-01

    Full Text Available The paper presents the results of the application simulating the rolling process of steel in terms of coexistence of liquid and solid phases. The created mathematical models can be the basis for creation of systems that simulate the final phase of the continuous casting process relying on using a roller burnishing machine for continuous casting of steel. For a complete description of the performance of the material during deformation in these conditions, the constructed mathematical model is a fully three-dimensional model and consists of three parts: thermal, mechanical, and density variation submodels. The thermal model allows the prediction of temperature changes during plastic deformation of solidifying material. The mechanical model determines the kinetics of plastic continuum flow in the solid and semi-solid states, and the resulting deformation field. The temperature of the process forces supplementing the description of the performance of the material with a density variation model that allows the prediction of changes in the density of the material during the final phase of solidification with simultaneous plastic deformation. For the purpose built model, experimental studies were performed using a physical simulator Gleeble 3800®. They allowed the determination of the necessary physical properties of the metal within the temperature of change state. In addition to presenting the developed models the work also includes the description of the author’s application that uses the above mathematical models. The application was written in the fully object-oriented language C++ and is based on the finite element method. The developed application beside the module data input, also consist of a module of three-dimensional visualization of the calculations results. Thanks to it, the analysis of the distribution of the particular rolling parameters in any cross-section of the rolled strip will be possible. The paper presents the results of the

  8. Ultrasonic examination of JBK-75 strip material

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material [1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)], feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches [0.28 mm deep (0.011 in., about 17% of the strip thickness)] were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests

  9. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  10. Finite element method analysis of surface roughness transfer in micro flexible rolling

    Directory of Open Access Journals (Sweden)

    Qu Feijun

    2016-01-01

    Full Text Available Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to decrease the surface roughness. Four types of initial workpiece surface roughness are studied in the simulation, and the influences of process parameters, such as friction coefficient, rolling speed and roll gap adjusting speed, on surface asperity flattening of workpieces with different initial surface roughness have been numerically investigated and analysed.

  11. Surface Improvement of Shafts by Turn-Assisted Deep Cold Rolling Process

    Directory of Open Access Journals (Sweden)

    Prabhu Raghavendra

    2016-01-01

    Full Text Available It is well recognized that mechanical surface enhancement methods can significantly improve the characteristics of highly-stressed metallic components. Deep cold rolling is one of such technique which is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In this paper, the effect of turn-assisted deep cold rolling on AISI 4140 steel is examined, with emphasis on the residual stress state. Based on the X-ray diffraction measurements, it is found that turn-assisted deep cold rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in AISI 4140 steel.

  12. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing

    Science.gov (United States)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-05-01

    An advanced thermomechanical process based on the formation and reversion of deformation-induced martensite was used to refine the grain size and enhance the hardness of an AISI 304L austenitic stainless steel. Both low and high reversion annealing temperatures and also the repetition of the whole thermomechanical cycle were considered. While a microstructure with average austenite grain size of a few micrometers was achieved based on cold rolling and high-temperature short-term annealing, an extreme grain refinement up to submicrometer regime was obtained by cold rolling followed by low-temperature long-term annealing. However, the required annealing time was found to be much longer, which negates its appropriateness for industrial production. While a magnificent grain refinement was achieved by one pass of the high-temperature thermomechanical process, the reduction in grain size was negligible by the repetition of the whole cycle. It was found that the hardness of the thermomechanically processed material is much higher than that of the as-received material. The results of the present work were shown to be compatible with the general trend of grain size dependence of hardness for AISI 304L stainless steel based on the Hall-Petch relationship. The results were also discussed based on the X-ray evaluation of dislocation density by modified Williamson-Hall plots.

  13. USE OF HIGH SPEED STEEL WORK ROLLS (HSS ON APERAM STECKEL MILL

    Directory of Open Access Journals (Sweden)

    Arísio de Abreu Barbosa

    2013-12-01

    Full Text Available This paper outlines the main actions taken to reinforce the decision to use HSS work rolls on the Aperam Steckel Mill. These are: work roll cooling improvements, systematically analyzing Eddy Current and Ultrasonic non destructive tests, mechanical adjustment of work roll crown and critically examining the rolling process. These actions applied together have contributed to the success of HSS rolls state of the art application, and provide the Steckel Mill with a much improved performance. Significant results have been achieved, such as: increasing of work roll change intervals, increasing of the available production time, a yield gain, a product quality improvement, less working hours needed for the roll grinding operation, etc

  14. Additional grain refinement in recrystallization controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology

    International Nuclear Information System (INIS)

    Arribas, M.; Lopez, B.; Rodriguez-Ibabe, J.M.

    2008-01-01

    This paper analyzes the recrystallization kinetics in Ti-microalloyed steels processed using 'beam blank' casting technology. The faster solidification rates associated with this technology brings a finer precipitation of TiN particles which are very effective in controlling austenite grain growth during hot working. Furthermore, these small precipitates have been shown to delay static and dynamic recrystallization. The finer the precipitates the higher the delay in recrystallization. Nevertheless, beyond particle size and distribution, the level of delay is very dependent on microstructure (above all austenite grain size) and deformation conditions (strain and temperature). This paper studies the effects of this recrystallization delay on the microstructure evolution during hot rolling. Special attention was paid to the study of the occurrence of partial recrystallization during the final stages of rolling, which could lead to the presence of mixed microstructures before transformation. The possibility of achieving an additional austenite grain size refinement prior to transformation was evaluated

  15. Influence of Al content on the corrosion resistance of micro-alloyed hot rolled steel as a function of grain size

    Science.gov (United States)

    Qaban, Abdullah; Naher, Sumsun

    2018-05-01

    High-strength low-alloy steel (HSLA) has been widely used in many applications involving automobiles, aerospace, construction, and oil and gas pipelines due to their enhanced mechanical and chemical properties. One of the most critical elements used to improve these properties is Aluminium. This work will explore the effect of Al content on the corrosion behaviour of hot rolled high-strength low-alloy steel as a function of grain size. The method of investigation employed was weight loss technique. It was obvious that the increase in Al content enhanced corrosion resistance through refinement of grain size obtained through AlN precipitation by pinning grain boundaries and hindering their growth during solidification which was found to be beneficial in reducing corrosion rate.

  16. Stability of barotropic vortex strip on a rotating sphere.

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  17. Stability of barotropic vortex strip on a rotating sphere

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  18. Micro-Plasto-Hydrodynamic Lubrication a Fundamental Mechanism in Cold Rolling

    DEFF Research Database (Denmark)

    Laugier, Maxime; Boman, Romain; Legrand, Nicolas

    2014-01-01

    This paper presents recent investigations in Micro-Plasto-Hydrodynamic (MPH) lubrication. Industrial evidences of the existence of MPH lubrication mechanism for cold rolling processes are presented. A new lubrication model developed for strip drawing processes is then applied to predict the MPH...

  19. The evolution with strain of the stored energy in different texture components of cold-rolled IF steel revealed by high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wauthier-Monnin, A. [LSPM–CNRS, Université Paris 13, 99, Av. J.B. Clément, 93430 Villetaneuse (France); ArcelorMittal Research Voie Romaine BP 30320, 57 283 Maizières-les Metz (France); Chauveau, T.; Castelnau, O. [LSPM–CNRS, Université Paris 13, 99, Av. J.B. Clément, 93430 Villetaneuse (France); Réglé, H. [ArcelorMittal Research Voie Romaine BP 30320, 57 283 Maizières-les Metz (France); Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr [LSPM–CNRS, Université Paris 13, 99, Av. J.B. Clément, 93430 Villetaneuse (France)

    2015-06-15

    During the deformation of low carbon steel by cold-rolling, dislocations are created and stored in grains depending on local crystallographic orientation, deformation, and deformation gradient. Orientation dependent dislocation densities have been estimated from the broadening of X-ray diffraction lines measured on a synchrotron beamline. Different cold-rolling levels (from 30% to 95% thickness reduction) have been considered. It is shown that the present measurements are consistent with the hypothesis of the sole consideration of screw dislocations for the analysis of the data. The presented evolutions show that the dislocation density first increases within the α fiber (=(hkl)<110>) and then within the γ fiber (=(111)). A comparison with EBSD measurements is done and confirms that the storage of dislocations during the deformation process is orientation dependent and that this dependence is correlated to the cold-rolling level. If we assume that this dislocation density acts as a driving force during recrystallization, these observations can explain the fact that the recrystallization mechanisms are generally different after moderate or large strains. - Highlights: • Dislocation densities are assessed by XRD in main texture components of a steel sheet. • Dislocation densities vary with both strain and texture components. • The analysis relies on the sole presence of screw dislocations. • The measured dislocation densities include the contribution of both SSD and GND.

  20. Dual-phase ULCB steels thermomechanically processed

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.

    2001-01-01

    The design philosophy of the processing of dual-phase (D-P) ultra low carbon steels (ULCB) by thermomechanical treatment has been briefly discussed. Modelling of the structure evolution during thermomechanical rolling of ULCB steel was based upon the established empirical equations for yield flow at different conditions of: deformation temperatures, strain rates and stresses for applied amount of deformation during hot deformation compression tests. The critical amount of deformation needed for the occurrence of dynamic or static recrystallization was determined. The dependence of grain refinement of the acicular bainitic and polygonal ferrite of the accelerated cooling and amount of stored energy of deformation in steel has been evaluated. Effect of the decreasing of the finishing temperature of thermomechanical processing on the increase of the impact toughness of dual-phase microstructure consisted of the bainitie-martensite islands in the ferrite matrix has been shown. The effect of ageing process after thermomechanical rolling of heavy plates on fracture toughness values of J 0.2 for ULCB-Ni steels has been established from cod tests measurements. New low cost technology of rolling of ULCB steels dual-phase is proposed. (author)

  1. Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Deng Shuduan, E-mail: dengshuduan@163.co [Faculty of Wood Science and Decoration Technology, Southwest Forestry University, Kunming 650224 (China); Li Xianghong; Fu Hui [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)

    2011-02-15

    Research highlights: Two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) are good inhibitors for the corrosion of steel in 1.0 M HCl solution. The inhibition efficiency follows the order: ABP > AP. The substitution Br of ABP is the additional centre of adsorption and increases the electron density of pyrazine ring, which can facilitate its adsorption on the metal surface. For either ABP or AP, the adsorption obeys Langmuir adsorption isotherm. Both ABP and AP act as mixed-type inhibitors. - Abstract: The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.

  2. Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Deng Shuduan; Li Xianghong; Fu Hui

    2011-01-01

    Research highlights: → Two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) are good inhibitors for the corrosion of steel in 1.0 M HCl solution. → The inhibition efficiency follows the order: ABP > AP. The substitution Br of ABP is the additional centre of adsorption and increases the electron density of pyrazine ring, which can facilitate its adsorption on the metal surface. → For either ABP or AP, the adsorption obeys Langmuir adsorption isotherm. → Both ABP and AP act as mixed-type inhibitors. - Abstract: The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.

  3. Evaluation of rolling contact fatigue of induction heated 13Cr-2Ni-2Mo Stainless steel bar with Si3N4-ball

    Science.gov (United States)

    Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki

    2018-03-01

    13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.

  4. Effects of Loading Frequency on Fatigue Behavior, Residual Stress, and Microstructure of Deep-Rolled Stainless Steel AISI 304 at Elevated Temperatures

    Science.gov (United States)

    Nikitin, I.; Juijerm, P.

    2018-02-01

    The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.

  5. Evaluation of interlocking bond strength between structured 1.0338 steel sheets and high pressure die cast AlMg5Si2

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2018-05-01

    Multi-material components open up new possibilities for functional design. Such components combine beneficial physical properties of different materials in a single component as for instance chemical resistance, high strength or low density. The challenge is a reliable bond between both materials to enable a long term usage. This paper deals with a form closure connection to ensure a solid connection between steel strips and high pressure die cast aluminium. Two different sizes of channel structures with width ratios of 1.0 and 1.35 are produced on a steel sheet. An ensuing flat rolling pass is performed to create undercuts with a width of up to 50 µm, enabling an interlocking of the molten aluminium in the concluding casting process. For both rolling processes the resulting geometry is analysed depending on the thickness reduction. In a subsequent high pressure die casting process, aluminium is applied resulting in a complete form filling for the coarser structure. Comparing structures with and without undercuts, only structures suited with undercuts remain gap-free after solidification contraction. The finer structure could not be filled completely; nevertheless these structures result in shear strength of up to 45 MPa transversal to the channel-direction.

  6. A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2014-01-01

    Full Text Available Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR. The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

  7. Quality Parameters Defined by Chebyshev Polynomials in Cold Rolling Process Chain

    International Nuclear Information System (INIS)

    Judin, Mika; Nylander, Jari; Larkiola, Jari; Verho, Martti

    2011-01-01

    The thickness profile of hot strip is of importance to profile, flatness and shape of the final cold rolled product. In this work, strip thickness and flatness profiles are decomposed into independent components by solving Chebyshev polynomials coefficients using matrix calculation. Four terms are used to characterize most common shapes of thickness and flatness profile. The calculated Chebyshev coefficients from different line measurements are combined together and analysed using neural network tools. The most common types of shapes are classified.

  8. Wide Strip Casting Technology of Magnesium Alloys

    Science.gov (United States)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  9. Process for reliewing stresses in a zircaloy 2 or zircaloy 4 strip

    International Nuclear Information System (INIS)

    Charquet, D.; Dombre, M.

