WorldWideScience

Sample records for steel sheet piling

  1. Steel Sheet Piles - Applications and Elementary Design Issues

    Science.gov (United States)

    Sobala, Dariusz; Rybak, Jarosław

    2017-10-01

    High-intensity housing having been carried out in town’s centres causes that many complex issues related to earthworks and foundations must be resolved. Project owners are required to ensure respective number of parking bays, which in turn demands 2-3 storeys of underground car parks. It is especially difficult to fulfil in dense buildings of old town areas where apart from engineering problems, very stringent requirements of heritage conservator supervision are also raised. The problems with ensuring stability of excavation sidewalls need to be, at the same time, dealt with analysis of foundations of neighbouring structures, and possible strengthening them at the stages of installing the excavation protection walls, progressing the excavations and constructing basement storeys. A separate problem refers to necessity of constructing underground storeys below the level of local groundwater. This requires long-term lowering of water table inside excavation while at possibly limited intervention in hydrological regime beyond the project in progress. In river valleys such “hoarding off” the excavation and cutting off groundwater leads to temporary or permanent disturbances of groundwater run-off and local swellings. Traditional way to protect vertical fault and simultaneously to cut-off groundwater inflow consists in application of steel sheet pilings. They enable to construct monolithic reinforced concrete structures of underground storeys thus ensuring both their tightness and high rigidity of foundation. Depending on situation, steel sheet pilings can be in retrieving or staying-in-place versions. This study deals with some selected aspects of engineering design and fabrication of sheet piling for deep excavations and underground parts of buildings.

  2. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    International Nuclear Information System (INIS)

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-01-01

    The Waterloo Barrier trademark steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10 -8 to 10 -10 cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier trademark cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier trademark in these applications

  3. In-Situ Subsurface Coating of Corroded Steel Sheet Pile Structures: Final Report on Project F08-AR06

    Science.gov (United States)

    2017-09-01

    shrink cement grout or epoxy resin in the gap between old and new steel , shown in Figure 19. This was the reason why the perforated piles needed to...be made liquid-tight with cement grout or epoxy. Other- wise, the material injected between the old and new steel would be lost be- hind the old steel ...ER D C/ CE RL T R- 17 -3 5 DoD Corrosion Prevention and Control Program In-Situ Subsurface Coating of Corroded Steel Sheet Pile

  4. Settlement during vibratory sheet piling

    NARCIS (Netherlands)

    Meijers, P.

    2007-01-01

    During vibratory sheet piling quite often the soil near the sheet pile wall will settle. In many cases this is not a problem. For situations with houses, pipelines, roads or railroads at relative short distance these settlements may not be acceptable. The purpose of the research described in this

  5. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  6. Load Test in Sheet Pile

    OpenAIRE

    Luis Orlando Ibanez

    2016-01-01

    In this work, are discussed experiences in the use of mathematical modeling and testing in hydraulic engineering structures. For this purpose the results of load tests in sheet pile, evaluating horizontal and vertical deformations that occur in the same exposed. Comparisons between theoretical methods for calculating deformations and mathematical models based on the Finite Element Method are established. Finally, the coincidence between the numerical model and the results of the load test ful...

  7. A Sustainable Approach for Optimal Steel Sheet Pile Structure Assessment, Maintenance, and Rehabilitation

    Science.gov (United States)

    2011-09-30

    plants, electrical transmission network, pipelines) • public buildings (e.g., schools, hospitals, post offices, police stations, fire houses, court...developed under REMR focused on concrete and steel materials, along with geotechnical, hydraulic, electrical and mechanical, environmental, and coastal...between the wet or dry kilning processes in ce- ment production cannot be discerned from the overall impacts associ- ated with concrete production. The

  8. Full size testing of sheet pile walls

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Linden, M.L.R. van der; Katsma, H.; Stolle, P.

    1996-01-01

    Azobé (Lophira alata) is widely used in timber sheet pile walls in the Netherlands. The boards in these walls are coupled and therefore load-sharing can be expected. A simulation model based on the finite element method DIANA (DIANA, 1992) was developed and load-sharing could be calculated. To check

  9. Bracing system of the reflecting sheets making up an insulating pile

    International Nuclear Information System (INIS)

    Carr, R.W.

    1976-01-01

    In order to reduce heat and radiation losses, the body of nuclear reactors and the connected pipe work are encased in reflecting and insulating piles of thin spaced sheets of aluminium or stainless steel. These spaced sheets are then encased in thicker and more solid internal and external shells. The piles and shells are generally shaped to follow the contour of the reactor and connected piping. It is therefore necessary to have available a study bracing system to keep the pile intact during the various handling and assembly operations. The fastening system must also exert an effect on the edge of the pile to prevent the sheets making it up from shifting in relation to each other. The description is given of a fastening system that includes an oblong section to be fitted along the edges of the piles up sheets; bracing substantially perpendicular to the oblong section, to space the sheets of the stack in pairs; and a maintaining system, normally perpendicular to the oblong section, to enable the fastener to be clipped to the edge of the sheets by bending it around the edge of each sheet of the pile [fr

  10. Optimal Design of Sheet Pile Wall Embedded in Clay

    Science.gov (United States)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  11. Influence of cantilevered sheet pile deflection on adjacent roadways.

    Science.gov (United States)

    2009-06-01

    Cantilevered sheet pile walls are often used adjacent roadways as temporary support during construction. Excess movement of these walls has led to excessive roadway distress causing additional repairs to be necessary. This study assessed the effects ...

  12. Pile load test on large diameter steel pipe piles in Timan-Pechora, Russia

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, S. [Golder Associates Inc., Houston, TX (United States); Tart, B. [Golder Associates Inc., Anchorage, AK (United States); Swartz, R. [Paragon Engineering Services Inc., Houston, TX (United States)

    1994-12-31

    Pile load testing conducted in May and June of 1993 at the Polar Lights Ardalin project in Arkangelsk province, Russia, was documented. Pile load testing was conducted to determine the ultimate and allowable pile loads for varying pile lengths and ground temperature conditions and to provide creep test data for deformation under constant load. The piles consisted of 20 inch diameter steel pipe piles driven open ended through prebored holes into the permafrost soils. Ultimate pile capacities, adfreeze bond, and creep properties observed were discussed. 10 figs., 4 tabs.

  13. Abating coal tar seepage into surface water bodies using sheet piles with sealed interlocks

    International Nuclear Information System (INIS)

    Collingwood, B.I.; Boscardin, M.D.; Murdock, R.F.

    1995-01-01

    A former coal tar processing facility processed crude coal tar supplied from manufactured gas plants in the area. Coal-tar-contaminated ground water from the site was observed seeping through an existing timber bulkhead along a tidal river and producing a multicolored sheen on the surface of the river. As part of a short-term measure to abate the seepage into the river, 64-m long anchored sheet pile wall with sheet pile wing walls at each end was constructed inland of the of the timber bulkhead. The sheet piles extended to low-permeability soils at depth and the interlocks of the sheet piles were provided with polyurethane rubber seals. Based on postconstruction observations for leakage and sheens related to leakage, the steel sheet piles with polyurethane rubber interlock seals appeared to provide a successful seal and abate coal-tar-contaminated ground water seepage into the river. The tie rod penetration sealing proved to be a more problematic detail, but through several postconstruction grouting episodes, an effective seal was produced

  14. APPLICATION OF STEEL PIPE PILE LOADING TESTS TO DESIGN VERIFICATION OF FOUNDATION OF THE TOKYO GATE BRIDGE

    Science.gov (United States)

    Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji

    Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.

  15. SUITABLE LOCATION OF SHEET PILE UNDER DAM RESTING ON SANDY SOIL WITH CAVITY

    Directory of Open Access Journals (Sweden)

    Laith J. Aziz

    2018-05-01

    Full Text Available This research describes the seepage characteristics of experimental model test of dam with cutoff located at different region (at dam heel, at mid floor of dam, and at dam toe. It is resting on sandy soil with cavity at different locations in X and Y directions (such as in Al-Najaf soil city. Thirty three model tests are performed in laboratory by using steel box to estimate the quantity of the seepage and flow lines direction. It was concluded that the best location of the cutoff wall is at the dam toe for model test with cavity ( Xc B = 0 and 0.5, but for model test with cavity ( Xc B ≥1, the best location of the sheet pile wall becomes at the dam heel. For negative location of the cavity, the best location of the sheet pile wall is at the middle of the floor dam.

  16. Efficiency analysis and assessment of interlocking PVC sheet piling walls

    International Nuclear Information System (INIS)

    Emam, A.A.

    2005-01-01

    The use of PVC sheet piling in marine environments offers a number of unique advantages that include weight saving, corrosion resistance and environmentally safe material. In this study, one of the widely used classical methods as well as a finite element analysis are used to analyze such sheet piling walls. The analysis focuses on the effect of some important parameters on the wall global behavior, bending moments, stresses and deflections. The parameters include wall cross-section, wall height, embedment depth, number and spacing of anchor rods, and type of soil and loading conditions. Furthermore, the effect of the shape of the wall cross-section and the location of the interlocking joints has been studied by using plane frame and arch-like models. Results indicate that the finite element modeling is an effective tool for numerical approximation of soil-structure interaction problems. The required theoretical embedment depth is nearly 30 % of the clear wall height. Also, the modulus of subgrade reaction has a minor effect on both cantilever wall and one anchor sheet-pile wall. Finally, lateral (horizontal) action shows that deep sections tend to behave like an arch under radial loading which might increase normal stresses at some critical sections

  17. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet

  18. ENVIRONMENTAL AND ECONOMIC PROSPECTS FOR USAGE OF PULTRUDED COMPOSITE SHEET PILES

    Directory of Open Access Journals (Sweden)

    BURYA Alexander I.

    2016-11-01

    Full Text Available The article focuses on the description of pultruded composite sheet piles. The article covers the production technology, advantages over other traditional materials, as well as environmental and economic prospects for expanding of the usage of composite sheet piling.

  19. Ultimate Limit State Design Of Sheet Pile Walls By Finite Elements And Nonlinear Programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2002-01-01

    Limit analysis has been used for decades in civil and mechanical engineering practice as a means of analyzing structures of materials which with reasonable accuracy can be described as being rigid-perfectly plastic. Such materials include steel, concrete and soils. Traditionally, most attention has...... been given to the problem which consists of determining the ultimate magnitude of a given set of loads acting on a structure with a given geometry. This problem is relevant when determining e.g. the necessary extrusion pressure in metal forming problems, when evaluating the bearing capacity...... is the load intensity. In the paper we consider the latter of these problems with particular reference to the design of sheet pile walls....

  20. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  1. Vertical Equilibrium of Sheet Pile Walls with Emphasis on Toe Capacity and Plugging

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Augustesen, Anders Hust; Nielsen, Benjaminn Nordahl

    Constructions including retaining walls are normally established in areas where it is impossible to conduct an excavation with inclined sides. Due to large excavation depths and due to restrictions on the deformations of the wall, it is often necessary to anchor the wall. The limited space makes...... at the pile toe to fulfil vertical equilibrium. The paper describes a case study of sheet pile walls in Aalborg Clay, and the amount of loads transferred as point loads at the pile toe for free and anchored walls is estimated. A parametric study is made for the free wall with regards to the height...... and the roughness of the wall. Due to limitations of the calculation method, the study of the anchored wall only includes variation of the roughness. For the case study, it is found that the vertical equilibrium is fulfilled for the considered free wall. An anchored wall needs a plug forming at the pile toe...

  2. Influences of plasticity on a sheet pile phased stochastic FE analysis

    NARCIS (Netherlands)

    Boer, A. de; Waarts, P.H.

    2000-01-01

    The paper deals with the stochastic analysis of the stability of a sheet pile soil structure. Most areas in the Netherlands have layered soil conditions. The decisive parameter in the nonlinear FE analysis is the behaviour of the soil. For layered soil conditions, the correct modelling of the

  3. Durability assessment of concrete sheet piling in the 'De Betuweroute' railway line

    NARCIS (Netherlands)

    Peelen, W.H.A.; Polder, R.B.

    2004-01-01

    Assessment of the durability of prestressed concrete sheet piles under the interference of CP gas pipeline system current, established that due to their low magnitude, these currents do not compromise the required 100-year service life of the structures. The sophisticated numerical modelling tools

  4. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  5. Copper contamination in thin stainless steel sheet

    International Nuclear Information System (INIS)

    Holbert, R.K. Jr.; Dobbins, A.G.; Bennett, R.K. Jr.

    1986-01-01

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  6. In-pile IASCC growth tests of irradiated stainless steels in JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka [Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki (Japan); Shibata, Akira; Ohmi, Masao [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation-assisted stress corrosion cracking (IASCC) test plan to evaluate in-situ effects of neutron/{gamma}-ray irradiation on crack growth of irradiated stainless steels under high-temperature water conditions for commercial boiling water reactors (BWRs) using the Japan Materials Testing Reactor (JMTR). Crack growth rate and its electrochemical corrosion potential (ECP) dependence are different between in-pile test and post irradiation examination (PIE), but these differences are not fully understood. The objectives of the present study are to understand the difference between in-pile and out-of-pile IASCC growth and to confirm the effectiveness of mitigation due to lowering ECP on in-pile crack growth rates. For in-pile crack growth tests, we have selected a large compact tension specimen such as 0.5T-CT because of validity of SCC growth test at a high stress intensity factor (K-value). For loading a 0.5T-CT specimen up to K - 30 MPa {radical}m, we have adopted a lever type loading unit for in-pile crack growth tests in the JMTR. In this report, an in-pile test plan for crack growth of irradiated SUS316L stainless steels under simulated BWR conditions in the JMTR and current status of development of in-pile crack growth test techniques are presented. (author)

  7. Design method of large-diameter rock-socketed pile with steel casing

    Science.gov (United States)

    Liu, Ming-wei; Fang, Fang; Liang, Yue

    2018-02-01

    There is a lack of the design and calculation method of large-diameter rock-socketed pile with steel casing. Combined with the “twelfth five-year plan” of the National Science & Technology Pillar Program of China about “Key technologies on the ports and wharfs constructions of the mountain canalization channels”, this paper put forward the structured design requirements of concrete, steel bar distribution and steel casing, and a checking calculation method of the bearing capacity of the normal section of the pile and the maximum crack width at the bottom of the steel casing. The design method will have some degree of guiding significance for the design of large-diameter rock-socketed pile with steel casing.

  8. Analysis of Dynamic Coupling Characteristics of the Slope Reinforced by Sheet Pile Wall

    Directory of Open Access Journals (Sweden)

    H. L. Qu

    2017-01-01

    Full Text Available Large deformation of slope caused by earthquake can lead to the loss of stability of slope and its retaining structures. At present, there have been some research achievements about the slope reinforcement of stabilizing piles. However, due to the complexity of the structural system, the coupling relationship between soil and pile is still not well understood. Hence it is of great necessity to study its dynamic characteristics further. In view of this, a numerical model was established by FLAC3D in this paper, and the deformation and stress nephogram of sheet pile wall in peak ground motion acceleration (PGA at 0.1 g, 0.2 g, and 0.4 g were obtained. Through the analysis, some conclusions were obtained. Firstly, based on the nephogram of motion characteristics and the positions of the slip surface and the retaining wall, the reinforced slope can be divided into 6 sections approximatively, namely, the sliding body parts of A, B, C, D, and E and the bedrock part F. Secondly, the deformation and stress distributions of slope reinforced by sheet pile wall were carefully studied. Based on the results of deformation calculation from time history analysis, the interaction force between structure and soil can be estimated by the difference of peak horizontal displacements, and the structure-soil coupling law under earthquake can be studied by this approach.

  9. Investigation on the Effect of Drained Strength when Designing Sheet Pile Walls

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    that the height, anchor force, and the maximum bending moment in the wall can be lowered significantly when the effective cohesion is increased above zero. However, as the cohesion increases, the drop in the moment levels off, which implies that the benefit obtained from investigations increasing the cohesion......Long sheet pile walls are constructed in the cities as an integrated part of deep excavations for e.g. parking lots, pumping stations, reservoirs, and cut and cover tunnels. To minimise costs, the strength of the soil needs to be determined in the best possible way. The drained strength of clay...... expressed by c and ϕ is often estimated as c 10% = 10%・cu, and found by estimations based on the soil describtion, respectively. However, due to possible slicken slides and tension cracks, c = 0 is used on the back side of the sheet pile wall. This reduces the strength significantly. A parametric study...

  10. Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

    OpenAIRE

    C. J. W. Habets; D. J. Peters; J. G. de Gijt; A. V. Metrikine; S. N. Jonkman

    2016-01-01

    Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to investigate the suitability of this method for anchored sheet pile quay walls that were not purposely designed for seismic loads. A research methodology is developed in which pseudo-static, permanent-di...

  11. Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2005-01-01

    The design of sheet pile walls by lower bound limit analysis is considered. The design problem involves the determination of the necessary yield moment of the wall, the wall depth and the anchor force such that the structure is able to sustain the given loads. This problem is formulated...... as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe....

  12. Cracking and induced steel stresses of reinforced and prestressed piles during driving

    NARCIS (Netherlands)

    Zorn, N.F.

    1984-01-01

    The problem of steel stresses during driving of reinforced and prestressed piles in case of concrete failure is analysed in this report using a momentum trap model that includes amplitude and shape of the reflected compressive wave. Special reference is made to the different performance of

  13. Uncertainty assessment of a dike with an anchored sheet pile wall using FEM

    Directory of Open Access Journals (Sweden)

    Rippi Aikaterini

    2016-01-01

    Full Text Available The Dutch design codes for the dikes with retaining walls rely on Finite Element Analysis (FEM in combination with partial safety factors. However, this can lead to conservative designs. For this reason, in this study, a reliability analysis is carried out with FEM calculations aiming to demonstrate the feasibility of reliability analysis for a dike with an anchored sheet pile wall modelled in the 2D FEM, Plaxis. Sensitivity and reliability analyses were carried out and enabled by coupling the uncertainty package, OpenTURNS and Plaxis. The most relevant (ultimate limit states concern the anchor, the sheet pile wall, the soil body failure (global instability and finally the system. The case was used to investigate the applicability of the First Order Reliability Method (FORM and Directional Sampling (DS to analysing these limit states. The final goal is to estimate the probability of failure and identify the most important soil properties that affect the behaviour of each component and the system as a whole. The results of this research can be used to assess and optimize the current design procedure for dikes with retaining walls.

  14. Zinc coated sheet steel for press hardening

    Science.gov (United States)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time

  15. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... Abstract. The stable crack growth in thin steel sheets is the topic of this paper. The crack opening was observed using a videoextensometry system, allowing the crack extension determination. JR-curve and dR-curve were established from obtained data. The ductile tearing properties of different thin sheets ...

  16. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... of zinc-coated automotive steel sheets (IF – deep drawing interstitial free steel ..... to determine; therefore, the Ji was determined for observ- able crack initiation .... M R S, da Silva L F M and de Castro P M S T 2011. Analysis of ...

  17. Method of vertically and horizontally cutting steel pipe piles and removing them based on the development of a steel pipe pile vertically cutting machine; Kokanko tatehoko setsudanki no kaihatsu ni yoru kochi chubu no juo setsudan tekkyo koho

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Takeshita, A.; Kobayashi, K.

    1997-07-25

    A machine for vertically cutting steel pipe piles has newly been developed for the purpose of removing the end portions the shore protection steel pipe piles which interfere with the shield tunneling work in the Ohokagawa River tunneling section on the Minato Mirai 21 Line. This paper reports the development of the machine for vertically cutting steel pipe piles, and a method of cutting the shield tunneling work hindering piles under the ground by using this machine. The obstacle-constituting portions of the piles are removed by destroying the copings, excavating the interior of the piles to make the same hollow so that a cutting machine can be inserted, and cutting the piles vertically and horizontally. The basic structure of the cutting machine comprises a lower cutting unit for making forward and backward and upward and downward movements of a cutter, and an upper movable unit for controlling the rotation of the cutting unit. The cutting of a pile is done by projecting the cutter by a cylinder the base of which is joined to a cutter driver, and then moving the rotating cutter upward. The amounts of movements of these parts are detected by sensors, and an arbitrary range of the underground portion of a pile can be cut by a remote control operation. 10 figs., 1 tab.

  18. In-Pile Tests for IASCC Growth Behavior of Irradiated 316L Stainless Steel under Simulated BWR Condition in JMTR

    Science.gov (United States)

    Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka

    The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation test plan to evaluate in-situ effects of neutron/γ-ray irradiation on stress corrosion crack (SCC) growth of irradiated stainless steels using the Japan Materials Testing Reactor (JMTR). SCC growth rate and its dependence on electrochemical corrosion potential (ECP) are different between in-pile test and post irradiation examination (PIE). These differences are not fully understood because of a lack of in-pile data. This paper presents a systematic review on SCC growth data of irradiated stainless steels, an in-pile test plan for crack growth of irradiated SUS316L stainless steel under simulated BWR conditions in the JMTR, and the development of the in-pile test techniques.

  19. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  20. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  1. Investigation of the Formability of TRIP780 Steel Sheets

    Science.gov (United States)

    Song, Yang

    The formability of a metal sheet is dependent on its work hardening behaviour and its forming limits; and both aspects must be carefully determined in order to accurately simulate a particular forming process. This research aims to characterize the formability of a TRIP780 sheet steel using advanced experimental testing and analysis techniques. A series of flat rolling and tensile tests, as well as shear tests were conducted to determine the large deformation work hardening behaviour of this TRIP780 steel. Nakazima tests were carried out up to fracture to determine the forming limits of this sheet material. A highly-automated method for generating a robust FLC for sheet materials from DIC strain measurements was created with the help of finite element simulations, and evaluated against the conventional method. A correction algorithm that aims to compensate for the process dependent effects in the Nakazima test was implemented and tested with some success.

  2. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    OpenAIRE

    Pasquale Russo Spena

    2017-01-01

    This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests wer...

  3. Dynamic characteristics of automotive steel sheets

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2016-10-01

    Full Text Available The aim of this experimental research was to perform an analysis of deformation characteristics on two different types of steel: IF steel, and micro-alloyed steel were used automotive industry. For that purpose changes of properties of these materials were carried out by static 10-3 · s-1 and dynamic 103 · s-1 strain rate assess its plastic properties. Vickers micro hardness test was carried out by the static and dynamic loading condition and describes different hardness distribution. The higher strain hardening of materials was obtained too that was confirmed by distribution of dislocations.

  4. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    Science.gov (United States)

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.

  5. 77 FR 32998 - Tin- and Chromium-Coated Steel Sheet From Japan

    Science.gov (United States)

    2012-06-04

    ...-Coated Steel Sheet From Japan Determination On the basis of the record \\1\\ developed in the subject five... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or... USITC Publication 4325 (May 2012), entitled Tin- and Chromium-Coated Steel Sheet from Japan...

  6. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-09-28

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY: United States... duty orders on stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan... stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to...

  7. MODEL TESTS AND 3D ELASTIC FINITE ELEMENT ANALYSIS FOR STEEL PIPE PILES WITH WINGS IN STALLED IN SOIL CEMENT COLUMN

    Science.gov (United States)

    Tamai, Toshiyuki; Teramoto, Shuntarou; Kimura, Makoto

    Steel pipe piles with wings installed in soil cement column is a composite foundation of pile consisting of soil improvement with cement and steel pipe with wings. This type of pile shows higher vertical bearing capacity when compared to steel pipe piles that are installed without soil cement. It is thought the wings contribute to higher bearing capacity of this type of piles. The wings are also thought to play the role of structural unification of pile foundations and load transfer. In this study, model test and 3D elastic finite element analysis was carried out in order to elucidate the effect of wings on the structural unification of pile foundation and the load transfer mechanism. Firstly, the model test was carried out in order to grasp the influence of pile with and without wings, the shape of wings of the pile and the unconfined compression strength of the soil cement on the structural unification of the pile foundation. The numerical analysis of the model test was then carried out on the intermediate part of the pile foundation with wings and mathematical model developed. Finally load tran sfer mechanism was checked for the entire length of the pile through this mathematical model and the load sharing ratio of the wings and stress distribution occurring in the soil cement clarified. In addition, the effect of the wing interval on the structural unification of the pile foundation and load transfer was also checked and clarified.

  8. Comparison of static and high strain dynamic tests on driven steel piles at several industrial sites in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Tweedie, R.; Clementino, R.; Law, D. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Many of the foundations at industrial plants in northern Alberta are supported by driven steel piles that are often installed through thick glacial clay and sand deposits. This paper presented 3 case histories where static load tests (SLT) and high strain dynamic tests (HSDT) were conducted on the driven steel piles. The soil conditions and typical pile sizes used at the 3 sites were described. The first site was an oilsand processing facility where steam assisted gravity drainage (SAGD) was used for bitumen production from oilsand. The second site was a petrochemical plant and the third site was a power plant. The case histories revealed the importance of combining SLT and HSDT to optimize pile designs. The paper emphasized the benefits of undertaking the pile load tests during the design phase, when the potential benefits of obtaining higher capacities can be effectively applied to the pile designs. It was concluded that pile design based on Limit States Design (LSD) in accordance with NBC 2005 must satisfy the Ultimate Limit States (ULS) to prevent plunging failure and also Serviceability Limit States (SLS) to maintain tolerable settlement. 10 refs., 5 tabs., 7 figs.

  9. Recent development of non-oriented electrical steel sheet for automobile electrical devices

    International Nuclear Information System (INIS)

    Oda, Yoshihiko; Kohno, Masaaki; Honda, Atsuhito

    2008-01-01

    This paper describes non-oriented electrical steel sheet for automobile motors and reactors. Electrical steel sheets for energy efficient motors show high magnetic flux density and low iron loss. They are suitable for HEV traction motors and EPS motors. A thin-gauge electrical steel sheet and a gradient Si steel sheet show low iron loss in the high-frequency range. Therefore, the efficiency of high-frequency devices can be greatly improved. Since a 6.5% Si steel sheet possesses low iron loss and zero magnetostriction, it contributes to reduce the core loss and audible noise of high-frequency reactors

  10. Influence of magnetostriction on hysteresis loss of electrical steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hirotoshi, E-mail: tada.547.hirotoshi@jp.nssmc.com [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan); Fujimura, Hiroshi; Yashiki, Hiroyoshi [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan)

    2013-01-15

    To reveal influence of magnetostriction on hysteresis loss of electrical steel sheet, hysteresis loss and magnetostriction of non-oriented electrical steel sheets (NOs) with various Si and Al content and grain size and grain oriented electrical steel sheet (GO) were measured under compressive or tensile stress. Here, Si and Al content and stress were focused on as the way to change magnetostriction. Stress direction and magnetizing direction were parallel to the rolling direction. Following three main results were obtained. The first is hysteresis loss of NO with same grain size which increased with magnetostriction independently of Si and Al content and stress. The second is hysteresis loss of NO was larger than that of GO under same magnetostriction. The third is hysteresis loss of NO at magnetostriction of zero was inversely proportional to grain size. Even if the grain size of NO increased to be similar size of GO without changing texture, the hysteresis loss of NO at magnetostriction of zero would be larger than that of GO because of the difference in texture. - Highlights: Black-Right-Pointing-Pointer Hysteresis loss and magnetostriction of NO and GO were measured under stress. Black-Right-Pointing-Pointer Hysteresis loss of NO was proportional to magnetostriction. Black-Right-Pointing-Pointer Hysteresis loss of GO was proportional to magnetostriction. Black-Right-Pointing-Pointer Hysteresis loss of NO was larger than that of GO under samemagnetostriction. Black-Right-Pointing-Pointer Hysteresis loss was separated into 4 components.

  11. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-10-01

    Full Text Available This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests were based on a L9(34 orthogonal array design, with the effects of the process parameters on the quality responses being determined by means of a statistical analysis of variance (ANOVA. Quadratic mathematical models were developed to determine the relationships between the cutting parameters and the quality responses. Finally, a routine based on an optimization criterion was employed to predict the optimal setting of cutting factors and its effect on the quality responses. A confirmation experiment was conducted to verify the appropriateness of the optimization routine. The results show that all of the examined process parameters have a key role in determining the cut quality of hot stamping boron steel sheets, with cutting speed and their interactions having the most influencing effects. Particularly, interactions can have an opposite behavior for different levels of the process parameters.

  12. IMPACT OF STRAIN RATE ON MICROALLOYED STEEL SHEET BREAKING

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2014-08-01

    Full Text Available Strain rate is a significant external factor and its influence on material behavior in forming process is a function of its internal structure. The contribution is analysis of the impact of loading rate from 1.6 x 10-4 ms-1 to 24 ms-1 to changes in the fracture of steel sheet used for bodywork components in cars. Experiments were performed on samples taken from HC420LA grade strips produced by cold rolling and hot dip galvanizing. Material strength properties were compared based on measured values, and changes to fracture surface character were observed.

  13. Striation-free fibre laser cutting of mild steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sobih, M.; Crouse, P.L.; Li, L. [University of Manchester, Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, Sackville Street Building, P.O. Box 88, Manchester (United Kingdom)

    2008-01-15

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations, i.e. regular lines on the cut surface, which lowers the quality of the surfaces produced. The elimination of striation formation is thus of considerable importance, since it could open a variety of novel high-precision applications. This study presents the initial results of a laser cutting study using a 1 kW single-mode fibre laser, a relative newcomer in the field of laser metal cutting. Striation-free laser cuts are demonstrated when cutting 1 mm thick mild steel sheets. (orig.)

  14. 76 FR 49726 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

    Science.gov (United States)

    2011-08-11

    ... martensitic precipitation-hardenable stainless steel, and (12) three specialty stainless steels typically used...\\ ``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is...-831] Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

  15. New developments in tribomechanical modeling of automotive sheet steel forming

    Science.gov (United States)

    Khandeparkar, Tushar; Chezan, Toni; van Beeck, Jeroen

    2018-05-01

    Forming of automotive sheet metal body panels is a complex process influenced by both the material properties and contact conditions in the forming tooling. Material properties are described by the material constitutive behavior and the material flow into the forming die can be described by the tribological system. This paper investigates the prediction accuracy of the forming process using the Tata Steel state of the art description of the material constitutive behavior in combination with different friction models. A cross-die experiment is used to investigate the accuracy of local deformation modes typically seen in automotive sheet metal forming operations. Results of advanced friction models as well as the classical Coulomb friction description are compared to the experimentally measured strain distribution and material draw-in. Two hot-dip galvanized coated steel forming grades were used for the investigations. The results show that the accuracy of the simulation is not guaranteed by the advanced friction models for the entire investigated blank holder force range, both globally and locally. A measurable difference between the calculated and measured local strains is seen for both studied models even in the case where the global indicator, i.e. the draw-in, is well predicted.

  16. Forming limit and fracture mechanism of ferritic stainless steel sheets

    International Nuclear Information System (INIS)

    Xu Le; Barlat, Frederic; Ahn, Deok Chan; Bressan, Jose Divo

    2011-01-01

    Research highlights: → Forming limit curves of two ferritic stainless steel sheets were well predicted. → Failure occurs by necking in uniaxial and plane strain tension for both materials. → Failure occurs by shearing in balanced biaxial tension for both materials. → Strain rate sensitivity does not affect the limit strains a lot for both materials. → Strain rate sensitivity likely influences the failure mode for both materials. - Abstract: In this work, the forming limit curves (FLCs) of two ferritic stainless steel sheets, AISI409L and AISI430, were predicted with the Marciniak-Kuczynski (MK) and Bressan-William-Hill (BWH) models, combined with the Yld2000-2d yield function and the Swift hardening law. Uniaxial tension, disk compression and hydraulic bulge tests were performed to determine the yield loci and hardening curves of both materials. Meanwhile, the strain rate sensitivity (SRS) coefficient was measured through uniaxial tension tests carried out at different strain rates. Out-of-plane stretching tests were conducted in sheet specimens to obtain the surface limit strains under different linear strain paths. Micrographs of the specimens fractured in different stress states were obtained by optical and scanning electron microscopy. The overall results show that the BWH model can predict the FLC better than the MK model, and that the SRS does not have much effect on the limit strains for both materials. The predicted FLCs and micrograph analysis both indicate that failure occurs by surface localized necking in uniaxial and plane strain tension states, whereas it occurs by localized shearing in the through thickness direction in balanced biaxial tension state.

  17. Effect of phosphorus on out-of-pile and in-pile behaviour of stabilized austenitic stainless steels

    International Nuclear Information System (INIS)

    Delalande, C.

    1992-02-01

    This work deals with the improvement of swelling resistance for austenitic stainless steels used as fuel pin cladding in Fast Breeder Reactor. The effect of phosphorus addition and multistabilization by Ti and Nb or Ti, Nb and V are studied on Fe-15Cr-15/25Ni based alloys. First, different ageings are performed to verify the stability of dislocation network, main condition of swelling absence at high irradiation temperature (T>550 deg C, and to study the precipitation, especially the one being able to form during irradiation and to control swelling at lower temperature. Then, 1 MeV electron irradiations are performed to estimate the swelling resistance of these multistabilized steels. Furthermore, neutron radiation induced microstructure of phosphorus modified steels already irradiated in reactor give us fundamental informations to predict and explain the effect of phosphorus and multistabilization on the behaviour of the multistabilized steels. Our results show that niobium plays the same role as titanium on the stabilization ratio in steels, but it is present in more phases. Vanadium seems to have less effect on stability of dislocation network and chemical composition of precipitates. Phosphorus increases the stability of dislocation network of multistabilized steels and FeNbP phosphides are observed at high temperature for phosphorus level above 600 ppm. 1 MeV electron irradiations show that multistabilized steels present good swelling resistance. Phosphorus addition increases the swelling resistance of neutron irradiated steels. (Author). refs., figs., tabs

  18. 76 FR 46323 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2011-08-02

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan Determination On the... injury to an industry in the United States within a reasonably foreseeable time and that revocation of... antidumping duty orders on stainless steel sheet and strip from Japan, Korea, and Taiwan \\3\\ would be likely...

  19. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  20. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  1. Recent trend of titanium-clad steel plate/sheet (NKK)

    International Nuclear Information System (INIS)

    Kimura, Hideto

    1997-01-01

    The roll-bonding process for titanium-clad steel production enabled the on-line manufacturing and quality control of the products which are usually applied for the production of steel plate and sheet by the steel producers. The recent trend of roll-bonded titanium-clad steel which has an excellent corrosion resistance together with the advantage in cost-saving are mainly described in this article as to the demand, production technique and new application aspects. Though the predominant usage of titanium-clad steel plate has been in power-generating plants, enlargeing utilization in the chemical plants such as terephthalic acid production plants is leading the growth in the market of titanium-clad steel plate. Also, the application of titanium-clad steel plates and sheets for the lining the marine structures is expected as one of the best solution to long-term surface protection for their outstanding corrosion resistance against sea water. (author)

  2. Improvement of formability of high strength steel sheets in shrink flanging

    International Nuclear Information System (INIS)

    Hamedon, Z; Abe, Y; Mori, K

    2016-01-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging. (paper)

  3. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  4. The development of PVC-laminated steel sheet by an electron beam curing method

    International Nuclear Information System (INIS)

    Masuhara, Ken-ichi; Koshiishi, Kenji; Tomosue, Takao; Mori, Koji; Honma, Nobuyuki

    1988-01-01

    Polyvinyl chloride (PVC) film-laminated steel sheets are used for household electric appliances and building materials. Those are produced usually by pressing a PVC film onto a steel sheet imediately after a themosetting adhesive has been applied to the sheet and curing. However, a major problem of this method is that the appearance of the PVC films such as gloss and embossment changes during pressing due to the heat that is required for causing bonding, therefore, the development of an adhesive which can be cured at lower temperature is necessary. Nisshin Steel Co., Ltd. has developed PVC film-laminated steel sheets for which electron beam (EB) curable adhesives are used to overcome this problem. The advantage of these adhesives is that they can be quickly cured at room temperature. The production procedure of PVC-laminated steel sheets by EB curing is outlined. But this method has encountered two problems: poor adhesion between substrates and adhesive due to the residual stress, and the deterioration of the PVC films due to EB irradiation. EB curable adhesives are mainly composed of acrylic ester oligomers and monomers, and thier adhesion was improved by organic pretreatment. On the other hand, EB-proof PVC films were developed. The general properties of PVC-laminated steel sheets produced by EB curing are reported. (K.I.)

  5. Numerical Modelling of Large-Diameter Steel Piles at Horns Rev

    DEFF Research Database (Denmark)

    Augustesen, Anders Hust; Brødbæk, K. T.; Møller, M.

    2009-01-01

    Today large-diameter monopiles are the most common foundation type used for large offshore wind farms. This paper aims to investigate the behaviour of monopiles under monotonic loading taking the interaction between the pile and the subsoil into account. Focus is paid to a monopile used as founda......Today large-diameter monopiles are the most common foundation type used for large offshore wind farms. This paper aims to investigate the behaviour of monopiles under monotonic loading taking the interaction between the pile and the subsoil into account. Focus is paid to a monopile used...... as foundation for a wind turbine at Horns Rev located in the Danish sector of the North Sea. The outer diameter of the pile is 4 m and the subsoil at the location consists primarily of sand. The behaviour of the pile is investigated under realistic loading conditions by means of a traditional Winkler...

  6. Evaluation of essential work of fracture in a dual phase high strength steel sheet

    International Nuclear Information System (INIS)

    Gutierrez, D.; Perez, L. I.; Lara, A.; Casellas, D.; Prado, J. M.

    2013-01-01

    Fracture toughness of advanced high strength steels (AHSS), can be used to optimize crash behavior of structural components. However it cannot be readily measured in metal sheet because of the sheet thickness. In this work, the Essential Work of Fracture (EWF) methodology is proposed to evaluate the fracture toughness of metal sheets. It has been successfully applied in polymers films and some metal sheets. However, their information about the applicability of this methodology to AHSS is relatively scarce. In the present work the fracture toughness of a Dual Phase (strength of 800 MPa) and drawing steel sheets has been measured by means of the EWF. The results show that the test requirements are met and also show the clear influence of notch radii on the measured values, specially for the AHSS grade. Thus, the EWF is postulated as a methodology to evaluate the fracture toughness in AHSS sheets. (Author) 18 refs.

  7. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    International Nuclear Information System (INIS)

    Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong

    2007-01-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated

  8. Field Tests to Investigate the Penetration Rate of Piles Driven by Vibratory Installation

    Directory of Open Access Journals (Sweden)

    Zhaohui Qin

    2017-01-01

    Full Text Available Factors directly affecting the penetration rate of piles installed by vibratory driving technique are summarized and classified into seven aspects which are driving force, resistance, vibratory amplitude, energy consumption, speeding up at the beginning, pile plumbness keeping, and slowing down at the end, from the mechanism and engineering practice of the vibratory pile driving. In order to find out how these factors affect the penetration rate of the pile in three major actors of vibratory pile driving: (i the pile to be driven, (ii the selected driving system, and (iii the imposed soil conditions, field tests on steel sheet piles driven by vibratory driving technique in different soil conditions are conducted. The penetration rates of three different sheet pile types having up to four different lengths installed using two different vibratory driving systems are documented. Piles with different lengths and types driven with or without clutch have different penetration rates. The working parameters of vibratory hammer, such as driving force and vibratory amplitude, have great influences on the penetration rate of the pile, especially at the later stages of the sinking process. Penetration rate of piles driven in different soil conditions is uniform because of the different penetration resistance including shaft friction and toe resistance.

