WorldWideScience

Sample records for steel sheet deformed

  1. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    Science.gov (United States)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  2. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    Science.gov (United States)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  3. Magnetic Barkhausen emission in lightly deformed AISI 1070 steel

    Energy Technology Data Exchange (ETDEWEB)

    Capo Sanchez, J., E-mail: jcapo@cnt.uo.edu.cu [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba); Campos, M.F. de [EEIMVR-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125 Volta Redonda, RJ (Brazil); Padovese, L.R. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2012-01-15

    The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. - Highlights: > Evaluated residual stresses by the magnetic Barkhausen technique. > Indication about the relevance of micro-and macro-stress components. > Magnetic Barkhausen measurements were carried out in AISI 1070 steel sheet samples. > Two different sheets, deformed and non-deformed, are evaluated together. > Magnetic Barkhausen signal increases when deformed region is below the surface.

  4. Zinc coated sheet steel for press hardening

    Science.gov (United States)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time

  5. Investigation of the Formability of TRIP780 Steel Sheets

    Science.gov (United States)

    Song, Yang

    The formability of a metal sheet is dependent on its work hardening behaviour and its forming limits; and both aspects must be carefully determined in order to accurately simulate a particular forming process. This research aims to characterize the formability of a TRIP780 sheet steel using advanced experimental testing and analysis techniques. A series of flat rolling and tensile tests, as well as shear tests were conducted to determine the large deformation work hardening behaviour of this TRIP780 steel. Nakazima tests were carried out up to fracture to determine the forming limits of this sheet material. A highly-automated method for generating a robust FLC for sheet materials from DIC strain measurements was created with the help of finite element simulations, and evaluated against the conventional method. A correction algorithm that aims to compensate for the process dependent effects in the Nakazima test was implemented and tested with some success.

  6. Predicting Hot Deformation of AA5182 Sheet

    Science.gov (United States)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  7. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    International Nuclear Information System (INIS)

    Bhargava, M; Asim, T; Sushil, M; Shanta, C

    2015-01-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path. (paper)

  8. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    Science.gov (United States)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  9. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  10. Dynamic characteristics of automotive steel sheets

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2016-10-01

    Full Text Available The aim of this experimental research was to perform an analysis of deformation characteristics on two different types of steel: IF steel, and micro-alloyed steel were used automotive industry. For that purpose changes of properties of these materials were carried out by static 10-3 · s-1 and dynamic 103 · s-1 strain rate assess its plastic properties. Vickers micro hardness test was carried out by the static and dynamic loading condition and describes different hardness distribution. The higher strain hardening of materials was obtained too that was confirmed by distribution of dislocations.

  11. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  12. Copper contamination in thin stainless steel sheet

    International Nuclear Information System (INIS)

    Holbert, R.K. Jr.; Dobbins, A.G.; Bennett, R.K. Jr.

    1986-01-01

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  13. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  14. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J.

    2003-01-01

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  15. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  16. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    International Nuclear Information System (INIS)

    Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong

    2007-01-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated

  17. New developments in tribomechanical modeling of automotive sheet steel forming

    Science.gov (United States)

    Khandeparkar, Tushar; Chezan, Toni; van Beeck, Jeroen

    2018-05-01

    Forming of automotive sheet metal body panels is a complex process influenced by both the material properties and contact conditions in the forming tooling. Material properties are described by the material constitutive behavior and the material flow into the forming die can be described by the tribological system. This paper investigates the prediction accuracy of the forming process using the Tata Steel state of the art description of the material constitutive behavior in combination with different friction models. A cross-die experiment is used to investigate the accuracy of local deformation modes typically seen in automotive sheet metal forming operations. Results of advanced friction models as well as the classical Coulomb friction description are compared to the experimentally measured strain distribution and material draw-in. Two hot-dip galvanized coated steel forming grades were used for the investigations. The results show that the accuracy of the simulation is not guaranteed by the advanced friction models for the entire investigated blank holder force range, both globally and locally. A measurable difference between the calculated and measured local strains is seen for both studied models even in the case where the global indicator, i.e. the draw-in, is well predicted.

  18. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  19. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    International Nuclear Information System (INIS)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y.

    2014-01-01

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets

  20. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... Abstract. The stable crack growth in thin steel sheets is the topic of this paper. The crack opening was observed using a videoextensometry system, allowing the crack extension determination. JR-curve and dR-curve were established from obtained data. The ductile tearing properties of different thin sheets ...

  1. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... of zinc-coated automotive steel sheets (IF – deep drawing interstitial free steel ..... to determine; therefore, the Ji was determined for observ- able crack initiation .... M R S, da Silva L F M and de Castro P M S T 2011. Analysis of ...

  2. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  3. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  4. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  5. High temperature deformation of silicon steel

    International Nuclear Information System (INIS)

    Rodríguez-Calvillo, Pablo; Houbaert, Yvan; Petrov, Roumen; Kestens, Leo; Colás, Rafael

    2012-01-01

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s −1 with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 °C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 °C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the γ-fibre tends to disappear and the α-fibre to increase towards the higher temperature range. -- Highlights: ► The plastic deformation of a silicon containing steel is studied by plane strain compression. ► Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. ► Texture, by EBSD, is revealed to be similar in either type of grains.

  6. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    Science.gov (United States)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-07-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  7. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    Science.gov (United States)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-03-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  8. Deformation Analysis of RC Ties Externally Strengthened with FRP Sheets

    Science.gov (United States)

    Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Jakstaite, R.; Tamulenas, V.; Gudonis, E.

    2014-11-01

    The current study has two objectives: to validate the ability of the Atena finite-element software to estimate the deformations of reinforced concrete (RC) elements strengthened with fiber-reinforced polymer (FRP) sheets and to assess the effect of FRP-to-concrete bond strength on the results of numerical simulation. It is shown that the bond strength has to be selected according to the overall stiffness of the composite element. The numerical results found are corroborated experimentally by tensile tests of RC elements strengthened with basalt FRP sheets.

  9. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  10. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  11. Plastic Deformation Characteristics Of AZ31 Magnesium Alloy Sheets At Elevated Temperature

    International Nuclear Information System (INIS)

    Park, Jingee; Lee, Jongshin; You, Bongsun; Choi, Seogou; Kim, Youngsuk

    2007-01-01

    Using lightweight materials is the emerging need in order to reduce the vehicle's energy consumption and pollutant emissions. Being a lightweight material, magnesium alloys are increasingly employed in the fabrication of automotive and electronic parts. Presently, magnesium alloys used in automotive and electronic parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative can be forming process. The parts manufactured by forming could have fine-grained structure without porosity and improved mechanical properties such as endurance strength and ductility. Because magnesium alloy has low formability resulted form its small slip system at room temperature it is usually formed at elevated temperature. Due to a rapid increase of usage of magnesium sheets in automotive and electronic industry it is necessary to assure database for sheet metal formability and plastic yielding properties in order to optimize its usage. Especially, plastic yielding criterion is a critical property to predict plastic deformation of sheet metal parts in optimizing process using CAE simulation. Von-Mises yield criterion generally well predicts plastic deformation of steel sheets and Hill'1979 yield criterion predicts plastic deformation of aluminum sheets. In this study, using biaxial tensile test machine yield loci of AZ31 magnesium alloy sheet were obtained at elevated temperature. The yield loci ensured experimentally were compared with the theoretical predictions based on the Von-Mises, Hill, Logan-Hosford, and Barlat model

  12. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  13. Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minju; Park, Jaeyeong; Sohn, Seok Su; Kim, Hyoung Seop [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Nack J. [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2017-05-02

    In this study, dynamic tensile tests were conducted on TWinning Induced Plasticity (TWIP) and low-carbon (LC) steel sheets at a strain rate of 1500–2000/s by using a split Hopkinson tensile bar, and deformation mechanisms related with improvement of dynamic tensile properties were investigated by a digital image correlation (DIC) technique. The dynamic tensile strength was higher than the quasi-static tensile strength in both TWIP and LC sheets, while the dynamic elongation was same to the quasi-static elongation in the TWIP sheet and was much lower than the quasi-static elongation in the LC sheet. According to the DIC results of the dynamically tensioned TWIP sheet, the homogeneous deformation occurred before the necking at the strain of 47.4%. This indicated that the dynamic deformation processes were almost similar to the quasi-static ones as the TWIP sheet was homogeneously deformed in the initial and intermediate deformation stages. This could be explained by deformation mechanisms including twinning, in consideration of favorable effect of increased twinning on tensile properties under the dynamic loading. On the other hand, the dynamically tensioned LC sheet was rapidly deformed and fractured as the necking was intensified in a narrow strain-concentrated region. The present DIC technique is an outstanding method for detailed dynamic deformation analyses, and provides an important idea for practical safety analyses of automotive steel sheets.

  14. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    OpenAIRE

    Pasquale Russo Spena

    2017-01-01

    This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests wer...

  15. Effect of zinc crystals size on galvanized steel deformation and electrochemical behavior

    Directory of Open Access Journals (Sweden)

    José Daniel Culcasi

    2009-09-01

    Full Text Available Hot-dip galvanized steel sheets with different spangle sizes were deformed by means of rolling and tension. The change of preferential crystallographic orientation and of superficial characteristics due to the deformation was analyzed by means of both X-rays diffraction and optical and scanning electronic microscopy. A correlation between such changes and the involving deformation modes was intended to be done and the spangle size influence on these modes was studied. Coating reactivity change due to the deformation was investigated by means of quasi-steady DC electrochemical tests. The results allow to infer that, in great spangle samples, the main deformation mechanism is twinning whereas in small spangle ones, pyramidal slip systems happen as well. The increase of the reactivity with the deformation is greater in tension than in rolling and it is more important in small than in great spangle samples.

  16. Characterization of deformed pearlitic rail steel

    Science.gov (United States)

    Nikas, Dimitrios; Meyer, Knut Andreas; Ahlström, Johan

    2017-07-01

    Pearlitic steels are commonly used for railway rails because they combine good strength and wear properties. During service, the passage of trains results in a large accumulation of shear strains in the surface layer of the rail, leading to crack initiation. Knowledge of the material properties in this region is therefore important for fatigue life prediction. As the strain is limited to a thin surface layer, very large strain gradients can be found. This makes it very difficult to quantify changes in material behavior. In this study hardness measurements were performed close to the surface using the Knoop hardness test method. The orientation of the pearlitic lamellas was measured to give an overview of the deformed microstructure in the surface of the rail. Microstructural characterization of the material was done by optical microscopy and scanning electron microscopy to evaluate the changes in the microstructure due to the large deformation. A strong gradient can be observed in the top 50 μm of the rail, while deeper into the rail the microstructure of the base material is preserved.

  17. Transformation kinetics of selected steel grades after plastic deformation

    Directory of Open Access Journals (Sweden)

    R. Kawulok

    2016-07-01

    Full Text Available The aim of this article was to assess the impact of previous plastic deformation on the kinetics of transformations of four selected steels. The research was conducted with use of the universal plastometer GLEEBLE 3800, when Continuous Cooling Transformation (CCT and Deformation Continuous Cooling Transformation (DCCT diagrams of selected steels were constructed on the basis of dilatometric tests. The research confirmed that the strain accelerates the particularly the transformations controlled by diffusion. Bainitic transformation was accelerated in three of the four steels. In the case of martensitic transformation the effect of the previous deformation was relatively small, but with clearly discernible trend.

  18. Microstructural investigations of the trimmed edge of DP980 steel sheets

    Science.gov (United States)

    Bhattacharya, S.; Green, D. E.; Sohmshetty, R.; Alpas, A. T.

    2017-10-01

    In order to reduce vehicle weight while maintaining crashworthiness, advanced high strength steels (AHSSs), such as DP980, are extensively used for manufacturing automotive body components. During trimming operations, the high tensile strength of DP980 sheets tends to cause damage of the trim edge of D2 die inserts, which result in deterioration of the edge quality. The objective of this work is to study the damage microstructures at the trimmed edge of DP980 steel sheets as a function of the number of trimming cycles. A mechanical press equipped with AISI D2 tool steel inserts was used to continuously trim 1.4 mm thick sheets of DP980 at a rate of 30 strokes/min. Cross-sectional SEM images of the trimmed edges revealed that the sheared edge quality of the DP980 sheets decreased, indicated by an increase in the burr width, with an increase in the number of trims from 40,000 to 70,000. Plastic strains were estimated using the displacements of the martensite plates within plastic flow fields of ferrite. Site-specific cross-sectional TEM samples, excised from the trimmed edge using the in-situ `lift-out' technique by focused ion-beam (FIB)-milling, revealed cracking at the ferrite/martensite interfaces after 70,000 cycles indicating an increase in the depth of deformation zone possibly due to trimming with a chipped and blunted die edge.

  19. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  20. 77 FR 32998 - Tin- and Chromium-Coated Steel Sheet From Japan

    Science.gov (United States)

    2012-06-04

    ...-Coated Steel Sheet From Japan Determination On the basis of the record \\1\\ developed in the subject five... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or... USITC Publication 4325 (May 2012), entitled Tin- and Chromium-Coated Steel Sheet from Japan...

  1. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-09-28

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY: United States... duty orders on stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan... stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to...

  2. Multi Scale Models for Flexure Deformation in Sheet Metal Forming

    Directory of Open Access Journals (Sweden)

    Di Pasquale Edmondo

    2016-01-01

    Full Text Available This paper presents the application of multi scale techniques to the simulation of sheet metal forming using the one-step method. When a blank flows over the die radius, it undergoes a complex cycle of bending and unbending. First, we describe an original model for the prediction of residual plastic deformation and stresses in the blank section. This model, working on a scale about one hundred times smaller than the element size, has been implemented in SIMEX, one-step sheet metal forming simulation code. The utilisation of this multi-scale modeling technique improves greatly the accuracy of the solution. Finally, we discuss the implications of this analysis on the prediction of springback in metal forming.

  3. Mass deformed world-sheet action of semi local vortices

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunguo [School of Space Science and Physics, Shandong University at Weihai,264209 Weihai (China); Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment,264209 Weihai (China)

    2014-02-10

    The mass deformed effective world-sheet theory of semi local vortices was constructed via the field theoretical method. By Euler-Lagrangian equations, the Ansatze for both the gauge field and the adjoint scalar were solved, this ensures that zero modes of vortices are minimal excitations of the system. Up to the 1/g{sup 2} order, all profiles are solved. The mass deformed effective action was obtained by integrating out the transverse plane of the vortex string. The effective theory interpolates between the local vortex and the lump. Respecting certain normalization conditions, the effective theory shows a Seiberg-like duality, which agrees with the result of the Kähler quotient construction.

  4. Cyclic deformation behaviour of austenitic steels at ambient and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Fatigue; cyclic deformation behaviour; metastable austenitic steel; .... Figure 4 shows a sequence of the basic diagrams which can be used to assess the fatigue .... well as the change of temperature and the development of the magnetic ...

  5. Deformation inhomogeneity in large-grained AA5754 sheets

    International Nuclear Information System (INIS)

    Zhu Guozhen; Hu Xiaohua; Kang Jidong; Mishra, Raja K.; Wilkinson, David S.

    2011-01-01

    Research highlights: → Microstructure and strain relationship at individual grain level was studied. → 'Hot spots' nucleate early and most keep growing throughout deformation stages. → 'Hot spots' are correlated with 'soft' grains and soft-evolution grains. → Grains with high Schmid factors tend to be 'soft' grains. → Grains with the direction close to tensile axis tend to become softer. - Abstract: Models for deformation and strain localization in polycrystals that incorporate microstructural features including particles are computationally intensive due to the large variation in scale in going from particles to grains to a specimen. As a result such models are generally 2-D in nature. This is an issue for experimental validation. We have therefore studied deformation heterogeneities and strain localization behavior of coarse-grained alloys with only two grains across the sample thickness, therefore mimicking 2-D behavior. Aluminum alloy sheets (AA5754) have been investigated by a number of surface techniques, including digital image correlation, slip trace analysis and electron backscattered diffraction, at the individual grain level. Local strain concentration zones appear from the very beginning of deformation, which then maintain sustained growth and lead, in one of these regions, to localization and final fracture. These 'hot spots' occur in areas with locally soft grains (i.e. grains with or close to the tensile direction) and soft-evolution orientations (i.e. grains with close to the tensile direction). These grains can be correlated with Taylor and/or Schmid factors.

  6. Recent development of non-oriented electrical steel sheet for automobile electrical devices

    International Nuclear Information System (INIS)

    Oda, Yoshihiko; Kohno, Masaaki; Honda, Atsuhito

    2008-01-01

    This paper describes non-oriented electrical steel sheet for automobile motors and reactors. Electrical steel sheets for energy efficient motors show high magnetic flux density and low iron loss. They are suitable for HEV traction motors and EPS motors. A thin-gauge electrical steel sheet and a gradient Si steel sheet show low iron loss in the high-frequency range. Therefore, the efficiency of high-frequency devices can be greatly improved. Since a 6.5% Si steel sheet possesses low iron loss and zero magnetostriction, it contributes to reduce the core loss and audible noise of high-frequency reactors

  7. Carbon distribution in bainitic steel subjected to deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu. F., E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Nikitina, E. N., E-mail: Nikitina-EN@mail.ru; Gromov, V. E., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation)

    2015-10-27

    Analysis of the formation and evolution of carbide phase in medium carbon steel with a bainitic structure during compressive deformation was performed by means of transmission electron diffraction microscopy. Qualitative transformations in carbide phase medium size particles, their density and volume concentration depended on the degree of deformation.

  8. Nanostructures by Severe Plastic Deformation of Steels: Advantages and Problems

    Directory of Open Access Journals (Sweden)

    Dobatkin, S. V.

    2006-01-01

    Full Text Available The aim of this paper is to consider the features of structure evolution during severe plastic deformation (SPD of steels and its influence on mechanical properties. The investigation have been carried out mainly on low carbon steels as well as on austenitic stainless steels after SPD by torsion under high pressure (HPT and equal channel angular (ECA pressing. Structure formation dependencies on temperature deformation conditions, strain degree, chemical composition, initial state and pressure are considered. The role of phase transformations for additional grain refinement, namely, martensitic transformation, precipitation of carbide particles during SPD and heating is underlined.

  9. Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity

    Science.gov (United States)

    Sauber, Jeanne; Stewart, Iain S.; Rose, James

    2000-01-01

    The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.

  10. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    OpenAIRE

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  11. Influence of magnetostriction on hysteresis loss of electrical steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hirotoshi, E-mail: tada.547.hirotoshi@jp.nssmc.com [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan); Fujimura, Hiroshi; Yashiki, Hiroyoshi [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan)

    2013-01-15

    To reveal influence of magnetostriction on hysteresis loss of electrical steel sheet, hysteresis loss and magnetostriction of non-oriented electrical steel sheets (NOs) with various Si and Al content and grain size and grain oriented electrical steel sheet (GO) were measured under compressive or tensile stress. Here, Si and Al content and stress were focused on as the way to change magnetostriction. Stress direction and magnetizing direction were parallel to the rolling direction. Following three main results were obtained. The first is hysteresis loss of NO with same grain size which increased with magnetostriction independently of Si and Al content and stress. The second is hysteresis loss of NO was larger than that of GO under same magnetostriction. The third is hysteresis loss of NO at magnetostriction of zero was inversely proportional to grain size. Even if the grain size of NO increased to be similar size of GO without changing texture, the hysteresis loss of NO at magnetostriction of zero would be larger than that of GO because of the difference in texture. - Highlights: Black-Right-Pointing-Pointer Hysteresis loss and magnetostriction of NO and GO were measured under stress. Black-Right-Pointing-Pointer Hysteresis loss of NO was proportional to magnetostriction. Black-Right-Pointing-Pointer Hysteresis loss of GO was proportional to magnetostriction. Black-Right-Pointing-Pointer Hysteresis loss of NO was larger than that of GO under samemagnetostriction. Black-Right-Pointing-Pointer Hysteresis loss was separated into 4 components.

  12. Modeling steel deformation in the semi-solid state

    CERN Document Server

    Hojny, Marcin

    2017-01-01

    This book addresses selected aspects of steel-deformation modelling, both at very high temperatures and under the conditions in which the liquid and the solid phases coexist. Steel-deformation modelling with its simultaneous solidification is particularly difficult due to its specificity and complexity. With regard to industrial applications and the development of new, integrated continuous casting and rolling processes, the issues related to modelling are becoming increasingly important. Since the numerous industrial tests that are necessary when traditional methods are used to design the process of continuous casting immediately followed by rolling are expensive, new modelling concepts have been sought. Comprehensive tests were applied to solve problems related to the deformation of steel with a semi-solid core. Physical tests using specialist laboratory instruments (Gleeble 3800thermo-mechanical simulator, NANOTOM 180 N computer tomography, Zwick Z250 testing equipment, 3D blue-light scanning systems), and...

  13. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-10-01

    Full Text Available This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests were based on a L9(34 orthogonal array design, with the effects of the process parameters on the quality responses being determined by means of a statistical analysis of variance (ANOVA. Quadratic mathematical models were developed to determine the relationships between the cutting parameters and the quality responses. Finally, a routine based on an optimization criterion was employed to predict the optimal setting of cutting factors and its effect on the quality responses. A confirmation experiment was conducted to verify the appropriateness of the optimization routine. The results show that all of the examined process parameters have a key role in determining the cut quality of hot stamping boron steel sheets, with cutting speed and their interactions having the most influencing effects. Particularly, interactions can have an opposite behavior for different levels of the process parameters.

  14. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José, E-mail: luana_alves_barbosa@hotmail.com, E-mail: wrrc@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B., E-mail: estevess@demet.ufmg.br, E-mail: marchezini@demet.ufmg.br, E-mail: dsantos@demet.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  15. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    International Nuclear Information System (INIS)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José; Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B.

    2017-01-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  16. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  17. A Novel Method of Modeling the Deformation Resistance for Clad Sheet

    International Nuclear Information System (INIS)

    Hu Jianliang; Yi Youping; Xie Mantang

    2011-01-01

    Because of the excellent thermal conductivity, the clad sheet (3003/4004/3003) of aluminum alloy is extensively used in various heat exchangers, such as radiator, motorcar air conditioning, evaporator, and so on. The deformation resistance model plays an important role in designing the process parameters of hot continuous rolling. However, the complex behaviors of the plastic deformation of the clad sheet make the modeling very difficult. In this work, a novel method for modeling the deformation resistance of clad sheet was proposed by combining the finite element analysis with experiments. The deformation resistance model of aluminum 3003 and 4004 was proposed through hot compression test on the Gleeble-1500 thermo-simulation machine. And the deformation resistance model of clad sheet was proposed through finite element analysis using DEFORM-2D software. The relationship between cladding ratio and the deformation resistance was discussed in detail. The results of hot compression simulation demonstrate that the cladding ratio has great effects on the resistance of the clad sheet. Taking the cladding ratio into consideration, the mathematical model of the deformation resistance for clad sheet has been proved to have perfect forecasting precision of different cladding ratio. Therefore, the presented model can be used to predict the rolling force of clad sheet during the hot continuous rolling process.

  18. Synergistic enhancing effect of N+C alloying on cyclic deformation behaviors in austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Z.N. [National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2014-07-29

    Cyclic plastic and elastic strain controlled deformation behaviors of Mn18Cr7 austenitic steel with N0.6C0.3 synergistic enhancing alloying have been investigated using tension-compression low cycle fatigue and three-point bending high cycle fatigue testing. Results of cyclic deformation characteristic and fatigue damage mechanism have been compared to that in Mn12C1.2 steel. Mn18Cr7N0.6C0.3 steel always shows cyclic softening caused by enhanced planar sliding due to the interaction between N+C and the substitutional atoms as well as the dislocation, which is totally different from cyclic hardening in Mn12C1.2 steel caused by the interaction between C members of C–Mn couples with the dislocation. Enhanced effective stress is obtained due to the solid solution strengthening effect caused by the short range order at low strain amplitude while this effect does not work at high strain amplitude. Internal stress contributes most to the cyclic softening with the increase of strain amplitudes. Significant planar slip characteristic can be observed resulting from low stacking fault energy and high short range order effects in Mn18Cr7N0.6C0.3 steel and finally the parallel or intersecting thin sheets with dislocation tangles separated by dislocation free sheets are obtained with the prolonged cycles under cyclic elastic or plastic strain controlled fatigue testing. There exist amounts of small cracks on the surface of the Mn18Cr7N0.6C0.3 steel because fatigue crack initiation is promoted by the cyclic plastic strain localization. However, the zigzag configuration of the cracks reveals that the fatigue crack propagation is highly inhibited by the planar slip characteristic, which eventually improves the fatigue life.

  19. Deformability of Oxide Inclusions in Tire Cord Steels

    Science.gov (United States)

    Zhang, Lifeng; Guo, Changbo; Yang, Wen; Ren, Ying; Ling, Haitao

    2018-04-01

    The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young's modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young's moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young's moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.

  20. IMPACT OF STRAIN RATE ON MICROALLOYED STEEL SHEET BREAKING

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2014-08-01

    Full Text Available Strain rate is a significant external factor and its influence on material behavior in forming process is a function of its internal structure. The contribution is analysis of the impact of loading rate from 1.6 x 10-4 ms-1 to 24 ms-1 to changes in the fracture of steel sheet used for bodywork components in cars. Experiments were performed on samples taken from HC420LA grade strips produced by cold rolling and hot dip galvanizing. Material strength properties were compared based on measured values, and changes to fracture surface character were observed.

  1. Striation-free fibre laser cutting of mild steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sobih, M.; Crouse, P.L.; Li, L. [University of Manchester, Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, Sackville Street Building, P.O. Box 88, Manchester (United Kingdom)

    2008-01-15

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations, i.e. regular lines on the cut surface, which lowers the quality of the surfaces produced. The elimination of striation formation is thus of considerable importance, since it could open a variety of novel high-precision applications. This study presents the initial results of a laser cutting study using a 1 kW single-mode fibre laser, a relative newcomer in the field of laser metal cutting. Striation-free laser cuts are demonstrated when cutting 1 mm thick mild steel sheets. (orig.)

  2. 76 FR 49726 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

    Science.gov (United States)

    2011-08-11

    ... martensitic precipitation-hardenable stainless steel, and (12) three specialty stainless steels typically used...\\ ``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is...-831] Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

  3. Hydrogen induced plastic deformation of stainless steel

    NARCIS (Netherlands)

    Gadgil, V.J.; Keim, Enrico G.; Geijselaers, Hubertus J.M.

    1998-01-01

    Hydrogen can influence the behaviour of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the

  4. Effect of Strengthening Mechanism on Strain-Rate Related Tensile Properties of Low-Carbon Sheet Steels for Automotive Application

    Science.gov (United States)

    Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.

    2018-05-01

    In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.

  5. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    Science.gov (United States)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-06-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  6. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  7. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    NARCIS (Netherlands)

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels.

  8. Experimental and Numerical Studies on Isothermal and Non-isothermal Deep Drawing of IS 513 CR3 Steel Sheets

    Science.gov (United States)

    Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.

    2016-11-01

    The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.

  9. A study on laser welding deformation of 304 stainless steel

    International Nuclear Information System (INIS)

    Kitagawa, Akikazu; Maehara, Kenji; Takeda, Shinnosuke; Matsunawa, Akira

    2002-01-01

    In heavy industries, 304 austenitic stainless steel is the most popular material which is used for nuclear equipment, chemical vessels, vacuum vessels and so on. On the fabrication, not only a joint quality but also severe dimensional accuracy is required. To keep dimensional accuracy, considerable cost and efforts are requested, because the welding deformation of austenitic stainless steel is deeply depended on the physical properties of material itself. To decrease welding deformation, big jigs or water cooling method are commonly used which lead to the high cost. In general, the fusion welding by high energy density heat source results in less distortion. Today, laser welding technology has grown up to the stage that enables to weld thick plate with small deformation. The researches of welding deformation have been conducted intensively, but they are mainly concerned for arc welding, and studies for laser welding are very few. In this report, the authors will show the test results of deformation behavior in laser welding of 304 stainless steel. Also, they will discuss the deformation behavior comparing to that in arc welding. The main results of this study are as follows. 1. The angular distortion of laser welding can be unified by heat input parameter (Hp) which is used for arc welding deformation. 2. The angular distortion are same under the condition of Hp 3 in spite of different welding method, however under the condition of Hp>6-9 J/mm 3 the angular distortion is quite different depending on the power density of welding method. 3. Pure angular distortion seemed to complete just after welding, but following longitudinal distortion took place for long period. 4. The critical value of longitudinal distortion can be estimated from heat input parameter. The transverse deformation can be also estimated by heat input parameter. (author)

  10. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, David K [CSM/ASPPRC; Thomas, Larrin S [CSM/ASPPRC; Taylor, Mark D [CSM/ASPPRC; De Moor, Emmanuel [CSM/ASPPRC; Speer, John G [CSM/ASPPRC

    2015-08-03

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. In response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.

  11. Martensitic transformation induced by irradiation and deformation in stainless steels

    International Nuclear Information System (INIS)

    Maksimkin, O.P.

    1997-01-01

    In the present work the peculiarities of martensite γ → α , (γ → ε → α , ) transformation in the steels with a low stacking fault energy (12Cr18Ni10T, Cr15AG14) irradiated by neutrons, α-particles and electrons (pulse and stationary) and then deformed with the various strain rates in the temperature range - 20 - 1000 C are considered. It is established by the electron-microscope research that the phase γ → α ' transition in irradiated and deformed steels is observed on the definite stage of evolution of the dislocation structure (after the cell formation) and the martensite formation preferentially occurs on a stacking fault aggregation. The regularities of the irradiation by high energy particles effect on the formation parameters and martensite α , -phase accumulation kinetics ones and also their role in forming of the strength and ductile properties in steels are analysed. (A.A.D.)

  12. Non-proportional deformation paths for sheet metal: experiments and models

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; van Riel, M.; Hora, P.

    2009-01-01

    For mild steel, after significant plastic deformation in one direction, a subsequent deformation in an orthogonal direction shows a typical stress overshoot compared to monotonic deformation. This phenomenon is investigated experimentally and numerically on a DC06 material. Two models that

  13. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Directory of Open Access Journals (Sweden)

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  14. Steel Sheet Piles - Applications and Elementary Design Issues

    Science.gov (United States)

    Sobala, Dariusz; Rybak, Jarosław

    2017-10-01

    High-intensity housing having been carried out in town’s centres causes that many complex issues related to earthworks and foundations must be resolved. Project owners are required to ensure respective number of parking bays, which in turn demands 2-3 storeys of underground car parks. It is especially difficult to fulfil in dense buildings of old town areas where apart from engineering problems, very stringent requirements of heritage conservator supervision are also raised. The problems with ensuring stability of excavation sidewalls need to be, at the same time, dealt with analysis of foundations of neighbouring structures, and possible strengthening them at the stages of installing the excavation protection walls, progressing the excavations and constructing basement storeys. A separate problem refers to necessity of constructing underground storeys below the level of local groundwater. This requires long-term lowering of water table inside excavation while at possibly limited intervention in hydrological regime beyond the project in progress. In river valleys such “hoarding off” the excavation and cutting off groundwater leads to temporary or permanent disturbances of groundwater run-off and local swellings. Traditional way to protect vertical fault and simultaneously to cut-off groundwater inflow consists in application of steel sheet pilings. They enable to construct monolithic reinforced concrete structures of underground storeys thus ensuring both their tightness and high rigidity of foundation. Depending on situation, steel sheet pilings can be in retrieving or staying-in-place versions. This study deals with some selected aspects of engineering design and fabrication of sheet piling for deep excavations and underground parts of buildings.

  15. Forming limit and fracture mechanism of ferritic stainless steel sheets

    International Nuclear Information System (INIS)

    Xu Le; Barlat, Frederic; Ahn, Deok Chan; Bressan, Jose Divo

    2011-01-01

    Research highlights: → Forming limit curves of two ferritic stainless steel sheets were well predicted. → Failure occurs by necking in uniaxial and plane strain tension for both materials. → Failure occurs by shearing in balanced biaxial tension for both materials. → Strain rate sensitivity does not affect the limit strains a lot for both materials. → Strain rate sensitivity likely influences the failure mode for both materials. - Abstract: In this work, the forming limit curves (FLCs) of two ferritic stainless steel sheets, AISI409L and AISI430, were predicted with the Marciniak-Kuczynski (MK) and Bressan-William-Hill (BWH) models, combined with the Yld2000-2d yield function and the Swift hardening law. Uniaxial tension, disk compression and hydraulic bulge tests were performed to determine the yield loci and hardening curves of both materials. Meanwhile, the strain rate sensitivity (SRS) coefficient was measured through uniaxial tension tests carried out at different strain rates. Out-of-plane stretching tests were conducted in sheet specimens to obtain the surface limit strains under different linear strain paths. Micrographs of the specimens fractured in different stress states were obtained by optical and scanning electron microscopy. The overall results show that the BWH model can predict the FLC better than the MK model, and that the SRS does not have much effect on the limit strains for both materials. The predicted FLCs and micrograph analysis both indicate that failure occurs by surface localized necking in uniaxial and plane strain tension states, whereas it occurs by localized shearing in the through thickness direction in balanced biaxial tension state.

  16. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  17. Microscale-calibrated modeling of the deformation response of dual-phase steels

    International Nuclear Information System (INIS)

    Chen, Peng; Ghassemi-Armaki, Hassan; Kumar, Sharvan; Bower, Allan; Bhat, Shrikant; Sadagopan, Sriram

    2014-01-01

    A combination of micropillar compression tests and microstructure-based numerical simulations were used to determine the flow strength and strain rate partitioning in uniaxial tension in two commercial low-carbon dual-phase sheet steels, DP980 (0.09% C–2.15% Mn–0.60% Si (wt.%)) and DF140T (0.15% C–1.45% Mn–0.30% Si (wt.%)). The two steels have different microstructures, with the martensite volume fraction in DP980 being ∼60%, compared to ∼40% in DF140T. Nevertheless, they exhibit similar uniaxial stress–strain behavior. To determine the microstructural origin of this behavior, micropillar compression specimens from ferrite and martensitic phases in both steels were deformed in uniaxial compression to obtain their individual response. A microstructure-based crystal plasticity model that accounts for non-Schmid behavior in the ferrite phase and contains a detailed description of the hierarchical microstructure of martensite was developed and material parameters were determined by fitting model predictions to the micropillar compression data. The crystal plasticity model was then used to predict the flow stress and strain rate partitioning during uniaxial tensile deformation of the two steels. The ferrite phase in the two steels was found to have similar flow strength. In contrast, the flow stress of martensite in DF140T was found to be approximately twice that in DP980. This strength difference is offset by the difference in martensite volume fraction in the two steels, resulting in nearly identical uniaxial tensile behavior. The strain rate partitioning and interfacial stress distributions in the two steels differ significantly, however, and have important implications on their tensile ductility

  18. 76 FR 46323 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2011-08-02

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan Determination On the... injury to an industry in the United States within a reasonably foreseeable time and that revocation of... antidumping duty orders on stainless steel sheet and strip from Japan, Korea, and Taiwan \\3\\ would be likely...

  19. Deformation behavior of austenitic stainless steel at deep cryogenic temperatures

    Science.gov (United States)

    Han, Wentuo; Liu, Yuchen; Wan, Farong; Liu, Pingping; Yi, Xiaoou; Zhan, Qian; Morrall, Daniel; Ohnuki, Somei

    2018-06-01

    The nonmagnetic austenite steels are the jacket materials for low-temperature superconductors of fusion reactors. The present work provides evidences that austenites transform to magnetic martensite when deformation with a high-strain is imposed at 77 K and 4.2 K. The 4.2 K test is characterized by serrated yielding that is related to the specific motion of dislocations and phase transformations. The in-situ transmission electron microscope (TEM) observations in nanoscale reveal that austenites achieve deformation by twinning under low-strain conditions at deep cryogenic temperatures. The generations of twins, martensitic transformations, and serrated yielding are in order of increasing difficulty.

  20. Study of CW Nd-Yag laser welding of Zn-coated steel sheets

    International Nuclear Information System (INIS)

    Fabbro, Remy; Coste, Frederic; Goebels, Dominique; Kielwasser, Mathieu

    2006-01-01

    The welding of Zn-coated steel thin sheets is a great challenge for the automotive industry. Previous studies have defined the main physical processes involved. For non-controlled conditions, the zinc vapour expelled from the interface of the two sheets violently expands inside the keyhole and expels the melt pool. When using CO 2 lasers, we have previously shown that an elongated laser spot produces an elongated keyhole, which is efficient for suppressing this effect. We have adopted a similar approach for CW Nd : Yag laser welding and we observe that an elongated spot is not necessary for achieving good weld seams. Several diagnostics were used in order to understand these interesting results. High-speed video camera visualizations of the top and the bottom of the keyhole during the process show the dynamics of the keyhole hydrodynamic behaviour. It appears that the role of the reflected beam on the front keyhole wall for generating a characteristic rear wall deformation is crucial for an efficient stabilization of the process. Our dynamic keyhole modelling, which includes ray tracing, totally confirms this interpretation and explains the results for very different experimental conditions (effect of welding speed, laser intensity, variable sheet thickness, laser beam intensity distribution) that will be presented

  1. Equal-channel angular sheet extrusion of interstitial-free (IF) steel: Microstructural evolution and mechanical properties

    International Nuclear Information System (INIS)

    Saray, O.; Purcek, G.; Karaman, I.; Neindorf, T.; Maier, H.J.

    2011-01-01

    Highlights: → IF-steel sheets can successfully be processed in the continuous manner using the equal-channel angular sheet extrusion (ECASE). → The ECASE produces the microstructures including dislocation cell and micro-shear bands inside the grains with mainly low-angle grain boundaries. → The ECASE results in a considerable increase in the strength but limited ductility. → A good strength-ductility balance in the ECASE-processed IF-steel sheets can be managed with a suitable annealing parameters. - Abstract: Interstitial-free steel (IF-steel) sheets were processed at room temperature using a continuous severe plastic deformation (SPD) technique called equal-channel angular sheet extrusion (ECASE). After processing, the microstructural evolution and mechanical properties have been systematically investigated. To be able to directly compare the results with those from the same material processed using discontinuous equal channel angular extrusion, the sheets were ECASE processed up to eight passes. The microstructural investigations revealed that the processed sheets exhibited a dislocation cell and/or subgrain structures with mostly low angle grain boundaries. The grains after processing have relatively high dislocation density and intense micro-shear band formation. The electron backscattering diffraction (EBSD) examination showed that the processed microstructure is not fully homogeneous along the sheet thickness due probably to the corner angle of 120 deg. in the ECASE die. It was also observed that the strengths of the processed sheets increase with the number of ECASE passes, and after eight passes following route-A and route-C, the yield strengths reach 463 MPa and 459 MPa, respectively, which is almost 2.5 times higher than that of the initial material. However, the tensile ductility considerably dropped after the ECASE. The limited ductility was attributed to the early plastic instability in the tensile samples due to the inhomogeneous

  2. Mechanical Deformation Behavior of Lean Duplex 329LA Steel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Byung-Jun [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of); Choi, Jeom-Yong [POSCO Technical Research Lab., Pohang (Korea, Republic of); Park, Kyung-Tae [Hanvat National University, Daejeon (Korea, Republic of); Lee, Ho Seong [Kyungpook National University, Daegu (Korea, Republic of)

    2015-09-15

    The tensile response of Lean Duplex 329LA stainless steel was investigated over various strain rates. It was observed that the mechanical response, including in particular the total elongation of the tested alloy, was strongly affected by the strain rate. As the strain rate decreased from 10-1 s-1 to 10-4 s-1, the elongation increased. As the strain rate increased, the deformation mode in an austenite phase was dominated by dislocation glide, resulting in deterioration of the elongation. The substructure of the ferritic phase showed a dislocation cell structure, independent of the applied strain rate. The optimum mechanical properties of lean duplex stainless steel thus can be obtained by controlling the deformation mode in the austenitic phase.

  3. Mechanical Deformation Behavior of Lean Duplex 329LA Steel

    International Nuclear Information System (INIS)

    Yoon, Byung-Jun; Choi, Jeom-Yong; Park, Kyung-Tae; Lee, Ho Seong

    2015-01-01

    The tensile response of Lean Duplex 329LA stainless steel was investigated over various strain rates. It was observed that the mechanical response, including in particular the total elongation of the tested alloy, was strongly affected by the strain rate. As the strain rate decreased from 10-1 s-1 to 10-4 s-1, the elongation increased. As the strain rate increased, the deformation mode in an austenite phase was dominated by dislocation glide, resulting in deterioration of the elongation. The substructure of the ferritic phase showed a dislocation cell structure, independent of the applied strain rate. The optimum mechanical properties of lean duplex stainless steel thus can be obtained by controlling the deformation mode in the austenitic phase.