    1986-01-01

    Fabrication process of a zircaloy 2 or zircaloy 4 strip with an oxygen content between 900 and 1600 ppm with the following mechanical properties: E0.2≥250MPa at 315 deg C, parallel and perpendicular A% ≥4 at 20 deg C. The strip is rolled and stabilized by heat treatment between 490 and 580 deg C for 1 to 10 minutes and partially recrystallized for 0.5 to 5 vol.%. It is used for spacers of nuclear fuels [fr

  10. Microstructural characterization of Cu82.3Al8.3Mn9.4 shape memory alloy after rolling

    Directory of Open Access Journals (Sweden)

    Mirko Gojić

    2017-09-01

    Full Text Available In this paper, the microstructure of Cu82.3Al8.3Mn9.4 (in wt. % shape memory alloy after hot and cold rolling was investigated. The Cu82.3Al8.3Mn9.4 alloy was produced by a vertical continuous casting method in the form a cylinder rod of 8 mm in diameter. After the casting, hot and cold rolling was performed. By hot rolling a strip with a thickness of 1.75 mm was obtained, while by cold rolling a strip with a thickness of 1.02 mm was produced. After the rolling process, heat treatment was performed. Heat treatment was carried out by solution annealing at 900 °C held for 30 minutes and water quenched immediately after heating. The microstructure characterization of the investigated alloy was carried out by optical microscopy (OM, scanning electron microscopy (SEM equipped with a device for energy dispersive spectroscopy (EDS. Phase transformation temperatures and fusion enthalpies were determined by differential scanning calorimetry (DSC method. The homogenous martensite microstructure was confirmed by OM and SEM micrographs after casting. During rolling the two-phase microstructure occurred. Results of DSC analysis showed martensite start (Ms, martensite finish (Mf, austenite start (As and austenite finish (Af temperatures.

  11. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  12. IMPROVEMENT PROCESS FOR ROLLING MILL THROUGH THE DMAIC SIX SIGMA APPROACH

    Directory of Open Access Journals (Sweden)

    Kunal Ganguly

    2012-09-01

    Full Text Available This project aims to address the problems that are facing a large aluminum company in a Developing Hot Rolling Mill Capabilities for Wider Widths Hard Alloys Rolling and b Eliminate down time due to strip /coil slippage during hard alloys 5xxx rolling at Hot Mill. The challenge for the company was to cater the fast changing export demand for Flat Rolled products with its existing resources. By applying Six Sigma principles, the team identified the current situation that the rolling mills operations were in. Si x Sigma DMAIC methodologies were use d in the project to determine the project's CTQ characteristics, defining the possible causes, Identifying the variation sources, establishing variable relationships and Implementing Control Plans. The project can be useful for any company that needs to fi nd the most cost efficient way to improve and utilize its resources.

  13. Method of Maintaining the Required Values of Surface Roughness and Prediction of Technological Conditions for Cold Sheet Rolling

    Directory of Open Access Journals (Sweden)

    Valíček J.

    2014-06-01

    Full Text Available The paper is based on results obtained from topography of surfaces of sheets rolled from deep-drawing steel of the type KOHAL grade 697, non-alloy low-carbon structural steel EN 10263-2:2004 and aluminium. The presented results document correctness of the assumption that the rolling force Froll increases with the increasing reduction Δh and the quality of the rolled surface is improved at the simultaneous increasing of strength of rolled sheets and the decreasing of size of structural grains. The experiment was performed on the two-high rolling stand DUO 210 SVa, which enables only non-continuous technology in contrast to the rolling mill with continuous reduction on one sheet in several degrees on rolling trains, in consequence of which the obtained height parameters of the section are in close correlation with the predicted dependence. Contribution of the work consists in the creation of a mathematical model (algorithm for predicting technological parameters of the two-high rolling stand DUO 210 SVa at change of the absolute reduction Δh, for example for a deep-drawing steel of the type KOHAL grade 697 and non-alloy lowcarbon structural steel PN EN 10263-2:2004 and aluminium, and also in the development of a method of calculation applicable to any material being rolled in general, because the authors have found that various materials can be differentiated by a derived analytical criterion IKP. This criterion is a function of ratio between the modulus of elasticity of reference material and that of actually rolled material. The reference material is here deep-drawing steel of the type KOHAL grade 697. Verification was carried out by measuring changes of final surface roughness profile and final strength of rolled sheets of the stated materials in relation to reductions and those were compared with theoretically predicted values. It is possible to identify and predict on the basis of this algorithm an instant state of surface topography in

  14. The effect of clustering on the mobility of dislocations during aging in Nb-microalloyed strip cast steels: In situ heating TEM observations

    International Nuclear Information System (INIS)

    Shrestha, Sachin L.; Xie, Kelvin Y.; Ringer, Simon P.; Carpenter, Kristin R.; Smith, David R.; Killmore, Chris R.; Cairney, Julie M.

    2013-01-01

    Cluster-strengthened Nb-microalloyed strip cast steels are of interest as clustering during aging leads to an enhancement in strength without compromising ductility, resulting in desirable mechanical properties. However, the precise strengthening mechanism is not well understood. Using in situ heating transmission electron microscopy, clustering was found to impede the movement of dislocations during aging. The attractive combination of ductility and strength was attributed to the effects of recovery and the restricted movement of dislocations through clustering

  15. Introducing radioactivity monitoring systems in the production of steel

    International Nuclear Information System (INIS)

    Sofilic, T.; Marjanovic, T.; Rastovcan-Mioc, A.

    2005-01-01

    Over the last twenty years, a significant number of cases of radioactive pollution has been recorded in metallurgical processes. However, it is not certain whether the pollution was caused by increased uncontrolled disposal of waste containing radionuclides or whether it was the result of increased radioactivity monitoring and control of metallic scrap. Many metal producers in the world have therefore implemented systematic monitoring of radioactivity in their production processes. Special attention was given to monitoring radioactivity in steel making processes, which is still the most applied construction material with an annual output of over billion tonnes all over the world. Drawing on the experience of the best known steel producers in Europe and world, Croatian steel mills find it necessary and justified to introduce radioactivity monitoring and control systems of radioactive elements in steel scrap, semi-finished and finished products. The aim of this paper is to point out the need to introduce the radioactivity monitoring and control in steel and steel-casting production, and to inform experts in Croatian steel mills and foundries about potential solutions and current systems. At the same time, we wanted to demonstrate how implementation of monitoring equipment can improve quality management and environmental management systems. This would render Croatian products competitive on the European market both in terms of physical and chemical properties and in terms of product quality certificates and radioactivity information. Since we lack our own standards and regulations to control both domestic and imported steel scrap, semi-finished products (crude steel, hot and cold rolled strip) and finished products, we need apply current international recommendations and guidelines, until we design our own monitoring system and adopt relevant legislation on the national level. This paper describes basic types of radioactivity monitoring and control systems, the most

  16. Influence of ring growth rate on damage development in hot ring rolling

    NARCIS (Netherlands)

    Wang, C.; Geijselaers, H. J.M.; Omerspahic, E.; Recina, V.; van den Boogaard, A. H.

    2015-01-01

    As an incremental forming process of bulk metal, ring rolling provides a cost effective process route to manufacture seamless rings. In the production of hot rolled rings, defects such as porosity can sometimes be found in high alloyed steel, manufactured from ingots having macro-segregation. For

  17. New developments in the fabrication of fine-grained structural steels; practical applications in welding engineering

    International Nuclear Information System (INIS)

    Uwer, D.

    1986-01-01

    The paper briefly demonstrates the development of weldable construction steels in the FRG exemplified by the development of steel grade St 37 to StE 960. Improvements of steel quality, especially weldability, is expected from the ladle metallurgy process, thermomechanical rolling, intensive cooling after rolling and direct annealing by using rolling heat. Positive effects were achieved above all in lamellar tearing strength, cold cracking behaviour and in the heat-affected zone. (DG) [de

  18. Cylindrical articles surfacing with a strip electrode at an angle to the generatrix

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Іванов

    2017-07-01

    Full Text Available The use of the strip electrode when surfacing is made along a variable path leads to a change in the melting process and the formation of a weld bead, due to the absence, in contrast to the wire electrode, of the axial symmetry of the strip cross section. In the layered surfacing of mill rolls with the rollers being at an angle to the generatrix, there may be such defects as undercuts and slagging along the edges of the seam, that worsen the quality and performance of the wear resistant layer. According to the results of the metallographic analysis of the sections, it has been established that these defects in the seam at the cross-over of the rolls during the layer-by-layer surfacing are not remelted by the arc and it leads to slag inclusions in the zone. There is an asymmetry in the formation of the weld pool, which is associated with the peculiarities of the liquid metal flow during its melting. Thus, a decrease in the minimum deviation angle of the strip electrode location with respect to the deposition rate vector leads to a decrease in the crack resistance of the working surface. Investigations of the weld bead formation during deposition by a strip electrode as a function of the angle of the strip rotation with respect to the deposition rate vector have been performed. The influence of the change in the angle of rotation of the strip electrode on the uniformity of the fusion line with the parent metal formation was studied. The allowable range of strip angle values has been determined, which ensures the quality and operability of the wear-resistant layer, as well as the absence of formation defects. Analysis of the wear characteristics and fracture toughness of the deposited layer showed that a change in the location of the strip electrode makes it possible to increase the fracture toughness of the welded layer with high quality of its formation and practically unchanged wear resistance

  19. Low-level determination of silicon in steels by anodic stripping voltammetry on a hanging mercury drop electrode.

    Science.gov (United States)

    Rahier, A H; Lunardi, S; Nicolle, F; George, S M

    2010-10-15

    The sensitive differential pulse anodic stripping voltammetry (DPASV) proposed originally by Ishiyama et al. (2001) has been revised and improved to allow the accurate measurement of silicon on a hanging mercury drop electrode (HMDE) instead of a glassy carbon electrode. We assessed the rate of formation of the partially reduced β-silicododecamolybdate and found that metallic mercury promotes the reaction in the presence of a large concentration of Fe(3+). The scope of the method has been broadened by carrying out the measurements in the presence of a constant amount of Fe(3+). The limit of detection (LOD) of the method described in the present paper is 100 μg Sig(-1) of steel, with a relative precision ranging from 5% to 12%. It can be further enhanced to 700 ng Sig(-1) of steel provided the weight of the sample, the dilution factors, the duration of the electrolysis and the ballast of iron are adequately revised. The tolerance to several interfering species has been examined, especially regarding Al(3+), Cr(3+) and Cr VI species. The method was validated using four low-alloy ferritic steels certified by the National Institute of Standards and Technology (NIST). Its application to nickel base alloys as well as to less complicated matrixes is straightforward. It has also been successfully applied to the determination of free silicon into silicon carbide nano-powder. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Plasticity of low carbon stainless steels

    International Nuclear Information System (INIS)

    Bulat, S.I.; Fel'dgandler, Eh.G.; Kareva, E.N.

    1975-01-01

    In the temperature range 800-1200 0 C and with strain rates of from 10 -3 to 3 s -1 , austenitic (000Kh18N12) and austenitic-ferrite (000Kh26N6) very low carbon stainless steels containing 0.02-0.03% C exhibit no higher resilience than corresponding ordinary steels containing 0.10-0.12% C. However, the plasticity of such steels (particularly two-phase steels) at 900-1100 0 C is appreciably inferior owing to the development of intergranular brittle fracture. Pressure treatment preceded by partial cooling of the surface to 850 0 C yields rolled and forged products with acceptable indices but is inconvenient technically. At the Zlatoustovsk and Ashin metallurgical plants successful tests have been performed involving the forging and rolling of such steels heated to 1280-1300 0 C without partial cooling; it was necessary to improve the killing conditions, correct the chemical composition (increasing the proportion of ferrite) and take measures against heat loss. (author)

  1. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  2. Characterization of galvannealed strip

    International Nuclear Information System (INIS)

    Moreas, G.; Hardy, Y.

    1999-01-01

    With the aim of enhancing coating quality control during galvannealing process, an online microscopic image acquisition sensor has been developed at CRM. In galvannealing process, the ζ phase surface density is a coating quality characteristic, and the on-line microscope, equipped with optics placed at 20 mm from the surface, grabs 250 μm x 190 μm images on which ζ crystals (approximate dimensions: 1 μm x 10 μm) can be clearly identified. On-line, the sensor is mounted in front of a roll where the strip has a stable position. The coating surface to sensor optics distance is continuously measured by an accurate triangulation sensor (1 μm repeatability) and is adjusted in such a way that, due to roll eccentricity, the image is focused at least twice per revolution. When focused, image of moving product is frozen by a short (10 ns) laser light pulse and is grabbed. The obtained image is then processed to extract ζ phase percentage and allows adjustment of process parameters to reach the desired coating characteristics. (author)

  3. Effects of Ultra-Fast Cooling After Hot Rolling and Intercritical Treatment on Microstructure and Cryogenic Toughness of 3.5%Ni Steel

    Science.gov (United States)

    Wang, Meng; Liu, Zhenyu

    2017-07-01

    A novel process comprised of ultra-fast cooling after control rolling, intercritical quenching and tempering (UFC-LT) was applied to 3.5%Ni steel. In addition, quenching and tempering (QT) treatment was conducted in comparison. The present study focuses on the relationship between the microstructure and cryogenic toughness of 3.5%Ni steel. Results show that the microstructure of steel treated by UFC-LT consisted of tempered martensite, intercritical ferrite and two types of reversed austenite (RA) (needle shape and blocky). Compared to the QT sample, the UFC-LT sample's ultimate tensile strength decreased slightly, while its elongation increased from 32.3 to 35.7%, and its Charpy absorption energy at -135 °C increased from 112 to 237 J. The ductile-brittle transition temperature of UFC-LT sample was lower than that of the QT sample by 18 °C. The superior cryogenic toughness after UFC-LT compared to QT treatment can be attributed to the dissolution of cementite, approximately 3.0% increase in RA and the decrease in effective grain size.

  4. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    International Nuclear Information System (INIS)

    Xu, Yun-bo; Hu, Zhi-ping; Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing; Ma, De-gang; Misra, R.D.K.

    2017-01-01

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  5. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-bo [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Hu, Zhi-ping, E-mail: huzhiping900401@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Ma, De-gang [Tangshan Iron and Steel Company, Tangshan 063000, People' s Republic China (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2017-03-14

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  6. Alloy-steel bolting materials for special applications

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification covers regular and special-quality alloy steel bolting materials which may be used for nuclear and other special applications. Bolting materials as used in the specification cover rolled or forged bars, rotary pierced or extruded seamless tubes, bored bars, or forged hollows from forged or rolled bar segments to be machined into bolts, studs, washers, and nuts. Several grades of steel are covered and supplementary requirements of an optional nature are provided for use when special quality is desired

  7. Hot rolled composite billet for nuclear control rods

    International Nuclear Information System (INIS)

    Miller, G.E.

