WorldWideScience

Sample records for steel propagation dynamique

  1. Fatigue crack propagation in neutron-irradiated ferritic pressure-vessel steels

    International Nuclear Information System (INIS)

    James, L.A.

    1977-01-01

    The results of a number of experiments dealing with fatigue crack propagation in irradiated reactor pressure-vessel steels are reviewed. The steels included ASTM alloys A302B, A533B, A508-2, and A543, as well as weldments in A543 steel. Fluences and irradiation conditions were generally typical of those experienced by most power reactors. In general, the effect of neutron irradiation on the fatigue crack propagation behavior of these steels was neither significantly beneficial nor significantly detrimental

  2. Effect of segregations on mechanical properties and crack propagation in spring steel

    Directory of Open Access Journals (Sweden)

    B. Žužek

    2015-10-01

    Full Text Available Considerable efforts have been made over the last decades to improve performance of spring steels, which would increase the service time of springs and also allow vehicles weight reduction. There are different possibilities of improving properties of spring steels, from modifying the chemical composition of steels to optimizing the deformation process and changing the heat treatment parameters. Another way of improving steel properties is through refining the microstructure and reducing amount of inclusions. Therefore, the focus of the current investigation was to determine the effect of more uniform and cleaner microstructure obtained through electro-slag remelting (ESR of steel on the mechanical and dynamic properties of spring steel, with special focus on the resistance to fatigue crack propagation. Effect of the microstructure refinement was evaluated in terms of tensile strength, elongation, fracture and impact toughness, and fatigue resistance under bending and tensile loading. After the mechanical tests the fracture surfaces of samples were analyzed using scanning electron microscope (SEM and the influence of microstructure properties on the crack propagation and crack propagation resistance was studied. Investigation was performed on hot rolled, soft annealed and vacuum heat treated 51CrV4 spring steel produced by conventional continuous casting and compared with steel additional refined through ESR. Results shows that elimination of segregations and microstructure refinement using additional ESR process gives some improvement in terms of better repeatability and reduced scattering, but on the other hand it has negative effect on crack propagation resistance and fatigue properties of the spring steel.

  3. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  4. Évaluation de la dynamique de la transmission du Zika et des ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... mais a souligné que la transmission du Zika et ses conséquences graves continueront de représenter un important problème de santé publique. On enregistre encore des lacunes au niveau des connaissances liées à la dynamique de transmission écologique, ou aux facteurs qui ont une incidence sur la propagation du ...

  5. Low temperature fatigue crack propagation in neutron irradiated Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Walls, J.D.; Gravenor, J.

    1981-02-01

    The fast cycling fatigue crack propagation characteristics of Type 316 steel and weld metal have been investigated at 380 0 C after irradiation to 1.72-1.92x10 20 n/cm 2 (E>1MeV) and 2.03x10 21 n/cm 2 (E>1MeV) at the same temperature. With mill-annealed Type 316 steel, modest decreases in the rates of crack propagation were observed for both dose levels considered, whereas for cold-worked Type 316 steel irradiation to 2.03x10 21 n/cm 2 (E>1MeV) caused increases in the rate of crack propagation. For Type 316 weld metal, increases in the rate of crack propagation were observed for both dose levels considered. The diverse influences of irradiation upon fatigue crack propagation in these materials are explained by considering a simple continuum mechanics model of crack propagation together with the results of control tensile experiments made on similarly irradiated materials. (author)

  6. Effect of residual stress on fatigue crack propagation at 200 C in a welded joint austenitic stainless steel - ferritic steel

    International Nuclear Information System (INIS)

    Zahouane, A.I.; Gauthier, J.P.; Petrequin, P.

    1988-01-01

    Fatigue resistance of heterogeneous welded joints between austenitic stainless steels and ferritic steels is evaluated for reactor components and more particularly effect of residual stress on fatigue crack propagation in a heterogeneous welded joint. Residual stress is measured by the hole method in which a hole is drilled through the center of a strain gage glued the surface of the materials. In the non uniform stress field a transmissibility function is used for residual stress calculation. High compression residual stress in the ferritic metal near the interface ferritic steel/weld slow down fatigue crack propagation. 5 tabs., 15 figs., 19 refs [fr

  7. Study of crack propagation velocity in steel tanks of PWR type reactor

    International Nuclear Information System (INIS)

    Amzallac, C.; Bernard, J.L.; Slama, G.

    1983-05-01

    Description and results of a serie of tests carried out on crack propagation velocity of steels in PWR environment (pressurized high temperature water), in order to examine the effects of metallurgical parameters such as chemical composition of steel, especially sulfur and carbon content, and steel type (laminate or forged steels), effects of mechanical parameters such as loading ratio, cycle form, frequency and application mode of loads and of chemical parameters (anodal dissolution or fatigue with hydrogen) [fr

  8. ON THE PROPAGATION OF OPEN AND COVERED PIT IN 316L STAINLESS STEEL

    International Nuclear Information System (INIS)

    Heurtault, Stéphane; Robin, Raphaël; Rouillard, Fabien; Vivier, Vincent

    2016-01-01

    Highlights: • The propagation of a single pit was investigated with a flow micro-device. • Both in depth and radial pit propagation were characterized. • The formation of a salt film in the pit was discussed. - Abstract: Pitting corrosion on stainless steel has been widely studied during the last decades, but since it is a stochastic process, it remains difficult to analyze experimentally such a phenomenon. In this work, reproducible single pits were performed on 316L steel by using an experimental setup based on the use of a glass microcapillary to locally supply chloride ions on the steel surface in order to characterize the pit propagation. This original approach allowed obtaining new results about pit propagation. Indeed, it was possible to control the presence of a metallic cap covering the pit by adjusting the experimental parameters (potential – chloride to sulfate ratio – temperature). The presence of this cover was shown to be an important issue concerning the propagation mechanism. It was also possible to study the evolution of both the pit depth and the pit diameter as a function of various parameters. Then, based on the simulation of the current densities at the pit bottom and at the pit aperture, a special attention has been paid for the investigation of the local propagation mechanism.

  9. Single pit propagation on austenitic stainless steel

    International Nuclear Information System (INIS)

    Heurtault, Stephane

    2016-01-01

    The electrochemical characterization of metastable events such as pitting corrosion of stainless steel in chloride electrolyte remains complex because many individual processes may occur simultaneously on the alloy surface. To overcome these difficulties, an experimental setup, the flow micro-device, has been developed to achieve the initiation of a single pit and to propagate the single pit in three dimensions. In this work, we take advantage of such a device in order to revisit the pitting process on a 316L stainless steel in a chloride - sulphate bulk. In a first step, the time evolution of the pit geometry (depth, radius) and the chemical evolution of the pit solution investigated using in situ Raman spectroscopy have shown that the pit depth propagation depends on the formation of a metal chloride and sulphate gel in the pit solution, and is controlled by the metallic cations diffusion from the pit bottom to the pit mouth. The pit radius growth is defined by the initial surface de-passivation, by the presence of a pit cover and by the gel development in the solution. all of these phenomena are function of applied potential and chemical composition of the solution. In a last step, it was demonstrated that a critical chloride concentration is needed in order to maintain the pit propagation. This critical concentration slightly increases with the pit depth. From statistical analysis performed on identical experiments, a zone diagram showing the pit stability as a function of the chloride concentration and the pit dimensions was built. (author) [fr

  10. Heat affected zone and fatigue crack propagation behavior of high performance steel

    International Nuclear Information System (INIS)

    Choi, Sung Won; Kang, Dong Hwan; Kim, Tae Won; Lee, Jong Kwan

    2009-01-01

    The effect of heat affected zone in high performance steel on fatigue crack propagation behavior, which is related to the subsequent microstructure, was investigated. A modified Paris-Erdogan equation was presented for the analysis of fatigue crack propagation behavior corresponding to the heat affected zone conditions. Fatigue crack propagation tests under 0.3 stress ratio and 0.1 load frequency were conducted for both finegrained and coarse-grained heat affected zones, respectively. As shown in the results, much higher crack growth rate occurred in a relatively larger mean grain size material under the same stress intensity range of fatigue crack propagation process for the material.