  4. EBSD characterization of deformed lath martensite in if steel

    DEFF Research Database (Denmark)

    Lv, Z.A.; Zhang, Xiaodan; Huang, Xiaoxu

    2017-01-01

    Rolling deformation results in the transformation of a lath martensite structure to a lamellar structure characteristic to that of IF steel cold-rolled to medium and high strains. The structural transition takes place from low to medium strain, and electron backscatter diffraction analysis shows...... and the strength are characterized for lath martensite rolled to a thickness reduction of 30%, showing that large changes in the misorientation take place, while the strain hardening rate is low....

  5. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  6. Deformation induced martensite in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Solomon, N.; Solomon, I.

    2010-01-01

    The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstructure and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation. (Author) 21 refs.

  7. Interface conductance between roughened Be and steel under thermal deformation

    International Nuclear Information System (INIS)

    Tillack, M.S.; Abelson, R.D.

    1995-01-01

    Predictability and control over temperatures and stresses are necessary in order to assure acceptable tritium release, component reliability and lifetime in solid breeder blankets. These blankets usually contain beryllium multiplier in either pebble-bed or solid block forms. For the solid block forms, uncertainties remain in the prediction of the thermal resistance between the Be and its cladding. Several parameters are important, including surface roughness and flatness, background gas pressure, and external loads which may result from blanket thermal deformations and/or pressure stresses. Differential thermal deformation between Be and steel can cause separation to occur between the two solid surfaces, which could seriously degrade the heat transfer. Existing models and data for solid-solid conductance show inconsistencies, even for steel surfaces. Little data or none exists for the Be-steel system, in which differential surface deformations are expected. In this work, we describe a new model which incorporates the combined influences of thermal deformation and contact pressure. Data were taken with small Be specimens as a function of the relevant parameters. The results show that the inclusion of non-conforming surfaces provides a richer range of behavior. Thermal deformations degrade the heat transfer by about a factor of two from flat surfaces, but this effect tends to decrease above about 100 kW m -2 . Contact pressure (above about 1 MPa) between the two materials can effectively maintain good conductance. The flatness and roughness of the surfaces are the most critical parameters. The work also demonstrates the large degree of variation in conductance with background gas pressure. (orig.)

  8. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  9. Mechanical characterization of auxetic stainless steel thin sheets with reentrant structure

    Science.gov (United States)

    Lekesiz, H.; Bhullar, S. K.; Karaca, A. A.; Jun, M. B. G.

    2017-08-01

    Smart materials in auxetic form present a great potential for various medical applications due to their unique deformation mechanisms along with durable infrastructure. Both analytical and finite element (FE) models are extensively used in literature to characterize mechanical response of auxetic structures but these structures are mostly thick enough to be considered as bulk material and 3D inherently. Auxetic plates in very thin form, a.e. foil, may bring numerous advantages such as very light design and better biodegradability when needed. However, there is a gap in literature on mechanical characterization of auxetic thin plates. In this study, structural analysis of very thin auxetic plates under uniaxial loading is investigated using both FE method and experimental method. 25 μm thick stainless steel (316L) plates are fabricated with reentrant texture for three different unit cell dimensions and tested under uniaxial loading using universal testing machine. 25 and 50 μm thick sheets with same cell dimensions were analyzed using implicit transient FE model including strain hardening and failure behaviors. FE results cover all the deformation schemes seen in actual tests and total deformation level matches with test results. Effect of plate thickness and cell geometry on auxetic behavior is discussed in detail using FE results. Finally, based on FE analysis results, an optimum geometry for prolonged auxetic behavior, high flexibility and high durability is suggested for future potential applications.

  10. Effect of Deformation Temperature on Microstructure Evolution and Mechanical Properties of Low-Carbon High-Mn Steel

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2018-01-01

    Full Text Available This work addresses the influence of deformation temperature in a range from −40°C to 200°C on the microstructure evolution and mechanical properties of a low-carbon high-manganese austenitic steel. The temperature range was chosen to cope at the time during sheet processing or car crash events. Experimental results show that yield stress and ultimate tensile strength gradually deteriorate with an increase in the tensile testing temperature. The dominant mechanism responsible for the strain hardening of steel changes as a function of deformation temperature, which is related to stacking fault energy (SFE changes. When the deformation temperature rises, twinning decreases while a role of dislocation slip increases.

  11. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  12. Magnetic Barkhausen emission for characterizing AISI 1045 steel plastically deformed

    Directory of Open Access Journals (Sweden)

    Gelaysi Moreno-Vega

    2018-04-01

    Full Text Available The aim of this work was to correlate parameters of the metallurgical structure such as size and reorganizing the grains, as well as the hardening capacity and the samples distortion of AISI 1045 steel plastically deformed by roll and then fractioned, with average values root means square RMS of a Barkhausen Emission. The analyzed samples were deformed by using forces of 500, 1500 and 2500 N, angular speed of 27, 54, and 110 r.p.m and tool advance of 0,075; 0,125 and 0,25 mm / rev. Then, they underwent a traction process using a CRITM DNS 200 machine, with a load of 200 kN. It was observed that the EMB signal presented an increasing performance in correspondence with the deformation decline and the increasing in tension and the hardness degree. The study of commercial steel AISI 1045 plastically deformed with roller and then pulled with EMB technique, allowed corroborating the potential of this technique as a non-destructive testing.

  13. Surface Morphology and Bending Deformation of 2024-T3 Thin Sheets with Laser Peen Forming

    Directory of Open Access Journals (Sweden)

    Wu Junfeng

    2018-01-01

    Full Text Available Laser peen forming (LPF is a pure mechanical forming method through accumulated plastic strain, which has been successfully applied in wing components. Experimental investigation has been performed to understand the effect of process parameters such as constraint conditions, sheet thickness and laser energy on surface morphology and bending deformation of 2024-T3 thin sheets of dimensions of 76 mm ×19 mm (length × width. The research results indicated that bulges on the aluminum foil were generated at the bottom surface and not generated at the topmost surface. It was different for transition value of two-way bending deformations of thin sheets after LPF with different constraint conditions. Remain flat thicknesses of thin sheets after LPF were about 1 mm ~ 2 mm for 20 J, 25 J and 30 J. Arc heights and curvatures of 3 mm thickness sheets increased with laser energy and those of 2 mm thickness sheets only made little change. It was found that convex deformation, flat, concave deformation and laser deep drawing for thin sheets with different thicknesses after LPF.

  14. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  15. Fracture of ledeburitic steel during hot plastic deformation

    International Nuclear Information System (INIS)

    Nikitin, V.P.; Borisov, Yu.A.; Bulat, S.I.; Zajtsev, V.V.

    1977-01-01

    The mechanisms of the high-temperature failure of high-carbon chromium Kh6F1, Kh6T2 and Kh6VF steels and a possibility to avoid their overheating have been investigated. At 1190 deg C and over the failure occurs along boundaries of grains at points of formation of the initial portions of the liquid phase as carbides are dissolved. If after a holding at 1190-1210 deg C the steels are cooled to 1120-1150 deg C and held for a sufficiently long time, secondary carbides are formed in the eutectic areas and, if the steels are deformed, the discontinuities present a rounded shape. Holding of an overheated steel at 1120-1150 deg C ensures its satisfactory workability in rolling. By choosing adequate overheating and subsequent slight cooling conditions, it is possible not only to retain, but even to improve the plasticity of carbide high-carbon steels. The results of laboratory tests have been confirmed under industrial conditions

  16. Non-proportional deformation paths for sheet metal: experiments and models

    OpenAIRE

    van den Boogaard, Antonius H.; van Riel, M.; Hora, P.

    2009-01-01

    For mild steel, after significant plastic deformation in one direction, a subsequent deformation in an orthogonal direction shows a typical stress overshoot compared to monotonic deformation. This phenomenon is investigated experimentally and numerically on a DC06 material. Two models that incorporate the observed overshoot are compared. In the Teodosiu-Hu model, pre-strain influences the rate of kinematic hardening by a rather complex set of evolution equations. The shape of the elastic doma...

  17. Recent trend of titanium-clad steel plate/sheet (NKK)

    International Nuclear Information System (INIS)

    Kimura, Hideto

    1997-01-01

    The roll-bonding process for titanium-clad steel production enabled the on-line manufacturing and quality control of the products which are usually applied for the production of steel plate and sheet by the steel producers. The recent trend of roll-bonded titanium-clad steel which has an excellent corrosion resistance together with the advantage in cost-saving are mainly described in this article as to the demand, production technique and new application aspects. Though the predominant usage of titanium-clad steel plate has been in power-generating plants, enlargeing utilization in the chemical plants such as terephthalic acid production plants is leading the growth in the market of titanium-clad steel plate. Also, the application of titanium-clad steel plates and sheets for the lining the marine structures is expected as one of the best solution to long-term surface protection for their outstanding corrosion resistance against sea water. (author)

  18. Improvement of formability of high strength steel sheets in shrink flanging

    International Nuclear Information System (INIS)

    Hamedon, Z; Abe, Y; Mori, K

    2016-01-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging. (paper)

  19. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...

  20. Cold-rolled sheets production of stainless martensite-ageing steel smelted by vacuum arc and electroslag techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, A A; Grishkov, A I; Suslin, A P; Nesterenko, A A; Lola, V N [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-05-01

    In cooperation with a number of metallurgical works the production of a high strength sheet stainless maraging steel EHP678 (000KH11N10M2T) has been tested by rolling cylindrical ingots of vacuum arc smelting at the blooming (the mass of rough ingots was 5.1 to 6.0 t, that of cleaned ingots - 3.8 to 5.1 t) or rectangular ingots of electroslag smelting (13 t) at the slabbing. The recommended regimes of heating and deformation are much similar to those used for the steel-KH18N10T. The output of valid cold-rolled sheets proved to be rather low (0.24 t/t for the vacuum arc smelting and 0.30 t/t for the electroslag smelting) mainly due to the losses on cleaning and a considerable portion of wrong-size slabs. The data are presented on the steel-EHP678 properties after various heat treatments. For the production of wide cold-rolled sheets of the steel EHP678 it is recommended to use steelmaking procedure with electroslag smelting including open-hearth melting in arc furnaces, rolling of ingots at the slabbing with heating up to 1260-1280 deg C (hold-up of 4.5 to 5 hrs); electroslag smelting for rectangular section slabs, rolling of ingots of electroslag smelting at the slabbing with their heating up to 1250 deg C (hold-up of 5.5 to 6 hrs), rolling at the 1680-type mill with heating up to 1250-1260 deg C (hold-up of 4 to 4.5 hrs ensuring the rolling temperature after a rough group not below 1100 deg C), quenching of hot-rolled sheets heating up to 920-940 deg C (hold-up of 3 to 3.5 min/mm), shot peening of sheets for descaling (provided the respective equipment is available) with a subsequent short-time pickling in an acid solution and cold rolling with a summary deformation of 35 to 45 %. The steelmaking with the electroslag smelting is much more profitable as regards to the fine technology of number of the main procedures, convenient cooperation of the works and a considerably greater output of the final products out of one ton of the steel produced.

  1. Measurement and simulation of deformation and stresses in steel casting

    Science.gov (United States)

    Galles, D.; Monroe, C. A.; Beckermann, C.

    2012-07-01

    Experiments are conducted to measure displacements and forces during casting of a steel bar in a sand mold. In some experiments the bar is allowed to contract freely, while in others the bar is manually strained using embedded rods connected to a frame. Solidification and cooling of the experimental castings are simulated using a commercial code, and good agreement between measured and predicted temperatures is obtained. The deformations and stresses in the experiments are simulated using an elasto-viscoplastic finite-element model. The high temperature mechanical properties are estimated from data available in the literature. The mush is modeled using porous metal plasticity theory, where the coherency and coalescence solid fraction are taken into account. Good agreement is obtained between measured and predicted displacements and forces. The results shed considerable light on the modeling of stresses in steel casting and help in developing more accurate models for predicting hot tears and casting distortions.

  2. Measurement and simulation of deformation and stresses in steel casting

    International Nuclear Information System (INIS)

    Galles, D; Beckermann, C; Monroe, C A

    2012-01-01

    Experiments are conducted to measure displacements and forces during casting of a steel bar in a sand mold. In some experiments the bar is allowed to contract freely, while in others the bar is manually strained using embedded rods connected to a frame. Solidification and cooling of the experimental castings are simulated using a commercial code, and good agreement between measured and predicted temperatures is obtained. The deformations and stresses in the experiments are simulated using an elasto-viscoplastic finite-element model. The high temperature mechanical properties are estimated from data available in the literature. The mush is modeled using porous metal plasticity theory, where the coherency and coalescence solid fraction are taken into account. Good agreement is obtained between measured and predicted displacements and forces. The results shed considerable light on the modeling of stresses in steel casting and help in developing more accurate models for predicting hot tears and casting distortions.

  3. Elevated temperature cyclic deformation of stainless-steel and interaction effects with other modes of deformation

    International Nuclear Information System (INIS)

    Turner, A.P.L.

    1976-01-01

    Since pertinent information concerning the deformation history of a material is stored in its current structure, an attempt has been made to determine the number of state variables necessary to uniquely describe the material's present condition. An experimental program has been carried out to determine the number of state variables which is required to describe the tensile test, cyclic, and creep behavior of 304 stainless steel at elevated temperature. Tests have been conducted at 300 0 C and 560 0 C which correspond to homologous temperatures of 1 / 3 and 1 / 2 , respectively. The experiments consisted of subjecting samples to deformation histories during which the mode of deformation was changed so that two material responses could be measured for the same state of the material. Results strongly suggest that at least two state variables are necessary

  4. Studies of deformation-induced texture development in sheet materials using diffraction techniques

    International Nuclear Information System (INIS)

    Banovic, S.W.; Vaudin, M.D.; Gnaeupel-Herold, T.H.; Saylor, D.M.; Rodbell, K.P

    2004-01-01

    Crystallographic texture measurements were made on a series of rolled aluminum sheet specimens deformed in equi-biaxial tension up to a strain level of 0.11. The measurement techniques used were neutron diffraction with a 4-circle goniometer, electron backscatter diffraction, conventional powder X-ray diffraction (XRD), and XRD using an area detector. Results indicated a complex texture orientation distribution function which altered in response to the applied plastic deformation. Increased deformation caused the {1 1 0} planes, to align parallel to the plane of the sheet. The different techniques produced results that were very consistent with each other. The advantages and disadvantages of the various methods are discussed, with particular consideration of the time taken for each method, the range of orientation space accessible, the density of data that can be obtained, and the statistical significance of each data set with respect to rolled sheet product

  5. Deformation behaviour of type 316 steel at 400 deg. C

    International Nuclear Information System (INIS)

    Wood, D.S.; Williamson, K.

    A variety of type 316 steel deformation tests at 400 deg. C involving a study of strain rate, stress increment, stress cycling and strain cycling effects are reported. It is concluded that very small ratchet strains may occur, but these are unlikely to be of engineering significance. It is also shown that in the absence of reversed plasticity the upper stress bound is represented by the monotonic stress-strain curve. Under reversed plasticity, significant cyclic hardening can occur and in this case the upper bound may be represented by the cyclic stress-strain curve

  6. Analysis of elevated temperature cyclic deformation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Rohde, R.W.; Swearengen, J.C.

    1977-01-01

    The stress relaxation behavior of 304 and 316 stainless steels during cyclic deformation at 538 and 650 0 C with various hold times and strain amplitudes has been analyzed in terms of a power-law equation of state which includes internal stress and drag stress as structure variables. At 650 0 C the internal sress in 304 appears to be zero and microstructural recovery plays an important role in the kinetics of stress relaxation. For deformation at 538 0 C, the internal stress in 304 is nonzero and microstructural recovery appears minimal. In 316 tested at 650 0 C the internal stress is zero and again recovery is important. However, the kinetics of recovery differ from those measured in 304. These observations are explained physically in terms of strain and temperature-induced recovery of the structural variables, and provide insights into the procedures for calculating accumulated ''creep'' damage in reactor components

  7. Electron microscopy and plastic deformation of industrial austenitic stainless steels

    International Nuclear Information System (INIS)

    Thomas, Barry

    1976-01-01

    The different mechanisms of plastic deformation observed in austenitic stainless steels are described and the role of transmission electron microscopy in the elucidation of the mechanisms is presented. At temperatures below 0,5Tm, different variants of dislocation glide are competitive: slip of perfect and partial dislocations, mechanical twinning and strain-induced phase transformations. The predominance of one or other of these mechanisms can be rationalized in terms of the temperature and composition dependence of the stacking fault energy and the thermodynamic stability of the austenite. At temperatures above 0,5Tm dislocation climb and diffusion of point defects become increasingly important and at these temperatures recovery, recrystallization and precipitation can also occur during deformation [fr

  8. The development of PVC-laminated steel sheet by an electron beam curing method

    International Nuclear Information System (INIS)

    Masuhara, Ken-ichi; Koshiishi, Kenji; Tomosue, Takao; Mori, Koji; Honma, Nobuyuki

    1988-01-01

    Polyvinyl chloride (PVC) film-laminated steel sheets are used for household electric appliances and building materials. Those are produced usually by pressing a PVC film onto a steel sheet imediately after a themosetting adhesive has been applied to the sheet and curing. However, a major problem of this method is that the appearance of the PVC films such as gloss and embossment changes during pressing due to the heat that is required for causing bonding, therefore, the development of an adhesive which can be cured at lower temperature is necessary. Nisshin Steel Co., Ltd. has developed PVC film-laminated steel sheets for which electron beam (EB) curable adhesives are used to overcome this problem. The advantage of these adhesives is that they can be quickly cured at room temperature. The production procedure of PVC-laminated steel sheets by EB curing is outlined. But this method has encountered two problems: poor adhesion between substrates and adhesive due to the residual stress, and the deterioration of the PVC films due to EB irradiation. EB curable adhesives are mainly composed of acrylic ester oligomers and monomers, and thier adhesion was improved by organic pretreatment. On the other hand, EB-proof PVC films were developed. The general properties of PVC-laminated steel sheets produced by EB curing are reported. (K.I.)

  9. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    Science.gov (United States)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  10. Compression deformation behaviors of sheet metals at various clearances and side forces

    OpenAIRE

    Zhan Mei; Wang Xianxian; Cao Jian; Yang He

    2015-01-01

    Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. I...

  11. Evaluation of essential work of fracture in a dual phase high strength steel sheet

    International Nuclear Information System (INIS)

    Gutierrez, D.; Perez, L. I.; Lara, A.; Casellas, D.; Prado, J. M.

    2013-01-01

    Fracture toughness of advanced high strength steels (AHSS), can be used to optimize crash behavior of structural components. However it cannot be readily measured in metal sheet because of the sheet thickness. In this work, the Essential Work of Fracture (EWF) methodology is proposed to evaluate the fracture toughness of metal sheets. It has been successfully applied in polymers films and some metal sheets. However, their information about the applicability of this methodology to AHSS is relatively scarce. In the present work the fracture toughness of a Dual Phase (strength of 800 MPa) and drawing steel sheets has been measured by means of the EWF. The results show that the test requirements are met and also show the clear influence of notch radii on the measured values, specially for the AHSS grade. Thus, the EWF is postulated as a methodology to evaluate the fracture toughness in AHSS sheets. (Author) 18 refs.

  12. Experimental energetic balance associated to the deformation of an aluminum multicrystal and monocrystal sheet

    Energy Technology Data Exchange (ETDEWEB)

    Louche, H.; Tabourot, L. [LMecA ESIA, Domaine Univ., Annecy (France)

    2004-07-01

    This paper presents a method to estimate the stored energy during the tensile deformation of an aluminum multicrystal and polycrystal sheet sample. The method is based on thermo mechanical macroscopic fields analysis, like strains and temperature, obtained by a visible and an infrared cameras. Preliminary experimental results are presented. On an Al multicrystal sheet, heterogeneous thermo mechanical fields associated to the localized movement of dislocations at a microscopic scale are presented. Furthermore, the energetic balance established during the tensile deformation of an Al polycristal show a decreasing ratio of stored energy on anelastic energy and a non constant fraction of total work converted into heat. (orig.)

  13. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  14. Behaviors of Deformation, Recrystallization and Textures Evolution of Columnar Grains in 3%Si Electrical Steel Slabs

    Directory of Open Access Journals (Sweden)

    SHAO Yuan-yuan

    2017-11-01

    Full Text Available The behaviors of deformation and recrystallization and textures evolution of 3% (mass fraction Si columnar-grained electrical steel slabs were investigated by electron backscatter diffractometer technique and X-ray diffraction. The results indicate that the three columnar-grained samples have different initial textures with the long axes arranged along rolling, transverse and normal directions. Three shear orientations can be obtained in surface layer after hot rolling, of which Goss orientation is formed easily. The α and γ fibre rolling orientations are obtained in RD sample, while strong γ fibre orientations in TD sample and sharp {100} orientations in ND sample are developed respectively. In addition, cube orientation can be found in all the three samples. The characteristics of hot rolled orientations in center region reveal distinct dependence on initial columnar-grained orientations. Strong {111}〈112〉 orientation in RD and TD samples separately comes from Goss orientation of hot rolled sheets, and sharp rotated cube orientation in ND sample originates from the initial {100} orientation of hot rolled sheets after cold rolling. Influenced by initial deviated orientations and coarse grain size, large orientation gradient of rotated cube oriented grain can be observed in ND sample. The coarse {100} orientated grains of center region in the annealed sheets show the heredity of the initial columnar-grained orientations.

  15. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  16. 75 FR 62101 - Stainless Steel Sheet and Strip in Coils From the Republic of Korea: Final Results of Expedited...

    Science.gov (United States)

    2010-10-07

    ...\\ ``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is... DEPARTMENT OF COMMERCE International Trade Administration [C-580-835] Stainless Steel Sheet and... countervailing duty order (``CVD'') on stainless steel sheet and strip in coils from the Republic of Korea...

  17. 75 FR 81221 - Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of the Five-Year...

    Science.gov (United States)

    2010-12-27

    ... trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also excluded from... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822 ] Stainless Steel Sheet and... of the antidumping duty order on stainless steel sheet and strip (``SSSS'') in coils from Mexico...

  18. 75 FR 81214 - Stainless Steel Sheet and Strip in Coils From Italy: Preliminary Results of the Full Second Five...

    Science.gov (United States)

    2010-12-27

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-475-824] Stainless Steel Sheet and... sunset review of the antidumping duty order on stainless steel sheet and strip in coils from Italy...

  19. 75 FR 62104 - Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and...

    Science.gov (United States)

    2010-10-07

    ... trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also excluded from...-831] Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and... duty orders on certain stainless steel sheet and strip in coils from Germany, Italy, Japan, the...

  20. 75 FR 6627 - Stainless Steel Sheet and Strip in Coils From Mexico; Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-02-10

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822] Stainless Steel Sheet and... review of the antidumping duty order on stainless steel sheet and strip (S4) in coils from Mexico. See...

  1. 75 FR 76700 - Stainless Steel Sheet and Strip in Coils From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-12-09

    ... is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is also... DEPARTMENT OF COMMERCE International Trade Administration [A-583-831] Stainless Steel Sheet and... antidumping duty order on stainless steel sheet and strip in coils (SSSSC) from Taiwan. This review covers...

  2. 75 FR 6631 - Stainless Steel Sheet and Strip in Coils from Japan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-02-10

    ...\\``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is... DEPARTMENT OF COMMERCE International Trade Administration [A-588-845] Stainless Steel Sheet and... antidumping duty order on stainless steel sheet and strip in coils (SSSSC) from Japan. This review covers two...

  3. Cyclic deformation behavior of steels and light-metal alloys

    International Nuclear Information System (INIS)

    Walther, Frank; Eifler, Dietmar

    2007-01-01

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy

  4. High-carbon chromium steel resistance to small plastic deformation

    International Nuclear Information System (INIS)

    Gajduchenya, V.F.; Madyanov, S.A.; Apaev, B.A.; Kirillov, Yu.V.; Sokolov, L.D.

    1978-01-01

    The phase composition of a steel with 1.08% C and 2.1% Cr, and the variation in the level of microstresses in the matrix as related to the annealing temperature in the range of 400-600 deg C and in the applied compression stress were investigated. To study the phase composition, and chromium content in the α-solution and the carbide phases, magnetic, chemical, and X-ray spectrum analyses were carried out. The change in the level of microstresses was determined roentgenographically. During the stress relaxation test at temperatures of 20-180 deg C, the mechanism of plastic deformation near the yield point was investigated. It is shown that three dislocation mechanisms operate in high-carbon chromium steel under the conditions at hand: overcoming the Pierls-Nabarro barriers by the dislocations, overcoming the stress fields of coherent carbide particles by dislocations, and circumvention of second-phase particles by dislocations. The dependence of the realization of the different plastic deformation mechanisms on the number of carbide particles and the chromium concentration in the matrix was established. The thermally activated nature of the motion of the dislocations under conditions of stress relaxation at an elevated temperature is noted

  5. Cyclic deformation behavior of steels and light-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Frank [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)], E-mail: walther@mv.uni-kl.de; Eifler, Dietmar [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)

    2007-11-15

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy.

  6. Study on antioxidant experiment on forged steel tube sheet and tube hole for steam generator

    International Nuclear Information System (INIS)

    Zong Hai; Wang Detai; Ding Yang

    2012-01-01

    Antioxidant experiment on forged steel tube sheet and tube hole for steam generator was studied and the influence of different simulated heat treatments on the antioxidant performance of tube sheet and tube hole was made. The influence of different antioxidant methods on the size of tube hole was drawn. Furthermore, the change of size and weight of 18MnD5 forged steel tube sheet on the condition of different simulated heat treatments was also studied. The analytical results have proved reference information for the use of 18MnD5 material and for key processes of processing tube hole and wearing and expanding U-style tube. (authors)

  7. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  8. Strategic surface topographies for enhanced lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten Sixten; Olsson, David Dam; Petrushina, Irina

    2010-01-01

    Strategic stainless steel surfaces have been developed for which the tribological properties are significantly improved for sheet-metal forming compared with the as-received surfaces. The improvements have been achieved by modification of the surface to promote Micro-Plasto Hydrodynamic Lubrication....... The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...

  9. Magnetic properties and recrystallization texture of phosphorus-added non-oriented electrical steel sheets

    International Nuclear Information System (INIS)

    Tanaka, I.; Yashiki, H.

    2006-01-01

    The effect of phosphorus on magnetic properties and recrystallization texture has been investigated in non-oriented electrical steel sheets to develop low core loss and high permeability core materials. Specimens with different phosphorus contents were cold-rolled to various thicknesses, i.e. with various cold-rolling reductions, and annealed for recrystallization and grain growth. Although magnetic induction of the steel with low phosphorus content dramatically dropped with reducing thickness, i.e. with increasing in cold-rolling reduction, that of the steel with high phosphorus content only slightly decreased. The most effective way to reduce core loss was to reduce thickness of electrical steel sheets. Therefore, phosphorus-added thin gauge non-oriented electrical steel sheets have achieved low core loss and high permeability. The typical magnetic properties of phosphorus-added non-oriented electrical steel sheets 0.27mm in sheet thickness were 16.6W/kg in W 10/400 and 1.73T in B 50 . These excellent magnetic properties were due to the recrystallization texture control. {111} component in recrystallization texture was suppressed by the phosphorus segregation at initial grain boundaries. Accordingly, phosphorus would greatly contribute to the improvement of magnetic properties

  10. Deformation mechanism maps for pure iron, corrosion resistant austenitic steels and a low-alloy carbon steel

    International Nuclear Information System (INIS)

    Frost, H.Y.; Ashby, M.F.

    1980-01-01

    Principles of construction of deformation mechanisms charts for iron base alloys are presented. Deformation mechanisms charts for pure iron, 316 and 314 stainless steels, a ferritic steel with 1% Cr, Mo, V are given, examples of the charts application being provided. The charts construction is based, when it is possible, on the state equations, deduced from theoretical models and satisfying experimental data. The charts presented should be considered as an attempt to unite the main regularities of the theory of dislocations and diffusion with the observed experimental picture of plastic deformation and creep of commercial steels [ru

  11. Experimental and Numerical Investigations of Applying Tip-bottomed Tool for Bending Advanced Ultra-high Strength Steel Sheet

    Science.gov (United States)

    Mitsomwang, Pusit; Borrisutthekul, Rattana; Klaiw-awoot, Ken; Pattalung, Aran

    2017-09-01

    This research was carried out aiming to investigate the application of a tip-bottomed tool for bending an advanced ultra-high strength steel sheet. The V-die bending experiment of a dual phase steel (DP980) sheet which had a thickness of 1.6 mm was executed using a conventional bending and a tip-bottomed punches. Experimental results revealed that the springback of the bent worksheet in the case of the tip-bottomed punch was less than that of the conventional punch case. To further discuss bending characteristics, a finite element (FE) model was developed and used to simulate the bending of the worksheet. From the FE analysis, it was found that the application of the tip-bottomed punch contributed the plastic deformation to occur at the bending region. Consequently, the springback of the worksheet reduced. In addition, the width of the punch tip was found to affect the deformation at the bending region and determined the springback of the bent worksheet. Moreover, the use of the tip-bottomed punch resulted in the apparent increase of the surface hardness of the bent worksheet, compared to the bending with the conventional punch.

  12. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...

  13. In-reactor deformation and fracture of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bloom, E.E.; Wolfer, W.G.

    1978-01-01

    An experimental technique for determining in-reactor fracture strain was developed and demonstrated. Differential swelling between a sample holder and a test specimen with a lower swelling rate produced uniaxial deformation. In-reactor deformations of 0.7 to 2.1% were achieved in type 304 stainless steel previously irradiated to fluences up to 8.8 x 10 26 n/m 2 without fracture. These strains are significantly higher than found in postirradiation creep-rupture tests on similar samples. From the measured strain values and published irradiation creep data and correlations, the stress levels during the irradiation were calculated. On the basis of previous postirradiation creep-rupture results, many of the samples that did not fail would be predicted to fail. Thus we conclude that the in-reactor rupture life is longer than predicted by postirradiation tests. Strain in a fractured sample was estimated to be less than 3.8%, and the in-reactor fractures were intergranular--the same fracture mode as found in postirradiation tests. Irradiation creep may relax stresses at crack tips and sliding boundaries, thus retarding the initiation and/or growth of cracks and leading to longer rupture lives in-reactor. However, the very high ductility or superplastic behavior predicted by the strain rate sensitivity of irradiation creep is not achieved because of the eventual interruption of the deformation process by grain boundary fracture

  14. Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture

    NARCIS (Netherlands)

    Tasan, C.C.; Hoefnagels, J.P.M.; Dekkers, E.C.A.; Geers, M.G.D.

    2012-01-01

    While the industrial interest in sheet metal with improved specific-properties led to the design of new alloys with complex microstructures, predicting their safe forming limits and understanding their microstructural deformation mechanisms remain as significant challenges largely due to the

  15. Effect of initial grain size on inhomogeneous plastic deformation and twinning behavior in high manganese austenitic steel with a polycrystalline microstructure

    Science.gov (United States)

    Ueji, R.; Tsuchida, N.; Harada, K.; Takaki, K.; Fujii, H.

    2015-08-01

    The grain size effect on the deformation twinning in a high manganese austenitic steel which is so-called TWIP (twining induced plastic deformation) steel was studied in order to understand how to control deformation twinning. The 31wt%Mn-3%Al-3% Si steel was cold rolled and annealed at various temperatures to obtain fully recrystallized structures with different mean grain sizes. These annealed sheets were examined by room temperature tensile tests at a strain rate of 10-4/s. The coarse grained sample (grain size: 49.6μm) showed many deformation twins and the deformation twinning was preferentially found in the grains in which the tensile axis is parallel near to [111]. On the other hand, the sample with finer grains (1.8 μm) had few grains with twinning even after the tensile deformation. The electron back scattering diffraction (EB SD) measurements clarified the relationship between the anisotropy of deformation twinning and that of inhomogeneous plastic deformation. Based on the EBSD analysis, the mechanism of the suppression of deformation twinning by grain refinement was discussed with the concept of the slip pattern competition between the slip system governed by a grain boundary and that activated by the macroscopic load.

  16. Acoustic emission during tensile deformation of M250 grade maraging steel

    Science.gov (United States)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  17. Investigation of the deformation stability in the incremental sheet forming process

    Directory of Open Access Journals (Sweden)

    Ai S.

    2015-01-01

    Full Text Available Incremental sheet forming (ISF is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. One of the unique characters of the ISF process is the improved formability comparing to conventional sheet forming process. This may be due to the localized deformation nature, which increases the deformation stability in the ISF process. Although many hypotheses have been proposed, there is no direct modelling and calculation of the ISF deformation stability. Aiming to obtain a better understanding of the ISF process, an analytical model was developed to investigate and analyse the material deformation stability in this work. Based on the analytical evaluation of stress variations and force equilibrium, a mathematical relationship between the maximum forming angle and the process stability condition was established. To validate the developed model, experiments were carried out by forming a hyperbolic part made of AA1100 material. The maximum forming angle, as an indicator to the ISF formability, was employed compare the analytical evaluation and experimental result. It was found that the ISF deformation stability is one of the key factors that affect the ISF formability.

  18. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  19. Effect of deformation on the continuous cooling transformation (CCT) diagram of steel 32CRB4

    OpenAIRE

    Kawulok, R.; Schindler, I.; Kawulok, P.; Rusz, S.; Opěla, P.; Solowski, Z.; Čmiel, K. M.

    2015-01-01

    CCT and DCCT steel diagrams of the steel 32CrB4 were determined by the universal plastometer GLEEBLE 3 800 on the basis of dilatometric tests. Dilatometric analysis showed that compared to the diagram provided by the software QTSteel th e noses of individual curves are in fact shifted towards shorter times. Preceding deformation significantly affected the decay diagram of the investigated steel. Shorter times, which were available for recovery of the deformed structure during more...

  20. Deformation-Induced Microstructural Banding in TRIP Steels

    Science.gov (United States)

    Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.

    2018-05-01

    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.

  1. Fracture toughness of steel--aluminum deformation welds

    International Nuclear Information System (INIS)

    Albright, C.E.

    1978-11-01

    A study of the fracture toughness (in this case, G/sub Ic/) of steel--aluminum deformation welds using a specially developed double cantilever beam fracture toughness specimen is presented. Welds made at 350 0 C were heat treated at 360, 380, 400, 420, and 440 0 C. An intermetallic reaction product layer of Fe 2 Al 5 is formed at the steel--aluminum interface with increasing heat treating temperature and time by a process of nucleation and growth of discrete particles. A transition in toughness from a higher average G/sub Ic/ value (6097 N/m) to a very low average G/sub Ic/ value (525 N/m) is observed. The decrease in toughness is accompanied by an increase in Fe 2 Al 5 particle diameter from 4 to 8 μm. Failure at the higher toughness values is characterized by ductile rupture through the aluminum. At the lower toughness values, failure occurs between the aluminum and the Fe 2 Al 5 reaction product layer. A void layer forming by a vacancy condensation mechanism in the aluminum adjacent to the Fe 2 Al 5 is shown to cause the embrittlement

  2. Deformation twinning in irradiated ferritic/martensitic steels

    Science.gov (United States)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  3. SCC susceptibility evaluation of plastic deformed austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshima, Yoshiari; Totsuka, Nobuo; Arioka, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    Slow strain rate temperature (SSRT) tests were carried out to evaluate the SCC susceptibility of deformed SUS316 stainless steel in simulated primary water of pressurized water reactor (PWR). The influence of material hardness and temperature on SCC susceptibility was studied. From these tests following results were obtained. (1) Both of the total SCC and IGSCC susceptibilities increased as the hardness of deformed specimens increased. Especially over 250{approx}300HV area, this tendency remarkably increased. (2) The reduction ratio showed a plateau under 300HV area. However, over 300HV area, it decreased remarkably as the hardness increased, that is, the SCC susceptibility remarkably increased. (3) Based on the SSRT test results conducted at 320, 340 and 360degC, the total SCC susceptibility dependence on temperature was small and the IGSCC susceptibility was dependent on the temperature. From these results, the TGSCC susceptibility dependence on temperature was also small. The activation energy of total SCC and IGSCC susceptibility were calculated. (author)

  4. Evolution of oxide nanoparticles during dynamic plastic deformation of ODS steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, Nairong

    2014-01-01

    The microstructure as well as the deformation behavior of oxide nanoparticles has been analyzed in the ferritic ODS steel PM2000 after compression by dynamic plastic deformation (DPD) to different strains. A dislocation cell structure forms after deformation to a strain of 1.0. DPD to a strain of 2...

  5. Determination of the forming limit diagram of zinc electro-galvanized steel sheets

    Directory of Open Access Journals (Sweden)

    W. Fracz

    2012-04-01

    Full Text Available Forming limit curves (FLC of deep drawing steel sheets have been determined experimentally and calculated on the base of the material tensile properties following the Hill, Swift, Marciniak-Kuczyński and Sing-Rao methods. Only the FLC modeled from a singly linear forming limit stress curve exhibits good consistence with experimental curve. It was established that a linearized limit stress locus describes adequately the actual localized neck conditions for the material chosen in this study. The quantitative X-ray microanalysis of the Fe contents in the sheet surface layer composition was used to determine cracking limit curve (CLC of electro-galvanized steel sheet. The change in zinc layer (and base sheet metal thickness was used as a criteria in calculation of the CLC.

  6. The study on the threshold strain of microvoid formation in TRIP steels during tensile deformation

    International Nuclear Information System (INIS)

    Wang Wurong; Guo Bimeng; Ji Yurong; He Changwei; Wei Xicheng

    2012-01-01

    Highlights: ► The tensile mechanical behaviors of TRIP steels were studied under high rate deformation conditions. ► The threshold strain of microvoid formation was examined quantitatively. ► The effects of retained austenite of TRIP on suppressing microvoid formed during tensile process have been discussed. - Abstract: Transformation Induced Plasticity (TRIP) steels exhibit a better combination of strength and ductility properties than conventional high strength low alloy (HSLA) steels, and therefore receive considerable attention in the automotive industry. In this work, the tensile mechanical behaviors of TRIP-aided steels were studied under the condition of the quasi-static and high deformed rates. The deformed specimens were observed by scanning electron microscope (SEM) along the tensile axis. The threshold strain of microvoid formation was examined quantitatively according to the evolution of deformation. The results showed that: the yield and tensile strengths of TRIP steels increase with the strain rate, whereas their elongations decrease. However, the threshold strain for TRIP steels at high strain rate is larger than that at low strain rate. Comparing with the deformed microstructure and microvoids formed in the necking zone of dual phase (DP) steel, the progressive deformation-induced transformation of retained austenite in TRIP steels remarkably increases the threshold strain of microvoid formation and furthermore postpones its growth and coalescence.

  7. Steel Fibres: Effective Way to Prevent Failure of the Concrete Bonded with FRP Sheets

    Directory of Open Access Journals (Sweden)

    V. Gribniak

    2016-01-01

    Full Text Available Although the efficiency of steel fibres for improving mechanical properties (cracking resistance and failure toughness of the concrete has been broadly discussed in the literature, the number of studies dedicated to the fibre effect on structural behaviour of the externally bonded elements is limited. This experimental study investigates the influence of steel fibres on the failure character of concrete elements strengthened with external carbon fibre reinforced polymer sheets. The elements were subjected to different loading conditions. The test data of four ties and eight beams are presented. Different materials were used for the internal bar reinforcement: in addition to the conventional steel, high-grade steel and glass fibre reinforced polymer bars were also considered. The experimental results indicated that the fibres, by significantly increasing the cracking resistance, alter the failure character from splitting of the concrete to the bond loss of the external sheets and thus noticeably increase the load bearing capacity of the elements.

  8. Ductile Tearing Resistance Indexing of Automotive Grade DP 590 Steel Sheets: EWF Testing Using DENT Specimens

    Science.gov (United States)

    Sahoo, Subhadra; Padmapriya, N.; De, Partha Sarathi; Chakraborti, P. C.; Ray, S. K.

    2018-03-01

    The essential work of fracture (EWF) method has been explored for indexing the ductile tearing resistance of DP 590 automotive grade dual-phase steel sheet both in longitudinal (L-T) and transverse (T-L) orientations. The simplest possible test and analysis procedures have been adopted. The EWF method is found to be eminently suitable for routine quality control and product development purposes for such materials. Areas for further research for improving the experimental strategy are highlighted. For the investigated steel sheet, the estimated tearing resistance is found to be distinctly higher for the L-T orientation compared to the T-L orientation; the reason thereof merits further investigation.

  9. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Guoqing, E-mail: gz854@uowmail.edu.au [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zhang, Xiaoming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Wang, Yuqian [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Yan, Yi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Li, Chengang; Cao, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Jiang, Zhengyi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2017-02-15

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong <100>//ND texture and present high magnetic inductions and low iron losses after finial annealing. - Highlights: • 4.5 wt% Si as-cast sheet with excellent workability was produced by strip casting. • Three 4.5 wt% Si thin sheets were effectively fabricated by warm and cold rolling. • The microstructure and macro-texture of the thin sheets were elucidated. • High magnetic inductions and low iron losses were achieved simultaneously.