  9. 75 FR 62101 - Stainless Steel Sheet and Strip in Coils From the Republic of Korea: Final Results of Expedited...

    Science.gov (United States)

    2010-10-07

    ...\\ ``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is... DEPARTMENT OF COMMERCE International Trade Administration [C-580-835] Stainless Steel Sheet and... countervailing duty order (``CVD'') on stainless steel sheet and strip in coils from the Republic of Korea...

  10. 75 FR 81221 - Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of the Five-Year...

    Science.gov (United States)

    2010-12-27

    ... trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also excluded from... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822 ] Stainless Steel Sheet and... of the antidumping duty order on stainless steel sheet and strip (``SSSS'') in coils from Mexico...

  11. 75 FR 81214 - Stainless Steel Sheet and Strip in Coils From Italy: Preliminary Results of the Full Second Five...

    Science.gov (United States)

    2010-12-27

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-475-824] Stainless Steel Sheet and... sunset review of the antidumping duty order on stainless steel sheet and strip in coils from Italy...

  12. 75 FR 62104 - Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and...

    Science.gov (United States)

    2010-10-07

    ... trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also excluded from...-831] Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and... duty orders on certain stainless steel sheet and strip in coils from Germany, Italy, Japan, the...

  13. 75 FR 6627 - Stainless Steel Sheet and Strip in Coils From Mexico; Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-02-10

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822] Stainless Steel Sheet and... review of the antidumping duty order on stainless steel sheet and strip (S4) in coils from Mexico. See...

  14. 75 FR 76700 - Stainless Steel Sheet and Strip in Coils From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-12-09

    ... is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also... DEPARTMENT OF COMMERCE International Trade Administration [A-583-831] Stainless Steel Sheet and... antidumping duty order on stainless steel sheet and strip in coils (SSSSC) from Taiwan. This review covers...

  15. 75 FR 6631 - Stainless Steel Sheet and Strip in Coils from Japan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-02-10

    ...\\``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is... DEPARTMENT OF COMMERCE International Trade Administration [A-588-845] Stainless Steel Sheet and... antidumping duty order on stainless steel sheet and strip in coils (SSSSC) from Japan. This review covers two...

  16. Study on antioxidant experiment on forged steel tube sheet and tube hole for steam generator

    International Nuclear Information System (INIS)

    Zong Hai; Wang Detai; Ding Yang

    2012-01-01

    Antioxidant experiment on forged steel tube sheet and tube hole for steam generator was studied and the influence of different simulated heat treatments on the antioxidant performance of tube sheet and tube hole was made. The influence of different antioxidant methods on the size of tube hole was drawn. Furthermore, the change of size and weight of 18MnD5 forged steel tube sheet on the condition of different simulated heat treatments was also studied. The analytical results have proved reference information for the use of 18MnD5 material and for key processes of processing tube hole and wearing and expanding U-style tube. (authors)

  17. Strategic surface topographies for enhanced lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten Sixten; Olsson, David Dam; Petrushina, Irina

    2010-01-01

    Strategic stainless steel surfaces have been developed for which the tribological properties are significantly improved for sheet-metal forming compared with the as-received surfaces. The improvements have been achieved by modification of the surface to promote Micro-Plasto Hydrodynamic Lubrication....... The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...

  18. Magnetic properties and recrystallization texture of phosphorus-added non-oriented electrical steel sheets

    International Nuclear Information System (INIS)

    Tanaka, I.; Yashiki, H.

    2006-01-01

    The effect of phosphorus on magnetic properties and recrystallization texture has been investigated in non-oriented electrical steel sheets to develop low core loss and high permeability core materials. Specimens with different phosphorus contents were cold-rolled to various thicknesses, i.e. with various cold-rolling reductions, and annealed for recrystallization and grain growth. Although magnetic induction of the steel with low phosphorus content dramatically dropped with reducing thickness, i.e. with increasing in cold-rolling reduction, that of the steel with high phosphorus content only slightly decreased. The most effective way to reduce core loss was to reduce thickness of electrical steel sheets. Therefore, phosphorus-added thin gauge non-oriented electrical steel sheets have achieved low core loss and high permeability. The typical magnetic properties of phosphorus-added non-oriented electrical steel sheets 0.27mm in sheet thickness were 16.6W/kg in W 10/400 and 1.73T in B 50 . These excellent magnetic properties were due to the recrystallization texture control. {111} component in recrystallization texture was suppressed by the phosphorus segregation at initial grain boundaries. Accordingly, phosphorus would greatly contribute to the improvement of magnetic properties

  19. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...

  20. In pile measurement of creep rate of stainless steel cladding tubes for fast reactor pins

    International Nuclear Information System (INIS)

    Calza Bini, A.; Cosoli, G.; Filacchioni, G.; Lanchi, M.; Nobili, A.; Pesce, E.; Rocca, U.V.; Rotoloni, P.L.

    1975-01-01

    Results are reported of a direct in pile measurement of creep on a cladding sample of 10cm length, under tensile stress of 22.82kg/mm 2 at a temperature of 550 0 during about 500 hours, up to an integrated flux of 2.6.10 20 n/cm 2 . Two identical samples were irradiated in the same temperature and flux conditions to be submitted to out of pile creep measurements together with other unirradiated samples. The aim of this first experiment was mainly to set up the device and to evaluate the kind and the quality of the available data

  1. Factors Contributing to Corrosion of Steel Pilings in Duluth-Superior Harbor

    Science.gov (United States)

    2009-11-01

    1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703o 4...Great Lakes. Accelerated corrosion of CS pilings in estua- rine and marine harbors is a global phenomenon.9 The term "accelerated low water corrosion

  2. Underwater noise reduction of marine pile driving using a double pile.

    Science.gov (United States)

    2015-12-01

    Impact pile driving of steel piles in marine environments produces extremely high sound levels in the water. : It has been shown that current pile driving noise attenuation techniques, such as bubble curtains and : cofferdams, provide limited noise r...

  3. Experimental use of Line-X coated steel pipe piles, Clay Hill Bridge (#2157) replacement project over the Mousam River, Route 9/Western Avenue, Kennebunk, Maine.

    Science.gov (United States)

    2013-02-01

    Steel pipe piles used by MaineDOT for bridge construction are typically coated with a fusion-bonded epoxy (FBE). FBE is a powder-based coating with properties similar to traditional : epoxies. Its name is derived from the process by which it adheres ...

  4. Determination of the forming limit diagram of zinc electro-galvanized steel sheets

    Directory of Open Access Journals (Sweden)

    W. Fracz

    2012-04-01

    Full Text Available Forming limit curves (FLC of deep drawing steel sheets have been determined experimentally and calculated on the base of the material tensile properties following the Hill, Swift, Marciniak-Kuczyński and Sing-Rao methods. Only the FLC modeled from a singly linear forming limit stress curve exhibits good consistence with experimental curve. It was established that a linearized limit stress locus describes adequately the actual localized neck conditions for the material chosen in this study. The quantitative X-ray microanalysis of the Fe contents in the sheet surface layer composition was used to determine cracking limit curve (CLC of electro-galvanized steel sheet. The change in zinc layer (and base sheet metal thickness was used as a criteria in calculation of the CLC.

  5. Steel Fibres: Effective Way to Prevent Failure of the Concrete Bonded with FRP Sheets

    Directory of Open Access Journals (Sweden)

    V. Gribniak

    2016-01-01

    Full Text Available Although the efficiency of steel fibres for improving mechanical properties (cracking resistance and failure toughness of the concrete has been broadly discussed in the literature, the number of studies dedicated to the fibre effect on structural behaviour of the externally bonded elements is limited. This experimental study investigates the influence of steel fibres on the failure character of concrete elements strengthened with external carbon fibre reinforced polymer sheets. The elements were subjected to different loading conditions. The test data of four ties and eight beams are presented. Different materials were used for the internal bar reinforcement: in addition to the conventional steel, high-grade steel and glass fibre reinforced polymer bars were also considered. The experimental results indicated that the fibres, by significantly increasing the cracking resistance, alter the failure character from splitting of the concrete to the bond loss of the external sheets and thus noticeably increase the load bearing capacity of the elements.

  6. Ductile Tearing Resistance Indexing of Automotive Grade DP 590 Steel Sheets: EWF Testing Using DENT Specimens

    Science.gov (United States)

    Sahoo, Subhadra; Padmapriya, N.; De, Partha Sarathi; Chakraborti, P. C.; Ray, S. K.

    2018-03-01

    The essential work of fracture (EWF) method has been explored for indexing the ductile tearing resistance of DP 590 automotive grade dual-phase steel sheet both in longitudinal (L-T) and transverse (T-L) orientations. The simplest possible test and analysis procedures have been adopted. The EWF method is found to be eminently suitable for routine quality control and product development purposes for such materials. Areas for further research for improving the experimental strategy are highlighted. For the investigated steel sheet, the estimated tearing resistance is found to be distinctly higher for the L-T orientation compared to the T-L orientation; the reason thereof merits further investigation.

  7. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  8. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Guoqing, E-mail: gz854@uowmail.edu.au [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zhang, Xiaoming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Wang, Yuqian [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Yan, Yi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Li, Chengang; Cao, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Jiang, Zhengyi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2017-02-15

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong <100>//ND texture and present high magnetic inductions and low iron losses after finial annealing. - Highlights: • 4.5 wt% Si as-cast sheet with excellent workability was produced by strip casting. • Three 4.5 wt% Si thin sheets were effectively fabricated by warm and cold rolling. • The microstructure and macro-texture of the thin sheets were elucidated. • High magnetic inductions and low iron losses were achieved simultaneously.

  9. Magnetic Properties and Structure of Non-Oriented Electrical Steel Sheets after Different Shape Processing

    Czech Academy of Sciences Publication Activity Database

    Bulín, Tomáš; Švábenská, Eva; Hapla, Miroslav; Ondrůšek, Č.; Schneeweiss, Oldřich

    2017-01-01

    Roč. 131, č. 4 (2017), s. 819-821 ISSN 0587-4246. [CSMAG 2016 - Czech and Slovak Conference on Magnetism /16./. Košice, 13.06.2016-17.06.2016] R&D Projects: GA TA ČR(CZ) TE02000232 Institutional support: RVO:68081723 Keywords : Magnetic properties * Silicon steel * Steel sheet Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  10. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface ...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear....

  11. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  12. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    International Nuclear Information System (INIS)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y.

    2014-01-01

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets

  13. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    International Nuclear Information System (INIS)

    Gaworska-Koniarek, Dominika; Szubzda, Bronislaw; Wilczynski, Wieslaw; Drosik, Jerzy; Karas, Kazimierz

    2011-01-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  14. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    Science.gov (United States)

    Gaworska-Koniarek, Dominika; Szubzda, Bronisław; Wilczyński, Wiesław; Drosik, Jerzy; Karaś, Kazimierz

    2011-07-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  15. 75 FR 81308 - Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan

    Science.gov (United States)

    2010-12-27

    ...)] Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan AGENCY: United States... and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan. SUMMARY: The Commission hereby gives... strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to lead to continuation or...

  16. Transformation in austenitic stainless steel sheet under different loading directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  17. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  18. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    Energy Technology Data Exchange (ETDEWEB)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  19. On Necking, Fracture and Localization of Plastic Flow in Austenitic Stainless Steel Sheets

    International Nuclear Information System (INIS)

    Korhonen, A. S.; Manninen, T.; Kanervo, K.

    2007-01-01

    The forming limits of austenitic stainless steel sheets were studied in this work. It was found that the observed limit of straining in stretch forming, when both of the principal stresses are positive, is not set by localized necking, but instead by inclined shearing fracture in the through thickness direction. It appears that the forming limits of austenitic stainless steels may be predicted fairly well by using the classical localized and diffuse necking criteria developed by Hill. The strain path-dependence may be accounted for by integrating the effective strain along the strain path. The fracture criteria of Rice and Tracey and Cockcroft, Latham and Oh were also studied. The results were in qualitative agreement with the experimental observations. Recent experiments with high-velocity electrohydraulic forming of austenitic stainless steels revealed localized necks in stretch formed parts, which are not commonly observed in conventionally formed sheet metal parts

  20. The role of textures in the forming of automotive sheet steels

    International Nuclear Information System (INIS)

    Sanak Mishra

    1996-01-01

    Crystallographic textures generally have a strong bearing on the drawability of sheet steels. Particularly in the case of automotive sheets, texture control is of paramount importance. In the last two decades, therefore, texture research has assumed much significance in the steel industry. X-ray diffraction continues to remain the most used tool for the study of textures. Early researches, from about 1940 to 1980, were invariably carried out by the pole figure method. However, for more quantitative results the ODF (Orientation Distribution Functions) analysis technique was developed. Since 1980, the ODF analysis has come to be used extensively. In the present paper, several unique features of textures in automotive grade deep drawing steels, as revealed from X-ray ODFS, will be presented. The relative importance of the various textural components with respect to forming will also be dealt with

  1. Modelling the pile load test

    Directory of Open Access Journals (Sweden)

    Prekop Ľubomír

    2017-01-01

    Full Text Available This paper deals with the modelling of the load test of horizontal resistance of reinforced concrete piles. The pile belongs to group of piles with reinforced concrete heads. The head is pressed with steel arches of a bridge on motorway D1 Jablonov - Studenec. Pile model was created in ANSYS with several models of foundation having properties found out from geotechnical survey. Finally some crucial results obtained from computer models are presented and compared with these obtained from experiment.

  2. Modelling the pile load test

    OpenAIRE

    Prekop Ľubomír

    2017-01-01

    This paper deals with the modelling of the load test of horizontal resistance of reinforced concrete piles. The pile belongs to group of piles with reinforced concrete heads. The head is pressed with steel arches of a bridge on motorway D1 Jablonov - Studenec. Pile model was created in ANSYS with several models of foundation having properties found out from geotechnical survey. Finally some crucial results obtained from computer models are presented and compared with these obtained from exper...

  3. Finite element simulation of laser cutting process of steel sheet

    Directory of Open Access Journals (Sweden)

    Meško Jozef

    2018-01-01

    Full Text Available Lasers are widely used in industry as cutting tools due to ultra flexibility of the cutting conditions, obtaining high quality end product, quick set up, non-mechanical contact between the workpiece and the tool, and small size of the heat affected zone. In the present study, laser gas assisted cutting process is examined. The laser cutting sheet solution is practically always very convenient compared to conventional technologies and brings the greatest cost savings in the manufacturing process.

  4. Manufacturing prepainted steel sheet by electron beam curing

    International Nuclear Information System (INIS)

    Oka, Joji

    1987-01-01

    Several advantages are offered by electron beam curing. A formidably hard and stain resistant paint film which is difficult to obtain by heat curing paint is developed. As a result, a unique new prepainted steel is produced. Four technologies are involved: development high-quality paint, selection of optimum electron beam processor, technology to control electron beam processing atmosphere and secondary X-ray shield technology. These technologies are described in detail. (A.J.)

  5. Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion

    Science.gov (United States)

    Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.

    2006-04-01

    It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.

  6. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied in carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.

  7. Apparatus of irradiation of steel test pieces in the Marcoule pile G 1

    International Nuclear Information System (INIS)

    Marinot, R.; Wallet, Ph.

    1960-01-01

    Test pieces of steel were irradiated in the reactor G1 at Marcoule, in convectors replacing fuel elements, and in vertical channels in furnace-heated containers. The apparatus designed for this irradiation is described: containers, converter-rods, suspension fixtures and clamps, temperature measurement devices, lead castles and unloading set-ups. (author) [fr

  8. Microstructural investigations of the trimmed edge of DP980 steel sheets

    Science.gov (United States)

    Bhattacharya, S.; Green, D. E.; Sohmshetty, R.; Alpas, A. T.

    2017-10-01

    In order to reduce vehicle weight while maintaining crashworthiness, advanced high strength steels (AHSSs), such as DP980, are extensively used for manufacturing automotive body components. During trimming operations, the high tensile strength of DP980 sheets tends to cause damage of the trim edge of D2 die inserts, which result in deterioration of the edge quality. The objective of this work is to study the damage microstructures at the trimmed edge of DP980 steel sheets as a function of the number of trimming cycles. A mechanical press equipped with AISI D2 tool steel inserts was used to continuously trim 1.4 mm thick sheets of DP980 at a rate of 30 strokes/min. Cross-sectional SEM images of the trimmed edges revealed that the sheared edge quality of the DP980 sheets decreased, indicated by an increase in the burr width, with an increase in the number of trims from 40,000 to 70,000. Plastic strains were estimated using the displacements of the martensite plates within plastic flow fields of ferrite. Site-specific cross-sectional TEM samples, excised from the trimmed edge using the in-situ `lift-out' technique by focused ion-beam (FIB)-milling, revealed cracking at the ferrite/martensite interfaces after 70,000 cycles indicating an increase in the depth of deformation zone possibly due to trimming with a chipped and blunted die edge.

  9. Recent Trends of Coated Sheet Steels for Automotive use

    International Nuclear Information System (INIS)

    Moon, Manbeen

    2012-01-01

    Recent issues in the automotive industries are, improvement of fuel efficiency according to the worldwide CO 2 regulation, passenger safety through enhanced crash worthiness, superior design and cost reduction due to price fluctuation of raw material. To meet these demands, steelmaking companies are developing advanced high strength steel and new process technologies such as hydroforming, TWB(Tailor Welded Blank), hot stamping and so on. In addition, eco-friendly and high corrosion resistant coating technologies are getting more attention to comply with the environmental regulations. In this paper, reviews and prospects of recent coating technologies for automotive use are presented

  10. Characterization of the behaviour of electro-galvanised steel sheets in terms of corrosion

    International Nuclear Information System (INIS)

    Finoly, Guylene

    1992-01-01

    This research thesis reports the development of a test method for the characterization of the behaviour of electro-galvanised steel sheets (i.e. zinc coated steel sheets as those used in the automotive industry) with respect to corrosion, and the definition of a classification of these materials with respect to their surface activity. After an overview of the different existing methods of determination of corrosion rate, the author reports the development of an experimental device adapted to the electrochemical study of electro-galvanised sheets, i.e. adapted to their low thickness (0,7 mm) and coating characteristics (10 μm thick). This device is then used in the case of solid zinc. The authors reports the study of the behaviour of sheets in a NaCl solution in order to meet industrial conditions used to activate the surface before the phosphate conversion process which aims at ensuring paint adherence. A test is proposed and validated by comparison with other electrochemical or chemical methods, and used to study the behaviour of electro-galvanised sheets submitted to a phosphate conversion coating process [fr

  11. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    OpenAIRE

    Haque, Rezwanul; Wong, Yat C.; Paradowska, Anna; Blacket, Stuart; Durandet, Yvonne

    2017-01-01

    Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR) joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring...

  12. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    Directory of Open Access Journals (Sweden)

    Thierry Belgrand

    2010-10-01

    Full Text Available This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature.

  13. Experimental and numerical investigations of the steel sheets formability with hydroforming

    Directory of Open Access Journals (Sweden)

    Vasile Radu

    2017-01-01

    Full Text Available The present paper focuses on analyzing the forming capacity of steel blanks with hydroforming process. For this research steel sheets have been in focus for numerical and experimental analysis. The main advantages for this materials are good surface finish, excellent forming capacity and close tolerances, appealing advantages for manufacturers. A finite element model has been developed from data obtained through tensile tests and forming limit curves. A newly developed hydroforming press has been used to carry out the forming experiments. Side-by-side analysis between numerical and experimental results concludes the experiment.

  14. Investigation of sheet steel St 37.2 under mechanical impact

    International Nuclear Information System (INIS)

    Berg, H.P.; Brennecke, P.; Koester, R.; Friehmelt, V.

    1990-01-01

    Special waste originating, e.g. from chemical industry and radioactive wastes are emplaced in disposal mines. Slinger stowing is an approved technique to fill up residual voids in emplacement rooms. If it should be applied, possible mechanical loads on the integrity of sheet steel containers have to be considered. By theoretical calculations and by experiments under variation of different parameters using test specimen and backfill material from the Konrad mine using the container type V as an example it has been shown that sheet steel St 37.2 with a wall thickness of 3 mm will withstand mechanical impact imposed by backfill particles having a speed of 24 m/s. (orig.) [de

  15. The measurement of magnetic properties of electrical sheet steel - survey on methods and situation of standards

    CERN Document Server

    Sievert, J

    2000-01-01

    A brief review of the different requirements for magnetic measurement techniques for material research, modelling of material properties and grading of the electrical sheet steel for trade purposes is presented. In relation to the main application of laminated electrical steel, this paper deals with AC measurement techniques. Two standard methods, Epstein frame and Single Sheet Tester (SST), producing different results, are used in parallel. This dilemma was analysed in detail. The study leads to a possible solution of the problem, i.e. the possibility of converting the results of one of the two methods into the results of the other in order to satisfy the users of the Epstein method and, at the same time, to improve the acceptance of the more economical SST method.

  16. Testing and modelling of new tribo-systems for industrial sheet forming of stainless steels

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Friis, Kasper Storgaard; Bay, Niels

    2011-01-01

    Sheet metal forming of stainless steels is known to be tribologically demanding. To ensure satisfactory production without pick-up and galling, lubrication with environmentally hazardous chlorinated paraffin oil is normally required and in the most severe cases combined with ceramic tool coatings...... as well as the production test in order to estimate the critical interface temperature for lubricant film breakdown. Simulation results show good agreement with experimental measurements of tool temperature close to the interface....

  17. Contract for the supply of steel sheets to the BINP using money from the Russian fund

    CERN Document Server

    1999-01-01

    The Finance Committee is invited to note the decision which the Management has had to take, based on the arguments set out in this document, to place a contract without competitive tendering, using money from the Budker Institute for Nuclear Physics (BINP) in the Russian Fund RF-LHC I and, for the purchase of steel sheets from the firm EBG (DE), for an amount of 818 915 DEM (DDU Novosibirsk).

  18. Texture Design for Reducing Tactile Friction Independent of Sliding Orientation on Stainless Steel Sheet

    OpenAIRE

    Zhang, S.; Zeng, X.; Igartua, A.; Rodriguez Vidal, E.; van der Heide, E.

    2017-01-01

    Surface texture is important for contact mechanical and tribological phenomena such as the contact area and friction. In this research, three different types of geometrical microstructures were designed and fabricated by pulsed laser surface texturing as semi-symmetric (grooved channel), asymmetric fractal (Hilbert curve), and symmetric patterns (grid). A conventionally finished surface as a reference sample from the same stainless steel sheet material was compared. From the experimental appr...

  19. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  20. A study on corrosion resistance of electrodeposited Zn-base alloy steel sheet

    International Nuclear Information System (INIS)

    Park, Hyun Soon

    1986-01-01

    Effects of electrodeposits of Zn-Ni or Zn-Co alloy with small amounts of Mo or W in sulphate bath on the corrosion resistance of plated steel sheet were studied. 1) The electrodeposition of Zn-Ni and Zn-Co alloy shows both anomalous codeposition behavior. The grade of anomalous codeposition of Zn-Co alloy rises with adding Mo or W in bath. 2) The Ni content in Zn-Ni deposits increases with decreasing cathode current density and with increasing bath temperature. 3) In case of electroplating of Zn-Co, the increase of cathodic current density of bath bring on increasing of the Co content, but on decreasing of the Mo content in deposits. And rising bath temperature increases both Co and Mo deposits. 4) The corrosion resistance of the Zn-Ni electrodeposited steel sheet is shown a maximum at the Ni content of 10-17%. The structure of Zn-Ni of these composition range was finegrained γ-phase. 5) The corrosion resistance of the Zn-Co electrodeposited steel sheet is improved with increasing Co content. The corrosion resistance of the Zn-Co-Mo or Zn-Co-W deposits electroplated by proper plating conditions was improved much more than that of Zn-Co deposits. (Author)

  1. MEMBRANE ACTION IN PROFILED STEEL SHEETING DRY BOARD (PSSDB FLOOR SLAB SYSTEM

    Directory of Open Access Journals (Sweden)

    MAHMOOD SERAJI

    2013-02-01

    Full Text Available Profiled steel sheeting dry board (PSSDB system is a lightweight composite structural system that made of the profiled steel sheeting (PSS connected to the dry board (DB by self-drilling and self-tapping screws. The objective of this paper is to study the effect of membrane action in improving the flexural capacities of the PSSDB system. According to the literatures, common failure of the PSSDB floor is due to local buckling in the top flanges of steel sheeting at the centre of a simply supported slab. Restraining the horizontal movement at supports may develop the membrane action (MA in the slab that can remarkably enhance the flexural rigidities of the floor. Experimental tests were conducted along with developing nonlinear finite element model to explore the effect of MA in the PSSDB floor. Experimental results of the PSSDB panel with simply end support were exploited to verify the nonlinear finite element results. The developed finite element model was then modified by restraining the horizontal movement of the slab at the supports. The obtained results disclosed that the developed compressive membrane action enhanced the stiffness of the slab at serviceability load by about 240%.

  2. Characterizing Grain-Oriented Silicon Steel Sheet Using Automated High-Resolution Laue X-ray Diffraction

    Science.gov (United States)

    Lynch, Peter; Barnett, Matthew; Stevenson, Andrew; Hutchinson, Bevis

    2017-11-01

    Controlling texture in grain-oriented (GO) silicon steel sheet is critical for optimization of its magnetization performance. A new automated laboratory system, based on X-ray Laue diffraction, is introduced as a rapid method for large scale grain orientation mapping and texture measurement in these materials. Wide area grain orientation maps are demonstrated for both macroetched and coated GO steel sheets. The large secondary grains contain uniform lattice rotations, the origins of which are discussed.

  3. Study of the structural damage in a niobium-microalloyed steel sheet

    International Nuclear Information System (INIS)

    Fernandes, J.; Riba, J.; Verdeja, J.I.

    1986-01-01

    A quantitative experimental study of the damage developed as a consequence of straining has been performed on a microalloyed (niobium) steel sheet by means of a SEM. Equivalent strains range between 0 and 0.68 and strain paths between 0 and 1 and have been obtained in a bulge test. Damage associated to Al 2 O 3 and SMn inclusions is already present in the ''as received'' sheet and grows with strain. Damage associated to CFe 3 second phase particles appears later in the forming of the sheet. For stages previous to necking SMn stringers have dramatically developed more than 50% of total damage. The nucleation equivalent strain is between 0,3 and 0,4. (author)

  4. CO2 laser welding of galvanized steel sheets using vent holes

    International Nuclear Information System (INIS)

    Chen Weichiat; Ackerson, Paul; Molian, Pal

    2009-01-01

    Joining of galvanized steels is a challenging issue in the automotive industry because of the vaporization of zinc at 906 deg. C during fusion welding of steel (>1530 deg. C). In this work, hot-dip galvanized steel sheets of 0.68 mm thick (24-gage) were pre-drilled using a pulsed Nd:YAG laser to form vent holes along the weld line and then seam welded in the lap-joint configuration using a continuous wave CO 2 laser. The welds were evaluated through optical and scanning electron microscopy and tensile/hardness tests. The vent holes allowed zinc vapors to escape through the weld zone without causing expulsion of molten metal, thereby eliminating the defects such as porosity, spatter, and loss of penetration. In addition, riveting of welds occurred so long as the weld width was greater than the hole diameter that in turn provided much higher strength over the traditional 'joint gap' method

  5. 75 FR 17690 - Stainless Steel Sheet and Strip in Coils from Mexico; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-04-07

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822] Stainless Steel Sheet and... of this review within the original time frame. Accordingly, the Department is extending the time... Mexinox and Allegheny Ludlum Corporation, AK Steel Corporation, and North American Stainless (collectively...

  6. 76 FR 25670 - Stainless Steel Sheet and Strip in Coils From Italy: Final Results of the Full Five-Year (“Sunset...

    Science.gov (United States)

    2011-05-05

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-475-824] Stainless Steel Sheet and... duty order on stainless steel sheet and strip (``SSSS'') in coils from Italy would be likely to lead to...

  7. 76 FR 25668 - Stainless Steel Sheet and Strip in Coils From Mexico: Final Results of the Five-Year (“Sunset...

    Science.gov (United States)

    2011-05-05

    ... ``Gilphy 36.'' \\3\\ Certain martensitic precipitation-hardenable stainless steel is also excluded from the... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822] Stainless Steel Sheet and... Commerce (``Department'') finds that revocation of the antidumping duty order on stainless steel sheet and...

  8. Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet

    Science.gov (United States)

    Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.

    2017-03-01

    Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min - 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.

  9. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    Science.gov (United States)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  10. Elastic behavior and onset of cracking in cement composite plates reinforced by perforated thin steel sheets

    Science.gov (United States)

    Aronchik, V.

    1996-03-01

    Thin cement mortar plates reinforced by perforated thin steel sheets have been tested in four-point flexure loading. Six kinds of sheet reinforcement and to additional ones (for control) were used. Perforated sheets of the Daugavpils Factory of Machinery Chains differed by their thickness (0.6-1.8 mm), shape (round, rectangular, oval, "dumbbell"), and mark of steel (St. 08, 50, 70). Dimensions of plantes were 100×20×2 cm. Cements-sand mortar with a 1∶2 ratio of cement PZ35 and river sand of 3 mm grains was used as a matrix. Control specimens of similar dimensions and matrix were reinforced by wire cages and meshes (ferrocement). The testing was performed using an UMM-5 testing machine. Maximum deflection (at the midspan), tension, and shear strains were recorded. The expeimental data are presented in tables and graphs. The testing results showed that the elasticity modulus of material was in good agreement with the "admixture rule;" an onset of cracking for all types (excluding one) practically did not differ from reference samples; the mode of fracture in typical cases included an adhesion failure and significant shear strains. In one case the limit of the tension strength of the reinforcement was achieved.

  11. Prediction of hole expansion ratio for various steel sheets based on uniaxial tensile properties

    Science.gov (United States)

    Kim, Jae Hyung; Kwon, Young Jin; Lee, Taekyung; Lee, Kee-Ahn; Kim, Hyoung Seop; Lee, Chong Soo

    2018-01-01

    Stretch-flangeability is one of important formability parameters of thin steel sheets used in the automotive industry. There have been many attempts to predict hole expansion ratio (HER), a typical term to evaluate stretch-flangeability, using uniaxial tensile properties for convenience. This paper suggests a new approach that uses total elongation and average normal anisotropy to predict HER of thin steel sheets. The method provides a good linear relationship between HER of the machined hole and the predictive variables in a variety of materials with different microstructures obtained using different processing methods. The HER of the punched hole was also well predicted using the similar approach, which reflected only the portion of post uniform elongation. The physical meaning drawn by our approach successfully explained the poor HER of austenitic steels despite their considerable elongation. The proposed method to predict HER is simple and cost-effective, so it will be useful in industry. In addition, the model provides a physical explanation of HER, so it will be useful in academia.

  12. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    Science.gov (United States)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  13. Effect of material flow on joint strength in activation spot joining of Al alloy and steel sheets

    International Nuclear Information System (INIS)

    Watanabe, Goro; Yogo, Yasuhiro; Takao, Hisaaki

    2014-01-01

    A new joining method for dissimilar metal sheets was developed where a rotated consumable rod of Al alloy is pressed onto an Al alloy sheet at the part overlapped with a mild steel sheet. The metal flow in the joining region is increased by the through-hole in the Al sheet and consumable Al rod. The rod creates the joint interface and pads out of the thinly joined parts through pressing. This produces a higher joint strength than that of conventional friction stir spot welding. Measurements of the joint interface showed the presence of a 5-10 nm thick amorphous layer consisting of Al and Mg oxides

  14. Durability of precast prestressed concrete piles in marine environment, part 2. Volume 2 : stainless steel prestressing strand and wire.

    Science.gov (United States)

    2012-06-01

    The overall purpose of this research was to determine methods which may be applied : economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in : Georgias marine environments. The research was divided into two par...

  15. Evaluation of anodes for galvanic cathodic prevention of steel corrosion in prestressed concrete piles in marine environments in Virginia.

    Science.gov (United States)

    1999-07-01

    Many of the major highway crossings over coastal waters in the Hampton area of Virginia are supported by prestressed concrete piles, some of which are showing signs of reinforcement corrosion. Grout jacketing alone is an inadequate protection against...

  16. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  17. Tribological study in roll forming of lean duplex stainless steel sheets

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Strogaard; Bay, Niels

    2012-01-01

    . Production tests show that galling can be a problem but pick-up formation on the tools seems to reach a consistent level. Improvements to tool surfaces and lubricant quality are proposed with a view to optimizing the tribo-system in order to increase the produced length before galling initiates and tool...... are relatively low and surface expansion is more or less non-existent, long roll forming production runs imply large sliding/contact lengths due to relative movement between steel strip and rolls. This requires an efficient tribological system to prevent pick-up formation on the forming tools. The present work...... focus on tribological issues are galling and pick-up formation as well as tool life in roll forming of stainless duplex steel sheets. The roll forming process is exemplified by production of an s-shaped profile used in interlock carcass production for flexible pipes used in off-shore oil extraction...

  18. Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

    International Nuclear Information System (INIS)

    Yonggang, Liu; Lei, Cui

    2014-01-01

    Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area

  19. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  20. The Influence of the Loading Rate on the Mechanical Properties of Drawing Steel Sheet

    Directory of Open Access Journals (Sweden)

    Buršák, M.

    2006-01-01

    Full Text Available The paper analyzes the influence of the loading rate in the interval from 1 to 1000 mm/min on the mechanical properties of drawing steel sheet H260LAD with the gauge of 1 mm, used for the manufacture of automotive parts, under tension and bending conditions. It describes the aspects of material characteristics under tension and bending conditions, while bending tests were made on notched specimens (a modified impact bending test. The paper presents knowledge that using a modified notch toughness test it is possible to achieve the pressability (formability characteristics corresponding to dynamic strain rates even under the static loading.

  1. Transformation of localized necking of strain space into stress space for advanced high strength steel sheet

    Science.gov (United States)

    Nakwattanaset, Aeksuwat; Suranuntchai, Surasak

    2018-03-01

    Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.

  2. Local laser-strengthening: Customizing the forming behavior of car body steel sheets

    Science.gov (United States)

    Wagner, M.; Jahn, A.; Beyer, E.; Balzani, D.

    2018-05-01

    Future trends in designing lightweight components especially for automotive applications increasingly require complex and delicate structures with highest possible level of capacity [1]. The manufacturing of metallic car body components is primarily realized by deep or stretch drawing. The forming process of especially cold rolled and large-sized components is typically characterized by inhomogeneous stress and strain distributions. As a result, the avoidance of undesirable deep drawing effects like earing and local necking is among the greatest challenges in forming complex car body structures [2]. Hence, a novel local laser-treatment approach with the objective of customizing the forming behavior of car body steel sheets is currently explored.

  3. Importance of punching and workability in non-oriented electrical steel sheets

    International Nuclear Information System (INIS)

    Kurosaki, Yousuke; Mogi, Hisashi; Fujii, Hiroyasu; Kubota, Takeshi; Shiozaki, Morio

    2008-01-01

    In order to reduce energy loss in motors, the use of high-efficiency non-oriented electrical steel sheets and an optimal motor core design are important. It is also crucial to minimize the deterioration of magnetic properties during the motor core manufacturing process. Accordingly, this report evaluates the effects of cutting and clamping methods on the deterioration factors of motor cores. Magnetic properties are largely influenced by both cutting and clamping methods. While it is difficult to avoid cutting and clamping altogether, it is necessary to adopt suitable production conditions and minimize the deterioration involved

  4. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  5. Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

    International Nuclear Information System (INIS)

    Jo, Duhwan; Kwon, Moonjae; Kim, Jongsang

    2012-01-01

    Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances

  6. Development of high strength steel sheets for crashworthiness; Shototsu anzen`yo kokyodo usu koban no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, K; Yamamoto, M; Mizui, N; Hirose, Y; Kojima, K [Sumitomo Metal Industries, Ltd. Osaka (Japan)

    1997-10-01

    For frontal or rear members of automotive body, the most suitable high strength steel was investigated. Dynamic tensile test at strain-rate of 2000/s and crash test of hat-shape column at 4m/s were conducted for steel sheets with tensile strength ranging from 290 to 980 MPa. Dynamic tensile strength increases with increasing static one but the ratio of dynamic tensile strength to static one decreases. Tensile strength remarkably affects crash energy absorption of column and TRIP steel is superior to other steels with same tensile strength. 7 refs., 16 figs., 1 tab.

  7. Characterisation of organic thin film coatings on automobile steel sheets by photothermal methods

    Energy Technology Data Exchange (ETDEWEB)

    Orth, T. [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Fluegge, W. [Salzgitter Mannesmann Forschung GmbH, Salzgitter (Germany); Gibkes, J. [Ruhr-Univ. Bochum (Germany). AG FestKoerperSpektroskopie

    2006-07-01

    In the nineties, the first generation of organic thin film coatings for corrosion protection of zinc-coated thin sheet steel have been introduced. The coating typically consists of a suspension of small zinc particles, embedded in a polymer matrix. In the scope of quality control, the characterisation of the resulting layer structure is of great interest, comprising not only a constant layer thickness and a local homogeneity of the coating, but also the depth distribution of the particles within the layer. Especially the latter parameter does have a direct influence on the spot weldability of the steel sheets. The present work shows, how photothermal methods like modulated infrared radiometry and photoacoustics can be used for a successful depth profiling of the thin film coatings. The sample surface is periodically heated using an intensitymodulated laser beam, and a thermal wave is induced in the layer system. By variation of the modulation frequency of the laser beam, the thermal diffusion length and, as a consequence, the penetration depth of the thermal wave can be adjusted. By a suitable evaluation of the amplitude and phase lag signals as a function of the modulation frequency, accurate depth profiling has been realized which can be used for a very reliable prediction of the welding properties of the product. In the first investigations, artificial samples with well defined extreme distributions of the particles have been analyzed, and in a second step, an evaluation strategy has been developed for real production samples. (orig.)

  8. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    Directory of Open Access Journals (Sweden)

    Rezwanul Haque

    2017-01-01

    Full Text Available Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring stage of the SPR process curve. This study shows how the residual stress results may be related to the physical occurrences that happened during joining, using the characteristics curve. The study also shows that neutron diffraction technique enabled a crack in the rivet tip to be detected which was not apparent from a cross-section.

  9. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    Science.gov (United States)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  10. Microstructural and Mechanical Study of Press Hardening of Thick Boron Steel Sheet

    Science.gov (United States)

    Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D.

    2017-09-01

    Press hardening has become a staple in the production of automotive safety components, due to the combination of high mechanical properties and form complexity it offers. However, the use of press hardened components has not spread to the truck industry despite the advantages it confers, namely affordable weight reduction without the use of exotic materials, would be extremely attractive for this sector. The main reason for this is that application of press hardened components in trucks implies adapting the process to the manufacture of thick sheet metal. This introduces an additional layer of complexity, mainly due to the thermal gradients inside the material resulting in though-thickness differences in austenitization and cooling, potentially resulting in complex microstructure and gradient of mechanical properties. This work presents a preliminary study on the press hardening of thick boron steel sheet. First of all, the evolution of the sheet metal during austenitization is studied by means of dilatometry tests and by analysing the effect of furnace dwell time on grain size. Afterwards, material cooled using different cooling strategies, and therefore different effective cooling rates, is studied in terms of microstructure and mechanical properties. Initial results from finite element simulation are compared to experimental results, focusing on the phase composition in through thickness direction. Results show that industrial-equivalent cooling conditions do not lead to gradient microstructures, even in extreme scenarios involving asymmetrical cooling.