  11. Analysis of SCC initiation/propagation behavior of stainless steels in LWR environments

    International Nuclear Information System (INIS)

    Saito, Koichi; Kuniya, Jiro

    1999-01-01

    This paper presents a method to analyze initiation and propagation behavior of stress corrosion cracking (SCC) of stainless steels on the basis of a new prediction algorithm in which the initiation period and propagation period of SCC under irradiation conditions are considered from a practical viewpoint. The prediction algorithm is based on three ideas: (1) threshold neutron fluence of radiation-enhanced SCC (RESCC), (2) equivalent critical crack depth, and (3) threshold stress intensity factor for SCC (K ISCC ). SCC initiation/propagation behavior in light water reactor (LWR) environments is analyzed by incorporating model equations on irradiation hardening, irradiation-enhanced electrochemical potentiokinetic reactivation (EPR) and irradiation stress relaxation that are phenomena peculiar to neutron irradiation. The analytical method is applied to predict crack growth behavior of a semi-elliptical surface crack in a flat plane that has an arbitrary residual stress profile; specimens are sensitized type 304 stainless steels which had been subjected to neutron irradiation in high temperature water. SCC growth behavior of a semi-elliptical surface crack was greatly dependent on the distribution of residual stress in a flat plane. When residual stress at the surface of the flat plane was relatively small, the method predicted SCC propagation did not take place. (author)

  12. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Abidin Kamal Ariff Zainal

    2014-07-01

    Full Text Available Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagation behavior. The results indicate that the microstructure and phase composition as well as corrosion resistance were influenced by nitriding temperatures.

  13. Fatigue crack propagation behavior and acoustic emission characteristics of the heat affected zone of super duplex stainless steel

    International Nuclear Information System (INIS)

    Do, Jae Yoon; Kim, Jin Hwan; Ahn, Seok Hwan; Park, In Duck; Kang, Chang Yong; Nam, Ki Woo

    2002-01-01

    Because duplex stainless steel shows the good strength and corrosion resistance properties, the necessity of duplex stainless steel, which has long life in severe environments, has been increased with industrial development. The fatigue crack propagation behavior of Heat Affected Zone(HAZ) has been investigated in super duplex stainless steel. The fatigue crack propagation rate of HAZ of super duplex stainless steel was faster than that of base metal of super duplex stainless steel. We also analysed acoustic emission signals during the fatigue test with time-frequency analysis method. According to the results of time-frequency analysis, the frequency ranges of 200-400 kHz were obtained by striation and the frequency range of 500 kHz was obtained due to dimple and separate of inclusion

  14. Effect of temperature on the rate of fatigue crack propagation in some steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Taira, S.; Fujino, M.; Maruyama, S.

    Temperature dependence of the rate of fatigue crack propagation in steels was examined, and compared with the temperature dependence of tensile ductility. Microcracks initiate and affect the propagation behavior of the main crack at elevated temperatures. Factors found to be elucidated include initiation rate of microcracks, reduction of ductility of the material in the vicinity of the main crack tip, and relaxation of concentrated strain by multi-cracks. It was found that during a strain controlled low cycle fatigue test at 1 cpm, the rate of crack propagation is largest at the blue-brittleness temperature range (200 to 300 0 C) in a low carbon steel. On the other hand, it is largest at above 700 0 C in austenite stainless steels. The temperature dependence of the rate of fatigue crack propagation is opposite to that of tensile ductility. Microcracks formed in the vicinity of the main crack tip were calculated, by considering the strain concentration and strain cycles imposed. Then, the local fracture strain was evaluated. Good correlation was found between the rate of crack propagation and the local fracture strain. (U.S.)

  15. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  16. The numerical simulation of Lamb wave propagation in laser welding of stainless steel

    Science.gov (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang

    2017-12-01

    In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,

  17. Experimental study of fatigue crack propagation in type 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Mostafa, M.; Vessiere, G.; Hamel, A.; Boivin, M.

    1983-01-01

    In this work, are grouped and compared the crack propagation rates in type 316 austenitic stainless steel in two loading cases: plane strain and plane stress. Plane strain has been obtained on axisymmetric cracked specimens, plane stress on thin notched specimens, subjected to alternative bending. The results show that the crack propagation rate is greater for plane strain, i.e. in the case of the smallest plastic zone. The Elber concept was also used for explaining the different values of the crack propagation rate. It's noteworthy to find out that the Paris' law coefficients for different loading levels and those fo Elber's law are correlated [fr

  18. Analysis of elastic wave propagation through anisotropic stainless steel using elastodynamic FEM and ultrasonic beam model

    International Nuclear Information System (INIS)

    Cho, Seog Je; Jeong, Hyun Jo

    1999-01-01

    The wave propagation problem in anisotropic media is modeled by the Gauss-Hermite beam and tile finite element method and their results are compared. Gauss-Hermite mettled is computationally fast and simple, and explicitly incorporates beam spreading. In the 2-D model problem chosen, the ultrasonic beam leaves a transducer, propagates through a layer of ferritic steel and through a planar interface into a region of columnar cast stainless steel with two directions. After propagation to a reference plane, comparison .if made of the time-domain waveforms predicted by tile two models. The predictions of the two models are found to be in good agreement near the center of the beam, with deviations developing as one moves away from tile central ray. These are interpreted to be a consequence of the Fresnel approximation, made in the Gauss-Hermite model.

  19. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Youseffi, K.; Finnie, I.

    1978-02-01

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(..delta..K)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel.

  20. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Youseffi, K.; Finnie, I.

    1978-02-01

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(ΔK)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel

  1. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    Directory of Open Access Journals (Sweden)

    J.A.F.O. Correia

    2015-01-01

    Full Text Available A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force assessment, allowing mean stresses and loading sequential effects to be modelled. An extension of the fatigue crack propagation model originally proposed by Noroozi et al. (2005 to derive probabilistic fatigue crack propagation data is proposed, in particular concerning the derivation of probabilistic da/dN-ΔK-R fields. The elastic-plastic stresses at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using an elasticplastic finite element analyses for specimens considered in the experimental program proposed to derive the fatigue crack propagation data. Using probabilistic strain-life data available for the S355 structural mild steel, probabilistic crack propagation fields are generated, for several stress ratios, and compared with experimental fatigue crack propagation data. A satisfactory agreement between the predicted probabilistic fields and experimental data is observed.

  2. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  3. Dynamic propagation and cleavage crack arrest in bainitic steel

    International Nuclear Information System (INIS)

    Hajjaj, M.

    2006-06-01

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  4. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing

    International Nuclear Information System (INIS)

    Chen Zhitong; Li Guang; Wu Zhenqiang; Xia Yuan

    2011-01-01

    Research highlights: → Composite coatings on the aluminized steel were prepared by the plasma electrolytic oxidation (PEO) technique, which comprised of Fe-Al layer, Al layer and Al 2 O 3 layer. → The evaluation method of the crack critical opening displacement δ c was introduced to describe quantitatively the resistance of Al layer to the propagation behavior of cracks and evaluate the fracture behavior of composite coatings. → The crack propagating model was established. - Abstract: This paper investigates the in situ tensile cracks propagating behavior of composite coatings on the aluminized steel generated using the plasma electrolytic oxidation (PEO) technique. Cross-sectional micrographs and elemental compositions were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The composite coatings were shown to consist of Fe-Al, Al and Al 2 O 3 layers. The cracks propagating behavior was observed in real-time in situ SEM tensile test. In tensile process, the cracks were temporarily stopped when cracks propagated from Fe-Al layer to Al layer. The critical crack opening displacement δ c was introduced to quantitatively describe the resistance of the Al layer. There was a functional relation among the thickness ratio t Al /t Al 2 O 3 , the δ c of composite coatings and tensile cracks' spacing. The δ c increased with the increasing of the thickness ratio (t Al /t Al 2 O 3 ). The high δ c value means high fracture resistance. Therefore, a control of the thickness ratio t Al /t Al 2 O 3 was concerned as a key to improve the toughness and strength of the aluminized steel.