  10. Magnetic Properties and Structure of Non-Oriented Electrical Steel Sheets after Different Shape Processing

    Czech Academy of Sciences Publication Activity Database

    Bulín, Tomáš; Švábenská, Eva; Hapla, Miroslav; Ondrůšek, Č.; Schneeweiss, Oldřich

    2017-01-01

    Roč. 131, č. 4 (2017), s. 819-821 ISSN 0587-4246. [CSMAG 2016 - Czech and Slovak Conference on Magnetism /16./. Košice, 13.06.2016-17.06.2016] R&D Projects: GA TA ČR(CZ) TE02000232 Institutional support: RVO:68081723 Keywords : Magnetic properties * Silicon steel * Steel sheet Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  11. Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration

    Science.gov (United States)

    Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian

    2018-01-01

    In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.

  12. Effect of Punch Stroke on Deformation During Sheet Forming Through Finite Element

    Science.gov (United States)

    Akinlabi, Stephen; Akinlabi, Esther

    2017-08-01

    Forming is one of the traditional methods of making shapes, bends and curvature in metallic components during a fabrication process. Mechanical forming, in particular, employs the use of a punch, which is pressed against the sheet material to be deformed into a die by the application of an external force. This study reports on the finite element analysis of the effects of punch stroke on the resulting sheet deformation, which is directly a function of the structural integrity of the formed components for possible application in the automotive industry. The results show that punch stroke is directly proportional to the resulting bend angle of the formed components. It was further revealed that the developed plastic strain increases as the punch stroke increases.

  13. Deformation induced martensite in AISI 316 stainless steel

    Directory of Open Access Journals (Sweden)

    Solomon, N.

    2010-04-01

    Full Text Available The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE, which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

    El proceso de conformación da a lugar a una considerable diferenciación del campo de tensiones dentro de una barra de extrusión y, finalmente, causa una distribución no uniforme de la tensión total, la microestructura y propiedades del material sobre el corte transversal. En este trabajo se estudia la influencia de los estados de tensión sobre la transformación martensítica inducida por deformación en un acero inoxidable austenítico tipo AISI 316. La formación de martensita inducida por

  14. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface ...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear....

  15. Modelling and simulations in hot deformation of steels

    International Nuclear Information System (INIS)

    Cabrera, J.M.

    2002-01-01

    Traditionally, hot forming has been employed to provide shape to metals. Nowadays, however, hot working not only produces the desired geometry, but also the mechanical characteristics required. An understanding of the thermomechanical behaviour of metals, and particularly steels, is essential in the simulation and control of the hot forming operations. Moreover, a right prediction of the final properties needs from accurate descriptions of the microstructural features occurring during the shaping step. For this purpose, the determination of constitutive equations describing the stress σ - strain ε relationships at a given strain rate ε, temperature T and initial microstructure, is a useful task. In this sense, computer simulations of hot working processes proportionate a benchmark to engineers and researchers and allow decreasing the cost of developing products and processes. With regard to the prediction of the final microstructure, the simulation of the hot plastic deformation usually gives unsatisfactory results. This is due to the inadequate constitutive equations employed by the conventional and commercial software available to describe the hot flow behaviour. There are scarce models which couple the typical hot working variables (temperature, strain and strain rate) with microstructural characteristics such as grain size. In this review work is presented how the latter limitation can be overcome by using physical-based constitutive equations, some of which have been partially developed by the present authors, where account of the interaction between microstructure and processing variables is taken. Moreover, a practical derivation of the latter expressions on an AISI-304 steel is presented. To conclude, some examples of industrial applications of the latter approach are also presented. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  16. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    International Nuclear Information System (INIS)

    Gaworska-Koniarek, Dominika; Szubzda, Bronislaw; Wilczynski, Wieslaw; Drosik, Jerzy; Karas, Kazimierz

    2011-01-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  17. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    Science.gov (United States)

    Gaworska-Koniarek, Dominika; Szubzda, Bronisław; Wilczyński, Wiesław; Drosik, Jerzy; Karaś, Kazimierz

    2011-07-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  18. Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Kumar, Amit, E-mail: chaudhary65amit@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, Satish K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2016-11-01

    In the present investigation, ultra low carbon steel samples were deformed in plane strain compression mode in a deformation simulator. The deformation was carried out at four different temperatures in the warm rolling region (293, 473, 673 and 873 K) upto 70% strain at two different strain rates (0.1/s and 1/s). Subsequently, all the deformed samples were fully recrystallized at 1073 K. Afterwards, all the deformed and fully recrystallized samples were subjected to detailed microstructural characterization using optical microscope, scanning electron microscope and electron backscattered diffraction. Bulk texture was measured for all the samples by X-ray diffraction. In-grain misorientation developments (kernel average misorientations) were estimated for the deformed γ-fibre (ND//<111>) and α-fibre (RD//<110>). Deformed γ-fibre showed an increase in in-grain misorientation at intermediate deformation temperatures. This increase was explained by using the plastic instability criterion. After complete recrystallization, the γ-fibre strengthened for deformation at lower temperatures (293 K and 473 K), while Goss texture developed for samples deformed at higher temperatures (673 K and 873 K). - Highlights: • ULC steel samples were deformed in near plane strain condition. • Microstructural developments were characterized using EBSD. • Increase in in-grain misorientation at intermediate deformation temperatures. • γ-fibre strengthened for low temperature deformation. • Goss texture developed for high temperature deformation.

  19. 75 FR 81308 - Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan

    Science.gov (United States)

    2010-12-27

    ...)] Stainless Steel Sheet And Strip From Germany, Italy, Japan, Korea, Mexico, And Taiwan AGENCY: United States... and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan. SUMMARY: The Commission hereby gives... strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to lead to continuation or...

  20. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    Science.gov (United States)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  1. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  2. Transformation in austenitic stainless steel sheet under different loading directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  3. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  4. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    Energy Technology Data Exchange (ETDEWEB)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  5. Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel

    Science.gov (United States)

    Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.

    2017-12-01

    Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.

  6. Measurements of residual deformations of steel-aluminum conductors in operating overhead lines

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.V.; Kesel' man, L.M.; Treiger, A.S.

    1982-12-01

    Experience in the operation of overhead power lines using steel-aluminum conductors is presented. Measurements were taken on the residual deformation of the steel-aluminum lines to determine the amount of sag increase and to forecast this increase for the entire period of operation. It is recommended that the work on measuring the residual deformation in the power lines be extended to a broader range of operating conditions such as conductors, spans, and climate conditions.

  7. On Necking, Fracture and Localization of Plastic Flow in Austenitic Stainless Steel Sheets

    International Nuclear Information System (INIS)

    Korhonen, A. S.; Manninen, T.; Kanervo, K.

    2007-01-01

    The forming limits of austenitic stainless steel sheets were studied in this work. It was found that the observed limit of straining in stretch forming, when both of the principal stresses are positive, is not set by localized necking, but instead by inclined shearing fracture in the through thickness direction. It appears that the forming limits of austenitic stainless steels may be predicted fairly well by using the classical localized and diffuse necking criteria developed by Hill. The strain path-dependence may be accounted for by integrating the effective strain along the strain path. The fracture criteria of Rice and Tracey and Cockcroft, Latham and Oh were also studied. The results were in qualitative agreement with the experimental observations. Recent experiments with high-velocity electrohydraulic forming of austenitic stainless steels revealed localized necks in stretch formed parts, which are not commonly observed in conventionally formed sheet metal parts

  8. The role of textures in the forming of automotive sheet steels

    International Nuclear Information System (INIS)

    Sanak Mishra

    1996-01-01

    Crystallographic textures generally have a strong bearing on the drawability of sheet steels. Particularly in the case of automotive sheets, texture control is of paramount importance. In the last two decades, therefore, texture research has assumed much significance in the steel industry. X-ray diffraction continues to remain the most used tool for the study of textures. Early researches, from about 1940 to 1980, were invariably carried out by the pole figure method. However, for more quantitative results the ODF (Orientation Distribution Functions) analysis technique was developed. Since 1980, the ODF analysis has come to be used extensively. In the present paper, several unique features of textures in automotive grade deep drawing steels, as revealed from X-ray ODFS, will be presented. The relative importance of the various textural components with respect to forming will also be dealt with

  9. Finite element simulation of laser cutting process of steel sheet

    Directory of Open Access Journals (Sweden)

    Meško Jozef

    2018-01-01

    Full Text Available Lasers are widely used in industry as cutting tools due to ultra flexibility of the cutting conditions, obtaining high quality end product, quick set up, non-mechanical contact between the workpiece and the tool, and small size of the heat affected zone. In the present study, laser gas assisted cutting process is examined. The laser cutting sheet solution is practically always very convenient compared to conventional technologies and brings the greatest cost savings in the manufacturing process.

  10. Manufacturing prepainted steel sheet by electron beam curing

    International Nuclear Information System (INIS)

    Oka, Joji

    1987-01-01

    Several advantages are offered by electron beam curing. A formidably hard and stain resistant paint film which is difficult to obtain by heat curing paint is developed. As a result, a unique new prepainted steel is produced. Four technologies are involved: development high-quality paint, selection of optimum electron beam processor, technology to control electron beam processing atmosphere and secondary X-ray shield technology. These technologies are described in detail. (A.J.)

  11. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri

    2016-01-01

    : - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical......Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge...

  12. Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion

    Science.gov (United States)

    Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.

    2006-04-01

    It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.

  13. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied in carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.

  14. Deformation path effects on the internal stress development in cold worked austenitic steel deformed in tension

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Grant, B.; Sherry, A.H.; Quinta da Fonseca, J.

    2014-01-01

    The effects of cold work level and strain paths on the flow stress of austenitic stainless steels, including Bauschinger effect and associated internal stresses were investigated with both mechanical testing and neutron diffraction techniques. The main objective was to assess the effects of cold rolling: to 5%, 10%, 20% and 40% reduction and uniaxial straining on the evolution of the internal strains during the re-straining to 5% tensile strain in-situ, which is relevant for stress corrosion cracking (SCC) studies. The results of mechanical testing showed that the yield strength of material increased when it was reloaded in the forward direction and decreased well below the flow stress when the loading direction was reversed, showing a strong Bauschinger effect. The magnitude of Bauschinger effect is independent on whether tensile or compressive prestraining comes first but rather on the amount of prestrain. The assessment of the effect of prestraining methods showed that the magnitude of yield asymmetry was higher in the material prestrained by uniaxial deformation than those prestrained by cold rolling. Neutron diffraction test results showed that the elastic lattice strain difference between the maximum and minimum strain values increased consistently with the applied stress during the re-straining to 5% tensile strain in-situ along the 3 orthogonal directions of the rolled plate. It also emerged that, following the in-situ loading of cold rolled materials to 5% tensile strain, the largest strain difference occurred in the material prestrained to 20% reduction. In cold rolled samples, the peak width increased with cold work levels and during re-straining to 5% along rolling, transverse to rolling and normal directions which simulated reversed condition. In contrast to the cold rolled samples, there was neither increase nor decrease in the peak width of samples prestrained by uniaxial deformation on re-straining in reverse direction. This was rationalised in

  15. Effect of Dislocation Density on Deformation Behavior of Super Strong Bainitic Steel

    Directory of Open Access Journals (Sweden)

    B. Avishan

    2017-02-01

    Full Text Available Presence of nanoscale bainitic ferrites and high carbon retained austenites that are stable at ambient temperature within the microstructures of super strong bainitic steels makes it possible to achieve exceptional strengths and ductility properties in these groups of nanostructured steels. This article aims to study the effect of the dislocation density variations during tensile testing in ambient temperature on deformation behavior of nanostructured low temperature bainitic steels. Results indicate that dislocation absorption from bainitic ferrite subunits by surrounding retained austenite reduces the work hardening and therefore increases the formability of bainitic ferrite during deformation, which in turn results in a suitable combination of strength and ductility.

  16. Recent Trends of Coated Sheet Steels for Automotive use

    International Nuclear Information System (INIS)

    Moon, Manbeen

    2012-01-01

    Recent issues in the automotive industries are, improvement of fuel efficiency according to the worldwide CO 2 regulation, passenger safety through enhanced crash worthiness, superior design and cost reduction due to price fluctuation of raw material. To meet these demands, steelmaking companies are developing advanced high strength steel and new process technologies such as hydroforming, TWB(Tailor Welded Blank), hot stamping and so on. In addition, eco-friendly and high corrosion resistant coating technologies are getting more attention to comply with the environmental regulations. In this paper, reviews and prospects of recent coating technologies for automotive use are presented

  17. Effect of plastic deformation on the magnetic properties of selected austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2017-04-01

    Full Text Available Austenitic stainless steels are materials, that are widely used in various fields of industry, architecture and biomedicine. Their specific composition of alloying elements has got influence on their deformation behavior. The main goal of this study was evaluation of magnetic properties of selected steels, caused by plastic deformation. The samples were heat treated in different intervals of temperature before measuring. Then the magnetic properties were measured on device designed for measuring of magnetism. From tested specimens, only AISI 304 confirmed effect of plastic deformation on the magnetic properties. Magnetic properties changed with increasing temperature.

  18. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  19. Characterization of the behaviour of electro-galvanised steel sheets in terms of corrosion

    International Nuclear Information System (INIS)

    Finoly, Guylene

    1992-01-01

    This research thesis reports the development of a test method for the characterization of the behaviour of electro-galvanised steel sheets (i.e. zinc coated steel sheets as those used in the automotive industry) with respect to corrosion, and the definition of a classification of these materials with respect to their surface activity. After an overview of the different existing methods of determination of corrosion rate, the author reports the development of an experimental device adapted to the electrochemical study of electro-galvanised sheets, i.e. adapted to their low thickness (0,7 mm) and coating characteristics (10 μm thick). This device is then used in the case of solid zinc. The authors reports the study of the behaviour of sheets in a NaCl solution in order to meet industrial conditions used to activate the surface before the phosphate conversion process which aims at ensuring paint adherence. A test is proposed and validated by comparison with other electrochemical or chemical methods, and used to study the behaviour of electro-galvanised sheets submitted to a phosphate conversion coating process [fr

  20. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    OpenAIRE

    Haque, Rezwanul; Wong, Yat C.; Paradowska, Anna; Blacket, Stuart; Durandet, Yvonne

    2017-01-01

    Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR) joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring...

  1. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-15

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15–90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B{sub 8} and iron loss P{sub 10/400} was 1.79 T and 6.9 W/kg, respectively. - Highlights: • Ultra-thin grain-oriented silicon steel was produced by strip casting process. • Microstructure, texture and inhibitor evolution was briefly investigated. • Goss texture was absent in primary recrystallization annealed sheet. • MnS precipitates with a size range of 15–90 nm formed after normalizing. • A complete secondary recrystallization microstructure was produced.

  2. Effect of deformation on the continuous cooling transformation (CCT diagram of steel 32CRB4

    Directory of Open Access Journals (Sweden)

    R. Kawulok

    2015-07-01

    Full Text Available CCT and DCCT steel diagrams of the steel 32CrB4 were determined by the universal plastometer GLEEBLE 3 800 on the basis of dilatometric tests. Dilatometric analysis showed that compared to the diagram provided by the software QTSteel th e noses of individual curves are in fact shifted towards shorter times. Preceding deformation significantly affected the decay diagram of the investigated steel. Shorter times, which were available for recovery of the deformed structure during more rapid cooling, resulted in a significant shift of the curves in the DCCT diagram towards shorter times. At low cooling rates the effect of deformation was practically negligible, since recrystallization took place between the deformation and beginning of the phase transformation.

  3. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    Directory of Open Access Journals (Sweden)

    Thierry Belgrand

    2010-10-01

    Full Text Available This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature.

  4. Experimental and numerical investigations of the steel sheets formability with hydroforming

    Directory of Open Access Journals (Sweden)

    Vasile Radu

    2017-01-01

    Full Text Available The present paper focuses on analyzing the forming capacity of steel blanks with hydroforming process. For this research steel sheets have been in focus for numerical and experimental analysis. The main advantages for this materials are good surface finish, excellent forming capacity and close tolerances, appealing advantages for manufacturers. A finite element model has been developed from data obtained through tensile tests and forming limit curves. A newly developed hydroforming press has been used to carry out the forming experiments. Side-by-side analysis between numerical and experimental results concludes the experiment.

  5. In situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance

    Science.gov (United States)

    Sun, Yunna; Wang, Bo; Wang, Huiying; Wu, Kaifeng; Yang, Shengyong; Wang, Yan; Ding, Guifu

    2017-12-01

    The in situ measurement of TSVs deformation at different temperature is meaningful for learning more about the thermal deformation schemes of 3D TSVs in the microelectronic devices. An efficient and smart hotplate based on sheet resistance is designed for offering more heat, producing a uniform temperature distribution, relieving thermal stress and heat concentration issues, and reducing room space, which was optimized by the finite element method (FEM). The fabricated hotplate is efficient and smart (2.5 cm  ×  2.0 cm  ×  0.5 cm) enough to be located in the limited space during measuring. The thermal infrared imager was employed as the temperature sensor for monitoring the temperature distribution of TSVs sample. The 3D profilometry was adopted as the observer for TSVs profiles survey. The in situ 2D top surface profiles and 3D displacement profiles of TSVs sample at the different temperature were measured by 3D profilometer. The in situ average relative deformation and effective plastic deformation of the TSV sample were measured. With optical measurement method, 3D profilometry, the TSV sample can be tested repeatedly.

  6. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Wang Songtao; Yang Ke; Shan Yiyin; Li Laifeng

    2008-01-01

    The plastic deformation and fracture behaviors of two nitrogen-alloyed austenitic stainless steels, 316LN and a high nitrogen steel (Fe-Cr-Mn-0.66% N), were investigated by tensile test and Charpy impact test in a temperature range from 77 to 293 K. The Fe-Cr-Mn-N steel showed ductile-to-brittle transition (DBT) behavior, but not for the 316LN steel. X-ray diffraction (XRD) confirmed that the strain-induced martensite occurred in the 316LN steel, but no such transformation in the Fe-Cr-Mn-N steel. Tensile tests showed that the temperature dependences of the yield strength for the two steels were almost the same. The ultimate tensile strength of the Fe-Cr-Mn-N steel displayed less significant temperature dependence than that of the 316LN steel. The strain-hardening exponent increased for the 316LN steel, but decreased for the Fe-Cr-Mn-N steel, with decreasing temperature. Based on the experimental results and the analyses, a modified scheme was proposed to explain the fracture behaviors of austenitic stainless steels

  7. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  8. Measurement of Local Deformations in Steel Monostrands Using Digital Image Correlation

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2014-01-01

    The local deformation mechanisms in steel monostrands have a significant influence on their fatigue life and failure mode. However, the observation and quantification of deformations in monostrands experiencing axial and transverse deformations is challenging because of their complex geometry......, difficulties with the placement of strain gauges in the vicinity of the anchorage, and, most importantly, the relatively small magnitude of deformation occurring in the monostrand. This paper focuses on the measurement of localized deformations in high-strength steel monostrands using the digital image...... correlation (DIC) technique. The presented technique enables the measurement of individual wire strains along the length of the monostrand and also provides quantitative information on the relative movement between individual wires, leading to a more in-depth understanding of the underlying fatigue mechanisms...

  9. Investigation of sheet steel St 37.2 under mechanical impact

    International Nuclear Information System (INIS)

    Berg, H.P.; Brennecke, P.; Koester, R.; Friehmelt, V.

    1990-01-01

    Special waste originating, e.g. from chemical industry and radioactive wastes are emplaced in disposal mines. Slinger stowing is an approved technique to fill up residual voids in emplacement rooms. If it should be applied, possible mechanical loads on the integrity of sheet steel containers have to be considered. By theoretical calculations and by experiments under variation of different parameters using test specimen and backfill material from the Konrad mine using the container type V as an example it has been shown that sheet steel St 37.2 with a wall thickness of 3 mm will withstand mechanical impact imposed by backfill particles having a speed of 24 m/s. (orig.) [de

  10. The measurement of magnetic properties of electrical sheet steel - survey on methods and situation of standards

    CERN Document Server

    Sievert, J

    2000-01-01

    A brief review of the different requirements for magnetic measurement techniques for material research, modelling of material properties and grading of the electrical sheet steel for trade purposes is presented. In relation to the main application of laminated electrical steel, this paper deals with AC measurement techniques. Two standard methods, Epstein frame and Single Sheet Tester (SST), producing different results, are used in parallel. This dilemma was analysed in detail. The study leads to a possible solution of the problem, i.e. the possibility of converting the results of one of the two methods into the results of the other in order to satisfy the users of the Epstein method and, at the same time, to improve the acceptance of the more economical SST method.

  11. Hot deformation behavior of austenite in HSLA-100 microalloyed steel

    International Nuclear Information System (INIS)

    Momeni, A.; Arabi, H.; Rezaei, A.; Badri, H.; Abbasi, S.M.

    2011-01-01

    Research highlights: → The flow stress is well fitted by the exponential constitutive equation. → The average value of apparent activation energy for hot deformation is 377 kJ mol -1 . → A yield point phenomenon is observed on flow curves at high temperatures. → The Avrami exponent is determined around unity for dynamic recrystallization. - Abstract: Dynamic recrystallization of austenite in the Cu-bearing HSLA-100 steel was investigated by hot compression testing at a temperature range of 850-1150 deg. C and a strain rate of 0.001-1 s -1 . The obtained flow curves at temperatures higher than 950 deg. C were typical of DRX while at lower temperatures the flow curves were associated with work hardening without any indication of DRX. At high temperatures, flow stress exhibited a linear relation with temperature while at temperatures below 950 deg. C the behavior changed to non-linear. Hence, the temperature of 950 deg. C was introduced as the T nr of the alloy. All the flow curves showed a yield point elongation like phenomenon which was attributed to the interaction of solute atoms, notably carbon, and moving dislocations. The maximum elongation associated with the yield point phenomenon was observed at about 950 deg. C. Since the maximum yield point elongation was observed about the calculated T nr , it was concluded that carbon atoms were responsible for it. It was also concluded that the temperature at which the yield point elongation reaches the maximum value increases as strain rate rises. The stress and strain of the characteristic points of DRX flow curves were successfully correlated to the Zener-Hollomon parameter, Z, by power-law equations. The constitutive exponential equation was found more precise than the hyperbolic sine equation for modeling the dependence of flow stress on Z. The apparent activation energy for DRX was determined as 377 kJ mol -1 . The kinetics of DRX was modeled by an Avrami-type equation and the Avrami's exponent was

  12. Microstructure and properties of 700 MPa grade HSLA steel during high temperature deformation

    International Nuclear Information System (INIS)

    Chen, Xizhang; Huang, Yuming; Lei, Yucheng

    2015-01-01

    Highlights: • Hot deformation behavior of 700 MPa HSLA steel above 1200 °C in was detailed studied. • Uniform and granular bainite is formed when the deformation amount is 40%. • Deformation resistance value under steady-equilibrium state is about 56 MPa. - Abstract: A high temperature deformation experiment was conducted on a high strength low alloy (HSLA) steel Q690 using Thermecmastor-Z thermal/physical simulator. During the experiment, the specimens were heated from room temperature to 1200 °C with the heating rate of 10 °C/s and 50 °C/s, respectively. The deformation temperature was 1200 °C and the deformation amounts were 0%, 10% and 40%, respectively. The microstructures, stress–strain diagram and hardness were obtained. The results revealed that the microstructure transformation of deformed austenite was quite different from that of the normal situation. With the increasing of deformation amount, more lath-shaped microstructure and less granulous microstructure were observed. The compressive deformation effectively prevented the precipitation of carbides. Larger deformation amount or lower heating rate was conducive to the atomic diffusion, which led to the microstructure uniformity and hardness decreasing. The maximum stress was 68.4 MPa and the steady stress was about 56 MPa

  13. Meso-Scale Modelling of Deformation, Damage and Failure in Dual Phase Steels

    Science.gov (United States)

    Sari Sarraf, Iman

    Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high ductility, formability, and strength, as well as high strength-to-weight ratio and improved crash resistance. Dual phase steels belong to a family of high strength grades which consist of martensite, responsible for strengthening, distributed in a ductile ferrite matrix which accommodates the deformation throughout the forming process. It has been shown that the predominant damage mechanism and failure in DP steels depends on the ferrite and martensite grain sizes and their morphology, and can range from a mixture of brittle and ductile rupture to completely ductile rupture in a quasi-static uniaxial tension test. In this study, a hybrid finite element cellular automata model, initially proposed by Anton Shterenlikht (2003), was developed to evaluate the forming behaviour and predict the onset of instability and damage evolution in a dual phase steel. In this model, the finite element constitutive model is used to represent macro-level strain gradients and a damage variable, and two different cell arrays are designed to represent the ductile and brittle fracture modes in meso-scale. In the FE part of the model, a modified Rousselier ductile damage model is developed to account for nucleation, growth and coalescence of voids. Also, several rate-dependent hardening models were developed and evaluated to describe the work hardening flow curve of DP600. Based on statistical analysis and simulation results, a modified Johnson-Cook (JC) model and a multiplicative combination of the Voce-modified JC functions were found to be the most accurate hardening models. The developed models were then implemented in a user-defined material subroutine (VUMAT) for ABAQUS/Explicit finite element simulation software to simulate uniaxial tension tests at strain rates ranging from 0.001 1/s to 1000 1/s, Marciniak tests, and electrohydraulic free-forming (EHFF

  14. Testing and modelling of new tribo-systems for industrial sheet forming of stainless steels

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Friis, Kasper Storgaard; Bay, Niels

    2011-01-01

    Sheet metal forming of stainless steels is known to be tribologically demanding. To ensure satisfactory production without pick-up and galling, lubrication with environmentally hazardous chlorinated paraffin oil is normally required and in the most severe cases combined with ceramic tool coatings...... as well as the production test in order to estimate the critical interface temperature for lubricant film breakdown. Simulation results show good agreement with experimental measurements of tool temperature close to the interface....

  15. Contract for the supply of steel sheets to the BINP using money from the Russian fund

    CERN Document Server

    1999-01-01

    The Finance Committee is invited to note the decision which the Management has had to take, based on the arguments set out in this document, to place a contract without competitive tendering, using money from the Budker Institute for Nuclear Physics (BINP) in the Russian Fund RF-LHC I and, for the purchase of steel sheets from the firm EBG (DE), for an amount of 818 915 DEM (DDU Novosibirsk).

  16. Texture Design for Reducing Tactile Friction Independent of Sliding Orientation on Stainless Steel Sheet

    OpenAIRE

    Zhang, S.; Zeng, X.; Igartua, A.; Rodriguez Vidal, E.; van der Heide, E.

    2017-01-01

    Surface texture is important for contact mechanical and tribological phenomena such as the contact area and friction. In this research, three different types of geometrical microstructures were designed and fabricated by pulsed laser surface texturing as semi-symmetric (grooved channel), asymmetric fractal (Hilbert curve), and symmetric patterns (grid). A conventionally finished surface as a reference sample from the same stainless steel sheet material was compared. From the experimental appr...

  17. Void nucleation in spheroidized steels during tensile deformation

    International Nuclear Information System (INIS)

    Fisher, J.R. Jr.

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy

  18. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  19. A study on corrosion resistance of electrodeposited Zn-base alloy steel sheet

    International Nuclear Information System (INIS)

    Park, Hyun Soon

    1986-01-01

    Effects of electrodeposits of Zn-Ni or Zn-Co alloy with small amounts of Mo or W in sulphate bath on the corrosion resistance of plated steel sheet were studied. 1) The electrodeposition of Zn-Ni and Zn-Co alloy shows both anomalous codeposition behavior. The grade of anomalous codeposition of Zn-Co alloy rises with adding Mo or W in bath. 2) The Ni content in Zn-Ni deposits increases with decreasing cathode current density and with increasing bath temperature. 3) In case of electroplating of Zn-Co, the increase of cathodic current density of bath bring on increasing of the Co content, but on decreasing of the Mo content in deposits. And rising bath temperature increases both Co and Mo deposits. 4) The corrosion resistance of the Zn-Ni electrodeposited steel sheet is shown a maximum at the Ni content of 10-17%. The structure of Zn-Ni of these composition range was finegrained γ-phase. 5) The corrosion resistance of the Zn-Co electrodeposited steel sheet is improved with increasing Co content. The corrosion resistance of the Zn-Co-Mo or Zn-Co-W deposits electroplated by proper plating conditions was improved much more than that of Zn-Co deposits. (Author)

  20. MEMBRANE ACTION IN PROFILED STEEL SHEETING DRY BOARD (PSSDB FLOOR SLAB SYSTEM

    Directory of Open Access Journals (Sweden)

    MAHMOOD SERAJI

    2013-02-01

    Full Text Available Profiled steel sheeting dry board (PSSDB system is a lightweight composite structural system that made of the profiled steel sheeting (PSS connected to the dry board (DB by self-drilling and self-tapping screws. The objective of this paper is to study the effect of membrane action in improving the flexural capacities of the PSSDB system. According to the literatures, common failure of the PSSDB floor is due to local buckling in the top flanges of steel sheeting at the centre of a simply supported slab. Restraining the horizontal movement at supports may develop the membrane action (MA in the slab that can remarkably enhance the flexural rigidities of the floor. Experimental tests were conducted along with developing nonlinear finite element model to explore the effect of MA in the PSSDB floor. Experimental results of the PSSDB panel with simply end support were exploited to verify the nonlinear finite element results. The developed finite element model was then modified by restraining the horizontal movement of the slab at the supports. The obtained results disclosed that the developed compressive membrane action enhanced the stiffness of the slab at serviceability load by about 240%.

  1. Experimental study on uniaxial ratcheting deformation and failure behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    In the paper, the tests of cyclic strain ratcheting and low cycle fatigue for 304 stainless steel under uniaxial cyclic straining were carried out to systematically explore the deformation and failure behavior of the material. The experimental study shows that the cyclic strain ratcheting deformation behavior of the material is different from either the uniaxial monotonic tensile one or the cyclic deformation one under the symmetrical cyclic straining with the same strain amplitude, and the strain ratcheting deformation and failure behaviors depend on both the plastic strain amplitude and the strain increment at the cyclic maximum strain. Some significant results were observed

  2. Characterizing Grain-Oriented Silicon Steel Sheet Using Automated High-Resolution Laue X-ray Diffraction

    Science.gov (United States)

    Lynch, Peter; Barnett, Matthew; Stevenson, Andrew; Hutchinson, Bevis

    2017-11-01

    Controlling texture in grain-oriented (GO) silicon steel sheet is critical for optimization of its magnetization performance. A new automated laboratory system, based on X-ray Laue diffraction, is introduced as a rapid method for large scale grain orientation mapping and texture measurement in these materials. Wide area grain orientation maps are demonstrated for both macroetched and coated GO steel sheets. The large secondary grains contain uniform lattice rotations, the origins of which are discussed.

  3. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Ehrnsten, U.; Toivonen, A.; Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H.

    2004-01-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  4. Study of the structural damage in a niobium-microalloyed steel sheet

    International Nuclear Information System (INIS)

    Fernandes, J.; Riba, J.; Verdeja, J.I.

    1986-01-01

    A quantitative experimental study of the damage developed as a consequence of straining has been performed on a microalloyed (niobium) steel sheet by means of a SEM. Equivalent strains range between 0 and 0.68 and strain paths between 0 and 1 and have been obtained in a bulge test. Damage associated to Al 2 O 3 and SMn inclusions is already present in the ''as received'' sheet and grows with strain. Damage associated to CFe 3 second phase particles appears later in the forming of the sheet. For stages previous to necking SMn stringers have dramatically developed more than 50% of total damage. The nucleation equivalent strain is between 0,3 and 0,4. (author)

  5. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    International Nuclear Information System (INIS)

    Muñoz-Andrade, Juan D.

    2013-01-01

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes

  6. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx [Departamento de Materiales, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Colonia Reynosa Tamaulipas, C.P. 02200, México Distrito Federal (Mexico)

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  7. CO2 laser welding of galvanized steel sheets using vent holes

    International Nuclear Information System (INIS)

    Chen Weichiat; Ackerson, Paul; Molian, Pal

    2009-01-01

    Joining of galvanized steels is a challenging issue in the automotive industry because of the vaporization of zinc at 906 deg. C during fusion welding of steel (>1530 deg. C). In this work, hot-dip galvanized steel sheets of 0.68 mm thick (24-gage) were pre-drilled using a pulsed Nd:YAG laser to form vent holes along the weld line and then seam welded in the lap-joint configuration using a continuous wave CO 2 laser. The welds were evaluated through optical and scanning electron microscopy and tensile/hardness tests. The vent holes allowed zinc vapors to escape through the weld zone without causing expulsion of molten metal, thereby eliminating the defects such as porosity, spatter, and loss of penetration. In addition, riveting of welds occurred so long as the weld width was greater than the hole diameter that in turn provided much higher strength over the traditional 'joint gap' method

  8. Influence of deformation on SCC susceptibility of austenitic stainless steel in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshima, Yoshiari; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Slow strain rate tests (SSRT) were carried out to evaluate the SCC susceptibility of four types of austenitic stainless steels (SUS304, SUS316, SUS304L and SUS316L) in PWR primary water. The influence of deformation on SCC susceptibility of SUS316 was studied. All types of stainless steel were susceptible to SCC, and the SCC susceptibility varied depending on the steel type. The comparison of the SSRT results and tensile test in air based on the reduction of area measurement showed that the SCC susceptibility increased with increasing the degree of deformation. For explaining the influence of deformation on SCC susceptibility, it is necessary to evaluate both intergranular and transgranular fractures. (author)

  9. Influence of pulsed current on deformation mechanism of AZ31B sheets during tension

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kai [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Dong, Xianghuai, E-mail: dongxh@sjtu.edu.cn [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Xie, Huanyang [Shanghai Superior Die Technology Co., Ltd, 775 Jinsui Road, Shanghai 201209 (China); Wu, Yunjian; Peng, Fang [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China)

    2016-08-15

    The tensile tests of AZ31B sheets were carried out under pulsed current (PC) of different frequencies, and then the deformation mechanism at different conditions was analyzed by X-Ray Diffraction. The results show that PC does not change the initial yield stress, but reduces the work hardening rate and induces softening effect. Furthermore, electroplasticity effect is controlled by thermal activation. When Z (Zener-Hollomon parameter) is high, the effect of PC is limited, causing a relatively weak electroplasticity effect. With the increasing of Z, the effect of PC strengthens. When Z reaches the critical condition, the activated slip systems obviously change because of PC, which induces the change of texture evolution and the discontinuous change of the intensity of electroplasticity. When Z is low, electroplasticity effect reaches a saturate condition and does not change with Z. Moreover, higher frequency contributes to the dislocation annihilation at all the slip systems, and then increasing frequency can strengthen the extra softening effect of PC. - Highlights: • Pulsed current does not change the initial yield stress, but reduce the work hardening rate and cause softening effect. • Increasing frequency can strengthen the softening effect. • The rules of the softening effect at different deformation condition are different. • The influence of current on deformation mechanism was analyzed by XRD.

  10. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    Science.gov (United States)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  11. 75 FR 17690 - Stainless Steel Sheet and Strip in Coils from Mexico; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-04-07

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822] Stainless Steel Sheet and... of this review within the original time frame. Accordingly, the Department is extending the time... Mexinox and Allegheny Ludlum Corporation, AK Steel Corporation, and North American Stainless (collectively...

  12. 76 FR 25670 - Stainless Steel Sheet and Strip in Coils From Italy: Final Results of the Full Five-Year (“Sunset...

    Science.gov (United States)

    2011-05-05

    ... martensitic precipitation-hardenable stainless steel is also excluded from the scope of the order. This high... DEPARTMENT OF COMMERCE International Trade Administration [A-475-824] Stainless Steel Sheet and... duty order on stainless steel sheet and strip (``SSSS'') in coils from Italy would be likely to lead to...

  13. 76 FR 25668 - Stainless Steel Sheet and Strip in Coils From Mexico: Final Results of the Five-Year (“Sunset...

    Science.gov (United States)

    2011-05-05

    ... ``Gilphy 36.'' \\3\\ Certain martensitic precipitation-hardenable stainless steel is also excluded from the... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822] Stainless Steel Sheet and... Commerce (``Department'') finds that revocation of the antidumping duty order on stainless steel sheet and...

  14. Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet

    Science.gov (United States)

    Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.

    2017-03-01

    Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min - 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.

  15. Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design

    International Nuclear Information System (INIS)

    Ghoniem, Nasr M.; Po, Giacomo; Sharafat, Shahram

    2013-01-01

    Structural steels for nuclear applications have undergone rapid development during the past few decades, thanks to a combination of trial-and-error, mechanism-based optimization, and multiscale modeling approaches. Deformation mechanisms are shown to be intimately related to mechanical design via dominant plastic deformation modes. Because mechanical design rules are mostly based on failure modes associated with plastic strain damage accumulation, we present here the fundamental deformation mechanisms for Ferritic/Martensitic (F/M) steels, and delineate their operational range of temperature and stress. The connection between deformation mechanisms, failure modes, and mechanical design is shown through application of design rules. A specific example is given for the alloy F82H utilized in the design of a Test Blanket Module (TBM) in the International Thermonuclear Experimental Reactor (ITER), where several constitutive equations are developed for design-related mechanical properties

  16. Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, Nasr M., E-mail: ghoniem@seas.ucla.edu; Po, Giacomo; Sharafat, Shahram

    2013-10-15

    Structural steels for nuclear applications have undergone rapid development during the past few decades, thanks to a combination of trial-and-error, mechanism-based optimization, and multiscale modeling approaches. Deformation mechanisms are shown to be intimately related to mechanical design via dominant plastic deformation modes. Because mechanical design rules are mostly based on failure modes associated with plastic strain damage accumulation, we present here the fundamental deformation mechanisms for Ferritic/Martensitic (F/M) steels, and delineate their operational range of temperature and stress. The connection between deformation mechanisms, failure modes, and mechanical design is shown through application of design rules. A specific example is given for the alloy F82H utilized in the design of a Test Blanket Module (TBM) in the International Thermonuclear Experimental Reactor (ITER), where several constitutive equations are developed for design-related mechanical properties.

  17. An X-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    International Nuclear Information System (INIS)

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 microm), subsurface (10--300 microm), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys

  18. Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation

    Science.gov (United States)

    Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.

    2017-10-01

    The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.

  19. Development of microstructure of niobium-microalloyed steels after deformation in two-phase region

    International Nuclear Information System (INIS)

    Majta, J.; Bator, A.

    1999-01-01

    The inhomogeneity of microstructure development of hot deformed niobium-microalloyed steels in the austenite and two phase region is effectively described using an integrated computer modeling process. In particular, the effect of varying the finish deformation temperature, strain and strain rate on the inhomogeneity of austenite and ferrite structures are studied. Presented here investigations take into account kinetics of recrystallization, phase transformation, and the resulting mechanical properties. (author)

  20. Vacancy clustering behavior in hydrogen-charged martensitic steel AISI 410 under tensile deformation

    International Nuclear Information System (INIS)

    Sugita, K; Mutou, Y; Shirai, Y

    2016-01-01

    The formation and accumulation of defects under tensile deformation of hydrogen- charged AISI 410 martensitic steels were investigated by using positron lifetime spectroscopy. During the deformation process, dislocations and vacancy-clusters were introduced and increased with increasing strains. Between hydrogen-charged and uncharged samples with the same tensile strains there was no significant difference in the dislocation density and monovacancy equivalent vacancy density. (paper)

  1. The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Chan, J.W.; Mei, Z.

    1992-06-01

    The 300-series stainless steels that are commonly specified for the structures of high field superconducting magnets are metastable austenitic alloys that undergo martensitic transformations when deformed at low temperature. The martensitic tranformation is promoted by plastic deformation and by exposure to high magnetic fields. The transformation significantly influences the mechanical properties of the alloy. The mechanisms of this influence are reviewed, with emphasis on fatigue crack growth effects and magnetomechanical phenomena that have only recently been recognized

  2. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  3. Effect of Deformation Parameters on Microstructure and Properties During DIFT of X70HD Pipeline Steel

    Science.gov (United States)

    Wang, Jian; Zhu, Wei; Xiao, Hong; Zhang, Liang-liang; Qin, Hao; Yu, Yue

    2018-02-01

    Grain refinement is a critical approach to improve the strength of materials without damaging the toughness. The grains of deformation-induced ferrite are considerably smaller than those of proeutectoid ferrite. Grain refinement is crucial to the application of deformation-induced ferrite. The composition of ferrite and bainite or martensite is important in controlling the performance of X70HD pipeline steel, and cooling significantly influences the control of their ratio and grain size. By analyzing the static and dynamic phase-transition points using Gleeble-3800 thermal simulator, thermal simulations were performed through two-stage deformations in the austenite zone. Ferrite transformation rules were studied with thermal simulation tests under different deformation and cooling parameters based on the actual production of cumulative deformation. The influence of deformation parameters on the microstructure transformation was analyzed. Numerous fine-grain deformation-induced ferrites were obtained by regulating various parameters, including deformation temperature, strain rate, cooling rate, final cooling temperature and other parameters. Results of metallographic observation and microtensile testing revealed that the selection of appropriate parameters can refine the grains and improve the performance of the X70HD pipeline steel.