  11. Study of CW Nd-Yag laser welding of Zn-coated steel sheets

    International Nuclear Information System (INIS)

    Fabbro, Remy; Coste, Frederic; Goebels, Dominique; Kielwasser, Mathieu

    2006-01-01

    The welding of Zn-coated steel thin sheets is a great challenge for the automotive industry. Previous studies have defined the main physical processes involved. For non-controlled conditions, the zinc vapour expelled from the interface of the two sheets violently expands inside the keyhole and expels the melt pool. When using CO 2 lasers, we have previously shown that an elongated laser spot produces an elongated keyhole, which is efficient for suppressing this effect. We have adopted a similar approach for CW Nd : Yag laser welding and we observe that an elongated spot is not necessary for achieving good weld seams. Several diagnostics were used in order to understand these interesting results. High-speed video camera visualizations of the top and the bottom of the keyhole during the process show the dynamics of the keyhole hydrodynamic behaviour. It appears that the role of the reflected beam on the front keyhole wall for generating a characteristic rear wall deformation is crucial for an efficient stabilization of the process. Our dynamic keyhole modelling, which includes ray tracing, totally confirms this interpretation and explains the results for very different experimental conditions (effect of welding speed, laser intensity, variable sheet thickness, laser beam intensity distribution) that will be presented

  12. Evaluation of the nugget diameter in spot welded joints between two steel sheets by means of a potential drop technique

    International Nuclear Information System (INIS)

    Tohmyoh, Hironori; Ikarashi, Hidetomo; Matsui, Yoichi; Hasegawa, Yuta; Obara, Satoshi

    2015-01-01

    A potential drop technique which utilizes the electrical circuit used in resistance spot welding is reported. Spot welded samples comprising two steel sheets were inserted between the two Cu electrodes and a constant direct current was supplied between the electrodes. The potential drop between two points, one on each electrode, was determined by analysis for various values of nugget diameter and various values of the contact resistance between the Cu electrodes and the steel sheet sample. The nugget diameter of the spot welded joint could be quantitatively evaluated from the measured potential drop and the equation obtained from the analysis. (paper)

  13. Evaluation of the nugget diameter in spot welded joints between two steel sheets by means of a potential drop technique

    Science.gov (United States)

    Tohmyoh, Hironori; Ikarashi, Hidetomo; Matsui, Yoichi; Hasegawa, Yuta; Obara, Satoshi

    2015-08-01

    A potential drop technique which utilizes the electrical circuit used in resistance spot welding is reported. Spot welded samples comprising two steel sheets were inserted between the two Cu electrodes and a constant direct current was supplied between the electrodes. The potential drop between two points, one on each electrode, was determined by analysis for various values of nugget diameter and various values of the contact resistance between the Cu electrodes and the steel sheet sample. The nugget diameter of the spot welded joint could be quantitatively evaluated from the measured potential drop and the equation obtained from the analysis.

  14. Big Pile or Small Pile?

    Science.gov (United States)

    Branca, Mario; Quidacciolu, Rossana G.; Soletta, Isabella

    2013-01-01

    The construction of a voltaic pile (battery) is a simple laboratory activity that commemorates the invention of this important device and is of great help in teaching physics. The voltaic pile is often seen as a scientific toy, with the "pile" being constructed from fruit. These toys use some strips of copper and zinc inserted in a piece…

  15. 76 FR 77013 - Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning...

    Science.gov (United States)

    2011-12-09

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or...

  16. 76 FR 31633 - Tin- and Chromium-Coated Steel Sheet from Japan; Institution of a Five-Year Review Concerning the...

    Science.gov (United States)

    2011-06-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... Tin- and Chromium-Coated Steel Sheet from Japan AGENCY: United States International Trade Commission... the antidumping duty order on tin- and chromium-coated steel sheet from Japan would be likely to lead...

  17. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, David K [CSM/ASPPRC; Thomas, Larrin S [CSM/ASPPRC; Taylor, Mark D [CSM/ASPPRC; De Moor, Emmanuel [CSM/ASPPRC; Speer, John G [CSM/ASPPRC

    2015-08-03

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. In response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.

  18. Resistance Spot Welding of Steel Sheets of the Same and Different Thickness

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2017-01-01

    Full Text Available Resistance welding ranks among progressive and in practice often used manufacturing techniques of rigid joints. It is applied in single‑part production, short‑run production as well as in mass production. The basis of this method is in the utilization of the Joulean heat, which arises at the passage of current through connected sheets at collective influence of compressive force. The aim of the carried out tests was the determination of the dependence between the rupture force of spot welds made using steel sheets of the same and different thickness for different welding conditions. For carrying out of this aim 360 assemblies were prepared. The sheets (a total of 720 pieces of dimensions 100 × 25 mm and thickness of 0.8 mm, 1.5 mm and 3.0 mm were made from low carbon steel. In the place determined for welding the test specimens were garnet blasted and then degreased with acetone. The welding of two specimens always of the same (0.8+0.8 mm, 1.5+1.5 mm a 3.0+3.0 mm and different (0.8 + 1.5 mm, 0.8+3.0 mm a 1.5+3.0 mm thickness was carried out using the welding machine type BV 2,5.21. At this type the welding current value is constant (Imax = 6.4 kA. The welding time (the time of the passage of the current was changed in the whole entirety, namely 0.10 s, 0.15 s, 0.20 s, 0.25 s, 0.3 s, 0.4 s, 0.6 s, 0.8 s, 1.0 s, 1.3 s, 1.6 s and 2.0 s. The compressive force was chosen according to the thickness of the connected sheets in the range from 0.8 to 2.4 kN. From the results of carried out tests it follows that using the working variables recommended by the producer we obtain the quality welds. But it we use the longer welding times, we can obtain stronger welds, namely up to 21 % compared to welds made using working variables recommended by the producer.

  19. Effect of Strengthening Mechanism on Strain-Rate Related Tensile Properties of Low-Carbon Sheet Steels for Automotive Application

    Science.gov (United States)

    Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.

    2018-05-01

    In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.

  20. 76 FR 58536 - Tin- and Chromium-Coated Steel Sheet From Japan; Notice of Commission Determination To Conduct a...

    Science.gov (United States)

    2011-09-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... Concerning the Antidumping Duty Order on Tin- and Chromium-Coated Steel Sheet From Japan AGENCY: United.... 1675(c)(5)) to determine whether revocation of the antidumping duty order on tin- and chromium-coated...

  1. Experimental and Numerical Studies on Isothermal and Non-isothermal Deep Drawing of IS 513 CR3 Steel Sheets

    Science.gov (United States)

    Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.

    2016-11-01

    The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.

  2. Resistance spot weldability of 11Cr–ferritic/martensitic steel sheets

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-01-01

    Resistance spot welding of 11Cr–0.4Mo–2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  3. Characterization and modelling techniques for gas metal arc welding of DP 600 sheet steels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Prahl, U.; Bleck, W. [RWTH Aachen University, Department of Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2010-11-15

    The objectives of the present work are to characterize the Gas Metal Arc Welding process of DP 600 sheet steel and to summarize the modelling techniques. The time-temperature evolution during the welding cycle was measured experimentally and modelled with the softwaretool SimWeld. To model the phase transformations during the welding cycle dilatometer tests were done to quantify the parameters for phase field modelling by MICRESS {sup registered}. The important input parameters are interface mobility, nucleation density, etc. A contribution was made to include austenite to bainite transformation in MICRESS {sup registered}. This is useful to predict the microstructure in the fast cooling segments. The phase transformation model is capable to predict the microstructure along the heating and cooling cycles of welding. Tensile tests have shown the evidence of failure at the heat affected zone, which has the ferrite-tempered martensite microstructure. (orig.)

  4. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    Directory of Open Access Journals (Sweden)

    Seungwon Kim

    2016-01-01

    Full Text Available High-performance fiber-reinforced cementitious composites (HPFRCCs are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy absorption capacity and apparent ductility. This high energy absorbing capacity can be enhanced further by an external stiff fiber-reinforced polymer (FRP. Basalt fabric is externally bonded as a sheet on concrete materials to enhance the durability and resistance to fire and other environmental attacks. This study investigates the flexural performance of an HPFRCC that is externally reinforced with multiple layers of basalt FRP. The HPFRCC considered in the study contains steel fibers at a volume fraction of 8%.

  5. Mono pile foundation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyngesen, S.; Brendstrup, C.

    1997-02-01

    The use of mono piles as foundations for maritime structures has been developed during the last decades. The installation requirements within the offshore sector have resulted in equipment enabling driving of piles up to 3-4 m to large penetration depths. The availability of this equipment has made the use of large mono piles feasible as foundations for structures like wind turbines. The mono pile foundations consists of three parts; the bare pile, a conical transition and a boat landing. All parts are prefitted at the yard in order to minimise the installation work that has to be carried out offshore. The study of a mono pile foundations for a 1.5 MW wind turbine has been conducted for two locations, Horns Rev and Roedsand. Three different water depths: 5, 8 and 11 m have been investigated in the study. The on-site welding between pile and conical transition is performed by an automatic welding machine. Final testing and eventually repair of the weld are conducted at least 16 hours after welding. This is followed by final installation of J-tube, tie-in to subsea cables and installation of the impressed current system for corrosive protection of the mono pile. The total cost for procurement and installation of the mono pile using the welded connection is estimated. The price does not include procurement and installation of access platform and boat landing. These costs are estimated to 250.000 DKK. Depending on water depth the cost of the pile ranges from 2,2 to 2,7 million DKK. Procurement and fabrication of the pile are approx. 75% of the total costs. The remaining 25% are due to installation. The total costs are very sensitive to the unit price of pile steel. During the project it became obvious that ice load has a very large influence on the dimensions of the mono pile. (EG)

  6. Equal-channel angular sheet extrusion of interstitial-free (IF) steel: Microstructural evolution and mechanical properties

    International Nuclear Information System (INIS)

    Saray, O.; Purcek, G.; Karaman, I.; Neindorf, T.; Maier, H.J.

    2011-01-01

    Highlights: → IF-steel sheets can successfully be processed in the continuous manner using the equal-channel angular sheet extrusion (ECASE). → The ECASE produces the microstructures including dislocation cell and micro-shear bands inside the grains with mainly low-angle grain boundaries. → The ECASE results in a considerable increase in the strength but limited ductility. → A good strength-ductility balance in the ECASE-processed IF-steel sheets can be managed with a suitable annealing parameters. - Abstract: Interstitial-free steel (IF-steel) sheets were processed at room temperature using a continuous severe plastic deformation (SPD) technique called equal-channel angular sheet extrusion (ECASE). After processing, the microstructural evolution and mechanical properties have been systematically investigated. To be able to directly compare the results with those from the same material processed using discontinuous equal channel angular extrusion, the sheets were ECASE processed up to eight passes. The microstructural investigations revealed that the processed sheets exhibited a dislocation cell and/or subgrain structures with mostly low angle grain boundaries. The grains after processing have relatively high dislocation density and intense micro-shear band formation. The electron backscattering diffraction (EBSD) examination showed that the processed microstructure is not fully homogeneous along the sheet thickness due probably to the corner angle of 120 deg. in the ECASE die. It was also observed that the strengths of the processed sheets increase with the number of ECASE passes, and after eight passes following route-A and route-C, the yield strengths reach 463 MPa and 459 MPa, respectively, which is almost 2.5 times higher than that of the initial material. However, the tensile ductility considerably dropped after the ECASE. The limited ductility was attributed to the early plastic instability in the tensile samples due to the inhomogeneous

  7. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  8. Pile Driving

    Science.gov (United States)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  9. Influence of the mechanical fatigue progress on the magnetic properties of electrical steel sheets

    Directory of Open Access Journals (Sweden)

    Karthaus Jan

    2017-06-01

    Full Text Available The purpose of this paper is to study the variation of the magnetic properties of non-oriented electrical steel sheets with the fatigue state during cyclic mechanical loading. The obtained results are central to the design of variable drives such as traction drives in electric vehicles in which varying mechanical loads, e.g. in the rotor core (centrifugal forces, alter the magnetic properties. Specimens of non-oriented electrical steel are subject to a cyclically varying mechanical tensile stress with different stress amplitudes and number of cycles. The specimens are characterised magnetically at different fatigue states for different magnetic flux densities and magnetising frequencies. The measurements show a variation in magnetic properties depending on the number of cycles and stress magnitude which can be explained by changes in the material structure due to a beginning mechanical fatigue process. The studied effect is critical for the estimation of the impact of mechanical material fatigue on the operational behaviour of electrical machines. Particularly in electrical machines with a higher speed where the rotor is stressed by high centrifugal forces, material fatigue occurs and can lead to deterioration of the rotor’s stack lamination.

  10. Temperature effects on the magnetic properties of silicon-steel sheets using standardized toroidal frame.

    Science.gov (United States)

    Wu, Cheng-Ju; Lin, Shih-Yu; Chou, Shang-Chin; Tsai, Chia-Yun; Yen, Jia-Yush

    2014-01-01

    This study designed a detachable and standardized toroidal test frame to measure the electromagnetic characteristic of toroidal laminated silicon steel specimens. The purpose of the design was to provide the measurements with standardized and controlled environment. The device also can withstand high temperatures (25-300°C) for short time period to allow high temperature tests. The accompanying driving circuit facilitates testing for high frequency (50-5,000 Hz) and high magnetic flux (0.2-1.8 T) conditions and produces both sinusoidal and nonsinusoidal test waveforms. The thickness of the stacked laminated silicon-steel sheets must be 30~31 mm, with an internal diameter of 72 mm and an outer diameter of 90 mm. With the standardized setup, it is possible to carry out tests for toroidal specimen in high temperature and high flux operation. The test results show that there is a tendency of increased iron loss under high temperature operation. The test results with various driving waveforms also provide references to the required consideration in engineering designs.

  11. Mechanical properties and corrosion resistance of nitrided or oxinitrided, and powder painted regular and interstitial free (IF) drawing steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Rogalski, Z.; Latas, Z. [Instytut Mechaniki Precyzyjnej, ul. Duchnicka 3, 01-796 Warszawa (Poland)

    2004-06-01

    Specimens of 0.8 mm thick regular and interstitial free (IF) drawing steel sheet have been nitrided in fluidised bed for 2 hours at 620 C and 560 C with and without a post-oxidation, and slow and accelerated cooling. As a result, surface hardness, yield and tensile strength of the sheets increased considerably without a critical loss of ductility. Resistance welds between the sheets did not lose their original strength after nitriding-oxinitriding. Nitrided-oxinitrided at 620 C and then powder painted sheets, as compared with powder painted raw sheets, were more corrosion resistant in neutral salt spray and climatic tests. Some mechanical and anticorrosion properties of the IF steel sheet that had undergone the nitriding-oxinitriding processes were definitely better than those of equally processed regular steel sheet. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Proben aus 0,8 mm dickem Blech aus Ziehmassenstahl sowie aus Ziehstahl ohne interstitiel geloeste Legierungsanteile (IF), werden im Wirbelbett in 2 Stunden bei 620 und 560 {sup o}C nitriert mit nachfolgenden Oxidierung sowie alternativ ohne Oxidierung und mit langsamer und beschleunigter Abkuehlung. Infolge dessen nehmen die Haerte, die Dehngrenze und die Zugfestigkeit der Bleche zu, ohne kritischen Zaehigkeitsverlust. Die Widerstandsschweisswulste zwischen den Blechen nach dem Nitrieren-Oxinitrieren haben nicht an Festigkeit verloren. Die bei 620 {sup o}C nitrierten-oxinitrierten und nachfolgend mit Pulverlack beschichteten Bleche sind bei den Versuchen in Salznebel und bei klimatischen Versuchen korrosionbestaendiger im Vergleich mit den mit nur Pulverlack beschichteten Rohblechen. Manche der mechanischen und korrosionsverhalten betreffenden Eigenschaften der Bleche aus IF-Staehle sind entscheidend besser als fuer das ebenso behandelte Blech aus Ziehmassenstahl. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  12. Synthesis of concrete bridge piles prestressed with CFRP systems.

    Science.gov (United States)

    2017-06-01

    The Texas Department of Transportation frequently constructs prestressed concrete piles for use in bridge : foundations. Such prestressed concrete piles are typically built with steel strands that are highly susceptible to : environmental degradation...

  13. Comparative Analysis of Welded and Adhesive Joints Strength Made of Acid-Resistant Stainless Steel Sheets

    Directory of Open Access Journals (Sweden)

    Izabela Miturska

    2017-12-01

    Full Text Available The article presents the selected results of strength tests on the effectiveness of bonding high-alloy steel 1.4310. Sheet steel is one of the materials that are difficult to activate energy. Effective joining of it is difficult, requires selection of the appropriate bonding technology. The paper focuses on the comparative tests the shear strength of one-single lap welded and bonded joints. The welding process was performed 3 groups of samples TIG welding and argon, where the variable value of the welding process was current: 60A, 70A, 80A. The adhesion process was performed in 6 groups of samples which differed in the method of surface preparation and the type of the adhesive. Adhesive joints were made by using adhesive of epoxy resin and a hardener: Epidian 61/TFF at a mass ratio of 100:22 and Epidian 61/IDA at a mass ratio of 100:40. As a way of surface preparation applied 3 different, but simplified and environmentally friendly methods of surface preparation: degreasing with using cleaner Loctite 7061, abrasive machining with P320 and degreasing and grinding with abrasive T800 and degreasing were used. Make joints and curing the adhesive joints were carried out at ambient temperature. Analyzed the joints were tested destructive - which set out the shear strength, in accordance with DIN EN 1465 on the testing machine Zwick / Roell Z150. Based on the results of research it was found that better results were obtained for the maximum welded joints, but this result was similar to the maximum value of the strength of the adhesive bond.

  14. TECHNOLOGY OF REVERSE-BLAST CORROSION CLEANING OF STEEL SHEETS PRIOR TO LASER CUTTING

    Directory of Open Access Journals (Sweden)

    A. N. Zguk

    2017-01-01

    Full Text Available Quality of surface cleaning against corrosion influences on efficiency in realization of a number of technological processes. While using bentonite clays in power fluid reverse-blast cleaning ensures formation of anticorrosion protective coating with light absorbing properties on the cleaned surface and prevents formation of the repeated corrosion. The paper presents results of the investigations pertaining to influence of reverse-blast cleaning parameters of steel sheets on quality of the cleaned surface prior to laser cutting. Processing conditions, applied compositions of power fluid and also properties of the protective film coatings on the cleaned surface have been given in the paper. The paper considers topography, morphology and chemical composition of the given coating while applying complex metal micrographic, X-ray diffraction and electronic and microscopic investigations. A complex of laser cutting (refer to gas lasers with output continuous capacity of 2.5/4.0 kW has been applied for experimental works to evaluate influence of the formed surface quality on efficiency of laser cutting process. Specimens having dimension 120×120 mm, made of steel Ст3пс, with thickness from 3 to 10 mm have been prepared for the experiments. An analysis has shown that the application of reverse-blast cleaning ensures higher speed in laser cutting by a mean of 10–20 %. The investigations have made it possible to determine optimum cleaning modes: distance from a nozzle to the surface to be cleaned, jet velocity, pressure. It has been revealed that after drying of the specimens processed by power fluid based on water with concentrations of bentonite clay and calcined soda a protective film coating with thickness of some 5–7 µm has been formed on the whole cleaned specimen surfaces. Chemical base of the coating has been formed by the elements which are included in the composition of bentonite clay being the basic component of the power fluid. 

  15. Screw piles for cold climate foundations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Sakr, M. [Almita Manufacturing Ltd., Edmonton, AB (Canada)

    2008-07-01

    Almita Manufacturing is an Alberta-based company that designs and builds screw piles with its own installation teams. It also engineers and supplies piles to numerous other companies and independent installers. The company services industries such as oil and gas; power transmission and distribution; and commercial construction. This presentation discussed the design and technical aspects of screw piles. A screw pile was defined as a steel pipe shaft with a 45 degree cut at the bottom and a formed helical plate welded to the outside of the pipe near the base and at a selected point on the shaft. The pile is screwed into the ground with a planetary drive head of suitable torque rating. The helical plate or helix helps facilitate the installation of the pile and gives the screw pile increased bearing capacity and pull-out resistance over a traditional straight-shaft pile. Screw piles were compared against cast in place concrete piles and steel driven piles. Screw piles were reported to have no tailings; no concrete curing time; no rebar, anchor belts, and no liners; and no dewatering. Screw piles can also be installed in all types of weather. Rhe Cree Burn Camp case study near Fort McMurray, Alberta was also presented. This residential camp and recreation complex consists of pre-fabricated units that make up three storey housing buildings and a single floor multi-use building. The case study provided information on soil; design parameter inputs; load testing program and pile configuration; geotechnical and structural design results; compression load test arrangement; pile test setup; and test results. The presentation also discussed fabrication as well as installation equipment. Various applications were also presented through a series of project pictures. Last, the presentation provided a simple cost analysis. tabs., figs.

  16. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  17. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism

    International Nuclear Information System (INIS)

    Lostak, Thomas; Maljusch, Artjom; Klink, Björn; Krebs, Stefan; Kimpel, Matthias; Flock, Jörg; Schulz, Stephan; Schuhmann, Wolfgang

    2014-01-01

    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H 2 ZrF 6 ) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed

  18. Strain- and stress-based forming limit curves for DP 590 steel sheet using Marciniak-Kuczynski method

    Science.gov (United States)

    Kumar, Gautam; Maji, Kuntal

    2018-04-01

    This article deals with the prediction of strain-and stress-based forming limit curves for advanced high strength steel DP590 sheet using Marciniak-Kuczynski (M-K) method. Three yield criteria namely Von-Mises, Hill's 48 and Yld2000-2d and two hardening laws i.e., Hollomon power and Swift hardening laws were considered to predict the forming limit curves (FLCs) for DP590 steel sheet. The effects of imperfection factor and initial groove angle on prediction of FLC were also investigated. It was observed that the FLCs shifted upward with the increase of imperfection factor value. The initial groove angle was found to have significant effects on limit strains in the left side of FLC, and insignificant effect for the right side of FLC for certain range of strain paths. The limit strains were calculated at zero groove angle for the right side of FLC, and a critical groove angle was used for the left side of FLC. The numerically predicted FLCs considering the different combinations of yield criteria and hardening laws were compared with the published experimental results of FLCs for DP590 steel sheet. The FLC predicted using the combination of Yld2000-2d yield criterion and swift hardening law was in better coorelation with the experimental data. Stress based forming limit curves (SFLCs) were also calculated from the limiting strain values obtained by M-K model. Theoretically predicted SFLCs were compared with that obtained from the experimental forming limit strains. Stress based forming limit curves were seen to better represent the forming limits of DP590 steel sheet compared to that by strain-based forming limit curves.

  19. Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets

    International Nuclear Information System (INIS)

    Lee, Seong Won; Lee, Jung Min; Joun, Man Soo; Kim, Dong Hwan

    2016-01-01

    During a galvannealed sheet metal forming, the failures of coating layers (powdering, flaking and cracking) frequently affect the strain state of sheets and deteriorate the frictional characteristic between sheets and tools. Two FE-models in this study were suggested to investigate the effects of the mechanical behavior of coating layers on the formability and friction of the coated steel sheets in FE analysis; the first is one-layer model to express the coated sheet as one stress-strain curve and the second is a multiple-layer model which is composed of substrates and coating layers, separately. First, the frictional properties and the formability of the coated sheets were experimentally investigated using a cup deep-drawing trial. After, the drawing process was simulated by FE analysis of the two models. In the multiplelayer model, the mechanical behavior of the coating is defined as a stress-strain curve which was determined using the nanoindentation test of the coating, its FE analysis and artificial neural network method. The result showed that the multiple-layer model provides more accuracy predictions of drawing loads than the one-layer model in the FE analysis, compared to the actual cup drawing test.

  20. Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Won; Lee, Jung Min [Korea Institute of Industrial Technology, Jinju (Korea, Republic of); Joun, Man Soo [Gyeongsang National University, Jinju (Korea, Republic of); Kim, Dong Hwan [International University of Korea, Jinju (Korea, Republic of)

    2016-07-15

    During a galvannealed sheet metal forming, the failures of coating layers (powdering, flaking and cracking) frequently affect the strain state of sheets and deteriorate the frictional characteristic between sheets and tools. Two FE-models in this study were suggested to investigate the effects of the mechanical behavior of coating layers on the formability and friction of the coated steel sheets in FE analysis; the first is one-layer model to express the coated sheet as one stress-strain curve and the second is a multiple-layer model which is composed of substrates and coating layers, separately. First, the frictional properties and the formability of the coated sheets were experimentally investigated using a cup deep-drawing trial. After, the drawing process was simulated by FE analysis of the two models. In the multiplelayer model, the mechanical behavior of the coating is defined as a stress-strain curve which was determined using the nanoindentation test of the coating, its FE analysis and artificial neural network method. The result showed that the multiple-layer model provides more accuracy predictions of drawing loads than the one-layer model in the FE analysis, compared to the actual cup drawing test.

  1. Mechanical characterization of auxetic stainless steel thin sheets with reentrant structure

    Science.gov (United States)

    Lekesiz, H.; Bhullar, S. K.; Karaca, A. A.; Jun, M. B. G.

    2017-08-01

    Smart materials in auxetic form present a great potential for various medical applications due to their unique deformation mechanisms along with durable infrastructure. Both analytical and finite element (FE) models are extensively used in literature to characterize mechanical response of auxetic structures but these structures are mostly thick enough to be considered as bulk material and 3D inherently. Auxetic plates in very thin form, a.e. foil, may bring numerous advantages such as very light design and better biodegradability when needed. However, there is a gap in literature on mechanical characterization of auxetic thin plates. In this study, structural analysis of very thin auxetic plates under uniaxial loading is investigated using both FE method and experimental method. 25 μm thick stainless steel (316L) plates are fabricated with reentrant texture for three different unit cell dimensions and tested under uniaxial loading using universal testing machine. 25 and 50 μm thick sheets with same cell dimensions were analyzed using implicit transient FE model including strain hardening and failure behaviors. FE results cover all the deformation schemes seen in actual tests and total deformation level matches with test results. Effect of plate thickness and cell geometry on auxetic behavior is discussed in detail using FE results. Finally, based on FE analysis results, an optimum geometry for prolonged auxetic behavior, high flexibility and high durability is suggested for future potential applications.

  2. Experimental Tests on Bending Behavior of Profiled Steel Sheeting Dry Board Composite Floor with Geopolymer Concrete Infill

    Directory of Open Access Journals (Sweden)

    Mohd Isa Jaffar

    Full Text Available Abstract Profiled Steel Sheet Dry Board (PSSDB system is a lightweight composite structure comprises Profiled Steel Sheeting and Dry Board connected by self-drilling and self-tapping screws. This study introduced geopolymer concrete, an eco-friendly material without cement content as an infill material in the PSSDB floor system to highlight its effect onto the PSSDB (with full and half-size dry boards floor system's stiffness and strength. Experimental tests on various full scale PSSDB floor specimens were conducted under uniformly distributed transverse loads. Results illustrate that the rigidity of the panel with geopolymer concrete infill with half-size dry board (HBGPC increases by 43% relative to that of the panel with normal concrete infill with full-size dry board (FBNC. The developed finite-element modeling (FEM successfully predicts the behavior of FBGPC model with 94.8% accuracy. Geopolymer concrete infill and dry board size influence the strength panel, infill contact stiffness, and mid-span deflection of the profiled steel sheeting/dry board (PSSDB flooring system.

  3. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  4. Cold-rolled sheets production of stainless martensite-ageing steel smelted by vacuum arc and electroslag techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, A A; Grishkov, A I; Suslin, A P; Nesterenko, A A; Lola, V N [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-05-01

    In cooperation with a number of metallurgical works the production of a high strength sheet stainless maraging steel EHP678 (000KH11N10M2T) has been tested by rolling cylindrical ingots of vacuum arc smelting at the blooming (the mass of rough ingots was 5.1 to 6.0 t, that of cleaned ingots - 3.8 to 5.1 t) or rectangular ingots of electroslag smelting (13 t) at the slabbing. The recommended regimes of heating and deformation are much similar to those used for the steel-KH18N10T. The output of valid cold-rolled sheets proved to be rather low (0.24 t/t for the vacuum arc smelting and 0.30 t/t for the electroslag smelting) mainly due to the losses on cleaning and a considerable portion of wrong-size slabs. The data are presented on the steel-EHP678 properties after various heat treatments. For the production of wide cold-rolled sheets of the steel EHP678 it is recommended to use steelmaking procedure with electroslag smelting including open-hearth melting in arc furnaces, rolling of ingots at the slabbing with heating up to 1260-1280 deg C (hold-up of 4.5 to 5 hrs); electroslag smelting for rectangular section slabs, rolling of ingots of electroslag smelting at the slabbing with their heating up to 1250 deg C (hold-up of 5.5 to 6 hrs), rolling at the 1680-type mill with heating up to 1250-1260 deg C (hold-up of 4 to 4.5 hrs ensuring the rolling temperature after a rough group not below 1100 deg C), quenching of hot-rolled sheets heating up to 920-940 deg C (hold-up of 3 to 3.5 min/mm), shot peening of sheets for descaling (provided the respective equipment is available) with a subsequent short-time pickling in an acid solution and cold rolling with a summary deformation of 35 to 45 %. The steelmaking with the electroslag smelting is much more profitable as regards to the fine technology of number of the main procedures, convenient cooperation of the works and a considerably greater output of the final products out of one ton of the steel produced.

  5. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  6. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  7. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    International Nuclear Information System (INIS)

    Rafiqul, M I; Ishak, M; Rahman, M M

    2012-01-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  8. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    Science.gov (United States)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  9. Pullout capacity of batter pile in sand.

    Science.gov (United States)

    Nazir, Ashraf; Nasr, Ahmed

    2013-03-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21-31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18-75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  10. Pullout capacity of batter pile in sand

    Directory of Open Access Journals (Sweden)

    Ashraf Nazir

    2013-03-01

    Full Text Available Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21–31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18–75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  11. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool ...

  12. Post irradiation examination of type 316 stainless steels for in-pile Oarai water loop No.2 (OWL-2)

    International Nuclear Information System (INIS)

    Shibata, Akira; Kimura, Tadashi; Nagata, Hiroshi; Aoyama, Masashi; Kanno, Masaru; Ohmi, Masao

    2010-11-01

    The Oarai water loop No.2 (OWL-2) was installed in JMTR in 1972 for the purpose of irradiation experiments of fuel element and component material for light water reactors. Type 316 stainless steels (SSs) were used for tube material of OWL-2 in the reactor. But data of mechanical properties of highly irradiated Type 316 SSs has been insufficient since OWL-2 was installed. Therefore surveillance tests of type 316 SSs which were irradiated up to 3.4x10 25 n/m 2 in fast neutron fluence (>1 MeV) were performed. Meanwhile type 316 stainless steel (SS) is widely used in JMTR such as other irradiation apparatus and irradiation capsule, and additional data of type 316 SSs irradiated higher is required. Therefore post irradiation examinations of surveillance specimens made of type 316 SSs which were irradiated up to 1.0x10 26 n/m 2 in fast neutron fluence were performed and reported in this paper. In this result of surveillance tests of type 316 SSs irradiated up to 1.0x10 26 n/m 2 , tensile strength increase with increase of Neutron fluence and total elongation decreased with increase of Neutron fluence compared to unirradiated specimens and specimens irradiated up to 3.4x10 25 n/m 2 . This tendency has good agreement with results of 10 24 - 10 25 n/m 2 in fast neutron fluence. More than 37% in total elongation was confirmed in all test conditions. It was confirmed that type 316 SS irradiated up to 1.0x10 26 n/m 2 in fast neutron fluence has enough ductility as structure material. (author)

  13. Development of optimized advanced austenitic steels (II). Evaluation of out-of-pile testing results of the test fuel claddings

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki; Mizuta, Shunji; Ukai, Shigeharu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-03-01

    14Cr-25Ni optimized advanced austenitic steels have been developed to improve the swelling resistance of 15Cr-20Ni austenitic stainless steels used for FBR fuel cladding. In this improvement, Ti, Nb, V and P were dissolved into 14Cr-25Ni matrix by means of the high-temperature solution treatment to make finely distributed and stabilized precipitates in the operation. Furthermore, at the final stage of cold-working, cold-working level increased and residual stress was reduced. In this study, as fabricated microstructure observation, solubility of alloying elements and grain size test in the manufacturing process were evaluated. Following results were obtained. (1) Spherical precipitates were observed in the grain. Most of them were identified as complexed carbide-nitride [Ti,Nb(C,N)] by EDX analysis. (2) The dissolved percentages of Ti and Ni in the matrix were about 70% and 30% respectively. Undissolved Ti and Nb may react with undissolved carbon and precipitate as MC carbides. (3) High-temperature solution treatment is effective for the sufficient solubility of alloying elements, but it is likely to induce very large grains, which is the cause of defective signal in the ultrasonic alloy testing. The results of the grain size test showed that the large grain size is reduced in low Nb (0.1wt%) alloy compared with the standard alloy (0.2wt% Nb), and the effectiveness for the grain size control by reducing the Nb content was confirmed. Also, it was suggested that the intermediate heat treatment and cold work conditions would possibly avoid the occurrence of the large grain at the final heat treatment. (author)

  14. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  15. Investigations of phosphate coatings of galvanized steel sheets by a surface-analytical multi-method approach

    International Nuclear Information System (INIS)

    Bubert, H.; Garten, R.; Klockenkaemper, R.; Puderbach, H.

    1983-01-01

    Corrosion protective coatings on galvanized steel sheets have been studied by a combination of SEM, EDX, AES, ISS and SIMS. Analytical statements concerning such rough, poly-crystalline and contaminated surfaces of technical samples are quite difficult to obtain. The use of a surface-analytical multi-method approach overcomes, the intrinsic limitations of the individual method applied, thus resulting in a consistent picture of those technical surfaces. Such results can be used to examine technical faults and to optimize the technical process. (Author)

  16. In-pile Tritium Permeation through F82H Steel with and without a Ceramic Coating of Cr2O3-SiO2 Including CrPO4

    International Nuclear Information System (INIS)

    Nakamichi, M.; Hayashi, K.; Kulsartov, T.V.; Afanasyev, S.E.; Shestakov, V.P.; Chikhray, Y.V.; Kenzhin, E.A.; Kolbaenkov, A.N.

    2006-01-01

    Development of coating on blanket structural materials with significant reduction capability of tritium permeation is highly required in order to realize a reasonable design of a tritium recovery and processing system of demonstration (DEMO) fusion reactors. An effective coating has been developed in Japan Atomic Energy Agency (JAEA) using a ceramic material of Cr 2 O 3 -SiO 2 including CrPO 4 . In previous out-of-pile deuterium permeation experiments at 600 o C [T.V. Kulsartov et al., Fusion Eng. Des. 81 (2006) 701], a significant permeation reduction factor (PFR) of about 300 was obtained for the coating on the inner-side surface of tubular diffusion cells made by ferritic steel (F82H). In the present study, in-pile experiments on tritium permeation were conducted for F82H steel with and without the same coating, using a testing reactor IGV-1M in Kazakhstan. The tritium source used was liquid lithium-lead eutectics, Pb17Li, which was poured into a space around a tubular diffusion cell (specimen) of F82H steel with or without the coating on the inner side the cell. The irradiation time was about 4 hours, which corresponds to a fast-neuron fluence of about 2x10 21 m -2 (E > 1.1 MeV). The permeation reduction factor (PRF) was obtained by comparison of kinetics curves of tritium permeation through the diffusion cell of F82H steel with and without the coating. The PRFs at 600 and 500 o C were 292 and 30, respectively. These values are close to corresponding PRF values of 307 and 45, which had been obtained at 600 and 500 o C, respectively, in the previous out-of-pile experiments [T.V. Kulsartov et al., Fusion Eng. Des. 81 (2006) 701]. (author)

  17. Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

    Science.gov (United States)

    Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung

    2017-01-01

    In Fe-3%Si-0.3%C steel sheet, a relatively strong //ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the //ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the //ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

  18. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Timma, Christian, E-mail: christian.timma@thyssenkrupp.com [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany); Lostak, Thomas; Janssen, Stella; Flock, Jörg [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); Mayer, Christian [University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany)

    2016-12-30

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH{sub 4}){sub 2}SO{sub 4} in a common roll-coating method. • A formation of (NH{sub 4}){sub 2}Zn(SO{sub 4}) * xH{sub 2}O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH{sub 4}){sub 2}Zn(SO{sub 4}){sub 2} * xH{sub 2}O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  19. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  20. Multi-scale contact modeling of coated steels for sheet metal forming applications

    NARCIS (Netherlands)

    Shisode, Meghshyam; Hazrati Marangalou, Javad; Mishra, Tanmaya; De Rooij, Matthijn; Van Den Boogaard, Ton; Bay, Niels; Nielsen, Chris V.

    2018-01-01

    Friction in sheet metal forming is a local phenomenon which depends on continuously evolving contact conditions during the forming process. This is mainly influenced by local contact pressure, surface textures of the sheet metal as well as the forming tool surface profile and material behavior. The

  1. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    International Nuclear Information System (INIS)

    Jin, Chung Keun; Lim, Sung Hyung

    2015-01-01

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU

  2. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chung Keun; Lim, Sung Hyung [Buhmwoo Institute of Technology Research, Hwaseong (Korea, Republic of)

    2015-10-15

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

  3. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  4. Experimental and Numerical Investigations of Applying Tip-bottomed Tool for Bending Advanced Ultra-high Strength Steel Sheet

    Science.gov (United States)

    Mitsomwang, Pusit; Borrisutthekul, Rattana; Klaiw-awoot, Ken; Pattalung, Aran

    2017-09-01

    This research was carried out aiming to investigate the application of a tip-bottomed tool for bending an advanced ultra-high strength steel sheet. The V-die bending experiment of a dual phase steel (DP980) sheet which had a thickness of 1.6 mm was executed using a conventional bending and a tip-bottomed punches. Experimental results revealed that the springback of the bent worksheet in the case of the tip-bottomed punch was less than that of the conventional punch case. To further discuss bending characteristics, a finite element (FE) model was developed and used to simulate the bending of the worksheet. From the FE analysis, it was found that the application of the tip-bottomed punch contributed the plastic deformation to occur at the bending region. Consequently, the springback of the worksheet reduced. In addition, the width of the punch tip was found to affect the deformation at the bending region and determined the springback of the bent worksheet. Moreover, the use of the tip-bottomed punch resulted in the apparent increase of the surface hardness of the bent worksheet, compared to the bending with the conventional punch.