    1976-01-01

    This invention relates to a composite plate shaped billet, useful in the fabrication of nuclear control rods, which comprises a core of stainless steel containing about 2 percent boron 10, a thin coating of zirconia on the surfaces of said core, and said zirconia coating being completely encased in a jacket of mild steel, said composite having been hot rolled between about 1075 0 and about 1165 0 C. 1 claim, 8 figures

  8. Roll-to-roll manufacturing of amorphous silicon alloy solar cells with in situ cell performance diagnostics

    International Nuclear Information System (INIS)

    Izu, M.; Ellison, T.

    2003-01-01

    In order to meet the price target necessary for widespread use of solar cell products, Energy Conversion Devices, Inc., ECD, has developed and commercialized a continuous roll-to-roll manufacturing technology for the production of a-Si alloy solar cells. Since the early 1980s, we have advanced this technology from a small-scale pilot machine to a large-scale production machine. In 2002, ECD commissioned a 30 MW per year machine for United Solar Systems Corp. in Auburn Hills, Michigan. The RF PECVD a-Si alloy solar cell processor, designed and built by ECD, deposits triple-junction solar cell materials consisting of nine layers of a-Si alloys in a continuous roll-to-roll operation simultaneously on six coils of 130 μm thick, 0.36 m wide, 2.6 km long stainless-steel substrate at 1 cm/s. In order to minimize production losses due to undetected deviations of production conditions and carry on a continuous program of device optimization, we have developed and are incorporating in situ cell performance diagnostic systems. (author)

  9. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  10. Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel

    International Nuclear Information System (INIS)

    Yu, Xianglong; Jiang, Zhengyi; Zhao, Jingwei; Wei, Dongbin; Zhou, Cunlong; Huang, Qingxue

    2015-01-01

    Highlights: • Microtexture development of deformed oxide layers is investigated. • Magnetite shares the {0 0 1} fibre texture with wustite. • Hematite develops the {0 0 0 1} basal fibre parallel to the oxide growth. • Stress relief and ion vacancy diffusion mechanism for magnetite seam. - Abstract: Electron backscatter diffraction (EBSD) analysis has been presented to investigate the microstructure and microtexture evolutions of deformed oxide scale formed on a microalloyed steel during hot rolling and accelerated cooling. Magnetite and wustite in oxide layers share a strong {0 0 1} and a weak {1 1 0} fibres texture parallel to the oxide growth. Trigonal hematite develops the {0 0 0 1} basal fibre parallel to the crystallographic plane {1 1 1} in magnetite. Taylor factor estimates have been conducted to elucidate the microtexture evolution. The fine-grained magnetite seam adjacent to the substrate is governed by stress relief and ions vacancy diffusion mechanism

  11. Recent trend of titanium-clad steel plate/sheet (NKK)

    International Nuclear Information System (INIS)

    Kimura, Hideto

    1997-01-01

    The roll-bonding process for titanium-clad steel production enabled the on-line manufacturing and quality control of the products which are usually applied for the production of steel plate and sheet by the steel producers. The recent trend of roll-bonded titanium-clad steel which has an excellent corrosion resistance together with the advantage in cost-saving are mainly described in this article as to the demand, production technique and new application aspects. Though the predominant usage of titanium-clad steel plate has been in power-generating plants, enlargeing utilization in the chemical plants such as terephthalic acid production plants is leading the growth in the market of titanium-clad steel plate. Also, the application of titanium-clad steel plates and sheets for the lining the marine structures is expected as one of the best solution to long-term surface protection for their outstanding corrosion resistance against sea water. (author)

  12. Nondestructive characterization of recovery and recrystallization in cold rolled low carbon steel by magnetic hysteresis loops

    International Nuclear Information System (INIS)

    Martinez-de-Guerenu, A.; Gurruchaga, K.; Arizti, F.

    2007-01-01

    How structure sensitive parameters derived from hysteresis loops can provide nondestructive information about the evolution of the microstructure of cold rolled low carbon steel as a result of recovery and recrystallization processes during the annealing is shown. The coercive field, remanent induction and hysteresis losses can be used to monitor the decrease in the dislocation density during recovery. These parameters are also influenced by the average grain refinement that takes place during recrystallization, which compensates the variation produced by the annihilation of dislocations during recrystallization. The maximum of the induction and of the relative differential permeability are shown to be very sensitive to the onset and to the monitoring of the recrystallization, respectively. The correlations between coercive field and remanent induction and hysteresis losses can also be used to distinguish between recovery and recrystallization

  13. Application of strip-reduction-test in hte evaluation of lubricants developed in Enform project

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Gazvoda, S.

    2001-01-01

    The performance of three different lubricants in relation to sheet metal forming of steel, Zinc coated steel and stainless steel is investigated in the present paper. A strip reduction test simulating can wall ironing is used. The test was originally developed for determining the limits...... of lubrication in forming of stainless steel by quantification of the degree of galling. The present results show that the test methodology to some extend can be used in testing of lubricants for Zinc coated steels whereas the lubricant performance in forming of steel is more complicated to quantify since...

  14. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    Science.gov (United States)

    2015-06-01

    Materials 2 2.2 Hot Rolling 3 2.2 Sample Characterization: Microstructure and Tensile Properties 3 3. Rolling Experiments 5 3.1 High-Temperature...material systems for protective and structural applications, especially in ground vehicles. Magnesium (Mg), due to its low density (~25% that of steel ...applications, wrought Mg is difficult to produce in thin sheets because of its inherently low ductility . As a result, Mg sheet is often produced at

  15. Developments in niobium steels for linepipe applications

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Bergmann, B.; Chaussy, L.

    1982-11-01

    Current niobium containing steels being produced for line pipe applications, developed over the last ten years, demonstrate an excellent respoNse to heavy deformation at low temperatures, which results in an optimum balance of yield strength and toughness. However, it has long been recognized that excessive use of controlled rolling involves production penalties and contributes to the characteristic anisotropy present in rolled products. Thus, changes in rolling procedures would be desirable if they minimized delays or reduced directionality thereby resulting in further improvement of secondary properties, such as through thickness ductility and hydrogen induced cracking (HIC) tendency in sour gas environments. Present steel development is focused on transformation strengthening or increased precipitation hardening. Coupled with the trend to even lower carbon ( [pt

  16. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    African Journals Online (AJOL)

    countries. The known alternative in such condition is ... Key words: Hollow mill, stripped screws, titanium locked plates ... used a locally manufactured stainless steel hollow mill, ... head ‑ plate hole” assembly as a mono‑block single unit. In.

  17. 75 FR 65453 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Flat Products From Brazil: Notice of...

    Science.gov (United States)

    2010-10-25

    ... Nucor Corporation (Nucor) and United States Steel Corporation (U.S. Steel), domestic producers of hot..., the Department received requests from Nucor and U.S. Steel (collectively, domestic producers), that... July 6, 2010 (CBP Memo). On July 22, 2010, and July 23, 2010, respectively, Nucor and U.S. Steel timely...

  18. Studing the Influence of Six Main Industrial Losses on Overall Equipment Effectiveness in Cold Rolling Unit of Mobarakeh Steel Complex

    Directory of Open Access Journals (Sweden)

    seyed Akbar Nilipour Tabatabaei

    2011-03-01

    Full Text Available Overall Equipment Effectiveness (OEE is a key indicator and a basis for evaluating the effectiveness of equipments as well as assessing the effectiveness of the Total Productive Maintenance (TPM system. This indicator together with overall equipment performance can be used in production lines such as steel production. The aim of this article is to study the influence of six main industrial losses on the OEE indicator . For this purpose, the OEE has been calculated in the cold rolling production lines of Mobarakeh Steel Complex the gap between production lines and the global industrial standards has been studied the causes of production system inefficiency has been investigated and the effectiveness of TPM system, equipments' bottlenecks and the influence of the main industry losses on OEE have been studied. The findings imply that the influence of the variation of availability and performance rates on OEE is high, while the influence of the variation of quality rate on OEE is not considerable.

  19. Robust Backstepping Control for Cold Rolling Main Drive System with Nonlinear Uncertainties

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2013-01-01

    Full Text Available The nonlinear model of main drive system in cold rolling process, which considers the influence with parameter uncertainties such as clearance and variable friction coefficient, as well as external disturbance by roll eccentricity and variation of strip material quality, is built. By transformation, the lower triangular structure form of main drive system is obtained. The backstepping algorithm based on signal compensation is proposed to design a linear time-invariant (LTI robust controller, including a nominal controller and a robust compensator. A comparison with PI controller shows that the controller has better disturbance attenuation performance and tracking behaviors. Meanwhile, according to its LTI characteristic, the robust controller can be realized easily; therefore it is also appropriated to high speed dynamic rolling process.

  20. Development of Intermediate Cooling Technology and Its Control for Two-Stand Plate Rolling

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available In a plate rolling production line, thermomechanically controlled processing is critical for plate quality. In this paper, a set of intermediate cooling equipment of a two-stand plate mill with super density nozzles, medium pressure, and small flow is developed. Based on a simplified dynamic model, a cooling control scheme with combined feedforward, feedback, and adaptive algorithms is put forward. The new controlled rolling process and the highly efficient control system improve the controlled rolling efficiency by an average of 17.66%. The proposed intermediate cooling system can also effectively inhibit the growth of austenite grain, improve the impact toughness and yield strength of Q345B steel plate, reduce the formation of secondary oxide scale on the plate surface and the chromatic aberration of the plate surface, and greatly improve the surface quality of the steel plate.

  1. Through-process characterization of local anisotropy of Non-oriented electrical steel using magnetic Barkhausen noise

    Science.gov (United States)

    He, Youliang; Mehdi, Mehdi; Hilinski, Erik J.; Edrisy, Afsaneh

    2018-05-01

    Magnetic Barkhausen noise (MBN) signals were measured on a non-oriented electrical steel through all the thermomechanical processing stages, i.e. hot rolling, hot band annealing, cold rolling and final annealing. The temperature of the final annealing was varied from 600 °C to 750 °C so that the steel consisted of partially or completely recrystallized microstructures and different levels of residual stresses. The angular MBNrms (root mean square) values were compared to the texture factors in the same directions, the latter being calculated from the crystallographic texture measured by electron backscatter diffraction (EBSD). It was found that, in the cold-rolled, hot-rolled and completely recrystallized steels, the angular MBNrms followed a cosine function with respect to the angle of magnetization, while in partially recrystallized state such a relation does not exist. After cold rolling, the maximum MBNrms was observed in the rolling direction (RD) and the minimum MBNrms was in the transverse direction (TD), which was inconsistent with the magnetocrystalline anisotropy as indicated by the texture factor. After hot rolling, the maximum and minimum MBNrms values were observed in the TD and RD, respectively, exactly opposite to the cold-rolled state. If the steel was completely recrystallized, the maximum MBNrms was normally observed at a direction that was 15-30° from the minimum texture factor. If the steel was partially recrystallized, both the magnetocrystalline anisotropy of the material and the residual stress contributed to the angular MBNrms, which resulted in the deviation of the relationship from a cosine function. The relative strength of the two factors determined which factor would dominate the overall magnetic anisotropy.

  2. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  3. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  4. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    Science.gov (United States)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  5. A Study of the Cold Resistance of Pipe Coiled Stock Produced at Foundry-Rolling Works. Part 2

    Science.gov (United States)

    Bagmet, O. A.; Naumenko, V. V.; Smetanin, K. S.

    2018-03-01

    Results of a study of coiled stock from low-carbon steels alloyed with manganese and silicon and different additives of niobium and titanium are presented. The coiled stock is produced at foundry-rolling works by the method of direct rolling of thin slabs right after their continuous casting. The microdeformation of the crystal lattice and the crystallographic texture are determined. The conditions of formation of the most favorable structure and texture in the steels are specified.

  6. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  7. Research and industrialization of near-net rolling technology used in shaft parts

    Science.gov (United States)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2018-03-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  8. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju [Sheet Products Design Team, Technical Research Center, Hyundai Steel Company, 1480 Bukbusaneop-ro, Dangjin, Chungnam 343-823 (Korea, Republic of); Lee, Chang-Hoon; Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of)

    2016-01-15

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M{sub 3}C→MX→MX+M{sub 7}C{sub 3}+M{sub 23}C{sub 6}. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M{sub 3}C particle, and increased after 10 min by the precipitation of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M{sub 7}C{sub 3} particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M{sub 23}C{sub 6} and M{sub 7}C{sub 3} particles deteriorated the HIC resistance.

  9. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    International Nuclear Information System (INIS)

    Moon, Joonoh; Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju; Lee, Chang-Hoon; Lee, Tae-Ho

    2016-01-01

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M_3C→MX→MX+M_7C_3+M_2_3C_6. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M_3C particle, and increased after 10 min by the precipitation of M_7C_3 and M_2_3C_6 particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M_7C_3 particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M_2_3C_6 and M_7C_3 particles deteriorated the HIC resistance.

  10. Velocity field measurements of flow inside snout of zinc plating process using a single-frame PIV technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.