  5. Influence of corrosion environment composition on crack propagation in high-strength martensitic steel

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Tsirul'nik, A.T.

    1984-01-01

    The 40 Kh steel is taken as an example to investigate the dependence of electrochemical parameters in the crack tip and characteristics of corrosion static cracking resistance of martensitic steel on the composition of environment. The tests are performed in acidic and alkaline solutions prepared by adding HC or NaOH in distilled water. It is established that growth of pH value of initial solutions trom 0 to 13 brings about linear increase of a threshold stress intensity factor. It is found that acidic medium in the crack tip preserves up to pH 13 of initial medium. The possibility of corrosion crack propagation in alkaline solutions according to the mechanism of hydrogen embrittlement is proved

  6. Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Silva Diniz, D.; Almeida Silva, A. [Federal University of Campina Grande, Campina Grande-PB (Brazil); Andrade Barbosa, J.M. [Federal University of Pernambuco, Recife-PE (Brazil); Palma Carrasco, J.

    2012-05-15

    This paper presents a numerical simulation of the effect of hydrogen atomic diffusion on fatigue crack propagation on structural steels. The simulation was performed with a specimen type CT of API 5CT P110 steel, loaded in the tensile opening mode, in plane strain state and under the effects of a cyclic mechanical load and the hydrogen concentration at the crack tip. As hydrogen source, a cathodic protection system was considered, commonly used in subsea pipelines. The equations of evolution of variables at the crack tip form a non-linear system of ordinary differential equations that was solved by means of the 4th order Runge-Kutta method. The solid-solid diffusion through the lattice ahead of the crack tip was simulated using the finite difference method. The simulations results show that under these conditions, the fatigue crack evolution process is enhanced by the hydrogen presence in the material, and that the start time of the crack propagation decreases as its concentration increases. These results show good correlation and consistency with macroscopic observations, providing a better understanding of hydrogen embrittlement in fatigue crack propagation processes in structural steels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. High temperature initiation and propagation of cracks in 12%Cr-steel turbine disks

    Directory of Open Access Journals (Sweden)

    S. Foletti

    2013-10-01

    Full Text Available This work aims to study the crack propagation in 12%Cr steel for turbine disks. Creep Crack Growth (CCG tests on CT specimens have been performed to define the proper fracture mechanics which describes the initiation of the crack propagation and the crack growth behaviour for the material at high temperature. Results have been used to study the occurrence of crack initiation on a turbine disk at the extreme working temperature and stress level experienced during service, and validate the use of C* integral in correlating creep growth rate on the disk component, in case C* is numerically calculated through FEM analysis or calculated by the use of reference stress concept.

  8. Dynamique de structuration spatio-temporelle des populations de ...

    African Journals Online (AJOL)

    Dynamique de structuration spatio-temporelle des populations de familles de macroinvertébrés dans un continuum lac de barrage-effluent-fleuve issu de périmètre irrigué. Bassin de la Volta (Burkina Faso)

  9. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  10. Numerical investigation on the prefabricated crack propagation of FV520B stainless steel

    Directory of Open Access Journals (Sweden)

    Juyi Pan

    Full Text Available FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress–strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10−3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3–43.4 MPa. The maximum value of stress–strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10−4. On the crack tip, the stress changed as 32.24–40.16 MPa, the strain is at 1.292 × 10−4–1.897 × 10−4. Keywords: FV520B, Crack propagation, Mises stress, Stress–strain, Numerical investigation

  11. Ancrage dynamique: principales applications Dynamic Positioning: Main Applications

    Directory of Open Access Journals (Sweden)

    Fay H.

    2006-11-01

    Full Text Available L'ancrage dynamique est la technique qui a permis à la recherche pétrolière d'étendre ses possibilités bien au-delà des plateaux continentaux, sans limitation de profondeur, pour des opérations difficiles, ou encore dans un environnement océanométéorologique sévère, comme celui de la mer du Nord et des mers froides avec la présence d'icebergs. Cet article correspond à des extraits de l'ouvrage Ancrage dynamique. Technique et applications , à paraître aux Editions Technip. Après un bref rappel historique et un exposé succinct des caractéristiques des systèmes d'ancrage dynamique, les principales réalisations de navires et de plates-formes semi-submersibles équipées d'un ancrage dynamique sont présentées. La précision du maintien en position, ainsi que les limites opérationnelles des supports considérés sont de même exposées. Enfin la conclusion retrace les avantages de ce procédé, dont l'exceptionnel développement s'applique aussi aux domaines scientifiques et militaires, ainsi qu'à d'autres secteurs industriels que celui des hydrocarbures. Dynamic positioning is the technique that has enabled oil exploration to extend its possibilities far beyond continental shelves, without any limitation of water depth, for difficult operations or else in harsh environments such as for the North Sea and arctic zones with the presence of icebergs. This paper consists of extracts from the book Dynamic Positioning. Technique and Applications , to be published by Editions Technip. After a brief historical review and a succinct survey of the characteristics of dynamic positioning systems, the principal realizations of ships and semi-submersible platforms equipped with a dynamic positioning system are described. The accuracy of position holding capability as well as the operational limits of the supports considered are also described. The conclusion reviews the advantages of this technique, whose exceptional development also

  12. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel

    International Nuclear Information System (INIS)

    Zhong Yong; Xiao Furen; Zhang Jingwu; Shan Yiyin; Wang Wei; Yang Ke

    2006-01-01

    Microstructural refinement of structural materials generally improves their tensile properties but deteriorates their fatigue properties. However, pipeline steels with ultra-fine acicular ferrite (UFAF) possess not only high strength and toughness, but also a low fatigue-crack-growth rate (FCGR) and long fatigue-propagation life. In this paper, the micro-fracture mechanisms of an UFAF pipeline steel are investigated by in situ tensile testing in a transmission electron microscope. The results indicate that a grain-boundary-film structure composed of martensite/austenite could significantly influence the crack propagating behavior in the UFAF steel, consequently lowering the FCGR by enhancing roughness-induced crack closure during cyclic loading

  13. The effect of aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels

    International Nuclear Information System (INIS)

    James, L.A.

    1996-01-01

    The effect of elevated temperature aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels is discussed in terms of the several parameters which influence such behavior. These parameters include water chemistry, impurities within the steels themselves, as well as factors such as the water flow rate, loading waveform and loading rates. Some of these parameters have similar effects upon both crack initiation and propagation, while others exhibit different effects in the two stages of cracking. In the case of environmentally-assisted crack (EAC) growth, the most important impurities within the steel are metallurgical sulfide inclusions which dissolve upon contact with the water. A ''critical'' concentration of sulfide ions at the crack tip can then induce environmentally-assisted cracking which proceeds at significantly increased crack growth rates over those observed in air. The occurrence, or non-occurrence, of EAC is governed by the mass-transport of sulfide ions to and from the crack-tip region, and the mass-transport is discussed in terms of diffusion, ion migration, and convection induced within the crack enclave. Examples are given of convective mass-transport within the crack enclave resulting from external free stream flow. The initiation of fatigue cracks in elevated temperature aqueous environments, as measured by the S-N fatigue lifetimes, is also strongly influenced by the parameters identified above. The influence of sulfide inclusions does not appear to be as strong on the crack initiation process as it is on crack propagation. The oxygen content of the environment appears to be the dominant factor, although loading frequency (strain rate) and temperature are also important factors

  14. Multiple cracks initiation and propagation behavior of stainless steel in high temperature water environment

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo

    2001-01-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. On the other hand, crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which quite a few cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in a high temperature water environment at the constant potentials of ECP +50 mV and ECP +150 mV. Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was studied. From the model, it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  15. Initiation and propagation of multiple cracks of stainless steel in high temperature water environment

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. Crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which relatively large number of cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in high temperature water environment at the constant potentials of +50 mV SHE and +150 mV SHE Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was investigated, and it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  16. Stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic steels: the role of precipitation

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Wareing, J.