  5. Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minju; Park, Jaeyeong; Sohn, Seok Su; Kim, Hyoung Seop [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Nack J. [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2017-05-02

    In this study, dynamic tensile tests were conducted on TWinning Induced Plasticity (TWIP) and low-carbon (LC) steel sheets at a strain rate of 1500–2000/s by using a split Hopkinson tensile bar, and deformation mechanisms related with improvement of dynamic tensile properties were investigated by a digital image correlation (DIC) technique. The dynamic tensile strength was higher than the quasi-static tensile strength in both TWIP and LC sheets, while the dynamic elongation was same to the quasi-static elongation in the TWIP sheet and was much lower than the quasi-static elongation in the LC sheet. According to the DIC results of the dynamically tensioned TWIP sheet, the homogeneous deformation occurred before the necking at the strain of 47.4%. This indicated that the dynamic deformation processes were almost similar to the quasi-static ones as the TWIP sheet was homogeneously deformed in the initial and intermediate deformation stages. This could be explained by deformation mechanisms including twinning, in consideration of favorable effect of increased twinning on tensile properties under the dynamic loading. On the other hand, the dynamically tensioned LC sheet was rapidly deformed and fractured as the necking was intensified in a narrow strain-concentrated region. The present DIC technique is an outstanding method for detailed dynamic deformation analyses, and provides an important idea for practical safety analyses of automotive steel sheets.

  6. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  7. Laboratory Test Setup for Cyclic Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2017-01-01

    This paper presents a comprehensive description and the considerations regarding the design of a new laboratory test setup for testing cyclic axially loaded piles in sand. The test setup aims at analysing the effect of axial one-way cyclic loading on pile capacity and accumulated displacements....... Another aim was to test a large diameter pile segment with dimensions resembling full-scale piles to model the interface properties between pile and sand correctly. The pile segment was an open-ended steel pipe pile with a diameter of 0.5 m and a length of 1 m. The sand conditions resembled the dense sand...... determined from the API RP 2GEO standard and from the test results indicated over consolidation of the sand. Two initial one-way cyclic loading tests provided results of effects on pile capacity and accumulated displacements in agreement with other researchers’ test results....

  8. Reducing Local Scouring at Bridge Piles Using Collars and Geobags

    Directory of Open Access Journals (Sweden)

    Shatirah Akib

    2014-01-01

    Full Text Available The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles.

  9. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    Science.gov (United States)

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  10. Failure Models of Thin-walled Steel Sheeting and Structural-spatial Design Process

    NARCIS (Netherlands)

    Hofmeyer, H.

    2009-01-01

    This presentation is the first on 20 years of research on the failure mechanisms of sheeting subjected to combined concentrated load and bending moment, performed at Technische Universiteit Eindhoven. The aim of this research is to develop accurate, insight providing design rules using simple

  11. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    Science.gov (United States)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  12. Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet

    Science.gov (United States)

    Majidi, Omid; Barlat, Frederic; Korkolis, Yannis P.; Fu, Jiawei; Lee, Myoung-Gyu

    2016-11-01

    To understand the material behavior during non-monotonic loading, uniaxial tension tests were conducted in three modes, namely, the monotonic loading, loading with periodic relaxation and periodic loading-unloadingreloading, at different strain rates (0.001/s to 0.01/s). In this study, the temperature gradient developing during each test and its contribution to increasing the apparent ductility of DP780 steel sheets were considered. In order to assess the influence of temperature, isothermal uniaxial tension tests were also performed at three temperatures (298 K, 313 K and 328 K (25 °C, 40 °C and 55 °C)). A digital image correlation system coupled with an infrared thermography was used in the experiments. The results show that the non-monotonic loading modes increased the apparent ductility of the specimens. It was observed that compared with the monotonic loading, the temperature gradient became more uniform when a non-monotonic loading was applied.

  13. Effect of Weld Bead Shape on the Fatigue Behavior of GMAW Lap Fillet Joint in GA 590 MPa Steel Sheets

    Directory of Open Access Journals (Sweden)

    Insung Hwang

    2017-09-01

    Full Text Available In this study, the effect of weld bead shape on the fatigue strength of lap fillet joints using the gas metal arc welding (GMAW process was investigated. The base material used in the experiment was 590 MPa grade galvanealed steel sheet with 2.3 mm and 2.6 mm thickness. In order to make the four types of weld beads with different shapes by factors such as length, angle, and area, the welding process, wire feeding speed, and joint shape were changed. The stress-number of cycles to failure (S–N curve and fatigue strength were obtained from the fatigue test for four types of weld bead, and the cause of the fatigue strength difference was clarified through the analysis of the geometrical factors, such as length, angle, and area of the weld bead. In addition, the relationship between weld bead shape and fatigue strength was discussed.

  14. ROLE OF FCA WELDING PROCESS PARAMETERS ON BEAD PROFILE, ANGULAR AND BOWING DISTORTION OF FERRITIC STAINLESS STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    VENKATESAN M. V.

    2014-02-01

    Full Text Available This paper discusses the influence of flux cored arc welding (FCAW process parameters such as welding current, travel speed, voltage and CO2 shielding gas flow rate on bead profile, bowing distortion and angular distortion of 409 M ferritic stainless steel sheets of 2 mm thickness. The bowing and angular distortions of the welded plates were measured using a simple device called profile tracer and Vernier bevel protractor respectively. The study revealed that the FCAW process parameters have significant effect on bead profile, and distortion. The relationship between bead profile and distortions were analyzed. Most favorable process parameters that give uniform bead profile and minimum distortion for the weld are recommended for fabrication.

  15. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  16. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  17. Explosive Forming of Low Carbon Steel Sheet into a Stepped Disc Shape

    OpenAIRE

    S. Balasubramanian; S. Sarvat Ali; E.S. Bhagiradha Rao

    1984-01-01

    This paper deals with the explosive forming of deep drawing quality steel into a two stepped disc type shape. An attempt has been made to predict the forming parameters from theoretical considerations by equating the disc shape with an equivalent dome. Results of forming this shape in a single stage vis-a-vis forming in two stages are compared.

  18. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    Science.gov (United States)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  19. Effect of phenolic oligomer on adhesion of poly (ethylene terephthalate) film laminated steel sheets by Electron Beam Curing method

    International Nuclear Information System (INIS)

    Masuhara, Kenichi; Mori, Koji; Koshiishi, Kenji; Sasaki, Takashi.

    1995-01-01

    Adhesion of poly (ethylene terephthalate) film by Electron Beam Curing (EBC) method which can be thought as an energy-saving process was studied for the purpose of bestowing economically design and distinctness of image on thermosetting high molecular weight polyester precoated steel sheets. Adhesion of EB curable resins onto metal is generally poor. In this report, addition of EB curable phenolic resole oligomer with bifunctional acrylates to the top coat used for precoated steel was studied in order to increase the adhesion of an EB curable adhesive, and it was found that the phenolic oligomer is tremendously effective for the improvement of adhesion. The reasons why the phenolic oligomer provides excellent adhesion were 1) elongation at break of the top coat to which the phenolic oligomer is added is little decreased by EB irradiation, and the formability does not reduce. 2) As the phenolic oligomer is unevenly distributed to the surface layer of the top coat, it is suggested that the contact frequency of the phenolic oligomer to the EB curable adhesive is so high that graft polymerization between them is liable to occur. (author)

  20. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    Science.gov (United States)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  1. Experimental Verification of Integrity of Low-Pressure Injection Piles Structure - Pile Internal Capacity

    Science.gov (United States)

    Pachla, Henryk

    2017-12-01

    The idea of strengthening the foundation using injection piles lies in transferring loads from the foundation to the piles anchorage in existing structure and formed in the soil. Such a system has to be able to transfer loads from the foundation to the pile and from the pile onto the soil. Pile structure often reinforced with steel element has to also be able to transfer such a loading. According to the rules of continuum mechanics, the bearing capacity of such a system and a deformation of its individual elements can be determined by way of an analysis of the contact problem of three interfaces. Each of these surfaces is determined by different couples of materials. Those surfaces create: pile-foundation anchorage, bonding between reinforcement and material from which the pile is formed and pilesoil interface. What is essential is that on the contact surfaces the deformation of materials which adhere to each other can vary and depends on the mechanical properties and geometry of these surfaces. Engineering practice and experimental research point out that the failure in such structures occurs at interfaces. The paper is concentrating on presenting the experiments on interaction between cement grout and various types of steel reinforcement. The tests were conducted on the special low pressure injection piles widely used to strengthen foundations of already existing structures of historical buildings due to the technology of formation and injection pressure.

  2. Experimental Verification of Integrity of Low-Pressure Injection Piles Structure – Pile Internal Capacity

    Directory of Open Access Journals (Sweden)

    Pachla Henryk

    2017-12-01

    Full Text Available The idea of strengthening the foundation using injection piles lies in transferring loads from the foundation to the piles anchorage in existing structure and formed in the soil. Such a system has to be able to transfer loads from the foundation to the pile and from the pile onto the soil. Pile structure often reinforced with steel element has to also be able to transfer such a loading. According to the rules of continuum mechanics, the bearing capacity of such a system and a deformation of its individual elements can be determined by way of an analysis of the contact problem of three interfaces. Each of these surfaces is determined by different couples of materials. Those surfaces create: pile-foundation anchorage, bonding between reinforcement and material from which the pile is formed and pilesoil interface. What is essential is that on the contact surfaces the deformation of materials which adhere to each other can vary and depends on the mechanical properties and geometry of these surfaces. Engineering practice and experimental research point out that the failure in such structures occurs at interfaces. The paper is concentrating on presenting the experiments on interaction between cement grout and various types of steel reinforcement. The tests were conducted on the special low pressure injection piles widely used to strengthen foundations of already existing structures of historical buildings due to the technology of formation and injection pressure.

  3. The influence of dew point during annealing on the power loss of electrical steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Broddefalk, Arvid [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden)], E-mail: arvid.broddefalk@sura.se; Jenkins, Keith [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden); Silk, Nick [Corus RD and T, Swinden Technology Centre, Moorgate Rotherham S60 3AR (United Kingdom); Lindenmo, Magnus [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden)

    2008-10-15

    Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen-nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 deg. C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.

  4. The influence of dew point during annealing on the power loss of electrical steel sheets

    Science.gov (United States)

    Broddefalk, Arvid; Jenkins, Keith; Silk, Nick; Lindenmo, Magnus

    Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen-nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 °C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.

  5. HYDRO-ABRASIVE JET CLEANING TECHNOLOGY OF STEEL SHEETS DESIGNED FOR LASER CUTTING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2013-01-01

    Full Text Available Investigations executed by the BNTU “Shipbuilding and hydraulics” department have shown that rather efficient implementation of the requirements to the metal sheet surface designed for laser cutting can be achieved by using hydro-abrasive jet cleaning while applying water pump equipment with the range of pressure – 20–40 MPa. Type of working fluid plays a significant role for obtaining surface of the required quality. The conducted experiments have demonstrated that the efficient solution of the assigned problems can be ensured by using a working fluid containing bentonite clay, surface-active agent polyacrylamide, soda ash and the rest water.

  6. Rational use of anchor pile material of the thin retaining walls

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-12-01

    Full Text Available The article considers the urgency of application of the reinforced concrete anchor piles in the constructions of retaining structures associated with the possibility of establishing rigid joint of element interface and more durable pile constructions in the soil. The features of the inclined anchor piles work as a part of sheet-pile retaining walls are noted. There was performed a study of the stress-strain state of the inclined reinforced concrete anchor piles of the thin sheet-pile wall with the reinforced concrete face members of T-section, combined with piles by a longitudinal beam. The authors consider a constructive scheme of retaining structure and list the applied loads. The efforts in the anchor piles were determined. The bending-moment curves show the character of the force distribution along the pile. A form of the pile ensuring the rational distribution of material along the pile is presented. The distribution of efforts along the length and effect of filling on its operation in the soil were accepted as the criteria of construction solution for a pile. The substantiation of the proposed design of pile is presented in terms of its stress-strain state and the rational use of material. The authors made conclusions on the reasonability of adopted design solutions associated with an increase in the flexural strength of pile, increment of the ultimate pullout capacity, stability improvement, effective use of backfill and exception of the «out of operation» areas of the pile.

  7. Adhesion, resistivity and structural, optical properties of molybdenum on steel sheet coated with barrier layer done by sol–gel for CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Dumont, Jacques [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium)

    2013-03-01

    Molybdenum films are investigated on stainless steel substrates coated with polysilazane based sol–gel and SiO{sub x} layers for flexible CIGS solar cell applications. Thermal stability of the multilayer has been studied. The thickness of polysilazane films are significantly reduced (17%) after heat treatment suggesting a thermal degradation. Four different microstructures were found for Mo films by varying argon total pressure from 2.6 × 10{sup −1} Pa to 2.6 Pa. It was shown that continuous films, low sheet resistance (0.5 Ω/□) and well facetted grains can be achieved when Mo films are deposited on heated substrates at homologous temperature, T of 0.2. - Highlights: ► Steel sheet is functionalized for Cu[Inx,Ga(1 − x)Se2] solar cells. ► Varying deposition pressure impacts the microstructure of Mo films. ► High thermal stability of the sol gel based barrier layer has been investigated. ► Low sheet resistance and continuous Mo films have been obtained at 550°C. ► Thermal stability of functionalized steel sheets at 550°C has been investigated.

  8. Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, H.A., E-mail: hw@utg.de [Institute of Metal Forming and Casting, Technical University of Munich, Garching, D-85748 Germany (Germany); Leuning, N.; Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen, D-52062 Germany (Germany); Andorfer, T.; Jenner, S.; Volk, W. [Institute of Metal Forming and Casting, Technical University of Munich, Garching, D-85748 Germany (Germany)

    2017-01-01

    Mechanical stress occurring during the manufacturing process of electrical machines detrimentally alters the magnetic properties (iron losses and magnetizability). This affects the efficiency and performance of the machine. Improvement of the manufacturing process in terms of reduced magnetic property deterioration enables the full potential of the magnetic materials to be exploited, and as a result, the performance of the machine to be improved. A high quantity of electrical machine components is needed, with shear cutting (punching, blanking) being the most efficient manufacturing technology. The cutting process leads to residual stresses inside the non-oriented electrical sheet metal, resulting in increased iron losses. This paper studies the residual stresses induced by punching with different shear cutting parameters, taking a qualitative approach using finite element analysis. In order to calibrate the finite element analysis, shear cutting experiments are performed. A single sheet tester analysis of the cut blanks allows the correlation between residual stresses, micro hardness measurements, cutting surface parameters and magnetic properties to be studied.

  9. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    OpenAIRE

    Wang, Dan; Li, Heng; Yang, He; Ma, Jun; Li, Guangjun

    2014-01-01

    The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (c...

  10. In situ Raman identification of corrosion products on galvanized steel sheets

    International Nuclear Information System (INIS)

    Bernard, M.C.; Hugot le Goff, A.; Massinon, D.; Phillips, N.; Thierry, D.

    1992-01-01

    In situ Raman spectroscopy was used to identify corrosion products on zinc immersed in chloride solutions. In aerated 0,03 M NaCl solution, zinc carbonate was identified as the main corrosion product. Even with higher chloride concentrations, for which zinc hydroxychloride was also detected, the carbon dioxide concentration is likely to be the rate controlling factor of the corrosion process. In a confinement experiment, Raman analysis revealed that the upper face of the sample was covered with zinc carbonate, whereas hydroxychlorides were identified on the confined face. This result confirmed the hypothesis of a differential aeration mechanism responsible for the formation of zinc hydroxychloride. This is in good agreement with Raman spectroscopy results obtained in the case of painted galvanized steel

  11. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  12. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    International Nuclear Information System (INIS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-01-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  13. Repair systems for deteriorated bridge piles : final report.

    Science.gov (United States)

    2017-04-01

    The objective of this research project is to develop a durable repair system for deteriorated steel bridge piles that : can be implemented without the need for dewatering. A rigorous survey of the relevant practice nationwide was : conducted to infor...

  14. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    International Nuclear Information System (INIS)

    Muñoz-Andrade, Juan D.

    2013-01-01

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes

  15. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx [Departamento de Materiales, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Colonia Reynosa Tamaulipas, C.P. 02200, México Distrito Federal (Mexico)

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  16. Taming Windscale's piles

    International Nuclear Information System (INIS)

    Adams, A.L.

    1989-01-01

    The options as to what to do with the Windscale Piles are being assessed before a final decision on decommissioning is made. Both Piles were shutdown in 1957 following the fire in the Pile number 1. Pile 1 still contains 22 tons of natural uranium fuel. The details of graphite moderator content, biological shielding and other components and containment are given. The fuel and isotope channels in Pile 2 have been examined and the air and water ducts have been inspected. The chimneys of both Piles are contaminated and all entrances have been sealed. Before any work starts the air outlet ducts will be sealed from the chimney and a ventilation system installed. A manipulator is being prepared to remove the remaining fuel elements from both Piles. The proposed decommissioning programme for both Piles is outlined. (U.K.)

  17. Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors

    Science.gov (United States)

    Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao

    2015-11-01

    Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).

  18. Proposal for the award of a contract for the supply of low-carbon steel sheets for the mqw quadrupole magnets

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply of 1000 tonnes of low-carbon steel sheets for the MQW quadrupole magnets. Following a market survey carried out among 53 firms in 16 Member States, a call for tenders (IT-2619/SL/LHC) was sent on 24 September 1999 to three firms in two Member States. By the closing date, CERN had received two tenders. The Finance Committee is invited to agree to the negotiation of a contract with COCKERILL-SAMBRE (BE) for the supply of 1000 tonnes of low-carbon steel sheets for the MQW quadrupole magnets for a total amount of 894 780 euros (1 423 870 Swiss francs), subject to revision for contractual deliveries after 31 December 2001, with an option for the supply of up to 200 tonnes of additional low-carbon steel sheets, for a total amount of 178 956 euros (284 774 Swiss francs), subject to revision for contractual deliveries after 31 December 2001, bringing the total amount to a maximum of 1 073 736 euros (1 708 644 Swiss francs). The above amounts in Swiss franc...

  19. Proposal for the award of a contract for the supply of low-carbon steel sheets for LHC resistive dipole magnets

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply of 1 106 tonnes of low-carbon steel sheets for the MBW, MBXW and MCBW resistive dipole magnets for the LHC. Following a market survey (MS-2619/SL/LHC) carried out among 62 firms in sixteen Member States, a call for tenders (IT-2911/SL/LHC) was sent on 6 March 2001 to 11 firms in seven Member States. By the closing date, CERN had received one tender. The Finance Committee is invited to agree to the negotiation of a contract with the firm COCKERILL SAMBRE (BE), the only bidder, for the supply of 1 106 tonnes of low-carbon steel sheets for the MBW, MBXW and MCBW resistive dipole magnets for a total amount of 984 803 euros (1 511 328 Swiss francs), not subject to revision until 1 January 2003, with an option for the supply of up to 15% additional steel sheets, for a total amount of 147 720 euros (226 699 Swiss francs), not subject to revision until 1 January 2003, bringing the total amount to a maximum of 1 132 523 euros (1 738 027 Swiss francs), not s...

  20. The pile EL3; Pile EL3

    Energy Technology Data Exchange (ETDEWEB)

    Robert, J.; Raievski, V. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires; Hainzelin, J. [Chantiers de l' Atlantique (Penhoet-Loire), 75 - Paris (France)

    1959-07-01

    The programme of the high flux laboratory pile EL3 was laid down in october 1954. It is a heavy-water moderated and cooled pile. The fuel rods are of uranium metal with 1.6 per cent - 2 per cent of molybdenum, with aluminium canning. The maximum thermal flux in the moderator is 10{sup 14} n/cm{sup 2}/s. Studies began in january 1955, construction in may 1955, and the first divergence took place in July 1957. This report gives a general description of the pile and its adjacent buildings, the physical study of the pile, and certain technological studies carried out for the construction of EL3. (author) [French] Le programme de la pile laboratoire a haut flux EL3, a ete fixe en octobre 1954. C'est une pile moderee et refroidie a l'eau lourde. Les barres de combustible sont en uranium metal a 1,6 pour cent - 2 pour cent de molybdene, gainees a l'aluminium. Le flux thermique maximum dans le moderateur est de 10{sup 14} n/cm{sup 2}/s. Les etudes ont commence en janvier 1955, la construction en mai 1955, la premiere divergence a eu lieu en juillet 1957. On trouvera dans ce rapport, une description generale de la pile et de ses batiments annexes, l'etude physique de la pile et un certain nombre d'etudes technologiques executees pour la construction d'EL3. (auteur)

  1. The pile EL3; Pile EL3

    Energy Technology Data Exchange (ETDEWEB)

    Robert, J; Raievski, V [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires; Hainzelin, J [Chantiers de l' Atlantique (Penhoet-Loire), 75 - Paris (France)

    1959-07-01

    The programme of the high flux laboratory pile EL3 was laid down in october 1954. It is a heavy-water moderated and cooled pile. The fuel rods are of uranium metal with 1.6 per cent - 2 per cent of molybdenum, with aluminium canning. The maximum thermal flux in the moderator is 10{sup 14} n/cm{sup 2}/s. Studies began in january 1955, construction in may 1955, and the first divergence took place in July 1957. This report gives a general description of the pile and its adjacent buildings, the physical study of the pile, and certain technological studies carried out for the construction of EL3. (author) [French] Le programme de la pile laboratoire a haut flux EL3, a ete fixe en octobre 1954. C'est une pile moderee et refroidie a l'eau lourde. Les barres de combustible sont en uranium metal a 1,6 pour cent - 2 pour cent de molybdene, gainees a l'aluminium. Le flux thermique maximum dans le moderateur est de 10{sup 14} n/cm{sup 2}/s. Les etudes ont commence en janvier 1955, la construction en mai 1955, la premiere divergence a eu lieu en juillet 1957. On trouvera dans ce rapport, une description generale de la pile et de ses batiments annexes, l'etude physique de la pile et un certain nombre d'etudes technologiques executees pour la construction d'EL3. (auteur)

  2. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe–Cr–Al–REM ferritic stainless steel sheets

    International Nuclear Information System (INIS)

    Qu, H.P.; Lang, Y.P.; Yao, C.F.; Chen, H.T.; Yang, C.Q.

    2013-01-01

    This study presents research works about the effects of heat treatment on recrystallized equiaxed grain size, precipitation, room temperature (RT) toughness and ductile to brittle transition temperature (DBTT) of Fe–Cr–Al–REM ferritic stainless steel (FSS) hot-rolled sheet. Results showed that the recrystallization of hot-rolled Fe–Cr–Al–REM FSS sheet could be completed after annealing treatment at 750 °C for 15 min with the equiaxed grain diameter of approximately 50 μm. Inappropriate annealing treatment would inevitably leads to the unexpected grain coarsening. On the other hand, a great deal of needle-like or spot-like fine aluminum–lanthanum compound Al 11 La 3 precipitates were observed in the ferrite matrix after 1 h aging treatment at 750 °C. The microstructure observation results associated with the impact test definitely illustrated that the Al 11 La 3 precipitates was the reason for the brittle crack in the as-casted ingot and as-forged slab. The real DBTT of the annealed Fe–Cr–Al–REM FSS sheet with average grain size of about 50 μm was −4 °C. Meanwhile, the DBTT of the hot-rolled Fe–Cr–Al–REM stainless steel sheet was evidently increased as the recrystallized grain size increased.

  3. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Qu, H.P., E-mail: quhuapeng0926@163.com [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Lang, Y.P. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Yao, C.F. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Zhuozhou Works, Central Iron and Steel Research Institute (CISRI), 2 HuoJuNan Road, Zhuozhou 072750, Hebei (China); Chen, H.T.; Yang, C.Q. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China)

    2013-02-01

    This study presents research works about the effects of heat treatment on recrystallized equiaxed grain size, precipitation, room temperature (RT) toughness and ductile to brittle transition temperature (DBTT) of Fe-Cr-Al-REM ferritic stainless steel (FSS) hot-rolled sheet. Results showed that the recrystallization of hot-rolled Fe-Cr-Al-REM FSS sheet could be completed after annealing treatment at 750 Degree-Sign C for 15 min with the equiaxed grain diameter of approximately 50 {mu}m. Inappropriate annealing treatment would inevitably leads to the unexpected grain coarsening. On the other hand, a great deal of needle-like or spot-like fine aluminum-lanthanum compound Al{sub 11}La{sub 3} precipitates were observed in the ferrite matrix after 1 h aging treatment at 750 Degree-Sign C. The microstructure observation results associated with the impact test definitely illustrated that the Al{sub 11}La{sub 3} precipitates was the reason for the brittle crack in the as-casted ingot and as-forged slab. The real DBTT of the annealed Fe-Cr-Al-REM FSS sheet with average grain size of about 50 {mu}m was -4 Degree-Sign C. Meanwhile, the DBTT of the hot-rolled Fe-Cr-Al-REM stainless steel sheet was evidently increased as the recrystallized grain size increased.

  4. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    Science.gov (United States)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  5. Apparatus of irradiation of steel test pieces in the Marcoule pile G 1; Dispositifs d'irradiation d'eprouvettes d'acier dans la pile G 1 de Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Marinot, R.; Wallet, Ph. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Test pieces of steel were irradiated in the reactor G1 at Marcoule, in convectors replacing fuel elements, and in vertical channels in furnace-heated containers. The apparatus designed for this irradiation is described: containers, converter-rods, suspension fixtures and clamps, temperature measurement devices, lead castles and unloading set-ups. (author) [French] Des eprouvettes d'acier ont ete irradiees dans le reacteur G1 de Marcoule dans des convertisseurs mis a la place d'elements combustibles, et dans des canaux verticaux, en conteneurs chauffes par four. Nous decrivons l'appareillage etudie pour cette irradiation: conteneurs, barreaux-convertisseurs, dispositifs de suspension et d'amarrage, dispositifs de regulation et de mesure de temperature, chateaux de plomb et montages de defournement. (auteur)

  6. Apparatus of irradiation of steel test pieces in the Marcoule pile G 1; Dispositifs d'irradiation d'eprouvettes d'acier dans la pile G 1 de Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Marinot, R; Wallet, Ph [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Test pieces of steel were irradiated in the reactor G1 at Marcoule, in convectors replacing fuel elements, and in vertical channels in furnace-heated containers. The apparatus designed for this irradiation is described: containers, converter-rods, suspension fixtures and clamps, temperature measurement devices, lead castles and unloading set-ups. (author) [French] Des eprouvettes d'acier ont ete irradiees dans le reacteur G1 de Marcoule dans des convertisseurs mis a la place d'elements combustibles, et dans des canaux verticaux, en conteneurs chauffes par four. Nous decrivons l'appareillage etudie pour cette irradiation: conteneurs, barreaux-convertisseurs, dispositifs de suspension et d'amarrage, dispositifs de regulation et de mesure de temperature, chateaux de plomb et montages de defournement. (auteur)

  7. Interesting Developments in Testing Methods Applied to Foundation Piles

    Science.gov (United States)

    Sobala, Dariusz; Tkaczyński, Grzegorz

    2017-10-01

    Both: piling technologies and pile testing methods are a subject of current development. New technologies, providing larger diameters or using in-situ materials, are very demanding in terms of providing proper quality of execution of works. That concerns the material quality and continuity which define the integral strength of pile. On the other side we have the capacity of the ground around the pile and its ability to carry the loads transferred by shaft and pile base. Inhomogeneous nature of soils and a relatively small amount of tested piles imposes very good understanding of small amount of results. In some special cases the capacity test itself form an important cost in the piling contract. This work presents a brief description of selected testing methods and authors remarks based on cooperation with Universities constantly developing new ideas. Paper presents some experience based remarks on integrity testing by means of low energy impact (low strain) and introduces selected (Polish) developments in the field of closed-end pipe piles testing based on bi-directional loading, similar to Osterberg idea, but without sacrificial hydraulic jack. Such test is suitable especially when steel piles are used for temporary support in the rivers, where constructing of conventional testing appliance with anchor piles or kentledge meets technical problems. According to the author’s experience, such tests were not yet used on the building site but they bring a real potential especially, when the displacement control can be provided from the river bank using surveying techniques.

  8. Effect of the Die Temperature and Blank Thickness on the Formability of a Laser-Welded Blank of a Boron Steel Sheet with Removing Al-Si Coating Layer

    Directory of Open Access Journals (Sweden)

    M. S. Lee

    2014-05-01

    Full Text Available Reducing carbon emissions has been a major focus in the automobile industry to address various environmental issues. In particular, studies on parts comprised of high strength sheets and light car bodies are ongoing. Accordingly, this study examined the use of boron steel, which is commonly used in high strength sheets. Boron steel is a type of sheet used for hot stamping parts. Although it has high strength, the elongation is inferior, which reduces its crash energy absorption capacity. To solve this problem, two sheets of different thickness were welded so the thin sheet would absorb crash energy and the thick sheet would work as a support. Boron steel, however, may show weakening at the welding spot due to the Al-Si coating layer used to prevent oxidation from occurring during the welding process. Therefore, a certain part of the coating layer of a double-thickness boron steel sheet that is welded in the hot stamping process is removed through laser ablation, and the formability of the hot-work was examined.

  9. An experimental study on fracture toughness of resistance spot welded galvanized and ungalvanized DP 450 steel sheets used in automotive body

    Directory of Open Access Journals (Sweden)

    Sevim, Ibrahim

    2016-09-01

    Full Text Available The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW Dual Phase (DP steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness.El objetivo de este estudio es determinar la tenacidad de fractura de los aceros dual (DP soldados por puntos de resistencia (RSW. En la máquina de soldadura por puntos se realizó la soldadura de láminas de acero DP 450 galvanizado y sin galvanizar. A partir de los ensayos de tracción-cizallamiento, se calculó la tenacidad a la fractura de las uniones del acero DP 450 galvanizado y sin galvanizar. Aplicando el método de mínimos cuadrados (LSM se desarrollaron nuevas ecuaciones empíricas entre el porcentaje de energía liberada, la tenacidad de fractura y el tamaño de grieta crítica en función de la relación entre los valores de tenacidad de fractura y de dureza. Los resultados indicaron que la tenacidad de fractura de las uniones soldadas por RSW aumentó exponencialmente, mientras que la dureza disminuyó. Además, el porcentaje de energía liberada de las láminas de acero DP 450 galvanizadas y soldadas fueron menores que en el caso de las láminas sin galvanizar a valores iguales de dureza.

  10. Bending Moment Calculations for Piles Based on the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-xin Jie

    2013-01-01

    Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.

  11. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-15

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15–90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B{sub 8} and iron loss P{sub 10/400} was 1.79 T and 6.9 W/kg, respectively. - Highlights: • Ultra-thin grain-oriented silicon steel was produced by strip casting process. • Microstructure, texture and inhibitor evolution was briefly investigated. • Goss texture was absent in primary recrystallization annealed sheet. • MnS precipitates with a size range of 15–90 nm formed after normalizing. • A complete secondary recrystallization microstructure was produced.

  12. Swimming-pool piles; Piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Trioulaire, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10{sup 13}. This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [French] En France, deux piles piscines, Melusine et Triton, viennent d'entrer en service. La pile piscine est l'outil de recherche ideal pour des flux de neutrons de l'ordre de 10{sup 13}. Ce type de pile peut interesser des maintenant de nombreux centres de recherches mais il faut reduire son prix de revient et rompre avec le conformisme de sa conception. Il y a avantage: - a enterrer la piscine; - a supprimer les canaux experimentaux; - a concentrer le circuit de refrigeration dans la piscine; - a effectuer toutes les manipulations dans l'eau; - a doubler le coeur. (auteur)

  13. Piles of objects

    KAUST Repository

    Hsu, Shu-Wei

    2010-01-01

    We present a method for directly modeling piles of objects in multi-body simulations. Piles of objects represent some of the more interesting, but also most time-consuming portion of simulation. We propose a method for reducing computation in many of these situations by explicitly modeling the piles that the objects may form into. By modeling pile behavior rather than the behavior of all individual objects, we can achieve realistic results in less time, and without directly modeling the frictional component that leads to desired pile shapes. Our method is simple to implement and can be easily integrated with existing rigid body simulations. We observe notable speedups in several rigid body examples, and generate a wider variety of piled structures than possible with strict impulse-based simulation. © 2010 ACM.

  14. Hybrid friction diffusion bonding of 316L stainless steel tube-to-tube sheet joints for coil-wound heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils; Cionea, Cristian; Reuven, Rony; Frazer, David; Hosemann, Peter; Peterson, Per F. [Dept of Nuclear Engineering, University of California, Berkeley (United States)

    2016-11-15

    Hybrid friction diffusion bonding (HFDB) is a solid-state bonding process first introduced by Helmholtz-Zentrum Geesthacht to join aluminum tube-to-tube sheet joints of Coil-wound heat exchangers (CWHE). This study describes how HFDB was successfully used to manufacture 316L test samples simulating tube-to-tube sheet joints of stainless steel CWHE for molten salt coolants as foreseen in several advanced nuclear- and thermal solar power plants. Engineering parameters of the test sample fabrication are presented and results from subsequent non-destructive vacuum decay leak testing and destructive tensile pull-out testing are discussed. The bonded areas of successfully fabricated samples as characterized by tube rupture during pull-out tensile testing, were further investigated using optical microscopy and scanning electron microscopy including electron backscatter diffraction.

  15. The pile EL3

    International Nuclear Information System (INIS)

    Robert, J.; Raievski, V.

    1959-01-01

    The programme of the high flux laboratory pile EL3 was laid down in october 1954. It is a heavy-water moderated and cooled pile. The fuel rods are of uranium metal with 1.6 per cent - 2 per cent of molybdenum, with aluminium canning. The maximum thermal flux in the moderator is 10 14 n/cm 2 /s. Studies began in january 1955, construction in may 1955, and the first divergence took place in July 1957. This report gives a general description of the pile and its adjacent buildings, the physical study of the pile, and certain technological studies carried out for the construction of EL3. (author) [fr

  16. Windscale pile core surveys

    International Nuclear Information System (INIS)

    Curtis, R.F.; Mathews, R.F.

    1996-01-01

    The two Windscale Piles were closed down, defueled as far as possible and mothballed for thirty years following a fire in the core of Pile 1 in 1957 resulting from the spontaneous release of stored Wigner energy in the graphite moderator. Decommissioning of the reactors commenced in 1987 and has reached the stage where the condition of both cores needs to be determined. To this end, non-intrusive and intrusive surveys and sampling of the cores have been planned and partly implemented. The objectives for each Pile differ slightly. The location and quantity of fuel remaining in the damaged core of Pile 1 needed to be established, whereas the removal of all fuel from Pile 2 needed to be confirmed. In Pile 1, the possible existence of a void in the core is to be explored and in Pile 2, the level of Wigner energy remaining required to be quantified. Levels of radioactivity in both cores needed to be measured. The planning of the surveys is described including strategy, design, safety case preparation and the remote handling and viewing equipment required to carry out the inspection, sampling and monitoring work. The results from the completed non-intrusive survey of Pile 2 are summarised. They confirm that the core is empty and the graphite is in good condition. The survey of Pile 1 has just started. (UK)

  17. Application of the Finite Element Method to Reveal the Causes of Loss of Planeness of Hot-Rolled Steel Sheets during Laser Cutting

    Science.gov (United States)

    Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.

    2018-01-01

    A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.

  18. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment; Yoyu Zn-Al-Mg kei gokin mekki koban no sokushin fushoku kankyoka ni okeru taishokusei toi boshoku kiko

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, A.; Izutani, H.; Tsujimura, T.; Ando, A.; Kittaka, T. [NKK Corp., Tokyo (Japan)

    2000-08-01

    Corrosion behavior of hot-dip Zn-6%Al 0-3%Mg alloy coated steel sheets in cyclic corrosion test (CCT) has been investigated. The corrosion resistance was improved with increasing Mg content in the coating layer, and the highest corrosion resistance was observed at 3% Mg. In Zn-6%Al-3%Mg alloy coated steel sheet, the formations of zinc carbonate hydroxide and zinc oxide were suppressed for longer duration compared with Zn-0.2%Al and Zn-4.5%Al-0.l%Mg alloy coated steel sheets. As a result, zinc chloride hydroxide existed stable on the surface of the coating layer. From the polarization behaviors in 5% NaCl aqueous solution after CCT, it was found that the corrosion current density of Zn-6%At-3%Mg alloy coated steel sheet was much smaller than those of Zn-0.2%Al and Zn-4.5%Al-0.1%Mg alloy coated steel sheets. As zinc carbonate hydroxide and zinc oxide had poor adhesion to the coating layer and had porous structures, these corrosion products were considered to have little protective action for the coating layer. Therefore, it was concluded that Mg suppressed the formation of such nonprotective corrosion products. resulting in the remarkable improvement of corrosion resistance. (author)

  19. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  20. Piles of objects

    KAUST Repository

    Hsu, Shu-Wei; Keyser, John

    2010-01-01

    We present a method for directly modeling piles of objects in multi-body simulations. Piles of objects represent some of the more interesting, but also most time-consuming portion of simulation. We propose a method for reducing computation in many

  1. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    Science.gov (United States)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  2. Static Tension Tests on Axially Loaded Pile Segments in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    This paper provides laboratory test results of static axially loaded piles in sand. With a newly developed test setup, the pile-soil interface friction was investigated by using an open-ended steel pile segment with a diameter of 0.5 m. Use of a pile length of 1 m enabled the pile-soil interface...... friction to be analyzed at a given soil horizon while increasing the vertical effective stress in the sand. Test results obtained by this approach can be analyzed as single t-z curves and compared to predictions of unit shaft friction from current design methods for offshore foundations. The test results...... showed best agreement with the traditional design method given in the American Petroleum Institute (API) design code. When t-z curves obtained from the test results were compared to t-z curve formulations found in the literature, the Zhang formulation gave good predictions of the initial and post...

  3. 75 FR 5947 - Stainless Steel Sheet and Strip in Coils from Taiwan: Final Results and Rescission in Part of...

    Science.gov (United States)

    2010-02-05

    ... defined as a non-magnetic stainless steel manufactured to American Society of Testing and Materials... magnetic remanence between 9,000 and 12,000 gauss, and a coercivity of between 50 and 300 oersteds. This... percent. This steel has a carbide density on average of 100 carbide particles per 100 square microns. An...

  4. Magnetic characterization of the stator core of a high-speed motor made of an ultrathin electrical steel sheet using the magnetic property evaluation system

    Directory of Open Access Journals (Sweden)

    Mohachiro Oka

    2018-04-01

    Full Text Available Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.

  5. Magnetic characterization of the stator core of a high-speed motor made of an ultrathin electrical steel sheet using the magnetic property evaluation system

    Science.gov (United States)

    Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa

    2018-04-01

    Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.

  6. Development of new testing methods for the numerical load analysis for the drop test of steel sheet containers for the final repository Konrad

    International Nuclear Information System (INIS)

    Protz, C.; Voelzke, H.; Zencker, U.; Hagenow, P.; Gruenewald, H.