    2000-05-01

    In the continuous hot-dip galvanizing process of steel strips, the snout has been installed at the entering region of feeding strip into the molten zinc (Zn) pot. However, evaporated Zn particles in the snout cause ash imperfection on the galvanized steel strip surface. In order to resolve this problem, the flow field inside the snout, both on the deoxidisation gas flow above the free surface and the molten Zn flow in the Zn pot, has been investigated experientially. For a 1/10 scale water model, flow visualization and PIV (Particle Image Velocimetry) velocity field measurements were carried out at the strip speed V{sub s}= 1.5 m/s. Aluminum flakes (1{mu}m) and atomized olive oil (3{mu}m) were used as seeding particles to simulate the molten Zn flow and the deoxidisation gas flow, respectively. As a result, the liquid flow in the Zn pot is dominantly influenced by the up-rising flow in diagonal direction caused by the rotating sink roll. For gas flow in from of the strip inside the snout, the large-scale vortex formed by the downward moving strip is dominant. In the rear side of the strip, a counterclockwise vortex is formed and some of the flow following by the moving strip impinges on the free surface of molten Zn. The liquid flow in front of the strip is governed by the up-rising flow entering the snout, caused by the rotating sink roll. The moving strip affects dominantly the liquid flow behind the strip inside the snout, and large amounts of liquid are entrained and followed the moving strip toward the sink roll. A thin boundary layer is formed on the front side due to the up-rising flow, however, a relatively thick boundary layer is formed in the rear side of the strip. Inside the snout, the deoxidisation gas flow above the free surface is much faster than the liquid flow in the Zn pot. More ash imperfections are anticipated on the rear surface of the strip where larger influx flow moves toward the strip in the region near the free surface. (author)

  11. Microstructural and tribological investigations of CrN coated, wet-stripped and recoated functional substrates used for cutting and forming tools

    International Nuclear Information System (INIS)

    Rebole, R.; Martinez, A.; Rodriguez, R.; Fuentes, G.G.; Spain, E.; Watson, N.; Avelar-Batista, J.C.; Housden, J.; Montala, F.; Carreras, L.J.; Tate, T.J.

    2004-01-01

    Recent breakthroughs in wet-stripping Physical Vapour Deposited (PVD) CrN coatings on standard high speed and stainless steels and on hard metal substrates are reported in this work. Validation of the stripping process was evaluated in terms of substrate damage after exposure to the chemical agents and also in terms of the tribological properties of the PVD CrN layers before (Pristine) and after stripping and re-coating (Recoated). The investigation was focussed on the influence of the stripping processes on the hardness, roughness, adherence and wear resistance of the Recoated CrN coatings deposited by electron beam PVD (e-beam) after stripping. Analysis of the chemically stripped and Recoated steel substrates showed that: (a) hardness and elastic modulus of the Recoated e-beam CrN did not change significantly compared to Pristine e-beam CrN, and (b) surface roughness of the Recoated e-beam CrN layers was greater by a factor of 50-60% than the initial. For hard-metal substrates, the surface damage and its effect on the re-deposited coating performance in terms of the chemical reactions during the stripping process were discussed. It was observed that wet-stripping in a basic solution led to depletion of tungsten and carbon at the surface of the stripped WC-Co specimens

  12. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel

    International Nuclear Information System (INIS)

    Evans, M.-H.; Walker, J.C.; Ma, C.; Wang, L.; Wood, R.J.K.

    2013-01-01

    Butterflies are microscopic damage features forming at subsurface material imperfections induced during rolling contact fatigue (RCF) in rolling element bearings. Butterflies can lead to degradation of the load bearing capacity of the material by their associated cracks causing premature spalling failures. Recently, butterfly formation has been cited to be related to a premature failure mode in wind turbine gearbox bearings; white structure flaking (WSF). Butterflies consist of cracks with surrounding microstructural change called ‘white etching area’ (WEA) forming wings that revolve around their initiators. The formation mechanisms of butterflies in bearing steels have been studied over the last 50 years, but are still not fully understood. This paper presents a detailed microstructural analysis of a butterfly that has initiated from a void in standard 100Cr6 bearing steel under rolling contact fatigue on a laboratory two-roller test rig under transient operating conditions. Analysis was conducted using focused ion beam (FIB) tomography, 3D reconstruction and transmission electron microscopy (STEM/TEM) methods. FIB tomography revealed an extensive presence of voids/cavities immediately adjacent to the main crack on the non-WEA side and at the crack tip. This provides evidence for a void/cavity coalescence mechanism for the butterfly cracks formation. Spherical M 3 C carbide deformation and dissolution as part of the microstructural change in WEA were observed in both FIB and STEM/TEM analyses, where TEM analyses also revealed the formation of superfine nano-grains (3–15 nm diameter) intersecting a dissolving spherical M 3 C carbide. This is evidence of the early formation of nano-grains associated with the WEA formation mechanism

  13. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.-H., E-mail: martin.evans@soton.ac.uk [National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, SO17 1BJ (United Kingdom); Walker, J.C.; Ma, C.; Wang, L.; Wood, R.J.K. [National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, SO17 1BJ (United Kingdom)

    2013-05-15

    Butterflies are microscopic damage features forming at subsurface material imperfections induced during rolling contact fatigue (RCF) in rolling element bearings. Butterflies can lead to degradation of the load bearing capacity of the material by their associated cracks causing premature spalling failures. Recently, butterfly formation has been cited to be related to a premature failure mode in wind turbine gearbox bearings; white structure flaking (WSF). Butterflies consist of cracks with surrounding microstructural change called ‘white etching area’ (WEA) forming wings that revolve around their initiators. The formation mechanisms of butterflies in bearing steels have been studied over the last 50 years, but are still not fully understood. This paper presents a detailed microstructural analysis of a butterfly that has initiated from a void in standard 100Cr6 bearing steel under rolling contact fatigue on a laboratory two-roller test rig under transient operating conditions. Analysis was conducted using focused ion beam (FIB) tomography, 3D reconstruction and transmission electron microscopy (STEM/TEM) methods. FIB tomography revealed an extensive presence of voids/cavities immediately adjacent to the main crack on the non-WEA side and at the crack tip. This provides evidence for a void/cavity coalescence mechanism for the butterfly cracks formation. Spherical M{sub 3}C carbide deformation and dissolution as part of the microstructural change in WEA were observed in both FIB and STEM/TEM analyses, where TEM analyses also revealed the formation of superfine nano-grains (3–15 nm diameter) intersecting a dissolving spherical M{sub 3}C carbide. This is evidence of the early formation of nano-grains associated with the WEA formation mechanism.

  14. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    Science.gov (United States)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  15. Combined process "helical rolling-pressing" and its effect on the microstructure of ferrous and non-ferrous materials

    Science.gov (United States)

    Naizabekov, Abdrakhman; Lezhnev, Sergey; Arbuz, Alexandr; Panin, Evgeniy

    2018-02-01

    Ultrafine-grained materials are one of the most promising structural and functional materials. However, the known methods of obtaining them are not enough powerful and technologically advanced for profitable industrial applications. Development of the combined process "helical rolling-pressing" is an attempt to bring technology to produce ultrafine-grained materials to the industry. The combination of intense processing of the surface by helical rolling and the entire cross section of workpiece in equal channel angular matrix, with intense deformation by torsion between rolls and matrix will increase the degree of deformation per pass and allows to mutually compensate disadvantages of these methods in the case of their separate use. This paper describes the development of a laboratory stand and study of influence of combined process "helical rolling-pressing"on the microstructure of tool steel, technical copper and high alloy stainless high-temperature steel.

  16. Effect of rolling deformation and solution treatment on microstructure ...

    Indian Academy of Sciences (India)

    Department of Metallurgy and Materials Engineering, Bengal Engineering and Science ... lume percent of elongated band of δ-ferrite (∼40%) and austenite phase which ... Duplex stainless steel; hot rolling; cold deformation; microstructure; tensile properties. 1. ... ssure vessels, storage tanks, rotors, impellers and shafts,.

  17. Hot-rolled Process of Multilayered Composite Metal Plate

    Directory of Open Access Journals (Sweden)

    YU Wei

    2017-02-01

    Full Text Available For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.

  18. Influence of surface defects on the fatigue crack initiation in pearlitic steel

    Directory of Open Access Journals (Sweden)

    Toribio Jesús

    2014-06-01

    Full Text Available Tensile fatigue tests were performed under load control, with constant stress range Δσ on pearlitic steel wires, from the hot rolled bar to the commercial prestressing steel wire (which has undergone seven cold drawing steps. Results show that fatigue cracks in pearlitic steels initiate at the wire surface starting from small defects, whose size decreases with the drawing process. Fatigue cracks created from defects (initiation phase exhibit a fractographic appearance consisting of ductile microtearing events which can be classified as tearing topography surface or TTS, and exhibit a remarkably lower spacing in the prestressing steel wire than in the hot rolled bar. In addition, some S-N tests were performed in both material forms under a stress range of about half the yield strength. In these tests, the main part of the fatigue life corresponds to the propagation stage in the hot rolled bar whereas such a main part of the life is associated with the initiation stage in the case of the prestressing steel wire.

  19. Mathematical modelling and TMCP simulation for optimisation of steel behaviour

    International Nuclear Information System (INIS)

    Siwecki, T.

    2001-01-01

    Physically based mathematical models for prediction of steel behaviour and microstructure evolution in connection with thermal and thermomechanical controlled processing (TMCP) development in Swedish Institute for Metals Research are discussed. The models can be used for computer predictions of recrystallization and grain growth of austenite after deformation, precipitation or dissolution of microalloying carbonitride in austenite, flow stress during hot working, phase transformation behaviour during accelerated cooling as well as the final microstructure and mechanical properties. The database, which contains information about steel behaviour for a large number of HSLA steels, is also presented. Optimization of TMCP parameters for improving the properties of the steel are discussed in relation to the microstructure and mechanical properties. The effect of TMCP parameters (reheating temperature, rolling schedules and finish rolling temperature as well as accelerated control cooling) on steel properties was studied in laboratory scale. (author)

  20. 75 FR 75455 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full...

    Science.gov (United States)

    2010-12-03

    ... Steel Inc., Steel Dynamics, Weirton Steel Corporation, Independent Steelworkers Union, and United... quality and chemistry restrictions as follows: 0.012 percent maximum phosphorus, 0.015 percent maximum...

  1. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  2. Overall model of the dynamic behaviour of the steel strip in an annealing heating furnace on a hot-dip galvanizing line

    Directory of Open Access Journals (Sweden)

    Fernández, R.

    2010-10-01

    Full Text Available Predicting the temperature of the steel strip in the annealing process in a hot-dip galvanizing line (HDGL is important to ensure the physical properties of the processed material. The development of an accurate model that is capable of predicting the temperature the strip will reach according to the furnace’s variations in temperature and speed, its dimensions and the steel’s chemical properties, is a requirement that is being increasingly called for by industrial plants of this nature. This paper presents a comparative study made between several types of algorithms of Data Mining and Artificial Intelligence for the design of an efficient and overall prediction model that will allow determining the strip’s variation in temperature according to the physico-chemical specifications of the coils to be processed, and fluctuations in temperature and speed that are recorded within the annealing process. The ultimate goal is to find a model that is effectively applicable to coils of new types of steel or sizes that are being processed for the first time. This model renders it possible to fine-tune the control model in order to standardise the treatment in areas of the strip in which there is a transition between coils of different sizes or types of steel.La predicción de la temperatura de la banda de acero dentro del proceso de recocido de una planta de galvanizado continuo en caliente es importante para garantizar las propiedades físicas del material procesado. El desarrollo de un modelo preciso que sea capaz de predecir la temperatura que va a alcanzar la banda según las variaciones de temperaturas y velocidades del horno, y sus dimensiones y propiedades químicas del acero, es una necesidad cada vez más demandada por este tipo de plantas industriales. En el presente estudio se muestra una comparativa realizada entre diversos tipos de algoritmos deMinería de Datos e Inteligencia Artificial para el desarrollo de un modelo de predicci

  3. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki.

    1994-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  4. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko.

    1995-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  5. Development of a new forming process with vertical rolls for electric-resistance-welded pipes

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, W; Nakajima, K

    1981-01-01

    The features of a new process (VRF process) for forming pipes by constraining the strip edges with undriven vertical rolls are described. The equipment characteristics and forming characteristics are compared with conventional processes. The VRF process can reduce edge stretch, forming energy, equipment and energy costs. 27 refs.

  6. Magnetic properties and recrystallization texture of phosphorus-added non-oriented electrical steel sheets

    International Nuclear Information System (INIS)

    Tanaka, I.; Yashiki, H.

    2006-01-01

    The effect of phosphorus on magnetic properties and recrystallization texture has been investigated in non-oriented electrical steel sheets to develop low core loss and high permeability core materials. Specimens with different phosphorus contents were cold-rolled to various thicknesses, i.e. with various cold-rolling reductions, and annealed for recrystallization and grain growth. Although magnetic induction of the steel with low phosphorus content dramatically dropped with reducing thickness, i.e. with increasing in cold-rolling reduction, that of the steel with high phosphorus content only slightly decreased. The most effective way to reduce core loss was to reduce thickness of electrical steel sheets. Therefore, phosphorus-added thin gauge non-oriented electrical steel sheets have achieved low core loss and high permeability. The typical magnetic properties of phosphorus-added non-oriented electrical steel sheets 0.27mm in sheet thickness were 16.6W/kg in W 10/400 and 1.73T in B 50 . These excellent magnetic properties were due to the recrystallization texture control. {111} component in recrystallization texture was suppressed by the phosphorus segregation at initial grain boundaries. Accordingly, phosphorus would greatly contribute to the improvement of magnetic properties

  7. Gas Furnace with Pulsed Feeding of the Heating Agent for Volume Precision Heat Treatment of CCM Rolls

    Science.gov (United States)

    Moroz, V. I.; Egorova, V. M.; Gusev, S. V.

    2001-05-01

    A standard chamber batch furnace of the Severstal' plant has been modified for precision heat treatment of CCM rolls. The certification tests of a charge of rolls from steel 24KhM1F have shown the technical and economical advantages of the new design.

  8. Durability of light steel framing in residential applications

    OpenAIRE

    Lawson, RM; Popo-Ola, S.O.; Way, A.; Heatley, T; Pedreschi, Remo

    2010-01-01

    This paper presents a summary and analysis of research findings on the durability of galvanised cold-formed steel sections used in housing in order to deduce their design life. These cold-formed sections are produced from pre-galvanised strip steel. It reviews reports and publications from research projects carried out by Corus and the Steel Construction Institute on zinc-coated, cold-formed steel products. New data have also been gathered from measurements on houses and similar buildings tha...