  4. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    Science.gov (United States)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  5. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  6. Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel

    DEFF Research Database (Denmark)

    Xie, Lin; Huang, Tian Lin; Wang, Yu Hui

    2017-01-01

    Deformation induced martensitic transformation (DIMT) usually occurs in metastable austenitic stainless steels. Recent studies have shown that DIMT may occur in the austenite phase of low alloyed duplex stainless steels. The present study demonstrates that DIMT can also take place in a high alloyed...... Fe–23Cr–8.5Ni duplex stainless steel, which exhibits an unexpectedly rapid transformation from γ-austenite into α′-martensite. However, an inhibited martensitic transformation has been observed by varying the initial microstructure from a coarse alternating austenite and ferrite band structure...

  7. Elastic behavior and onset of cracking in cement composite plates reinforced by perforated thin steel sheets

    Science.gov (United States)

    Aronchik, V.

    1996-03-01

    Thin cement mortar plates reinforced by perforated thin steel sheets have been tested in four-point flexure loading. Six kinds of sheet reinforcement and to additional ones (for control) were used. Perforated sheets of the Daugavpils Factory of Machinery Chains differed by their thickness (0.6-1.8 mm), shape (round, rectangular, oval, "dumbbell"), and mark of steel (St. 08, 50, 70). Dimensions of plantes were 100×20×2 cm. Cements-sand mortar with a 1∶2 ratio of cement PZ35 and river sand of 3 mm grains was used as a matrix. Control specimens of similar dimensions and matrix were reinforced by wire cages and meshes (ferrocement). The testing was performed using an UMM-5 testing machine. Maximum deflection (at the midspan), tension, and shear strains were recorded. The expeimental data are presented in tables and graphs. The testing results showed that the elasticity modulus of material was in good agreement with the "admixture rule;" an onset of cracking for all types (excluding one) practically did not differ from reference samples; the mode of fracture in typical cases included an adhesion failure and significant shear strains. In one case the limit of the tension strength of the reinforcement was achieved.

  8. Deformation behavior of two continuously cooled vanadium microalloyed steels at liquid nitrogen temperature

    Directory of Open Access Journals (Sweden)

    Glišić Dragomir M.

    2013-01-01

    Full Text Available The aim of this work was to establish deformation behaviour of two vanadium microalloyed medium carbon steels with different contents of carbon and titanium by tensile testing at 77 K. Samples were reheated at 1250°C/30 min and continuously cooled at still air. Beside acicular ferrite as dominant morphology in both microstructures, the steel with lower content of carbon and negligible amount of titanium contains considerable fraction of grain boundary ferrite and pearlite. It was found that Ti-free steel exhibits higher strain hardening rate and significantly lower elongation at 77 K than the fully acicular ferrite steel. The difference in tensile behavior at 77 K of the two steels has been associated with the influence of the pearlite, together with higher dislocation density of acicular ferrite. [Projekat Ministarstva nauke Republike Srbije, br. OI174004

  9. Prediction of hole expansion ratio for various steel sheets based on uniaxial tensile properties

    Science.gov (United States)

    Kim, Jae Hyung; Kwon, Young Jin; Lee, Taekyung; Lee, Kee-Ahn; Kim, Hyoung Seop; Lee, Chong Soo

    2018-01-01

    Stretch-flangeability is one of important formability parameters of thin steel sheets used in the automotive industry. There have been many attempts to predict hole expansion ratio (HER), a typical term to evaluate stretch-flangeability, using uniaxial tensile properties for convenience. This paper suggests a new approach that uses total elongation and average normal anisotropy to predict HER of thin steel sheets. The method provides a good linear relationship between HER of the machined hole and the predictive variables in a variety of materials with different microstructures obtained using different processing methods. The HER of the punched hole was also well predicted using the similar approach, which reflected only the portion of post uniform elongation. The physical meaning drawn by our approach successfully explained the poor HER of austenitic steels despite their considerable elongation. The proposed method to predict HER is simple and cost-effective, so it will be useful in industry. In addition, the model provides a physical explanation of HER, so it will be useful in academia.

  10. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Laboratoire de Mecanique des Contacts et des Structures (LaMCoS), INSA Lyon, 20 Avenue des Sciences, F-69621 Villeurbanne Cedex (France); Li, H. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Li, M.Q., E-mail: zc9997242256@126.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-05-15

    Graphical abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural component. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different applied bonding pressures. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail. - Highlights: • A high quality hollow structural component has been fabricated by diffusion bonding. • Surface asperity deformation not only expands the interfacial contact areas, but also causes deformation heat and defects to improve the atomic diffusion. • Surface asperity deformation introduces the stored energy difference between the two opposite sides of interface grain boundary, leading to strain induced interface grain boundary migration. • The void exerts a dragging force on the interface grain boundary to retard or stop interface grain boundary migration. - Abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to

  11. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    Science.gov (United States)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  12. Influence o the microstructure of duplex stainless steels on their failure characteristics during hot deformation

    Directory of Open Access Journals (Sweden)

    Reis G.S.

    2000-01-01

    Full Text Available Two types of duplex stainless steels were deformed by torsion at a temperature range of 900 to 1200 °C and strain rate of 1.0 s-1 and their final microstructures were observed. The austenite volume fraction of steel A (26.5Cr - 4.9Ni - 1.6Mo is approximately 25% at room temperature, after conventional annealing, while that of steel B (24Cr - 7.5Ni - 2.3Mo is around 55%. Experimental data show that steel A is ductile at high temperatures and displays low ductility at low temperatures, while steel B has low ductility in the entire range of temperatures studied. At high temperatures, steel A is essentially ferritic and shows dynamic recrystallized grains after deformation. When steel A is strained at low temperatures and displays low austenite volume fraction, microstructural observations indicate that failure is triggered by grain boundary sliding due to the formation of an austenite net structure at the ferrite grain boundaries. At intermediate volume fraction, when austenite forms a dispersed second-phase in steels A and B, failure begins at the ferrite/ferrite boundaries since some of the new ferrite grains may become immobilized by the austenite particles. When steel B is strained at volume fraction of around 50% of austenite and both phases percolate the microstructure, failure occurs after low straining as a consequence of the different plastic behaviors of each of the phases. The failure characteristics of both steels are correlated not only with the volume fraction of austenite but also with its distribution within the ferrite matrix, which limits attainable strain without failure.

  13. Microstructural evolution during creep deformation of an 11CrMoVNb ferritic heat resistant steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Ho; Park, Dae-Bum [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials and Devices Div.; Korea Univ., Seoul (Korea, Republic of). Dept. of Materials Science; Kwun, S.I. [Korea Univ., Seoul (Korea, Republic of). Dept. of Materials Science; Suh, Jin-Yoo; Jung, Woo-Sang [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials and Devices Div.

    2010-07-01

    The effect of creep deformation on the microstructural development of an 11CrMoVNb ferritic heat resistant steel during high temperature creep test is investigated. Coarsening behavior of the precipitates, M{sub 23}C{sub 6} and MX, and growth behavior of martensite laths of crept specimens are carefully observed from both gage and grip parts of the specimens in order to discuss the effect of deformation. Particle coarsening and martensite lath widening are pronounced in the gage part due to the creep deformation. (orig.)

  14. Microstructural characterization of IF steel after severe plastic deformation via ARB and subsequent heat treatment

    International Nuclear Information System (INIS)

    Oliveira, F.C.; Abrantes, A.L.A.; Lins, J.F.C.

    2010-01-01

    This study aimed to evaluate the microstructural evolution of a titanium stabilized IF steel deformed to warm through the ARB process for 5 consecutive cycles and then annealing at 600 deg C for 1 h. The material was characterized with the aid of the techniques of scanning electron microscopy and electron backscatter diffraction (Electron Backscatter Diffraction - EBSD). An intense process of microstructural refinement was observed in the deformed material and the phenomenon of dynamic recovery was predominant. It can be concluded that the annealing of severely deformed material was not sufficient for a complete recrystallization of the microstructure. (author)

  15. Effect of Preaging Deformation on Aging Characteristics of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Rao, A. G.; Sarkar, R.; Kashyap, B. P.; Prabhu, N.

    2016-02-01

    In the present study, precipitation of sigma (σ) phase was investigated over the temperature range of 700-850 °C in undeformed and deformed (60% cold rolling) samples of 2507 super duplex stainless steel. The fraction of sigma phase formed as a result of the transformation α → σ + γ2 increases with increasing time and temperature. The increase in sigma phase leads to increase in yield strength and decrease in ductility. Preaging deformation leads to accelerated precipitation of sigma phase. The activation energy for sigma phase precipitation in deformed sample is found to be lower than that in undeformed sample.

  16. Effect of material flow on joint strength in activation spot joining of Al alloy and steel sheets

    International Nuclear Information System (INIS)

    Watanabe, Goro; Yogo, Yasuhiro; Takao, Hisaaki

    2014-01-01

    A new joining method for dissimilar metal sheets was developed where a rotated consumable rod of Al alloy is pressed onto an Al alloy sheet at the part overlapped with a mild steel sheet. The metal flow in the joining region is increased by the through-hole in the Al sheet and consumable Al rod. The rod creates the joint interface and pads out of the thinly joined parts through pressing. This produces a higher joint strength than that of conventional friction stir spot welding. Measurements of the joint interface showed the presence of a 5-10 nm thick amorphous layer consisting of Al and Mg oxides

  17. Nanoscale lamellae in an oxide dispersion strengthened steel processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N. R.

    2014-01-01

    The microstructure of an oxide dispersion strengthened ferritic PM2000 steel with a strong initial (100) texture has been investigated after compression by dynamic plastic deformation (DPD) at room temperature to a strain of 2.1. Measurements using electron backscatter diffraction and transmission...

  18. The influence of deformation on the product performance of pre-coated packaging steels

    NARCIS (Netherlands)

    Boelen, B.

    2009-01-01

    Recent developments in various countries have led to the development of new types of polymer coated packaging steel. These materials behave differently in production and end use and are therefore subject of extensive studies. The aim of this research is to understand the influence of deformation of

  19. Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel

    International Nuclear Information System (INIS)

    Pereloma, E.V.; Kostryzhev, A.G.; AlShahrani, A.; Zhu, C.; Cairney, J.M.; Killmore, C.R.; Ringer, S.P.

    2014-01-01

    The effect of thermomechanical processing conditions on Nb clustering and precipitation in both austenite and ferrite in a Nb–Ti microalloyed steel was studied using electron microscopy and atom probe tomography. A decrease in the deformation temperature increased the Nb-rich precipitation in austenite and decreased the extent of precipitation in ferrite. Microstructural mechanisms that explain this variation are discussed

  20. Influence of Stacking Fault Energy (SFE) on the deformation mode of stainless steels

    International Nuclear Information System (INIS)

    Li, X.; Van Renterghem, W.; Al Mazouzi, A.

    2008-01-01

    The sensibility to irradiation-assisted stress corrosion cracking (IASCC) of stainless steels in light water reactor (LWR) can be caused by the localisation of deformation that takes place in these materials. Dislocation channelling and twinning modes of deformation can induce localised plasticity leading to failure. Stacking fault energy (SFE) plays an important role in every process of plastic deformation behaviour, especially in twinning and dislocation channelling. In order to correlate localised deformation with stacking fault energy, this parameter has been experimentally determined by transmission electron microscope (TEM) using both dislocation node and multiple ribbons methods after compression in three different model alloys. Detailed deformation behaviour of three fabricated alloys with different stacking fault energy before and after tensile tests at temperatures from -150 deg C to 300 deg C, will be shown and discussed based on mechanical test and TEM observation. (authors)

  1. Cryogenic deformation microstructures of 32Mn-7Cr-1Mo-0.3N austenitic steels

    International Nuclear Information System (INIS)

    Fu Ruidong; Qiu Liang; Wang Tiansheng; Wang Cunyu; Zheng Yangzeng

    2005-01-01

    The cryogenic deformation microstructures of impact and tensile specimens of 32Mn-7Cr-1Mo-0.3N austenitic steel were investigated using light microscopy and transmission electron microscopy. The results show that the deformation microstructures of the impact specimens are mainly composed of stacking faults, network dislocation, slip bands, and a few mechanical twins and ε-martensite. These microstructures cross with each other in a crystal angle. The deformation microstructures of the tensile specimens consist only of massive slip bands, in which a few mechanical twins and ε-martenite are located. Because of the larger plastic deformation the slip band traces become bent. All the deformation microstructures are formed on the {111} planes and along the orientation

  2. Cutting characteristics and deformed layer of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Oh, Sun Sae; Yi, Won

    2004-01-01

    The cutting characteristics and the deformed layer of Nitrogen(N)-added type 316LN stainless steel were comparatively investigated to type 316L stainless steel. The cutting force, the surface roughness(Ra) and the tool wear in face milling works were measured with cutting conditions, and the deformed layers were obtained from micro-hardness testing method. The cutting resistance of type 316LN was similar to type 316L in spite of its high strength. The surface roughness of type 316LN was superior to type 316L for all the cutting conditions. In particular, in the high cutting speed above 345m/min, the surface roughness of the two stainless steels was closely same. The deformed layer thickness of the two stainless steels was generated in the 150μm-300μm ranges, and its value of type 316LN was lower than that of type 316L. This is due to the high strength properties by nitrogen effect. It was found that type 316LN was higher in the tool wear than that type 316L, and flank wear was dominant to crater wear. In face milling works of type 316LN steel, tool wear is regarded as a important problem

  3. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  4. The Influence of Ice Properties on Borehole Deformation at the West Antarctic Ice Sheet Divide

    Science.gov (United States)

    Sinkler, E.; Pettit, E. C.; Obbard, R. W.

    2017-12-01

    It is widely known that ice flow is affected by many properties, including crystal fabric and impurities, though these relationships are not fully understood. This study uses data from the West Antarctic Ice Sheet (WAIS) Divide borehole to better determine the influence of such properties on ice flow. The WAIS Divide borehole, the byproduct of the 2006-2012 coring project, offers a unique opportunity to study deep Antarctic Ice. Thanks to the work of many researchers, extensive data on ice properties are available from both coring and borehole logging at this site. The borehole, kept open with a density-approximating fluid, closes and tilts due to ice flow. We have tracked this deformation over two years using a set of repeat measurements with an Acoustic Televiewer. This tool acts as an acoustic caliper allowing us to view cross-sections of the borehole shape and size with up to 1.25 degree azimuthal resolution and a depth resolution as high as 1.4 mm. In addition, the tool collects tilt and azimuth data. These measurements are compared to a 1D Glen's Flow Law model for borehole closure that uses density differences between the ice and borehole fluid as its driving force and incorporates temperature effects. This is then compared to ice properties like crystal fabric and impurities in order to determine the influence of these properties on ice deformation at this site. Crystal fabric has appeared as an important factor in this study.This work builds on that of others who have studied in-situ deep ice through borehole deformation (e.g. Paterson, 1977 and Dahl-Jensen and Gundestrup, 1987). Our results have implications for ice flow modeling and therefore interpretation of depth-age relationships in deep ice cores.

  5. Prediction of deformations of steel plate by artificial neural network in forming process with induction heating

    International Nuclear Information System (INIS)

    Nguyen, Truong Thinh; Yang, Young Soo; Bae, Kang Yul; Choi, Sung Nam

    2009-01-01

    To control a heat source easily in the forming process of steel plate with heating, the electro-magnetic induction process has been used as a substitute of the flame heating process. However, only few studies have analyzed the deformation of a workpiece in the induction heating process by using a mathematical model. This is mainly due to the difficulty of modeling the heat flux from the inductor traveling on the conductive plate during the induction process. In this study, the heat flux distribution over a steel plate during the induction process is first analyzed by a numerical method with the assumption that the process is in a quasi-stationary state around the inductor and also that the heat flux itself greatly depends on the temperature of the workpiece. With the heat flux, heat flow and thermo-mechanical analyses on the plate to obtain deformations during the heating process are then performed with a commercial FEM program for 34 combinations of heating parameters. An artificial neural network is proposed to build a simplified relationship between deformations and heating parameters that can be easily utilized to predict deformations of steel plate with a wide range of heating parameters in the heating process. After its architecture is optimized, the artificial neural network is trained with the deformations obtained from the FEM analyses as outputs and the related heating parameters as inputs. The predicted outputs from the neural network are compared with those of the experiments and the numerical results. They are in good agreement

  6. Tribological study in roll forming of lean duplex stainless steel sheets

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Strogaard; Bay, Niels

    2012-01-01

    . Production tests show that galling can be a problem but pick-up formation on the tools seems to reach a consistent level. Improvements to tool surfaces and lubricant quality are proposed with a view to optimizing the tribo-system in order to increase the produced length before galling initiates and tool...... are relatively low and surface expansion is more or less non-existent, long roll forming production runs imply large sliding/contact lengths due to relative movement between steel strip and rolls. This requires an efficient tribological system to prevent pick-up formation on the forming tools. The present work...... focus on tribological issues are galling and pick-up formation as well as tool life in roll forming of stainless duplex steel sheets. The roll forming process is exemplified by production of an s-shaped profile used in interlock carcass production for flexible pipes used in off-shore oil extraction...

  7. Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

    International Nuclear Information System (INIS)

    Yonggang, Liu; Lei, Cui

    2014-01-01

    Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area

  8. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  9. The Influence of the Loading Rate on the Mechanical Properties of Drawing Steel Sheet

    Directory of Open Access Journals (Sweden)

    Buršák, M.

    2006-01-01

    Full Text Available The paper analyzes the influence of the loading rate in the interval from 1 to 1000 mm/min on the mechanical properties of drawing steel sheet H260LAD with the gauge of 1 mm, used for the manufacture of automotive parts, under tension and bending conditions. It describes the aspects of material characteristics under tension and bending conditions, while bending tests were made on notched specimens (a modified impact bending test. The paper presents knowledge that using a modified notch toughness test it is possible to achieve the pressability (formability characteristics corresponding to dynamic strain rates even under the static loading.

  10. Transformation of localized necking of strain space into stress space for advanced high strength steel sheet

    Science.gov (United States)

    Nakwattanaset, Aeksuwat; Suranuntchai, Surasak

    2018-03-01

    Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.

  11. Local laser-strengthening: Customizing the forming behavior of car body steel sheets

    Science.gov (United States)

    Wagner, M.; Jahn, A.; Beyer, E.; Balzani, D.

    2018-05-01

    Future trends in designing lightweight components especially for automotive applications increasingly require complex and delicate structures with highest possible level of capacity [1]. The manufacturing of metallic car body components is primarily realized by deep or stretch drawing. The forming process of especially cold rolled and large-sized components is typically characterized by inhomogeneous stress and strain distributions. As a result, the avoidance of undesirable deep drawing effects like earing and local necking is among the greatest challenges in forming complex car body structures [2]. Hence, a novel local laser-treatment approach with the objective of customizing the forming behavior of car body steel sheets is currently explored.

  12. Importance of punching and workability in non-oriented electrical steel sheets

    International Nuclear Information System (INIS)

    Kurosaki, Yousuke; Mogi, Hisashi; Fujii, Hiroyasu; Kubota, Takeshi; Shiozaki, Morio

    2008-01-01

    In order to reduce energy loss in motors, the use of high-efficiency non-oriented electrical steel sheets and an optimal motor core design are important. It is also crucial to minimize the deterioration of magnetic properties during the motor core manufacturing process. Accordingly, this report evaluates the effects of cutting and clamping methods on the deterioration factors of motor cores. Magnetic properties are largely influenced by both cutting and clamping methods. While it is difficult to avoid cutting and clamping altogether, it is necessary to adopt suitable production conditions and minimize the deterioration involved

  13. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  14. Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

    International Nuclear Information System (INIS)

    Jo, Duhwan; Kwon, Moonjae; Kim, Jongsang

    2012-01-01

    Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances

  15. In-Situ Subsurface Coating of Corroded Steel Sheet Pile Structures: Final Report on Project F08-AR06

    Science.gov (United States)

    2017-09-01

    shrink cement grout or epoxy resin in the gap between old and new steel , shown in Figure 19. This was the reason why the perforated piles needed to...be made liquid-tight with cement grout or epoxy. Other- wise, the material injected between the old and new steel would be lost be- hind the old steel ...ER D C/ CE RL T R- 17 -3 5 DoD Corrosion Prevention and Control Program In-Situ Subsurface Coating of Corroded Steel Sheet Pile

  16. Development of high strength steel sheets for crashworthiness; Shototsu anzen`yo kokyodo usu koban no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, K; Yamamoto, M; Mizui, N; Hirose, Y; Kojima, K [Sumitomo Metal Industries, Ltd. Osaka (Japan)

    1997-10-01

    For frontal or rear members of automotive body, the most suitable high strength steel was investigated. Dynamic tensile test at strain-rate of 2000/s and crash test of hat-shape column at 4m/s were conducted for steel sheets with tensile strength ranging from 290 to 980 MPa. Dynamic tensile strength increases with increasing static one but the ratio of dynamic tensile strength to static one decreases. Tensile strength remarkably affects crash energy absorption of column and TRIP steel is superior to other steels with same tensile strength. 7 refs., 16 figs., 1 tab.

  17. On the capability of austenitic steel to withstand cyclic deformations during service at elevated temperatures

    International Nuclear Information System (INIS)

    Etienne, C.F.; Dortland, W.; Zeedijk, H.B.

    1975-01-01

    Safe design for structures with steels for elevated temperatures necessitates screening these materials on the basis of objective criteria for ductility, besides screening them on elevated temperature strength. Because creep and fatigue damage may occur during operation, the ductility of a steel after a long operation time is more important than the ductility in the as delivered condition. This paper describes results of an investigation into the ductility of some austenitic Cr-Ni-steels. In order to determine the capability of the steels to withstand cyclic plastic deformation in the aged condition, various ageing treatments were applied before determining the ductility in low-cycle fatigue testing. Correlating the ductility with the sizes of the carbide precipitates made it possible to predict the ductility behaviour during long service times. This led to the conclusion that for an austenitic steel with a high thermal stability (17.5 per cent Cr-11 per cent Ni) the ductility can decrease considerably during service at elevated temperature. Nevertheless it is expected that the remaining ductility of such steels in aged condition will be amply sufficient to withstand the cyclic deformations that occur during normal service. (author)

  18. Capability of austenitic steel to withstand cyclic deformations during service at elevated temperatures

    International Nuclear Information System (INIS)

    Etienne, C.F.; Dortland, W.; Zeedijk, H.B.

    1975-01-01

    Safe design for structures with steels for elevated temperatures necessitates screening these materials on the basis of objective criteria for ductility, besides screening them on elevated temperature strength. Because creep and fatigue damage may occur during operation, the ductility of a steel after a long operation time is more important than the ductility in the as delivered condition. Results of an investigation into the ductility of austenitic Cr--Ni-steels are described. In order to determine the capability of the steels to withstand cyclic plastic deformations in the aged condition, various aging treatments were applied before determining the ductility in low-cycle fatigue testing. Correlating the ductility with the sizes of the carbide precipitates made it possible to predict the ductility behavior during long service times. This led to the conclusion that for an austenitic steel with a high thermal stability (17.5 percent Cr--11 percent Ni) the ductility can decrease considerably during service at elevated temperature. Nevertheless it is expected that the remaining ductility of such steels in aged condition will be amply sufficient to withstand the cyclic deformations that occur during normal service

  19. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  20. Characterisation of organic thin film coatings on automobile steel sheets by photothermal methods

    Energy Technology Data Exchange (ETDEWEB)

    Orth, T. [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Fluegge, W. [Salzgitter Mannesmann Forschung GmbH, Salzgitter (Germany); Gibkes, J. [Ruhr-Univ. Bochum (Germany). AG FestKoerperSpektroskopie

    2006-07-01

    In the nineties, the first generation of organic thin film coatings for corrosion protection of zinc-coated thin sheet steel have been introduced. The coating typically consists of a suspension of small zinc particles, embedded in a polymer matrix. In the scope of quality control, the characterisation of the resulting layer structure is of great interest, comprising not only a constant layer thickness and a local homogeneity of the coating, but also the depth distribution of the particles within the layer. Especially the latter parameter does have a direct influence on the spot weldability of the steel sheets. The present work shows, how photothermal methods like modulated infrared radiometry and photoacoustics can be used for a successful depth profiling of the thin film coatings. The sample surface is periodically heated using an intensitymodulated laser beam, and a thermal wave is induced in the layer system. By variation of the modulation frequency of the laser beam, the thermal diffusion length and, as a consequence, the penetration depth of the thermal wave can be adjusted. By a suitable evaluation of the amplitude and phase lag signals as a function of the modulation frequency, accurate depth profiling has been realized which can be used for a very reliable prediction of the welding properties of the product. In the first investigations, artificial samples with well defined extreme distributions of the particles have been analyzed, and in a second step, an evaluation strategy has been developed for real production samples. (orig.)

  1. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    Directory of Open Access Journals (Sweden)

    Rezwanul Haque

    2017-01-01

    Full Text Available Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring stage of the SPR process curve. This study shows how the residual stress results may be related to the physical occurrences that happened during joining, using the characteristics curve. The study also shows that neutron diffraction technique enabled a crack in the rivet tip to be detected which was not apparent from a cross-section.

  2. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    Science.gov (United States)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  3. Microstructural change during creep deformation in a 10%Cr martensitic steel

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2001-01-01

    The relationship between creep deformation and microstructural changes in martensitic 10Cr-MoW steel has been studied. Transmission electron microscopy and image analyser were used to determine the variation of precipitates and martensite lath width size during creep deformation and aging. As precipitates are coarsened during creep deformation, dislocations become easy to move and the recovery proceeds rapidly. This leads to the growth of lath width. The average size of precipitates was linearly increased with creep time. On the other hand the growth rate of lath width is constant until tertiary creep, but the growth of lath width is accelerated during tertiary creep. It has been concluded that the growth behavior of lath width are consistent with creep deformation. Because the growth of lath width is controlled by the coarsening of precipitates it is important to form more stable precipitates in creep condition for improvement of creep properties of martensitic steel. Microstructure of martensitic steel is thermally very stable, so the size of precipitates and martensite lath width are hardly changed during aging

  4. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  5. Effect of preliminary plastic deformation on low temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Gur'ev, A.V.; Alkhimenkov, T.B.

    1979-01-01

    Considered is the effect of preliminary plastic deformation on the following low-temperature strength (at -196 deg C) of structural carbon steels at the room temperature. The study of regularities of microheterogenetic deformations by alloy structure elements at room and low temperatures shows that the transition on low -temperature loading is built on the base of inheritance of the general mechanism of plastic deformation, which took place at preliminary deformation; in this effect the ''memory'' of metal to the history of loading is shown. It is established that physical strengthening (cold hardening), received by the metal during preliminary loading at the room temperature is put over the strengthening connected only with decrease of test temperature

  6. Microstructural Changes of the Nanostructured Bainitic Steel Induced by Quasi-Static and Dynamic Deformation

    Directory of Open Access Journals (Sweden)

    Marcisz J.

    2017-12-01

    Full Text Available Changes in the microstructure of nanostructured bainitic steel induced by quasi-static and dynamic deformation have been shown in the article. The method of deformation and strain rate have important impact on the microstructure changes especially due to strain localization. Microstructure of nanostructured steel Fe-0.6%C-1.9Mn-1.8Si-1.3Cr-0.7Mo consists of nanometer size carbide-free bainite laths and 20-30% volume fraction of retained austenite. Quasi-static and dynamic (strain rate up to 2×102 s−1 compression tests were realized using Gleeble simulator. Dynamic deformation at the strain rate up to 9×103 s−1 was realized by the Split Hopkinson Pressure Bar method (SHPB. Moreover high energy firing tests of plates made of the nanostructured bainitic steel were carried out to produce dynamically deformed material for investigation. Adiabatic shear bands were found as a result of localization of deformation in dynamic compression tests and in firing tests. Microstructure of the bands was examined and hardness changes in the vicinity of the bands were determined. The TEM examination of the ASBs showed the change from the internal shear band structure to the matrix structure to be gradual. This study clearly resolved that the interior (core of the band has an extremely fine grained structure with grain diameter ranging from 100 nm to 200 nm. Martensitic twins were found within the grains. No austenite and carbide reflections were detected in the diffraction patterns taken from the core of the band. Hardness of the core of the ASBs for examined variants of isothermal heat treatment was higher about 300 HV referring to steel matrix hardness.

  7. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    Science.gov (United States)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  8. Microstructural and Mechanical Study of Press Hardening of Thick Boron Steel Sheet

    Science.gov (United States)

    Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D.

    2017-09-01

    Press hardening has become a staple in the production of automotive safety components, due to the combination of high mechanical properties and form complexity it offers. However, the use of press hardened components has not spread to the truck industry despite the advantages it confers, namely affordable weight reduction without the use of exotic materials, would be extremely attractive for this sector. The main reason for this is that application of press hardened components in trucks implies adapting the process to the manufacture of thick sheet metal. This introduces an additional layer of complexity, mainly due to the thermal gradients inside the material resulting in though-thickness differences in austenitization and cooling, potentially resulting in complex microstructure and gradient of mechanical properties. This work presents a preliminary study on the press hardening of thick boron steel sheet. First of all, the evolution of the sheet metal during austenitization is studied by means of dilatometry tests and by analysing the effect of furnace dwell time on grain size. Afterwards, material cooled using different cooling strategies, and therefore different effective cooling rates, is studied in terms of microstructure and mechanical properties. Initial results from finite element simulation are compared to experimental results, focusing on the phase composition in through thickness direction. Results show that industrial-equivalent cooling conditions do not lead to gradient microstructures, even in extreme scenarios involving asymmetrical cooling.

  9. Evaluation of the nugget diameter in spot welded joints between two steel sheets by means of a potential drop technique

    International Nuclear Information System (INIS)

    Tohmyoh, Hironori; Ikarashi, Hidetomo; Matsui, Yoichi; Hasegawa, Yuta; Obara, Satoshi

    2015-01-01

    A potential drop technique which utilizes the electrical circuit used in resistance spot welding is reported. Spot welded samples comprising two steel sheets were inserted between the two Cu electrodes and a constant direct current was supplied between the electrodes. The potential drop between two points, one on each electrode, was determined by analysis for various values of nugget diameter and various values of the contact resistance between the Cu electrodes and the steel sheet sample. The nugget diameter of the spot welded joint could be quantitatively evaluated from the measured potential drop and the equation obtained from the analysis. (paper)

  10. Evaluation of the nugget diameter in spot welded joints between two steel sheets by means of a potential drop technique

    Science.gov (United States)

    Tohmyoh, Hironori; Ikarashi, Hidetomo; Matsui, Yoichi; Hasegawa, Yuta; Obara, Satoshi

    2015-08-01

    A potential drop technique which utilizes the electrical circuit used in resistance spot welding is reported. Spot welded samples comprising two steel sheets were inserted between the two Cu electrodes and a constant direct current was supplied between the electrodes. The potential drop between two points, one on each electrode, was determined by analysis for various values of nugget diameter and various values of the contact resistance between the Cu electrodes and the steel sheet sample. The nugget diameter of the spot welded joint could be quantitatively evaluated from the measured potential drop and the equation obtained from the analysis.

  11. Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique

    International Nuclear Information System (INIS)

    Satheesh Kumar, S.S.; Raghu, T.

    2014-01-01

    Highlights: • High purity aluminium sheets constrained groove pressed up to plastic strain of 5.8. • Microstructural evolution studied by TEM and X-ray diffraction profile analysis. • Ultrafine grained structure with grain size ∼900 nm achieved in sheets. • Yield strength increased by 5.3 times and tensile strength doubled after first pass. • Enhanced deformation homogeneity seen with increased accumulated plastic strain. - Abstract: High purity aluminium sheets (∼99.9%) are subjected to intense plastic straining by constrained groove pressing method successfully up to 5 passes thereby imparting an effective plastic strain of 5.8. Transmission electron microscopy studies of constrained groove pressed sheets divulged significant grain refinement and the average grain sizes obtained after five pass is estimated to be ∼0.9 μm. In addition to that, microstructural evolution of constrained groove pressed sheets is characterized by X-ray diffraction peak profile analysis employing Williamson–Hall method and the results obtained fairly concur with electron microscopy findings. The tensile behaviour evolution with increased straining indicates substantial improvement of yield strength by ∼5.3 times from 17 MPa to 90 MPa during first pass corroborated to grain refinement observed. Marginal increase in strengths is noticed during second pass followed by minor drop in strengths attributed to predominance of dislocation recovery is noticed in subsequent passes. Quantitative assessment of degree of deformation homogeneity using microhardness profiles reveal relatively better strain homogeneity at higher number of passes

  12. Hydrogen pick-up effect on the deformation characteristics of the 20 steel

    International Nuclear Information System (INIS)

    Steklov, O.I.; Perunov, B.Vs.; Krovyakova, V.M.

    1977-01-01

    An experiment aimed at ascertaining the possibility of using plasticity characteristis as a criterion of the resistance of a material to slow failure through hydrogenation is set up in a manner to permit an evaluation of the individual effects of mechanical stresses hydrogenation medium and their combined action upon the plasticity characteristics. It is shown that the variation of the rupturing load for hydrogenated specimens of grade 20 steel, held under load, takes place on the initial holding stage, after which the changes in the plasticity characteritics are immaterial. In consequence, the deformation characteristics allow no judgement to be made on the resistance to slow cracking of grade 20 steel due to hydrogenation

  13. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  14. 76 FR 77013 - Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning...

    Science.gov (United States)

    2011-12-09

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or...

  15. 76 FR 31633 - Tin- and Chromium-Coated Steel Sheet from Japan; Institution of a Five-Year Review Concerning the...

    Science.gov (United States)

    2011-06-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... Tin- and Chromium-Coated Steel Sheet from Japan AGENCY: United States International Trade Commission... the antidumping duty order on tin- and chromium-coated steel sheet from Japan would be likely to lead...

  16. Investigation into some regularities in acoustic emission during deformation of the 16 GNMA steel

    International Nuclear Information System (INIS)

    Chelyshev, N.A.; Chervov, G.A.; Petrov, V.I.; Yakovenko, V.S.; Kazakov, V.V.

    1981-01-01

    A device with variable band of transmission and regulated width of emission band (3-20 kHz) is the most optimal variant of acoustic emission recorder. Change of signal registration frequency of acoustic emission results in change of both qualitative and quantitative peculiarities of summary emission during deformation. A zone of elastic deformation transition to elastic-plastic for the given steel is well marked out according to the data of summary acoustic emission and intensity of signals. Application of devices with variable registration frequency requires usage of wide-band transformers [ru

  17. The effect of deformation mode on the sensitisation of partially martensitic stainless steels

    International Nuclear Information System (INIS)

    Briant, C.L.

    1981-01-01

    The metallurgical process by which austenitic stainless steels become susceptible to corrosion is defined as sensitisation. It is now well established that if the austenite is partially transformed to martensite by deformation, the kinetics of sensitisation will be accelerated. In this paper the effects of martensite induced by various deformation modes on sensitisation are examined. It will be shown that in all cases the martensite accelerates sensitisation which in turn leads to rapid corrosion. This effect is independent of the way the martensite is induced. The results also show that this effect is observed over a wide range of martensite content. (author)

  18. Influence of plastic deformation on low temperature surface hardening of stainless steel by gaseous nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... analysis, reflected light microscopy and microhardness indentation. The results demonstrate that a case of expanded austenite develops and that, in particular, the presence of strain-induced martensite in the initial (deformed) microstructure has a large influence on the nitrided zone....

  19. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Potekaev, A. I., E-mail: potekaev@spti.tsu.ru [National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Kopanitsa, G. D., E-mail: georgy.kopanitsa@mail.com [National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  20. Quantitative description of changes in the structure in austenitic steels after hot temperature deformation

    International Nuclear Information System (INIS)

    Kuc, D.; Rodak, K.; Niewielski, G.; Hetmanczyk, M.

    1998-01-01

    An investigation on the structural changes in austenitic hard deformable Cr-Mn and Cr-Ni steels during dynamic recrystallization has been presented in the paper. The influence of the factors (strain rate, deformation, temperature) on the geometric characteristic of grains has been taken into consideration. Investigation of the structure were performed using metallographic microscope and transmission electron microscope. The results of researched should widen the theoretical background in order to the model of phenomena, which accompany the dynamic recovery and dynamic recrystallization. (author)

  1. Prediction of welding shrinkage deformation of bridge steel box girder based on wavelet neural network

    Science.gov (United States)

    Tao, Yulong; Miao, Yunshui; Han, Jiaqi; Yan, Feiyun

    2018-05-01

    Aiming at the low accuracy of traditional forecasting methods such as linear regression method, this paper presents a prediction method for predicting the relationship between bridge steel box girder and its displacement with wavelet neural network. Compared with traditional forecasting methods, this scheme has better local characteristics and learning ability, which greatly improves the prediction ability of deformation. Through analysis of the instance and found that after compared with the traditional prediction method based on wavelet neural network, the rigid beam deformation prediction accuracy is higher, and is superior to the BP neural network prediction results, conform to the actual demand of engineering design.

  2. Effect of hydrostatic pressure on phase transformations in Kh17N8 steel during deformation

    International Nuclear Information System (INIS)

    Eshchenko, R.N.; Teplov, V.A.

    1984-01-01

    The phase composition and structure of Kh17N8 steel strained to different degrees under atmospheric pressure and 1700 MPa are investigated. It has been found that deformation at 1700 MPa causes α and epsilon-martensite formation, the same deformation under atmospheric pressure - only α-martensite formation. The amount of the formed α-martensite is not changed with application of hydrostatic pressure. Electron-microscopic observations have shown that the dispersion of α-martensite formed under pressure is higher than in the absence of pressure; no interconnection in formation of α and epsilon-martensite in samples strained under pressure has been observed

  3. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

  4. Effects of aging and sheet thickness on the room temperature deformation behavior and in-plane anisotropy of cold rolled and solution treated Nimonic C-263 alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ankamma, Kandula; Chandra Mohan Reddy, Gangireddy [Mahatma Ghandi Institute of Technology, Hyderabad (India). Mechanical Engineering Dept.; Singh, Ashok Kumar; Prasad, Konduri Satya [Defence Research and Development Organisation (DRDO), Hyderabad (India). Defence Metallurgical Research Lab.; Komaraiah, Methuku [Malla Reddy College of Engineering and Technology, Secunderabad (India); Eswara Prasad, Namburi [Regional Centre for Military Airworthiness (Materials), Hyderabad (India)

    2011-10-15

    The deformation behavior under uni-axial tensile loading is investigated and reported in the case of cold rolled Nimonic C-263 alloy sheet products of different thicknesses (0.5 mm and 1 mm) in the solution treated and aged conditions. The studies conducted include (i) Microstructure, (ii) X-ray diffraction, (iii) Texture and (iv) Tensile properties and inplane anisotropy in the yield behavior (both tensile yield strength and ultimate tensile strength as well as ductility). The results of the present study showed that despite the presence of weak crystallographic texture in this crystal symmetric material, the degrees of in-plane anisotropy in strength as well as plastic deformation properties are found to be significant in both solution treated and aged conditions, thus having significant technological relevance for both further processing and design purposes. Further, the influence of aging and sheet thickness on the tensile deformation behaviour is also found to be considerable. A brief discussion on the technological implications of these results is also included. (orig.)

  5. Ratchetting deformation behavior of modified 9Cr-1Mo steel and applicability of existing constitutive models

    International Nuclear Information System (INIS)

    Yaguchi, Masatsugu; Takahashi, Yukio

    2001-01-01

    A series of ratchetting deformation tests was conducted on modified 9Cr-1Mo steel at 550degC under uniaxial and multiaxial stress conditions. Ratchetting behavior depended on various parameters such as mean stress, stress/strain rate and those range, hold time and prior cyclic deformation. Under uniaxial conditions, untraditional ratchetting behavior was observed; the ratchetting deformation rate was the fastest when the stress ratio was equal to -1, while no ratchetting deformation was predicted by conventional constitutive models. In order to discuss the reason for this untraditional ratchetting behavior, a lot of monotonic compression tests were conducted and compared with tension data. The material showed a difference of deformation resistance of about 30 MPa between tension and compression at high strain rates. Furthermore, the authors' previous model and Ohno-Wang model were applied to the test conditions to evaluate their description capability for ratchetting behavior of the material. It was shown that the authors' model has a tendency to overestimate the ratchetting deformation and that the Ohno-Wang model has a tendency to underestimate the uniaxial ratchetting deformation at small stress rates. (author)

  6. Characterization of the deformation texture after tensile test and cold rolling of a Ti-6Al-4V sheet alloy

    International Nuclear Information System (INIS)

    Mehdi, B; Badji, R; Azzeddine, H; Alili, B; Bradai, D; Ji, V

    2015-01-01

    The deformation texture after cold rolling and tensile test of an industrial Ti-6Al-4V sheet alloy was studied using X-ray diffraction. The alloy was subjected to a cold rolling to different thickness reductions (from 20% to 60%) and then tensile tests have been carried out along three directions relatively to the rolling direction (0°, 45° and 90°). The experimental results were compared to the existing literature and discussed in terms of active plastic deformation mechanisms. (paper)

  7. Computer aided testing of steel samples deformation at coexistence liquid and solid phase

    International Nuclear Information System (INIS)

    Hojny, M.; Glowacki, M.