    2011-01-01

    The qualification of steel sheet containers as intermediate-level waste container for the final repository is performed by the BAM (Bundeasmt fuer Materialpruefung) according to the BfS (Bundesamt fuer Strahlenschutz) requirements. The testing requirements include the stacking pressure tests, lifting tests, drop tests thermal tests (fire resistance) and tightness tests. Besides the verification using model or prototype tests and transferability considerations numerical safety analyses may be performed alternatively. The authors describe the internal BAM research project ConDrop aimed to develop extended testing methods for the drop test of steel sheet containers for the final repository Konrad using numerical load analyses. A finite element model was developed using The FE software LS-PrePost 3.0 and ANSYS 12.0 and the software FE-Code LS-DYNA for the simulation of the drop test (5 m height). The results were verified by experimental data from instrumented drop tests. The container preserves its integrity after the drop test, plastic deformation occurred at the bottom plate, the side walls, the cask cover and the lateral uprights.

  7. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    Directory of Open Access Journals (Sweden)

    Wang Dan

    2014-08-01

    Full Text Available The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (chromium plating, TiAlN coating, surface polishing and nitriding treatment were applied to the H13 surfaces. Taking the coefficient of friction (CoF and the wear degree as evaluation indicators, the high-temperature tribological behavior of the surface modified H13 steel was experimentally investigated under different tribological conditions. The results of this study indicate that the tribological properties of the TiAlN coating under dry friction condition are better than the others for a wide range of temperature (from room temperature to 500 °C, while there is little difference of tribological properties between different surface modifications under graphite lubricated condition, and the variation law of CoF with temperature under graphite lubricated is opposite to that under the dry friction.

  8. Measurement of the in-pile core temperature of an EL-4 pencil element, first charge (can of type-347 stainless steel, 0.4 mm thick, UO{sub 2} fuel, 11 mm diameter). Determination of the apparent thermal conductivity integral of in-pile UO{sub 2}; Mesure de la temperature a coeur en pile d'un crayon EL-4 1er jeu (gaine acier inoxydable, nuance 347 - epaisseur 0,4 mm - combustible UO{sub 2} - diametre 11 mm). Determination de l'integrale de conductibilite thermique apparente de l'UO{sub 2} en pile

    Energy Technology Data Exchange (ETDEWEB)

    Lavaud, B; Ringot, C; Vignesoult, N [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-11-01

    The core temperature of a pencil fuel element depends on the thermal conductivity of the UO{sub 2}, and on the UO{sub 2}-can contact. This temperature may be known accurately only if in-pile tests using the actual geometry are carried out. The test described concerns the measurement of the core- temperature of an EL-4 fuel element, first charge, having a stainless steel can. This temperature is measured at the center of the in-pile pencil element using a high-temperature thermocouple (W-Re with Ta sheath). The element is subjected to operating conditions similar to those of EL-4, both for the specific power and the can temperature and for the pressure acting on the can. The specific power is obtained in the EL-3 reactor using a slightly higher enrichment for the UO{sub 2} than that planned for EL-4. The required can temperature and pressure are obtained using a Zircaloy-2 irradiation container filled with NaK, adapted for use in the EL-3 reactor. The core temperatures of the UO{sub 2}, and that of the can surface are measured. The power is calculated from the heat exchanges in the container calibrated in the laboratory. The temperature drop at the UO{sub 2}-can interface is deduced from laboratory measurements carried out under comparable heat flux conditions, and in a gas atmosphere corresponding to the beginning of the life-time of the fuel element. It is possible to draw an integral conductivity curve. It is also possible to check the temperature distribution in the oxide, as deduced from the thermal conductivity integral, by micro-graphic examination of the oxide structure. (authors) [French] La temperature a coeur d'un crayon combustible est fonction de la conductibilite thermique de l'UO{sub 2}, mais aussi du contact UO{sub 2}-gaine. Les essais de mesure en geometrie reelle en pile sont les seuls qui permettent d'avoir une connaissance exacte de cette valeur. L'essai dont il est question dans ce rapport a trait a la mesure de la temperature a coeur d

  9. Influence of ceiling systems on room temperature and energy efficiency in steel sheet deckings; Einfluss von Deckensystemen auf Raumtemperatur und Energieeffizienz im Stahlgeschossbau

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Bernd

    2008-07-01

    Over the past years the use of flooring systems to affect the indoor climate of buildings is of increasing interest, including both thermo-active and also passive systems. The amendment of the German Energy saving ordinance (Energieeinsparverordnung 2007) requires, that in future projects, the energy demand for cooling and ventilation has to be considered for the calculation of the energy demand of non-residential buildings. Due to this circumstance, solutions for energy efficient cooling will come more into the focus. Up to now, the use of flooring systems in steel structures have not been investigated regarding this aspect. In this thesis, six different flooring systems were investigated: two passive acting solutions, using the effects of enlarging the surface and integrating phase change materials (PCM), one system comprising ducts that pass cold air through the floor during the night and three thermo-active deck systems (i.e. profiled steel sheet decking, a hollow-core slab, and a laser-welded steel sandwich panel). Generally, the thermal behaviour of such elements is described only using one-dimensional multilayer structure (for standardized calculations or for thermal building simulation), this concept is not adequate for profiled and homogeneous components. Therefore three-dimensional Finite Elemente investigations were performed to consider the specific properties. Based on these results a simplified method using equivalent parameters was developed, which allows the implementation of the considered flooring systems in standardized calculations (ISO 13786). For selected systems, validation by in-service measurements was performed. By using Thermal Building Simulation tools, a parametric study was carried out to specify the range and limits of application in respect of climate and internal heat gains. The results can be summarized as follows: - Profiled steel sheet decking show a higher effective thermal capacity than conventional flat slabs. - PCM increases

  10. Swimming-pool piles

    International Nuclear Information System (INIS)

    Trioulaire, M.

    1959-01-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10 13 . This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [fr

  11. Removal of obstacles during steel pipe pile driving for coal unloading piers for the construction of a Maizuru Power Plant; Maizuru hatsudensho shinsetsu koji ni okeru yotan sanbashi kokan kui uchikomiji no shogaibutsu taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, R.; Nishi, M.; Kishimoto, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1998-11-05

    Kansai Electric Power Co., Inc., is constructing in Maizuru City a coal-fired thermoelectric power plant to operate two 900,000kw generators. The result of a preliminary survey predicted an encounter with boulders 50-900mm in diameter to obstruct the pile driving process. In a basic pile driving arrangement, a boat mounted with a 1600tf capable fully rotatable crane and a boat carrying an automatic lift type working platform are operated, and a pile is driven under the guidance of a keeper aboard by a vibratory hammer down until it can stand erect on its own. Next, the vibratory hammer gives place to a 50tf-m capable hydraulic hammer, which drives the pile further down until it lands at a depth level with prescribed bearing power. In case pile penetration under a vibratory hammer becomes difficult (at a shallow level), the pile is pulled out, a casing pile is driven in, and then boulders are removed by hammer gloves. In case boulders emerge during hydraulic hammer operation (at a relatively deep level), since dealing with such is beyond the capacity of hammer gloves, pile installation by inner excavation is performed by driving with a heavy bob. The bob is provided with multiple blades on its head, with water and compressed air supplied continuously for the bob to fall freely to crush boulders and to perform excavation at the same time. Mucking is accomplished using an air lift type reversely circulating water system. 1 ref., 8 figs., 2 tabs.

  12. Seismic Dynamic Damage Characteristics of Vertical and Batter Pile-supported Wharf Structure Systems

    Directory of Open Access Journals (Sweden)

    Li Jiren

    2015-10-01

    Full Text Available Considering a typical steel pipe pile-supported wharf as the research object, finite element analytical models of batter and vertical pile structures were established under the same construction site, service, and geological conditions to investigate the seismic dynamic damage characteristics of vertical and batter pile-supported wharf structures. By the numerical simulation and the nonlinear time history response analysis of structure system and the moment–axial force relation curve, we analyzed the dynamic damage characteristics of the two different structures of batter and vertical piles under different seismic ground motions to provide reasonable basis and reference for designing and selecting a pile-supported wharf structure. Results showed that the axial force of batter piles was dominant in the batter pile structure and that batter piles could effectively bear and share seismic load. Under the seismic ground motion with peak ground acceleration (PGA of 350 Gal and in consideration of the factors of the design requirement of horizontal displacement, the seismic performance of the batter pile structure was better than that of the vertical pile structure. Under the seismic ground motion with a PGA of 1000 Gal, plastic failure occurred in two different structures. The contrastive analysis of the development of plastic damage and the absorption and dissipation for seismic energy indicated that the seismic performance of the vertical pile structure was better than that of the batter pile structure.

  13. Investigating the fatigue behavior of grain-oriented Fe-3%Si steel sheets using magnet-optical Kerr microscopy and micromagnetic multiparameter, microstructure and stress analysis

    Directory of Open Access Journals (Sweden)

    Deldar Shayan

    2018-01-01

    Full Text Available Fatigue is considered as a reason for a significant number of mechanical failures of engineering materials. Conventionally, microstructural investigations along with stress-strain hysteresis measurements are performed to understand and characterize the fatigue behavior of metallic materials. Moreover, further physical data like temperature, electrical resistance and, in the case of ferromagnetic materials, magnetic properties can be used for a comprehensive characterization of fatigue process. The present work has employed Magneto-Optical Kerr Effect (MOKE microscope and Micromagnetic Multiparameter, Microstructure and stress Analysis (3MA system to illustrate magnetic domain structure and various intrinsic magnetic properties including magnetic Barkhausen noise (MBN of the investigated material. In order to investigate the influence of the mechanical deformation processes on the magnetic parameters, samples were produced out of the grain-oriented electrical steel sheets and were subjected to a tensile test as well as a cyclic strain increase load test with R = 0 at ambient temperature.

  14. 75 FR 47780 - Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2010-08-09

    ... prices to unaffiliated customers. Mexinox S.A. reported home market sales in Mexican pesos, but noted... Company. Certain electrical resistance alloy steel is also excluded from the scope of the order. This... and U.S. markets. For a limited number of sales in both the home market and the United States, Mexinox...

  15. Numerical Analysis of Helical Pile-Soil Interaction under Compressive Loads

    Science.gov (United States)

    Polishchuk, A. I.; Maksimov, F. A.

    2017-11-01

    The results of the field tests of full-scale steel helical piles in clay soils intended for prefabricated temporary buildings foundations are presented in this article. The finite element modeling was used for the evaluation of stress distribution of the clay soil around helical piles. An approach of modeling of the screw-pile geometry has been proposed through the Finite Element Analysis. Steel helical piles with a length of 2.0 m, shaft diameter of 0.108 m and a blade diameter of 0.3 m were used in the experiments. The experiments have shown the efficiency of double-bladed helical piles in the clay soils compared to single-bladed piles. It has been experimentally established that the introduction of the second blade into the pile shaft provides an increase of the bearing capacity in clay soil up to 30% compared to a single-bladed helical pile with similar geometrical dimensions. The numerical results are compared with the measurements obtained by a large scale test and the bearing capacity has been estimated. It has been found that the model results fit the field results. For a double-bladed helical pile it was revealed that shear stresses upon pile loading are formed along the lateral surface forming a cylindrical failure surface.

  16. Study of technology of pile foundation construction of no.5 main pier of Shoujiang bridge in Wenchuan County

    Science.gov (United States)

    Huang, Xianbin; Liu, Chenyang; Chen, Chunyang; Wangren, Yahong; Xu, Jialin; Xian, Jin

    2018-03-01

    The group of pile foundation of no.5 pier in Shoujiang Bridge needs to overcome the big load of large span continuous steel structure. The length of single pile foundation is 77m and the diameter of single pile foundation is 250cm. It not only faces the flood in the upstream of Shoujiang river, the construction obstacles during summer rain period, but also the reservoir clearance activity of Zipingpu reservoir and the high water level in winter and other water level fluctuation that have huge impact on platform of pile foundation construction. This article introduces the preparation in aspect of personnel, material, equipment and so on of pile foundation construction, and also conduct intensive research on leveling the field, assaying pile location, the embedment of the steel casing, installing the drill, mixing mud, drilling, final hole inspection and clearance, steel cage construction, perfusing concrete under water.

  17. Analysis of Welding Zinc Coated Steel Sheets in Zero Gap Configuration by 3D Simulations and High Speed Imaging

    Science.gov (United States)

    Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael

    Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.

  18. Evaluation of interlocking bond strength between structured 1.0338 steel sheets and high pressure die cast AlMg5Si2

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2018-05-01

    Multi-material components open up new possibilities for functional design. Such components combine beneficial physical properties of different materials in a single component as for instance chemical resistance, high strength or low density. The challenge is a reliable bond between both materials to enable a long term usage. This paper deals with a form closure connection to ensure a solid connection between steel strips and high pressure die cast aluminium. Two different sizes of channel structures with width ratios of 1.0 and 1.35 are produced on a steel sheet. An ensuing flat rolling pass is performed to create undercuts with a width of up to 50 µm, enabling an interlocking of the molten aluminium in the concluding casting process. For both rolling processes the resulting geometry is analysed depending on the thickness reduction. In a subsequent high pressure die casting process, aluminium is applied resulting in a complete form filling for the coarser structure. Comparing structures with and without undercuts, only structures suited with undercuts remain gap-free after solidification contraction. The finer structure could not be filled completely; nevertheless these structures result in shear strength of up to 45 MPa transversal to the channel-direction.

  19. Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.M. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Lee, H.J.; Park, J.T.; Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Shin, E.J. [Korea Atomic Energy Research Institute, Neutron Science Division, Daejeon 305-353 (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, Research and Development Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2015-12-15

    The effect of hot band grain size on the development of crystallographic texture and magnetic properties in non-oriented electrical steel sheet was studied. After cold rolling the samples with different initial grain sizes displayed different microstructures and micro-textures but nearly identical macro-textures. The homogeneous recrystallized microstructure and micro-texture in the sample having small grains caused normal continuous grain growth. The quite irregular microstructure and micro-texture in the recrystallized sample with large initial grain size provided a preferential growth of grains in 〈001〉//ND and 〈113〉//ND which were beneficial for developing superior magnetic properties. - Highlights: • We produced hot bands of electrical steel with different grain size but same texture. • Hot band grain size strongly affected cold rolling and subsequent annealing textures. • Homogeneous recrystallized microstructure caused normal continuous grain growth. • Irregular recrystallized microstructure led to selective growth of <001>//ND grains. • Hot band with large grains was beneficial for superior magnetic properties.

  20. Pile Driving Analysis for Pile Design and Quality Assurance

    Science.gov (United States)

    2017-08-01

    Driven piles are commonly used in foundation engineering. The most accurate measurement of pile capacity is achieved from measurements made during static load tests. Static load tests, however, may be too expensive for certain projects. In these case...

  1. Analysis of Wave Fields induced by Offshore Pile Driving

    Science.gov (United States)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  2. Investigate earing of TWIP steel sheet during deep-drawing process by using crystal plasticity constitutive model

    Directory of Open Access Journals (Sweden)

    Yang J.

    2015-01-01

    Full Text Available By combining the nonlinear finite element analysis techniques and crystal plasticity theory, the macroscopic mechanical behaviour of crystalline material, the texture evolution and earing-type characteristics are simulated accurately. In this work, a crystal plasticity model exhibiting deformation twinning is introduced based on crystal plasticity theory and saturation-type hardening laws for FCC metal Fe-22Mn-0.6C TWIP steel. Based on the CPFE model and parameters which have been determined for TWIP steel, a simplified finite element model for deep drawing is promoted by using crystal plasticity constitutive model. The earing characteristics in typical deep-drawing process are simulated well. Further, the drawing forces are calculated and compared to the experimental results from reference. Meanwhile, the impacts of drawing coefficient and initial texture on the earing characteristics are investigated for controlling the earing.

  3. Reduction kinetics of Wüstite scale on pure iron and steel sheets in Ar and H

    NARCIS (Netherlands)

    Mao, W.; Sloof, W.G.

    2017-01-01

    A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale,

  4. EVALUATION OF CORROSION RESISTANCE OF STEEL SHEETS FOR AUTOMOTIVE INDUSTRY WITH THE USE OF THE SPOTFACE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Alberto Nei Carvalho Costa

    2013-03-01

    Full Text Available Innovation, leading to weight and cost reduction, is a key word concerning the design of steel auto body for auto makers that aim to keep and improve their market share worldwide. On the other hand, auto body life, which is related to the corrosion resistance of the materials employed, should always be considered. The latter has led the auto makers to team up with suppliers to find the best solutions concerning the materials selection. The end result always points towards different sets of steels either zinc-coated or zinc alloyed-coated. Taking all these aspects into consideration, the overall challenge the auto makers face is to mitigate the time required for selection and narrow down the options available. This paper studies the corrosion resistance of several materials applied on steel auto bodies using the technique named spotface, which main advantage is reducing the time required by the traditional scribe to evaluate and compare different materials, when they are submitted either to accelerated or field corrosion testing. Concerning the accelerated corrosion testing, they were performed according to the General Motors do Brasil’s requirements.

  5. On the contribution of electrochemical methods in the study of corrosion mechanisms in automotive body steel sheets

    International Nuclear Information System (INIS)

    Massinon, D.; Dauchelle, D.; Charbonnier, J.C.

    1989-01-01

    Complex mechanisms and interactions seem to govern the degradation of automotive body panels. The multimaterial nature of the system (steel, coating, conversion layer and paint), together with the variety of agressions it can encounter makes it a difficult task to characterize the corrosion mechanism(s). To this aim, physical analysis of corroded surfaces have recently yielded new insights on the role of some parameters and especially the quality of the interfaces, i.e. paint/coating and coating/steel. Electrochemistry, on the other hand, has given much information on phenomena such as selective dissolution, galvanic protection of steel by a coating, or oxygen diffusion through an organic coating. More and more is being known about the role of the paint and the mechanisms of its adhesion on a metallic substrate. However, a link between those theories is still missing and a full understanding of the corrosion phenomenon has not been achieved yet. We have developed original techniques in order to look into the corroded specimens with the most sophisticated physical analysis tools. The observed phenomena can be simulated and, whenever possible, quantified. This approach requires the use of different electrochemical techniques which will be presented in this paper. (author) 8 refs., 15 figs

  6. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  7. Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions

    International Nuclear Information System (INIS)

    Takayuki Hashimoto; Kazushige Fujiwara; Katsuichirou Hijikata; Hideo Tanaka; Kohji Koyamada; Atsushi Suzuki; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)

  8. Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se{sub 2} solar cells integration on stainless steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur (Belgium); Guaino, Philippe; Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur (Belgium)

    2013-09-02

    For the fabrication of monolithically integrated flexible Cu(In, Ga)Se{sub 2}, CIGS modules on stainless steel, individual photovoltaic cells must be insulated from metal substrates by a barrier layer that can sustain high thermal treatments. In this work, a combination of sol–gel (organosilane-sol) and sputtered SiAlxOy forming thin diffusion barrier layers (TDBL) was prepared on stainless steel substrates. The deposition of organosilane-sol dielectric layers on the commercial stainless steel (maximal roughness, Rz = 500 nm and Root Mean Square roughness, RMS = 56 nm) induces a planarization of the surface (RMS = 16.4 nm, Rz = 176 nm). The DC leakage current through the dielectric layers was measured for the metal-insulator-metal (MIM) junctions that act as capacitors. This method allowed us to assess the quality of our TDBL insulating layer and its lateral uniformity. Indeed, evaluating a ratio of the number of valid MIM capacitors to the number of tested MIM capacitors, a yield of ∼ 95% and 50% has been reached respectively with non-annealed and annealed samples based on sol–gel double layers. A yield of 100% was achieved for sol–gel double layers reinforced with a sputtered SiAlxOy coating and a third sol–gel monolayer. Since this yield is obtained on several samples, it can be extrapolated to any substrate size. Furthermore, according to Glow Discharge Optical Emission Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy measurements, these barrier layers exhibit excellent barrier properties against the diffusion of undesired atoms which could otherwise spoil the electronic and optical properties of CIGS photovoltaic cells. - Highlights: • We functionalize steel for monolithically integrated Cu(In,Ga)Se{sub 2} solar cells • Thin dielectric and diffusion barrier layers (TDDBL) prepared on steel • Reliability and breakdown voltage of dielectric layers have been studied. • Investigation of thermal treatment effect on dielectric

  9. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  10. Laterally Loaded Piles in Clay

    DEFF Research Database (Denmark)

    Christensen, Helle; Niewald, Gitte

    1992-01-01

    The ultimate lateral resistance of a pile element moved horizontally can be analyzed by the theory of plasticity. At a certain depth the movements around the pile are purely horizontal and upper bound solutions can be estimated theoretically under undrained circumstances. Model tests...... in the laboratory show ultimate resistances close to the estimated limits and p - y curves close to curves based on test results from full-scale piles. Rough and smooth piles with circular and square cross sections are investigated....

  11. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  12. Characterizing hand-piled fuels

    Science.gov (United States)

    Clinton S. Wright; Paige C. Eagle; Cameron S. Balog

    2010-01-01

    Land managers throughout the West pile and burn surface fuels to mitigate fire hazard in dry forests. Whereas piling was historically conducted with heavy machinery following commercial harvesting operations, land managers are increasingly prescribing the use of hand piling and burning to treat surface fuels created by thinning and brush cutting. An estimate of the...

  13. Discovery: Pile Patterns

    Science.gov (United States)

    de Mestre, Neville

    2017-01-01

    Earlier "Discovery" articles (de Mestre, 1999, 2003, 2006, 2010, 2011) considered patterns from many mathematical situations. This article presents a group of patterns used in 19th century mathematical textbooks. In the days of earlier warfare, cannon balls were stacked in various arrangements depending on the shape of the pile base…

  14. Effect of Brass Interlayer Sheet on Microstructure and Joint Performance of Ultrasonic Spot-Welded Copper-Steel Joints

    Science.gov (United States)

    Satpathy, Mantra Prasad; Kumar, Abhishek; Sahoo, Susanta Kumar

    2017-07-01

    Solid-state ultrasonic spot welding (USW) inevitably offers a potential solution for joining dissimilar metal combination like copper (Cu) and steel (SS). In this study, the USW has been performed on Cu (UNS C10100) and SS (AISI 304) with brass interlayer by varying various welding parameters, aiming to identify the interfacial reaction, changes in microstructure and weld strength. The highest tensile shear and T-peel failure loads of 1277 and 174 N are achieved at the optimum conditions like 68 µm of vibration amplitude, 0.42 MPa of weld pressure and 1 s of weld time. The fractured surface analysis of brass interlayer and AISI 304 stainless steel samples reveals the features like swirls, voids and intermetallic compounds (IMCs). These IMCs are composed of CuZn and FeZn composite-like structures with 1.0 μm thickness. This confirms that the weld quality is specifically sensitive to the levels of input parameter combinations as well as the type of material present on the sonotrode side.

  15. Test Exponential Pile

    Science.gov (United States)

    Fermi, Enrico

    The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the

  16. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    Science.gov (United States)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  17. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, Marcin, E-mail: kubiak@imipkm.pcz.pl; Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew [Institute of Mechanics and Machine Design Foundations, Częstochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa (Poland); Stano, Sebastian [Welding Technologies Department, Welding Institute, Błogosławionego Czesława 16-18, 44-100 Gliwice (Poland)

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  18. Experimental investigation of the effect of the laser beam polarization state on the quality of steel sheet cutting

    Science.gov (United States)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2017-10-01

    The paper presents the results of experimental investigation of the effect of the beam polarization on the quality of the oxygen-assisted laser cutting of steel by a CO2-laser. Under consideration is the effect of the laser cutting parameters by the beam with the linear polarization on the cut surface roughness. It is founded that the minimal roughness is reached when the electric field vector is perpendicular to the cutting speed vector. It is concluded that the absorbed power distribution imposes the essential influence on the surface quality, and that the radiation heating of side walls is important to have lower roughness. Obtained results enabled to present probable reasons of the worse surface quality of the metals cut by a fiber laser than the ones cut by a CO2-laser.

  19. Vibration tests on pile-group foundations using large-scale blast excitation

    International Nuclear Information System (INIS)

    Tanaka, Hideo; Hijikata, Katsuichirou; Hashimoto, Takayuki; Fujiwara, Kazushige; Kontani, Osamu; Miyamoto, Yuji; Suzuki, Atsushi

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. One structure had 25 steel tubular piles and the other had 4 piles. The super-structures were exactly the same. The test pit was backfilled with sand of appropriate grain size distributions in order to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1683 cm/s 2 according to the distances between the test site and the blast areas. Maximum strains were 13,400 micro-strains were recorded at the pile top of the 4-pile structure, which means that these piles were subjected to yielding

  20. Parametric Study On The CW Nd: YAG Laser Cutting Quality Of 1.25 mm Ultra Low Carbon Steel Sheets Using O2 Assist Gas

    International Nuclear Information System (INIS)

    Salem, Hanadi G.; Abbas, Wafaa A.; Mansour, Mohy S.; Badr, Yehia A.

    2007-01-01

    There are many non-linear interaction factors responsible for the performance of the laser cutting process. Identification of the dominant factors that significantly affect the cut quality is important. In the current research, the gas pressure, laser power and scanning speed were selected as the cutting parameters. Effect of the cutting parameters on the cut quality was investigated, by monitoring the variation in hardness, oxide layer width and microstructural changes within the heat affected zone (HAZ). Results revealed that good quality cuts can be produced in ultra low carbon steel thin sheets, using CW Nd:YAG laser at a window of scanning speed ranging from 1100-1500 mm/min at a minimum heat input of 337watts under an assisting O2 gas pressure of 5 bar. Higher laser power resulted in either strengthening or softening in the HAZ surrounding the cut kerf. The oxide layer width is not affected by the energy density input but rather affected by the O2 gas pressure due to exothermal reaction

  1. Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

    Science.gov (United States)

    Huh, Joo-Youl; Hwang, Min-Je; Shim, Seung-Woo; Kim, Tae-Chul; Kim, Jong-Sang

    2018-05-01

    The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc > 90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

  2. Research on Heat Source Model and Weld Profile for Fiber Laser Welding of A304 Stainless Steel Thin Sheet

    Directory of Open Access Journals (Sweden)

    Peizhi Li

    2018-01-01

    Full Text Available A heat source model is the key issue for laser welding simulation. The Gaussian heat source model is not suitable to match the actual laser weld profile accurately. Furthermore, fiber lasers are widely recognized to result in good-quality laser beam output, a narrower weld zone, less distortion, and high process efficiency, compared with other types of lasers (such as CO2, Nd : YAG, and diode lasers. At present, there are few heat source models for fiber laser welding. Most of researchers evaluate the weld profile only by the bead width and depth of penetration, which is not suitable for the laser keyhole welding nail-like profile. This paper reports an experimental study and FEA simulation of fiber laser butt welding on 1 mm thick A304 stainless steel. A new heat source model (cylindrical and cylindrical is established to match the actual weld profile using Marc and Fortran software. Four bead geometry parameters (penetration depth, bead width, waist width, and depth of the waist are used to compare between the experimental and simulation results. The results show that the heat source model of cylindrical and cylindrical can match the actual shape of the fiber laser welding feasibly. The error range of the penetration depth, bead width, waist width, and depth of the waist between experimental and simulation results is about 4.1 ± 1.6%, 2.9 ± 2.0%, 13.6 ± 7.4/%, and 18.3 ± 8.0%, respectively. In addition, it is found that the depth of penetration is more sensitive to laser power rather than bead width, waist width, and depth of the waist. Welding speed has a similar influence on the depth of penetration, weld width, waist width, and depth of the waist.

  3. Use of geothermal piles combined with pile foundations

    Directory of Open Access Journals (Sweden)

    Ivan Kuzytskyi

    2016-07-01

    Full Text Available The possibility of use of geothermal piles in conditions of cold climate is considered. Full-scale experiment is conducted for using this technology in Kiev. Obtained results testify about a possibility for using the system in conditions of Ukraine, but this technology requires more detailed study and simulation of multiannual cycle of use of geothermal piles 

  4. Aerial sampling of emissions from biomass pile burns in ...

    Science.gov (United States)

    Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.

  5. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  6. Measurement and Analysis of Ultra-Thin Austenitic Stainless Steel Sheet under Biaxial Tensile Loading and In-Plane Reverse Loading

    Science.gov (United States)

    Murakoso, Satoko; Kuwabara, Toshihiko

    Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.

  7. Irradiation creep in ferritic steels

    International Nuclear Information System (INIS)

    Vandermeulen, W.; Bremaecker, A. de; Burbure, S. de; Huet, J.J.; Asbroeck, P. van

    Pressurized and non-pressurized capsules of several ferritic steels have been irradiated in Rapsodie between 400 and 500 0 C up to 3.7 x 10 22 n/cm 2 (E>0.1 MeV). Results of the diameter measurements are presented and show that the total in-pile deformation is lower than for austenitic steels

  8. Pulse pile-up IV

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1991-05-01

    The study of pulse pile-up is extended from the case of unipolar pulses, for which ruin theory is an excellent approximation, to the case of bipolar pulses for which ruin theory is not applicable to the effect of the back-kicks in reducing the pile-up: an appropriate solution is presented. (Author) 3 refs., 11 figs

  9. Grouting for Pile Foundation Improvement

    NARCIS (Netherlands)

    Van der Stoel, A.E.C.

    2001-01-01

    The aim of this research was to examine the use of grouting methods for pile foundation improvement, a generic term that is used here to define both foundation renovation (increasing the bearing capacity of a pile foundation that has insufficient bearing capacity) and foundation protection

  10. Effect of relative pile’s stiffness on lateral pile response under loading of large eccentricity

    DEFF Research Database (Denmark)

    Zania, Varvara; Hededal, Ole; Klinkvort, R.T.

    2015-01-01

    The wide application of monopiles as foundations for offshore wind turbines has raised the issue of the suitability of the p –y curves proposed by API for lateral pile loading, since the latter were developed after full-scale tests on flexible and slender piles. This study investigates the role...... of the relative pile’s stiffness, when it is subjected to lateral load of large eccentricity. Employing centrifuge experiments, a hollow steel pile well instrumented with strain gauge pairs has been subjected to lateral load. The bending moment distribution of the model pile embedded in uniform, dense, dry sand...... was obtained under two different stress levels and two different embedment depths. Hence, the p – y curves were obtained providing an insight into the effect of the relative pile’s stiffness on the soil – pile interaction, while the effect of the installation process could also be evaluated....

  11. Seismic response of pile foundations and pile forces caused by kinematic and inertial interaction

    International Nuclear Information System (INIS)

    Hartmann, H.G.; Waas, G.

    1985-01-01

    The horizontal motion and pile forces of pile groups subjected to earthquake excitation are analysed. The piles are modelled as linear elastic beam elements embedded in a layered linear visco-elastic soil medium. Pile-soil-pile interaction is included. The earthquake excitation results from vertically propagating shear waves. Kinematic and inertial interaction effects on foundation motion and pile forces are studied for a single pile, a small pile group and a large pile group. Soft and stiff soil conditions are considered, and the effect of a flexible vs. a rigid halfspace below the soil layers is shown. (orig.)

  12. 40 CFR 264.554 - Staging piles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Staging piles. 264.554 Section 264.554... for Cleanup § 264.554 Staging piles. This section is written in a special format to make it easier to... staging pile? A staging pile is an accumulation of solid, non-flowing remediation waste (as defined in...

  13. Test Pile Reactivity Loss Due to Trichloroethylene

    International Nuclear Information System (INIS)

    Plumlee, K.E.

    2001-01-01

    The presence of trichloroethylene in the test pile caused a continual decrease in pile reactivity. A system which removed, purified, and returned 12,000 cfh helium to the pile has held contamination to a negligible level and has permitted normal pile operation

  14. The Windscale piles - past, present and future

    International Nuclear Information System (INIS)

    Jones, J.M.; Adams, A.L.

    1987-01-01

    The paper concerns the Windscale reactor piles, in which a fire occurred in the core of pile 1 thirty years ago. A description is given of the two Windscale piles, along with the events leading up to the accident, and the state of the piles following shutdown. The surveillance and maintenance to ensure that the pile and associated buildings were in a safe condition is outlined. The present state of the core, water ducts and pile chimneys is described. The present and future programme of work to ensure long term safety is discussed. This includes the initial steps in decommissioning of the piles. (U.K.)

  15. Piles of dislocation loops in real crystals

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.; Yanovskij, V.V.

    1985-01-01

    Behaviour of piles of dislocation loops in crystals was studied in order to define metal swelling under irradiation. Energy of pile interaction with point defects and intrinsic pile energy are studied in the framework of the linear elasticity theory. Preference of dislocation pile calculated in the paper decreases with radiation dose hence, material swelling rate also decreases. Creation of conditions, which assume an existence of piles of dislocation loops being stable under irradiation, is of particular interest

  16. Evaluation of the Possibility of Obtaining Tube-to-Tube Sheet Welded Joints of 15Cr5Mo Steel by Alternative Technological Process

    Science.gov (United States)

    Rizvanov, R. G.; Mulikov, D. Sh.; Karetnikov, D. V.; Fairushin, A. M.; Tokarev, A. S.

    2018-03-01

    This paper presents the results of the tests of joints of chrome-molybdenum steel, obtained by rotary friction welding. On their basis, conclusions were drawn about the weldability of this type of steel by friction welding, and also the applicability of this welding technology in the manufacture of heat exchange equipment.

  17. In pile helium loop ''Comedie''

    International Nuclear Information System (INIS)

    Blanchard, R.J.

    1985-01-01

    The loop is located in the SILOE reactor at Centre d'Etudes Nucleaires de Grenoble. The purpose and objectives are divided into two groups, principal and secondary. The primary objective was to provide basic data on the deposition behavior of important condensable fission products on a variety of steel surfaces, i.e. temperature (sorption isotherms) and mass transfer (physical adsorption) dependencies; to provide information concerning the degree of penetration of important fission products into the metals comprising the heat exchanger-recuperator tubes as a function of alloy type and/or metal temperature; to provide complementary information on the reentrainment (liftoff) of important fission and activation products by performing out-of-pile blowdown experiments on tube samples representative of the alloy types used in the heat exchanger-recuperator and of the surface temperatures experienced during plateout. The secondary objective was to provide information concerning the migration of important fission products through graphite. To this end, concentration profiles in the web between the fuel rods containing the fission product source and the coolant channels and in the graphite diffusion sample will be measured to study the corrosion of metallic specimens placed in the conditions of high temperature gas cooled reactor. The first experiment SRO enables to determine the loop characteristics and possibilities related to thermal, thermodynamic, chemical and neutronic properties. The second experiment has been carried out in high temperature gas cooled reactor operating conditions. It enables to determine in particular the deposition axial profile of activation and fission products in the plateout section constituting the heat exchanger, the fission products balance trapped in the different filter components, and the cumulated released fraction of solid fission products. The SR1 test permits to demonstrate in particular the Comedie loop operation reliability, either

  18. DEVELOPMENT OF CORES FOR MINI MOTORS FROM LAMINATED SHEETS OF ELECTRIC STEEL ABNT (Brazilian Association of Technical Standards 35F 420M WITH THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    Halston Mozetic

    2016-06-01

    Full Text Available The purposes of this paper were to study the thermal treatment of Fe-Si sheet, as well as the sheet cutting concerning the topology of a mini stepper motor and mini motor simulation using finite element software. The research consisted of the execution of an "Inductive Reheating" thermal treatment of Iron Silicon sheets, NM71-2000/35F 420M with GNO (Grain Non Oriented, and 0.35mm width. The new technique has the benefit of minimizing magnetic losses produced by the cut on the edge of electric sheets. To carry out the process, the system includes a furnace, an induction coil, and a power supply that, when activated in a controlled way, causes relevant changes to the crystalline structure of the material. Related to the cut of the sheets, the topology of a three phase mini stepper motor was considered. The sheets were initially cut using the geometry of the rotor and stator cores. Firstly, a die cutting process was used and later a wire electroerosion cutting process was employed, which provided parts with excellent finishing. Finally, the mini motor was simulated using the finite element software FEMM 4.2 in order to analyze the airgap flow and torque development of the axis end, in comparison to a solid block of the same material (Fe-Si

  19. Energy piles. A fundamental energy pile; Energiepfaehle. Eine fundamentale Energiequelle

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Holger; Beldermann, Nico [GF-Tec GmbH, Roedermark (Germany)

    2013-03-01

    The Maintower, the new airport in Berlin/Brandenburg, a lot of Ikea buildings, and also small office buildings or residential buildings may exchange energy with the underground by means of pile fundaments. At the correct planning and execution, energy piles are low-cost geothermal power plants which sustainable generate heating and cooling for the buildings standing on them. Even more energy can be generated safely under compliance with the groundwater protection by means of a new development of the material and the transfer.

  20. Stability of Slopes Reinforced with Truncated Piles

    Directory of Open Access Journals (Sweden)

    Shu-Wei Sun

    2016-01-01

    Full Text Available Piles are extensively used as a means of slope stabilization. A novel engineering technique of truncated piles that are unlike traditional piles is introduced in this paper. A simplified numerical method is proposed to analyze the stability of slopes stabilized with truncated piles based on the shear strength reduction method. The influential factors, which include pile diameter, pile spacing, depth of truncation, and existence of a weak layer, are systematically investigated from a practical point of view. The results show that an optimum ratio exists between the depth of truncation and the pile length above a slip surface, below which truncating behavior has no influence on the piled slope stability. This optimum ratio is bigger for slopes stabilized with more flexible piles and piles with larger spacing. Besides, truncated piles are more suitable for slopes with a thin weak layer than homogenous slopes. In practical engineering, the piles could be truncated reasonably while ensuring the reinforcement effect. The truncated part of piles can be filled with the surrounding soil and compacted to reduce costs by using fewer materials.

  1. Mitigation of Ground Vibration by Double Sheet-pile Walls

    DEFF Research Database (Denmark)

    Andersen, Lars; Frigaard, Peter; Augustesen, Anders

    2008-01-01

    Open trenches are an effective means of vibration mitigation, but they cannot be established in practice. When the trenches are covered by a concrete pavement, part of the efficiency may be lost. However, the present analysis indicates that barriers of this kind may still lead to a significant re...... reduction of the horizontal and vertical vibrations caused by traffic at a nearby road or railway....

  2. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  3. How Marine Conditions Affect Severity of MIC of Steels

    National Research Council Canada - National Science Library

    Little, B; Lee, J; Ray, R

    2007-01-01

    .... A specific type of carbon sheet piling corrosion. accelerated low water corrosion, k has been attributed to a microbiologically generated sulfur cycle in the presence of heave macrofouling in tidal zones...

  4. Characterizing Axial Stiffness of Individual Batter Piles with Emphasis on Elevated, Laterally Loaded, Clustered Pile Groups

    Science.gov (United States)

    2016-11-01

    using the appropriate stiffness based on the direction of the calculated pile load. 1...load cases. CPGA utilizes the stiffness method (Saul 1968) of three-dimensional pile group analysis for user-specified static loadings. The pile...CPGA analysis and coordinate systems (global and pile) As discussed in Chapter 1, the CPGA software utilizes the stiffness method (Saul 1968) of

  5. Analysis of pile foundations under dynamic loads

    International Nuclear Information System (INIS)

    Waas, G.; Hartmann, H.G.