  9. Hydrogen Permeation in Cold-Rolled High-Mn Twinning-Induced Plasticity Steels

    Science.gov (United States)

    Han, Do Kyeong; Hwang, A. In; Byeon, Woo Jun; Noh, Seung Jeong; Suh, Dong-Woo

    2017-11-01

    Hydrogen permeation is investigated in cold-rolled Fe-0.6C-18Mn-(1.5Al) alloys. The hydrogen mobility is lower in cold-rolled alloys compared with annealed alloys. Al-containing alloy shows less deceleration of hydrogen mobility compared with the Al-free alloy. This is attributed to the reduced formation of mechanical twins and dislocations. Mechanical twins trap hydrogen strongly but are vulnerable to crack initiation; suppression of these is thought to be a major favorable influence of Al on hydrogen-induced mechanical degradation.

  10. Investigation of the effect of heat treatment on the structure of the cold-rolled ferrite stainless steels

    Directory of Open Access Journals (Sweden)

    В. Л. Грешта

    2015-03-01

    Full Text Available The work presents the estimation of a factor, namely, the solid solution super saturation by carbon and nitrogen on crystalline nature of high-chromium ferrite (HCF in defining the inhibition mechanism of recrystallization processes in ferritic stainless steel. The essence of the study was to conduct an additional heat treatment of hot (h/r tackle for the following modes: annealing 800 ° C - 4 hours, tempering with temperatures of 900, 1000, 1100 ° C after exposure to 1 min/mm. It is established that the determining factor that influences the amount of the carbide phase in c/r sheet is prior treatment of h/r tackle. A definite connection between the volume fraction of the secondary phase and the degree of cold deformation was observed. In the structure of cold-rolled sheet the same pattern with respect to the degree of implementation processes allocation of excess phases is maintained as in hot-rolled, after appropriate heat treatment. The smallest amount of the secondary phase structure was observed in the letter after hardening from 1100 °C - 1 min/mm. The reason is the thermodynamic state of HCF, to which at 1100 °C all the excess carbon and nitrogen must exist in solid solution. Thus, it is found that according to the present analysis of structural changes it should be noted that the best option of thermal prior treatment of h/r tackle is the annealing at 800 °C – 4 hours

  11. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy, Quick, and Safe Technique

    OpenAIRE

    Gupta, Ravi; Singh, Harpreet; Singh, Amit; Garg, Sudhir

    2014-01-01

    Removal of jammed titanium screws can be difficult due to the problem of stripping of the hexagonal heads of the screws. We present a technique of extraction of stripped screws with the use of a standard 4.5 mm stainless steel hollow mill in a patient of peri-implant fracture of the radius fixed with a titanium locking plate 2 years back. The technique is quick, safe, and cost effective.

  12. Development and Technology of Large Thickness TMCP Steel Plate with 390MPA Grade Used for Engineering Machinery

    Science.gov (United States)

    Wang, Xiaoshu; Zhang, Zhijun; Zhang, Peng

    Recently, with the rapid upgrading of the equipment in the steel Corp, the rolling technology of TMCP has been rapidly developed and widely applied. A large amount of steel plate has been produced by using the TMCP technology. The TMCP processes have been used more and more widely and replaced the heat treatment technology of normalizing, quenching and tempering heat process. In this paper, low financial input is considered in steel plate production and the composition of the steel has been designed with low C component, a limited alloy element of the Nb, and certain amounts of Mn element. During the continuous casting process, the size of the continuous casting slab section is 300 mm × 2400 mm. The rolling technology of TMCP is controlled at a lower rolling and red temperature to control the transformation of the microstructure. Four different rolling treatments are chosen to test its effects on the 390MPa grade low carbon steel of bainitic microstructure and properties. This test manages to produce a proper steel plate fulfilling the standard mechanical properties. Specifically, low carbon bainite is observed in the microstructure of the steel plate and the maximum thickness of steel plate under this TMCP technology is up to 80mm. The mechanical property of the steel plate is excellent and the KV2 at -40 °C performs more than 200 J. Moreover, the production costs are greatly reduced when the steel plate is produced by this TMCP technology when replacing the current production process of quenching and tempering. The low cost steel plate could well meet the requirements of producing engineering machinery in the steel market.

  13. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2018-03-01

    Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.

  14. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  15. Study of cast and thermo-mechanically strengthened chromium-nickel nitrogen-containing steel

    International Nuclear Information System (INIS)

    Prokoshkina, V.G.; Kaputkina, L.M.; Svyazhin, A.G.

    2000-01-01

    The effect of nitrogen on the structure and strength of corrosion-resistant chromium-nickel steels after thermal and thermomechanical treatment is studied. The 06Kh15N7AD and 07Kh15N7DAMB steels alloying by nitrogen was accomplished through the basic composition steels remelting in the molecular nitrogen atmosphere under the pressure of 0.1-2.5 MPa. The 02Kh15N5DAF and 05Kh15N5DAM steels ingots were obtained through melting in a plasma furnace under the nitrogen pressure of 0.4MPA. The high-temperature thermomechanical treatment (HTMT) was performed by rolling with preliminary blanks heating up to 1050 deg C and the rolling end temperature not below 950 deg C. It is shown, that the HTMT of the nitrogen-containing steels makes it possible to obtain strength characteristics by 1.5 times exceeding the properties of traditionally applicable corrosion-resistant steels, whereby sufficiently high plasticity of the nitrogen-containing steel is retained [ru

  16. Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working

    International Nuclear Information System (INIS)

    Lauprecht, W.; Imgrund, H.; Coldren, P.

    1975-01-01

    A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm 2 the transition temperature T 50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm 2 . As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm 2 . On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm 2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm 2 . Because of low carbon content, this steel is characterized by good

  17. 75 FR 47263 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From the Russian Federation; Final...

    Science.gov (United States)

    2010-08-05

    ..., Gallatin Steel, SSAB North America Division, ArcelorMittal USA, Inc., and Steel Dynamics, Inc... and chemistry restrictions as follows: 0.012 percent maximum phosphorus, 0.015 percent maximum sulfur...

  18. Analysis of bearing steel exposed to rolling contact fatigue

    DEFF Research Database (Denmark)

    Hansen, K. T.; Fæster, Søren; Natarajan, Anand

    2017-01-01

    The objective of this work is to characterize fatigue damage in roller bearings under conditions of high load and slippage. A test rig constructed for rolling contact fatigue tests of rings is described, and test results are presented for rings taken from two spherical roller bearings. The prepar...

  19. 75 FR 43931 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Preliminary Results of...

    Science.gov (United States)

    2010-07-27

    ... Steel, SSAB N.A.D., Steel Dynamics, Inc., ArcelorMittal USA Inc. (collectively ``domestic interested... quality and chemistry restrictions as follows: 0.012 percent maximum phosphorus, 0.015 percent maximum...

  20. Inhibition effect of tetradecylpyridinium bromide on the corrosion of cold rolled steel in 7.0 M H3PO4

    Directory of Open Access Journals (Sweden)

    Xianghong Li

    2017-05-01

    Full Text Available Inhibition effect of cationic surfactant of tetradecylpyridinium bromide (TDPB on the corrosion of cold rolled steel (CRS in phosphoric acid produced by dihydrate wet method process (7.0 M H3PO4 was investigated by weight loss and potentiodynamic polarization methods and electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM. Quantum chemical calculation was applied to elucidate the adsorption mode of the inhibitor molecule on steel surface. The results show that TDPB acts as a good inhibitor, and its maximum inhibition efficiency is higher than 90% even at low concentration. The adsorption of TDPB obeys the Langmuir adsorption isotherm equation. Polarization curves indicate that TDPB behaves as a mixed-type inhibitor in H3PO4. EIS spectra exhibit one capacitive loop which indicates that the corrosion reaction is controlled by charge transfer process. The inhibition action of TDPB could also be evidenced by surface SEM images. Density functional theory (DFT calculations suggest that the pyridine ring is the active adsorption center. Depending on the results, the inhibitive mechanism is proposed from the viewpoint of adsorption theory.

  1. Properties of low-alloy steel with tellurium

    International Nuclear Information System (INIS)

    Popova, L.V.; Lebedev, D.V.; Litvinenko, D.A.; Nasibov, A.G.

    1983-01-01

    The results of investigations into 09G2 and 09G2F steels alloyed with tellurium after controlled rolling are presented. 0.002-0.011% tellurium additions did not change strength and plastic properties of the steels after controlled rolling. Tellurium additions results in 40-50% increase of the steel impact strength on samples With circular and sharp cuts in brittle-viscous region. 0.002-0.003% of tellurium is considered to be the optimum content from the view point of increa=. sing steel strength. Increase of impact strength takes place at the expense of growth of both work function of crack formation and work function of crack propagation but in different temperature ranges: at the expense of firstone at 80-40 deg C, at the expense of second one at 20-40 deg C. 0.002-0.011% teilurium additions mainly at the expense of sulphide globularization bring about decrease of anisotropy of steet properties by impact strength reducing anisotropy factor from 2 to 1.5

  2. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  3. Improving the Quality of Cast Ingot for the Production of Defect-Free Rolled and Polished Blanks of Silver-Copper Coinage Alloy

    Science.gov (United States)

    Chakrabarti, Debalay; Chakrabarti, Ajit Kumar; Roy, Sanat Kumar

    2018-05-01

    The causes of defect generation in Ag-7.5 wt% Cu coinage alloy billets and in rolled and polished blanks were evaluated in this paper. Microstructural and compositional study of the as-cast billets indicated that excessive formation of gas-porosity and shrinkage cavity was responsible for crack formation during rolling. Carbon pick-up from charcoal flux cover used during melting, formation of CuS inclusions due to high-S content and rapid work-hardening also contributed to cracking during rolling. In order to prevent the defect generation, several measures were adopted. Those measures significantly reduced the defect generation and improved the surface luster of the trial rolled strips.

  4. EBSD characterization of deformed lath martensite in if steel

    DEFF Research Database (Denmark)

    Lv, Z.A.; Zhang, Xiaodan; Huang, Xiaoxu

    2017-01-01

    Rolling deformation results in the transformation of a lath martensite structure to a lamellar structure characteristic to that of IF steel cold-rolled to medium and high strains. The structural transition takes place from low to medium strain, and electron backscatter diffraction analysis shows...... and the strength are characterized for lath martensite rolled to a thickness reduction of 30%, showing that large changes in the misorientation take place, while the strain hardening rate is low....

  5. Plating end fittings to reduce hydrogen ingress at rolled joints in CANDU reactors

    International Nuclear Information System (INIS)

    White, A.J.; Urbanic, V.F.; Bahurmuz, A.A.; Clendening, W.R.; Joynes, R.; McDougall, G.M.; Skinner, B.C.; Venkatapathi, S.

    1993-10-01

    Zr-2.5Nb pressure tubes in CANDU nuclear reactors absorb hydrogen at a low rate from the primary heat transport water circulated through the tubes. Extra hydrogen is picked up at the rolled joints that connect the pressure tubes to out-of-core steel piping. This enhanced ingress may contribute to pressure-tube cracking at incorrectly assembled joints. The risk of pressure-tube failure has been decreased by ensuring correct joint assembly, and could be further decreased by reducing hydrogen ingress at rolled joints. This paper reviews progress toward using plated end fittings to reduce rolled-joint hydrogen ingress

  6. On the estimation of the magnetic easy axis in pipeline steels using magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ortiz, P. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Instituto Politécnico Nacional, UPALM Edif. Z-4 3 Piso, Zacatenco, Mexico D.F. 07738 (Mexico); Pérez-Benitez, J.A., E-mail: benitez_edl@yahoo.es [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Instituto Politécnico Nacional, UPALM Edif. Z-4 3 Piso, Zacatenco, Mexico D.F. 07738 (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Instituto Politécnico Nacional, UPALM Edif. Z-4 3 Piso, Zacatenco, Mexico D.F. 07738 (Mexico); Caleyo, F.; Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico)

    2015-01-15

    A method for determination of the magnetic easy axis of the Roll Magnetic Anisotropy in API-5L steels is proposed. The method is based on the fact that the angular dependence of the energy corresponding to the main peak of the Magnetic Barkhausen signal presents uniaxial anisotropy with its easy axis parallel to the rolling direction, independently of the angular dependence of the magnetocrystalline energy in the materials. The proposal is also justified based on the analysis of the influence of microstructural changes, produced by hot-rolling on the domain wall dynamics. - Highlights: • Propose a method for finding the easy axis of roll magnetic anisotropy. • Study of the causes of multi-axial anisotropy of MBN energy in API-5L steels. • Analyze the causes of the roll magnetic anisotropy.

  7. On the estimation of the magnetic easy axis in pipeline steels using magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Martínez-Ortiz, P.; Pérez-Benitez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Hallen, J.M.

    2015-01-01

    A method for determination of the magnetic easy axis of the Roll Magnetic Anisotropy in API-5L steels is proposed. The method is based on the fact that the angular dependence of the energy corresponding to the main peak of the Magnetic Barkhausen signal presents uniaxial anisotropy with its easy axis parallel to the rolling direction, independently of the angular dependence of the magnetocrystalline energy in the materials. The proposal is also justified based on the analysis of the influence of microstructural changes, produced by hot-rolling on the domain wall dynamics. - Highlights: • Propose a method for finding the easy axis of roll magnetic anisotropy. • Study of the causes of multi-axial anisotropy of MBN energy in API-5L steels. • Analyze the causes of the roll magnetic anisotropy

  8. Texture and magnetic properties improvement of a 3% Si non-oriented electrical steel by Sb addition

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Marcio Ferreira, E-mail: marciof.rodrigues@aperam.com [Aperam South America, Timóteo, MG (Brazil); Cunha, Marco Antonio da; Costa Paolinelli, Sebastião da [Aperam South America, Timóteo, MG (Brazil); Cota, André Barros [Physics Department—Universidade Federal de Ouro Preto, Redemat, Ouro Preto, MG (Brazil)

    2013-04-15

    The influence of small antimony addition and thermomechanical processing on the magnetic properties of a 3% Si steel was investigated. The samples were processed in the laboratory with 930 °C hot rolling finishing temperature, three different hot band thicknesses, hot band annealing at 1030 °C, cold rolling with three different reductions to 0.35 mm thickness and final annealing at 1030 °C. The results have shown that the best combination of core loss and magnetic induction can be obtained by Sb content of 0.045% and 76% cold rolling reduction, and that Eta/Gamma ratio is higher and grain size larger at this Sb content. -- Highlights: ► The Sb addition on the magnetic properties of a 3% Si steel was investigated. ► The 0.045% Sb and cold rolling reduction of 76% results in the best magnetic properties. ► Sb and cold rolling reduction results in a optimum final grain size and texture. ► The work was performed in a 3% Si non-oriented electrical steel.