    1979-01-01

    The distinction between stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic stainless steels is introduced. The transition from one class of behavior to the other is related to the precipitate distribution and to the nature of the prevailing crack path. It is shown by reference to new studies and examples drawn from the literature that this behavior is common to both high strain and predominantly elastic fatigue in austenitic stainless steels. The relevance of this distinction to a mechanistic approach to high temperature plant design is discussed

  17. Crack propagation at stresses below the fatigue limit.

    Science.gov (United States)

    Holden, F. C.; Hyler, W. S.; Marschall, C. W.

    1967-01-01

    Crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting of alternating stress cycles crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting role of alternating stress cycles

  18. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  19. The fatigue-crack propagation behavior of ASTM A533-B steel tested in vacuo at LWR operating temperatures

    International Nuclear Information System (INIS)

    James, L.A.

    1987-01-01

    The fatigue-crack propagation (FCP) behavior of ASTM A533-B-1 steel was characterized in vacuo at 288 0 C. Tests were conducted at two stress ratios: R = 0.05 and R = 0.7. Results of these tests were compared with results from previous studies for the same type of steel tested in an air environment, and FCP rates in vacuo were generally lower than those in air. Stress ratio effects in vacuo were not as great as those in air, and both stress ratio effects and environmental effects are discussed from the standpoint of crack closure concepts

  20. Original Paper Dynamique des peuplements des Parcelles d'Essais ...

    African Journals Online (AJOL)

    permanentes (PFTP) à Bensékou visait à évaluer la dynamique de la population de ... est alors important de mettre en œuvre une sensibilisation de la population locale sur les mérites de la gestion ..... contrôle des PES se sont encore montré.

  1. Acteurs, gouvernance et dynamiques de projet dans la concurrence des territoires en tourisme

    OpenAIRE

    Suchet, André

    2016-01-01

    Cette thèse propose une géographie des dynamiques du sport et du tourisme en Pyrénées, au regard de la situation dans les Alpes. À la suite notamment du volume fondateur de Chadefaud (1988), il s’agit de traiter comment les dynamiques du tourisme en Pyrénées imitent, concurrencent, ou se détachent du modèle alpin. Une fois débarrassé de toute idée de déterminisme physique au profit d’un postulat constructiviste, il devient possible d’interroger la fabrication d’un rapport de domination entre ...

  2. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  3. Etude Du Comportement Dynamique D'un Systeme De Pompage ...

    African Journals Online (AJOL)

    SIMULINK le comportement dynamique d'un système de pompage composé d'un générateur photovoltaïque, d'un onduleur, d'un moteur à induction et d'une pompe centrifuge. Le modèle global du système est bouclé : la sortie tension du GPV est ...

  4. L'agglomeration oranaise jeux d'acteurs et dynamique urbaine ...

    African Journals Online (AJOL)

    L'agglomération oranaise connaît actuellement une croissance urbaine importante entraînant des évolutions économiques et socioculturelles considérables. Partant de là, une question nous interpelle: Quels sont les mécanismes à la base de la dynamique d'urbanisation, les processus de restructuration et de ...

  5. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    Science.gov (United States)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  6. Crack propagation behaviour in stainless steel AISI 316L at elevated temperatures under static and cyclic loading

    International Nuclear Information System (INIS)

    Lange, H.

    1991-01-01

    Experimental investigations of crack growth under creep and creep-fatigue conditions are presented. The experiments were performed with the austenitic steel AISI 316L, that will be used in fast breeder reactors. A comparison of crack propagation behaviour at temperatures of T = 550deg C and T = 700deg C in common through-thickness cracked specimens and in plates containing surface cracks is carried out by application of several fracture mechanics parameters. The quantitative description of crack initiation times and crack velocities is persued particularly. The propagation rate of one-dimensional cracks under cyclic loading conditions at T = 550deg C is also treated with fracture mechanical methods. The influence of the hold periods on crack speed is discussed. (orig.) [de

  7. Corrosion of Steel in Concrete – Potential Monitoring and Electrochemical Impedance Spectroscopy during Corrosion Initiation and Propagation

    DEFF Research Database (Denmark)

    Küter, Andre; Mason, Thomas O.; Geiker, Mette Rica

    2005-01-01

    wires. The wires can act as both reference and counter electrode during EIS and, thus, no external electrode is required. The defined geometry solves reproducibility problems involved with application of an external reference electrode for EIS. Changes of the electromotive force (EMF) between rebar...... and titanium wires can be monitored immediately after preparation. The wire arrangement also allows investigation of local changes in the bulk mortar by EIS or by measuring the potential development of the titanium wires versus an external standard electrode. The specimen design was evaluated...... in an investigation on the effect of the steel quality and the steel surface properties on initiation and propagation of chloride-induced reinforcement corrosion. Besides untreated (as received) carbon rebars and stainless rebars, selected surface treatments and galvanization were investigated. The surface treatments...

  8. 93 une urbanisation linéaire, dynamique demographique et ...

    African Journals Online (AJOL)

    Mohand

    d'Alger, dans l'ensemble Sahel-Mitidja sur un linéaire côtier de 2 km. Rattaché administrativement à la daira de ... connait une dynamique démographique remar- quable, dans sa périphérie orientale - composé de l'ensemble Sahel-. Mitidja ..... «Etude agro-pédologique de la plaine de la Mitidja». Florin B.; Semoud N. 2010.

  9. An experimental assessment of hysteresis in near-threshold fatigue crack propagation regime of a low alloy ferritic steel under closure-free testing conditions

    International Nuclear Information System (INIS)

    Vaidya, W.V.

    1991-01-01

    Near-threshold fatigue crack propagation behavior of a high strength steel was investigated in laboratory air under closure-free testing conditions at R = 0.7 (= R eff ), and at two different K-gradients. Depending on the criterion assumed, the threshold value differed; the criterion of non-propagation gave a lower threshold value than that assumed by the propagation criterion. Nevertheless, the subsequent propagation following a load increase was discontinuous in both the cases, and da/dN vs ΔK curves obtained on the same specimen during the K-decreasing and the K-increasing test were not necessarily identical in the threshold regime. This behavior, hysteresis, is analyzed mainly from the experimental viewpoint, and it is shown that hysteresis is not an artifact. (orig.) With 13 figs., 3 appendices [de

  10. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu + ion. In each essay stayed a displacement velocity was constant of 1x10 -9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  11. Fatigue crack propagation of super duplex stainless steel with dispersed structure and time-frequency analysis of acoustic emission

    Science.gov (United States)

    Nam, Ki-Woo; Kang, Chang-Yong; Do, Jae-Yoon; Ahn, Seok-Hwan; Lee, Sang-Kee

    2001-06-01

    The fatigue crack propagation of super duplex stainless steel was investigated for the effect of various volume fractions of the austenite phase by changing the heat treatment temperature. We also analyzed acoustic emission signals obtained during the fatigue crack propagation by the time-frequency analysis method. As the temperature of the heat treatment increased, the volume fraction of austenite decreased and coarse grain was obtained. The specimen treated at 1200 had a longer fatigue life and slower rate of crack growth. Results of time-frequency analysis of acoustic emission signals during the fatigue test showed the main frequency of 200-300 kHz to have no correlation with heat treatment and crack length, and the 500 kHz signal to be due to dimples and separation of inclusion.

  12. Dynamique spatio-temporelle de la forêt tropicale

    Science.gov (United States)

    Chave, J.