    1981-01-01

    A method is presented for the analysis of pile foundations which are subjected to horizontal dynamic loads from earthquakes, airplane impact, gas explosion or other sources. The motion of the pile cap and the pile forces are computed. - The loads may be applied to the pile cap or directly to the piles (e.g. by earthquake wave motion). The soil may be stratified and is considered to be an elastic or visco-elastic medium. The piles are assumed vertical. The method makes use of an approximate fundamental solution for displacements caused by a dynamic point load in a layered visco-elastic medium. The approximation involves a discretization of the medium in the vertical direction. In horizontal directions the medium is treated by continuum theory. The soil medium supports each pile at about 10 to 20 nodes. A dynamic flexiblity matrix for the soil is derived which relates the elastic, damping and inertial forces of the soil to the displacements at each node. It includes effects of radiation damping. All piles are coupled through the soil flexibility matrix. The piles are modelled by beam elements. Transient response is computed using fast discrete Fourier transforms. The arrangement of the piles is arbitrary. However, simple and double symmetry can be accounted for by the computer program. When the pile arrangement is axisymmetric, the degrees of freedom can be reduced to only those of two piles per ring. The influence of the number of piles and the influence of the pile spacing on group stiffness and on pile forces is presented for two soil profiles. Dynamic effects on pile forces of a foundation for a reactor building are studied. They are significant when soils are soft. (orig.)

  6. DRIVEN POLYSTRONG REINFORCED CONCRETE PILES AND NEW DESIGN OF PILE CAPS

    Directory of Open Access Journals (Sweden)

    I. I. Bekbasarov

    2015-01-01

    Full Text Available The paper presents constructional and technological features for manufacturing driven piles with variable strength of pile shaft. Economical efficiency of their production has been shown in the paper. The paper provides a pile cap design that ensures perception of hammer impacts with the help of lateral edges of the pile cap. Driven reinforced concrete piles which are manufactured from three shaft sections having various strength have been proposed in the paper. Material strength (concrete grade and diameter of bars and length of shaft sections are given on a case by case basis in accordance with nature and rate of stresses in piles during their driving process. Manufacturing of polystrong piles provides an opportunity to select them for a particular construction site with due account of their preservation during driving process.A pile cap has been developed that as opposed to existing analogous designs makes it possible to transmit impact efforts from a hammer to the pile through lateral surface of its head part. The pile cap provides the possibility to increase an area for perception of hammer impact efforts by the pile and in doing so it is possible significantly to reduce a damage risk and destruction of pile concrete during its driving. Application of polystrong piles and their driving with the help of new pile cap are considered as a basis for defect-free and resource-saving technology for pile foundations in the construction.

  7. Un nuevo sistema de diseño de embuticiones en láminas de acero para maximizar resistencia de losas compuestas A new system for designing embossments in steel sheets to increase composite slabs shear resistance

    Directory of Open Access Journals (Sweden)

    Melchor López Ávila

    2007-12-01

    Full Text Available Se presenta un resumen de algunos de los principales antecedentes históricos en el análisis de las losas compuestas con láminas metálicas colaborantes sometidas a flexión, así como de los principales métodos de diseño, instrumentación y ensayo aceptados por las distintas normas internacionales. Se analizan cada uno de los parámetros fundamentales que influencian el comportamiento estructural de las losas compuestas, y a partir del estudio numérico de estos se propone un método de optimización del sistema de embuticiones, implementado en hojas de cálculo, con el cual es posible estimar una resistencia a esfuerzos cortantes para las láminas de perfilado abierto y entregando los resultados de los parámetros más importantes, y que empleándolos en forma comparativa es posible determinar el sistema de embuticiones óptimo a incluir en una lámina de perfilado abierto. Aplicando el método propuesto obtuve un sistema de embuticiones tecnológicamente posible y con un coste mínimo de inversiones para una línea industrial de láminas de perfilado abierto.A summary is presented with the main historical background in the analysis of the composite slabs with steel sheets subjected to flexion, as well as of the main methods of design, instrumentation and tests accepted by different International Standards. They fundamental parameters that influence the structural behaviour of the composite slabs are analyzed, and with a numeric study an analytical optimization method of the embossments system, is proposed and implemented in a spread sheet is possible to estimate the shear resistance of open web sheets and by comparing them, is possible to determine the better embossments system to include in a open web sheet with such method. Applying the proposed method a technologically possible embossments system can be obtained with a minimum cost for an industrial line of open web sheets.

  8. Pile Load Capacity – Calculation Methods

    Directory of Open Access Journals (Sweden)

    Wrana Bogumił

    2015-12-01

    Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.

  9. Introduction to Single Piles under Lateral Loading

    DEFF Research Database (Denmark)

    Augustesen, Anders; Ibsen, Lars Bo

    .2). The description is based on results of laboratory tests, full-scale field tests as well as numerical investigations presented in literature. Second, general methods that attempt to model lateral pile response are discussed in section 1.4. Third, focus is paid to a widely used method for prediction of the response......The purpose of this chapter is to give a short introduction to single piles subjected to lateral loading. First, the observed behaviour of laterally loaded piles is described, i.e. the effects of loading conditions, installation procedure, pile type etc. on pile behaviour are presented (section 1...... of a lateral loaded pile, namely the Winkler approach in which the pile is modelled as an elastic beam on an elastic foundation (section 1.5). The soil response and thereby the elastic foundation is represented by springs with nonlinear behaviour (p-y curves). In section 1.6 different types and formulations...

  10. Multisignal detecting system of pile integrity testing

    Science.gov (United States)

    Liu, Zuting; Luo, Ying; Yu, Shihai

    2002-05-01

    The low strain reflection wave method plays a principal rule in the integrating detection of base piles. However, there are some deficiencies with this method. For example, there is a blind area of detection on top of the tested pile; it is difficult to recognize the defects at deep-seated parts of the pile; there is still the planar of 3D domino effect, etc. It is very difficult to solve these problems only with the single-transducer pile integrity testing system. A new multi-signal piles integrity testing system is proposed in this paper, which is able to impulse and collect signals on multiple points on top of the pile. By using the multiple superposition data processing method, the detecting system can effectively restrain the interference and elevate the precision and SNR of pile integrity testing. The system can also be applied to the evaluation of engineering structure health.

  11. Analysis on pile testing results of post-grouting bored pile

    Science.gov (United States)

    Zheng, A. R.

    2017-04-01

    Based on static load test results, the bearing capacity of bored piles with pile-toe and pile-shaft post-grouting has been analyzed. The analysis reveals that: with post-grouting, the interface between pile and surrounding soil are strengthened and the relative sliding displacement in between is reduced; end resistance of pile is enhanced and can be mobilized at earlier stage with smaller sliding displacement. As a result, the performance of bored pile is improved with increased bearing capacity and reduced settlement.

  12. Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors

    Science.gov (United States)

    Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus

    2013-05-01

    Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.

  13. Noise dependence with pile-up in the ATLAS Tile calorimeter

    CERN Document Server

    Araque Espinosa, Juan Pedro; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment and comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. Under these challenging conditions not only the energy from an interesting event will be measured but also a component coming from other collisions. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described.

  14. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo

    2014-01-01

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr 2 N are the key points of this study. The primary results of this study are as follows. The addition of N 2 to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N 2 decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N 2 gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion

  15. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo [Yonsei University, Seoul (Korea, Republic of)

    2014-03-15

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr{sub 2}N are the key points of this study. The primary results of this study are as follows. The addition of N{sub 2} to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N{sub 2} decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N{sub 2} gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

  16. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... drainage may not be diverted over the outslope of the refuse pile. Runoff from areas above the refuse pile...

  17. Test Setup for Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    The test setup for testing axially static and cyclic loaded piles in sand is described in the following. The purpose for the tests is to examine the tensile capacity of axially loaded piles in dense fully saturated sand. The pile dimensions are chosen to resemble full scale dimension of piles used...... in offshore pile foundations today....

  18. Static pile load tests on driven piles in Intermediate-Geo Materials : research brief.

    Science.gov (United States)

    2017-02-01

    Research Objectives: : Investigate the use of modified standard penetration tests (MSPT) : Compare field results with predictions made by the WisDOT driving formula, PDA and CAPWAP : Improve prediction of pile lengths and pile capacities ...

  19. Simulation of bearing capacity of bored piles

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed

    2018-01-01

    Full Text Available This study focuses on how one can possibly predict the ultimate load for the piles that did not reach failure. This challenge was acquired through Chin- Konder method by which, the estimated settlement that correspond to failure load is well defined. Hence, this research aims to make a comparative study between the results of pile load tests carried out in Al-Basrah sewage treatment plant project, and those results induced from the numerical analysis in term of ultimate pile capacity. Consequently, it may give a clear idea on the ability of numerical simulation in getting close to the actual behavior of piles. In the current study, a numerical study using Plaxis 3D Foundation program has been performed on bored piles by the assistance of site investigations of soil. Mohr- Coulomb and linear elastic models were adopted in the simulation for soil and pile respectively. Ten bored piles were used in this analysis under different values of loading. The diameter and length of pile are 0.6m and 24m respectively. The test results indicate that, an excellent agreement has been found as a response of pile capacity between the field and numerical studies. Also, ideal load- settlement curves were created using Chin- Konder method to predict the failure load of bored piles. Also, the results have demonstrated that, the pile capacity obtained from the simulation process is larger about 51% than that design load estimated before the design of piles. This may present a priority to use the finite element method to be accounted as an effective approach in the primary analysis.

  20. Global and local scour at pile groups

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Bundgaard, Klavs; Fredsøe, Jørgen

    2005-01-01

    This paper presents the results of an experimental investigation on scour around pile groups with different configurations exposed to steady current. Two kinds of tests were carried out: (1) Rigid-bed tests, and (2) Actual scour tests. In the former tests, the mean and turbulence properties...... of the flow were measured across the pile groups. The pile group configurations were such that the global scour was distinguished from the local scour. The results show that the global scour can be quite substantial....

  1. Pile Model Tests Using Strain Gauge Technology

    Science.gov (United States)

    Krasiński, Adam; Kusio, Tomasz

    2015-09-01

    Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.

  2. Global and local scour at pile groups

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Bundgaard, Klavs; Fredsøe, Jørgen

    2005-01-01

    This paper presents the results of an experimental investigation on scour around pile groups with different configurations exposed to steady current. Two kinds of tests were carried out: rigid-bed tests and actual scour tests. In these, the mean and turbulence properties of the flow were measured...... across the pile groups. The pile-group configurations were such that the global scour was distinguished from the local scour. The results show that the global scour can be quite substantial....

  3. Dynamics of hydrogen induced blistering of a low carbon steel sheet by lamb waves analysis; Ramuha no teiryo kaiseki ni yoru hakubanteitansoko no suiso hare no dainamikkusu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Teruyoshi.; Takemoto, Mikio. [Aoyama Gakuin University, Tokyo (Japan). Faculty of Science and Engineering

    1999-06-15

    With the aim of studying the fracture dynamics of environmentally assisted fractures in thin plates, we developed a new source simulation method of the zeroth-order symmetric (or S{sub 0}-) Lamb wave using the experimental overall-transfer function of the system. The transfer function was determined by the time-domain deconvolution of detected S{sub 0}-Lamb component by the artificial fracture source of a compression -type PZT element whose vibration kinetics was estimated by the iteration so that the S{sub o}-waveform detected. Hydrogen induced blistering was found to be caused by the succession of fast Mode-I fracture with source rise times from 0.6 to 1.0{mu}s. The crack volume estimated by the source simulation corresponded to that of fine blistering with an opening displacement of 5{mu}m. As the estimated fracture kinetics of hydrogen blistering coincide with those of delayed fracture of high tension low alloy steel under tensile loading, the kinetics of first and micro-fractures and blistering induced by hydrogen gas precipitation appears to be independent on the hydrogen solubility and strength of steels, the applied stresses and the orientation of cracks. (author)

  4. The Windscale piles initial decommissioning programme

    International Nuclear Information System (INIS)

    Boorman, T.; Woodacre, A.

    1992-01-01

    The two Windscale Piles, the first large scale nuclear reactors built in the UK were constructed in the late 1940's and operated until the accident in Pile No 1 caused their permanent shutdown in 1957. Following a period of care and maintenance, a programme of initial decommissioning has begun aimed at establishing a satisfactory long-term safe condition for the Windscale Piles Complex with minimum maintenance commitments. For the chimneys this involves the removal of the top filter sections. The pond will be emptied and cleaned. For the Piles the initial phase includes the consideration of options for long-term decommissioning solutions. (author)

  5. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  6. Safety precautions in atomic pile control (1962)

    International Nuclear Information System (INIS)

    Furet, J.

    1962-01-01

    We have been led to study the problem of safety in atomic pile control as a result of our participation on the one hand in the planning of C.E.A. atomic piles, and on the other hand in the pile safety sub omission considering atomic pile safety of operational or planned C.E.A. piles. We have thus had to consider the wishes occurring in piles during their operation and also their behaviour in the dynamic state The present work deals mainly with the importance of intrinsic safety devices, with the influence of reactivity variations on the power fluctuations during accidental operation, and with the development of robust and reliable safety appliances. The starting p accident has been especially studied both for low-flux piles where a compromise is necessary between the response time of the safety appliances and the statistical fluctuations and for high lux piles where xenon poisoning has an effect on the lower limit of the velocity of reactivity liberation. The desirability has been stressed of automation as a safety factor in atomic pile control. The details required for an understanding of the diagrams of the apparatus are given. (author) [fr

  7. Simplified analysis of laterally loaded pile groups

    Directory of Open Access Journals (Sweden)

    F.M. Abdrabbo

    2012-06-01

    Full Text Available The response of laterally loaded pile groups is a complicated soil–structure interaction problem. Although fairly reliable methods are developed to predicate the lateral behavior of single piles, the lateral response of pile groups has attracted less attention due to the required high cost and complication implication. This study presents a simplified method to analyze laterally loaded pile groups. The proposed method implements p-multiplier factors in combination with the horizontal modulus of subgrade reaction. Shadowing effects in closely spaced piles in a group were taken into consideration. It is proven that laterally loaded piles embedded in sand can be analyzed within the working load range assuming a linear relationship between lateral load and lateral displacement. The proposed method estimates the distribution of lateral loads among piles in a pile group and predicts the safe design lateral load of a pile group. The benefit of the proposed method is in its simplicity for the preliminary design stage with a little computational effort.

  8. Static pile load tests on driven piles into Intermediate-Geo Materials.

    Science.gov (United States)

    2016-09-01

    The Wisconsin Department of Transportation (WisDOT) has concerns with both predicting pile lengths and pile capacities for H-piles driven into Intermediate-Geo Materials (IGM). The goal of the research was to perform 7 static axial load tests at 7 lo...

  9. Use of pile driving analysis for assessment of axial load capacity of piles : [technical summary].

    Science.gov (United States)

    2012-01-01

    The dynamic response of a pile during driving is very : complex, involving the interactions of the hammer, cushion, : pile and soil during application of an impact load. : The first analysis aimed at simulating a hammer blow on : a pile was published...

  10. Development of enclosure technique of tag gas for in-pile creep test

    International Nuclear Information System (INIS)

    Izaki, Toru; Ichikawa, Shoichi; Soroi, Masatoshi; Ito, Chikara

    2004-01-01

    Outline of the enclosure technique of tag gas for in-pile creep test is stated. In order to carry out in-pile creep test, the sample can enclose tag gas before the test and then the sample is inserted into MARICO-2 (Material Testing Rig with Temperature Control) in FBR 'JOYO' MK-III for the irradiation test. Outline of in-pile creep test using tag gas, enclosure system of tag gas, detection of a part of broken sample and identification of sample are explained. 126-, 128-, 129-, 131-, 132-, and 134-Xe are used as tag gases. The samples are identified by RIMS (Laser Resonance Ionization Mass Spectroscopy) in ppt order. ODS ferritic steel will be tested by the method in the next step. (S.Y.)

  11. Prediction of pile set-up for Ohio soils.

    Science.gov (United States)

    2011-02-01

    ODOT typically uses small diameter driven pipe piles for bridge foundations. When a pile is driven into the subsurface, it disturbs and displaces the soil. As the soil surrounding the pile recovers from the installation disturbance, a time dependant ...

  12. Design phase identification of high pile rebound soils : final report

    Science.gov (United States)

    2010-12-15

    An engineering problem has occurred when installing displacement piles in certain soils. During driving, piles are rebounding excessively during each hammer blow, causing delay and as a result may not achieve the required design capacities. Piles dri...

  13. In-pile Instrumentation Development

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2005-01-01

    Advanced irradiations in research reactors require the on-line monitoring of crucial parameters like neutron fluxes, gamma dose rates, central fuel rod temperatures, fission gas release pressures and small geometry changes. Our activities in this field aim at a detailed understanding of the sensor behaviour in the irradiation conditions in order to extract reliable real-time information. The objectives of work performed by SCK-CEN are to study of the on-line in-pile measurement of gamma and neutron fluxes in real time and to investigate parasitic radiation-induced signals in instrumentation cables

  14. Development of the monitoring technique on the damage of piles using the biggest shaking table "E-defense"

    Science.gov (United States)

    Hayashi, Kazuhiro; Hachimori, Wataru; Kaneda, Shogo; Tamura, Shuji; Saito, Taiki

    2017-10-01

    In case of earthquake damage to buildings, the damage to a superstructure is visible, but the damage to a foundation structure, e.g. the underground pile, is difficult to detect. In this study, the authors aim to develop a monitoring technique for pile damage due to earthquakes. The world's biggest shaking table, E-Defense, was used to reproduce damage to RC pile models embedded in the soil inside a large scale shear box (8m in diameter and 6.5m in height). The diameter of the RC pile model was 154mm. It consisted of mortar (27.2N/mm2 in compressive strength), 6 main reinforcements (6.35mm in diameter) and shear reinforcement hard steel wire (2mm in diameter at intervals of 20mm). The natural period of the superstructure above the pile models is around 0.12sec. The soil consisted of 2 layers. The lower layer is Albany sand of 80% relative density while the upper layer is only 2m from the surface ground and is Kaketsu sand of 60% relative density. Primary four excitations were scaled from JMA Kobe waves in notification at different amplitudes. The maximum acceleration of each wave is 31gal, 67gal, 304gal, and 458gal, respectively. In the test result, reinforcing steels at the pile head of the RC model yielded when the maximum acceleration was 304gal. After that, mortar of the pile head peeled off and a bending shear failure occurred when the maximum acceleration was 458gal. The peak frequency of rotational spectrum on the foundation did not change in elastic range in the piles. However, the peak frequency fell after the plastic hinge occurred.

  15. Soldadura de aceros dual phase en chapa fina: GMAW, PAW y RSW Welding of dual phase steel sheet: GMAW, PAW and RSW

    Directory of Open Access Journals (Sweden)

    Hernán Svoboda

    2011-06-01

    Full Text Available Los aceros Dual Phase (DP han encontrado recientemente una fuerte aplicación en elementos estructurales en la industria automotriz, debido a la necesidad de disminuir peso. La soldadura de estos materiales cobra particular importancia considerando su aplicación estructural y los procesos relacionados en su fabricación. En particular la soldadura de resistencia por punto (RSW y semiautomática con alambre macizo y protección gaseosa (GMAW son ampliamente utilizados en la industria automotriz. El proceso de soldadura por plasma (PAW se caracteriza, entre los procesos de soldadura por arco, por ser el de mayor densidad de energía, presentando particular interés en aplicaciones de la industria automotriz (tailor welded blanks. El objetivo del presente trabajo fue estudiar la evolución microestructural y las propiedades de aceros DP soldados mediante los procesos RSW, GMAW y PAW. A este fin, se soldaron cuatro grados de aceros DP con resistencias mecánicas de 550, 700 y 850 MPa en espesores de 1 y 1,3 mm mediante los mencionados procesos. Se caracterizaron las microestructuras y se determinaron las propiedades mecánicas de las uniones soldadas para cada caso. Para los tres procesos se obtuvieron uniones soldadas de calidad satisfactoria. Se observó para todas las soldaduras, que en la ZAC se produce una disminución de la dureza por debajo del valor del material base, relacionada a la descomposición de la fase martensítica. Las soladuras por arco fueron las más afectadas.Dual Phase steels (DP have been used recently as an interesting option for structural elements, specialy in automotive industry, due to weight reduce requirements. Welding of these materials becomes particularly important considering their application as structural elements and the related manufacturing methods. In particular resistance spot welding (RSW and gas metal arc welding (GMAW are widely used in the automotive manufacturing. The plasma arc welding (PAW has the

  16. Performance Steel Castings

    Science.gov (United States)

    2012-09-30

    system components to be built. Figure la shows the machine design . PSC-2012 Page 94 Glue Application Sheet Transfer Feed Elevator Figure la...Department of Defense such as cleats, ejection chutes , control arms, muzzle brakes, mortar components, clevises, tow bar clamps, ammo conveyor elements...Foundry and the members of Steel Founders’ Society of America. Abstract Weapon system designers and builders need advanced steel casting technology

  17. Some Remarks on Foundation Pile Testing Procedures

    Science.gov (United States)

    Rybak, Jarosław

    2017-10-01

    This work presents the review of pile capacity testing techniques. In an overview, the key points in pile designing are: determination of the appropriate computational schemes, reliable data on loads and the properties of structural materials (in particular, of the soil mass, which is marked by the greatest variability). The procedure of constructing a pile foundation should include: carrying out soil tests in the scope that ensures safe designing, selecting a piling technology that is relevant both to geotechnical conditions and expected loads, drafting a piling design together with the design of load tests, setting up a testing station for further load tests, static and/or dynamic tests of pile load capacity, preceded by supplementary soil tests when the conditions of test pile installation fail to comply with the design assumptions or when the pile length exceeds the depth of the previously investigated soil, making documentation of load capacity tests (with an additional correction of the piling design), the actual piling (ongoing analysis of pile driving logs and, if necessary, testing the piles’ integrity), drawing up the as-built documentation. Unfortunately, the design is corrected after the load test have been conducted only if the piles fail to show the designed bearing capacity. The designer is then obliged to revise the design assumptions on the basis of tests results. If the test results account for the a greater bearing capacity than necessary and it would be recommendable to limit the extent of the planned (i.e. set out in the contract) piling works, usually neither the contractor nor the designer, nor even the Construction Site Supervisor, acting for the benefit of the Investor, are willing to take on the responsibility for reducing the scope of the piling works. The necessity of conducting additional control tests before and during the implementation of the construction project is often treated by the investors as an attempt at extorting extra

  18. Development of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed

  19. Development of PWR pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed.

  20. 75 FR 5146 - Tempel Steel Company Including On-Site Leased Workers From Aerotek Staffing Chicago, IL; Tempel...

    Science.gov (United States)

    2010-02-01

    ... the production of lamination sheet steel for electric motors and transformers. New findings show that... affected by a shift in production of lamination sheet steel for electric motors and transformers to Mexico...

  1. Analysis of effect of different construction methods of piles on the end effect on skin friction of piles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hongbo; CHEN Zhuchang

    2007-01-01

    Based on the comparative analysis of end effect on skin friction of displacement-pile (driven pile),the end effect on skin friction of bored pile is studied.The end effect on skin friction between driven pile and bored pile is different and the end effect on skin friction of bored pile is reduce of skin friction in the soil layer adjacent to the pile end.The degradation degree of skin friction is deduced with the increase of the distance from pile end.The concept of additional mud cake formed by the effect of cushion at the bottom of borehole during pouring concrete is introduced to explain the mechanism of end effect on skin friction of the bored pile.The test results of post-grouting piles indicate that the post-grouting technique is an effective way to improve the end effect on skin friction of bored pile.

  2. Reliability of Estimation Pile Load Capacity Methods

    Directory of Open Access Journals (Sweden)

    Yudhi Lastiasih

    2014-04-01

    Full Text Available None of numerous previous methods for predicting pile capacity is known how accurate any of them are when compared with the actual ultimate capacity of piles tested to failure. The author’s of the present paper have conducted such an analysis, based on 130 data sets of field loading tests. Out of these 130 data sets, only 44 could be analysed, of which 15 were conducted until the piles actually reached failure. The pile prediction methods used were: Brinch Hansen’s method (1963, Chin’s method (1970, Decourt’s Extrapolation Method (1999, Mazurkiewicz’s method (1972, Van der Veen’s method (1953, and the Quadratic Hyperbolic Method proposed by Lastiasih et al. (2012. It was obtained that all the above methods were sufficiently reliable when applied to data from pile loading tests that loaded to reach failure. However, when applied to data from pile loading tests that loaded without reaching failure, the methods that yielded lower values for correction factor N are more recommended. Finally, the empirical method of Reese and O’Neill (1988 was found to be reliable enough to be used to estimate the Qult of a pile foundation based on soil data only.

  3. Process flow sheet evaluation of a nuclear hydrogen steelmaking plant applying very high temperature reactors for efficient steel production with less CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Seiji, E-mail: kasahara.seiji@jaea.go.jp; Inagaki, Yoshiyuki; Ogawa, Masuro

    2014-05-01

    plant unit of the NHS system producing steel of 1.47 × 10{sup 6} t/y with 2 VHTRs of 600 MW heat and a shaft furnace and an electric arc furnace was proposed. The steelmaking scale was a little smaller than those of the recent largest Midrex{sup ®} plants.

  4. Safety precautions in atomic pile control (1962); Securite dans le controle des piles atomiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    We have been led to study the problem of safety in atomic pile control as a result of our participation on the one hand in the planning of C.E.A. atomic piles, and on the other hand in the pile safety sub omission considering atomic pile safety of operational or planned C.E.A. piles. We have thus had to consider the wishes occurring in piles during their operation and also their behaviour in the dynamic state The present work deals mainly with the importance of intrinsic safety devices, with the influence of reactivity variations on the power fluctuations during accidental operation, and with the development of robust and reliable safety appliances. The starting p accident has been especially studied both for low-flux piles where a compromise is necessary between the response time of the safety appliances and the statistical fluctuations and for high lux piles where xenon poisoning has an effect on the lower limit of the velocity of reactivity liberation. The desirability has been stressed of automation as a safety factor in atomic pile control. The details required for an understanding of the diagrams of the apparatus are given. (author) [French] Nous avons aborde le probleme de la securite dans le controle des piles atomiques a la suite de notre participation d'une part aux avant rojets de piles atomiques du CE.A. et d'autre part a l'examen au sein de la sous ommission de surete des piles, de la securite des piles du CE.A. en fonctionnement ou en projet. Nous avons ete amenes a nous interesser alors aux risques encourus par les piles pendant leur fonctionnement et par la meme a leur comportement en regime dynamique. Ce travail traite principalement de l'importance des securites intrinseques, de l'influence des variations de reactivite sur les evolutions de puissance en regime d'accident et du developpement d'appareillages de securite robustes et de fonctionnement tres sur. L'accident de demarrage a ete particulierement

  5. Safety precautions in atomic pile control (1962); Securite dans le controle des piles atomiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    We have been led to study the problem of safety in atomic pile control as a result of our participation on the one hand in the planning of C.E.A. atomic piles, and on the other hand in the pile safety sub omission considering atomic pile safety of operational or planned C.E.A. piles. We have thus had to consider the wishes occurring in piles during their operation and also their behaviour in the dynamic state The present work deals mainly with the importance of intrinsic safety devices, with the influence of reactivity variations on the power fluctuations during accidental operation, and with the development of robust and reliable safety appliances. The starting p accident has been especially studied both for low-flux piles where a compromise is necessary between the response time of the safety appliances and the statistical fluctuations and for high lux piles where xenon poisoning has an effect on the lower limit of the velocity of reactivity liberation. The desirability has been stressed of automation as a safety factor in atomic pile control. The details required for an understanding of the diagrams of the apparatus are given. (author) [French] Nous avons aborde le probleme de la securite dans le controle des piles atomiques a la suite de notre participation d'une part aux avant rojets de piles atomiques du CE.A. et d'autre part a l'examen au sein de la sous ommission de surete des piles, de la securite des piles du CE.A. en fonctionnement ou en projet. Nous avons ete amenes a nous interesser alors aux risques encourus par les piles pendant leur fonctionnement et par la meme a leur comportement en regime dynamique. Ce travail traite principalement de l'importance des securites intrinseques, de l'influence des variations de reactivite sur les evolutions de puissance en regime d'accident et du developpement d'appareillages de securite robustes et de fonctionnement tres sur. L'accident de demarrage a ete particulierement developpe aussi bien pour les piles a bas

  6. 30 CFR 77.214 - Refuse piles; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; general. 77.214 Section 77.214... Installations § 77.214 Refuse piles; general. (a) Refuse piles constructed on or after July 1, 1971, shall be..., tipples, or other surface installations and such piles shall not be located over abandoned openings or...

  7. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... drainage may not be diverted over the outslope of the refuse piles. Runoff from the areas above the refuse...

  8. 30 CFR 77.215-4 - Refuse piles; abandonment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; abandonment. 77.215-4 Section 77... MINES Surface Installations § 77.215-4 Refuse piles; abandonment. When a refuse pile is to be abandoned... refuse pile shall be abandoned in accordance with a plan submitted by the operator and approved by the...

  9. Measurements of pile driving noise from control piles and noise-reduced piles at the Vashon Island ferry dock.

    Science.gov (United States)

    2017-04-01

    As part of the Washington State Department of Transportation (WSDOT) pile attenuation test program, : researchers from the University of Washington Applied Physics Laboratory (APL-UW) conducted underwater sound : measurements on 7 and 8 December 2015...

  10. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  11. In pile AISI 316L. Low cycle fatigue. Final report

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.; Moons, F.

    1994-12-01

    In pile testing of the effect of neutron irradiation on the fatigue life of the reference material AISI 316L was performed in the framework of the European fusion technology program. The overall programme, carried out at SCK CEN (Mol,Belgium), exists of two instrumented rigs for low cycle fatigue testing, which were consecutively loaded in the BR-2 reactor during periods Jan (94) June (94) and Aug (94)-Dec(94). In each experiment, two identical samples were loaded by means of a pneumatically driven system. The samples were instrumented with thermocouples, strain gages, linear variable displacement transducers, and activation monitors. The experimental conditions are given. Type of fatigue test: load controlled, symmetric, uniaxial, triangular wave shape; stress range: about 580 MPa; sample shape: hourglass, diameter 3.2 mm, radius 12.5 mm; environment: NaK (peritectic); temperature: 250 C; maximum dpa value up to fracture: 1.7. Two of four samples were broken (one in each experiment) after having experienced 17 419 respectively 11 870 stress cycles. These new data points confirm earlier results from pile fatigue tests: irradiation causes no degradation of fatigue life of AISI 316L steel, at least for the parameters corresponding to these experiments

  12. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  13. Soil heating during burning of forest slash piles and wood piles

    Science.gov (United States)

    Matt D. Busse; Carol J. Shestak; Ken R. Hubbert

    2013-01-01

    Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...

  14. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  15. 1998 Annual Study Report. Standardization of corrosion resistance testing/evaluation methods for coated steel sheets; 1998 nendo seika hokokusho. Hyomen shori koban no taishokusei shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to develop the evaluation methods for reappearing corrosion characteristics of coated steel sheets in a short time, acid rain composition and artificial acid rain composition for the accelerated test were studied, and the cyclic corrosion tests were conducted. The literature survey shows that the main ionic species present in acid rain are Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}, NH{sub 4}{sup +}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, and Cl{sup -}, of which the acid rain components are SO{sub 4}{sup 2-} and NO{sub 3}{sup -}, their equivalent ratio (NO{sub 3}{sup -}/ SO{sub 4}{sup 2-}) in the Far Eastern area being 0.2 to 0.3. Therefore, the solution specified by ASTM 1141 is diluted 30 times with water to prepare the base solution for the accelerated tests, where its acidity is adjusted with a mixed acid of NO{sub 3}{sup -}/ SO{sub 4}{sup 2-} = 0.2 to 0.3 (pH: 3.0 to 4.0). Two sets of preliminary cyclic corrosion tests were conducted, one involving acid rain spraying, drying and humidification in this order, and the other acid rain spraying, humidification and drying. Analysis of the test data indicates that difference between these test cycles in corrosion rate is within a deviation range caused by different testing tools. Therefore, the former condition is adopted as the basis for the accelerated tests, because of its smaller deviation caused by different testing tools. (NEDO)

  16. Introduction of effective piles in a base structure

    Directory of Open Access Journals (Sweden)

    В.Б. Кашка

    2005-03-01

    Full Text Available  Design features of effective piles such as СВ and their advantages in use are considered at the device of the pile bases in comparison with widely widespread types of piles. From results of comparative tests of piles under static pressing loading in different earth conditions the tendency of redistribution of bearing (carrying ability between a trunk and expansions an effective pile such as СВ was determined on earth conditions.

  17. Performance of pile supported sign structures : [brief].

    Science.gov (United States)

    2015-05-01

    Sign structures in Wisconsin are typically supported by drilled shaft foundations or spread : footing foundations. However, when the soil conditions are not suitable to be supported on : drilled shafts or spread footings, a group of piles could suppo...

  18. New trends in pile safety instrumentation

    International Nuclear Information System (INIS)

    Furet, J.

    1961-01-01

    This report addresses the protection of nuclear piles against damages due to operation incidents. The author discusses the current trends in the philosophy of safety of atomic power piles, identifies the parameters which define safety systems, presents tests to be performed on safety chains, comments the relationship between safety and the decrease of the number of pile inadvertent shutdowns, discusses the issues of instrument failures and chain multiplicity, comments the possible improvement of the operation of elements which build up safety chains (design simplification, development of semiconductors, replacement of electromechanical relays by static relays), the role of safety logical computers and the development of automatics in pile safety, presents automatic control as a safety factor (example of automatic start-up), and finally comments the use of fuses

  19. Displacement pile installation effects in sand

    NARCIS (Netherlands)

    Beijer-Lundberg, A.

    2015-01-01

    Installation effects govern the post-installation behaviour of displacement piles in sand. These effects are currently not completely understood. Suitable experimental techniques to model these installation effects include field, laboratory and experimental models. In the current thesis a

  20. Aplicación del rayo láser de CO2 para soldar laminas de acero bajo carbono // Application of the ray laser of CO2 to weld sheets of steel low carbon

    Directory of Open Access Journals (Sweden)

    Enrique J. Martínez D

    1999-07-01

    very thin sheets is facilitated, that which difficultly is achieved withthe processes common of welding. This technique also presents the advantage that easily you can automate, producing weldings ofhigh precision with low contamination.The study consists on carrying out an investigation on the process of welding of thin sheets using a laser of CO2 of low power incontinuous way, focusing the laser with a lens of ZnSe and using industrial argon to control the atmosphere around the treated regionand to avoid the oxidation. To carry out the process, you design a device for ' to displace the sample at 45o with regard to thetrajectory of the ray laser in precise form; the welding was carried out to it collides and without material contribution.The work was carried out on sheets of steel of low coal of caliber 24 and 26. The welded samples were subjected to: tractionrehearsal, visual analysis, analysis metalográfico and microdureza tests. The obtained results show that it can be carried out theprocess easily, by means of the control of the most important variables, in such a way that once established, the operator doesn't needa great experience in the handling of this technique to carry out the process with high quality. The carried out analyses confirm thatby means of this technique it is possible to obtain uniform welding cords, with good mechanical properties.Key words: Welding, laser.

  1. Tension Tests On Bored Piles In Sand

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Clausen, Johan; Damkilde, Lars

    2006-01-01

    The lengths of the bored piles varied from 2 m to 6 m and all were of a diameter of 140 mm. The piles were tested to failure in tension and the load-displacement relations were recorded. The investigation has shown pronounced differences between the load bearing capacities obtained by different...... design methods. The methods proposed by Fleming et al. and Reese & O’Neill seem to produce the best match with the test results....

  2. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  3. Grouting of uranium mill tailings piles

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.; Tamura, T.; Williams, J.D.

    1984-03-01

    A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10 -3 cm/s to values approaching 10 -7 cm/s using silicate grouts and to 10 -8 cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table

  4. Application of Hydroforming Process in Sheet Metal Formation

    OpenAIRE

    GRIZELJ, Branko; CUMIN, Josip; ERGIĆ, Todor

    2009-01-01

    This article deals with the theory and application of a hydroforming process. Nowadays automobile manufacturers use high strength sheet metal plates. This high strength steel sheet metal plates are strain hardened in the process of metal forming. With the use of high strength steel, cars are made lightweight, which is intended for low fuel consumption because of high energy prices. Some examples of application of a hydroforming process are simulated with FEM.

  5. A mathematical approach based on finite differences method for analyzing the temperature field in arc welding of stainless steel thin sheets; Desarrollo de un modelo matematico de diferencias finitas para el analisis del campo de temperaturas en la soldadura por arco de chapas finas de acero inoxidable

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E.J.; Estrems, M.; Miguel, V.

    2010-07-01

    This work develops a finite difference method to evaluate the temperature field in the heat affected zone in butt welding applied to AISI 304 stainless steel thin sheet by GTAW process. A computer program has been developed and implemented by Visual Basic for Applications (VBA) in MS-Excel spreadsheet. The results that are obtained using the numerical application foresee the thermal behaviour of arc welding processes. An experimental methodology has been developed to validate the mathematical model that allows to measure the temperature in several points close to the weld bead. The methodology is applied to a stainless steel sheet with a thickness lower than 3 mm, although may be used for other steels and welding processes as MIG/MAG and SMAW. The data which has been obtained from the experimental procedure have been used to validate the results that have been calculated by the finite differences numerical method. The mathematical model adjustment has been carried out taking into account the experimental results. The differences found between the experimental and theoretical approaches are due to the convection and radiation heat losses, which have not been considered in the simulation model.With this simple model, the designer will be able to calculate the thermal cycles that take place in the process as well as to predict the temperature field in the proximity of the weld bead. (Author). 18 refs.

  6. Evaluation of axial pile bearing capacity based on pile driving analyzer (PDA) test using Neural Network

    Science.gov (United States)

    Maizir, H.; Suryanita, R.

    2018-01-01

    A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.

  7. The Effects of Time on Soil Behaviour and Pile Capacity

    DEFF Research Database (Denmark)

    Augustesen, Anders

    When designing pile foundations, static design equations, pile driving formulae, static loading tests or stress wave analyses can be employed to estimate the axial capacity of single piles. Both laboratory and field tests show that soil exhibits time-dependent behaviour. An important result...... based on a set of static loading tests. In the literature it is suggested that the pile capacity increases with the logarithm to time after installation which is confirmed in this thesis. In continuation of this, it is analysed whether the magnitude of the set-up is related to the properties of the clay...... circumstances (e.g. load specifications, length of pile, pile material). In order to evaluate the design methods for piles in clay, it is necessary to correct for time between pile driving and pile testing. Results of testing the calculation procedures against the available data by employing different time...

  8. Analysis of Dynamic Stiffness of Bridge Cap-Pile System

    Directory of Open Access Journals (Sweden)

    Jinhui Chu

    2018-01-01

    Full Text Available In order to investigate the applicability of dynamic stiffness for bridge cap-pile system, a laboratory test was performed. A numerical model was also built for this type of system. The impact load was applied on the cap top and the dynamic stiffness was analysed. Then, the effect of the effective friction area between pile and soil was also considered. Finally, the dynamic stiffness relationship between the single pile and the cap-pile system was also compared. The results show that the dynamic stiffness is a sensitive index and can well reflect the static characteristics of the pile at the elastic stage. There is a significant positive correlation between the vertical dynamic stiffness index and bearing capacity of the cap-pile system in the similar formation environment. For the cap-pile system with four piles, the dynamic stiffness is about four times as large as the single pile between 10 and 20 Hz.