  9. Current status of iron and steelmaking technology at Tata Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.D.; Poddar, M.N.; Chandra, S. [Tata Steel, Jamshedpur (India)

    2002-07-01

    Tata Steel was set up in the early years of the 20th century and over the years the plant has grown into one of the most modern steel plants in the world. The philosophy of phase-wise modernisation on a continuing basis was adopted by Tata Steel with great advantage for the modernisation of the two million tonne Jamshedpur Steel Works. Four phases of the modernisation programme have already been successfully completed and their gains consolidated. Adoption and absorption of the latest technologies, fundamental changes in the operating philosophy and setting of stretch performance targets have brought about this remarkable transformation. The recently commissioned state of the art 1.2 Mtpa Cold Rolling Mill Complex is an example of Tata Steel remaining in harmony with times. Another is the use of pulverised coal injection in blast furnaces. The paper highlights some of the important technological developments in integrated steel plants, particularly those being practiced at Tata Steel, in the areas of ironmaking, steelmaking, casting and rolling for retaining its competitive position in the global market with regard to cost, customer and change. 9 refs., 21 figs., 2 tabs.

  10. design chart procedures for polygonal concrete-filled steel columns

    African Journals Online (AJOL)

    ADMIN

    hexagonal and octagonal steel-concrete composite columns subjected to ... This paper also outlines procedures that will enable preparation of ... buildings and in a variety of large-span building ... Likewise, hot-rolled steel tubes are used while ... small moderate large. Fig. 2. Possible arrangement of composite polygonal ...

  11. Induction heating in in-line strip production process

    International Nuclear Information System (INIS)

    Costa, P.; Santinelli, M.

    1995-05-01

    ISP (In-line Strip Production), a continuous process for steel strip production, has recently been set in an italian innovative plant, where ecological impact and power requirements are lighter than usual. This report describes the studies performed by ENEA (Italian Agency for New Technologies, Energy and the Environment), while a prototype reheating facility was arranged by Acciaieria ISP in Cremona (Italy). The authors, after a study of the prototype electromagnetic field, calculate the heating rate, with the thermal network method. Then they detect, with a 1-D-FEM, the heat diffusion through the strip cross section. Afterward, since the heat distribution depends on the eddy current density one, which is given by the magnetic field distribution, the authors, with a 3-D-FEM, carry out a coupled, electromagnetic and thermal, analysis in time domain. The strip temperature map is established by the balance between skin depth heating and surface cooling: a thermal analysis, performed with a moving 2-D-FEM, take into account the effects of the different heating and cooling situations, originated by the strip moving at a speed of 6m/min through four consecutive reheating facilities. The temperatures of a strip sample heated by the prototype have been monitored, acquired by a computer and related with the simulation results. The little difference between experiment and simulation assessed the qualitative and quantitative validity of this analysis, that has come out to be a tool, useful to evaluate the effects of possible improvements to the ISP process

  12. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel in 1.0 M HCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Li Xianghong [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)], E-mail: xianghong-li@163.com; Deng Shuduan [Department of Wood Science and Technology, Southwest Forestry University, Kunming 650224 (China); Fu Hui [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China); Mu Guannan [Department of Chemistry, Yunnan University, Kunming 650091 (China)

    2008-12-15

    The synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution was first investigated by weight loss, potentiodynamic polarization, ultraviolet and visible spectrophotometer (UV-vis), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the adsorption of vanillin obeyed the Temkin adsorption isotherm. For rare earth Ce{sup 4+}, it had a negligible effect. However, incorporation of Ce{sup 4+} with vanillin significantly improved the inhibition performance, and produced strong synergistic inhibition effect. Depending on the results, the synergism mechanism was proposed.

  13. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel in 1.0 M HCl solution

    International Nuclear Information System (INIS)

    Li Xianghong; Deng Shuduan; Fu Hui; Mu Guannan

    2008-01-01

    The synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution was first investigated by weight loss, potentiodynamic polarization, ultraviolet and visible spectrophotometer (UV-vis), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the adsorption of vanillin obeyed the Temkin adsorption isotherm. For rare earth Ce 4+ , it had a negligible effect. However, incorporation of Ce 4+ with vanillin significantly improved the inhibition performance, and produced strong synergistic inhibition effect. Depending on the results, the synergism mechanism was proposed

  14. Travel to Steel Warehouse Inc., Southbend, Indiana. Trip report, May 4, 1995

    International Nuclear Information System (INIS)

    Hill, N.F.

    1995-01-01

    On May 4, 1995 the author visited a steel plate and coil, cold reduction facility at Steel Warehouse Inc. located in South Bend, Indiana about 150 miles from Argonne. Some very interesting facts were learned about cold reduction of hot rolled steel during this visit. The company selected is only a cold reduction mill and buys steel from a number of steel producers. The author spent a total of about three hours with these people, and this included a tour of their pickling line, the small cold reduction mill which at present is limited to 15.5 in width maximum, and their large cold reduction mill which produces sheet and coil up to 72 in. wide. Some of the things that were learned, that will have an impact on the production of the Atlas steel plates are given here. (1) Hot rolled coils have some inherent, interesting, characteristics that must be taken into consideration when being cold reduced. (2) The monitoring of the coil thickness is only done along the center line of the coil, this has a serious impact on QC of plates cut from this coil for a number of reasons. (3) Hot rolled coils of steel in this particular instance may come from a number of different sources. This could cause problems if magnetic permeability is a serious issue. It was the author's impression that this facility is fairly typical of what one might expect from any similar facility

  15. Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Vajpai, S.K., E-mail: vajpaisk@gmail.com [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Dube, R.K., E-mail: rkd@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Sangal, S., E-mail: sangals@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India)

    2013-05-15

    Cu–Al–Ni high temperature shape memory alloy (HTSMA) strips were successfully prepared from rapid solidified water atomized Cu–Al–Ni pre-alloyed powders via hot densification rolling of unsheathed sintered powder preforms. Finished heat-treated Cu–Al–Ni alloy strips had fine-grained structure, average grain size approximately 16 μm, and exhibited a combination of high strength and high ductility. It has been demonstrated that the redistribution of nano-sized alumina particles, present on the surface as well as inside the starting water atomized Cu–Al–Ni pre-alloyed powder particles, due to plastic deformation of starting powder particles during hot densification rolling resulted in the fine grained microstructure in the finished SMA strips. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β{sub 1}{sup ′} and γ{sub 1}{sup ′} martensite. The average fracture strength and fracture strain of the finished SMA strips were 810 MPa and 12%, respectively, and the fractured specimens exhibited primarily micro-void coalescence type ductile nature of fracture. Finished Cu–Al–Ni SMA strips exhibited high characteristic transformation temperatures and an almost 100% one-way shape recovery was obtained in the specimens up to 4% applied deformation pre-strain. The retained two-way shape memory recovery increased with increasing applied training pre-strain, achieving a maximum value of 16.25% at 5% applied training pre-strain.

  16. Influence of deformation process on the improvement of non-oriented electrical steel

    International Nuclear Information System (INIS)

    Fischer, O.; Schneider, J.

    2003-01-01

    World-wide there is a trend to develop higher permeability grades of non-oriented electrical steels. The paper discusses the practical relevance of these developments and describes the progress in higher permeability materials utilizing optimized hot rolling and cold rolling processes

  17. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia); Wood, Kathleen [Australian Nuclear Science and Technology Organisation, Bragg Institute, New South Wales, 2234, Menai (Australia); Taylor, Adam; Hodgson, Peter; Stanford, Nicole [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia)

    2016-02-15

    A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANS in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.

  18. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.S.; Ghosh, S.K.; Kundu, S.; Chatterjee, S.

    2013-01-01

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching

  19. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P.S. [Ordnance Development Centre, Metal and Steel Factory, Ishapore 743 144 (India); Ghosh, S.K., E-mail: skghosh@metal.becs.ac.in [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Kundu, S.; Chatterjee, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2013-02-15

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching.

  20. Possibilities for the Reuse of Steel from Decommissioning. Selected Scenarios in the Process of Proposal and Evaluation of Manufacturing Processes for Conditional Released Steel and their Application in General and Nuclear Industry

    International Nuclear Information System (INIS)

    Bezak, P.; Daniska, V.; Ondra, F.; Necas, V.

    2012-01-01

    Conditional release of steels from NPP decommissioning enables controlled reuse of non-negligible volumes of steels. For proposal of scenarios for steel reuse, it is needed to identify and evaluate partial elementary activities of the whole process from conditional release of steels, manufacturing of various elements up to realisation of scenarios. For scenarios of reuse of conditionally released steel the products of steel, as steel reinforcements, rails, profiles and sheets for technical constructions such as bridges, tunnels, railways and other constructions which guarantee the long-term properties over the periods of 50-100 years are considered. The idea offers also the possibility for using this type of steel for particular technical constructions, directly usable in nuclear facilities. The paper presents the review of activities for manufacturing of various steel construction elements made from conditionally released steels and their use in general and also in the nuclear industry. As the starting material for manufacturing of steel elements ingots or just fragments of steel after dismantling in controlled area can be used. These input materials are re-melted in industrial facilities in order to achieve the required physical and chemical characteristics. Mostly used technique for manufacturing of the steel construction elements is rolling. As the products considered in scenarios for reuse of conditional released steels are bars for reinforcement concrete, rolled steel sheets and other rolled profiles. For use in the nuclear industry it offers the possibility for casting of thick-walled steel containers for long-term storage of high level radioactive components in integral storage and also assembly of stainless steel tanks for storing of liquid radioactive waste. Lists of elementary activities which are needed for manufacturing of selected steel elements are elaborated. These elementary activities are then the base for detailed safety evaluation of external

  1. Strip interpolation in silicon and germanium strip detectors

    International Nuclear Information System (INIS)

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  2. Aluminum and stainless steel tubes joined by simple ring and welding process

    Science.gov (United States)

    Townhill, A.

    1967-01-01

    Duranel ring is used to join aluminum and stainless steel tubing. Duranel is a bimetal made up of roll-bonded aluminum and stainless steel. This method of joining the tubing requires only two welding operations.

  3. Modeling steel deformation in the semi-solid state

    CERN Document Server

    Hojny, Marcin

    2017-01-01

    This book addresses selected aspects of steel-deformation modelling, both at very high temperatures and under the conditions in which the liquid and the solid phases coexist. Steel-deformation modelling with its simultaneous solidification is particularly difficult due to its specificity and complexity. With regard to industrial applications and the development of new, integrated continuous casting and rolling processes, the issues related to modelling are becoming increasingly important. Since the numerous industrial tests that are necessary when traditional methods are used to design the process of continuous casting immediately followed by rolling are expensive, new modelling concepts have been sought. Comprehensive tests were applied to solve problems related to the deformation of steel with a semi-solid core. Physical tests using specialist laboratory instruments (Gleeble 3800thermo-mechanical simulator, NANOTOM 180 N computer tomography, Zwick Z250 testing equipment, 3D blue-light scanning systems), and...

  4. The Effect of Ultrafast Heating on Cold-Rolled Low Carbon Steel: Formation and Decomposition of Austenite

    Directory of Open Access Journals (Sweden)

    Felipe Manuel Castro Cerda

    2016-12-01

    Full Text Available The effect of heating rate on the formation and decomposition of austenite was investigated on cold-rolled low carbon steel. Experiments were performed at two heating rates, 150 °C/s and 1500 °C/s, respectively. The microstructures were characterized by means of scanning electron microscopy (SEM and electron backscattered diffraction (EBSD. Experimental evidence of nucleation of austenite in α/θ, as well as in α/α boundaries is analyzed from the thermodynamic point of view. The increase in the heating rates from 150 °C/s to 1500 °C/s has an impact on the morphology of austenite in the intercritical range. The effect of heating rate on the austenite formation mechanism is analyzed combining thermodynamic calculations and experimental data. The results provide indirect evidence of a transition in the mechanism of austenite formation, from carbon diffusion control to interface control mode. The resulting microstructure after the application of ultrafast heating rates is complex and consists of a mixture of ferrite with different morphologies, undissolved cementite, martensite, and retained austenite.

  5. Effect of nanoprecipitates and grain size on the mechanical properties of advanced structural steels

    International Nuclear Information System (INIS)

    Suarez, M.A.; Alvarez-Perez, M.A.; Alvarez-Fregoso, O.; Juarez-Islas, J.A.

    2011-01-01

    Highlights: → The composition of the steel responded positively to the thermomechanical processing. → Yield strength was increased due to micrometric grain size of 2.2 μm. → Mechanical properties were improved due to nanometric precipitates of 5 nm. → Yield strength values of the API steel were improved up to 877.9 MPa. - Abstract: The microstructure and nanometric precipitates present in advanced structured steel have been studied by high resolution transmission electron microscopy equipped with energy dispersion X-ray microanalysis, in order to relate the nanometric precipitates and grain size with the improvement of the yield strength value of the API steel. The microstructure and nanometric precipitates of the advanced steel were obtained by a combination of thermo-mechanical controlled hot rolling and accelerated cooling procedures. The API steel composition consisted of hot rolled Nb-Ti microalloyed with: 0.07C, 1.40Mn, 0.24Si, 0.020Al, 0.009P, 0.001S, 0.05Mo, 0.5Cr, 0.05Nb, 0.25Ni, 0.10Cu, 0.012Ti, 0.05N in wt%. As a result, this hot rolled steel tested at a strain rate of 5 x 10 -3 s -1 showed an improved yield strength from 798 MPa to 878 MPa due to the micrometric grain size of 2.2 μm and to the nanometric precipitates with a size of around 5 nm in the microstructure of the steel studied.