    Spatio-temporal dynamics of the tropical rain forest Mechanisms which drive the dynamics of forest ecosystems are complex, from seedling establishment to pollination, and seed dispersal by animals, running water or wind. These processes are more complex when the ecosystem shelters a large number of species and of vegetative forms, as it is the case in the tropical rainforest. To take them into account, we must develop and use models. I present a review of the fundamental mechanisms for the of a natural forest dynamics — photosynthesis, tree growth, recruitment and mortality — as well as a description of the past and of the present of tropical rainforests. This information is used to develop a spatially-explicit and individual-based forest model. Simplified models are deduced from it, and they serve to address more specific issues, such as the resilience of the forest to climate disturbances, or savanna-forest dynamics. The last topic is related to the spatio-temporal description of tropical plant biodiversity. A detailed introduction to the problem is provided, and models accounting for the maintenance of diversity are compared. These models include non spatial as well a spatial approaches (branching anihilating random walks and voter model with mutation). Les mécanismes régissant la dynamique des écosystèmes forestiers sont complexes, de l'établissement des plantules à la pollinisation et la dispersion des graines, transportées par les animaux, l'eau ou le vent. Ces processus sont d'autant plus divers que l'écosystème abrite un large nombre d'espèces et de formes végétatives, comme c'est le cas dans les forêts tropicales humides. Leur prise en compte et la compréhension de leur importance relative doit passer par la définition de modèles. Je présente une revue des différents mécanismes fondamentaux dans la dynamique d'une forêt—photosynthèse, croissance des arbres, reproduction, mortalité—ainsi qu'une description du passé et de l

  13. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  14. Study of regularities in propagation of thermal fatigue cracks

    International Nuclear Information System (INIS)

    Tachkova, N.G.; Sobolev, N.D.; Egorov, V.I.; Rostovtsev, Yu.V.; Ivanov, Yu.S.; Sirotin, V.L.

    1978-01-01

    Regularities in the propagation of thermal fatigue cracks in the Cr-Ni steels of the austenite class depending upon deformation conditions in the crack zone, have been considered. Thin-walled tube samples of the Kh16N40, Kh18N20 and Kh16N15 steels have been tested in the 10O reversible 400 deg C and 100 reversible 500 deg C regimes. The samples have possessed a slot-shaped stress concentrator. Stress intensity pseudocoefficient has been calculated for the correlation of experimental data. The formula for determining crack propagation rate has been obtained. The experiments permit to conclude that propagation rate of thermal fatigue cracks in the above steels depends upon the scope of plastic deformation during a cycle and stress intensity pseudocoefficient, and is determined by plastic deformation resistance during thermal cyclic loading

  15. Dynamique de croissance et taux de mortalité de Rhizophora spp ...

    African Journals Online (AJOL)

    SARAH

    30 janv. 2015 ... Dynamique des paysages végétaux du littoral centre-ouest du Gabon autour de. Port-Gentil : Approche spatiale et analyse des données de terrain. Thèse de doctorat. Univ. Paul-Valery Montpellier 3, France. 302 p. Spalding MD, Blasco F, Field CD, 1997. World. Mangrove Atlas. ISME, Okinawa, Japan. 251.

  16. An approach to ductile fracture resistance modelling in pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L.N.; Fredj, A. [BMT Fleet Technology Ltd., Kanata (Canada)

    2009-07-01

    Ductile fracture resistance studies of high grade steels in the pipeline industry often included analyses of the crack tip opening angle (CTOA) parameter using 3-point bend steel specimens. The CTOA is a function of specimen ligament size in high grade materials. Other resistance measurements may include steady state fracture propagation energy, critical fracture strain, and the adoption of damage mechanisms. Modelling approaches for crack propagation were discussed in this abstract. Tension tests were used to calibrate damage model parameters. Results from the tests were then applied to the crack propagation in a 3-point bend specimen using modern 1980 vintage steels. Limitations and approaches to overcome the difficulties associated with crack propagation modelling were discussed.

  17. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  18. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Denis, E-mail: thibault.denis@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Bocher, Philippe, E-mail: philippe.bocher@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Thomas, Marc, E-mail: marc.thomas@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Lanteigne, Jacques, E-mail: lanteigne.jacques@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Hovington, Pierre, E-mail: hovington.pierre@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Robichaud, Patrice, E-mail: patrice.robichaud@riotinto.com [Centre de recherche et de developpement Arvida (CRDA), 1955, boul. Mellon, Jonquiere, Quebec, G7S 4K8 (Canada)

    2011-08-15

    Highlights: {yields} Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. {yields} Low cycle fatigue tests showed that this transformation to martensite is gradual. {yields} XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  19. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    International Nuclear Information System (INIS)

    Thibault, Denis; Bocher, Philippe; Thomas, Marc; Lanteigne, Jacques; Hovington, Pierre; Robichaud, Patrice

    2011-01-01

    Highlights: → Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. → Low cycle fatigue tests showed that this transformation to martensite is gradual. → XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  20. High temperature cracking of steels: effect of geometry on creep crack growth laws; Fissuration des aciers a haute temperature: effet de la geometrie sur la transferabilite des lois de propagation

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, M.R

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C{sup *} and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C{sup *} parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C{sup *} parameter, a second non singular term, denoted here as Q{sup *}, is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C{sup *} parameter (da/dt - C{sup *}), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C{sup *} type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C{sup *}), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical

  1. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Program, Avda. Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    stress corrosion cracking of austenitic stainless steels (SS) and to quantify the effect on the crack propagation rate, an experimental research program was performed using cold and warm worked 304, 316L and 347 SS. Stress corrosion crack growth rate tests, under BWR and PWR environments have been carried out. The results obtained have permitted to determine the yield strength effect in the crack propagation of austenitic stainless steels in PWR and BWR conditions. In addition, similarities on cold work and radiation hardening in enhancing the yield strength and the stress corrosion cracking propagation at high temperature water have been evaluated. (authors)

  2. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu ++ ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10 -9 m/s (3.6 μm/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  3. Ultrasound propagation in steel piping at electric power plant using clamp-on ultrasonic pulse doppler velocity-profile flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige

    2008-01-01

    Venturi nozzles are widely used to measure the flow rates of reactor feedwater. This flow rate of nuclear reactor feedwater is an important factor in the operation of nuclear power reactors. Some other types of flowmeters have been proposed to improve measurement accuracy. The ultrasonic pulse Doppler velocity-profile flowmeter is expected to be a candidate method because it can measure the flow profiles across the pipe cross sections. For the accurate estimation of the flow velocity, the incidence angle of ultrasonic entering the fluid should be carefully estimated by the theoretical approach. However, the evaluation of the ultrasound propagation is not straightforward for the several reasons such as temperature gradient in the wedge or mode conversion at the interface between the wedge and pipe. In recent years, the simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation in steel piping and water, using the 3D-FEM simulation code and the Kirchhoff method, as it relates to the flow profile measurements in power plants with the ultrasonic pulse Doppler velocity-profile flowmeter. (author)

  4. Dynamique de fréquentation des grands mammifères dans une ...

    African Journals Online (AJOL)

    SARAH

    31 juil. 2016 ... 2016 Dynamique de fréquentation des grands mammifères dans une clairière ... 2Ecole Régionale Post-Universitaire d'Aménagement et de gestion Intégrés des Forêts et ..... épidémiologique et contrôle des stomoxes à la.

  5. Dynamique de la teneur en carbone et en azote des sols dans les ...

    African Journals Online (AJOL)

    SARAH

    30 nov. 2014 ... INTRODUCTION. L'étude de la dynamique de carbone et de l'azote dans le ... climatique et l'autre de dimension locale, la fertilité des sols. ... situe à la limite méridionale du domaine sahélien, le ..... Soils and global change.

  6. Influence de l'occupation des terres sur la dynamique des ...

    African Journals Online (AJOL)

    L'objectif de la présente étude est d'évaluer l'impact de mise en culture, des pâturages, des jachères et l'influence des villages sur la dynamique des communautés végétales de la commune de ..... mais il n'y a que peu de recrutement. Au-delà de cinq ans, taille et phytovolume diminuent, témoignant du vieillissement de la ...