  9. Improved soil characterization for pipe piles in sand in API RP-2A

    International Nuclear Information System (INIS)

    Hossain, M.K.; Briaud, J.L.

    1993-01-01

    In the offshore, most foundations are steel pipe piles and most of them are designed using the API RP 2A guidelines. For axial capacity of piles in sand the current guidelines in many cases show definite discrepancies when compared against actual load capacities of piles. An updated data base analysis shows that there are three major weaknesses in the current guidelines with respect to soil characterization: (a) the consideration of the lateral earth pressure coefficient, K, as a constant (1.0 or 0.8); (b) the consideration of the unit point bearing resistance, q, as a linear function of depth; and (c) the absence of an unambiguous soil parameter determination process based on reliable in-situ test results. In this paper, specific modifications to the current API RP 2A guidelines are proposed on the basis of a data base analysis to account for the discrepancies arising from (a), (b), and (c) above. These modifications will reduce the discrepancies in the current API RP 2A method and increase the accuracy of the prediction of axial capacity of pipe piles in sand. Furthermore this will make the method fundamentally more consistent with soil behavior in deep foundations

  10. Pile foundation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Jurkiewicz, W.J.; Thomaz, E.; Rideg, P.; Girao, M.

    1978-01-01

    The subject of pile foundation used for nuclear power plant structures, considering the experience gained by the designers of the Angra Nuclear Power Plant, Units 2 and 3 in Brazil is dealt with. The general concept of the pile foundations, including types and execution of the piles, is described briefly. Then the two basic models, i.e. the static model and the dynamic one, used in the design are shown, and the pertinent design assumptions as related to the Angra project are mentioned. The criteria which established the loading capacity of the piles are discussed and the geological conditions of the Angra site are also explained briefly, justifying the reasons why pile foundations are necessary in this project. After that, the design procedures and particularly the tools - i.e. the computer programs - are described. It is noted that the relatively simple but always time consuming job of loading determination calculations can be computerized too, as it was done on this project through the computer program SEASA. The interesting aspects of soil/structure interaction, applicable to static models, are covered in detail, showing the theoretical base wich was used in the program PILMAT. Then the advantage resulting from computerizing of the job of pile reinforcement design are mentioned, describing briefly the jobs done by the two special programs PILDES and PILTAB. The point is stressed that the effort computerizing the structural design of this project was not so much due to the required accuracy of the calculations, but mainly due to the need to save on the design time, as to allow to perform the design task within the relatively tight time schedule. A conclusion can be drawn that design of pile foundations for nuclear power plant structures is a more complex task than the design of bearing type of foundation for the same structures, but that the task can be always made easier when the design process can be computerized. (Author)

  11. Measurement and Analysis of Horizontal Vibration Response of Pile Foundations

    Directory of Open Access Journals (Sweden)

    A. Boominathan

    2007-01-01

    Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.

  12. Rapidly cast crystalline thin sheet materials

    International Nuclear Information System (INIS)

    Warlimont, H.; Emmerich, K.

    1986-01-01

    The current state and progress of casting thin sheet and ribbons directly from the melt are reviewed. First, the solidification phenomena pertinent to the process are outlined. Subsequently, Fe-Si,l Fe-Si-Al, Fe-Nd-B, Ag-Cu-Ti, alloy steels, Ni superalloys and Si are treated as examples. Finally, the information available on process development is critically assessed

  13. Test Procedure for Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    The test procedure described in the following is used when examining the effects of static or cyclic loading on the skin friction of an axially loaded pile in dense sand. The pile specimen is only loaded in tension to avoid any contribution from the base resistance. The pile dimensions are chosen...... to resemble full scale dimension of piles used in offshore pile foundations today. In this report is given a detailed description of the soil preparation and pile installation procedures as well data acquisition methods....

  14. Pile Design Based on Cone Penetration Test Results

    OpenAIRE

    Salgado, Rodrigo; Lee, Junhwan

    1999-01-01

    The bearing capacity of piles consists of both base resistance and side resistance. The side resistance of piles is in most cases fully mobilized well before the maximum base resistance is reached. As the side resistance is mobilized early in the loading process, the determination of pile base resistance is a key element of pile design. Static cone penetration is well related to the pile loading process, since it is performed quasi-statically and resembles a scaled-down pile load test. In ord...

  15. Seismic behavior analysis of piled drums

    International Nuclear Information System (INIS)

    Aoki, H.; Kosaka, T.; Mizushina, T.; Shimizu, M.; Uji, S.; Tsuchiya, H.

    1987-01-01

    In general, low level radioactive waste is packed in drums and stored in a warehouse being piled vertically, or laid horizontally. To observe the behavior of piled drums during an earthquake, an experimental study was reported. The experimental study is limited by the vibrating platform capacity. To carry out these tests up to the supporting limit is not recommended, in view of the vibrating platform curing as well as the operators' security. It is very useful to develop the analytical method for simulating the behavior of the drums. In this report, a computer program of piled drum's dynamic motion is shown, and the analytical result is referred to the experimental result. From the result of experiment on piled drums, the sliding effect has been found to be very important for the stability of drum, and the rocking motion observed, showing a little acceleration is less than the static estimated value. Behavior of piled drums is a complex phenomena comprising of sliding, rocking and jumping

  16. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  17. Marine Exposure Tests on Stainless Steel Sheet

    Science.gov (United States)

    1947-02-01

    contained 17 to 20 percent of chromium, 7 to 10 percent of nickel, and, in seme Instances, sma.11 amounts of molybdenum, tita - nium, or columbium...3.5 percent, of molybdenum, exhibited much loss rust on weathering than those of the ordinary 18:8 type with or without additions of tita - nium or

  18. Mathematical approach in galvanized steel sheet coatings

    International Nuclear Information System (INIS)

    Perez, A.; Andres, L.J.; Gonzalez, I.; Fernandez, B.; Puente, J.M.

    1998-01-01

    A short review of the kinetics models for the formation of Fe-Zn alloy phases in the galvannealing process is presented. It will focus on the continuous process which is often used by the automotive industry. A first mathematical approach of the kinetics growth of the δ phase has been done using a continuous hot-dipping process simulator which resembles the conditions of the galvannealing process in production lines. Hold time and the galvannealing temperature as well as the weight of the coating were varied. The preliminary results of the iron content and proportion of δ phase in the coating are in agreement with the results obtained by other authors. (Author) 16 refs

  19. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  20. Noise dependency with pile-up in the ATLAS Tile Calorimeter

    CERN Document Server

    Araque Espinosa, Juan Pedro; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions which are difficult to distinguish from the interesting one will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects noise under different circumstances are described.

  1. Picking up Clues from the Discard Pile

    Science.gov (United States)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil. On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through red, green and blue filters that have been combined into this approximately true-color image. This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench. Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches. For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench. The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed

  2. Radiation Protection in the Experimental Pile Marius

    International Nuclear Information System (INIS)

    Cohendy, G.

    1962-01-01

    Measurements made around the experimental pile 'Marius' made it possible to determine the valid characteristics of the slabs designed to improve the biological protection by covering the charge and discharge pits. These measurements also made it possible to evaluate the risks occurring when the pile is operating at various Powers and to make a reasonable estimate of the value of the ratio of the total danger due to neutrons (thermal and fast) and γ radiation and to the danger due only to the γ radiation. A knowledge of this ratio makes it possible to make satisfactory evaluations with a single apparatus which is really portable. (author) [fr

  3. Piles of dislocation loops in real crystals. 2. Evolution of dislocation piles under irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.; Yanovskij, V.V.

    1985-01-01

    The given paper considers evolution of piles in a real molybdenum crystal under neutron irradiation. Obtained was a stability criterium, when meeting it interstitial piles (one-dimensional periodical structures of interstitial loops) in the crystal tend to stationary state under the irradiation and, when disturbing the criterium, they disintegrate into rapidly growing interstitial isolated loops. It was also shown that the generation of dense vacancy piles results in the formation of an ordering structure of isolated vacancy loops. Theoretical results agree good with experimental data

  4. Summary on out-of-pile and in-pile properties of M5 alloy

    International Nuclear Information System (INIS)

    Zhao Wenjin

    2001-01-01

    The out-of-pile and in-pile corrosion, mechanical properties, microstructure,hydrogen absorption, creep and growth resistances of M5 alloy using as PWR fuel rod cladding materials developed by FRAMATOME in France has been summarized with reference to the literatures. The results obtained from in-pile irradiation tests show that the corrosion and hydrogen absorption resistances, creep and irradiation growth resistances of M5 alloy cladding are superior to that of the optimized Zircaloy-4. It could be estimated that the M5 alloy enables rod burnups close to 65GWd/tU to be reached

  5. GASN sheets

    International Nuclear Information System (INIS)

    2013-12-01

    This document gathers around 50 detailed sheets which describe and present various aspects, data and information related to the nuclear sector or, more generally to energy. The following items are addressed: natural and artificial radioactive environment, evolution of energy needs in the world, radioactive wastes, which energy for France tomorrow, the consequences in France of the Chernobyl accident, ammunitions containing depleted uranium, processing and recycling of used nuclear fuel, transport of radioactive materials, seismic risk for the basic nuclear installations, radon, the precautionary principle, the issue of low doses, the EPR, the greenhouse effect, the Oklo nuclear reactors, ITER on the way towards fusion reactors, simulation and nuclear deterrence, crisis management in the nuclear field, does nuclear research put a break on the development of renewable energies by monopolizing funding, nuclear safety and security, the plutonium, generation IV reactors, comparison of different modes of electricity production, medical exposure to ionizing radiations, the control of nuclear activities, food preservation by ionization, photovoltaic solar collectors, the Polonium 210, the dismantling of nuclear installations, wind energy, desalination and nuclear reactors, from non-communication to transparency about nuclear safety, the Jules Horowitz reactor, CO 2 capture and storage, hydrogen, solar energy, the radium, the subcontractors of maintenance of the nuclear fleet, biomass, internal radio-contamination, epidemiological studies, submarine nuclear propulsion, sea energy, the Three Mile Island accident, the Chernobyl accident, the Fukushima accident, the nuclear after Fukushima

  6. Analysis of radon protection cover on uranium tailings pile

    International Nuclear Information System (INIS)

    Zhang Zhe

    1993-01-01

    The average radon emanation rate of the whole surface over one year was used for evaluating the radon release of uranium tailings pile. The effective of radon protection cover depends on the shape and property of the tailings pile, the properties of covering and the control of air vadose in the pile. It was indicated that the covering with low diffusion coefficient, small porosity and bad permeability was suitable to cover the pile. The analytical formula of the covering layer thickness was given

  7. Measurement data of cesium 137 yields in primary coolant of an in-pile water loop in fission products release experiment

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi; Nagai, Hitoshi; Takeda, Tsuneo

    1979-03-01

    Series of fuel rods (UO 2 pellets sheathed with stainless steel) having an artificial pinhole were irradiated in the in-pile test section of water loop JMTR OWL-1. Presented are the results of measurements of cesium 137 yields in primary coolant of OWL-1 from 1975 to 1978. (author)

  8. Pile group program for full material modeling and progressive failure.

    Science.gov (United States)

    2008-12-01

    Strain wedge (SW) model formulation has been used, in previous work, to evaluate the response of a single pile or a group of piles (including its : pile cap) in layered soils to lateral loading. The SW model approach provides appropriate prediction f...

  9. 29 CFR 1926.603 - Pile driving equipment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Pile driving equipment. 1926.603 Section 1926.603 Labor... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which are a part of, or used with, pile driving equipment shall meet the applicable requirements of the...

  10. 30 CFR 77.215-3 - Refuse piles: certification.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles: certification. 77.215-3 Section... COAL MINES Surface Installations § 77.215-3 Refuse piles: certification. (a) Within 180 days following written notification by the District Manager that a refuse pile can present a hazard, the person owning...

  11. Interacting with piles of artifacts on digital tables

    NARCIS (Netherlands)

    Aliakseyeu, D.; Lucero Vera, A.A.; Subramanian, S.

    2007-01-01

    Designers and architects regularly use piles to organise visual artifacts. Recent efforts have now made it possible for users to create piles in digital systems as well. However, there is still little understanding of how users shouldinteract with digital piles. In this paper we investigate this

  12. Design Optimization of Piles for Offshore Wind Turbine Jacket Foundations

    DEFF Research Database (Denmark)

    Sandal, Kasper; Zania, Varvara

    Numerical methods can optimize the pile design. The aim of this study is to automatically design optimal piles for offshore wind turbine jacket foundations (Figure 1). Pile mass is minimized with constraints on axial and lateral capacity. Results indicate that accurate knowledge about soil...

  13. 30 CFR 77.215-1 - Refuse piles; identification.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; identification. 77.215-1 Section... COAL MINES Surface Installations § 77.215-1 Refuse piles; identification. A permanent identification marker, at least six feet high and showing the refuse pile identification number as assigned by the...

  14. 30 CFR 77.215-2 - Refuse piles; reporting requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; reporting requirements. 77.215-2... COAL MINES Surface Installations § 77.215-2 Refuse piles; reporting requirements. (a) The proposed location of a new refuse pile shall be reported to and acknowledged in writing by the District Manager...

  15. 30 CFR 77.215 - Refuse piles; construction requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; construction requirements. 77.215... COAL MINES Surface Installations § 77.215 Refuse piles; construction requirements. (a) Refuse deposited on a pile shall be spread in layers and compacted in such a manner so as to minimize the flow of air...

  16. Interacting with piles of artifacts on digital tables

    NARCIS (Netherlands)

    Aliakseyeu, D.; Subramanian, S.; Lucero Vera, A.A.; Gutwin, C.

    2006-01-01

    Designers and architects regularly use piles to organize visual artifacts. Recent efforts have now made it possible for users to create piles in digital systems as well. However, there is still little understanding of how users should interact with digital piles. In this paper we investigate this

  17. Heterogeneous dipolar theory of the exponential pile

    International Nuclear Information System (INIS)

    Mastrangelo, P.V.

    1981-01-01

    We present a heterogeneous theory of the exponential pile, closely related to NORDHEIM-SCALETTAR's. It is well adapted to lattice whose pitch is relatively large (D-2O, grahpite) and the dimensions of whose channels are not negligible. The anisotropy of neutron diffusion is taken into account by the introduction of dipolar parameters. We express the contribution of each channel to the total flux in the moderator by means of multipolar coefficients. In order to be able to apply conditions of continuity between the flux and their derivatives, on the side of the moderator, we develop in a Fourier series the fluxes found at the periphery of each channel. Using Wronski's relations of Bessel's functions, we express the multipolar coefficients of the surfaces of each channel, on the side of the moderator, by means of the harmonics of each flux and their derivatives. We retain only monopolar (A 0 sub(g)) and dipolar (A 1 sub(g)) coefficients; those of a higher order are ignored. We deduce from these coefficients the systems of homogeneous equations of the exponential pile with monopoles on their own and monopoles plus dipoles. It should be noted that the systems of homogeneous equations of the critical pile are contained in those of the exponential pile. In another article, we develop the calculation of monopolar and dipolar heterogeneous parameters. (orig.)

  18. Underwater noise generated by offshore pile driving

    NARCIS (Netherlands)

    Tsouvalas, A.

    2015-01-01

    Anthropogenic noise emission in the marine environment has always been an environmental issue of serious concern. In particular, the noise generated during the installation of foundation piles is considered to be one of the most significant sources of underwater noise pollution. This is mainly

  19. Literature review Quasi-static and Dynamic pile load tests : Primarily report on non-static pile load tests

    NARCIS (Netherlands)

    Huy, N.Q.

    2010-01-01

    Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance

  20. Numerical simulation of the throwing power of cathodic prevention applied to marine reinforced concrete piles by means of sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Luca; Redaelli, Elena [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , Via Mancinelli, 7, 20131 Milan (Italy)

    2004-07-01

    The paper deals with the determination of current and potential distribution in reinforced concrete elements partially submerged in seawater aimed at predicting the throwing power of cathodic prevention applied by means of sacrificial anodes. Previous laboratory studies carried out on reinforced concrete columns 15 cm x 15 cm x 120 cm showed that the use of sacrificial anodes placed in the solution at the bottom of the column could provide protection of corroding steel bars in the emerged part of the pile up to about 60 cm from the water level. However, if sacrificial anodes were applied when the concrete was chloride free and steel bars were still passive, even the highest bar, placed at 1 m from the level of water, was protected. This is due to the higher polarizability of passive steel, that makes the throwing power of cathodic prevention higher compared to that of cathodic protection. In order to extend the results obtained on small-scale specimens to elements of higher dimensions, numerical simulations of current and potential distribution were carried out. Two-dimensional models were set up of reinforced concrete piles containing steel bars at different heights protected with sacrificial anodes placed in the water in which they were partially submerged. Boundary conditions describing the electrochemical behaviour of bars were obtained from polarisation curves measured on the previously mentioned columns. Values of concrete conductivity at different heights from the water level were also obtained from those tests. Several cases were considered, representative of conditions differing in electrochemical behaviour of steel bars, dimensions of element, position of sacrificial anodes. The paper discusses the results obtained from the models and compares them in terms of the throwing power that can be reached by using sacrificial anodes immersed in the seawater to protect reinforcing steel bars in the emerged part of a pile. (authors)

  1. Numerical Simulation of Hysteretic Live Load Effect in a Soil-Steel Bridge

    Directory of Open Access Journals (Sweden)

    Sobótka Maciej

    2014-03-01

    Full Text Available The paper presents numerical simulation of hysteretic live load effect in a soil-steel bridge. The effect was originally identified experimentally by Machelski [1], [2]. The truck was crossing the bridge one way and the other in the full-scale test performed. At the same time, displacements and stress in the shell were measured. The major conclusion from the research was that the measured quantities formed hysteretic loops. A numerical simulation of that effect is addressed in the present work. The analysis was performed using Flac finite difference code. The methodology of solving the mechanical problems implemented in Flac enables us to solve the problem concerning a sequence of load and non-linear mechanical behaviour of the structure. The numerical model incorporates linear elastic constitutive relations for the soil backfill, for the steel shell and the sheet piles, being a flexible substructure for the shell. Contact zone between the shell and the soil backfill is assumed to reflect elastic-plastic constitutive model. Maximum shear stress in contact zone is limited by the Coulomb condition. The plastic flow rule is described by dilation angle ψ = 0. The obtained results of numerical analysis are in fair agreement with the experimental evidence. The primary finding from the performed simulation is that the slip in the interface can be considered an explanation of the hysteresis occurrence in the charts of displacement and stress in the shell.

  2. Friction effects on lateral loading behavior of rigid piles

    DEFF Research Database (Denmark)

    Zania, Varvara; Hededal, Ole

    2012-01-01

    taking into account the shear frictional resistance along the pile. For this purpose efficient three dimensional finite element models of different diameter have been developed. The increase of the side friction and of the diameter of the pile is shown to alter the failure pattern and increase...... the lateral capacity of the pile. The obtained p - y curves demonstrate the importance of the aforementioned parameters in the design of rigid piles, as the reduction of friction along the interface reduces not only the ultimate load but also the stiffness of the soil-pile response. Read More: http...

  3. The Settlement Behavior of Piled Raft Interaction in Undrained Soil

    DEFF Research Database (Denmark)

    Ghalesari, Abbasali Taghavi; Barari, Amin; Amini, Pedram Fardad

    2013-01-01

    Offshore piled raft foundations are one of the most commonly used foundations in offshore structures. When a raft foundation alone does not satisfy the design requirements, the addition of piles may improve both the ultimate load capacity and the settlement performance of the raft. In this paper......, the behavior of a piled raft on undrained soil is studied based on a series of parametric studies on the average and differential settlement of piled raft using three-dimensional finite element analysis. The settlement behavior is found to be dependent on the number of piles and raft thickness....

  4. Friction and bending forces evaluation of AISI 304 DDQ steel sheet forming by bending tests under deep-drawing multiaxial stresses; Evaluacion de la fuerza de doblado y de friccion en el conformado de chapa de acero inoxidable AISI 304 DDQ mediante ensayos de doblado en condiciones multiaxiales de embuticion

    Energy Technology Data Exchange (ETDEWEB)

    Coello, J.; Miguel, V.; Ferrer, C.; Calatayud, A.; Martinez, A.

    2012-11-01

    Die radius is a critical area from the viewpoint of friction in forming processes. Moreover the sheet, that has been previously deformed in flange area, suffers bending and unbending stresses. Then, die-sheet contact in die radius must be especially considered in order to guarantee the suitable lubrication conditions. In the present work, a test method is carried out for evaluating an AISI 304 DDQ steel under similar conditions to those existing in the die radius area and that, usually, are not really reproduced in traditional bending under tensions tests. Deformation under pure shear condition, the bending and the radius angle have been established as variables of the tests. Results allow to obtain the apparent pressure sheet-bending tool, that increases with bending angle and decreases with tool radius. This last variable is the most significant while the bending angle has lesser influence. Although experimental results present some concordances with values obtained by analytical methods, some corrections must be considered in them in order to improve the theoretical values. (Author) 18 refs.

  5. In-pile observations of fuel and clad relocation during LMFBR initiation phase accident experiments - the STAR experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Schumacher, G.; Henkel, P.R.; Royl, P.

    1987-01-01

    A series of seven in-pile experiments (the STAR experiments) were performed in which clad motion and fuel dispersal were observed in small pin bundles with high-speed cinematography. The experimental heating conditions reproduced a range of Loss of Flow (LOF) accident scenarios for the lead subassemblies in LMFBRs. The experiments show strong tendencies for limited clad motion in multiple pin bundles, early fuel disruption and dispersal (prior to fuel melting) in moderate power transients having simultaneous clad melting and fuel disruption. The more recent experiments indicate a possibility of steel vapor driven fuel dispersal after fuel breakup and intimate fuel/steel mixing. (author)

  6. Integrity and As-built capacity of bored pile group

    International Nuclear Information System (INIS)

    Shaw, D.E.; Kissenpfennig, J.F.; Huemmer, M.R.

    1983-01-01

    This paper discusses the application of statistical methods to the reliability evaluation of cast-in-place concrete piles. The difficulties associated with pile construction can lead to larger uncertainties than would be associated with normal reinforced concrete structures both due to uncertainty in concrete quality and end bearing capacity. These uncertainties can be dealt with through the use of statistical methods. A statistical model of an individual pile is formulated along with a methodology for determining necessary statistical parameters from results of concrete batch tests, core strength tests and visual logs, sonic geophysical testing methods, and proof tests. Strength models for both static vertical and seismic horizontal loadings are discussed. The overall safety of a pile foundation is dependent upon the distribution of individual pile strength as well as the additional reliability due to the use of a large number of parallel load paths provided by a pile group foundation. The paper presents a mechanical model of global pile behavior which accounts for individual pile ductility along with the possibility of redistribution of loads from weaker to stronger piles. The use of the Monte Carlo method to determine the overall reliability of the pile foundation is discussed. Numerical results for both individual pile behavior as well as overall foundation behavior are presented. (orig.)

  7. Thermomechanical Behavior of Energy Pile Embedded in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Xu Huang

    2018-01-01

    Full Text Available The traditional energy pile (solid energy pile has been implemented for decades. However, the design of different kinds of energy piles is still not well understood. In this study, a series of model tests were performed on an aluminum pipe energy pile (PEP in dry sandy soil to investigate the thermal effects on the mechanical behaviors of pipe energy pile. The thermal responses of the PEP were also analyzed. Steady temperatures of the PEP under different working conditions were also compared with that of the solid energy pile. Different loading tests were carried out on four pipe energy piles under three different temperatures of 5, 35, and 50°C, respectively. The bearing capacity change can be interpreted through the load-displacement curves. Experiment results were also compared with the solid energy pile to evaluate bearing capacities of the PEP and the solid energy pile under different temperature conditions. The mobilized shaft resistance was also calculated and compared with the solid energy pile data and the results show that the PEP has a similar load transfer mechanism with the solid energy pile. It could also be found that, for PEPs under working load, plastic displacement would appear after a whole heating cycle.

  8. Starting up a programme of atomic piles using compressed gas

    International Nuclear Information System (INIS)

    Horowitz, J.; Yvon, J.

    1959-01-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [fr

  9. The Tensile Capacity Of Bored Piles In Frictional Soils

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Andersen, Allan; Damkilde, Lars

    2008-01-01

    Three series of 10 piles each were installed in two different locations. The length of the piles varied from 2 to 6 m and the diameters were 14 and 25 cm. The piles were constructed above the groundwater table using continuous flight augers and the concrete was placed by gravity free fall. The pi....... The piles were tested to failure in axial uplift and the load-displacement relations were recorded.......Three series of 10 piles each were installed in two different locations. The length of the piles varied from 2 to 6 m and the diameters were 14 and 25 cm. The piles were constructed above the groundwater table using continuous flight augers and the concrete was placed by gravity free fall...

  10. Full Scale Model Test of Consolidation Acceleration on Soft Soil deposition with Combination of Timber Pile and PVD (Hybrid Pile)

    OpenAIRE

    Sandyutama, Y.; Samang, L.; Imran, A. M.; Harianto4, T.

    2015-01-01

    This research aims to analyze the effect of composite pile-PVD (hybrid pile) as the reinforcement in embankment on soft soil by the means of numerical simulation and Full-Scale Trial Embankment. The first phase cunducted by numerical analysis and obtained 6-8 meters hybrid pile length effective. Full-Scale trial embankment. was installed hybrid pile of 6 m and preloading of 4,50 height. Full-scale tests were performed to investigate the performances of Hybrid pile reinforcement. This research...

  11. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Millot, J P [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    circumstances... - experimental investigations on power excursions linked with precise initial conditions: the aim of this work is to define the basis for theoretical research, and the limits beyond which the risks of explosion cease to be negligible. The research work will be done so as to enable checking with outside reactor experiments and to continue them in the explosion field. - studies of the behaviour of the reactor control-instrumentation. - experimental investigations related with transient operation with initial short life (study of boiling, temperature measurements, vacuum pressure and fraction...) with the aim of defining the hypotheses of a theory on swimming-pool reactor kinetics related to heat transfer phenomena, - investigations of the behaviour of fuels in reactors (these experiments are planned to be carried out in loops) Preliminary experimental results. CABRI went critical on the 21 December 1963. The first transient experiments are expected for March 1964. (authors) [French] II devenait necessaire de construire en France une pile qui permette d'etudier les conditions de fonctionnement des installations futures, de choisir, tester et mettre au point les dispositifs de securite a adopter. On a choisi une pile a eau, type de pile qui correspond aux constructions les plus nouvelles du CEA en matiere de piles laboratoire ou d'universite; il importe en effet de pouvoir evaluer les risques presentes et d'etudier les possibilites d'augmentation de puissance constamment demandees par les utilisateurs: il est particulierement interessant d'eclaircir les phenomenes d'oscillation de puissance et les risques de calefaction (burn out). Les programmes de travaux sur CABRI seront harmonises avec les travaux effectues sur les Spert americains de meme type; lors de sa construction des contacts fructueux ont ete etablis avec les specialistes americains qui ont defini les premiers de ces reacteurs. La communication donne une description sommaire de la pile et decrit le

  12. Validation of constitutive equations for steel

    International Nuclear Information System (INIS)

    Valentin, T.; Magain, P.; Quik, M.; Labibes, K.; Albertini, C.

    1997-01-01

    High strain rate mechanical properties are a major concern for each steel manufacturer, especially with respect to thin sheet steel used in the automotive branch. We began to study this topic by starting a project with the following goals: acquiring reliable experimental data, understanding in depth the energy absorption in thin sheet steel and finding the right constitutive material equation. The first part of the project has been presented in. In this paper we present data computation and comparison with the existing material model theories to exploit the experimental data. (orig.)

  13. Physical characterization of steel and stainless steel metal powders

    International Nuclear Information System (INIS)

    Lavilla, A.O.; Lucchesi, C.G.; Sandin, O.O.

    1991-01-01

    A methodology has been developed for the physical characterization of steel powders (obtained by atomization) for later sintering and for the construction of porous sheets and filtrating tubes, capable of operating at temperatures between 600 deg C and 800 deg C in corrosive atmospheres. This methodology was based on the equipment and methods used for the physical characterization of uranium oxide powders. (Author) [es

  14. Moisture content in raw rubber sheet analyzed by transflectance near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Ronnarit Rittiron

    2014-07-01

    Full Text Available Moisture content is an important trait for rubber sheet trading system. Therefore, a calibration equation for predicting moisture content was created by near infrared (NIR technique in order to develop a more fair trading system in Thailand. Spectra were recorded in two systems. One was measurement on each rubber sheet and the other was on a pile of sheets. Both were measured by a handheld NIR spectrometer in the short wavelength region (700–1100 nm in the transflectance mode using Teflon as a diffuse reflector. The spectra showed the peak at about 900 nm which belongs to isoprene, the major component of rubber sheet. Pretreatment with second derivative was applied to remove baseline shift effect occurring due to thickness differences on each rubber sheet. From validation results, moisture contents predicted by single sheet system were more accurate than a pile of sheet system with standard error of prediction (SEP = 0.39% and bias of -0.07%, and they were not significantly different from the actual values at 95% confidence. As a result, determining moisture content in each rubber sheet by a handheld NIR spectrometer provided accurate values, easy and rapid operation.

  15. A computational model of pile vertical vibration in saturated soil based on the radial disturbed zone of pile driving

    International Nuclear Information System (INIS)

    Li Qiang; Shi Qian; Wang Kuihua

    2010-01-01

    In this study, a simplified computational model of pile vertical vibration was developed. The model was based on the inhomogeneous radial disturbed zone of soil in the vicinity of a pile disturbed by pile driving. The model contained two regions: the disturbed zone, which was located in the immediate vicinity of the pile, and the undisturbed region, external to the disturbed zone. In the model, excess pore pressure in the disturbed zone caused by pile driving was assumed to follow a logarithmic distribution. The relationships of stress and strain in the disturbed zone were based on the principle of effective stress under plain strain conditions. The external zone was governed by the poroelastic theory proposed by Biot. With the use of a variable separation method, an analytical solution in the frequency domain was obtained. Furthermore, a semi-analytical solution was attained by employing a numerical convolution method. Numerical results from the frequency and time domain indicated that the equivalent radius of the disturbed zone and the ratio of excess pore pressure had a significant effect on pile dynamic response. However, actual interactions between pile and soil will be weaker due to the presence of the radial disturbed zone, which is caused by pile driving. Consequently, the ideal undisturbed model overestimates the interaction between pile and soil; however, the proposed model reflects the interaction of pile and soil better than the perfect contact model. Numerical results indicate that the model can account for the time effect of pile dynamic tests.

  16. 3D FEM Analysis of a Pile-Supported Riverine Platform under Environmental Loads Incorporating Soil-Pile Interaction

    Directory of Open Access Journals (Sweden)

    Denise-Penelope N. Kontoni

    2018-01-01

    Full Text Available An existing riverine platform in Egypt, together with its pile group foundation, is analyzed under environmental loads using 3D FEM structural analysis software incorporating soil-pile interaction. The interaction between the transfer plate and the piles supporting the platform is investigated. Two connection conditions were studied assuming fixed or hinged connection between the piles and the reinforced concrete platform for the purpose of comparison of the structural behavior. The analysis showed that the fixed or hinged connection condition between the piles and the platform altered the values and distribution of displacements, normal force, bending moments, and shear forces along the length of each pile. The distribution of piles in the pile group affects the stress distribution on both the soil and platform. The piles were found to suffer from displacement failure rather than force failure. Moreover, the resulting bending stresses on the reinforced concrete plate in the case of a fixed connection between the piles and the platform were almost doubled and much higher than the allowable reinforced concrete stress and even exceeded the ultimate design strength and thus the environmental loads acting on a pile-supported riverine offshore platform may cause collapse if they are not properly considered in the structural analysis and design.

  17. Capsule development and utilization for material irradiation tests; study on the in-pile creep measuring method of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong; Lee, Byung Kee; Lee, Jong Jea; Kim, Chang Sik; Kim, B. Hun; Cho, I. Sik [Sunmoon University, Asan (Korea)

    2002-02-01

    The final objective of this project is to obtain a design and fabrication technology of an in-pile creep test machine of zirconium alloys. First, design concepts of the in-pile creep test machines of various foreign countries were reviewed and a preliminary design of the equipment was carried. Second, the mock-up of the in-pile creep test machine was fabricated based on the preliminary design. The mock-up consisted of upper and lower grips, a yoke, a pressure chamber including a bellows, a push rod and LVDT. Each part was made of 304 L stainless steel. The average surface roughness of the parts was 1.0-14.7 {mu}m. The mock-up precisely determined an extension of a specimen by gas pressure. Finally, in-pile creep capsule was designed, fabricated and modified. High pure aluminum blocks were put in the capsule. Considering heat transfer coefficients of helium and nitrogen gases, the cooling efficiency is about 4 .deg. C at the condition of 300 .deg. C creep test. Yield strength, ultimate tensile strength and elongation at 300 .deg. C were 335 MPa, 591 MPa, 19.8%, respectively. which were lower than the values at room temperature, 353 MPa, 740 MPa, 12.5%. This study gave an important technology related to design, fabrication and performance tests of the in-pile creep test machine, which is applied to the fabrication of a special capsule and also used for the fundamental data for the fabrication of various in-pile creep capsules. 6 refs., 45 figs., 5 tabs. (Author)

  18. Are cometary nuclei primordial rubble piles?

    Science.gov (United States)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  19. 75 FR 19369 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of...

    Science.gov (United States)

    2010-04-14

    .... Hot-rolled dual phase steel, phase-hardened, primarily with a ferritic-martensitic microstructure.... See Preliminary Results of Antidumping Duty Administrative Review: Stainless Steel Sheet and Strip in... Antidumping Duty Administrative Review: Stainless Steel Sheet and Strip in Coils From France, 68 FR 69379...

  20. Concentration processes under tubesheet sludge piles in nuclear steam generators

    International Nuclear Information System (INIS)

    Gonzalez, F.; Spekkens, P.

    1987-01-01

    The process by which bulk water solutes are concentrated under tubesheet sludge piles in nuclear steam generators was investigated in the laboratory under simulated CANDU operating conditions. Concentration rates were found to depend on the tube heat flux and pile depth, although beyond a critical depth the concentration efficiency decreased. This efficiency could be expressed by a concentration coefficient, and was found to depend also on the sludge pile porosity. Solute concentration profiles in the sludge pile suggested that the concentration mechanism in a high-porosity/permeability pile is characterized by boiling mainly near or at the tube surface, while in low-porosity piles, the change of phase may also become important in the body of the sludge pile. In all cases, the full depth of the pile was active to some extent in the concentration process. As long as the heat transfer under the pile was continued, the solute remained under the pile and slowly migrated toward the bottom. When the heat transfer was stopped, the solute diffused back into the bulk solution at a rate slower than that of the concentration process

  1. Review of vibration effect during piling installation to adjacent structure

    Science.gov (United States)

    Rahman, Nurul Aishah Abd; Musir, Adhilla Ainun; Dahalan, Nurol Huda; Ghani, Abdul Naser Abdul; Khalil, Muhamad Kasimi Abd

    2017-12-01

    Basically, many major structures across the world such as towers, high rise building, houses and bridges utilize pile as a support material. The use of pile is important to strengthen the structures. However, this has led to another problem to the nearest surrounding structures resulted from pile driving. As part of a construction work, unavoidable pile driving activity generates a vibration towards the surrounding structures if uncontrolled may cause damage to the adjacent structure. As the current construction works are frequently located in urban areas where the distance between the nearest building structures is not far, vibration may cause damage to nearby structures. Knowing which part of the building that is mostly affected by various vibration patterns from the impact of pile driving is crucial. Thus, it is very important to predict the impact of vibration during piling installation work. This paper reviews the vibrations generated by piling activity toward surrounding structures in terms sources of vibration, impact of piling installation, pile-soil interaction, and factors affecting the vibration impact of building as well as to study the parameters involved in vibration generation during piling works.

  2. Laterally Loaded Partially Prestressed Concrete Piles

    Science.gov (United States)

    1989-09-01

    of an extensive test program onl laterali y ioadeu. partially pr- estressed concrete fender piles. The study Included service load range as well ats...12,000-psi design strength). Configura- tion G utilized 14 r:- estress strand, in an unsymmetric pattern. To provide a uniform concrete prestress of 540...sudden loss in load carrying capacity directly related to the loss of concrete area. The compression concrete fractured longitudinally and along the

  3. CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION

    Science.gov (United States)

    Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji

    It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.

  4. Horizontal vibrations of piles in a centrifuge

    International Nuclear Information System (INIS)

    Bourdin, B.

    1987-01-01

    The aim of the thesis is the study of soil dynamics for important structures like nuclear power plants, offshore platforms, dams etc. Experimental results of horizontal vibrations on a pile partially anchored in a soil scale model put into a centrifuge are presented. Mechanical similitude conditions from equilibrium equations or rheologic laws are described. After a description of testing equipment (centrifuge, electrodynamic excitator) experimental results are interpreted with a model. Non-linearities on frequency response curves are characterized [fr

  5. FORECASTING PILE SETTLEMENT ON CLAYSTONE USING NUMERICAL AND ANALYTICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ponomarev Andrey Budimirovich

    2016-06-01

    Full Text Available In the article the problem of designing pile foundations on claystones is reviewed. The purpose of this paper is comparative analysis of the analytical and numerical methods for forecasting the settlement of piles on claystones. The following tasks were solved during the study: 1 The existing researches of pile settlement are analyzed; 2 The characteristics of experimental studies and the parameters for numerical modeling are presented, methods of field research of single piles’ operation are described; 3 Calculation of single pile settlement is performed using numerical methods in the software package Plaxis 2D and analytical method according to the requirements SP 24.13330.2011; 4 Experimental data is compared with the results of analytical and numerical calculations; 5 Basing on these results recommendations for forecasting pile settlement on claystone are presented. Much attention is paid to the calculation of pile settlement considering the impacted areas in ground space beside pile and the comparison with the results of field experiments. Basing on the obtained results, for the prediction of settlement of single pile on claystone the authors recommend using the analytical method considered in SP 24.13330.2011 with account for the impacted areas in ground space beside driven pile. In the case of forecasting the settlement of single pile on claystone by numerical methods in Plaxis 2D the authors recommend using the Hardening Soil model considering the impacted areas in ground space beside the driven pile. The analyses of the results and calculations are presented for examination and verification; therefore it is necessary to continue the research work of deep foundation at another experimental sites to improve the reliability of the calculation of pile foundation settlement. The work is of great interest for geotechnical engineers engaged in research, design and construction of pile foundations.

  6. Reheating experiment in the 35-ton pile

    International Nuclear Information System (INIS)

    Cherot, J.; Girard, Y.