  6. Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Akramifard, H.R., E-mail: akrami.1367@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-08

    The AA1050 aluminum alloy and AISI 304L stainless steel sheets were stacked together to fabricate Al/304L/Al clad sheet composites by the cold roll bonding process, which was performed at temperatures of ∼100 and 23 °C to produce austenitic and austenitic–martensitic microstructures in the AISI 304L counterpart, respectively. The peel test results showed that the threshold reduction required to make a suitable bond at room temperature is below 10%, which is significantly lower than the required reduction for cold roll bonding of Al sheets. The tearing of the Al sheet during the peel test signified that the bond strength of the roll bonded sheets by only 38% reduction has reached the strength of Al, which is a key advantage of the developed sheets. The extrusion of Al through the surface cracks and settling inside the 304L surface valleys due to strong affinity between Al and Fe was found to be the bonding mechanism. Subsequently, the interface and tensile behaviors of three-layered clad sheets after soaking at 200–600 °C for 1 h were investigated to characterize the effect of annealing treatment on the formation and thickening of intermetallic compound layer and the resultant mechanical properties. Field emission scanning electron microscopy, X-ray diffraction, and optical microscopy techniques revealed that an intermediate layer composed mainly of Al{sub 13}Fe{sub 4}, FeC and Al{sub 8}SiC{sub 7} forms during annealing at 500–600 °C. A significant drop in tensile stress–strain curves after the maximum point (UTS) was correlated to the interface debonding. It was found that the formation of intermediate layer by post heat treatment deteriorates the bond quality and encourages the debonding process. Moreover, the existence of strain-induced martensite in clad sheets was found to play a key role in the enhancement of tensile strength.

  7. The precipitation and effect of nano nitrides in HSLC steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The existing forms of N and Al in HSLC (high strength low carbon) steel produced by TSCR (thin slab casting and rolling process), the precipitation thermodynamics and kinetics of AlN, and its effects on structure and mechanical property are studied. The experimental results show that only a small quantity of nitrogen is com- bined into AlN in HSLC steel produced by TSCR and most of the nitrogen in steel is still free nitrogen. Aluminum-nitride is mainly precipitated during the period of slow air cooling after coiling, but not during rolling and water cooling. The acid-soluble aluminum has no obvious effect on the grain size and mechanical property of HSLC steel produced by TSCR whose acid-soluble aluminum content is 0.005%―0.043%. The precipitation of AlN is not the main cause of grain refinement of HSLC steel produced by TSCR, nor is AlN the dominating precipitate that has precipitation strengthening effect. The nano nitrides are not pure AlN, but have complex compositions.

  8. Austenitic Reversion of Cryo-rolled Ti-Stabilized Austenitic Stainless Steel: High-Resolution EBSD Investigation

    Science.gov (United States)

    Tiamiyu, A. A.; Odeshi, A. G.; Szpunar, J. A.

    2018-02-01

    In this study, AISI 321 austenitic stainless steel (ASS) was cryo-rolled and subsequently annealed at 650 and 800 °C to reverse BCC α'-martensite to FCC γ-austenite. The texture evolution associated with the reversion at the selected temperatures was investigated using high-resolution EBSD. After the reversion, TiC precipitates were observed to be more stable in 650 °C-annealed specimens than those reversed at 800 °C. {110} texture was mainly developed in specimens subjected to both annealing temperatures. However, specimens reversed at 650 °C have stronger texture than those annealed at 800 °C, even at the higher annealing time. The strong intensity of {110} texture component is attributed to the ability of AISI 321 ASS to memorize the crystallographic orientation of the deformed austenite, a phenomenon termed texture memory. The development of weaker texture in 800 °C-annealed specimens is attributed to the residual strain relief in grains, dissolution of grain boundary precipitates, and an increase in atomic migration along the grain boundaries. Based on the observed features of the reversed austenite grains and estimation from an existing model, it is suspected that the austenite reversion at 650 and 800 °C undergone diffusional and martensitic shear reversion, respectively.

  9. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes

    International Nuclear Information System (INIS)

    Li, Yun-jie; Li, Xiao-lei; Yuan, Guo; Kang, Jian; Chen, Dong; Wang, Guo-dong

    2016-01-01

    In this work, a new process and composition design are proposed for “quenching and partitioning” or Q&P treatment. Three low carbon steels were treated by hot-rolling direct quenching and dynamical partitioning processes (DQ&P). The effects of proeutectoid ferrite and carbon concentration on microstructure evolution and mechanical properties were investigated. The present work obtained DQ&P prototype steels with good mechanical properties and established a new notion on compositions for Q&P processing. Microstructures were characterized by means of electro probe microanalyzer (EPMA), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray diffraction (XRD), especially the morphology and size of retained austenite. Mechanical properties were measured by uniaxial tensile tests. The results indicated that introducing proeutectoid ferrite can increase the volume fraction of retained austenite and thus improve mechanical properties. TEM observation showed that retained austenite included the film-like inter-lath austenite and blocky austenite located in martensite/ferrite interfaces or surrounded by ferrites. It was interesting that when the carbon concentration is as low as ~ 0.078%, the film-like inter-lath untransformed austenite cannot be stabilized to room temperature and almost all of them transformed into twin martensite. The blocky retained austenite strengthened the interfaces and transformed into twin martensite during the tensile deformation process. The PSEs of specimens all exceeded 20 GPa.%. - Highlights: •This study focused on a new process: Q&P process applying dynamical partitioning. •Ferrite can increase the volume fraction of retained austenite. •The film-like austenite and the blocky austenite were observed. •The low carbon steels treated by new process reached PSEs higher than 20 GPa.%.

  10. Crystallographic texture control helps improve pipeline steel resistance to hydrogen-induced cracking

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F; Hallen, J M; Herrera, O; Venegas, V [ESIQIE, Instituto Politecnico Nacional, Mexico, (Mexico); Baudin, T [Universite de Paris Sud, Orsay, (France)

    2010-07-01

    The resistance to HIC of sour service pipeline steels has been improved through several strategies but none have proven to be totally efficient in the preservation of HIC in difficult operating conditions. The crystallographic texture plays a significant role in determining the behavior of HIC in pipeline steels. The present study tried to prove that crystallographic texture control, through warm rolling schedules, helps improve pipeline steel resistance to HIC. Several samples of an API 5L X52 grade pipeline steel were produced using different thermomechanical processes (austenization, controlled rolling and recrystallization). These samples were subjected to cathodic charging. Scanning electron microscopy and automated FEG/EBSD were used to perform metallographic inspections and to collect microstructure data. The results showed that the strong y fiber texture significantly reduces or even prevents the HIC damage. It is possible to improve the HIC resistance of pipeline steels using crystallography texture control and grain boundary engineering.

  11. Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

    OpenAIRE

    Topçu, İlker Bekir; Karakurt, Cenk

    2008-01-01

    The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 5...

  12. Cross Coating Weight Control by Electromagnetic Strip Stabilization at the Continuous Galvanizing Line of ArcelorMittal Florange

    Science.gov (United States)

    Guelton, Nicolas; Lopès, Catherine; Sordini, Henri

    2016-08-01

    In hot dip galvanizing lines, strip bending around the sink roll generates a flatness defect called crossbow. This defect affects the cross coating weight distribution by changing the knife-to-strip distance along the strip width and requires a significant increase in coating target to prevent any risk of undercoating. The already-existing coating weight control system succeeds in eliminating both average and skew coating errors but cannot do anything against crossbow coating errors. It has therefore been upgraded with a flatness correction function which takes advantage of the possibility of controlling the electromagnetic stabilizer. The basic principle is to split, for every gage scan, the coating weight cross profile of the top and bottom sides into two, respectively, linear and non-linear components. The linear component is used to correct the skew error by realigning the knives with the strip, while the non-linear component is used to distort the strip in the stabilizer in such a way that the strip is kept flat between the knives. Industrial evaluation is currently in progress but the first results have already shown that the strip can be significantly flattened between the knives and the production tolerances subsequently tightened without compromising quality.

  13. Quest for steel quality: the role of metallurgical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2000-10-01

    Improvements in the quality of steels and the role played by metallurgical chemistry to bring about those improvements are discussed. The particular emphasis is on the chemical behaviour of solutes in molten steel and the reaction between steel, slag and refractory materials and the manner in which they influence the physical properties and performance of the steel product. As an illustration of the contribution of chemistry to steel making the case of the steel plates used in the construction of the Titanic is cited. In 1911 when the Titanic was constructed by Harland and Wolff at their Belfast shipyard, the steel plates used in the hull met all then current specifications. In 1992 when a number of steel samples recovered from the Titanic were examined, it was found that the hull of the vessel was constructed of low carbon, semi-killed steel, produced in the open-hearth process. Microstructural analysis showed extensive carbon banding, typical of hot rolled 0.2 per cent carbon steel. Also found were long manganese sulphide inclusions elongated in the rolling direction, some of which exceeded 25 mm in length. It was determined that as a consequence of these inclusions, at a seawater temperature of 0 degree C, the hull plates of the Titanic had essentially no resistance to fracture. Today's high quality steels used in applications such as Arctic pipelines, offshore platforms, icebreakers and ships for the transportation of natural gas, oxygen and sulphur concentrations are frequently less than 10 ppm. These elements have a profound influence of the quality of the final steel products by virtue of their effect of hindering the formation of inclusions. 2 refs., 3 figs.

  14. The relationship between microstructure and magnetic properties of Si-containing permalloy strips fabricated by melt drag casting

    International Nuclear Information System (INIS)

    Lim, K.M.; Park, S.Y.; Namkung, J.; Kim, M.C.; Park, C.G.

    2007-01-01

    The effects of Si addition on microstructure and magnetic properties of permalloy strips fabricated by the melt drag casting method were investigated. Permalloy strips with 200 mm width were successfully fabricated by melt drag casting followed by homogenizing, cold rolling and annealing. In order to understand the relationship between microstructure and magnetic properties, we measured permeability and analyzed microstructure as a function of Si content by optical microscopy, X-ray diffraction and transmission electron microscopy. The effective permeability went through a maximum value in 2 at.% Si added permalloy strips and then decreased with increasing Si content. Increasing Si content enlarged grain size, which resulted in improvement of permeability. Permalloy strips with 5 at.% Si, however, showed drastically reduced permeability than that of 2 at.% Si added ones notwithstanding their coarse grain size and little oxide inclusion. The degradation of permeability in over-added Si above 2 at.% could be explained by formation of Ni 3 Fe ordered phase, which increase magneto-crystalline anisotropy

  15. The hot working characteristics of a boron bearing and a conventional low carbon steel

    International Nuclear Information System (INIS)

    Stumpf, Waldo; Banks, Kevin

    2006-01-01

    Constitutive hot working constants were determined for an 11 ppm boron low carbon strip steel and compared from 875 to 1140 deg. C and strain rates of 0.001-2.5 s -1 to a high nitrogen low carbon strip steel. The boron steel showed a different hot working behaviour than the conventional steel with the steady state flow stress about 50-60% higher, the peak strain more than 50% higher and the eventual ferrite grain size about 40% smaller, if compared at the same temperature compensated strain rates or Z values. This difference persisted where the soaking temperature before compression was varied between 1140 and 1250 deg. C, proving that undissolved AlN in the boron-bearing steel was not responsible. With systematically varied linear cooling rates after hot working, the final ferrite grain size in the boron steel is finer and is independent of the two Z values applied during hot working. Retarded softening by dynamic recrystallisation during hot working in the boron containing steel is probably caused by boron solute drag of moving grain boundaries

  16. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K.R.; Smith, C.J.E. [Defence Research Agency, Farnborough (United Kingdom). Structural Materials Centre; Robinson, M.J. [Cranfield Univ. (United Kingdom). School of Industrial and Manufacturing Science

    1995-12-01

    The ability of electrodeposited zinc-nickel alloy coatings to cathodically protect steel was studied in dilute chloride solutions. The potential distribution along steel strips partly electroplated with zinc-nickel alloys was determined, and the length of exposed steel that was held below the minimum protection potential (E{sub prot}) was taken as a measure of the level of cathodic protection (CP) provided by the alloy coatings. The level of CP afforded by zinc alloy coatings was found to decrease with increasing nickel content. When nickel content was increased to {approx} {ge} 21 wt%, no CP was obtained. Surface analysis of uncoupled zinc-nickel alloys that were immersed in sodium chloride (NaCl) solutions showed the concentration of zinc decreased in the surface layers while the concentration of nickel increased, indicating that the alloys were susceptible to dezincification. The analysis of zinc-nickel alloy coatings on partly electroplated steel strips that were immersed in chloride solution showed a significantly higher level of dezincification than that found for uncoupled alloy coatings. This effect accounted for the rapid loss of CP afforded to steel by some zinc alloy coatings, particularly those with high initial nickel levels.

  17. High Strength-High Ductility Combination Ultrafine-Grained Dual-Phase Steels Through Introduction of High Degree of Strain at Room Temperature Followed by Ultrarapid Heating During Continuous Annealing of a Nb-Microalloyed Steel

    Science.gov (United States)

    Deng, Yonggang; Di, Hongshuang; Hu, Meiyuan; Zhang, Jiecen; Misra, R. D. K.

    2017-07-01

    Ultrafine-grained dual-phase (UFG-DP) steel consisting of ferrite (1.2 μm) and martensite (1 μm) was uniquely processed via combination of hot rolling, cold rolling and continuous annealing of a low-carbon Nb-microalloyed steel. Room temperature tensile properties were evaluated and fracture mechanisms studied and compared to the coarse-grained (CG) counterpart. In contrast to the CG-DP steel, UFG-DP had 12.7% higher ultimate tensile strength and 10.7% greater uniform elongation. This is partly attributed to the increase in the initial strain-hardening rate, decrease in nanohardness ratio of martensite and ferrite. Moreover, a decreasing number of ferrite grains with {001} orientation increased the cleavage fracture stress and increased the crack initiation threshold stress with consequent improvement in ductility UFG-DP steel.