  7. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    Science.gov (United States)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  8. Fatigue crack propagation of super duplex stainless steel and time-frequency analysis of acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Kee; Nam, Ki Woo; Kang, Chang Yong; Do, Jae Yoon

    2000-01-01

    On this study, the fatigue crack propagation of super duplex stainless steel is investigated in conditions of various volume fraction of austenite phase by changing heat treatment temperature. And we analysed acoustic emission signals during the fatigue test by time-frequency analysis methods. As the temperature of heat treatment increased, volume fraction of austenite decreased and coarse grain was obtained. The specimen heat treated at 1200 deg. C had longer fatigue life and slower rate of crack growth. As a result of time-frequency analyze of acoustic emission signals during fatigue test, main frequency was 200∼300 kHz having no correlation with heat treatment and crack length, and 500 kHz was obtained by dimple and separate of inclusion

  9. Nouvelles fonctions de l'agriculture et dynamiques des exploitations: une analyse chorématique dans les monts d'Ardèche

    Directory of Open Access Journals (Sweden)

    Muriel Bonin

    2001-06-01

    Full Text Available Les modèles spatiaux sont utilisés pour l'analyse des trajectoires d'exploitations agricoles pour mettre en évidence les liens entre les transformations socio-économiques et les dynamiques de territoires. Les traits de dynamiques spatiales sont identifiés et utilisés pour analyser l'impact de l'introduction de l'agritourisme dans les exploitations dans le Parc naturel régional des monts d'Ardèche.

  10. Analysis of the resistance to the stable propagation of fissures in structural steels

    International Nuclear Information System (INIS)

    Alvarez Villar, Nelson; Aquino, Daniel; Aguera, Francisco; Fierro, Victor; Ansaldi, Andrea; Chomik, Enrique; Iorio, Antonio

    2008-01-01

    Linear Elastic Fracture Mechanic (LEFM) is applied to the analysis of highly resistant materials, with correction for plasticity. For moderately ductile materials, structural analysis and design methodologies based on Elastoplastic Fracture Mechanics (EPFM) still have to be developed. The J integral is used in EPFM as a parameter to characterize tenacity to the fracture, following the ASTM standard. It is important to obtain J-Resistant curves, since the use of the stable propagation initiation value (J IC ) as failure criteria, leads to results that are too conservative in most design situations. The application of direct methods allows for results under conditions where the standard methods for obtaining the J-Resistant curve are not applicable. This work analyzes the application of direct methods that are alternatives for the standard, in ferritic-perlitic steels used in gas transport pipes. Experimental results are presented with numerical analysis (FEA) for the adjustment of J-Resistant curves (au)

  11. Criterion of cleavage crack propagation and arrest in a nuclear PWR vessel steel

    International Nuclear Information System (INIS)

    Bousquet, Amaury

    2013-01-01

    The purpose of this PhD thesis is to understand physical mechanisms of cleavage crack propagation and arrest in the 16MND5 PWR vessel steel and to propose a robust predicting model based on a brittle fracture experimental campaign of finely instrumented laboratory specimens associated with numerical computations. First, experiments were carried out on thin CT25 specimens at five temperatures (-150 C, -125 C, -100 C, -7 C, -50 C). Two kinds of crack path, straight or branching path, have been observed. To characterize crack propagation and to measure crack speed, a high-speed framing camera system was used, combined with the development of an experimental protocol which allowed to observe CT surface without icing inside the thermal chamber and on the specimen. The framing camera (520 000 fps) has allowed to have a very accurate estimation of crack speed on the complete ligament of CT (∼ 25 mm). Besides, to analyse experiments and to study the impact of viscosity on the mechanical response around the crack tip, the elastic-viscoplastic behavior of the ferritic steel has been studied up to a strain rate of 104 s -1 for the tested temperatures.The extended Finite Element Method (X-FEM) was used in CAST3M FE software to model crack propagation. Numerical computations combine a local non linear dynamic approach with a RKR type fracture stress criterion to a characteristic distance. The work carried out has confirmed the form of the criterion proposed by Prabel at -125 C, and has identified the dependencies of the criterion on temperature and strain rate. From numerical analyzes in 2D and 3D, a multi-temperature fracture stress criterion, increasing function of the strain rate, was proposed. Predictive modeling were used to confirm the identified criterion on two specimen geometries (CT and compressive ring) in mode I at different temperatures. SEM observations and 3D analyzes made with optical microscope showed that the fracture mechanism was the cleavage associated

  12. Effects of laser peening treatment on high cycle fatigue and crack propagation behaviors in austenitic stainless steel

    International Nuclear Information System (INIS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    2010-01-01

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 10 8 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment. (author)

  13. Fracture mechanical modeling of brittle crack propagation and arrest of steel. 3. Application to duplex-type test; Kozai no zeisei kiretsu denpa teisi no rikigaku model. 3. Konseigata shiken eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S.; Tsuchida, Y. [Nippon Steel Corp., Tokyo (Japan); Machida, S.; Yoshinari, H. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1996-12-31

    A proposal was made previously on a model of brittle crack propagation and arrest that considers the effect of crack opening suppression by using unbroken ligaments generated on steel plate surface and the effect that cracks precede in the central part of the plate thickness, based on a local limit stress theory for brittleness fracture. This paper discusses applicability of this model to a mixed type test, and elucidates causes for difference in the arrest tenacity of both types in a double tensile test of the standard size. The brittle crack propagation and arrest model based on the local limit stress theory was found applicable to a simulation of the mixed type test. Experimental crack propagation speed history and behavior of the arrest were reproduced nearly completely by using this model. When load stress is increased, the arrests in the mixed type test may be classified into arrests of both inside the steel plate and near the surface, cracks in the former position or arrest in the latter position, and rush of cracks into both positions. Furthermore, at higher stresses, the propagation speed drops once after cracks rushed into the test plate, but turns to a rise, leading to propagation and piercing. 8 refs., 15 figs., 3 tabs.

  14. Fracture mechanical modeling of brittle crack propagation and arrest of steel. 3. Application to duplex-type test; Kozai no zeisei kiretsu denpa teisi no rikigaku model. 3. Konseigata shiken eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S; Tsuchida, Y [Nippon Steel Corp., Tokyo (Japan); Machida, S; Yoshinari, H [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-12-31

    A proposal was made previously on a model of brittle crack propagation and arrest that considers the effect of crack opening suppression by using unbroken ligaments generated on steel plate surface and the effect that cracks precede in the central part of the plate thickness, based on a local limit stress theory for brittleness fracture. This paper discusses applicability of this model to a mixed type test, and elucidates causes for difference in the arrest tenacity of both types in a double tensile test of the standard size. The brittle crack propagation and arrest model based on the local limit stress theory was found applicable to a simulation of the mixed type test. Experimental crack propagation speed history and behavior of the arrest were reproduced nearly completely by using this model. When load stress is increased, the arrests in the mixed type test may be classified into arrests of both inside the steel plate and near the surface, cracks in the former position or arrest in the latter position, and rush of cracks into both positions. Furthermore, at higher stresses, the propagation speed drops once after cracks rushed into the test plate, but turns to a rise, leading to propagation and piercing. 8 refs., 15 figs., 3 tabs.

  15. La culture comme dynamique créatrice en région

    OpenAIRE

    Marquaille, Benoît

    2013-01-01

    L’exposé met en valeur le rôle de la culture dans la valorisation des dynamiques socio-culturelles, et donne quelques exemples réussis de coopération dans ce domaine entre la France et le Liban. The paper emphasizes the role of culture in valorizing social and civic dynamics, by giving some examples of manifestations organized in the Région Ile-de-France, such as in cooperation between France and Lebanon.

  16. On choice of tempered steels

    International Nuclear Information System (INIS)

    Govorov, A.A.; Pan'shin, I.F.; Rakhmanov, V.I.