    2007-01-01

    The paper reports the results of experimental and theoretical work leading to construction of a CAE system dedicated to the numerical simulation of plastic deformation of steel at coexistence liquid and solid phase. A coupled thermal-mechanical model including inverse analysis technique was adopted for the solver. The advantage of the solution was the analytical form of both incompressibility and mass conservation conditions. This can prevent usual FEM variational solution problems concerning unintentional specimen volume loss caused by the numerical errors. The only well known machine allowing tests in the discussed temperature range is the GLEEBLE thermo-mechanical simulator. Experiments of deformation of steel in semi-solid state by using this machine are very expensive. Therefore, application of dedicated computer simulation system with inverse method makes tests possible and results in lowering testing cost

  8. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures

    International Nuclear Information System (INIS)

    Naderi, M.; Durrenberger, L.; Molinari, A.; Bleck, W.

    2008-01-01

    The strain, strain rate and temperature dependency of a boron steel, which was isothermally deformed under uniaxial compression tests, has been investigated at temperatures between 600 and 900 o C, and at strain rates of 0.1, 1.0 and 10.0 s -1 . Two constitutive models were used to correlate the plastic behavior: the Voce constitutive relation in combination with the kinetic model proposed by Kocks and the phenomenological model proposed by Molinari-Ravichandran. The Kocks model has been introduced in the Voce formulation to describe the temperature and the strain rate dependency of the saturation stress and of the yield stress. The Molinari-Ravichandran model is based on a single internal variable that can be viewed as being related to a characteristic length scale of the microstructure that develops during deformation. It has been shown that the plastic behavior of the boron steel can be well described using these two models

  9. Development of new testing methods for the numerical load analysis for the drop test of steel sheet containers for the final repository Konrad

    International Nuclear Information System (INIS)

    Protz, C.; Voelzke, H.; Zencker, U.; Hagenow, P.; Gruenewald, H.

    2011-01-01

    The qualification of steel sheet containers as intermediate-level waste container for the final repository is performed by the BAM (Bundeasmt fuer Materialpruefung) according to the BfS (Bundesamt fuer Strahlenschutz) requirements. The testing requirements include the stacking pressure tests, lifting tests, drop tests thermal tests (fire resistance) and tightness tests. Besides the verification using model or prototype tests and transferability considerations numerical safety analyses may be performed alternatively. The authors describe the internal BAM research project ConDrop aimed to develop extended testing methods for the drop test of steel sheet containers for the final repository Konrad using numerical load analyses. A finite element model was developed using The FE software LS-PrePost 3.0 and ANSYS 12.0 and the software FE-Code LS-DYNA for the simulation of the drop test (5 m height). The results were verified by experimental data from instrumented drop tests. The container preserves its integrity after the drop test, plastic deformation occurred at the bottom plate, the side walls, the cask cover and the lateral uprights.

  10. Forecasting of mechanical - and structural behavior of 316 austenitic stainless steels by deformation charts

    International Nuclear Information System (INIS)

    Monteiro, S.N.

    1980-01-01

    The utilization of deformation charts applied to AISI 316 austenitic stainless steel with the purpose of foreseeing its behavior associated with structural and mechanical phenomena, is evaluated. The ocurrence of phenomena such as dynamic aging, martensite transformation, static aging, failure at creep curve, cells, subgrains and boundary slips is discussed in the different regions of the chart. A practical example of the charts' utilization for components of fast reactors is finally presented. (Author) [pt

  11. Small angle neutron scattering study of creep deformation and fracture of type 304 stainless steel

    International Nuclear Information System (INIS)

    Yoo, M.H.; Ogle, J.C.; Schneibel, J.H.; Swindeman, R.W.

    1983-01-01

    A small-angle neutron scattering (SANS) study has been performed to determine the size distribution of carbide precipitates that were formed during creep deformation in type 304 stainless steel. The hardening mechanism during primary creep by a fine dispersion of carbide particles in the matrix was confirmed by the SANS measurement and also by direct TEM observations. The size distribution of creep-induced cavities was also determined by SANS measurements after post-creep solution heat treatment. (author)

  12. Small angle neutron scattering study of creep deformation and fracture of Type 304 stainless steel

    International Nuclear Information System (INIS)

    Yoo, M.H.; Ogle, J.C.; Schneibel, J.H.; Swindeman, R.W.

    1982-01-01

    A small-angle neutron scattering (SANS) study has been performed to determine the size distribution of carbide precipitates that were formed during creep deformation in Type 304 stainless steel. The hardening mechanism during primary creep by a fine dispersion of carbide particles in the matrix was confirmed by the SANS measurement and also by direct TEM observations. The size distribution of creep-induced cavities was also determined by SANS measurements after post-creep solution heat treatment

  13. An experimental study on the deformation and fracture modes of steel projectiles during impact

    International Nuclear Information System (INIS)

    Rakvåg, K.G.; Børvik, T.; Westermann, I.; Hopperstad, O.S.

    2013-01-01

    Highlights: • The fracture process is ductile for the unhardened projectiles. • A combined ductile–brittle fracture process is obtained for the HRC 40 projectiles. • The fragmentation of HRC 52 projectiles has cleavage as the main mechanism. • The fracture modes were confirmed in a metallurgical study. • The hardened materials have a stochastic variation of the mechanical properties. - Abstract: Previous investigations of the penetration and perforation of high-strength steel plates struck by hardened steel projectiles have shown that under certain test conditions the projectile may fracture or even fragment upon impact. Simulations without an accurate failure description for the projectile material will then predict perforation of the target instead of fragmentation of the projectile, and thus underestimate the ballistic limit velocity of the target plate. This paper presents an experimental investigation of the various deformation and fracture modes that may occur in steel projectiles during impact. This is studied by conducting Taylor bar impact tests using 20 mm diameter, 80 mm long, tool steel projectiles with three different hardness values (HRC 19, 40 and 52). A gas gun was used to fire the projectiles into a rigid wall at impact velocities ranging from 100 to 350 m/s, and the deformation and fracture processes were captured by a high-speed video camera. From the tests, several different deformation and fracture modes were registered for each hardness value. To investigate the influence of material on the deformation and fracture modes, several series of tensile tests on smooth axisymmetric specimens were carried out to characterise the mechanical properties of the three materials. To gain a deeper understanding of the various processes causing fracture and fragmentation during impact, a metallurgical investigation was conducted. The fracture surfaces of the failed projectiles of different hardness were investigated, and the microstructure was

  14. Effect of grain size, deformation, aging and anisotropy on hysteresis loss of electrical steels

    International Nuclear Information System (INIS)

    Landgraf, F.J.G.; Emura, M.; Teixeira, J.C.; Campos, M.F. de

    2000-01-01

    The investigation of the effect of cold deformation, anisotropy, aging and grain size on the shape of the hysteresis curve of non-oriented electrical steels shows that most of the hysteresis energy is dissipated in the high-induction region (above the maximum permeability induction). It indicates that more attention should be given to the energy dissipation mechanisms in that region, such as the domain annihilation and nucleation

  15. Resistance Spot Welding of Steel Sheets of the Same and Different Thickness

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2017-01-01

    Full Text Available Resistance welding ranks among progressive and in practice often used manufacturing techniques of rigid joints. It is applied in single‑part production, short‑run production as well as in mass production. The basis of this method is in the utilization of the Joulean heat, which arises at the passage of current through connected sheets at collective influence of compressive force. The aim of the carried out tests was the determination of the dependence between the rupture force of spot welds made using steel sheets of the same and different thickness for different welding conditions. For carrying out of this aim 360 assemblies were prepared. The sheets (a total of 720 pieces of dimensions 100 × 25 mm and thickness of 0.8 mm, 1.5 mm and 3.0 mm were made from low carbon steel. In the place determined for welding the test specimens were garnet blasted and then degreased with acetone. The welding of two specimens always of the same (0.8+0.8 mm, 1.5+1.5 mm a 3.0+3.0 mm and different (0.8 + 1.5 mm, 0.8+3.0 mm a 1.5+3.0 mm thickness was carried out using the welding machine type BV 2,5.21. At this type the welding current value is constant (Imax = 6.4 kA. The welding time (the time of the passage of the current was changed in the whole entirety, namely 0.10 s, 0.15 s, 0.20 s, 0.25 s, 0.3 s, 0.4 s, 0.6 s, 0.8 s, 1.0 s, 1.3 s, 1.6 s and 2.0 s. The compressive force was chosen according to the thickness of the connected sheets in the range from 0.8 to 2.4 kN. From the results of carried out tests it follows that using the working variables recommended by the producer we obtain the quality welds. But it we use the longer welding times, we can obtain stronger welds, namely up to 21 % compared to welds made using working variables recommended by the producer.

  16. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    Science.gov (United States)

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.

  17. Microstructural Evolution and Constitutive Relationship of M350 Grade Maraging Steel During Hot Deformation

    Science.gov (United States)

    Chakravarthi, K. V. A.; Koundinya, N. T. B. N.; Narayana Murty, S. V. S.; Nageswara Rao, B.

    2017-03-01

    Maraging steels exhibit extraordinary strength coupled with toughness and are therefore materials of choice for critical structural applications in defense, aerospace and nuclear engineering. Thermo-mechanical processing is an important step in the manufacture of these structural components. This process assumes significance as these materials are expensive and the mechanical properties obtained depend on the microstructure evolved during thermo-mechanical processing. In the present study, M350 grade maraging steel specimens were hot isothermally compressed in the temperature range of 900-1200 °C and in the strain rate range of 0.001-100 s-1, and true stress-true strain curves were generated. The microstructural evolution as a function of strain rate and temperature in the deformed compression specimens was studied. The effect of friction between sample and compression dies was evaluated, and the same was found to be low. The measured flow stress data was used for the development of a constitutive model to represent the hot deformation behavior of this alloy. The proposed equation can be used as an input in the finite element analysis to obtain the flow stress at any given strain, strain rate, and temperature useful for predicting the flow localization or fracture during thermo-mechanical simulation. The activation energy for hot deformation was calculated and is found to be 370.88 kJ/mol, which is similar to that of M250 grade maraging steel.

  18. Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy

    Science.gov (United States)

    Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.

    2018-04-01

    Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).

  19. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance

    OpenAIRE

    Abreu,Hamilton Ferreira Gomes de; Carvalho,Sheyla Santana de; Lima Neto,Pedro de; Santos,Ricardo Pires dos; Freire,Válder Nogueira; Silva,Paulo Maria de Oliveira; Tavares,Sérgio Souto Maior

    2007-01-01

    In austenitic stainless steels, plastic deformation can induce martensite formation. The induced martensite is related to the austenite (gamma) instability at temperatures close or below room temperature. The metastability of austenite stainless steels increases with the decreasing of stacking fault energy (SFE). In this work, the deformation induced martensite was analyzed by X ray diffraction, electron back scatter diffraction (EBSD), magnetic methods and atomic force microscope (AFM) in sa...

  20. Acoustic emission during the elastic-plastic deformation of low alloy reactor pressure vessel steels. I

    International Nuclear Information System (INIS)

    Holt, J.; Goddard, D.J.

    1980-01-01

    Measurements of the acoustic emission behaviour of A533B and C-Mn low alloy reactor pressure vessel steels subjected to uniaxial tensile deformation are described. The effects on the emission activity of the rolling plane orientation and the carbide morphology were examined. Detailed discussions are given of the stress dependence of the emission activity below yield and of its recovery by annealing at the stress relief temperature. It is shown that the dominant emission source is the same in both steels and is associated with inclusions, such as MnS, elongated by the rolling process, the carbide morphology being relatively unimportant. A criterion for the occurrence of an emission is obtained which is directly analogous to the general criterion for yielding. It is also shown that a large fraction, at least, of the emission activity arises from a recoverable process such as localized yielding around inclusions or limited inclusion decohesion and not from inclusion fracture. Low activity in C-Mn steel taken from reactor pressure vessels, previously attributed to spheroidization of carbides, is shown to be due to the limited acoustic recovery of these relatively high sulphur content steels when annealed at the stress relief temperature. It is concluded that the limited amplitudes of these emissions during deformation severely restrict their potential application in practice. (Auth.)

  1. 76 FR 58536 - Tin- and Chromium-Coated Steel Sheet From Japan; Notice of Commission Determination To Conduct a...

    Science.gov (United States)

    2011-09-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... Concerning the Antidumping Duty Order on Tin- and Chromium-Coated Steel Sheet From Japan AGENCY: United.... 1675(c)(5)) to determine whether revocation of the antidumping duty order on tin- and chromium-coated...

  2. Resistance spot weldability of 11Cr–ferritic/martensitic steel sheets

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-01-01

    Resistance spot welding of 11Cr–0.4Mo–2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  3. Characterization and modelling techniques for gas metal arc welding of DP 600 sheet steels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Prahl, U.; Bleck, W. [RWTH Aachen University, Department of Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2010-11-15

    The objectives of the present work are to characterize the Gas Metal Arc Welding process of DP 600 sheet steel and to summarize the modelling techniques. The time-temperature evolution during the welding cycle was measured experimentally and modelled with the softwaretool SimWeld. To model the phase transformations during the welding cycle dilatometer tests were done to quantify the parameters for phase field modelling by MICRESS {sup registered}. The important input parameters are interface mobility, nucleation density, etc. A contribution was made to include austenite to bainite transformation in MICRESS {sup registered}. This is useful to predict the microstructure in the fast cooling segments. The phase transformation model is capable to predict the microstructure along the heating and cooling cycles of welding. Tensile tests have shown the evidence of failure at the heat affected zone, which has the ferrite-tempered martensite microstructure. (orig.)

  4. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    International Nuclear Information System (INIS)

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-01-01

    The Waterloo Barrier trademark steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10 -8 to 10 -10 cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier trademark cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier trademark in these applications

  5. Flexural Behavior of High-Volume Steel Fiber Cementitious Composite Externally Reinforced with Basalt FRP Sheet

    Directory of Open Access Journals (Sweden)

    Seungwon Kim

    2016-01-01

    Full Text Available High-performance fiber-reinforced cementitious composites (HPFRCCs are characterized by unique tensile strain hardening and multiple microcracking behaviors. The HPFRCC, which demonstrates remarkable properties such as strength, ductility, toughness, durability, stiffness, and thermal resistance, is a class of fiber cement composite with fine aggregates. It can withstand tensile stresses by forming distributed microcracks owing to the embedded fibers in the concrete, which improve the energy absorption capacity and apparent ductility. This high energy absorbing capacity can be enhanced further by an external stiff fiber-reinforced polymer (FRP. Basalt fabric is externally bonded as a sheet on concrete materials to enhance the durability and resistance to fire and other environmental attacks. This study investigates the flexural performance of an HPFRCC that is externally reinforced with multiple layers of basalt FRP. The HPFRCC considered in the study contains steel fibers at a volume fraction of 8%.

  6. Effect of Prior Deformation on Welding Microstructure of Steel 304L

    Directory of Open Access Journals (Sweden)

    WU Luo-fei

    2017-01-01

    Full Text Available This subject was raised by an automotive company.Based on the welding design on the curved surface,the effect of prior deformation on the weld structure was studied.Metal active-gas welding was used on the T-joint and pre-deformed plates of austenitic stainless steel 304L to find the proper welding parameters and observe the effect of prior deformation on the microstructure.The proper parameters acquired are:the speed of the torch is 4mm/s,the speed of delivery of welding wire is 2.5m/min and the voltage is 17V.In the T-joint and pre-deformed joint,the weld toes are in the zone with strain of 0% and 30%.In the pre-deformed welding specimen,it was observed that the fusion zone and partially melted zone are narrowed,carbide precipitation and ferrites are found less.In all,the microstructure in the pre-deformed weld joints on 304L is more uniform.

  7. Interface bonding of SA508-3 steel under deformation and high temperature diffusion

    Science.gov (United States)

    Xu, Bin; Shao, Chunjuan; Sun, Mingyue

    2018-05-01

    There are mainly two parameters affecting high temperature interface bonding: deformation and diffusion. To study these two parameters, interface bonding of SA508-3 bainitic steel at 1100°C are simulated by gleeble3500 thermal simulator. The results show that interface of SA508-3 steel can be bonded under deformation and high temperature. For a specimen pressed at 1100°C without further high temperature diffusion, a reduction ratio of 30% can make the interface begun to bond, but the interface is still part of the grain boundary and small grains exist near the interface. When reduction ratio reaches 50%, the interface can be completely bonded and the microstructure near the interface is the same as that of the base material. When deformation is small, long time diffusion can also help the interface bonding. The results show that when the diffusion time is long enough, the interface under small deformation can also be bonded. For a specimen holding for 24h at 1100°C, only 13% reduction ratio is enough for interface bonding.

  8. Effect of pre-deformation on the fatigue crack initiation life of X60 pipeline steel

    International Nuclear Information System (INIS)

    Zheng, M.; Luo, J.H.; Zhao, X.W.; Bai, Z.Q.; Wang, R.

    2005-01-01

    It is impossible to keep petroleum and natural gas transmission pipelines free from defects in the manufacturing, installation and servicing processes. The damage might endanger the safety of pipelines and even shorten their service life; gas or petroleum release due to defects may jeopardise the surrounding ecological environments with associated economic and life costs. Pre-tensile deformation of X60 steel is employed to experimentally simulate the influence of dents on the fatigue crack initiation life. The investigation indicates that the fatigue crack initiation life of pre-deformed X60 pipeline steel can be assessed by a previously proposed energetic approach. The threshold for crack initiation increases with the pre-deformation due to a strain hardening effect, while the fatigue resistant factor exhibits a maximum with pre-deformation owing to its special dependence on fracture strain and fracture strength. The result is expected to be beneficial to the understanding of the effect of damage on the safety of pipelines and fatigue life prediction

  9. Mechanical and microstructural aspects of severe plastic deformation of austenitic steel

    Science.gov (United States)

    Rodak, K.; Pawlicki, J.; Tkocz, M.

    2012-05-01

    The paper presents the effects of severe plastic deformation by multiple compression in the orthogonal directions on the microstructure and the mechanical properties of austenitic steel. Several deformation variants were conducted with different number of passes. FEM simulations were performed in order to evaluate the actual values of the effective strain in the examined, central parts of the compressed samples. The deformed microstructure was investigated by means of the scanning transmission electron microscopy (STEM) and the scanning electron microscopy (SEM) supported by the electron back scattered diffraction (EBSD). X-ray phase analysis was performed to evaluate the martensite volume fraction. The mechanical properties were determined by means of the digital image correlation method and hardness testing. It is shown that the applied forming technique leads to strong grain refinement in the austenitic steel. Moreover, deformation induces the martensitic γ- α' transformation. The microstructural changes cause an improvement in the strength properties. The material exhibits the ultimate tensile strength of 1560 MPa and the yield stress of 1500 MPa after reaching the effective strain of 10.

  10. Mechanical and microstructural aspects of severe plastic deformation of austenitic steel

    International Nuclear Information System (INIS)

    Rodak, K; Pawlicki, J; Tkocz, M

    2012-01-01

    The paper presents the effects of severe plastic deformation by multiple compression in the orthogonal directions on the microstructure and the mechanical properties of austenitic steel. Several deformation variants were conducted with different number of passes. FEM simulations were performed in order to evaluate the actual values of the effective strain in the examined, central parts of the compressed samples. The deformed microstructure was investigated by means of the scanning transmission electron microscopy (STEM) and the scanning electron microscopy (SEM) supported by the electron back scattered diffraction (EBSD). X-ray phase analysis was performed to evaluate the martensite volume fraction. The mechanical properties were determined by means of the digital image correlation method and hardness testing. It is shown that the applied forming technique leads to strong grain refinement in the austenitic steel. Moreover, deformation induces the martensitic γ– α' transformation. The microstructural changes cause an improvement in the strength properties. The material exhibits the ultimate tensile strength of 1560 MPa and the yield stress of 1500 MPa after reaching the effective strain of 10.

  11. Laser-Beam Welding Impact on the Deformation Properties of Stainless Steels When Used for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Evin Emil

    2016-09-01

    Full Text Available Materials other than standard and advanced high strength steels are remarkable for the thin-walled structures of the car-body in recent years in order to safety enhancement, weight and emission reduction, corrosion resistance improvement. Thus, there are presented in the paper the deformation properties of laser welded austenitic AISI 304 and ferritic AISI 430 stainless steels compared to these one measured for the high strength low alloyed steel H220PD. The properties were researched by tensile test and 3-point bending test with fixed ends on specimens made of basic material and laser welded one. The specimens were welded by solid state fiber laser YLS-5000 in longitudinal direction (the load direction. The deformation properties such as strength, stiffness and deformation work were evaluated and compared. The strength and stiffness were calculated from tensile test results and the deformation work was calculated from both, tensile test and 3-point bending test results. There has been found only minor effect of laser welding to the deformation properties for high strength low alloyed steel H220PD and austenitic stainless steel AISI 304. Otherwise, the laser welding strongly influenced the deformation work of the ferritic stainless steel AISI 430 as well as the elongation at tensile test.

  12. The influence of deformation, annealing and recrystallisation on oxide nanofeatures in oxide dispersion strengthened steel

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Karl, E-mail: k.dawson@liverpool.ac.uk; Tatlock, Gordon J.

    2017-04-01

    This work demonstrates that Y-Ti oxide nanofeatures, observed in as-extruded oxide dispersion strengthened steel, are structurally modified by cold forging. A 950 °C heat treatment promoted restructuring of the deformed particles and partial recrystallisation of the cold forged alloy. Transmission electron microscopy revealed that cuboid shaped nanofeatures were deformed during forging, which resulted in high number densities of lens shaped yttrium-titanium oxide particles. Annealing the forged alloy promoted partial recrystallisation of the ferritic matrix. Particle morphology reverted from lens shaped, as witnessed in the deformed material, to cuboid shaped oxide nanofeatures, identical to those observed in as-extruded material. Precipitation distributions evaluated in both recrystallised and recovering grains were indistinguishable from those first measured in the as-extruded alloy. TEM images revealed a widespread orientation relationship between the oxide precipitates and the recrystallised grains; registration with the ferrite lattice was omnipresent in both recovering and recrystallised grains.

  13. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Jun, H.J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kang, J.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Seo, D.H. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Kang, K.B. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Park, C.G. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)]. E-mail: cgpark@postech.ac.kr

    2006-04-25

    The continuous-cooling-transformation (CCT) diagram and continuous cooled microstructure were investigated for low carbon (0.05 wt.% C) high strength low alloy steels with/without boron. Microstructures observed in continuous cooled specimens were composed of pearlite, quasi-polygonal ferrite, granular bainite, acicular ferrite, bainitic ferrite, lower bainite, and martensite depending on cooling rate and transformation temperature. A rapid cooling rate depressed the formation of pearlite and quasi-polygonal ferrite, which resulted in higher hardness. However, hot deformation slightly increased transformation start temperature, and promoted the formation of pearlite and quasi-polygonal ferrite. Hot deformation also strongly promoted the acicular ferrite formation which did not form under non-deformation conditions. Small boron addition effectively reduced the formation of pearlite and quasi-polygonal ferrite and broadened the cooling rate region for bainitic ferrite and martensite.

  14. Fitting the flow curve of a plastically deformed silicon steel for the prediction of magnetic properties

    International Nuclear Information System (INIS)

    Sablik, M.J.; Landgraf, F.J.G.; Magnabosco, R.; Fukuhara, M.; Campos, M.F. de; Machado, R.; Missell, F.P.

    2006-01-01

    We report measurements and modelling of magnetic effects due to plastic deformation in 2.2% Si steel, emphasizing new tensile deformation data. The modelling approach is to take the Ludwik law for the strain-hardening stress and use it to compute the dislocation density, which is then used in the computation of magnetic hysteresis. A nonlinear extrapolation is used across the discontinuous yield region to obtain the value of stress at the yield point that is used in fitting Ludwik's law to the mechanical data. The computed magnetic hysteresis exhibits sharp shearing of the loops at small deformation, in agreement with experimental behavior. Magnetic hysteresis loss is shown to follow a Ludwik-like dependence on the residual strain, but with a smaller Ludwik exponent than applies for the mechanical behavior

  15. Transformation of deformation martensite into austenite in stainless steels at various heating rates

    International Nuclear Information System (INIS)

    Gojkhenberg, Yu.N.; Shtejnberg, M.M.

    1978-01-01

    Under isothermal conditions and with continuous preheating at defferent rates, the inverse transformation of deformation martensite that is obtained through reductions to small, medium and great degrees, has been studied. It has been established that depending on the preheat rate, the temperature of the end α → ν of rebuilding varies according to a curve having a maximum. The ascending branch of that curve is connected with the diffusion-controlled shear transformation, whereas the descending branch with the transition to the martensite reaction of austenite formation. As the deformation degree increases, the temperature of the end of the inverse transformation decreases. As a result, recrystallization of austenite proceeds only after completing α → ν transition, when heating the steels deformed to the medium degree at rates of at least 25 deg/sec and after high reductions at rates of at least 0.8 deg/sec

  16. Investigating the fatigue behavior of grain-oriented Fe-3%Si steel sheets using magnet-optical Kerr microscopy and micromagnetic multiparameter, microstructure and stress analysis

    Directory of Open Access Journals (Sweden)

    Deldar Shayan

    2018-01-01

    Full Text Available Fatigue is considered as a reason for a significant number of mechanical failures of engineering materials. Conventionally, microstructural investigations along with stress-strain hysteresis measurements are performed to understand and characterize the fatigue behavior of metallic materials. Moreover, further physical data like temperature, electrical resistance and, in the case of ferromagnetic materials, magnetic properties can be used for a comprehensive characterization of fatigue process. The present work has employed Magneto-Optical Kerr Effect (MOKE microscope and Micromagnetic Multiparameter, Microstructure and stress Analysis (3MA system to illustrate magnetic domain structure and various intrinsic magnetic properties including magnetic Barkhausen noise (MBN of the investigated material. In order to investigate the influence of the mechanical deformation processes on the magnetic parameters, samples were produced out of the grain-oriented electrical steel sheets and were subjected to a tensile test as well as a cyclic strain increase load test with R = 0 at ambient temperature.

  17. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  18. Influence of the mechanical fatigue progress on the magnetic properties of electrical steel sheets

    Directory of Open Access Journals (Sweden)

    Karthaus Jan

    2017-06-01

    Full Text Available The purpose of this paper is to study the variation of the magnetic properties of non-oriented electrical steel sheets with the fatigue state during cyclic mechanical loading. The obtained results are central to the design of variable drives such as traction drives in electric vehicles in which varying mechanical loads, e.g. in the rotor core (centrifugal forces, alter the magnetic properties. Specimens of non-oriented electrical steel are subject to a cyclically varying mechanical tensile stress with different stress amplitudes and number of cycles. The specimens are characterised magnetically at different fatigue states for different magnetic flux densities and magnetising frequencies. The measurements show a variation in magnetic properties depending on the number of cycles and stress magnitude which can be explained by changes in the material structure due to a beginning mechanical fatigue process. The studied effect is critical for the estimation of the impact of mechanical material fatigue on the operational behaviour of electrical machines. Particularly in electrical machines with a higher speed where the rotor is stressed by high centrifugal forces, material fatigue occurs and can lead to deterioration of the rotor’s stack lamination.

  19. Temperature effects on the magnetic properties of silicon-steel sheets using standardized toroidal frame.

    Science.gov (United States)

    Wu, Cheng-Ju; Lin, Shih-Yu; Chou, Shang-Chin; Tsai, Chia-Yun; Yen, Jia-Yush

    2014-01-01

    This study designed a detachable and standardized toroidal test frame to measure the electromagnetic characteristic of toroidal laminated silicon steel specimens. The purpose of the design was to provide the measurements with standardized and controlled environment. The device also can withstand high temperatures (25-300°C) for short time period to allow high temperature tests. The accompanying driving circuit facilitates testing for high frequency (50-5,000 Hz) and high magnetic flux (0.2-1.8 T) conditions and produces both sinusoidal and nonsinusoidal test waveforms. The thickness of the stacked laminated silicon-steel sheets must be 30~31 mm, with an internal diameter of 72 mm and an outer diameter of 90 mm. With the standardized setup, it is possible to carry out tests for toroidal specimen in high temperature and high flux operation. The test results show that there is a tendency of increased iron loss under high temperature operation. The test results with various driving waveforms also provide references to the required consideration in engineering designs.

  20. Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Yan, Jieshen; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of); Song, Gyu Yeong [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2017-01-15

    Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

  1. Mechanical properties and corrosion resistance of nitrided or oxinitrided, and powder painted regular and interstitial free (IF) drawing steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Rogalski, Z.; Latas, Z. [Instytut Mechaniki Precyzyjnej, ul. Duchnicka 3, 01-796 Warszawa (Poland)

    2004-06-01

    Specimens of 0.8 mm thick regular and interstitial free (IF) drawing steel sheet have been nitrided in fluidised bed for 2 hours at 620 C and 560 C with and without a post-oxidation, and slow and accelerated cooling. As a result, surface hardness, yield and tensile strength of the sheets increased considerably without a critical loss of ductility. Resistance welds between the sheets did not lose their original strength after nitriding-oxinitriding. Nitrided-oxinitrided at 620 C and then powder painted sheets, as compared with powder painted raw sheets, were more corrosion resistant in neutral salt spray and climatic tests. Some mechanical and anticorrosion properties of the IF steel sheet that had undergone the nitriding-oxinitriding processes were definitely better than those of equally processed regular steel sheet. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Proben aus 0,8 mm dickem Blech aus Ziehmassenstahl sowie aus Ziehstahl ohne interstitiel geloeste Legierungsanteile (IF), werden im Wirbelbett in 2 Stunden bei 620 und 560 {sup o}C nitriert mit nachfolgenden Oxidierung sowie alternativ ohne Oxidierung und mit langsamer und beschleunigter Abkuehlung. Infolge dessen nehmen die Haerte, die Dehngrenze und die Zugfestigkeit der Bleche zu, ohne kritischen Zaehigkeitsverlust. Die Widerstandsschweisswulste zwischen den Blechen nach dem Nitrieren-Oxinitrieren haben nicht an Festigkeit verloren. Die bei 620 {sup o}C nitrierten-oxinitrierten und nachfolgend mit Pulverlack beschichteten Bleche sind bei den Versuchen in Salznebel und bei klimatischen Versuchen korrosionbestaendiger im Vergleich mit den mit nur Pulverlack beschichteten Rohblechen. Manche der mechanischen und korrosionsverhalten betreffenden Eigenschaften der Bleche aus IF-Staehle sind entscheidend besser als fuer das ebenso behandelte Blech aus Ziehmassenstahl. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  2. Numerical analysis of thermal deformation in laser beam heating of a steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Kim, Yong-Rae; Kim, Jae-Woong [Yeungnam University, Kyongsan (Korea, Republic of)

    2017-05-15

    Line heating is a widely used process for plate forming or thermal straightening. Flame heating and induction heating are the traditional heating processes used by industry for line heating. However, these two heating processes are ineffective when used on small steel plates. Thus, the laser beam heating with various power profiles were carried out in this study. A comparison of numerical simulation results and experimental results found a significant difference in the thermal deformation when apply a different power profile of laser beam heating. The one-sinusoid power profile produced largest thermal deformation in this study. The laser beam heating process was simulated by established a combined heat source model, and simulated results were compared with experimental results to confirm the model’s accuracy. The mechanism of thermal deformation was investigated and the effects of model parameters were studied intensively with the finite element method. Thermal deformation was found to have a significant relationship with the amount of central zone plastic deformation. Scientists and engineers could use this study’s verified model to select appropriate parameters in laser beam heating process. Moreover, by using the developed laser beam model, the analysis of welding residual stress or hardness could also be investigated from a power profile point of view.

  3. Test and analysis of thermal ratcheting deformation for 316L stainless steel cylindrical structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon; Kim, Jong Bum; Lee, Jae Han

    2002-01-01

    In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 550 degree C with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79 mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests

  4. Influence of deformation on structural-phase state of weld material in St3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander, E-mail: galvas.kem@gmail.ru; Ababkov, Nicolay, E-mail: n.ababkov@rambler.ru; Ozhiganov, Yevgeniy, E-mail: zhigan84@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); LLC “Kuzbass Center of Welding and Control”, 33/2, Lenin Str., 650055, Kemerovo (Russian Federation); Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Zboykova, Nadezhda, E-mail: tezaurusn@gmail.com; Koneva, Nina, E-mail: koneva@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample.

  5. Static recrystallisation and precipitation after hot deformation of austenitic stainless steels containing molybdenum and niobium

    International Nuclear Information System (INIS)

    Lombry, R.; Rossard, C.; Thomas, B.J.

    1981-01-01

    In general the hot workability of austenite depends on the work hardening during deformation and the kinetics of the dynamic and static restoration processes. Static recrystallisation is a very important factor in the case of hot rolling. The present work was undertaken to determine the effect of additions of molybdenum or niobium on the kinetics of static recrystallisation. The results show that the rate of static recrystallisation of type 304, 316 and 347 stainless steels decreases in this order for a given amount of prior deformation (epsilon=0,44). The differences in the rates of recrystallisation increases as the temperature is lowered towards 900 deg C. The effect of molybdenum appears to be attribuable to a solute drag effect on the mobility of dislocations, subgrain boundaries or grain boundaries whereas niobium additions lead to the formation of NbC precipitates on the dislocation cell walls and sub boundaries. It is also shown that in the case of type 316 and type 347 steels the dynamic recrystallisation process (observed in type 304 steels at all temperatures above 900 deg C) is replaced by dynamic recovery at temperatures egal to or below about 1000 deg C [fr

  6. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  7. Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel under Hot Compression

    Directory of Open Access Journals (Sweden)

    Huabing Li

    2016-09-01

    Full Text Available Hot deformation behavior and microstructure evolution of 2707 hyper duplex stainless steel (HDSS were investigated through hot compression tests in the temperature range of 900–1250 °C and strain rate range of 0.01–10 s−1. The results showed that the flow behavior strongly depended on strain rate and temperature, and flow stress increased with increasing strain rate and decreasing temperature. At lower temperatures, many precipitates appeared in ferrite and distributed along the deformation direction, which could restrain processing of discontinuous dynamic recrystallization (DRX because of pinning grain boundaries. When the temperature increased to 1150 °C, the leading softening behaviors were dynamic recovery (DRV in ferrite and discontinuous DRX in austenite. When the temperature reached 1250 °C, softening behavior was mainly DRV in ferrite. The increase of strain rate was conducive to the occurrence of discontinuous DRX in austenite. A constitutive equation at peak strain was established and the results indicated that 2707 HDSS had a higher Q value (569.279 kJ·mol−1 than other traditional duplex stainless steels due to higher content of Cr, Mo, Ni, and N. Constitutive modeling considering strain was developed to model the hot deformation behavior of 2707 HDSS more accurately, and the correlation coefficient and average absolute relative error were 0.992 and 5.22%, respectively.

  8. Hot Deformation Behavior of 1Cr12Ni3Mo2VN Martensitic Stainless Steel

    Science.gov (United States)

    He, Xiaomao; Jiang, Peng; Zhou, Leyu; Chen, Chao; Deng, Xiaochun

    2017-08-01

    1Cr12Ni3Mo2VN is a new type of martensitic stainless steel for the last-stage blades of large-capacity nuclear and thermal power turbines. The deformation behavior of this steel was studied by thermal compression experiments that performed on a Gleeble-3500 thermal simulator at a temperature range of 850°C to 1200°C and a strain rate of 0.01s-1 to 20s-1. When the deformation was performed at high temperature and low strain rate, a necklace type of microstructures was observed, the plastic deformation mechanism is grain boundary slip and migration, when at low temperature and lower strain rate, the slip bands were observed, the mechanism is intracrystalline slips, and when at strain rate of 20s-1, twins were observed, the mechanism are slips and twins. The Arrhenius equation was applied to describe the constitutive equation of the flow stress. The accuracy of the equation was verified by using the experimental data and the correlation coefficient R2 = 0.9786, and the equation can provide reasonable data for the design and numerical simulation of the forging process.

  9. Characterization of the failure behavior of zinc coating on dual phase steel under tensile deformation

    International Nuclear Information System (INIS)

    Song Guiming; Sloof, Willem G.

    2011-01-01

    Highlights: → The microcracks and voids at the zinc grain boundaries are the initial sites for the coating cracking. → The crack spacing of the fragmentally fractured zinc coating is mainly determined by the zinc grain size. → Small zinc grain size and the c-axis direction of zinc grain parallel to the zinc surface are beneficial to the mitigation of the zinc coating delamination. - Abstract: The failure behavior of hot-dip galvanized zinc coatings on dual phase steels under tensile deformation is characterized with in situ scanning electron microscopy (SEM). Under tension, the pre-existed microcracks and voids at the zinc grain boundaries propagate along the zinc grain boundaries to form crack nets within the coating, leading to a segmented fracture of the zinc coating with the crack spacing approximately equal to the zinc grain size. With further loading, the coating segments partially delaminated along the interface between the top zinc layer and the inhibition layer instead of the interface between the inhibition layer and steel substrate. As the c-axis of zinc grains trends to be normal to the tensile loading direction, the twinning deformation became more noticeable, and meanwhile the coating delamination was diminished. The transverse and incline tunneling cracks occurred in the inhibition layer with tensile deformation. The existence of the brittle FeZn 13 particles on top of the inhibition layer was unfavorable to the coating adhesion.

  10. High temperature deformation behavior, thermal stability and irradiation performance in Grade 92 steel

    Science.gov (United States)

    Alsagabi, Sultan

    The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally

  11. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation

    International Nuclear Information System (INIS)

    Wang, T.S.; Hou, R.J.; Lv, B.; Zhang, M.; Zhang, F.C.

    2007-01-01

    The microstructure evolution and the deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation at room temperature have been studied as a function of the reduction in the range of 20-60%. Experimental results show that with the reduction increasing the microstructure of the deformed sample changes from dislocation substructures into the dominant twins plus dislocations. This suggests that the plastic deformation mechanism changes from the dislocation slip to the dominant deformation twinning. The minimum reduction for deformation twins starting is estimated to be at between 30 and 40%. With the reduction further increases to more than 40%, the deformation twinning is operative and the thickness of deformation twins gradually decreases to nanoscale and shear bands occur. These high-density twins can be curved by the formation of shear bands. In addition, both transmission electron microscopy and X-ray diffraction examinations confirm the inexistence of deformation-induced martensites in these deformed samples

  12. Microstructure and texture evolution of different high manganese cast steels during hot deformation and subsequent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.N.S.; Andrade, C.D.; Abreu, H.F.G. de; Klug, J.; Masoumi, M., E-mail: mohammad@alu.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Depto. de Engenharia Metalurgica e de Materiais; Ferreira, W.M. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Curso de Engenharia Mecanica

    2016-07-01

    Microstructure and texture evolution were studied in two different austenitic high manganese cast steels in each processing condition. Special attention was paid to the effects of hot deformation and subsequent treatment on grain orientation behavior. The roles of Mn and C elements as well as heat treatment processes were investigated by Thermo-Calc. The texture evolutions in the as-cast, solution heat treatment, as-rolled and subsequent treatment were explored via orientation distribution function. The results showed that face-centred cube austenite was developed in steels. Strong {110}<115> texture component was characterized in as-cast in both alloys. Then, the inhomogeneity microstructure and the pronounced microsegregations were removed by annealing and Brass {110}<112>, {110}<111> and {221}<102> components were formed. Finally, cube {001}<100> component was developed during hot rolling in samples. (author)

  13. Microstructure and texture evolution of different high manganese cast steels during hot deformation and subsequent treatment

    International Nuclear Information System (INIS)

    Lima, M.N.S.; Andrade, C.D.; Abreu, H.F.G. de; Klug, J.; Masoumi, M.; Ferreira, W.M.

    2016-01-01

    Microstructure and texture evolution were studied in two different austenitic high manganese cast steels in each processing condition. Special attention was paid to the effects of hot deformation and subsequent treatment on grain orientation behavior. The roles of Mn and C elements as well as heat treatment processes were investigated by Thermo-Calc. The texture evolutions in the as-cast, solution heat treatment, as-rolled and subsequent treatment were explored via orientation distribution function. The results showed that face-centred cube austenite was developed in steels. Strong {110}<115> texture component was characterized in as-cast in both alloys. Then, the inhomogeneity microstructure and the pronounced microsegregations were removed by annealing and Brass {110}<112>, {110}<111> and {221}<102> components were formed. Finally, cube {001}<100> component was developed during hot rolling in samples. (author)

  14. Tempering response to different morphologies of martensite in tensile deformation of dual-phase steel

    International Nuclear Information System (INIS)

    Ahmad, E.; Manzoor, T.; Sarwar, M.; Arif, M.; Hussain, N.