  18. Influence of stainless steel Internals on Corrosion of tower wall materials

    Science.gov (United States)

    Chen, Bing; Ren, Ke

    2017-12-01

    In view of the galvanic corrosion of the tower wall material in the tower of a refinery atmospheric vacuum distillation unit, the electrochemical behavior of Q345R steel, stainless steel (201, 304 cold-rolled plate, 304 hot rolled plate and 316L) in 3.5%NaCl solution was studied by electrochemical method. The results show that the corrosion potential of Q345R is much lower than that of stainless steel, and the corrosion rate of Q345R is higher than that of stainless steel. As the anode is etched as the anode corrosion, the anode polarizability of stainless steel shows strong polarization ability, which is anodic polarization control, and Q345R is anode Active polarization control; Q345R / 201 galvanic pair may be the most serious corrosion, and Q345R/316L galvanic couple may be relatively slight. Therefore, in the actual production of tower equipment, material design or tower to upgrade the replacement, it are recommended to use the preferred anode and cathode potential difference with the use of materials.

  19. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  20. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  1. A numerical study on the mechanical properties and the processing behaviour of composite high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Muenstermann, Sebastian [RWTH Aachen (Germany). Dept. of Ferrous Metallurgy; Vajragupta, Napat [RWTH Aachen (Germany). Materials Mechanics Group; Weisgerber, Bernadette [ThyssenKrupp Steel Europe AG (Germany). Patent Dept.; Kern, Andreas [ThyssenKrupp Steel Europe AG (Germany). Dept. of Quality Affairs

    2013-06-01

    The demand for lightweight construction in mechanical and civil engineering has strongly promoted the development of high strength steels with excellent damage tolerance. Nowadays, the requirements from mechanical and civil engineering are even more challenging, as gradients in mechanical properties are demanded increasingly often for components that are utilized close to the limit state of load bearing capacity. A metallurgical solution to this demand is given by composite rolling processes. In this process components with different chemical compositions were jointed, which develop after heat treatment special properties. These are actually evaluated in order to verify that structural steels with the desired gradients in mechanical properties can be processed. A numerical study was performed aiming to numerically predict strenght and toughness properties, as well as the procesing behaviour using Finite Element (FE) simulations with damage mechanics approaches. For determination of mechanical properties, simulations of tensile specimen, SENB sample, and a mobile crane have been carried out for different configurations of composite rolled materias out of high strebght structural steels. As a parameter study, both the geometrical and the metallurgical configurations of the composite rolled steels were modified. Thickness of each steel layer and materials configuration have been varied. Like this, a numerical procedure to define optimum tailored configurations of high strenght steels could be established.

  2. Effect of bainitic transformation temperature on the mechanical behavior of cold-rolled TRIP steels studied with in-situ high-energy X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, B. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yang, W.Y., E-mail: wyyang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li, L.F.; Sun, Z.Q. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-05-01

    The effect of bainitic transformation temperature (400 and 450 °C) after intercritical annealing on the mechanical behavior of a low alloyed C–Mn–Al–Si cold-rolled TRIP steel was investigated using the in-situ high-energy X-ray diffraction technique. It was found that the mechanical behaviors of TRIP steels were dominated by the micromechanical behaviors of constituent phases, such as yield strength of each phase and stress partitioning among different phases, as well as the transformation kinetics of retained austenite during plastic deformation. The microstructures obtained at different bainitic transformation temperatures were similar, but exhibited obviously different mechanical behaviors. The retained austenite in the sample treated at 450 °C with lower carbon content and yield strength was less stable and transformed into martensite at a relatively faster speed during deformation leading to a higher ultimate tensile strength but a smaller uniform elongation. In addition, stress partitioning among constituent phases was also obtained for the investigated steels in such a way that the ferrite matrix undertook smaller stresses and the bainitic ferrite, martensite and retained austenite bore larger ones during plastic deformation. The retained austenite in the sample treated at 400 °C with higher carbon content displayed significantly higher strength and relatively stronger work-hardening capabilities during deformation in comparison to those of the sample treated at 450 °C.

  3. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  4. Independency of Elasticity on Residual Stress of Room Temperature Rolled Stainless Steel 304 Plates for Structure Materials

    Directory of Open Access Journals (Sweden)

    Parikin Parikin

    2015-12-01

    Full Text Available Mechanical strengths of materials are widely expected in general constructions of any building. These properties depend on its formation (cold/hot forming during fabrication. This research was carried out on cold-rolled stainless steel (SS 304 plates, which were deformed to 0, 34, 84, and 152% reduction in thickness. The tests were conducted using Vickers method. Ultra micro indentation system (UMIS 2000 was used to determine the mechanical properties of the material, i.e.: hardness, modulus elasticity, and residual stresses. The microstructures showed lengthening outcropping due to stress corrosion cracking for all specimens. It was found that the tensile residual stress in a specimen was maximum, reaching 442 MPa, for a sample reducing 34% in thickness and minimum; and about 10 MPa for a 196% sample. The quantities showed that the biggest residual stress caused lowering of the proportional limit of material in stress-strain curves. The proportional modulus elasticity varied between 187 GPa and of about 215 GPa and was free from residual stresses.

  5. 2-Mercaptopyrimidine as an effective inhibitor for the corrosion of cold rolled steel in HNO_3 solution

    International Nuclear Information System (INIS)

    Li, Xianghong; Deng, Shuduan; Lin, Tong; Xie, Xiaoguang; Du, Guanben

    2017-01-01

    Highlights: • MP acts an effective inhibitor in HNO_3, but other pyrimidine derivatives are poor. • MP is a mixed inhibitor, while mainly retards anodic reaction. • EIS exhibit depressed capacitive loops whose diameters are increased with MP. • The most active adsorption site is S atom for any MP molecular form. • The adsorptive order is thiol-MP < thione-MP < p-thiol-MP < p-thione-MP. - Abstract: The inhibition effect of five pyrimidine derivatives (2-chloropyrimidine, 2-hydroxypyrimidine, 2-bromopyrimidine, 2-aminopyrimidine, 2-mercaptopyrimidine) on the corrosion of cold rolled steel (CRS) in 0.1 M HNO_3 solution was comparatively examined. 2-Mercaptopyrimidine (MP) was found to be an effective inhibitor with the inhibition efficiency as high as 99.1% at a low concentration 0.50 mM. But other four pyrimidine derivatives exhibited poor inhibitive ability. The addition of MP caused both anodic and cathodic curves to low current densities, and was found to significantly strengthen the impedance. Quantum chemical calculation and molecular dynamic simulation were performed to theoretically investigate the adsorption mechanism.

  6. Deformability of Oxide Inclusions in Tire Cord Steels

    Science.gov (United States)

    Zhang, Lifeng; Guo, Changbo; Yang, Wen; Ren, Ying; Ling, Haitao

    2018-04-01

    The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young's modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young's moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young's moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.

  7. Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel

    Science.gov (United States)

    Xu, H. J.; Xu, Y. B.; Jiao, H. T.; Cheng, S. F.; Misra, R. D. K.; Li, J. P.

    2018-05-01

    Fe-6.5 wt% Si steel hot bands with different initial grain size and texture were obtained through different annealing treatment. These bands were then warm rolled and annealed. An analysis on the evolution of microstructure and texture, particularly the formation of recrystallization texture was studied. The results indicated that initial grain size and texture had a significant effect on texture evolution and magnetic properties. Large initial grains led to coarse deformed grains with dense and long shear bands after warm rolling. Such long shear bands resulted in growth advantage for {1 1 3} 〈3 6 1〉 oriented grains during recrystallization. On the other hand, sharp {11 h} 〈1, 2, 1/h〉 (α∗-fiber) texture in the coarse-grained sample led to dominant {1 1 2} 〈1 1 0〉 texture after warm rolling. Such {1 1 2} 〈1 1 0〉 deformed grains provided massive nucleation sites for {1 1 3} 〈3 6 1〉 oriented grains during subsequent recrystallization. These {1 1 3} 〈3 6 1〉 grains were confirmed to exhibit an advantage on grain growth compared to γ-fiber grains. As a result, significant {1 1 3} 〈3 6 1〉 texture was developed and unfavorable γ-fiber texture was inhibited in the final annealed sheet. Both these aspects led to superior magnetic properties in the sample with largest initial grain size. The magnetic induction B8 was 1.36 T and the high frequency core loss P10/400 was 17.07 W/kg.

  8. Physical Analysis of Cross-Wedge Rolling Process of a Stepped Shaft

    Directory of Open Access Journals (Sweden)

    Łukasz Wójcik

    2017-12-01

    Full Text Available The paper presents experimental- model research results on the process of cross-wedge rolling of an axially-symmetrical element (stepped shaft. During research was used plastic mass on the basis of waxes in black and white colour. The aim of this experimental research was to determine the best option of forming in terms of values obtained and the course of forces. Physical examination was carried out using specialist machines, that is model and laboratory cross-wedge rolling mill. Experimental analysis was carried out using billets with the temperature of 15°C, whereas the actual process was carried out for billet from C45 carbon steel of temperature 1150°C. The study compared the dimensions of the components obtained during rolling tests and forming forces obtained in the result of physical modeling with forces obtained during real tests.

  9. Phase evolution and mechanical behavior of 0.36 wt% C high strength TRIP-assisted steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swarup Kumar; Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2012-12-15

    Phase evolution in a 0.36 wt% C steel has been studied by thermodynamic calculation and dilatometric analysis with an aim to achieve high strength TRIP-assisted steel with bainitic microstructure. The equilibrium phase fraction calculated as the function of temperature indicated the formation of {delta}-ferrite ({approx}98%) at 1417 C. In contrast, similar calculation under para-equilibrium condition exhibited transformation of {delta}-ferrite to austenite at the temperature below 1300 C. During further cooling two-phase ({alpha}+{gamma}) microstructure has been found to be stable at the intercritical temperature range. The experimentally determined CCT diagram has revealed that adequate hardenability is achievable in the steel under continuous cooling condition at cooling rate >5 C s{sup -1}. In view of the aforesaid results, the steel has been hot rolled and subjected to different process schedule conducive to the evolution of bainitic microstructure. The hot rolled steel has exhibited reasonably good tensile properties. However, cold deformation of the hot rolled sample followed by intercritical annealing and subsequent isothermal bainitic transformation has resulted in high strength (>1000 MPa) with attractive elongation due to the favorable work hardening condition during plastic deformation offered by the multiphase microstructure. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    Science.gov (United States)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  11. Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination

    Science.gov (United States)

    Al-Jabr, Haytham M.

    The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample

  12. The Kinetics of Bainitic Transformation of Roll Steel 75Kh3MF

    Science.gov (United States)

    Kletsova, O. A.; Krylova, S. E.; Priymak, E. Yu.; Gryzunov, V. I.; Kamantsev, S. V.

    2018-01-01

    The critical points of steel 75Kh3MF and the temperature of the start of martensitic transformation are determined by a dilatometric method. The thermokinetic and isothermal diagrams of decomposition of supercooled austenite are plotted. The microstructure and microhardness of steel specimens cooled at different rates are studied. The kinetics of the occurrence of bainitic transformation in the steel is calculated using the Austin-Ricket equation.

  13. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  14. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    OpenAIRE

    Na Yang; Fan Bai

    2017-01-01

    Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and e...

  15. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  16. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  17. 75 FR 47541 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil and Japan: Final Results of...

    Science.gov (United States)

    2010-08-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-351-828, A-588-846] Hot-Rolled Flat..., Department of Commerce. SUMMARY: On April 1, 2010, the Department of Commerce (the Department) initiated... Department has conducted expedited (120-day) sunset reviews for both orders pursuant to 19 CFR 351.218(e)(1...

  18. Preloading Effect on Strengthening Efficiency of RC Beams Strengthened with Non- and Pretensioned NSM Strips

    Directory of Open Access Journals (Sweden)

    Renata Kotynia

    2018-02-01

    Full Text Available The near surface mounted (NSM technique has been shown to be one of the most promising methods for upgrading reinforced concrete (RC structures. Many tests carried out on RC members strengthened in flexure with NSM fiber-reinforced polymer (FRP systems have demonstrated greater strengthening efficiency than the use of externally-bonded (EB FRP laminates. Strengthening with simultaneous pretensioning of the FRP results in improvements in the serviceability limit state (SLS conditions, including the increased cracking moment and decreased deflections. The objective of the reported experimental program, which consisted of two series of RC beams strengthened in flexure with NSM CFRP strips, was to investigate the influence of a number of parameters on the strengthening efficiency. The test program focused on an analysis of the effects of preloading on the strengthening efficiency which has been investigated very rarely despite being one of the most important parameters to be taken into account in strengthening design. Two preloading levels were considered: the beam self-weight only, which corresponded to stresses on the internal longitudinal reinforcement of 25% and 14% of the yield stress (depending on a steel reinforcement ratio, and the self-weight with the additional superimposed load, corresponding to 60% of the yield strength of the unstrengthened beam and a deflection equal to the allowable deflection at the SLS. The influence of the longitudinal steel reinforcement ratio was also considered in this study. To reflect the variability seen in existing structures, test specimens were varied by using different steel bar diameters. Finally, the impact of the composite reinforcement ratio and the number of pretensioned FRP strips was considered. Specimens were divided into two series based on their strengthening configuration: series “A” were strengthened with one pretensioned and two non-pretensioned carbon FRP (CFRP strips, while series

  19. Characterization of thermal aging of duplex stainless steel by SQUID

    International Nuclear Information System (INIS)

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F.

    1995-01-01

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging

  20. Experimental and numerical study of the effect of rolling parameters on shaft deformation during the longitudinal rolling process

    Science.gov (United States)

    Kowalik, Marek; Trzepiecinski, Tomasz

    2018-05-01

    This paper presents the characteristics of the process of longitudinal rolling of shafts and the geometry of the working section of forming rollers with a secant profile. In addition, the analytical formulae defining the geometry of a roller profile were determined. The experiments were carried out on shafts made of S235JR and C45 structural steels and the MSC.Marc + Mentat program was used for the numerical analysis of the rolling process based on the finite element method. The paper analyses the effect of roller geometry on the changes in value of the widening coefficient and the diameter reduction coefficient for the first forming passage. It was found that the mechanical properties of the shaft material have a slight influence on the widening coefficient. The value of the widening coefficient of the shaft increases with increase in the initial diameter of the shaft. Increasing shaft diameter causes an increase of strain gradient on the cross-section of the shaft.