    1978-01-01

    For the purpose of developing a graphical method for choosing structural steels, a change in the propagation work of a crack and in the critical temperature of brittleness of 40, 40Kh, 40KhN, and 40KhNM steels, was examined depending on the hardness after hardening and tempering. A diagram enabling to choose the grade of steel for making an article of known dimensions according to the preset values of its mechanical properties has been plotted. The developed selection scheme takes into account the hardenability of steels and the influence of the hardness after thermal treatment on the cold-shortness of steel

  17. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  18. Analyse géographique et modélisation des dynamiques d’urbanisation à La Réunion

    Directory of Open Access Journals (Sweden)

    Pascal Thinon

    2007-07-01

    Full Text Available Cet article propose un prototype de modèle d’interprétation des dynamiques urbaines sur l’Ile de la Réunion. En entrée, le modèle combine un ensemble de champs géographiques jouant en faveur ou en défaveur de l’urbanisation ; en sortie, il indique une propension à l’urbanisation de chaque lieu. Il est conçu de manière à permettre une analyse exploratoire de ces dynamiques selon une approche heuristique. Les premiers résultats ont permis d’obtenir, sur l’ensemble de l’île, une carte de la propension à l’urbanisation, jugée satisfaisante eu égard aux dynamiques observées entre 1989 et 2002 ; un premier scénario d’évolution, concernant les espaces de savanes à l’ouest de l’île, est également proposé. Les premiers travaux sur ce modèle, encore à un stade préliminaire, sont encourageants mais soulèvent de nombreuses questions concernant notamment le calibrage des facteurs et leur rôle respectif, l’intégration de nouveaux champs comme le voisinage, l’analyse des résidus, la mesure de la qualité du modèle ou bien encore la mobilisation de ce type de modèle comme outil d’accompagnement de projets de territoires.

  19. Sur la dynamique et la commande des colonnes multicomposées

    OpenAIRE

    Creff , Yann

    1992-01-01

    ON S'INTERESSE A LA COMMANDE EN QUALITE DE COLONNES A DISTILLER MULTICOMPOSEES, EN ETENDANT AUX COLONNES PSEUDO-BINAIRES DES RESULTATS RECENTS ETABLIS POUR LES COLONNES BINAIRES. ON COMMENCE PAR METTRE EN EVIDENCE LA DIFFICULTE D'ETENDRE DIRECTEMENT LES TECHNIQUES EMPLOYEES DANS LE CAS BINAIRE. ON DEMONTRE DANS CE CADRE UNE PROPRIETE VERIFIEE PAR LE JACOBIEN DES FONCTIONS D'EQUILIBRE LIQUIDE-VAPEUR ET ON AFFINE LA DESCRIPTION GEOMETRIQUE DE LA DYNAMIQUE DU FLASH. ON DEVELOPPE ENSUITE UNE TECH...

  20. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  1. Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel

    International Nuclear Information System (INIS)

    Liu, J.

    2012-01-01

    This study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200 C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200 C has higher fracture toughness than pure martensitic 15-5PH at 200 C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated

  2. Processus ultra-rapides associés à la dynamique d'émission de la protéine GFP

    Science.gov (United States)

    Didier, P.; Guidoni, L.; Schwalbach, G.; Bigot, J.-Y.

    2002-06-01

    La protéine GFP (Green Fluorescent Protein) est un marqueur très efficace, utilisable en milieu vivant. La spectroscopie femtoseconde est particulièrement bien adaptée pour comprendre les mécanismes d'émission de cette protéine, étant donné la rapidité des processus de transfert mis en jeu. Nous-présentons des résultats sur la dynamique spectro-temporelle d'émission du mutant GFPuv résolue à l'échelle de la centaine de femtosecondes. Une transition Raman à 3300 cm^{-1} ainsi que la dynamique d'etablissement du gain avec un temps caractéristique d'environ 1.5 ps ont été mis en évidence.

  3. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  4. Dynamique de l'occupation des terres et état de la flore et de la ...

    African Journals Online (AJOL)

    SARAH

    31 déc. 2016 ... dynamique et sensible aux changements notamment les modifications de ... Contrôle-terrain : Pour le contrôle-terrain, 80 points GPS ont été relevés dans les ..... Sabi Monra A, 2015. Gestion des terroirs et conservation de la ...

  5. Modelling of fatigue crack propagation assisted by gaseous hydrogen in metallic materials

    International Nuclear Information System (INIS)

    Moriconi, C.

    2012-01-01

    Experimental studies in a hydrogenous environment indicate that hydrogen created by surface reactions, then drained into the plastic zone, leads to a modification of deformation and damage mechanisms at the fatigue crack tip in metals, resulting in a significant decrease of crack propagation resistance. This study aims at building a model of these complex phenomena in the framework of damage mechanics, and to confront it with the results of fatigue crack propagation tests in high pressure hydrogen on a 15-5PH martensitic stainless steel. To do so, a cohesive zone model was implemented in the finite element code ABAQUS. A specific traction-separation law was developed, which is suitable for cyclic loadings, and whose parameters depend on local hydrogen concentration. Furthermore, hydrogen diffusion in the bulk material takes into account the influence of hydrostatic stress and trapping. The mechanical behaviour of the bulk material is elastic-plastic. It is shown that the model can qualitatively predict crack propagation in hydrogen under monotonous loadings; then, the model with the developed traction-separation law is tested under fatigue loading. In particular, the simulated crack propagation curves without hydrogen are compared to the experimental crack propagation curves for the 15-5PH steel in air. Finally, simulated fatigue crack propagation rates in hydrogen are compared to experimental measurements. The model's ability to assess the respective contributions of the different damage mechanisms (HELP, HEDE) in the degradation of the crack resistance of the 15-5PH steel is discussed. (author)

  6. Dynamique des ressources naturelles dans le Parc national de Manda: Cartographie et analyse pour le Développement durable

    Science.gov (United States)

    Ballah Solkam, Rosalie; Médard, Ndoutorlengar

    2018-05-01

    Au Tchad, le réseau d'aires protégées couvre près de 10,2% de la surface du pays et reste globalement représentatif de toute la diversité des écosystèmes de la région. Cependant, ce réseau n'est pas constitué d'écosystèmes intacts car de nombreuses altérations y ont été apportés (certaines espèces sont déjà au seuil critique d'extinction (Addax, gazelle dama, lamantin), voire ont disparu (Rhinocéros noir et blanc, Oryx)) surtout dans les parcs nationaux. Ce qui nous amène à nous interroger sur la dynamique des ressources naturelles et le degré de conservation du parc national de Manda? Une évaluation de la diversité biologique et des ressources hydrographiques de 1951 à 1999 sur la base de la bibliographie existante, de la carte topographique de 1956, des images satellitaires Landsat 5 et 7 TM et ETM+ de 2 périodes (1986, 1999), complétée par des interviews semi-structurés et des transects sur le terrain, permettra de mieux appréhender la dynamique des ressources et les actions de conservation de la biodiversité réalisées à cet effet. Les résultats montrent une dynamique progressive de la faune de 1951 à 1970, puis une dynamique régressive de 1970 à 1989. Après cette tumultueuse période, un repeuplement du parc s'opère de 1989 à 2002. Par contre, la flore est relativement bien conservée avec quelques cours d'eau, des mares, champs et plantations. Et cela grâce aux multiples projets de conservation de la biodiversité. La promotion de l'écotourisme serait une alternative au développement durable de ce parc.

  7. Acoustic energy propagation around railways

    Science.gov (United States)

    Cizkova, Petra

    2017-09-01

    The article deals with the issues of acoustic energy propagation around railways. The research subject was noise emission spreading into the surroundings during the passage of trains over a directly travelled steel bridge construction. Noise emissions were measured using direct measurements in the field. The measurements were performed in two measurement profiles. The noise exposures A LAE measured near the steel bridge construction were compared against the noise exposures A LAE captured on an open track. From the difference of these data, the noise level of the steel bridge structure was determined. Part of the research was to evaluate the effect of the reconstruction of the railway track superstructure on the acoustic situation in the given section of the railway track. The article describes the methodology of measurements, including the processing and evaluation of measured data. The article points out the noise levels of the steel bridge construction and assesses changes in the acoustic situation after the reconstruction.

  8. Dynamiques et rôle économique et social du secteur informel des ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'économie des pays en développement, africain notamment, est caractérisée par la coexistence d'un secteur formel et d'un autre dit informel. ... Ce projet vise à mieux comprendre le dynamique actuelle du secteur informel des TIC et le rôle économique et social qu'il joue au Burkina Faso, au Cameroun et au Sénégal, ...