    1957-01-01

    When the 35-ton pile was started up it was necessary for us, in order to study certain effects (xenon for example), to know the anti reactivity value of the rods as a function of their dimensions. We have made use of the possibility, in the reheating experiment, of raising the temperature of the graphite-uranium block by simple heating, in order to determine the anti reactivity curves of the rods, and from that the overall temperature coefficient. For the latter we have considered two solutions: first, one in which the average temperature of the pile is defined as our arithmetical mean of the different values given by the 28 thermocouples distributed throughout the pile; a second in which the temperature in likened to a poisoning and is balanced by the square of the flux. The way in which the measurements have been made is indicated, and the different instruments used are described. The method of reheating does not permit the separation of the temperature coefficients of uranium and of graphite. The precision obtained is only moderate, and suffers from the changes of various parameters necessary to other manipulations carried out simultaneously (life time modulators for example), and finally it is a function of the comparatively restricted time allowed. It is evident of course that more careful stabilisation at the different plateaux chosen would have necessitated long periods of reheating. (author) [fr

  7. Stability Limits for Rubble Pile Asteroid Shapes

    Science.gov (United States)

    Scheeres, Daniel

    2018-04-01

    The stability of rubble pile asteroids are explored analytically, using simple models for their constituent components. Specifically, we look at the stability of spherical components resting and potentially rolling on each other as a function of their relative sizes, configuration and number. This talk will present some recent results in this problem. Of specific interest is a 5:1 limit on the elongation of a rubble pile body for stability, which is interestingly the same extreme elongation found for the first interstellar object. This limit is for a rubble pile consisting of stacked spheres, resting on each other in a straight line. If there are 5 or less bodies resting on each other in this configuration, there is an interval of spin rates for which the configuration is stable. If there are 6 or more bodies stacked as such, the spin rate for it to stabilize is beyond the spin rate at which it fissions. The talk will also explore additional results for different configurations of bodies resting on each other.

  8. Geomorphic reclmation of a coal refuse pile

    Science.gov (United States)

    Hopkinson, L. C.; Quaranta, J.

    2017-12-01

    Geomorphic reclamation is a technique that may offer opportunities to improve mine reclamation in Central Appalachia. The design approach is based on constructing a steady-state, mature landform condition and takes into account the long-term climatic conditions, soil types, terrain grade, and vegetation. Geomorphic reclamation has been applied successfully in semi-arid regions but has not yet been applied in Central Appalachia. This work describes a demonstration study where geomorphic landforming techniques are being applied to a coarse coal refuse pile in southern West Virginia, USA. The reclamation design includes four geomorphic watersheds that radially drain runoff from the pile. Each watershed has one central draining channel and incorporates compound slope profiles similarly to naturally eroded slopes. Planar slopes were also included to maintain the impacted area. The intent is to alter the hydrology to decrease water quality treatment costs. The excavation cut and fill volumes are comparable to those of more conventional refuse pile reclamation designs. If proven successful then this technique can be part of a cost-effective solution to improve water quality at active and future refuse facilities, abandoned mine lands, bond forfeiture sites, landfills, and major earthmoving activities within the region.

  9. Implementation of DSC model and application for analysis of field pile tests under cyclic loading

    Science.gov (United States)

    Shao, Changming; Desai, Chandra S.

    2000-05-01

    The disturbed state concept (DSC) model, and a new and simplified procedure for unloading and reloading behavior are implemented in a nonlinear finite element procedure for dynamic analysis for coupled response of saturated porous materials. The DSC model is used to characterize the cyclic behavior of saturated clays and clay-steel interfaces. In the DSC, the relative intact (RI) behavior is characterized by using the hierarchical single surface (HISS) plasticity model; and the fully adjusted (FA) behavior is modeled by using the critical state concept. The DSC model is validated with respect to laboratory triaxial tests for clay and shear tests for clay-steel interfaces. The computer procedure is used to predict field behavior of an instrumented pile subjected to cyclic loading. The predictions provide very good correlation with the field data. They also yield improved results compared to those from a HISS model with anisotropic hardening, partly because the DSC model allows for degradation or softening and interface response.

  10. Response of shallow geothermal energy pile from laboratory model tests

    Science.gov (United States)

    Marto, A.; Amaludin, A.

    2015-09-01

    In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement

  11. Viability of Pushrod Dilatometry Techniques for High Temperature In-Pile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    J. E. Daw; J. L. Rempe; D. L. Knudson; K. G. Condie; J. C. Crepeau

    2008-03-01

    To evaluate the performance of new fuel, cladding, and structural materials for use in advanced and existing nuclear reactors, robust instrumentation is needed. Changes in material deformation are typically evaluated out-of-pile, where properties of materials are measured after samples were irradiated for a specified length of time. To address this problem, a series of tests were performed to examine the viability of using pushrod dilatometer techniques for in-pile instrumentation to measure deformation. The tests were performed in three phases. First, familiarity was gained in the use and accuracy of this system by testing samples with well defined thermal elongation characteristics. Second, high temperature data for steels, specifically SA533 Grade B, Class 1 (SA533B1) Low Alloy Steel and Stainless Steel 304 (SS304), found in Light Water Reactor (LWR) vessels, were aquired. Finally, data were obtained from a short pushrod in a horizontal geometry to data obtained from a longer pushrod in a vertical geometry, the configuration likely to be used for in-situ measurements. Results of testing show that previously accepted data for the structural steels tested, SA533B1 and SS304, are inaccurate at high temperatures (above 500 oC) due to extrpolation of high temperature data. This is especially true for SA533B1, as previous data do not account for the phase transformation of the material between 730 oC and 830 oC. Also, comparison of results for horizontal and vertical configurations show a maximum percent difference of 2.02% for high temperature data.

  12. Impedance function of a group of vertical piles

    International Nuclear Information System (INIS)

    Wolf, J.P.; Arx, G.A. von

    1978-01-01

    Impedance and transfer functions of a group of vertical piles located in any desired configuration in plan in a horizontally stratified soil layer are derived. Hysteretic and radiation damping are accounted for. The method separates the piles and the soil, introducing unknown interaction forces. The total flexibility matrix of the soil is constructed, superposing the (complex) flexibility coefficients caused by the interaction forces of a single pile only. The dependence of the impedance and transfer functions on the oscllating frequency for foundations with different numbers of piles is investigated. Pile-soil-pile interaction is shown to be very important for all modes of vibration. The procedure is used in the seismic analysis of a reactor building. (Author)

  13. Analytical out-of-pile and in-pile experiments on gadolinia bearing fuels

    International Nuclear Information System (INIS)

    Bruet, M.; Francois, B.; Do, Q.; Bergeron, J.; Trotabas, M.

    1986-06-01

    New fuel management schemes in PWRs can be achieved through the use of burnable poisons like gadolinia bearing fuel rods. However, the introduction of such a design has required a qualification program, which has been performed in collaboration between CEA, FRAGEMA and/or FRAMATOME by specialized teams in CEA facilities. The main scoops of this program concern: the fabrication process; the out of pile physical properties determination: the in pile thermomechanical behaviour and fission product release; the neutronic studies in view to validate the Computed Gd efficiency and the LBP depletion calculation schemes and to analyse and assess various schemes of core calculations

  14. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J.; Millot, J.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    exceptional circumstances... - experimental investigations on power excursions linked with precise initial conditions: the aim of this work is to define the basis for theoretical research, and the limits beyond which the risks of explosion cease to be negligible. The research work will be done so as to enable checking with outside reactor experiments and to continue them in the explosion field. - studies of the behaviour of the reactor control-instrumentation. - experimental investigations related with transient operation with initial short life (study of boiling, temperature measurements, vacuum pressure and fraction...) with the aim of defining the hypotheses of a theory on swimming-pool reactor kinetics related to heat transfer phenomena, - investigations of the behaviour of fuels in reactors (these experiments are planned to be carried out in loops) Preliminary experimental results. CABRI went critical on the 21 December 1963. The first transient experiments are expected for March 1964. (authors) [French] II devenait necessaire de construire en France une pile qui permette d'etudier les conditions de fonctionnement des installations futures, de choisir, tester et mettre au point les dispositifs de securite a adopter. On a choisi une pile a eau, type de pile qui correspond aux constructions les plus nouvelles du CEA en matiere de piles laboratoire ou d'universite; il importe en effet de pouvoir evaluer les risques presentes et d'etudier les possibilites d'augmentation de puissance constamment demandees par les utilisateurs: il est particulierement interessant d'eclaircir les phenomenes d'oscillation de puissance et les risques de calefaction (burn out). Les programmes de travaux sur CABRI seront harmonises avec les travaux effectues sur les Spert americains de meme type; lors de sa construction des contacts fructueux ont ete etablis avec les specialistes americains qui ont defini les premiers de ces reacteurs. La communication donne une

  15. Assessment of Time Functions for Piles Driven in Clay

    DEFF Research Database (Denmark)

    Augustesen, Anders; Andersen, Lars; Sørensen, Carsten Steen

    The vertical bearing capacity of piles situated in clay is studied with regard to the long-term set-up. A statistical analysis is carried out on the basis of data from numerous static loading tests. The database covers a wide range of both soil and pile properties, which ensures a general....... Hence, it is suggested that a constant set-up factor should be applied for the prediction of pile capacities at a given time after initial driving....

  16. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  17. Fiscal 2000 project for development of international standards for supporting novel industries. Standardization of methods for testing and evaluating corrosion resistance of surface treated steel sheets; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo. Hyomenshori kohan no taishokusei hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With a view to presenting the result to ISO (International Organization for Standardization), studies were conducted of accelerated test and evaluation methods capable of promptly reproducing the state of corrosion generated during outdoor exposure tests of surface treated steel sheets. In the study of a wet rate evaluation test, a cycle test was carried out at a wet rate of 25-75% under the conditions of an artificial seawater concentration level of 6.0g/L, equivalence ratio of 0.2, and pH of 2.5, and it was found that a wet rate of 50% was appropriate. For comparison of a rain of pH 2.5 with a rain of pH 3.0 in an acid rain pH evaluation test, a cycle test was conducted at pH 3.0 under the conditions of an artificial seawater concentration level of 6.0g/L, equivalence ratio of 0.2, and a wet rate of 50%, and the result indicated that pH 2.5 was more realistic than pH 3.0. As a comprehensive test, a cycle test was conducted comprising 1 hour of acid rain spray, 4 hours of dry spell, and 3 hours of moist spell under the conditions of an artificial seawater concentration level of 6.0g/L, equivalence ratio of 0.2, wet rate of 50%, and pH of 2.5, and the resultant data were found to be correlative to the data obtained at Naoetsu. Based on the findings, a ground plan was drafted for an international standard relative to methods for testing and evaluating surface treated steel sheets for corrosion resistance. (NEDO)

  18. Characteristics of thermal neutron calibration fields using a graphite pile

    International Nuclear Information System (INIS)

    Uchita, Yoshiaki; Saegusa, Jun; Kajimoto, Yoichi; Tanimura, Yoshihiko; Shimizu, Shigeru; Yoshizawa, Michio

    2005-03-01

    The Facility of Radiation Standards of Japan Atomic Energy Research Institute is equipped with thermal neutron fields for calibrating area and personal neutron dosemeters. The fields use moderated neutrons leaked from a graphite pile in which radionuclide sources are placed. In January 2003, we have renewed the pile with some modifications in its size. In accordance with the renewal, we measured and calculated thermal neutron fluence rates, neutron energy distributions and angular distributions of the fields. The thermal neutron fluence rates of the ''inside-pile fields'' and the outside-pile fields'' were determined by the gold foil activation method. The neutron energy distributions of the outside-pile fields were also measured with the Bonner multi-sphere spectrometer system. The contributions of epithermal and fast neutrons to the total dose-equivalents were 9% in the southern outside-pile field and 12% in the western outside-pile field. The personal dose-equivalents, H p,slab (10, α), in the outside-pile fields are evaluated by considering the calculated angular distributions of incoming neutrons. The H p,slab (10, α) was found to be about 40% higher than the value in assuming the unidirectional neutron between the pile and the test point. (author)

  19. Nanoindentation-induced pile-up in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Pantchev, B; Danesh, P; Wiezorek, J; Schmidt, B

    2010-01-01

    Nanoindentation-induced material extrusion around the nanoindent (pile-up) leads to an overestimation of elastic modulus, E, and nanohardness, H, when the test results are evaluated using the Oliver and Pharr method. Factors affecting the pile-up during testing are residual stresses in film and ratio of film and substrate mechanical properties. Nanoindentation of hydrogenated amorphous silicon (a-Si:H) films has been carried out with the aim to study the effect of residual compressive stress on the pile-up in this material. To distinguish the contribution of compressive stress to the appearance of pile-up ion implantation has been used as a tool, which reduces the compressive stress in a-Si:H. Scanning probe microscope has been used for the imaging of the indent and evaluation of the pile-up. The values of E and H have been obtained from the experimental load-displacement curves using depth profiling with Berkovich tip, which has created negligible pile-up. A sharper cube corner tip has been used to study the pile-up. It has been established that pile-up is determined by the material plasticity, when the compressive stress is below 200 MPa. The contribution of mechanical stress to the pile-up is essential for the stress as high, as about 500 MPa.

  20. Analysis of transients in the SRP test pile

    International Nuclear Information System (INIS)

    Church, J.P.

    1976-11-01

    Analysis of the hypothetical upper limit accident in the Savannah River Test Pile showed that the offsite thyroid dose from fission product release would be -3 of the 10-CFR-100 guideline dose for 95 percent of measured meteorological conditions. Offsite whole body dose would be negligible. The Test Pile was modified to limit the length of test piece that can be charged to the pile. These modifications reduce the potential offsite dose to -5 of the regulatory guidelines. Assessment of Test Pile safety included calculations of transients initiated by a variety of reactivity additions that were either terminated or not terminated by safety systems. Reactivity addition mechanisms considered were abnormally driving control rods out of the pile and charging abnormal test pieces into the pile. The transients were evaluated in the adiabatic approximation in which three-dimensional calculations of static flux shapes and reactivity were superimposed on point reactor kinetics calculations. Negative reactivity feedback effects appropriate for the pile and the temperature dependence of material properties, such as specific heat and thermal conductivity, were included. The results show that, for the worst initiators, safety systems can prevent the temperature rise from exceeding 1 0 C anywhere in the Test Pile. If the safety systems do not function, the pile temperatures will increase until the transient is ended by the inherent negative reactivity effects, including the melting of some fuel

  1. Critical sizes and flux distributions in the shut down pile

    International Nuclear Information System (INIS)

    Banchereau, A.; Berthier, P.; Genthon, J.P.; Gourdon, C.; Lattes, R.; Martelly, J.; Mazancourt, R. de; Portes, L.; Sagot, M.; Schmitt, A.P.; Tanguy, P.; Teste du Bailler, A.; Veyssiere, A.

    1957-01-01

    An important part of the experiments carried out on the reactor G1 during a period of shut-down has consisted in determinations of critical sizes, and measurements of flux distribution by irradiations of detectors. This report deals with the following points: 1- Critical sizes of the flat pile, the long pile and the uranium-thorium pile. 2- Flux charts of the same piles, and study of an exponential experiment. 3- Determination of the slit effect. 4- Calculation of the anisotropy of the lattice. 5- Description of the experimental apparatus of the irradiation measurements. (author) [fr

  2. Foundation heat transfer analysis for buildings with thermal piles

    International Nuclear Information System (INIS)

    Almanza Huerta, Luis Enrique; Krarti, Moncef

    2015-01-01

    Highlights: • A numerical transient thermal model for thermo-active foundations is developed. • Thermal interactions between thermal piles and building foundations are evaluated. • A simplified analysis method of thermal interactions between thermal piles and building foundations is developed. - Abstract: Thermal piles or thermo-active foundations utilize heat exchangers embedded within foundation footings to heat and/or cool buildings. In this paper, the impact of thermal piles on building foundation heat transfer is investigated. In particular, a simplified analysis method is developed to estimate the annual ground-coupled foundation heat transfer when buildings are equipped with thermal piles. First, a numerical analysis of the thermal performance of thermo-active building foundations is developed and used to assess the interactions between thermal piles and slab-on-grade building foundations. The impact of various design parameters and operating conditions is evaluated including foundation pile depth, building slab width, foundation insulation configuration, and soil thermal properties. Based on the results of a series of parametric analyses, a simplified analysis method is presented to assess the impact of the thermal piles on the annual heat fluxes toward or from the building foundations. A comparative evaluation of the predictions of the simplified analysis method and those obtained from the detailed numerical analysis indicated good agreement with prediction accuracy lower than 5%. Moreover, it is found that thermal piles can affect annual building foundation heat loss/gain by up to 30% depending on foundation size and insulation level

  3. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    Science.gov (United States)

    2015-06-01

    Materials 2 2.2 Hot Rolling 3 2.2 Sample Characterization: Microstructure and Tensile Properties 3 3. Rolling Experiments 5 3.1 High-Temperature...material systems for protective and structural applications, especially in ground vehicles. Magnesium (Mg), due to its low density (~25% that of steel ...applications, wrought Mg is difficult to produce in thin sheets because of its inherently low ductility . As a result, Mg sheet is often produced at

  4. Spring back evaluation by bending under tension tests in conditions of multiaxial stresses corresponding to deep drawing processes. Application to AISI 304 DDQ stainless steel sheet; Evaluacion del springback mediante ensayos de doblado bajo tension en condiciones de multiaxialidad tipicas de los procesos de embuticion profunda. Aplicacion a chapa de acero inoxidable AISI 304 DDQ

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, V.; Coello, J.; Martinez, A.; Calatayud, A.

    2013-09-01

    In this paper, a methodology has been developed for evaluating the spring back of AISI 304 DDQ stainless steel sheet based on a bending under tension test. The main difference of the methodology herein carried out is that tests are made under the multiaxial stresses state that take place in deep drawing processes. This affects to the level of stress value in the test and to the hardening state of the sheet. Springback evaluation has been done in two different areas. Bending area has been evaluated from elastic recovery ratio defined as the ratio between the bending radius after and before bending. Bending and unbending extreme has been studied from the measured curvature radius in this area and taking into account the geometric equivalence of the test with the drawing cups process. Results found allow to state that drawing ratio or deformation ratio have a negligible influence on the springback into the range of values experimented here. Bending radius has hardly influence as well while bending angle is the most significant variable. The results obtained are compared to those measured in deep-drawn cups, finding a great agreement. (Author)

  5. Natural radioactivity at CBPP waste pile

    International Nuclear Information System (INIS)

    Kovac, Jadranka; Marovic, Gordana

    2008-01-01

    Electrical power requirements will necessitate doubling the present generating capacity in Croatia in the future. As a result, environmental discharges associated with the coal power industry will considerably increase. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly members of uranium and thorium decay chains. By coal burning (in CBPP at about 1700 C degrees) the activity originating from uranium and thorium is redistributed from underground (where the impact on humanity is nil) and liberated into the environment. Most of the radioactive substances are concentrated in the ash and slag, which are heavy and drop to the bottom of a furnace, lately transported to deposit pile, from where some activity may leach into aquifer, or be dispersed by wind. Lighter fly ash, however, is carried up the chimney and into the atmosphere and irradiates people and contaminates food crops. Also, 222 Rn escapes into the atmosphere during incineration, while the non-gaseous members of the uranium decay series remain in the ash and slag. Extensive investigations have been performed in the coal burning power plant (CBPP) Plomin in Croatia and at deposit pile. A network of radon escalation measurements, in-situ gamma-spectrometric measurements and monitoring of waste pile were organized. The results of the measurements confirm that the ash/slag deposite site are well monitored and involve all the necessary protective measures. All obtained data can be used as a valuable database for future estimations and modeling of the impact of radioactive pollution to the marine environment. (author)

  6. Occupational PAH Exposures during Prescribed Pile Burns

    Science.gov (United States)

    Robinson, M. S.; Anthony, T. R.; Littau, S. R.; Herckes, P.; Nelson, X.; Poplin, G. S.; Burgess, J. L.

    2008-01-01

    Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 μg m−3. The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 ± 0.15) than ignition (0.55 ± 0.04 μg mg−1). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements. PMID:18515848

  7. Experimental Study on Post Grouting Bearing Capacity of Large Diameter Bored Piles

    Directory of Open Access Journals (Sweden)

    Wang Duanduan

    2015-01-01

    Full Text Available Post grouting can improve the inherent defects such as the formation of the mud cake at pile side and the sediment at pile end in the process of bored pile construction. Thus post grouting has been widely used in Engineering. The purpose of this paper is to research the influences of post grouting to pile bearing capacity more systematically and intuitively. Combined with the static load test of four test piles in Weihe River Bridge test area of new airport highway in Xi’an, the bearing capacity and settlement of routine piles and post grouting piles are comparatively analyzed. The test results show that under the same geological condition, post grouting can improve the properties of pile tip and pile shaft soil of bored piles significantly, enhance the ultimate resistance, improve the ultimate bearing capacity and reduce the pile tip settlement. Then post grouting can aim to optimize pile foundation.

  8. Prediction of pile set-up for Ohio soils : executive summary report.

    Science.gov (United States)

    2011-02-01

    ODOT typically uses small diameter driven pipe piles for bridge foundations. When a pile is driven into the subsurface, it disturbs and displaces the soil. As the soil surrounding the pile recovers from the installation disturbance, a time dependant ...

  9. INFLUENCE OF A ROUND CAP ON THE BEARING CAPACITY OF A LATERALLY LOADED PILE

    Directory of Open Access Journals (Sweden)

    Buslov Anatoliy Semenovich

    2012-07-01

    The data has proven that cap-covered piles are substantially more economical (over 40 % in terms of materials consumption rate if compared to constant cross-section piles (cap-free or broadening piles, all other factors being equal.

  10. Engineering approach to modeling of piled systems

    International Nuclear Information System (INIS)

    Coombs, R.F.; Silva, M.A.G. da

    1980-01-01

    Available methods of analysis of piled systems subjected to dynamic excitation invade areas of mathematics usually beyond the reach of a practising engineer. A simple technique that avoids that conflict is proposed, at least for preliminary studies, and its application, compared with other methods, is shown to be satisfactory. A corrective factor for parameters currently used to represent transmitting boundaries is derived for a finite strip that models an infinite layer. The influence of internal damping on the dynamic stiffness of the layer and on radiation damping is analysed. (Author) [pt

  11. Visual in-pile fuel disruption experiments

    International Nuclear Information System (INIS)

    Cano, G.L.; Ostensen, R.W.; Young, M.F.

    1978-01-01

    In a loss-of-flow (LOF) accident in an LMFBR, the mode of disruption of fuel may determine the probability of a subsequent energetic excursion. To investigate these phenomena, in-pile disruption of fission-heated irradiated fuel pellets was recorded by high speed cinematography. Instead of fuel frothing or dust-cloud breakup (as used in the SAS code) massive and very rapid fuel swelling, not predicted by analytical models, occurred. These tests support massive fuel swelling as the initial mode of fuel disruption in a LOF accident. (author)

  12. Installation effects of auger cast-in-place piles

    Directory of Open Access Journals (Sweden)

    Fathi M. Abdrabbo

    2012-12-01

    Full Text Available Since their introduction in Europe and North America some 50 years ago, auger cast-in-place piles (ACIP have become increasingly popular all over the world. These piles offer considerable environmental advantages during construction including minimal vibration, and low noise beside their high productivity. The most severe limitation of the ACIP is its sensitivity to operator performance, which can lead to a pile of poor integrity or inconsistent quality. Thus the improper use of ACIP equipment can result in piles containing defects or can cause instability of nearby structures. Three case studies are presented and discussed in an effort to illustrate learned lessons. First case study highlights the misuse of ACIP equipment leading to unreliable defective pile foundations. Second and third case studies show the adverse effects of installing ACIP on the stability of nearby structures. The study revealed that it is essential to employ a clever pile crew during the installation of ACIP to observe, interpret, and take corrective actions for unusual situations. The authorities worldwide should oblige pile contractors to employ only experienced and qualified workers in charge of geotechnical engineering works. Tender documents should include precise clauses related to the technological factors affecting the quality of ACIP. Unfavorable side effects of installing ACIP in saturated loose and medium sand can cause tilt of adjacent existing structures; even they are on either shallow or deep foundations. A row of micro-piles and/or soil grouting adjacent to the existing buildings were successfully used to reduce the adverse effects of ACIP. Implementation of different codes on the results of pile loading tests produced different pile working loads. Therefore tender documents should specify the code upon which interpreting the pile test results. At the meantime the geotechnical engineer should implement his experience and judgment during application of the

  13. Investigation into springback characteristics of two HSS sheets during cold v-bending

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Gang; Gao, Wei-Ran [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2013-12-16

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn.

  14. Investigation into springback characteristics of two HSS sheets during cold v-bending

    International Nuclear Information System (INIS)

    Fang, Gang; Gao, Wei-Ran

    2013-01-01

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn

  15. Heave induced reduction of friction capacity of pile embedded in clays

    OpenAIRE

    Setyo Budi Gogot; Wibowo Tantri Gondo

    2017-01-01

    Installation of new piles may cause heave which influence friction capacity of existing piles. The heave can be observed from the difference in the elevation of existing pile heads recorded before and after the installation of new piles or through load-settlement diagram from Static Load Test data. This paper presents the study of bearing capacity of hollow cylindrical concrete piles with diameter of 800 mm from two projects. The piles at Project I and Project II were hydraulically jacked int...

  16. Attenuation of pressure dips underneath piles of spherocylinders.

    Science.gov (United States)

    Zhao, Haiyang; An, Xizhong; Gou, Dazhao; Zhao, Bo; Yang, Runyu

    2018-05-30

    The discrete element method (DEM) was used to simulate the piling of rod-like (elongated sphero-cylindrical) particles, mainly focusing on the effect of particle shape on the structural and force properties of the piles. In this work, rod-like particles of different aspect ratios were discharged on a flat surface to form wedge-shaped piles. The surface properties of the piles were characterized in terms of angle of repose and stress at the bottom of the piles. The results showed that the rise of the angle of repose became slower with the increase of particle aspect ratio. The pressure dip underneath the piles reached the maximum when the particle aspect ratio was around 1.6, beyond which the pressure dip phenomenon became attenuated. Both the pressure dip and the shear stress dip were quantitatively examined. The structure and forces inside the piles were further analyzed to understand the change in pressure dip, indicating that "bridging" or "arching" structures within the piles were the cause of the pressure dip.

  17. Effect of piles on the seismic response of mosques minarets

    Directory of Open Access Journals (Sweden)

    Mohamed Ahmed Abdel-Motaal

    2014-03-01

    Minaret (60.0-m height was studied to investigate the effects of soil stiffness, pile length, diameter, and arrangement, on the minaret and pile dynamic behavior. Comparison between study results and conventional analysis method is illustrated. Study results, discussion, and conclusion are given.

  18. The homogenisation of bulk material in blending piles.

    NARCIS (Netherlands)

    Gerstel, A.W.

    1979-01-01

    In this thesis the homogenisation of bulk material in three types of piles is dealt with. The homogenisation implies that the fluctuations of a material proprety in the input flow of the pile are transformed into output fluctuations, whereby the latter ones are evened out. Analyses are presented

  19. Estimating setup of driven piles into Louisiana clayey soils.

    Science.gov (United States)

    2010-11-15

    Two types of mathematical models for pile setup prediction, the Skov-Denver model and the newly developed rate-based model, have been established from all the dynamic and static testing data, including restrikes of the production piles, restrikes, st...

  20. Lateral resistance of piles near vertical MSE abutment walls.

    Science.gov (United States)

    2013-03-01

    Full scale lateral load tests were performed on eight piles located at various distances behind MSE walls. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force induc...

  1. Bulk density and porosity distributions in a compost pile

    NARCIS (Netherlands)

    Ginkel, van J.T.; Raats, P.A.C.; Haneghem, van I.A.

    1999-01-01

    This paper mainly deals with the description of the initial distribution of bulk density and porosity at the moment a compost pile is built or rebuilt. A relationship between bulk density and vertical position in a pile is deduced from theoretical and empirical considerations. Formulae to calculate

  2. Piling up technology of goods irradiated by single plate source

    International Nuclear Information System (INIS)

    Xia Hezhou; Chen Yuxia; Cao Hongyun; Lin Yong; Zhou guoquan

    1999-01-01

    In the irradiation process of piling up goods in static state, four irradiation working sites and single plate source was adopted. The results showed that piling up in this way remarkably raised the irradiation quality of goods. The utilization rate of radioactive ray reached 22.27%

  3. The electrostatics of charged insulating sheets peeled from grounded conductors

    International Nuclear Information System (INIS)

    Datta, M J; Horenstein, M N

    2008-01-01

    The physics of a charged, insulating sheet peeled from a ground-plane conductor is examined. Contact charging is ensured by charging a sheet to 10-12 kV with corona to establish intimate electrostatic contact with the underlying conductor. The surface potential is next forced to zero by sweeping the sheet with a stainless-steel brush, and the surface recharged to a new potential between 0 and 11 kV. The sheet is then peeled from the ground plane and its residual charge density is measured. Results show that the residual charge equals the breakdown-limiting value, but its polarity depends on the surface potential acquired just prior to peeling. The results have relevance to studies of industrial webs and insulating sheets.

  4. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  5. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Science.gov (United States)

    Krasinski, Adam

    2015-02-01

    The application of screw displacement piles (SDP) is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque) during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  6. Modeling temperature noise in a fast-reactor pile

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Pykhtina, T.V.; Tarasko, M.Z.

    1987-01-01

    To observe partial overlapping of the heat carrier cross section in piles, leading to local temperature rise or boiling of the sodium, provision is made for individual monitoring of the fuel assemblies with respect to the output temperature. Since the deviation of the mean flow rate through the pile and the output temperature is slight with this anomaly, the temperature fluctuations may provide a more informative index. The change in noise characteristics with partial overlapping of the cross sections occurs because of strong distortion of the temperature profile in the overlap region. The turbulent flow in the upper part of the pile transforms this nonuniformity into temperature pulsations which may be recorded by a sensor at the pile output. In this paper the characteristics of temperature noise are studied for various pile conditions and sensor locations by statistical modeling

  7. SHAKING TABLE TESTS ON SEISMIC DEFORMATION OF PILE SUPPORTED PIER

    Science.gov (United States)

    Fujita, Daiki; Kohama, Eiji; Takenobu, Masahiro; Yoshida, Makoto; Kiku, Hiroyoshi

    The seismic deformation characeteristics of a pile supported pier was examined with the shake table test, especially focusing on the pier after its deformation during earthquakes. The model based on the similitude of the fully-plastic moment in piles was prepared to confirm the deformation and stress characteristic after reaching the fully-plastic moment. Moreover, assuming transportation of emergency supplies and occurrence of after shock in the post-disaster period, the pile supported pier was loaded with weight after reaching fully-plastic moment and excited with the shaking table. As the result, it is identified that the displacement of the pile supported pier is comparatively small if bending strength of piles does not decrease after reaching fully-plastic moment due to nonoccourrence of local backling or strain hardening.

  8. Theoretical study of short pile effect in tunnel excavation

    Science.gov (United States)

    Tian, Xiao-yan; Liu, Jing; Gao, Xiao-mei; Li, Yuan

    2017-09-01

    The Misaki Sato Go ideal elastoplastic model is adopted and the two stage analysis theory is used to study the effect of tunnel excavation on short pile effect in this paper. In the first stage, the free field vertical displacement of the soil at the corresponding pile location is obtained by using empirical formula. In the second stage, the displacement is applied to the corresponding pile location. The equilibrium condition of micro physical differential equation settlement of piles. Then through logical deduction and the boundary condition expressions of the settlement calculation, obtain the pile side friction resistance and axial force of the week. Finally, an engineering example is used to analyze the influence of the change of main parameters on their effects.

  9. Physical Modelling of Cyclic Laterally Loaded Pile in Cohesionless Soil

    DEFF Research Database (Denmark)

    Hansen, Mette; Wolf, Torben K.; Rasmussen, Kristian L.

    Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical in the service......Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical...... in the serviceability limit state. In this paper small-scale testing of a pile subjected to cyclic, lateral loading is treated in order to investigate the effect of cyclic loading. The test setup, which is an improvement of a previous setup, is described and the first results of testing are compared with previous...

  10. Laboratory Testing of Cyclic Laterally Loaded Pile in Cohesionless Soil

    DEFF Research Database (Denmark)

    Roesen, Hanne Ravn; Ibsen, Lars Bo; Hansen, Mette

    2013-01-01

    Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical in the service......Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical...... in the serviceability limit state. In this paper small-scale testing of a pile subjected to cyclic, lateral loading is treated in order to investigate the effect of cyclic loading. The test setup, which is an improvement of a previous setup, is described and the first results of testing are compared with previous...

  11. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Directory of Open Access Journals (Sweden)

    Krasinski Adam

    2015-02-01

    Full Text Available The application of screw displacement piles (SDP is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  12. Influence of the counter-pressure casting on the macrostructure of high nitrogen steel industrial blocks

    International Nuclear Information System (INIS)

    Andreev, N.; Rashev, Ts.

    1999-01-01

    The problem of high nitrogen steel (HNS) sheets production has not yet been solved. Sheets represent 90% of the world output of stainless and other steels, but there are no published data about HNS technologies and production of sheets on an industrial scale. The big steel bath (BSB) method and the counter-pressure casting (CPC) have proved the possibility of producing highly homogeneous ingots (1.3 and 10 tons) with all alloying elements, including nitrogen. In this way, the BSB and CPC methods have proved themselves to be universal ones for the production of shaped castings, HNS electrodes for remelting and sort, as well as, of sheets. (orig.)

  13. Ultimate capacity of piles penetrating in weak soil layers

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Ahmed

    2018-01-01

    Full Text Available A pile foundation is one of the most popular forms of deep foundations. They are routinely employed to transfer axial structure loads through the soft soil to stronger bearing strata. Piles generally used to increase the load carrying capacity of the foundation and reduce the settlement of the foundation. On the other hand, many cases in practice where piles pass through different layers of soil that contain weak layers located at different depths and extension, also some time cavities with a different shape, size, and depth are found. In this study, a total of 96 cases is considered and simulated in PLAXIS 2D program aiming to understand the influence of weak soil on the ultimate pile capacity. The piles embedded in the dense sand with a layer of weak soil at different extension and location. The cross section of the geometry used in this study was designed as an axisymmetric model with the 15-node element; the boundary condition recommended at least 5D in the horizontal direction, and (L+5D in the vertical direction where D and L are the diameter and length of pile, respectively. The soil is modeled as Mohr-Coulomb, with five input parameters and the behavior of pile material represented by the linear elastic model. The results of the above cases are compared with the results found in a pile embedded in dense soil without weak layers or cavities. The results indicated that the existence of weak soil layer within the surrounding soil around the pile decreases the ultimate capacity. Furthermore, it has been found that increase in the weak soil width (extension leads to reduction in the ultimate capacity of the pile. This phenomenon is applicable to all depth of weak soil. The influence of weak layer extension on the ultimate capacity is less when it is presentin the upper soil layers.

  14. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    Science.gov (United States)

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  15. Digitalisation in atomic pile control (1962)

    International Nuclear Information System (INIS)

    Furet, J.

    1962-01-01

    A brief survey is first given of the general theorems of Boodle's algebra and of sequence systems using D.A. Huffmans theory. Some indications are then given concerning the setting-up and the operation of digital computers and also of the principal codes used in digital techniques. It is then shown how digitalisation in atomic pile control makes it possible to use new techniques having the following advantages in particular: greater working safety, a higher degree of centralisation, and suppression of the linear elements. A few examples are given of the application of these techniques to control, particularly with respect to the measurement of the neutronic power and of the period and also of course, to the treatment of the data and the sequence automatisms. The advantage of using digital techniques in the shutdown channels is also examined. Finally a review is given of the technology and the viability of the control devices used. (author) [fr

  16. Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel

    International Nuclear Information System (INIS)

    Refait, Ph.; Memet, J.-B.; Bon, C.; Sabot, R.; Genin, J.-M.R.

    2003-01-01

    Rust layers formed on steel sheet piles immersed 1 m above the mud line for 25 years were analysed by Raman spectroscopy, scanning electron microscopy and elemental X-ray mappings (Fe, S, O). They consist of three main strata, the inner one mainly composed of magnetite, the intermediate one of iron(III) oxyhydroxides and the outer one of hydroxysulphate green rust GR(SO 4 2- ). Simulations of GRs formation in solutions having large [Cl - ]/[SO 4 2- ] ratios revealed that the hydroxysulphate GR(SO 4 2- ) was obtained instead of the hydroxychloride GR(Cl - ), as demonstrated by X-ray diffraction and transmission Moessbauer spectroscopy analyses. Measurements of the [S], [Fe] and [Cl] concentrations allowed us to establish that GR(SO 4 2- ) formed along with a drastic impoverishment of the solution in sulphate ions; the [Cl - ]/[SO 4 2- ] ratio increased from 12 to 240. The GR, acting like a 'sulphate pump', may favour the colonisation of the rust layers by sulphate reducing bacteria

  17. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  18. Mobility Balance Sheet 2009

    International Nuclear Information System (INIS)

    Jorritsma, P.; Derriks, H.; Francke, J.; Gordijn, H.; Groot, W.; Harms, L.; Van der Loop, H.; Peer, S.; Savelberg, F.; Wouters, P.

    2009-06-01

    The Mobility Balance Sheet provides an overview of the state of the art of mobility in the Netherlands. In addition to describing the development of mobility this report also provides explanations for the growth of passenger and freight transport. Moreover, the Mobility Balance Sheet also focuses on a topical theme: the effects of economic crises on mobility. [nl

  19. Crack Propagation on ESE(T) Specimens Strengthened with CFRP Sheets

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Jensen, Peter Holmstrøm; Dyrelund, Jens

    2009-01-01

    In this paper fatigue tests on side notched steel test specimens strengthened with adhesive bonded fibre reinforced polymer (FRP) sheets are presented. The specimens are subject to crack growth both in the steel and bond line. Influence of the load ratio and initial crack length on the overall...

  20. In-pile creep test technique for zirconium alloys examination in BR-10 reactor channels

    International Nuclear Information System (INIS)

    Pevchikh, Yu.M.; Kruglov, A.S.; Troyanov, V.M.

    2002-01-01

    The irradiation enhanced creep phenomenon was discovered in stainless steels as a specific physical process accompanying high-intensity neutron flux irradiation in fast reactors. IPPE is also experienced in irradiation creep test activities, studying different types of materials under irradiation in BR-10 fast reactor. Series of in-channel type test facilities were constructed and tested in BR-10 reactor's 'dry' channels in order to carry out full-scale instrumented examination regarded to in-pile creep behaviour of different reactor materials. As a result, a specific test technique, named 'Tensometric method', has been developed and experimentally proved to be power enough in order to investigate irradiation creep of materials right in situ under neutron irradiation. The main peculiarity of test facility, which is constructed to apply the tensometric method, consists in absence of any special deformation-measurement cell at all. The in-pile creep strain measurement technique developed at IPPE is based on the non-direct measurement of specimen's deformation (either linear tensile strain or angular twisting one), which directly affects the loaded draws' tension parameters. Starting from 1993, in-pile creep experiments to investigate in-reactor creep behaviour of E110 and E635 zirconium alloys were carried out in BR-10. Experimental results and data collected during more than 20-year of BR-10 in-reactor creep test experience can be assumed as a strong evidence that the tensometric technique is a powerful instrument, which can give a chance to study different irradiation effects on reactor materials directly under irradiation. (author)