    2011-01-01

    A low alloy steel containing 0.2% C was heat treated with three cycles of heat treatments with the aim to acquire different morphologies of martensite in dual phase microstructure. Microscopic examination revealed that the morphologies consisting of grain boundary growth, scattered laths and bulk form of martensite were obtained. These morphologies have their distinct patterns of distribution in the matrix (ferrite). In tensile properties observations the dual phase steel with bulk morphology of martensite showed minimum of ductility but high tensile strength as compared to other two morphologies. This may be due to poor alignments of bulk martensite particles along tensile axes during deformation. Tempering was employed with various holding times at 550 deg. C to induce ductility in the heat treated material. The tempering progressively increased the ductility by increasing holding time. However, tempering response to strengths and ductilities was different to all three morphologies of martensite. (author)

  15. Effect of heating and deformation conditions on the depth of surface defects in alloyed steel rolling

    International Nuclear Information System (INIS)

    Malygin, R.Z.; Karyakin, B.P.; Grosman, A.B.; Simovskikh, V.N.; Storozhev, V.I.

    1978-01-01

    The effect of heating and deformation conditions on the depth change of artificial defects in the 50 KhFA alloyed steel rolling on the 850 blooming and 450 section mill was studied. Quite a definite regularity in the arrangement of defects (cracks and hairlines) along the circumference of the round steel bar and obvious relation with the defect distribution on the bloom faces are established. Oxidation is shown to diminish defect depth while ingot and billet heating especially on the faces under direct firing. Blooms should be placed in the furnace with 90 deg canting in relation to the faces position while ingot heating. Round rolling must be performed with one or several 45 deg strip cantings. The defect depth for the ingots to be rolled without chipping is set up

  16. Impact deformation behavior of duplex and superaustenitic stainless steels welds by split Hopkinson pressure bar

    Science.gov (United States)

    Wang, Shing-Hoa; Huang, Chih-Sheng; Lee, Woei-Shyan; Chen, Tao-Hsing; Wu, Chia-Chang; Lien, Charles; Tsai, Hung-Yin

    2009-12-01

    A considerable volume of γ phase increases in the fusion zone (weld metal) for two duplex stainless steels after a high-strain-rate impact. The strain-induced γ phase formation in the fusion zone results in local hardness variation depending on the strain rate. The α phase content in the fusion zone decreases as the impact strain rate increases for SAF 2205 DSS and SAF 2507 DSS. The results of the two-phase content measured by Ferritoscope correspond to that assessed by image analyses. In contrast, superaustenite stainless steel is unaffected by such an impact owing to its fully stable austenization. Impacted welds at a high strain rate of 5 × 103 s-1 reveal feather-like surface creases along the solidified curved columnar grain boundaries. The apparent surface creases are formed due to the presence of diffuse Lüders bands, which are caused by heavy plastic deformation in coarse-grain materials.

  17. Peculiarities of the effect of high temperature deformation on the kinetics of bainite transformation in steels of various compositions

    International Nuclear Information System (INIS)

    Khlestov, V.M.; Gotsulyak, A.A.; Ehntin, R.I.; Konopleva, E.V.; Kogan, L.I.

    1979-01-01

    By the methods of magnetometry and metallography studied is the effect of 25% deformation by rolling at 800 deg C on kinetics and parameters of bainite transformation in steels with different hydrogen contents and types of alloying. The hot deformation decelerates the bainite transformation at temperatures >=400 deg C; while the isoterm temperature increases the decelerating effect of deformation at first decreases and then changes into the accelerating one. The slowing down of the transformation is determined mainly by the decrease in the rate of the bainite crystal growth, whereas the acceleration - by the activation of grain initiation processes in the hot-deformed austenite. A hydrogen content increase and steel alloying with carbide-forming elements increase the stabilization effect of the deformation on kinetics of bainite transformation

  18. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  19. Formation of Quenching Structures in the Steel 35 by Deform Cutting

    OpenAIRE

    A. G. Degtyareva; V. V. Poptsov; V. N. Simonov; V. G. Vasilev; S. B. Varlamova

    2014-01-01

    In industry different methods of surface hardening are widely used to increase reliability and durability of friction unit parts. Among these methods are areas of focus based on deformcutting technology (DC) i.e. method of chip-free mechanical treatment.It is shown that DC method allows us to produce through- or partial-hardening surface layers of a large thickness (0,4…1.5mm) on steel with no additional heat sources. The standard metal-cutting equipment and common tools are used for deform-c...

  20. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Shuro, I., E-mail: innoshuro@martens.me.tut.ac.jp [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan); Kuo, H.H. [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan); Sasaki, T.; Hono, K. [National Institute for Materials Sciences, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Todaka, Y.; Umemoto, M. [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Using TEM and APT analyses, G-phase precipitation was observed in HPTed SUS304 with no trace of spinodal decomposition. Black-Right-Pointing-Pointer G-phase precipitation occurred much shorter time than previous studies probably due to the elimination of prior SD and enhanced diffusion by severe plastic deformation. Black-Right-Pointing-Pointer G-phase composition is a function of aging time. Black-Right-Pointing-Pointer Tensile tests showed that in SUS304 embrittlement occurs solely due to G-phase precipitation. - Abstract: G phase an intermetallic silicide has been observed in martensite of precipitation hardened stainless steels and in the ferrite of dual (austenite and ferrite) phase stainless steels. In both cases, before G-phase precipitates, the matrix composition changes due to spinodal decomposition and solute partitioning between ferrite and austenite. Thus in the present study, single bcc phase and high Ni content stainless steel, was selected to study G-phase precipitation expecting elimination of the interference from spinodal decomposition and solute partitioning. Fe-18Cr-8Ni (SUS304) austenitic stainless steel samples were deformed at room temperature by high pressure torsion to obtain 100% volume fraction of deformation induced martensite ({alpha} Prime ). HPT deformation was chosen due to its ability to induce high strength by grain refinement and also attain 100% {alpha} Prime at room temperature. After annealing at 400 Degree-Sign C for 500 h, G-phase precipitation was observed in the fully martensitic matrix without spinodal decomposition. Crystallographic analysis of annealed samples using high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) detected a Mn-Ni-Si rich G-phase with fcc crystal structure with lattice parameter of 1.16 nm. The value of lattice parameter corresponds well with previously reported values. Chemical analysis by atom probe tomography

  1. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion

    International Nuclear Information System (INIS)

    Shuro, I.; Kuo, H.H.; Sasaki, T.; Hono, K.; Todaka, Y.; Umemoto, M.

    2012-01-01

    Highlights: ► Using TEM and APT analyses, G-phase precipitation was observed in HPTed SUS304 with no trace of spinodal decomposition. ► G-phase precipitation occurred much shorter time than previous studies probably due to the elimination of prior SD and enhanced diffusion by severe plastic deformation. ► G-phase composition is a function of aging time. ► Tensile tests showed that in SUS304 embrittlement occurs solely due to G-phase precipitation. - Abstract: G phase an intermetallic silicide has been observed in martensite of precipitation hardened stainless steels and in the ferrite of dual (austenite and ferrite) phase stainless steels. In both cases, before G-phase precipitates, the matrix composition changes due to spinodal decomposition and solute partitioning between ferrite and austenite. Thus in the present study, single bcc phase and high Ni content stainless steel, was selected to study G-phase precipitation expecting elimination of the interference from spinodal decomposition and solute partitioning. Fe–18Cr–8Ni (SUS304) austenitic stainless steel samples were deformed at room temperature by high pressure torsion to obtain 100% volume fraction of deformation induced martensite (α′). HPT deformation was chosen due to its ability to induce high strength by grain refinement and also attain 100% α′ at room temperature. After annealing at 400 °C for 500 h, G-phase precipitation was observed in the fully martensitic matrix without spinodal decomposition. Crystallographic analysis of annealed samples using high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) detected a Mn–Ni–Si rich G-phase with fcc crystal structure with lattice parameter of 1.16 nm. The value of lattice parameter corresponds well with previously reported values. Chemical analysis by atom probe tomography (APT) showed G-phase of composition Mn 21 Ni 50 Si 24 Fe 4 Cr. Tensile tests showed that G-phase precipitation leads to

  2. Stress and Strain Gradients in a Low Carbon Steel Deformed under Heavy Sliding

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Huang, Xiaoxu

    A recent study [1] has shown that a microstructure can be refined to a record low of 5 nm and that dislocation glide is still a controlling mechanism at this length scale. In this study, by heavy rotatory sliding of a low carbon steel a gradient structure has been produced extending to about 2.5 mm...... on the deformation microstructure using the classic stress-structure relationship. Computational and materials modelling has been advanced from bulk to gradient structures leading to dissemination of constitutive stress-strain equations in gradient structures....

  3. A unified phenomenological model for non-elastic deformation of Type 316 stainless steel

    International Nuclear Information System (INIS)

    Schmidt, C.G.; Miller, A.K.

    1981-01-01

    A complete model is provided for the non-elastic deformation of unaged type 316 stainless steel. The fitting flexibility, breadth of application, and predictive capabilities of the model are demonstrated for a wide variety of data. Satisfactory descriptions are given of the steady-state and transient creep behaviour as well as the monotonic stress-strain behaviour from the yield stress to steady-state flow. These descriptions apply over a broad range of temperatures and strain rates for both solution annealed and 20% cold worked material. Furthermore, cyclic stress-strain curves, cyclic hysteresis loops, and stress relaxation data are shown to be well described for solution annealed material. (author)

  4. Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel

    Energy Technology Data Exchange (ETDEWEB)

    Le, K. C. [Ruhr-Univ Bochum, Bochum (Germany). Lehrstuhl fur Mechanik-Materialtheorie; Tran, T. M. [Ruhr-Univ Bochum, Bochum (Germany). Lehrstuhl fur Mechanik-Materialtheorie; Langer, J. S. [Univ. of California, Santa Barbara, CA (United States). Dept. of Physics

    2017-07-12

    The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of high-temperature deformation of aluminum and steel. Using physics-based parameters that we expect theoretically to be independent of strain rate and temperature, we are able to fit experimental stress-strain curves for three different strain rates and three different temperatures for each of these two materials. Here, our theoretical curves include yielding transitions at zero strain in agreement with experiment. We find that thermal softening effects are important even at the lowest temperatures and smallest strain rates.

  5. Effect of large plastic deformation on microstructure and mechanical properties of a TWIP steel

    International Nuclear Information System (INIS)

    Yanushkevich, Z; Belyakov, A; Kaibyshev, R; Molodov, D

    2014-01-01

    The effect of cold rolling on the microstructure evolution and mechanical properties of a cold rolled Fe-0.3C-17Mn-1.5AI TWIP steel was studied. The plate samples were cold rolled with reductions of 20, 40, 60 and 80%. The structural changes were associated with the development of deformation twinning and shear bands. The average spacing between twin boundaries in the transverse section of the rolled plates decreased from ∼190 to 36 nm with an increase in the rolling reduction from 20 to 40%. Upon further rolling to 80% reduction the twin spacing remained at about 30 nm. The cold rolling resulted in significant increase in strength as revealed by tensile tests at an ambient temperature. The offset yield stress approached 1440 MPa, and the ultimate tensile strength increased to 1630 MPa after rolling reduction of 80%. Such significant strengthening was attributed to the development of specific structure consisting of deformation nanotwins with high dislocation density

  6. High-rate deformation and fracture of steel 09G2S

    Science.gov (United States)

    Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.

    2014-11-01

    The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.

  7. Creep deformation and rupture behavior of type 304/308 stainless steel structural weldments

    International Nuclear Information System (INIS)

    McAfee, W.J.; Richardson, M.; Sartory, W.K.

    1977-01-01

    The creep deformation and rupture of type 304/308 stainless steel structural weldments at 593 0 C (1100 0 F) was experimentally investigated to study the comparative behavior of the base metal and weld metal constituents. The tests were conducted in support of ORNL's program to develop high-temperature structural design methods applicable to liquid-metal fast breeder reactor (LMFBR) system components that operate in the creep range. The specimens used were thin-walled, right circular cylinders capped with either flat or hemispherical heads and tested under internal gas pressure. Circumferential welds were located in different regions of the cylinder or head and, with one exception, were geometrically duplicated by all base metal regions in companion specimens. Results are presented on the comparative deformation and rupture behavior of selected points in the base metal and weldment regions of the different specimens and on the overall surface strains for selected specimens

  8. Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel

    International Nuclear Information System (INIS)

    Yu, Xianglong; Jiang, Zhengyi; Zhao, Jingwei; Wei, Dongbin; Zhou, Cunlong; Huang, Qingxue

    2015-01-01

    Highlights: • Microtexture development of deformed oxide layers is investigated. • Magnetite shares the {0 0 1} fibre texture with wustite. • Hematite develops the {0 0 0 1} basal fibre parallel to the oxide growth. • Stress relief and ion vacancy diffusion mechanism for magnetite seam. - Abstract: Electron backscatter diffraction (EBSD) analysis has been presented to investigate the microstructure and microtexture evolutions of deformed oxide scale formed on a microalloyed steel during hot rolling and accelerated cooling. Magnetite and wustite in oxide layers share a strong {0 0 1} and a weak {1 1 0} fibres texture parallel to the oxide growth. Trigonal hematite develops the {0 0 0 1} basal fibre parallel to the crystallographic plane {1 1 1} in magnetite. Taylor factor estimates have been conducted to elucidate the microtexture evolution. The fine-grained magnetite seam adjacent to the substrate is governed by stress relief and ions vacancy diffusion mechanism

  9. Deformability of 12MKh steel within the temperature range of polymorphous transformations

    International Nuclear Information System (INIS)

    Surovtsev, A.P.; Sukhanov, V.E.

    1987-01-01

    Deformability and the structure of 12 MKh steel under tension, upsetting and torsion within the temperature range of polymorphous transformations have been investigated. Tests for tension showed the presence of two plasticity maxima, which correspond to the temperatures of P-A and F-A structural transformation beginning. Loss of strength during deformation is connected with dynamic polygonization and the initial stage of dynamic recrystallization as well as the state preceding ferrite transformation. Loss of plasticity is observed at the temperature accompanying the end of F-A transformation; it is explained by the formation of more strength martensite and by increase of material porosity as a result of the transformation with volume decrease

  10. Deformability of 12MKh steel within the temperature range of polymorphous transformations

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Sukhanov, V E

    1987-01-01

    Deformability and the structure of 12 MKh steel under tension, upsetting and torsion within the temperature range of polymorphous transformations have been investigated. Tests for tension showed the presence of two plasticity maxima, which correspond to the temperatures of P-A and F-A structural transformation beginning. Loss of strength during deformation is connected with dynamic polygonization and the initial stage of dynamic recrystallization as well as the state preceding ferrite transformation. Loss of plasticity is observed at the temperature accompanying the end of F-A transformation; it is explained by the formation of more strength martensite and by increase of material porosity as a result of the transformation with volume decrease.

  11. Comparative Analysis of Welded and Adhesive Joints Strength Made of Acid-Resistant Stainless Steel Sheets

    Directory of Open Access Journals (Sweden)

    Izabela Miturska

    2017-12-01

    Full Text Available The article presents the selected results of strength tests on the effectiveness of bonding high-alloy steel 1.4310. Sheet steel is one of the materials that are difficult to activate energy. Effective joining of it is difficult, requires selection of the appropriate bonding technology. The paper focuses on the comparative tests the shear strength of one-single lap welded and bonded joints. The welding process was performed 3 groups of samples TIG welding and argon, where the variable value of the welding process was current: 60A, 70A, 80A. The adhesion process was performed in 6 groups of samples which differed in the method of surface preparation and the type of the adhesive. Adhesive joints were made by using adhesive of epoxy resin and a hardener: Epidian 61/TFF at a mass ratio of 100:22 and Epidian 61/IDA at a mass ratio of 100:40. As a way of surface preparation applied 3 different, but simplified and environmentally friendly methods of surface preparation: degreasing with using cleaner Loctite 7061, abrasive machining with P320 and degreasing and grinding with abrasive T800 and degreasing were used. Make joints and curing the adhesive joints were carried out at ambient temperature. Analyzed the joints were tested destructive - which set out the shear strength, in accordance with DIN EN 1465 on the testing machine Zwick / Roell Z150. Based on the results of research it was found that better results were obtained for the maximum welded joints, but this result was similar to the maximum value of the strength of the adhesive bond.

  12. TECHNOLOGY OF REVERSE-BLAST CORROSION CLEANING OF STEEL SHEETS PRIOR TO LASER CUTTING

    Directory of Open Access Journals (Sweden)

    A. N. Zguk

    2017-01-01

    Full Text Available Quality of surface cleaning against corrosion influences on efficiency in realization of a number of technological processes. While using bentonite clays in power fluid reverse-blast cleaning ensures formation of anticorrosion protective coating with light absorbing properties on the cleaned surface and prevents formation of the repeated corrosion. The paper presents results of the investigations pertaining to influence of reverse-blast cleaning parameters of steel sheets on quality of the cleaned surface prior to laser cutting. Processing conditions, applied compositions of power fluid and also properties of the protective film coatings on the cleaned surface have been given in the paper. The paper considers topography, morphology and chemical composition of the given coating while applying complex metal micrographic, X-ray diffraction and electronic and microscopic investigations. A complex of laser cutting (refer to gas lasers with output continuous capacity of 2.5/4.0 kW has been applied for experimental works to evaluate influence of the formed surface quality on efficiency of laser cutting process. Specimens having dimension 120×120 mm, made of steel Ст3пс, with thickness from 3 to 10 mm have been prepared for the experiments. An analysis has shown that the application of reverse-blast cleaning ensures higher speed in laser cutting by a mean of 10–20 %. The investigations have made it possible to determine optimum cleaning modes: distance from a nozzle to the surface to be cleaned, jet velocity, pressure. It has been revealed that after drying of the specimens processed by power fluid based on water with concentrations of bentonite clay and calcined soda a protective film coating with thickness of some 5–7 µm has been formed on the whole cleaned specimen surfaces. Chemical base of the coating has been formed by the elements which are included in the composition of bentonite clay being the basic component of the power fluid. 

  13. A constitutive equation for hot deformation range of 304 stainless steel considering grain sizes

    International Nuclear Information System (INIS)

    Parsa, M.H.; Ohadi, D.

    2013-01-01

    Highlights: • A hot deformation constitutive equation based on invariant theory is proposed. • Deformation variables are evaluated based on objectivity, entropy principle, etc. • Using hot compression tests, coefficients of equation have been found. • The ability of equation to show the variation of stress with strain is examined. - Abstract: A general constitutive equation based on the framework of invariant theory by consideration of hot deformation key variables and also the properties of the material such as initial grain size is presented in the current work. Soundness of the considered parameters to be used in the developed formula was initially verified based on the important axioms such as objectivity, entropy principle, and thermodynamics stability. To access the prediction ability of the method, the formula was simplified for the simple hot compression test. To evaluate the simplified formula, single-hit hot compression tests were carried out at the temperature range of 900–1100 °C under true strain rate of 0.01–1 s −1 on a AISI 304 stainless steel. The capability of proposed formula for reproducing the variation of flow stress with strain and the strain hardening rate with stress for the resultant flow stress data was examined. The good agreement between model predictions and actual results signified the applicability of this method as a general constitutive equation in hot deformation studies

  14. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  15. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism

    International Nuclear Information System (INIS)

    Lostak, Thomas; Maljusch, Artjom; Klink, Björn; Krebs, Stefan; Kimpel, Matthias; Flock, Jörg; Schulz, Stephan; Schuhmann, Wolfgang

    2014-01-01

    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H 2 ZrF 6 ) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed

  16. Strain- and stress-based forming limit curves for DP 590 steel sheet using Marciniak-Kuczynski method

    Science.gov (United States)

    Kumar, Gautam; Maji, Kuntal

    2018-04-01

    This article deals with the prediction of strain-and stress-based forming limit curves for advanced high strength steel DP590 sheet using Marciniak-Kuczynski (M-K) method. Three yield criteria namely Von-Mises, Hill's 48 and Yld2000-2d and two hardening laws i.e., Hollomon power and Swift hardening laws were considered to predict the forming limit curves (FLCs) for DP590 steel sheet. The effects of imperfection factor and initial groove angle on prediction of FLC were also investigated. It was observed that the FLCs shifted upward with the increase of imperfection factor value. The initial groove angle was found to have significant effects on limit strains in the left side of FLC, and insignificant effect for the right side of FLC for certain range of strain paths. The limit strains were calculated at zero groove angle for the right side of FLC, and a critical groove angle was used for the left side of FLC. The numerically predicted FLCs considering the different combinations of yield criteria and hardening laws were compared with the published experimental results of FLCs for DP590 steel sheet. The FLC predicted using the combination of Yld2000-2d yield criterion and swift hardening law was in better coorelation with the experimental data. Stress based forming limit curves (SFLCs) were also calculated from the limiting strain values obtained by M-K model. Theoretically predicted SFLCs were compared with that obtained from the experimental forming limit strains. Stress based forming limit curves were seen to better represent the forming limits of DP590 steel sheet compared to that by strain-based forming limit curves.

  17. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  18. Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets

    International Nuclear Information System (INIS)

    Lee, Seong Won; Lee, Jung Min; Joun, Man Soo; Kim, Dong Hwan

    2016-01-01

    During a galvannealed sheet metal forming, the failures of coating layers (powdering, flaking and cracking) frequently affect the strain state of sheets and deteriorate the frictional characteristic between sheets and tools. Two FE-models in this study were suggested to investigate the effects of the mechanical behavior of coating layers on the formability and friction of the coated steel sheets in FE analysis; the first is one-layer model to express the coated sheet as one stress-strain curve and the second is a multiple-layer model which is composed of substrates and coating layers, separately. First, the frictional properties and the formability of the coated sheets were experimentally investigated using a cup deep-drawing trial. After, the drawing process was simulated by FE analysis of the two models. In the multiplelayer model, the mechanical behavior of the coating is defined as a stress-strain curve which was determined using the nanoindentation test of the coating, its FE analysis and artificial neural network method. The result showed that the multiple-layer model provides more accuracy predictions of drawing loads than the one-layer model in the FE analysis, compared to the actual cup drawing test.

  19. Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Won; Lee, Jung Min [Korea Institute of Industrial Technology, Jinju (Korea, Republic of); Joun, Man Soo [Gyeongsang National University, Jinju (Korea, Republic of); Kim, Dong Hwan [International University of Korea, Jinju (Korea, Republic of)

    2016-07-15

    During a galvannealed sheet metal forming, the failures of coating layers (powdering, flaking and cracking) frequently affect the strain state of sheets and deteriorate the frictional characteristic between sheets and tools. Two FE-models in this study were suggested to investigate the effects of the mechanical behavior of coating layers on the formability and friction of the coated steel sheets in FE analysis; the first is one-layer model to express the coated sheet as one stress-strain curve and the second is a multiple-layer model which is composed of substrates and coating layers, separately. First, the frictional properties and the formability of the coated sheets were experimentally investigated using a cup deep-drawing trial. After, the drawing process was simulated by FE analysis of the two models. In the multiplelayer model, the mechanical behavior of the coating is defined as a stress-strain curve which was determined using the nanoindentation test of the coating, its FE analysis and artificial neural network method. The result showed that the multiple-layer model provides more accuracy predictions of drawing loads than the one-layer model in the FE analysis, compared to the actual cup drawing test.

  20. Formation of Quenching Structures in the Steel 35 by Deform Cutting

    Directory of Open Access Journals (Sweden)

    A. G. Degtyareva

    2014-01-01

    Full Text Available In industry different methods of surface hardening are widely used to increase reliability and durability of friction unit parts. Among these methods are areas of focus based on deformcutting technology (DC i.e. method of chip-free mechanical treatment.It is shown that DC method allows us to produce through- or partial-hardening surface layers of a large thickness (0,4…1.5mm on steel with no additional heat sources. The standard metal-cutting equipment and common tools are used for deform-cutting process.The significant heat generation in the deform-cutting zone and mechanical effect from the tool allow us to heat undercut layers to the phase transformation point to have the hardening structure as a result of heat removal to the cold balk. The hardening structure formation occurs at significant heating and cooling rate (106C/c with large degrees and rates of strain.The deform-cutting modes and working face tool grinding determine the type and properties of the hardening structure. To produce the hardening structure would require the heat transfer and force action augmentation while treatment.These researches deal with through- and partial surface hardening samples produced by turning steel 35 shafts. While through hardening the phase transformation carry among the whole thickness of the undercut layer; while partial hardening the hardening interlayer formed on the side of the cutting tool contact.The depth of hardening zone of samples with through hardening layers is 0,5 mm; the depth of hardening zone of partial hardening samples is 0,8 mm. Micro-hardness of the through hardening layers is 653 HV0,1 and 485 HV0,1 for the partial hardening layers. The metallographic analysis shows that the hardening zone formed while deform cutting has disperse structure; there are ferrite ghosts in it.The tempering at temperatures of 200 – 700C showed that the micro-hardness of the hardening structures formed while deform cutting is larger than the micro

  1. Experimental Tests on Bending Behavior of Profiled Steel Sheeting Dry Board Composite Floor with Geopolymer Concrete Infill

    Directory of Open Access Journals (Sweden)

    Mohd Isa Jaffar

    Full Text Available Abstract Profiled Steel Sheet Dry Board (PSSDB system is a lightweight composite structure comprises Profiled Steel Sheeting and Dry Board connected by self-drilling and self-tapping screws. This study introduced geopolymer concrete, an eco-friendly material without cement content as an infill material in the PSSDB floor system to highlight its effect onto the PSSDB (with full and half-size dry boards floor system's stiffness and strength. Experimental tests on various full scale PSSDB floor specimens were conducted under uniformly distributed transverse loads. Results illustrate that the rigidity of the panel with geopolymer concrete infill with half-size dry board (HBGPC increases by 43% relative to that of the panel with normal concrete infill with full-size dry board (FBNC. The developed finite-element modeling (FEM successfully predicts the behavior of FBGPC model with 94.8% accuracy. Geopolymer concrete infill and dry board size influence the strength panel, infill contact stiffness, and mid-span deflection of the profiled steel sheeting/dry board (PSSDB flooring system.

  2. Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef_saleh@s-petrol.suez.edu.eg [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P. [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Misra, R.D.K. [Center for Structural and Functional Materials and Chemical Engineering Department, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504-4130, USA. (United States); Talonen, J. [Outokumpu Oyj, Box 140, FI-02201 Espoo (Finland)

    2013-01-01

    The role of different deformation mechanisms in controlling mechanical properties were studied in two low-Ni, Cr-Mn austenitic stainless steel grades (Types 201 and 201L) by tensile testing and microstructure examinations. Tensile tests were carried out at two different strain rates, 5 Multiplication-Sign 10{sup -4} and 10{sup -2} s{sup -1}, in the temperature range from -80 Degree-Sign C to 200 Degree-Sign C. It was observed that the flow properties and work hardening rate are affected significantly by temperature and strain rate for the concerned steels through variation of deformation mechanism. Deformation-induced austenite-to-martensite transformation (TRIP effect) is the dominant mechanism at temperatures below room temperature. From 50 Degree-Sign C up to 200 Degree-Sign C, plastic deformation is controlled by mechanical twinning (TWIP effect) and dislocation glide. The electron backscattered diffraction (EBSD) technique and transmission electron microscopy (TEM) were employed to study the plastic deformation accommodation and identify the primary deformation mechanisms operating in the deformed steels.

  3. A study of local deformation and damage of dual phase steel

    International Nuclear Information System (INIS)

    Sirinakorn, T.; Wongwises, S.; Uthaisangsuk, V.

    2014-01-01

    Highlights: • Crack initiation in DP microstructure was investigated using 2D RVE simulation. • The GTN damage model was used to describe void evolution in ferrite and interphase. • Predicted damage at triple junctions agreed with observed crack initiation sites. • RVE with GNDs zone showed damages took place at earlier deformation state. • Overall loading condition exhibited significant effect on damage evolution rate. - Abstract: Deformation and fracture behavior of Dual Phase (DP) high strength steel were investigated by means of a microstructure based Finite Element (FE) modeling. Representative Volume Elements (RVEs) were applied to consider effects of various microstructure constituents and characteristics. Individual stress–strain curves were provided for ferrite, martensite as well as transformation induced Geometrically Necessary Dislocations (GNDs) taking into account in the RVEs. Principally, the GNDs occurred around phase boundaries during quenching process due to the austenite–martensite transformation. Flow behaviors of individual phases were defined on the basis of dislocation theory and partitioning of local chemical composition. Then, flow curves of the examined DP steel were predicted. Furthermore, the Gurson–Tvergaard–Needleman (GTN) model was used to represent ductile damage evolution in the microstructure. Occurrences of void initiation were characterized and damage parameters for RVE simulations were hence identified. Finally, influences of the GNDs, local stress and strain distributions and interactions between phases on predicted crack initiation in the DP microstructure were discussed and correlated with experimental results

  4. Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Jing, Hongyang; Zhao, Lei; Han, Yongdian; Lv, Xiaoqing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072 (China)

    2017-04-06

    Dislocation structures and their evolution of 304L stainless steel and weld metal made with ER308L stainless steel welding wire subjected to uniaxial symmetric strain-controlled loading and stress-controlled ratcheting loading were observed by transmission electron microscopy (TEM). The correlation between the cyclic response and the dislocation structure has been studied. The experiment results show that the cyclic behaviour of base metal and weld metal are different. The cyclic behaviour of the base metal consists of primary hardening, slight softening and secondary hardening, while the weld metal shows a short hardening within several cycles followed by the cyclic softening behaviour. The microscopic observations indicate that in base metal, the dislocation structures evolve from low density patterns to those with higher dislocation density during both strain cycling and ratcheting deformation. However, the dislocation structures of weld metal change oppositely form initial complicated structures to simple patterns and the dislocation density gradually decrease. The dislocation evolution presented during the strain cycling and ratcheting deformation is summarized, which can qualitatively explain the cyclic behaviour and the uniaxial ratcheting behaviour of two materials. Moreover, the dislocation evolution in the two types of tests is compared, which shows that the mean stress has an effect on the rate of dislocation evolution during the cyclic loading.

  5. Changes in the state of heat-resistant steel induced by repeated hot deformation

    Science.gov (United States)

    Lyubimova, Lyudmila L.; Fisenko, Roman N.; Tashlykov, Alexander A.; Tabakaev, Roman B.

    2018-01-01

    This work deals with the problems of structural regeneration by thermal restoration treatment (TRT). These include the lack of a structural sign showing that TRT is possible, a consensus on TRT modes, the data on the necessary relaxation depth of residual stresses, or criteria of structural restoration. Performing a TRT without solving these problems may deteriorate the properties of steel or even accelerate its destruction. With this in view, the purpose of this work is to determine experimentally how the residual stress state changes under thermal and mechanical loads in order to specify the signs of the restoration of structure and structural stability. The object of this research is unused 12Cr1MoV steel that has been aged naturally for 13 years. Using X-ray dosimetry with X-ray spectral analysis, we study the distribution of internal residual stresses of the first kind during the repeated hot deformation. After repeated thermal deformation, the sample under study transforms from a viscoelastic Maxwell material into a Kelvin-Voigt material, which facilitates structural stabilization. A sign of this is the relaxation limit increase, prevention of continuous decay of an α-solid solution of iron and restoration of the lattice parameter.

  6. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

    Science.gov (United States)

    Ganesh Kumar, J.; Laha, K.; Ganesan, V.; Prasad Reddy, G. V.

    2018-04-01

    The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δT (1 - e^{ - κ t} ) + \\dot{δ }s t + δ3 e^[ φ( t - tr ) ]. The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\\dot{δ }s ) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \\dot{δ }s and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

  7. The effect of alloying and treatment on martensite transformation during deformation in Fe-Cr-Mn steels with unstable austenite

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop, V.I.; Sokolov, K.N.

    1977-01-01

    The effect is studied of alloying with chromium (6-10%), silicon (1-2%), molybdenum (1-3%), and copper (2%), the heat treatment conditions, and the deformation conditions, or the martensitic transformation and mechanical properties of Fe-Cr-Mn steels of the transitional class based on 0G8AM2S. It is shown that appropriate alloying and treatment, taking into account the degree of stability of the austenite, can ensure a complex of high mechanical properties of the steels investigated. For instance, the treatment of steel 0Kh10AG8MD2S by the technique: hardening+ 40% deformation at 400 deg C + 10% deformation at room temperature has yielded the following mechanical properties: sigmasub(B)=150 kgf/mm 2 , sigmasub(T)=110 kgf/mm 2 , sigma=18%, psi=32%

  8. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  9. Kinematics of deformation bands in an austenitic FeMnC TWIP steel

    International Nuclear Information System (INIS)

    Chateau, J P; Jacques, A; Lebedkina, T A; Lebyodkin, M A; Allain, S

    2010-01-01

    Tensile tests on a Fe22Mn0.6C steel at room temperature and different strain rates show serrations on the curves similar to Portevin-Le Chatelier (PLC) serrations of type A, associated with negative strain rate sensitivity. Propagation of deformation bands have been observed by high-rate extensometry over more than two orders of magnitude of the applied strain rate. This constitutes a remarkable difference with the PLC effect which shows a transition to static bands (type B or C) when the applied strain rate decreases. In this steel, bands moving as slow as a few tenth of mm/s are observed instead of static bands, which is two orders of magnitude lower than what is reported for type A PLC bands. This emphasises a strong correlation between plastic events, also confirmed by multifractal analysis of the tensile curves. Twinning which is responsible of the high strain hardening rate of this steel at room temperature is discussed as one of mechanisms of correlation between instabilities.

  10. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    Science.gov (United States)

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  11. Electron backscatter and X-ray diffraction studies on the deformation and annealing textures of austenitic stainless steel 310S

    Energy Technology Data Exchange (ETDEWEB)

    Nezakat, Majid, E-mail: majid.nezakat@usask.ca [Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3 (Canada); Akhiani, Hamed [Westpower Equipment Ltd., 4451 54 Avenue South East, Calgary, AB T2C 2A2 (Canada); Sabet, Seyed Morteza [Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431 (United States); Szpunar, Jerzy [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9 (Canada)

    2017-01-15

    We studied the texture evolution of thermo-mechanically processed austenitic stainless steel 310S. This alloy was cold rolled up to 90% reduction in thickness and subsequently annealed at 1050 °C. At the early stages of deformation, strain-induced martensite was formed from deformed austenite. By increasing the deformation level, slip mechanism was found to be insufficient to accommodate higher deformation strains. Our results demonstrated that twinning is the dominant deformation mechanism at higher deformation levels. Results also showed that cold rolling in unidirectional and cross rolling modes results in Goss/Brass and Brass dominant textures in deformed samples, respectively. Similar texture components are observed after annealing. Thus, the annealing texture was greatly affected by texture of the deformed parent phase and martensite did not contribute as it showed an athermal reversion during annealing. Results also showed that when the fraction of martensite exceeds a critical point, its grain boundaries impeded the movement of austenite grain boundaries during annealing. As a result, recrystallization incubation time would increase. This caused an incomplete recrystallization of highly deformed samples, which led to a rational drop in the intensity of the texture components. - Highlights: •Thermo-mechanical processing through different cold rolling modes can induce different textures. •Martensite reversion is athermal during annealing. •Higher fraction of deformation-induced martensite can increase the annealing time required for complete recrystallization. •Annealing texture is mainly influenced by the deformation texture of austenite.

  12. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  13. Deformation and failure response of 304L stainless steel SMAW joint under dynamic shear loading

    International Nuclear Information System (INIS)

    Lee, Woei-Shyan; Cheng, J.-I.; Lin, C.-F.

    2004-01-01

    The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel shielded metal arc welding (SMAW) joint are studied experimentally with regard to the relations between mechanical properties and strain rate. Thin-wall tubular specimens are deformed at room temperature under strain rates in the range of 8 x 10 2 to 2.8 x 10 3 s -1 using a torsional split-Hopkinson bar. The results indicate that the strain rate has a significant influence on the mechanical properties and fracture response of the tested SMAW joints. It is found that the flow stress, total shear strain to failure, work hardening rate and strain rate sensitivity all increase with increasing strain rate, but that the activation volume decreases. The observed dynamic shear deformation behavior is modeled using the Kobayashi-Dodd constitutive law, and it is shown that the predicted results are in good agreement with the experimental data. Fractographic analysis using scanning electron microscopy reveals that the tested specimens all fracture within their fusion zones, and that the primary failure mechanism is one of the extensive localized shearing. The fracture surfaces are characterized by the presence of many dimples. A higher strain rate tends to reduce the size of the dimples and to increase their density. The observed fracture features are closely related to the preceding flow behavior

  14. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K.; Bar, H.N. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Mandal, D. [Material Processing and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Roy, H., E-mail: himadri9504@gmail.com [NDT and Metallurgy Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Sivaprasad, S.; Tarafder, S. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2014-03-01

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed.

  15. Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Fargas, G. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Mateo, A. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain)

    2014-03-01

    Advanced techniques were used to study the deformation mechanisms induced by fatigue tests in a metastable austenitic stainless steel AISI 301LN. Observations by Atomic Force Microscopy were carried out to study the evolution of a pre-existing martensite platelet at increasing number of cycles. The sub-superficial deformation mechanisms of the austenitic grains were studied considering the cross-section microstructure obtained by Focused Ion Beam and analysed by Scanning Electron Microscopy and Transmission Electron Microscopy. The results revealed no deformation surrounding the pre-existing martensitic platelet during fatigue tests, only the growth on height was observed. Martensite formation was associated with shear bands on austenite, mainly in the {111} plane, and with the activation of the other intersecting austenite {111}〈110〉 slip system. Furthermore, transmission electron microscopy results showed that the nucleation of ε-martensite follows a two stages phase transformation (γ{sub fcc}→ε{sub hcp}→α'{sub bcc})

  16. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Yasuhiro, E-mail: chimi.yasuhiro@jaea.go.jp [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kitsunai, Yuji [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Kasahara, Shigeki [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chatani, Kazuhiro; Koshiishi, Masato [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Nishiyama, Yutaka [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2016-07-15

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%–2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps. - Highlights: • Visible step structures depend on the neutron dose and the applied strain. • Local strain at grain boundaries was accumulated with the neutron dose. • Oxide thickness increases with neutron dose and local strain at grain boundaries. • No penetrative oxidation was observed along grain boundaries or surface steps.

  17. Cold deformation effect on the microstructures and mechanical properties of AISI 301LN and 316L stainless steels

    International Nuclear Information System (INIS)

    Silva, Paulo Maria de O.; Abreu, Hamilton Ferreira G. de; Albuquerque, Victor Hugo C. de; Neto, Pedro de Lima; Tavares, Joao Manuel R.S.

    2011-01-01

    As austenitic stainless steels have an adequate combination of mechanical resistance, conformability and resistance to corrosion they are used in a wide variety of industries, such as the food, transport, nuclear and petrochemical industries. Among these austenitic steels, the AISI 301LN and 316L steels have attracted prominent attention due to their excellent mechanical resistance. In this paper a microstructural characterization of AISI 301LN and 316L steels was made using various techniques such as metallography, optical microscopy, scanning electronic microscopy and atomic force microscopy, in order to analyze the cold deformation effect. Also, the microstructural changes were correlated with the alterations of mechanical properties of the materials under study. One of the numerous uses of AISI 301LN and 316L steels is in the structure of wagons for metropolitan surface trains. For this type of application it is imperative to know their microstructural behavior when subjected to cold deformation and correlate it with their mechanical properties and resistance to corrosion. Microstructural analysis showed that cold deformation causes significant microstructural modifications in these steels, mainly hardening. This modification increases the mechanical resistance of the materials appropriately for their foreseen application. Nonetheless, the materials become susceptible to pitting corrosion.

  18. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength....

  19. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  20. Development of plastic deformations in 12Kh18N10T steel under cyclic symmetrical bending of specimens of various length

    Energy Technology Data Exchange (ETDEWEB)

    Pisarenko, G.S.; Leonets, V.A.; Bega, N.D. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-08-01

    Effect of specimen length on intensity of plastic deformation development and cyclic strength is studied for annealed 12Kh18N10T steel under cyclic symmetrical bending. The intensity of microplastic deformations and cyclic strength of annealed 12Kh18N10T steel in the considered case is due to self-heating.

  1. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Yasuda, Kyono; Sueyoshi, Hitoshi; Endo, Shigeru; Ikeda, Hiroshi; Morikawa, Tatsuya; Higashida, Kenji

    2015-01-01

    The local strain measurement method using nanometer-scaled micro grids printed on the surface of a specimen by an electron lithography technique (the micro-grid method) has been established. Microscopic deformation behavior of the ferrite–bainite steels with different bainite volume fraction, 16% and 40% of bainite, was evaluated. Strain localization in the ferrite phase adjacent to the ferrite/bainite boundary was clearly observed and visualized. Highly strained regions expanded toward the inner region of the ferrite phase and connected each other with an increase of macroscopic strain. The existence of hard bainite phase plays an important role for inducing strain localization in the ferrite phase by plastic constraint in the boundary parallel to the tensile direction. In order to obtain further understanding of microscopic deformation behavior, finite element analysis using the representative volume element, which is expressed by the axisymmetric unit cell containing a hard phase surrounded by a soft phase matrix, was conducted. It was found that the macroscopic stress–strain behavior of ferrite–bainite steels was well simulated by the unit cell models. Strain concentration in the ferrite phase was highly enhanced for the ferrite-40% bainite steel, and this imposed higher internal stress in the bainite phase, resulting in higher strain hardening rate in the early stage of the deformation. However, smaller ferrite volume fraction of ferrite-40% bainite steel induced bainite plastic deformation in order to fulfill the macroscopic strain of the steel. Accordingly, strain hardening capacity of the ferrite-40% bainite steel was reduced to a significant degree, resulting in a smaller uniform elongation than the ferrite-16% bainite steel

  2. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  3. Modelling the deformation process of flexible stamps for nanoimprint lithography

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard

    of PTFE against steel on micro-scale is presented. The 2D axisymmetric model is verified through an experiment, in which a PTFE sheet with a predefined square grid pattern on the surface is deformed by a steel sphere mounted in a uniaxial tensile test machine. Good agreement between simulations...

  4. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    International Nuclear Information System (INIS)

    Rafiqul, M I; Ishak, M; Rahman, M M

    2012-01-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  5. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    Science.gov (United States)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  6. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional......, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of Cr...

  7. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool ...

  8. Finite element modelling of the creep deformation of T91 steel weldments at 600 C

    Energy Technology Data Exchange (ETDEWEB)

    Bhadrui, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Gaudig, W. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Theofel, H. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Maile, K. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1996-05-01

    Finite element modelling of the creep deformation of T91 steel weldments, welded using the manual metal arc (MMA) and submerged arc (SA) welding processes, was carried out to predict creep curves for both of the weldments under different stresses and compared with the experimental data. The stress and strain redistribution across the length of the transverse-weld specimens has also been predicted. Data of creep tests at 600 C at stresses between 90-130 MPa for the base metal, the MMA and SA weld metals, and the simulated heat-affected zone were used to determine Garofalo`s equation for creep strain. Finite element meshes for both of the weldments were constructed after calculating the HAZ locations using Rosenthal`s heat flow equation. (orig.)

  9. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  10. Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation

    DEFF Research Database (Denmark)

    Ryser, Claudia; Luethi, Martin P.; Andrews, Lauren C.

    2014-01-01

    amount of basal motion contribution to surface velocity of 44-73% in winter, and up to 90% in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas...

  11. Prediction of the fatigue curve parameters of high strength steels in terms of the static and microplastic deformations of samples

    International Nuclear Information System (INIS)

    Shetulov, D.I.; Kryukov, L.T.; Myasnikov, A.M.

    2015-01-01

    The cycling and static strengths of a wide range of high-strength steels have been experimentally tested. Correlation between the three parameters-microplastic deformation, strain hardening coefficient, and the slope of the curve to the axis of load cycles-has been established [ru

  12. Deformation and lifetime behaviour of cyclic loaded rail and wheel steels

    Energy Technology Data Exchange (ETDEWEB)

    Denne, B.; Lang, K.-H.; Loehe, D. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    2000-07-01

    Corrugation, shelling and squats are some unexpected technical problems caused by increasing service tonnage, increasing load of the rails and increasing train speed at Deutsche Bahn AG lines since the last decades. As the complex phenomena of rolling contact fatigue in the rail / wheel system is difficult to understand extensive investigations have to be done to describe the multiaxial rolling contact fatigue processes and to develop and verify multiaxial fatigue criteria and lifetime predictions. To reach this aim a reliable fatigue data base of the utilised steels is required. To obtain such data, specimens were worked out of rails and wheels used in high speed traffic. With these specimens the lifetime behaviour and the endurance limit were estimated from push-pull tests. For the rail steel stress and total strain controlled fatigue tests were performed. The resulting lifetime behaviour is compared. In the wheel there are several regions with different microstructures due to the heat treatment at the end of the manufacturing process. Specimens were taken from the wheel rim representing these different microstructures. With these specimens stress controlled fatigue tests were performed. The influence of the different microstructures on the deformation and lifetime behaviour is showed. (orig.)

  13. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, O.A., E-mail: oscar.zambrano@correounivalle.edu.co [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Research Group of Tribology, Polymers, Powder Metallurgy and Processing of Solid Waste (TPMR), Materials Engineering School, Universidad del Valle, Cali (Colombia); Valdés, J. [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Aguilar, Y. [Research Group of Tribology, Polymers, Powder Metallurgy and Processing of Solid Waste (TPMR), Materials Engineering School, Universidad del Valle, Cali (Colombia); Coronado, J.J.; Rodríguez, S.A. [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Logé, Roland E. [Thermomechanical Metallurgy Laboratory – PX Group Chair, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-2002 Neuchâtel (Switzerland)

    2017-03-24

    The mechanical properties of Fe-Mn-Al-C steel are significantly enhanced after κ-carbide precipitation via aging; however, most aging treatments are energy demanding because they require relatively high temperatures and extended holding times. This research determined that the precipitation of these carbides can also occur within a few seconds of thermomechanical treatments (TMTs). This behaviour has not been reported post-TMTs for this steel group. Hot compression tests were performed on Fe-21Mn-11Al-1.5C-2Si wt% specimens at test temperatures ranging from 900 °C to 1150 °C and strain rates varying from 0.01 s{sup −1} to 1 s{sup −1}. The effects of strain rate and test temperature on dynamic recrystallization behaviour were evaluated. The microstructures were characterized by scanning electron microscope and electron backscatter diffraction. Hardness tests were performed before and after applying processes studied i.e., TMT and aging treatment to determine the change in hardness induced. Particularly, nanoindentation tests were also used to collect indirect evidence about the deformation mechanisms. The load-displacement curves P-h and (P/h)-h showed the occurrence of several pop-ins and slope changes related to the nucleation of dislocations and strain-induced phase transformations. The occurrence of these phenomena is discussed.

  14. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  15. Using cold deformation methods in flow-production of steel high precision shaped sections

    International Nuclear Information System (INIS)

    Zajtsev, M.L.; Makhnev, I.F.; Shkurko, I.I.

    1975-01-01

    A final size with a preset tolerance and a required surface finish of steel high-precision sections could be achieved by a cold deformation of hot-rolled ingots-by drawing through dismountable, monolith or roller-type drawing tools or by cold rolling in roller dies. The particularities of the both techniques are compared as regards a number of complicated shaped sections and the advantages of cold rolling are showna more uniform distribution of deformations (strain hardening) across the section, that is a greater margin of plasticity with the same reductions, the less number of the operations required. Rolling is recommended in all the cases when possible as regards the section shape and the bulk volume. The rolling-mill for the calibration of high-precision sections should have no less than two shafts (so that the size could be controlled in both directions) and arrangements to withstand high axial stresses on the rollers (the stresses appearing during rolling in skew dies). When manufacturing precise shaped sections by the cold rolling method the operations are less plentiful than in the cold drawing manufacturing

  16. Hierarchical evolution and thermal stability of microstructure with deformation twins in 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.J. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Jozaghi, T. [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Karaman, I., E-mail: ikaraman@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Arroyave, R. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Chumlyakov, Y.I. [Siberian Physical Technical Institute, Tomsk State University, Tomsk 634050 (Russian Federation)

    2017-05-10

    We report extensive nano-twin formation in 316 stainless steel (SS) and the evolution of a hierarchical microstructure through the formation of multi-scale twin bundles after uniaxial tension with uniform elongation levels of 20%, 30%, and 40%. Multiscale characterization techniques were employed to reveal the nature of these twins. The twin density increases with the increasing strain level, however, the twin width remains the same, notably reducing the mean free path of dislocations. Concurrently, significant work hardening is observed during subsequent deformation. The deformation-induced nano-twins are thermally stable up to ~800 °C, shown by both interrupted and in-situ transmission electron microscopy experiments, above which the recrystallization takes place in the vicinity of the twins. Such favorable thermal stability of the twins in nano-twin strengthened 316 SS offers a promising approach for microstructurally engineering these materials for potential applications at elevated temperatures. The related strengthening mechanisms are discussed in the light of the mean free path of dislocations and the dislocation interactions with twin boundaries.

  17. Influence of Plastic Deformation of Steel Samples on the Fast electron Backscattering

    International Nuclear Information System (INIS)

    Sierra Trujillo, J. X.; Herrera Palma, V.; Desdin Garcia, L. F.; Codorniu Pujals, D.

    2013-01-01

    A considerable fraction of a fast electron beam incident on a target is scattered in backward direction. It is a very complex process involving electron - nucleus and electron - electron collisions. The fraction of backscattered electrons is described by a parameterization as a function of the atomic number and energy of the incident electrons. In such approaches the possible influence of the material structure is not taken into account. In this paper, the behavior of the 90 Sr/ 90 Y backscattered electrons from 08JuA and 15GJuT steel strained samples is investigated. A clear dependence between the degree of plastic deformation and the fraction of backscattered electrons was observed. This relationship is explained by the interaction of electrons with the dislocations in the material, whose density depends on the magnitude of the strain in the plastic region. On the basis of a simple model for describing this interaction, a mathematical expression is obtained for the relationship between the fraction of backscattered electrons and the degree of deformation. (Author)

  18. Prediction of hot deformation behavior of high phosphorus steel using artificial neural network

    Science.gov (United States)

    Singh, Kanchan; Rajput, S. K.; Soota, T.; Verma, Vijay; Singh, Dharmendra

    2018-03-01

    To predict the hot deformation behavior of high phosphorus steel, the hot compression experiments were performed with the help of thermo-mechanical simulator Gleeble® 3800 in the temperatures ranging from 750 °C to 1050 °C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, 0.5 s-1, 1.0 s-1 and 10 s-1. The experimental stress-strain data are employed to develop artificial neural network (ANN) model and their predictability. Using different combination of temperature, strain and strain rate as a input parameter and obtained experimental stress as a target, a multi-layer ANN model based on feed-forward back-propagation algorithm is trained, to predict the flow stress for a given processing condition. The relative error between predicted and experimental stress are in the range of ±3.5%, whereas the correlation coefficient (R2) of training and testing data are 0.99986 and 0.99999 respectively. This shows that a well-trained ANN model has excellent capability to predict the hot deformation behavior of materials. Comparative study shows quite good agreement of predicted and experimental values.

  19. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, M.N., E-mail: gussevmn@ornl.gov; Busby, J.T.; Byun, T.S.; Parish, C.M.

    2013-12-20

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of α- and ε-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at the twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both α- and ε-martensites were found in the microstructure, but at 1100 MPa only α-martensite presented in the specimen. Under indentation, α- and ε-martensite were observed in the material regardless of the stress level.

  20. The effect of deformation twinning on stress localization in a three dimensional TWIP steel microstructure

    International Nuclear Information System (INIS)

    Tari, Vahid; Kadiri, Haitham El; Oppedal, Andrew L; King, Roger L; Rollett, Anthony D; Beladi, Hossein

    2015-01-01

    We present an investigation of the effect of deformation twinning on the visco-plastic response and stress localization in a low stacking fault energy twinning-induced plasticity (TWIP) steel under uniaxial tension loading. The three-dimensional full field response was simulated using the fast Fourier transform method. The initial microstructure was obtained from a three dimensional serial section using electron backscatter diffraction. Twin volume fraction evolution upon strain was measured so the hardening parameters of the simple Voce model could be identified to fit both the stress-strain behavior and twinning activity. General trends of texture evolution were acceptably predicted including the typical sharpening and balance between the 〈1 1 1〉 fiber and the 〈1 0 0〉 fiber. Twinning was found to nucleate preferentially at grain boundaries although the predominant twin reorientation scheme did not allow spatial propagation to be captured. Hot spots in stress correlated with the boundaries of twinned voxel domains, which either impeded or enhanced twinning based on which deformation modes were active locally. (paper)

  1. Influence of prior deformation on the sensitization of AISI Type 316LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Dayal, R.K. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India)); Gnanamoorthy, J.B. (Metallurgy Div., Indira Gandhi Centre for Atomic Research, Tamilnadu (India))

    1994-02-01

    The sensitization behaviour of a nuclear grade AISI 316LN stainless steel (SS) was studied for various cold-work levels ranging from 0% (mill-annealed) to 25% reduction in thickness. ASTM standard A262 Practices A and E were adopted to detect the susceptibility to intergranular corrosion. The results obtained in these tests were used to construct time-temperature-sensitization (TTS) diagrams. Using these data, the critical linear cooling rate was calculated, above which there is no risk of sensitization. In order to predict the sensitization behaviour during practical cooling conditions, Continuous-cooling-sensitization (CCS) diagrams were established utilising the TTS diagrams by a mathematical method. The influences of prior deformation and nitrogen in the alloy on the sensitization kinetics are discussed. It was found that nitrogen addition retards the sensitization kinetics and that t[sub min] (minimum time required for sensitization at nose temperature) increases by two orders of magnitude in Type 316LN SS compared to that of Type 316 SS at the different prior deformation levels. Cold-working up to 15% accelerates the onset of carbide precipitation and on further cold working there is not much difference in the kinetics. Desensitization is faster in highly cold-worked material, especially at high temperatures. (orig.)

  2. Effect of Plastic Deformation on the Corrosion Behavior of a Super-Duplex Stainless Steel

    Science.gov (United States)

    Renton, Neill C.; Elhoud, Abdu M.; Deans, William F.

    2011-04-01

    The role of plastic deformation on the corrosion behavior of a 25Cr-7Ni super-duplex stainless steel (SDSS) in a 3.5 wt.% sodium chloride solution at 90 °C was investigated. Different levels of plastic strain between 4 and 16% were applied to solution annealed tensile specimens and the effect on the pitting potential measured using potentiodynamic electrochemical techniques. A nonlinear relationship between the pitting potential and the plastic strain was recorded, with 8 and 16% causing a significant reduction in average E p, but 4 and 12% causing no significant change when compared with the solution-annealed specimens. The corrosion morphology revealed galvanic interaction between the anodic ferrite and the cathodic austenite causing preferential dissolution of the ferrite. Mixed potential theory and the changing surface areas of the two phases caused by the plastic deformation structures explain the reductions in pitting potential at certain critical plastic strain levels. End-users and manufacturers should evaluate the corrosion behavior of specific cold-worked duplex and SDSSs using their as-produced surface finishes assessing in-service corrosion performance.

  3. Glacitectonic deformation around the retreating margin of the last Irish ice sheet

    Science.gov (United States)

    Knight, J.

    2008-12-01

    Evidence for ice-marginal glacitectonic shunting and deformation of bedrock slabs is described from three sites around the west coast of Ireland. These sites (Brandon Bay, County Kerry; Pigeon Point, County Mayo; Inishcrone, County Sligo) are all locations where the late Devensian ice margin retreated on land and was confined to within limestone bedrock embayments. At these sites, flat-lying bedrock slabs (bedrock slabs have been variously stacked, rotated, deformed into open folds, and brecciated. Separating the bedrock slabs is either a thin layer (bedrock that shows internal folding; or a thicker (bedrock fractures and bedding planes and away from the ice margin, and that bedrock slabs were moved in part by hydraulic lift as well as thrust-style ice-marginal tectonics. The presence of a mosaic of warm and frozen ice-bed patches, in combination with strong geologic control and meltwater generation from behind the ice margin, can help explain formation of these unusual bedrock slab features.

  4. An analysis of heat field of metal sheet during elastic-plastic deformation

    International Nuclear Information System (INIS)

    Li, S.X.; Huang, Y.; Shih, C.H.

    1985-08-01

    This paper describes the application of the finite element analysis to calculate the temperature distribution generated during the process of elastic-plastic deformation. A better agreement is found between the results of heat field computed by use of the finite element analysis and that measured by use of an infrared camera. The results indicate that the method of finite element analysis used for heat field evaluation is reliable. (author)

  5. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  6. Mechanical behavior of fiber/matrix interfaces in CFRP sheets subjected to plastic deformation

    Directory of Open Access Journals (Sweden)

    Kamiya Ryuta

    2016-01-01

    Full Text Available The use of Carbon Fiber Reinforced Plastic (CFRP is increasing markedly, partially in the aviation industry, but it has been considered that CFRP sheets cannot be formed by press-forming techniques owing to the low ductility of CFRP. Since the mechanical characteristics of CFRP are dominated by the microscale structure, it is possible to improve its formability by optimizing the material structure. Therefore, to improve the formability, the interaction between the carbon fibers and the matrix must be clarified. In this study, microscale analyses were conducted by a finite-element model with cohesive zone elements.

  7. Effect of tensile deformation on micromagnetic parameters in 0.2% carbon steel and 2.25Cr-1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Moorthy, V.; Vaidyanathan, S.; Jayakumar, T.; Raj, B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group; Kashyap, B.P. [Indian Inst. of Tech., Bombay (India). Dept. of Metallurgical Engineering and Materials Science

    1999-04-23

    The influence of prior tensile deformation on the magnetic Barkhausen emission (MBE) and the hysteresis (B-H) curve has been studied in 0.2% carbon steel and 2.25Cr-1Mo steel under different tempered conditions. This study shows that the micromagnetic parameters can be used to identify the four stages of deformation, namely (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding and (4) progressive plastic deformation. However, it is observed that the MBE profile shows more distinct changes at different stages of tensile deformation than the hysteresis curve. It has been established that the beginning of microplastic yielding and macroyielding can be identified from the MBE profile which is not possible from the stress-strain plot. The onset of microplastic yielding can be identified from the decrease in the MBE peak height. The macroyielding can be identified from the merging of the initially present two-peak MBE profile into a single central peak with relatively higher peak height and narrow profile width. The difference between the variation of MBE and hysteresis curve parameters with strain beyond macroyielding indicates the difference in the deformation state of the surface and bulk of the sample.

  8. Investigations of phosphate coatings of galvanized steel sheets by a surface-analytical multi-method approach

    International Nuclear Information System (INIS)

    Bubert, H.; Garten, R.; Klockenkaemper, R.; Puderbach, H.

    1983-01-01

    Corrosion protective coatings on galvanized steel sheets have been studied by a combination of SEM, EDX, AES, ISS and SIMS. Analytical statements concerning such rough, poly-crystalline and contaminated surfaces of technical samples are quite difficult to obtain. The use of a surface-analytical multi-method approach overcomes, the intrinsic limitations of the individual method applied, thus resulting in a consistent picture of those technical surfaces. Such results can be used to examine technical faults and to optimize the technical process. (Author)

  9. Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

    Science.gov (United States)

    Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung

    2017-01-01

    In Fe-3%Si-0.3%C steel sheet, a relatively strong //ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the //ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the //ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

  10. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Timma, Christian, E-mail: christian.timma@thyssenkrupp.com [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany); Lostak, Thomas; Janssen, Stella; Flock, Jörg [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); Mayer, Christian [University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany)

    2016-12-30

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH{sub 4}){sub 2}SO{sub 4} in a common roll-coating method. • A formation of (NH{sub 4}){sub 2}Zn(SO{sub 4}) * xH{sub 2}O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH{sub 4}){sub 2}Zn(SO{sub 4}){sub 2} * xH{sub 2}O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  11. Multi-scale contact modeling of coated steels for sheet metal forming applications

    NARCIS (Netherlands)

    Shisode, Meghshyam; Hazrati Marangalou, Javad; Mishra, Tanmaya; De Rooij, Matthijn; Van Den Boogaard, Ton; Bay, Niels; Nielsen, Chris V.

    2018-01-01

    Friction in sheet metal forming is a local phenomenon which depends on continuously evolving contact conditions during the forming process. This is mainly influenced by local contact pressure, surface textures of the sheet metal as well as the forming tool surface profile and material behavior. The

  12. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    Energy Technology Data Exchange (ETDEWEB)

    Zaid, Md; Bhattacharjee, P.P., E-mail: pinakib@iith.ac.in

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. The microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001

  13. Effect of cold deformation on latent energy value and high-temperature mechanical properties of 12Cr18Ni10Ti steel

    International Nuclear Information System (INIS)

    Maksimkin, O.P.; Shiganakov, Sh.B.; Gusev, M.N.

    1997-01-01

    Energetic and magnetic characteristics and also the high-temperature mechanical properties depending on the preliminary cold deformation of 12Cr18Ni10Ti steel are presented. It is shown that the value of storage energy in the steel has being grown with increase of the deformation. The rate of its growth has been increased after beginning of martensitic γ→α'- transformation when value of comparative storage energy at first decreased and then has been stay practically constant. Level of mechanical properties of the steel at 1073 K has been determined not only by value of cold deformation but and structural reconstruction corresponding to deformations 35-45% and accompanying with α'-phase martensite formation and change of energy accumulating rate. Preliminary cold deformation (40-60 %) does not improve high- temperature plasticity of steel samples implanted by helium. refs. 7, figs. 2

  14. Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C-Mn steels

    International Nuclear Information System (INIS)

    Hossein Nedjad, S.; Zahedi Moghaddam, Y.; Mamdouh Vazirabadi, A.; Shirazi, H.; Nili Ahmadabadi, M.

    2011-01-01

    Research highlights: → Bainite showed weak property improvement after rolling and annealing. → Additions of titanium and titanium oxide stimulated acicular ferrite. → Acicular ferrite obtained by nanoparticles exhibited very high strength. → Rolling and annealing of acicular ferrite gave substantial property improvement. - Abstract: The propensity of bainite and acicular ferrite structures of experimental C-Mn steels for enhanced grain refinement by combining phase transformation and plastic deformation has been investigated. Formation of acicular ferrite structures were stimulated with a small amount of titanium and titanium oxide nanoparticles added into the molten steels of high Mn concentrations. Isothermal transformations into the bainite and acicular ferrite structures were performed for 1.8 ks at 823 K after preliminary austenitization for 1.8 ks at 1523 K. Cold rolling for 50% thickness reduction was conducted on the isothermally transformed structures. Subsequent annealing of the deformed structures was conducted for 3.6 ks at 773, 873 and 973 K. Optical microscopy, scanning electron microscopy and tensile test were used for characterization of the studied steels. Cold rolling and annealing of the transformed structures at 873 K resulted in strengthening at the expense of ductility where an initial stage of recrystallization is realized. Acicular ferrite obtained by the addition of titanium into the molten steel exhibited the remarkable improvement of tensile properties. Discontinuous recrystallization of the deformed structures at 973 K leads to the formation of fine grains wherein acicular structures represented more enhanced grain refinement than bainite.

  15. Variation of martensite lath width and precipitate size during creep deformation in a 10Cr-Mo steel

    International Nuclear Information System (INIS)

    Kim, S. H.; Song, B. Z.; Lu, W. S.

    2001-01-01

    The relationship between creep deformation and microstructural changes in martensitic 10Cr-MoW steel has been studied. Transmission electron microscopy and image analyser were used to determine the variation of precipitates and martensite lath width size during creep deformation and aging. As precipitates are coarsened during creep deformation, dislocations become easy to move and the recovery proceeds rapidly. This leads to the growth of lath width. The average size of precipitates was linearly increased with creep time. On the other hand the growth rate of lath width is constant until tertiary creep, but the growth of lath width is accelerated during tertiary creep. It has been concluded that the growth behavior of lath width are consistent with creep deformation. Because the growth of lath width is controlled by the coarsening of precipitates it is important to form more stable precipitates in creep condition for improvement of creep properties of martensitie steel. Microstructure of martensitic steel is thermally very stable, so the size of precipitates and martensite lath width are hardly changed during aging

  16. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    Science.gov (United States)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  17. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  18. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    DEFF Research Database (Denmark)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa

    2017-01-01

    A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic......, including an ultimate tensile strength of ~900 MPa and elongation to fracture of ~94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite...... formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}〈110〉 texture in ferrite and martensite (BCC phases) are the main active components during...

  19. Investigate earing of TWIP steel sheet during deep-drawing process by using crystal plasticity constitutive model

    Directory of Open Access Journals (Sweden)

    Yang J.

    2015-01-01

    Full Text Available By combining the nonlinear finite element analysis techniques and crystal plasticity theory, the macroscopic mechanical behaviour of crystalline material, the texture evolution and earing-type characteristics are simulated accurately. In this work, a crystal plasticity model exhibiting deformation twinning is introduced based on crystal plasticity theory and saturation-type hardening laws for FCC metal Fe-22Mn-0.6C TWIP steel. Based on the CPFE model and parameters which have been determined for TWIP steel, a simplified finite element model for deep drawing is promoted by using crystal plasticity constitutive model. The earing characteristics in typical deep-drawing process are simulated well. Further, the drawing forces are calculated and compared to the experimental results from reference. Meanwhile, the impacts of drawing coefficient and initial texture on the earing characteristics are investigated for controlling the earing.

  20. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    International Nuclear Information System (INIS)

    Jin, Chung Keun; Lim, Sung Hyung

    2015-01-01

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU

  1. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chung Keun; Lim, Sung Hyung [Buhmwoo Institute of Technology Research, Hwaseong (Korea, Republic of)

    2015-10-15

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

  2. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  3. The influence of martensite, bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel – Experiments and model

    International Nuclear Information System (INIS)

    Bardelcik, Alexander; Worswick, Michael J.; Wells, Mary A.

    2014-01-01

    Highlights: • Gleeble tests were conducted to quench and simultaneously deform boron steel. • Different as-quenched vol. fractions of martensite, bainite and ferrite were observed. • Low to int. strain rate tensile tests were conducted on the as-quenched materials. • The presence of ferrite improved the uniform elongation, hardening rate and toughness. • A rate sensitive const. model was developed for varying vol fract. mart/bain/ferrite. - Abstract: This paper examines the relationship between as-formed microstructure and mechanical properties of a hot stamped boron steel used in automotive structural applications. Boron steel sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 °C/s within a Gleeble thermal–mechanical simulator. For each cooling rate condition, the blanks were simultaneously deformed at temperatures of 600 °C and 800 °C. A strain of approximately 0.20 was imposed in the middle of the blanks, from which miniature tensile specimens were extracted. Depending on the cooling rate and deformation temperature imposed on the specimens, some of the as-quenched microstructures consisted of predominantly martensite and bainite, while others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic techniques were used to quantify the area fractions of the phases present and quasi-static (0.003 s −1 ) uniaxial tests were conducted on the miniature tensile specimens. The results revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation and an increase in n-value without affecting the strength of the material for equivalent hardness levels. This finding resulted in improved energy absorption due to the presence of ferrite and showed that a material with a predominantly bainitic microstructure containing 16% ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a material condition that was fully bainitic with

  4. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, Keitaro, E-mail: horikawa@me.es.osaka-u.ac.jp [Department of Mechanical Science and Bioengineering, School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Ando, Nobuaki; Kobayashi, Hidetoshi [Department of Mechanical Science and Bioengineering, School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Urushihara, Wataru [Surface Design and Corrosion Research Section, Materials Research Laboratory, Kobe Steel, Ltd., Kobe 651-2271 (Japan)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer We visualize emission sites of hydrogen atoms on the microstructures during deformation. Black-Right-Pointing-Pointer Hydrogen atoms are emitted from slip lines and inclusions when deformed. Black-Right-Pointing-Pointer We show the sequence of hydrogen gas evolution during deformation. Black-Right-Pointing-Pointer Hydrogen evolution amount will increase if the steels with high strength are tested. - Abstract: In the present study, the hydrogen gas evolution behavior was investigated in SCM 440 steel by using a hydrogen microprint technique (HMT) and a testing machine equipped with a quadrupole mass spectrometer (QMS) in a ultrahigh vacuum (UHV) atmosphere. SCM 440 steels prepared by varying the tempering temperature over the range 200-700 Degree-Sign C were evaluated in order to elucidate the relationship between the hydrogen gas evolution and the tempered microstructures in the deformation. Cathodic hydrogen charging was carried out with a current density of 100 A/m{sup 2} for 1 h at room temperature. For comparison, a tensile specimen was prepared without hydrogen charging. The HMT showed that silver particles, which are indicative of the hydrogen emission sites, were present mainly in the matrix as well as on the slip lines after the deformation. It is believed that the silver particles on the slip lines represent the effect of hydrogen transportation due to mobile dislocations. In addition, accumulation of silver particles around non-metallic inclusions such as Al{sub 2}O{sub 3} was also identified. This tendency was observed for different tempering conditions. From the relationship between the stress-strain curves and the hydrogen evolution, determined by using QMS under a UHV atmosphere, it was found that the hydrogen gas evolution behavior varied with the deformation stage.

  5. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

    International Nuclear Information System (INIS)

    Horikawa, Keitaro; Ando, Nobuaki; Kobayashi, Hidetoshi; Urushihara, Wataru

    2012-01-01

    Highlights: ► We visualize emission sites of hydrogen atoms on the microstructures during deformation. ► Hydrogen atoms are emitted from slip lines and inclusions when deformed. ► We show the sequence of hydrogen gas evolution during deformation. ► Hydrogen evolution amount will increase if the steels with high strength are tested. - Abstract: In the present study, the hydrogen gas evolution behavior was investigated in SCM 440 steel by using a hydrogen microprint technique (HMT) and a testing machine equipped with a quadrupole mass spectrometer (QMS) in a ultrahigh vacuum (UHV) atmosphere. SCM 440 steels prepared by varying the tempering temperature over the range 200–700 °C were evaluated in order to elucidate the relationship between the hydrogen gas evolution and the tempered microstructures in the deformation. Cathodic hydrogen charging was carried out with a current density of 100 A/m 2 for 1 h at room temperature. For comparison, a tensile specimen was prepared without hydrogen charging. The HMT showed that silver particles, which are indicative of the hydrogen emission sites, were present mainly in the matrix as well as on the slip lines after the deformation. It is believed that the silver particles on the slip lines represent the effect of hydrogen transportation due to mobile dislocations. In addition, accumulation of silver particles around non-metallic inclusions such as Al 2 O 3 was also identified. This tendency was observed for different tempering conditions. From the relationship between the stress–strain curves and the hydrogen evolution, determined by using QMS under a UHV atmosphere, it was found that the hydrogen gas evolution behavior varied with the deformation stage.

  6. Microstructural study of thermally aged duplex stainless steel deformation and fracture modes

    International Nuclear Information System (INIS)

    Verhaeghe, B.

    1996-01-01

    The aim of this work is to study the micro mechanisms of deformation and rupture of an austeno ferritic stainless steel (Z 3 CND 22-10 M) with 33 % of ferrite. It is studied after ageing 1 000 h at 400 deg. C and 8 000 h at 350 deg. C and compared to the 'as received' state. During ageing the ferritic phase undergoes microstructural evolutions which affects its properties. The two ageing treatments lead to roughly the same level of embrittlement. Microstructural characterisation shows that both phases percolate and exhibit orientation relationships close to Kurdjumov-Sachs ones. Mechanical properties of the steel were characterised for different ageing treatments at room temperature and at 320 deg. C. The interface is particularly strong and ensures the load transfer to ferrite even if this phase contains cleavage cracks. Moreover the interface does not oppose slip transmission which is instead controlled by localised glide in the ferritic phase. If activated slip systems of austenite are common with ferrite, slip transmission from austenite to ferrite indeed occurs through the=e interface. If they are not common, dislocations cross-slip back into the austenite. At 320 deg. C cross-slip occurs even far from the interface. Damage starts by nucleation in ferrite of cleavage cracks which propagate between austenite islands. Crack propagation is controlled by stretching of austenite ligaments. The material breaks by ductile tearing of austenite islands when the crack eventually percolates in the ferritic phase. The ductility of the material can be correctly describer using a simple model that takes into account the tearing-off the ductile-phase. (author)

  7. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing

    International Nuclear Information System (INIS)

    Hwang, Joong-Ki; Yi, Il-Cheol; Son, Il-Heon; Yoo, Jang-Yong; Kim, Byoungkoo; Zargaran, A.; Kim, Nack J.

    2015-01-01

    The effect of wire drawing on the microstructural evolution and deformation behavior of Fe–Mn–Al–C twinning-induced plasticity (TWIP) steel has been investigated. The inhomogeneities of the stress state, texture, microstructure, and mechanical properties were clarified over the cross section of drawn wire with the aid of numerical simulation, Schmid factor analysis, and electron backscatter diffraction (EBSD) techniques. The analysis of texture in drawn wire shows that a mixture of <111> and <100> fiber texture was developed with strain; however, the distribution of <111> and <100> fibers was inhomogeneous along the radial direction of wire due to uneven strain distribution and different stress state along the radial direction. It has also been shown that the morphology, volume fraction, and variant system of twins as well as twinning rate were dependent on the imposed stress state. The surface area was subjected to larger strain and more complex stress state involving compression, shear, and tension than the center area, resulting in a larger twin volume fraction and more twin variants in the former than in the latter at all the strain levels. While the surface area was saturated with twins at an early stage of drawing, the center area was not saturated with twins even at fracture, implying that the fracture of wire were initiated at the surface area because of the exhaustion of ductility due to twinning. Based on these results, it is suggested that imposing a uniform strain distribution along the radial direction of wire by the control of processing conditions such as die angle and amount of reduction per pass is necessary to increase the drawing limit of TWIP steel

  8. Sub-micron indent induced plastic deformation in copper and irradiated steel

    International Nuclear Information System (INIS)

    Robertson, Ch.

    1998-09-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu [001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg C -600 deg C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  9. Mathematical modeling of phenomena of dynamic recrystallization during hot plastic deformation in high-carbon bainitic steel

    Directory of Open Access Journals (Sweden)

    T. Dembiczak

    2017-01-01

    Full Text Available Based on the research results, coefficients were determined in constitutive equations, describing the kinetics of dynamic recrystallization in high-carbon bainitic steel during hot deformation. The developed mathematical model takes into account the dependence of changing kinetics in the size evolution of the initial austenite grains, the value of strain, strain rate, temperature and time. Physical simulations were carried out on rectangular specimens measuring 10 × 15 × 20 mm. Compression tests with a plane state of deformation were carried out using a Gleeble 3800.

  10. The effect of prior deformation on subsequent microplasticity and damage evolution in an austenitic stainless steel at elevated temperature

    International Nuclear Information System (INIS)

    Li, Dong-Feng; Davies, Catrin M.; Zhang, Shu-Yan; Dickinson, Calum; O’Dowd, Noel P.

    2013-01-01

    The micromechanical deformation of an austenitic stainless steel under uniaxial tension at elevated temperature (550 °C) following room-temperature compression has been examined in this work. The study combines micromechanical finite-element modelling and in situ neutron diffraction measurements. Overall, good agreement has been achieved between the measured and simulated stress vs. lattice strain response, when prestrain is accounted for. The results indicate that the introduction of prestrain can significantly influence subsequent microscale deformation and damage development associated with microplasticity and that an appropriate representation of strain history can improve the predictive accuracy at the microscale for a polycrystalline material

  11. Aspects of dislocation substructures associated with the deformation stages of stainless steel AISI 304 at high temperatures

    International Nuclear Information System (INIS)

    Oliveira, J.L.L.; Reis Filho, J.A.B.S.; Almeida, L.H. de; Monteiro, S.N.

    1978-07-01

    The development of dislocation substrutures in type 304 austenitic stainless steel at high temperatures has been associated with the deformation stages through log dσ/d epsilon x log epsilon plots, which show the transition point independently. The mechanisms responsible for the Dynamic Strain Aging particulary the Portevin-LeChatelier effect were related to the appearence of the stages. The results indicate that the deformation stages can be divided into two distinct regions. Each one of these region show particular characteristics with respect to the stress level, transition point, developed substructure and type of crystalline defects interaction with dislocations. (Author) [pt

  12. Deformation-Induced Dissolution and Precipitation of Nitrides in Austenite and Ferrite of a High-Nitrogen Stainless Steel

    Science.gov (United States)

    Shabashov, V. A.; Makarov, A. V.; Kozlov, K. A.; Sagaradze, V. V.; Zamatovskii, A. E.; Volkova, E. G.; Luchko, S. N.

    2018-02-01

    Methods of Mössbauer spectroscopy and electron microscopy have been used to study the effect of the severe plastic deformation by high pressure torsion in Bridgman anvils on the dissolution and precipitation of chromium nitrides in the austenitic and ferritic structure of an Fe71.2Cr22.7Mn1.3N4.8 high-nitrogen steel. It has been found that an alternative process of dynamic aging with the formation of secondary nitrides affects the kinetics of the dissolution of chromium nitrides. The dynamic aging of ferrite is activated with an increase in the deformation temperature from 80 to 573 K.

  13. Solute grain boundary segregation during high temperature plastic deformation in a Cr-Mo low alloy steel

    International Nuclear Information System (INIS)

    Chen, X.-M.; Song, S.-H.; Weng, L.-Q.; Liu, S.-J.

    2011-01-01

    Highlights: → The segregation of P and Mo is evidently enhanced by plastic deformation. → The boundary concentrations of P and Mo increase with increasing strain. → A model with consideration of site competition in grain boundary segregation in a ternary system is developed. → Model predictions show a reasonable agreement with the observations. - Abstract: Grain boundary segregation of Cr, Mo and P to austenite grain boundaries in a P-doped 1Cr0.5Mo steel is examined using field emission gun scanning transmission electron microscopy for the specimens undeformed and deformed by 10% with a strain rate of 2 x 10 -3 s -1 at 900 deg. C, and subsequently water quenched to room temperature. Before deformation, there is some segregation for Mo and P, but the segregation is considerably increased after deformation. The segregation of Cr is very small and there is no apparent difference between the undeformed and deformed specimens. Since the thermal equilibrium segregation has been attained prior to deformation, the segregation produced during deformation has a non-equilibrium characteristic. A theoretical model with consideration of site competition in grain boundary segregation between two solutes in a ternary alloy is developed to explain the experimental results. Model predictions are made, which show a reasonable agreement with the observations.

  14. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    Science.gov (United States)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  15. Steel Processing Properties and Their Effect on Impact Deformation of Lightweight Structures

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S

    2003-09-23

    The objective of the research was to perform a comprehensive computational analysis of the effects of material and process modeling approaches on performance of UltraLight Steel Auto Body (ULSAB) vehicle models. The research addressed numerous material related effects, impact conditions as well as analyzed the performance of the ULSAB vehicles in crashes against designs representing the current US vehicle fleet. This report is organized into three main sections. The first section describes the results of the computational analysis of ULSAB crash simulations that were performed using advanced material modeling techniques. The effects of strain-rate sensitivity on a high strength steel (HSS) intensive vehicle were analyzed. Frontal and frontal offset crash scenarios were used in a finite element parametric study of the ULSAB body structure. Comparisons are made between the crash results using the piece-wise-linear isotropic plasticity strain-rate dependent material model, and the isotropic plasticity material model based on quasi-static properties. The simulation results show the importance of advanced material modeling techniques for vehicle crash simulations due to strain-rate sensitivity and rapid hardening characteristics of advanced high strength steels. Material substitution was investigated for the main frontal crush structure using the material of similar yield stress a significantly different strain-rate and hardening characteristics. The objective of the research presented in Section 2 was to assess the influence of stamping process on crash response of ULSAB vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of

  16. Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel

    Science.gov (United States)

    2014-02-01

    solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high strength steels ...Chatterjee and H. Bhadeshia, ‘TRIP-assisted steels : cracking of high carbon martensite ’, Journal of Materials Science and Technology, 2006, 22, pp. 645...649. [10] S. Chaatterjee and H.K.D.H. Bhadeshia, ‘Transformation induced plasticity assisted steels : stress or strain affected martensitic

  17. A thermostatistical theory for solid solution effects in the hot deformation of alloys: an application to low-alloy steels

    International Nuclear Information System (INIS)

    Galindo-Nava, E I; Rivera-Díaz-del-Castillo, P E J; Perlade, A

    2014-01-01

    The hot deformation of low-alloy steels is described by a thermostatistical theory of plastic deformation. This is based on defining a statistical entropy term that accounts for the energy dissipation due to possible dislocation displacements. In this case, dilute substitutional and interstitial atom effects alter such paths. The dislocation population is described by a single parameter equation, with the parameter being the average dislocation density. Solute effects incorporate additional dislocation generation sources. They alter the energy barriers corresponding to the activation energies for dislocation recovery, grain nucleation and growth. The model is employed to describe work hardening and dynamic recrystallization softening in fifteen steels for a wide range of compositions, temperatures and strain rates. Maps for dynamic recrystallization occurrence are defined in terms of processing conditions and composition. (paper)

  18. Development of TS590MPa grade high tensile strength steel for automotive anti-collision parts; Shogeki kyushuyo 590MPa kyu kochoryoku koban no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, K; Takagi, S; Furukimi, O; Hira, T; Obara, T [Kawasaki Steel Corp., Tokyo (Japan); Tanimura, S [University of Osaka Prefecture, Osaka (Japan)

    1997-10-01

    The effects of strain rate on the deformation behavior of steels were investigated to find the most appropriate micro-structure of steel for anti-crash parts of automobiles, such as front-side-members. The dual phase steel absorbed a higher amount of energy during dynamic deformation than other steels with the same static yield strength. The increase of volume fraction of the austenite phase in the dual phase steel deteriorates the dynamic deformation behavior. The FEM analysis for crash test of HAT-sectional sheet box also showed the superior performance of the dual phase steel. 4 refs., 7 figs., 1 tab.

  19. Slot deformation of various stainless steel bracket due to the torque force of the beta-titanium wire

    Science.gov (United States)

    Huda, M. M.; Siregar, E.; Ismah, N.

    2017-08-01

    Stainless steel bracket slot deformation ffects the force applied to teeth and it can impede tooth movement and prolong orthodontic treatment time. The aim of this study is to determine the slot deformation due to torque of a 0.021 × 0.025 inch Beta Titanium wire with a torsional angle of 30° and 45° for five different bracket brands: y, 3M, Biom, Versadent, Ormco, and Shinye. The research also aims to compare the deformation and amount of torque among all five bracket brands at torsional angles of 30° and 45°. Fifty stainless steel edgewise brackets from the five bracket group brands (n=10) were attached to acrylic plates. The bracket slot measurements were carried out in two stages. In the first stage, the, deformation was measured by calculating the average bracket slot height using a stereoscopy microscope before and after application of torque. In the second stage, the torque was measured using a torque measurement apparatus. The statistical analysis shows that slot deformations were found on all five bracket brands with a clinical permanent deformation on the Biom (2.79 μm) and Shinye (2.29 μm) brackets. The most torque was observed on the 3M bracket, followed by the Ormco, Versadent, Shinye, and Biom brackets. When the brands were compared, a correlation between bracket slot deformation and the amount of torque was found, but the correlation was not statistically significant for the 3M and Ormco brackets and the Biom and Shinye brackets. There is a difference in the amount of torque between the five brands with a torsional angle of 30° (except the 3M and Ormco brackets) and those with a torsional angle of 45°. The composition of the metal and the manufacturing process are the factors that influence the occurrence of bracket slot deformation and the amount of torque. A manufacturing process using metal injection molding (MIM) and metal compositions of AISI 303 and 17-4 PH stainless steel reduce the risk of deformation.

  20. Image-based numerical simulation of the local cyclic deformation behavior around cast pore in steel

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lihe, E-mail: dlhqian@yahoo.com [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Cui, Xiaona; Liu, Shuai [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Chen, Minan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); Ma, Penghui [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Xie, Honglan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics (China); Zhang, Fucheng [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Meng, Jiangying [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China)

    2016-12-15

    The local cyclic stress/strain responses around an actual, irregular pore in cast Hadfield steel under fatigue loading are investigated numerically, and compared with those around a spherical and an ellipsoidal pore. The actual pore-containing model takes into account the real shape of the pore imaged via high-resolution synchrotron X-ray computed tomography and combines both isotropic hardening and Bauschinger effects by using the Chaboche's material model, which enables to realistically simulate the cyclic deformation behaviors around actual pore. The results show that the stress and strain energy density concentration factors (K{sub σ} and K{sub E}) around either an actual irregular pore or an idealized pore increase while the strain concentration factor (K{sub ε}) decreases slightly with increasing the number of fatigue cycles. However, all the three parameters, K{sub σ}, K{sub ε} and K{sub E}, around an actual pore are always several times larger than those around an idealized pore, whatever the number of fatigue cycles. It is suggested that the fatigue properties of cast pore-containing materials cannot be realistically evaluated with any idealized pore models. The feasibility of the methodology presented highlights the potential of its application in the micromechanical understanding of fatigue damage phenomena in cast pore-containing materials.

  1. New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains

    Science.gov (United States)

    Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.

    2017-07-01

    A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.

  2. Effect of fast-neutron irradiation on plastic deformation of Type 304 stainless steel

    International Nuclear Information System (INIS)

    Yamada, H.

    1978-01-01

    Plastic deformation of EBR-II-irradiated Type 304 stainless steel was investigated by a stress-relaxation method. The stress-strain-rate relationships for the irradiated specimens at room temperature are concave upward, which are similar to those for the unirradiated specimens. However, concave downward behavior in the stress-strain-rate relationships were observed at much lower temperatures for the irradiated specimens in contrast to the unirradiated specimens. These results were analyzed succccessfully using Hart's mechanical equation-of-state concept. It was found that the hardness sigma*, which is the minimum stress necessary for the dislocation to overcome obstacles without thermal activation, increases linearly with fast-neutron fluence. This increase in sigma* is consistent with so-called ''irradiation hardening.'' In addition, resistance to dislocation glide, which is quantitatively measured in terms of sigma 0 , was observed to decrease linearly with fast-neutron fluence. The decrease in sigma 0 can be attributed to a decrease of solute drag due to irradiation-induced solute segregation

  3. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar

    International Nuclear Information System (INIS)

    Tang, Fujian; Chen, Genda; Brow, Richard K.

    2016-01-01

    The chloride-induced corrosion mechanisms of uncoated, pure enamel (PE)-coated, mixed enamel (ME)-coated, double enamel (DE)-coated, and fusion bonded epoxy (FBE)-coated deformed steel bars embedded in mortar cylinders are investigated in 3.5 wt.% NaCl solution and compared through electrochemical tests and visual inspection. Corrosion initiated after 29 or 61 days of tests in all uncoated and enamel-coated steel bars, and after 244 days of tests in some FBE-coated steel bars. In active stage, DE- and FBE-coated steel bars are subjected to the highest and lowest corrosion rates, respectively. The uncoated and ME-coated steel bars revealed relatively uniform corrosion while the PE-, DE-, and FBE-coated steel bars experienced pitting corrosion around damaged coating areas. Due to the combined effect of ion diffusion and capillary suction, wet–dry cyclic immersion caused more severe corrosion than continuous immersion. Both exposure conditions affected the corrosion rate more significantly than the water–cement ratio in mortar design.

  4. In situ room temperature tensile deformation of a 1% CrMoV bainitic steel using synchrotron and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weisser, M.A. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Materials (IMX), CH-1012 Lausanne (Switzerland); Evans, A.D.; Van Petegem, S. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Holdsworth, S.R. [EMPA Materials Science and Technology, CH-8600 Duebendorf (Switzerland); Van Swygenhoven, H., E-mail: helena.vs@psi.ch [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Materials (IMX), CH-1012 Lausanne (Switzerland)

    2011-06-15

    Neutron and synchrotron X-ray diffraction spectra have been acquired during room temperature tensile deformation of a creep-resistant bainitic 1% CrMoV steel, in order to study the evolution of internal microstresses and load-sharing mechanisms between the ferrite matrix and the various carbides. Cementite takes load from the plastifying matrix at the onset of macroscopic plasticity resulting in residual interphase stresses. Single peak fitting indicates an elastic anisotropic behaviour of cementite.

  5. Acoustic emission during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches

    International Nuclear Information System (INIS)

    Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission generated during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches has been studied. The extent of acoustic activity generated depends on notch tip severity, notch tip blunting and tearing of the notches. The equation N=AK m applied to the acoustic emission data of the notched specimens has shown good correlation. Acoustic emission technique can be used to estimate the size of an unknown notch. (author)

  6. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  7. Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies

    International Nuclear Information System (INIS)

    Hatano, M.; Fujinami, M.; Arai, K.; Fujii, H.; Nagumo, M.

    2014-01-01

    Hydrogen embrittlement of austenitic stainless steels has been examined with respect to deformation microstructures and lattice defects created during plastic deformation. Two types of austenitic stainless steels, SUS 304 and SUS 316L, uniformly hydrogen-precharged to 30 mass ppm in a high-pressure hydrogen environment, are subjected to tensile straining at room temperature. A substantial reduction of tensile ductility appears in hydrogen-charged SUS 304 and the onset of fracture is likely due to plastic instability. Fractographic features show involvement of plasticity throughout the crack path, implying the degradation of the austenitic phase. Electron backscatter diffraction analyses revealed prominent strain localization enhanced by hydrogen in SUS 304. Deformation microstructures of hydrogen-charged SUS 304 were characterized by the formation of high densities of fine stacking faults and ε-martensite, while tangled dislocations prevailed in SUS 316L. Positron lifetime measurements have revealed for the first time hydrogen-enhanced creation of strain-induced vacancies rather than dislocations in the austenitic phase and more clustering of vacancies in SUS 304 than in SUS 316L. Embrittlement and its mechanism are ascribed to the decrease in stacking fault energies resulting in strain localization and hydrogen-enhanced creation of strain-induced vacancies, leading to premature fracture in a similar way to that proposed for ferritic steels

  8. Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    Science.gov (United States)

    Wagner, John A.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.

  9. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads

    Science.gov (United States)

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich

    2018-01-01

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107

  10. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel

    International Nuclear Information System (INIS)

    Li, Dejun; Feng, Yaorong; Song, Shengyin; Liu, Qiang; Bai, Qiang; Ren, Fengzhang; Shangguan, Fengshou

    2015-01-01

    Highlights: • Influence of Si on work hardening behavior of Fe–25 wt%Mn TWIP steel was investigated. • Influence of Si on hot deformation behavior of Fe–25 wt%Mn TWIP steel was studied. • Si blocks dislocation glide and favors mechanical twinning in Fe–25 wt%Mn TWIP steel. • The addition of Si increases the hot deformation activation energy of Fe–25 wt%Mn TWIP steel. • The addition of Si retards the nucleation and growth of DRX grains of Fe–25 wt%Mn TWIP steel. - Abstract: The influence of silicon on mechanical properties and hot deformation behavior of austenitic Fe–25 wt%Mn TWIP steel was investigated by means of the comparison research between 25Mn3Al and 25Mn3Si3Al steel. The results show that the 25Mn3Si3Al steel has higher yield strength and higher hardness than that of 25Mn3Al steel because of the solution strengthening caused by Si atoms and possesses higher uniform deformation ability and tensile strength than that of 25Mn3Al steel due to the higher work hardening ability of 25Mn3Si3Al steel. 25Mn3Si3Al steel presents a clear four-stage curve of work hardening rate in course of cold compression. Quite the opposite, the 25Mn3Al steel presents a monotonic decline curve of work hardening rate. The difference of the work hardening behavior between 25Mn3Al and 25Mn3Si3Al steel can be attributed to the decline of stacking fault energy (SFE) caused by the addition of 3 wt% Si. The dislocation glide plays an important role in the plastic deformation of 25Mn3Al steel even though the mechanical twinning is still one of the main deformation mechanisms. The 3 wt% Si added into the 25Mn3Al steel blocks the dislocation glide and promotes the mechanical twinning, and then the dislocation glide characteristics cannot be observed in cold deformed microstructure of 25Mn3Si3Al steel. The hot compression tests reveal that the hot deformation resistance of the 25Mn3Si3Al steel is significantly higher than that of the 25Mn3Al steel due to the solid

  11. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    Science.gov (United States)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa; Burrows, Andrew; Alimadadi, Hossein

    2017-08-01

    A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of 900 MPa and elongation to fracture of 94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001} texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation. The predominance of these components is logically related to the strain-induced martensite and/or twin formation.

  12. Effect of deformation temperature on niobium clustering, precipitation and austenite recrystallisation in a Nb–Ti microalloyed steel

    International Nuclear Information System (INIS)

    Kostryzhev, Andrii G.; Al Shahrani, Abdullah; Zhu, Chen; Ringer, Simon P.; Pereloma, Elena V.

    2013-01-01

    The effect of deformation temperature on Nb solute clustering, precipitation and the kinetics of austenite recrystallisation were studied in a steel containing 0.081C–0.021Ti–0.064 Nb (wt%). Thermo-mechanical processing was carried out using a Gleeble 3500 simulator. The austenite microstructure was studied using a combination of optical microscopy, transmission electron microscopy, and atom probe microscopy, enabling a careful characterisation of grain size, as well as Nb-rich clustering and precipitation processes. A correlation between the austenite recrystallisation kinetics and the chemistry, size and number density of Nb-rich solute atom clusters, and NbTi(C,N) precipitates was established via the austenite deformation temperature. Specifically, we have determined thresholds for the onset of recrystallisation: for deformation levels above 75% and temperatures above 825 °C, Nb atom clusters <8 nm effectively suppressed austenite recrystallisation

  13. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    Science.gov (United States)

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  14. Microtwins and their effect on accumulation of excess dislocation density in grains with different types of crystal lattice bending in deformed austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, Ivan, E-mail: gibert1993@mail.ru [National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk (Russian Federation); Kiseleva, Svetlana, E-mail: kisielieva1946@mail.ru; Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Koneva, Nina, E-mail: koneva@tsuab.ru; Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The investigation of excess dislocation density accumulation in the deformed polycrystalline austenitic steel was carried out using transmission electron microscopy (TEM). The distributions of the excess dislocation density in the grains of the deformed austenitic steel with different bending types were obtained and plotted. It was established that in the austenitic polycrystalline steel at the deformation degrees ε = 14 and 25 % the distributions of the excess dislocation density are multimodal. In both cases the grain with compound bending is more stressed. The values of the average excess dislocation density in the grains with the compound and simple bending are less at ε = 25 % than that at ε = 14 %. This is explained by a significant relaxation of the internal stresses in steel with the increase of the deformation degree from 14 % to 25 %. The increase of the number of twinning systems and the material volume fraction covered by twinning leads to the internal stress relaxation and consequently to the increase of the excess dislocation density. The presence of microtwins in the deformed material has an influence on the distribution of the excess dislocation density. In the deformed polycrystalline austenitic steel the number of grains with compound bending is increased with the increase of the plastic deformation degree.

  15. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    Science.gov (United States)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher

  16. Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel

    International Nuclear Information System (INIS)

    Mun, Dong Jun; Shin, Eun Joo; Choi, Young Won; Lee, Jae Sang; Koo, Yang Mo

    2012-01-01

    Highlights: ► Non-equilibrium segregation of B in steel depends strongly on the cooling rate. ► A higher austenitization temperature reduced the B hardenability effect. ► An increase in B concentration at γ grain boundaries accelerates the B precipitation. ► The loss of B hardenability effect is due to intragranular borocarbide precipitation. ► The controlled cooling after hot deformation increased the B hardenability effect. - Abstract: The phase transformation behavior of high-strength boron steel was studied considering the segregation and precipitation behavior of boron (B). The effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of B-bearing steel as compared with B-free steel were investigated by using dilatometry, microstructural observations and analysis of B distribution. The effects of these variables on hardenability were discussed in terms of non-equilibrium segregation mechanism and precipitation behavior of B. The retardation of austenite-to-ferrite transformation by B addition depends strongly on cooling rate (CR); this is mainly due to the phenomenon of non-equilibrium grain boundary segregation of B. The hardenability effect of B-bearing steel decreased at higher austenitizing temperature due to the precipitation of borocarbide along austenite grain boundaries. Analysis of B distribution by second ion mass spectroscopy confirmed that the grain boundary segregation of B occurred at low austenitizing temperature of 900 °C, whereas B precipitates were observed along austenite grain boundaries at high austenitizing temperature of 1200 °C. The significant increase in B concentration at austenite grain boundaries due to grain coarsening and a non-equilibrium segregation mechanism may lead to the B precipitation. In contrast, solute B segregated to austenite grain boundaries during cooling after heavy deformation became more stable because the increase in boundary area by grain

  17. Failure Models of Thin-walled Steel Sheeting and Structural-spatial Design Process

    NARCIS (Netherlands)

    Hofmeyer, H.

    2009-01-01

    This presentation is the first on 20 years of research on the failure mechanisms of sheeting subjected to combined concentrated load and bending moment, performed at Technische Universiteit Eindhoven. The aim of this research is to develop accurate, insight providing design rules using simple

  18. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    Science.gov (United States)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  19. Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet

    Science.gov (United States)

    Majidi, Omid; Barlat, Frederic; Korkolis, Yannis P.; Fu, Jiawei; Lee, Myoung-Gyu

    2016-11-01

    To understand the material behavior during non-monotonic loading, uniaxial tension tests were conducted in three modes, namely, the monotonic loading, loading with periodic relaxation and periodic loading-unloadingreloading, at different strain rates (0.001/s to 0.01/s). In this study, the temperature gradient developing during each test and its contribution to increasing the apparent ductility of DP780 steel sheets were considered. In order to assess the influence of temperature, isothermal uniaxial tension tests were also performed at three temperatures (298 K, 313 K and 328 K (25 °C, 40 °C and 55 °C)). A digital image correlation system coupled with an infrared thermography was used in the experiments. The results show that the non-monotonic loading modes increased the apparent ductility of the specimens. It was observed that compared with the monotonic loading, the temperature gradient became more uniform when a non-monotonic loading was applied.

  20. Effect of Weld Bead Shape on the Fatigue Behavior of GMAW Lap Fillet Joint in GA 590 MPa Steel Sheets

    Directory of Open Access Journals (Sweden)

    Insung Hwang

    2017-09-01

    Full Text Available In this study, the effect of weld bead shape on the fatigue strength of lap fillet joints using the gas metal arc welding (GMAW process was investigated. The base material used in the experiment was 590 MPa grade galvanealed steel sheet with 2.3 mm and 2.6 mm thickness. In order to make the four types of weld beads with different shapes by factors such as length, angle, and area, the welding process, wire feeding speed, and joint shape were changed. The stress-number of cycles to failure (S–N curve and fatigue strength were obtained from the fatigue test for four types of weld bead, and the cause of the fatigue strength difference was clarified through the analysis of the geometrical factors, such as length, angle, and area of the weld bead. In addition, the relationship between weld bead shape and fatigue strength was discussed.

  1. ROLE OF FCA WELDING PROCESS PARAMETERS ON BEAD PROFILE, ANGULAR AND BOWING DISTORTION OF FERRITIC STAINLESS STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    VENKATESAN M. V.

    2014-02-01

    Full Text Available This paper discusses the influence of flux cored arc welding (FCAW process parameters such as welding current, travel speed, voltage and CO2 shielding gas flow rate on bead profile, bowing distortion and angular distortion of 409 M ferritic stainless steel sheets of 2 mm thickness. The bowing and angular distortions of the welded plates were measured using a simple device called profile tracer and Vernier bevel protractor respectively. The study revealed that the FCAW process parameters have significant effect on bead profile, and distortion. The relationship between bead profile and distortions were analyzed. Most favorable process parameters that give uniform bead profile and minimum distortion for the weld are recommended for fabrication.

  2. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  3. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  4. The effect of hot deformation on the bainite transformation of a working tool steel; Efeito da deformacao a quente sobre a transformacao bainitica de um aco ferramenta

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca Lima, Ricardo F. de; Carvalho, Miguel A.; Nogueira, Marcos A.S. [Acos Villares SA, Rio de Janeiro, RJ (Brazil)

    1989-12-31

    The effect of hot deformation of austenite on its isothermal transformation at 400 degrees Celsius for a hot working steel has been investigated. The degrees of transformation was varied and the results were analysed by optical metallography. Increasing the deformation, the bainite nucleation occurs in twins and grain boundaries, and also inside the austenitic grains. (author). 10 refs., 8 figs.

  5. Explosive Forming of Low Carbon Steel Sheet into a Stepped Disc Shape

    OpenAIRE

    S. Balasubramanian; S. Sarvat Ali; E.S. Bhagiradha Rao

    1984-01-01

    This paper deals with the explosive forming of deep drawing quality steel into a two stepped disc type shape. An attempt has been made to predict the forming parameters from theoretical considerations by equating the disc shape with an equivalent dome. Results of forming this shape in a single stage vis-a-vis forming in two stages are compared.

  6. TRIP aided deformation of a near-Ni-free, Mn–N bearing duplex stainless steel

    International Nuclear Information System (INIS)

    Choi, Jeom Yong; Ji, Jung Hoon; Hwang, Si Woo; Park, Kyung-Tae

    2012-01-01

    Highlights: ► Development of a lean alloyed (near-Ni-free) TRIP aided duplex STS. ► In situ characterization of SIM transformation with strain at the same area of the sample. ► The KAM distribution evolution of the constituent phases with strain. - Abstract: A near-Ni-free, Mn–N bearing duplex stainless steel (D-SS) that shows transformation induced plasticity was developed. The present D-SS exhibited an excellent strength–ductility combination over 1000 MPa tensile strength and 50% elongation. An analysis of the element partitioning during annealing revealed that the stacking fault energy of austenite was low enough for a strain induced martensite (SIM) transformation to occur. The strain hardening rate began to increase at ∼10% strain with the same manner of SIM fraction. The TEM and EBSD analyses showed that not only the ε martensite band intersections but the austenite grain boundaries acted as the SIM nucleation sites. The SIM transformation was saturated because of the austenite grain refinement and the corresponding austenite stabilization. The austenite grain refinement was caused by the mutual impingement of growing SIM and as a result by the engulfment of remaining austenite by SIM. The deformation behavior of the present D-SS was characterized by analyzing the kernel average misorientation (KAM) of the constituent phases with strain. The KAM distribution of austenite, ferrite and SIM exhibited different characteristics. The average KAM of austenite and ferrite increased as the strain increased, but its increasing rate of austenite was higher than that of ferrite. These KAM characteristics were discussed along with the dislocation glide modes of austenite and ferrite. By contrast, the average KAM of SIM was insensitive to strain and higher than that of the other two phases.

  7. Hot deformation and processing maps of K310 cold work tool steel

    International Nuclear Information System (INIS)

    Ezatpour, H.R.; Sajjadi, S.A.; Haddad-Sabzevar, M.; Ebrahimi, G.R.

    2012-01-01

    Highlights: ► The steady state stresses are related to strain rate and temperature. ► The study led to n DRX = 3.95 and Q DRX = 219.65 kJ/(mol K) and α = 1.2 × 10 −2 MPa −1 . ► The safe domain occurs in the region of 1000–1100 °C for a strain rate of 0.1 s −1 . - Abstract: Hot working response of cold work tool steel K310 was investigated by means of compression test at temperature range of 900–1100 °C. The equivalent strain rates used in these tests were 0.01, 0.1 and 1 s −1 , respectively in order to obtain the processing and stability maps of the studied material following the Dynamic Material Model. All the zones of flow instability were studied through scanning electron microscopy (SEM). The microstructure of the samples after deformation was then analyzed by light microscopy and the differences were compared together. The steady state stress obtained from the flow curves was related to strain rate (ε . ) and temperature (T) by means of the well known Zener–Holloman equation. A least square analysis of the data led to n = 3.95 and Q DRX = 219.65 kJ/mol and α = 1.2 × 10 −2 MPa −1 . Also, hardness results showed that by increasing strain from peak to steady state strain, hardness was decreased.

  8. Effect of machining on the deformability of steel in surface-active medium at lower temperatures

    International Nuclear Information System (INIS)

    Gusti, E.Ya.; Babej, Yu.I.

    1977-01-01

    The effect of some machining methods of carbon steel, chromium steel, and chromium nickel steel, and that of low temperatures on the principle characteristics of formability during impact bending in air and a surface-active environment have been studied. The temperature decrease from the ambient to -80 deg is shown to reduce steel formability as evaluated by deflection (f) and to increase the forming force. The variation of these characteristics with lowering temperature, however, is greatly affected by machining process conditions. The FRHT (Friction-Hardening Treatment) on the white layer assures minimum ductility losses, and increases steel strength at low temperatures both in air and in the surface-active environment

  9. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    Science.gov (United States)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  10. Effect of phenolic oligomer on adhesion of poly (ethylene terephthalate) film laminated steel sheets by Electron Beam Curing method

    International Nuclear Information System (INIS)

    Masuhara, Kenichi; Mori, Koji; Koshiishi, Kenji; Sasaki, Takashi.

    1995-01-01

    Adhesion of poly (ethylene terephthalate) film by Electron Beam Curing (EBC) method which can be thought as an energy-saving process was studied for the purpose of bestowing economically design and distinctness of image on thermosetting high molecular weight polyester precoated steel sheets. Adhesion of EB curable resins onto metal is generally poor. In this report, addition of EB curable phenolic resole oligomer with bifunctional acrylates to the top coat used for precoated steel was studied in order to increase the adhesion of an EB curable adhesive, and it was found that the phenolic oligomer is tremendously effective for the improvement of adhesion. The reasons why the phenolic oligomer provides excellent adhesion were 1) elongation at break of the top coat to which the phenolic oligomer is added is little decreased by EB irradiation, and the formability does not reduce. 2) As the phenolic oligomer is unevenly distributed to the surface layer of the top coat, it is suggested that the contact frequency of the phenolic oligomer to the EB curable adhesive is so high that graft polymerization between them is liable to occur. (author)

  11. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    International Nuclear Information System (INIS)

    Naderi, M.; Saeed-Akbari, A.; Bleck, W.

    2008-01-01

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s -1 to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases

  12. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, M. [Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Shariati Street, Arak (Iran, Islamic Republic of)], E-mail: malek.naderi@iehk.rwth-aachen.de; Saeed-Akbari, A.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany)

    2008-07-25

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s{sup -1} to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases.

  13. The influence of dew point during annealing on the power loss of electrical steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Broddefalk, Arvid [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden)], E-mail: arvid.broddefalk@sura.se; Jenkins, Keith [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden); Silk, Nick [Corus RD and T, Swinden Technology Centre, Moorgate Rotherham S60 3AR (United Kingdom); Lindenmo, Magnus [Development and Market Research, Cogent Power Ltd., P.O. Box 201, SE-735 23 Surahammar (Sweden)

    2008-10-15

    Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen-nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 deg. C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.

  14. The influence of dew point during annealing on the power loss of electrical steel sheets

    Science.gov (United States)

    Broddefalk, Arvid; Jenkins, Keith; Silk, Nick; Lindenmo, Magnus

    Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen-nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 °C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.

  15. A Sustainable Approach for Optimal Steel Sheet Pile Structure Assessment, Maintenance, and Rehabilitation

    Science.gov (United States)

    2011-09-30

    plants, electrical transmission network, pipelines) • public buildings (e.g., schools, hospitals, post offices, police stations, fire houses, court...developed under REMR focused on concrete and steel materials, along with geotechnical, hydraulic, electrical and mechanical, environmental, and coastal...between the wet or dry kilning processes in ce- ment production cannot be discerned from the overall impacts associ- ated with concrete production. The

  16. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque.

    Science.gov (United States)

    Magesh, Varadaraju; Harikrishnan, Pandurangan; Kingsly Jeba Singh, Devadhas

    2018-04-01

    Torque applied on anterior teeth is vital for root positioning and stability. The aim of this study was to evaluate the detailed slot wall deformation in stainless steel (SS) and titanium (Ti) edgewise brackets during palatal root torque using finite element analysis. A finite element model was developed from a maxillary central incisor SS bracket (0.022 in). The generated torque values from an SS rectangular archwire (0.019 × 0.025 in) while twisting from 5° to 40° were obtained experimentally by a spine tester, and the calculated torque force was applied in the bracket slot. The deformations of the slot walls in both SS and Ti brackets were measured at various locations. There were gradual increases in the deformations of both bracket slot walls from the bottom to top locations. In the SS bracket slot for the 40° twist, the deformations were 9.28, 36.8, and 44.8 μm in the bottom, middle, and top slot wall locations, respectively. Similarly, in the Ti bracket slot for the 40° twist, the deformations were 39.2, 62.4, and 76.2 μm in the bottom, middle, and top slot wall locations, respectively. The elastic limits were reached at 28° for SS and at 37° for Ti. Both SS and Ti bracket slots underwent deformation during torque application. There are variations in the deformations at different locations in the slot walls and between the materials. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    International Nuclear Information System (INIS)

    Zhang, Z.B.; Mishin, O.V.; Tao, N.R.; Pantleon, W.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength

  18. Mechanical Properties and Fractographic Analysis of High Manganese Steels After Dynamic Deformation Tests

    Directory of Open Access Journals (Sweden)

    Jabłońska M.B.

    2014-10-01

    Full Text Available Since few years many research centres conducting research on the development of high-manganese steels for manufacturing of parts for automotive and railway industry. Some of these steels belong to the group of AHS possessing together with high strength a great plastic elongation, and an ideal uniform work hardening behavior. The article presents the dynamic mechanical properties of two types of high manganese austenitic steel with using a flywheel machine at room temperature with strain rates between 5×102÷3.5×103s?–1. It was found that the both studied steels exhibit a high sensitivity Rm to the strain rate. With increasing the strain rate from 5×102 to 3.5×103s?–1 the hardening dominates the process. The fracture analysis indicate that after dynamic test both steel is characterized by ductile fracture surfaces which indicate good plasticity of investigated steels.

  19. HYDRO-ABRASIVE JET CLEANING TECHNOLOGY OF STEEL SHEETS DESIGNED FOR LASER CUTTING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2013-01-01

    Full Text Available Investigations executed by the BNTU “Shipbuilding and hydraulics” department have shown that rather efficient implementation of the requirements to the metal sheet surface designed for laser cutting can be achieved by using hydro-abrasive jet cleaning while applying water pump equipment with the range of pressure – 20–40 MPa. Type of working fluid plays a significant role for obtaining surface of the required quality. The conducted experiments have demonstrated that the efficient solution of the assigned problems can be ensured by using a working fluid containing bentonite clay, surface-active agent polyacrylamide, soda ash and the rest water.

  20. Adhesion, resistivity and structural, optical properties of molybdenum on steel sheet coated with barrier layer done by sol–gel for CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Dumont, Jacques [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium)

    2013-03-01

    Molybdenum films are investigated on stainless steel substrates coated with polysilazane based sol–gel and SiO{sub x} layers for flexible CIGS solar cell applications. Thermal stability of the multilayer has been studied. The thickness of polysilazane films are significantly reduced (17%) after heat treatment suggesting a thermal degradation. Four different microstructures were found for Mo films by varying argon total pressure from 2.6 × 10{sup −1} Pa to 2.6 Pa. It was shown that continuous films, low sheet resistance (0.5 Ω/□) and well facetted grains can be achieved when Mo films are deposited on heated substrates at homologous temperature, T of 0.2. - Highlights: ► Steel sheet is functionalized for Cu[Inx,Ga(1 − x)Se2] solar cells. ► Varying deposition pressure impacts the microstructure of Mo films. ► High thermal stability of the sol gel based barrier layer has been investigated. ► Low sheet resistance and continuous Mo films have been obtained at 550°C. ► Thermal stability of functionalized steel sheets at 550°C has been investigated.

  1. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

    Directory of Open Access Journals (Sweden)

    Min Liu

    2018-03-01

    Full Text Available 20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot.

  2. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Science.gov (United States)

    Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.

    2011-02-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  3. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Latha, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mathew, M.D., E-mail: mathew@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Parameswaran, P.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mannan, S.L. [National Engineering College, Kovilpatti, Tamil Nadu 628 503 (India)

    2011-02-28

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  4. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Nandagopal, M.; Mannan, S.L.

    2011-01-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  5. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Mingjia, E-mail: mingjiawangysu@126.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Fu, Yifeng [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Zixi; Li, Yanmei [Yanming Alloy Roll Co. Ltd, Qinhuangdao 066004 (China); Yang, Shunkai; Zhao, Hongchang; Li, Hangbo [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-02-15

    To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2, respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.

  6. Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, H.A., E-mail: hw@utg.de [Institute of Metal Forming and Casting, Technical University of Munich, Garching, D-85748 Germany (Germany); Leuning, N.; Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen, D-52062 Germany (Germany); Andorfer, T.; Jenner, S.; Volk, W. [Institute of Metal Forming and Casting, Technical University of Munich, Garching, D-85748 Germany (Germany)

    2017-01-01

    Mechanical stress occurring during the manufacturing process of electrical machines detrimentally alters the magnetic properties (iron losses and magnetizability). This affects the efficiency and performance of the machine. Improvement of the manufacturing process in terms of reduced magnetic property deterioration enables the full potential of the magnetic materials to be exploited, and as a result, the performance of the machine to be improved. A high quantity of electrical machine components is needed, with shear cutting (punching, blanking) being the most efficient manufacturing technology. The cutting process leads to residual stresses inside the non-oriented electrical sheet metal, resulting in increased iron losses. This paper studies the residual stresses induced by punching with different shear cutting parameters, taking a qualitative approach using finite element analysis. In order to calibrate the finite element analysis, shear cutting experiments are performed. A single sheet tester analysis of the cut blanks allows the correlation between residual stresses, micro hardness measurements, cutting surface parameters and magnetic properties to be studied.

  7. Large-scale glacitectonic deformation in response to active ice sheet retreat across Dogger Bank (southern central North Sea) during the Last Glacial Maximum

    Science.gov (United States)

    Phillips, Emrys; Cotterill, Carol; Johnson, Kirstin; Crombie, Kirstin; James, Leo; Carr, Simon; Ruiter, Astrid

    2018-01-01

    High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40-50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40-50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a "forward" propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum.

  8. Deformation effects on the development of grain boundary chronium depletion (sensitization) in type 316 austenitic stainless steels

    International Nuclear Information System (INIS)

    Atteridge, D.G.; Wood, W.E.; Advani, A.H.; Bruemmer, S.M.

    1990-01-01

    Deformation induces an acceleration in the kinetics and reduction in the thermodynamic barrier to carbide precipitation and grain boundary chromium depletion (GBCD) development of a high carbon Type 316 stainless steel (SS). This was observed in a study on strain effects on GBCD (or sensitization) development in the range of 575 degree C to 775 degree C. Grain boundary chromium depletion behavior of SS was examined using the indirect electrochemical potentiokinetic reactivation (EPR) test and supported by studies on carbide precipitation using transmission electron microscopy (TEM). 99 refs., 84 figs., 9 tabs

  9. Effect of deformation mode and grain orientation on misorientation development in a body-centered cubic steel

    International Nuclear Information System (INIS)

    Kang, J.-Y.; Bacroix, B.; Regle, H.; Oh, K.H.; Lee, H.-C.

    2007-01-01

    Strain-induced misorientation development was studied in an IF steel as a function of strain for two deformation modes, plane strain compression and simple shear. Using electron back-scattered diffraction, orientation maps of 'large' areas were obtained, from which several individual grains associated with the principal texture components could be extracted so that only intragranular misorientations could be estimated for these orientations. It was observed that the increase of the misorientation angle was more prominent in simple shear than in plane strain compression and that the orientation influence was different for each mode. Considering texture evolution as a possible source of misorientation development, the lattice spin tensor was estimated with the Taylor model for the two deformation modes; both reorientation axis and angle were compared with misorientation angle and axis. The striking concordance of both quantities allows us to conclude that there is a direct contribution of texture evolution to misorientation accumulation with strain

  10. A combined experimental and computational study of deformation in grains of biomedical grade 316LVM stainless steel

    International Nuclear Information System (INIS)

    You, X.; Connolley, T.; McHugh, P.E.; Cuddy, H.; Motz, C.

    2006-01-01

    In this work three-dimensional crystal plasticity finite element models are used to simulate the tensile deformation of a thin 316LVM stainless steel specimen. Such models are of interest for predicting the mechanical response of cardiovascular stents, typically made from thin struts of this material. Detailed experimental analysis of the mechanical response of the specimen during deformation is performed using scanning electron microscopy, digital photogrammetry and orientation imaging microscopy to examine microscale strain distribution, plastic slip and grain reorientation. At the macroscale, the models are found to give good predictions of the stress-strain response of the specimen, and at the microscale the models are found to give good predictions of the strain distribution and the active slip systems in the different grains. The models are less successful in predicting grain reorientations. This, however, is shown to be quite sensitive to the choice of latent hardening ratio

  11. A combined experimental and computational study of deformation in grains of biomedical grade 316LVM stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    You, X. [National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); Connolley, T. [National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McHugh, P.E. [National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland) and Department of Mechanical and Biomedical Engineering, National University of Ireland, University Road, Galway (Ireland)]. E-mail: peter.mchugh@nuigalway.ie; Cuddy, H. [National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); Motz, C. [Erich Schmid Institute, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria)

    2006-10-15

    In this work three-dimensional crystal plasticity finite element models are used to simulate the tensile deformation of a thin 316LVM stainless steel specimen. Such models are of interest for predicting the mechanical response of cardiovascular stents, typically made from thin struts of this material. Detailed experimental analysis of the mechanical response of the specimen during deformation is performed using scanning electron microscopy, digital photogrammetry and orientation imaging microscopy to examine microscale strain distribution, plastic slip and grain reorientation. At the macroscale, the models are found to give good predictions of the stress-strain response of the specimen, and at the microscale the models are found to give good predictions of the strain distribution and the active slip systems in the different grains. The models are less successful in predicting grain reorientations. This, however, is shown to be quite sensitive to the choice of latent hardening ratio.

  12. Influence of sulphur and phosphorus on the hot deformation of Fe-Cr 13% high purity steel

    International Nuclear Information System (INIS)

    Lahreche, M.; Bouzabata, B.; Kobylanski, A.

    1995-01-01

    A series of Fe-Cr13%-C high purity steels containing increasing volume fractions of Sulphur (30, 60 and 100ppm) and Phosphorus (30, 60 and 100ppm) were prepared in order to study their hot deformation properties by tensile tests at various strain rates (10 -1 s -1 to 10 -4 s -1 ) and at temperatures from 700 C to 1100 C. It is observed that the hot ductility is lowered at 1000 C with the addition of sulphur. However, this decrease is relatively small (about 30% for 100ppm of sulphur) and quite similar for all additions of sulphur. When phosphorus is added, the embrittlement is along the whole deformed specimen. The usual criteria of ductility by parameter Z do not seem to be sufficient to describe this embrittlement. (orig.)

  13. Deformation-induced martensitic transformation in a 201 austenitic steel: The synergy of stacking fault energy and chemical driving force

    Energy Technology Data Exchange (ETDEWEB)

    Moallemi, M., E-mail: m.moallemi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Fould Institute of Technology, Fouladshahr, Isfahan, 8491663763 (Iran, Islamic Republic of); Rezaee, A.; Baghbadorani, H. Samaei; Nezhadfar, P. Dastranjy [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-01-20

    The present study deals with the correlation of stacking fault energy's synergy and driving force in the formation of deformation-induced martensitic transformation in a 201 austenitic stainless steel. The fraction of deformation-induced martensite was characterized by means of X-ray diffraction and magnetic induction techniques. The kinetics of the martensite formation versus applied strain was evaluated through the sigmoidal model. It was shown that the volume fraction of ά-martensite is closely related to the driving force/SFE ratio of the alloy. The results also showed that the martensite content is similar in both XRD and magnetic methods and the applied sigmoidal model was consistent with the obtained experimental data.

  14. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    International Nuclear Information System (INIS)

    Liu, Yang; Dong, Danyang; Wang, Lei; Chu, Xi; Wang, Pengfei; Jin, Mengmeng

    2015-01-01

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s −1 ). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains occurs

  15. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Lei, E-mail: wanglei@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chu, Xi, E-mail: chuxi.ok@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Pengfei, E-mail: wpf1963871400@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Jin, Mengmeng, E-mail: 24401878@163.com [College of Science, Northeastern University, Shenyang 110819 (China)

    2015-03-11

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s{sup −1}). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains

  16. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    International Nuclear Information System (INIS)

    Schwarm, Samuel C.; Mburu, Sarah; Ankem, Sreeramamurthy

    2016-01-01

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in the γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).

  17. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    OpenAIRE

    Wang, Dan; Li, Heng; Yang, He; Ma, Jun; Li, Guangjun

    2014-01-01

    The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (c...

  18. In situ Raman identification of corrosion products on galvanized steel sheets

    International Nuclear Information System (INIS)

    Bernard, M.C.; Hugot le Goff, A.; Massinon, D.; Phillips, N.; Thierry, D.

    1992-01-01

    In situ Raman spectroscopy was used to identify corrosion products on zinc immersed in chloride solutions. In aerated 0,03 M NaCl solution, zinc carbonate was identified as the main corrosion product. Even with higher chloride concentrations, for which zinc hydroxychloride was also detected, the carbon dioxide concentration is likely to be the rate controlling factor of the corrosion process. In a confinement experiment, Raman analysis revealed that the upper face of the sample was covered with zinc carbonate, whereas hydroxychlorides were identified on the confined face. This result confirmed the hypothesis of a differential aeration mechanism responsible for the formation of zinc hydroxychloride. This is in good agreement with Raman spectroscopy results obtained in the case of painted galvanized steel

  19. Creep deformation behavior at long-term in P23/T23 steels

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, K.; Tabuchi, M.; Kimura, K. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep behavior of ASME P23/T23 steels was investigated and analyzed, focusing on creep strength degradation at long-term. Creep rupture strength at 625 C and 650 C dropped at long-term in both P23 and T23 steels. The stress exponent of minimum creep rate at 625 C and 650 C was 7.8-13 for higher stresses and 3.9-5.3 for lower stresses in the P23/T23 steels. The change of stress exponent with stress levels was consistent with the drop in creep rupture strength at long-term. The Monkman-Grant rule was confirmed in the range examined in P23 steel, while the data points deviated from the rule at long-term in the case of T23 steel. The creep ductility of P23 steel was high over a wide stress and temperature range. On the other hand, in T23 steel, creep ductility at 625 C and 650 C decreased as time to rupture increased. The change in ductility may cause the deviation from the Monkman-Grant rule. Fracture mode changed from transgranular to intergranular fracture in the long-term at 625 C and 650 C. (orig.)

  20. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.