  9. In-situ SEM observation on fracture behavior of austempered silicon alloyed steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2009-08-01

    Full Text Available Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite朼ustenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed

  10. Characteristics of SCC crack propagation in 22Cr-5. 5Ni-3Mo duplex stainless steel weldment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Choong Un; Kang, Choon Sik

    1988-02-01

    The characteristics of SCC crack propagation in duplex stainless steel weldment made by SMAW, GTAW and GMAW processes were investigated in 42% MgCl/sub 2/ 142 deg C boiling solution. From these experiments, it could be concluded that the structure anisotropy of ..gamma.. phase as well as the phase ratio played an important role in SCC resistance. GTA and GMA weld metal showed higher SCC resistance than base metal because of randomly distributed ..gamma.. phase. The crack in weld metal had same opportunity of receiving keying effect as that in base metal, but it had less possibility of intersecting ..gamma.. phase. The SCC resistance of the SMA weld metal and the HAZ was lower than that of the base metal because their phase ratio deviated from the proper phase ratio.

  11. Effect of oxidation on the fatigue crack propagation behavior of Z3CN20.09M dyplex stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan Chun; Yang, Bin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing (China); Chen, Yue Feng; Chen, Xu Dong [Collaborative Innovation Center of Steel Technology, Beijing (China)

    2017-06-15

    The fatigue crack propagation behaviors of Z3CN20.09M duplex stainless steel (DSS) were investigated by studying oxide films of specimens tested in 290°C water and air. The results indicate that a full oxide film that consisted of oxides and hydroxides was formed in 290°C water. By contrast, only a half-baked oxide film consisting of oxides was formed in 290°C air. Both environments are able to deteriorate the elastic modulus and hardness of the oxide films, especially the 290°C water. The fatigue lives of the specimens tested in 290°C air were about twice of those tested in 290°C water at all strain amplitudes. Moreover, the crack propagation rates of the specimen tested in 290°C water were confirmed to be faster than those tested in 290°C air, which was thought to be due to the deteriorative strength of the oxide films induced by the mutual promotion of oxidation and crack propagation at the crack tip. It is noteworthy that the crack propagation can be postponed by the ferrite phase in the DSS, especially when the specimens were tested in 290°C water.

  12. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    Guan, Mingfei; Yu, Hao

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  13. Design Against Propagating Shear Failure in Pipelines

    Science.gov (United States)

    Leis, B. N.; Gray, J. Malcolm

    Propagating shear failure can occur in gas and certain hazardous liquid transmission pipelines, potentially leading to a large long-burning fire and/or widespread pollution, depending on the transported product. Such consequences require that the design of the pipeline and specification of the steel effectively preclude the chance of propagating shear failure. Because the phenomenology of such failures is complex, design against such occurrences historically has relied on full-scale demonstration experiments coupled with empirically calibrated analytical models. However, as economic drivers have pushed toward larger diameter higher pressure pipelines made of tough higher-strength grades, the design basis to ensure arrest has been severely compromised. Accordingly, for applications where the design basis becomes less certain, as has occurred increasing as steel grade and toughness has increased, it has become necessary to place greater reliance on the use and role of full-scale testing.

  14. Présentation du texte de Georges Balandier « Phénomènes sociaux totaux et dynamique sociale »

    Directory of Open Access Journals (Sweden)

    Liliane Voyé

    2008-10-01

    Full Text Available Introduction et mise en perspective du texte de Georges Balandier « Phénomènes sociaux totaux et dynamique sociale », initialement publié dans les Cahiers Internationaux de Sociologie, volume 30, 1961, pp. 23-34. Reproduit avec l’aimable autorisation des Cahiers Internationaux de Sociologie.Presentation of Georges Balandier’s text « Total social phenomenon and social dynamism »Introduction and contextualization of the Georges Balandier’s article « Phénomènes sociaux totaux et dynamique sociale » first published in the Cahiers Internationaux de Sociologie, volume 30, 1961, pp. 23-34 and reprinted with the kind authorization of the revue.Presentación del trabajo de Georges Balandrier "Hecho social total y dinámica social"Introducción y análisis del texto de Georges Balandrier « Phénomènes sociaux totaux et dynamique sociale », publicado por primera vez en los Cahiers Internationaux de Sociologie, volumen 30, 1961, pp. 23-34. Con la amable autorización de los Cahiers Internationaux de Sociologie.

  15. Non Linear Dynamics and Chaos (La Dynamique Non-Lineaie et le Chaos)

    Science.gov (United States)

    1993-06-01

    du cerveau humain, tout autant que les "machines neuronales" en cours de pour plus de details voir en ref. [ I Il’article de A. Favre d~veloppement...l’hypothese sur la faqon syst~rnes nerveux. L’id~e selon laquelle la dont varient les coefficients avec le temps dynamique du cerveau , dans certains...coefficients de interprke comme la preuve d’un caract~re H’quation temporelle sont constants. 11 n’est fugitif des attracteurs du cerveau ? Ou bien

  16. Phase transformation by fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Jo, Y.S.; Kwun, S.I.

    1988-01-01

    The effect of strain induced martensite on the fatigue behavior of AISI 304 austenitic stainless steel was investigated. During low cycle fatigue, the austenitic stainless steel showed a continuous cyclic hardening until fracture. The extent of cyclic hardening increased with decreasing austenite stability. The austenite stability was controlled by different aging time and temperature, which resulted in different carbide morphologies. The fatigue crack propagation rate near ΔK th varied also with the austenite stability inside the plastic zone at the crack up. Especially, the near-threshold fatigue crack propagation rate of the grain boundary carbide precipitated condition was the lowest. This was considered to be due to the roughness induced closure caused by intergranular facet. A new model for the intergranular facet formation and the fatigue crack propagation of grain boundary carbide precipitated condition was proposed. (Author)

  17. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Depover, T. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Petrov, R. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Verbeken, K. [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052 Ghent (Belgium)

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  18. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    International Nuclear Information System (INIS)

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2016-01-01

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  19. Archive of Geosample Information from the Universite de Savoie Laboratoire Environnements, Dynamiques et Territoires de la Montagne (EDYTEM) Core Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Universite de Savoie Laboratoire Environnements, Dynamiques et Territoires de la Montagne (EDYTEM) is in the process of coding information about their marine and...

  20. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature

    International Nuclear Information System (INIS)

    Calonne, V.

    2001-07-01

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  1. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints

    International Nuclear Information System (INIS)

    Curtit, F.

    2000-01-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C * . These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C * . These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C * s considers a continuous evolution of creep deformations rate during the all test. (author)

  2. Dynamic fracture characterization of a pressure vessel steel

    International Nuclear Information System (INIS)

    Schmitt, W.; Boehme, W.; Klemm, W.; Memhard, D.; Winkler, S.

    1991-01-01

    Dynamic events are characterized by time and space-dependent stress and strain fields caused by wave or inertia effect. The dynamic effect at cracks may be originated from the rapid loading rate or impact loading of a structure containing a stationary crack or the time-dependent stress and strain fields of a propagating or arresting crack itself. Dynamic effects complicate the analysis of crack tip stress and strain fields, and usually considerable experimental effort and numerical technique are required. High loading rate influences the deformation and yield behavior and also the fracture toughness of materials. In order to know the propagation and arrest behavior of cracks, a heat of a German reactor pressure vessel steel was investigated, and the dynamic J-resistance curves were evaluated with large three-point bending specimens by impact loading, moreover, the crack propagation energy at large crack extension was determined with wide tension plates. The material tested was a ferritic pressure vessel steel, ASTM A 508 Cl 2. The dynamic J-resistance curves and numerical simulation and fractographic examination, and crack propagation energy are reported. (K.I.)

  3. Crack propagation on spherical pressure vessels

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1975-01-01

    The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here

  4. S-N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low Temperatures

    Science.gov (United States)

    Jung, Dae-Ho; Kwon, Jae-Ki; Woo, Nam-Sub; Kim, Young-Ju; Goto, Masahiro; Kim, Sangshik

    2014-02-01

    In the present study, the S-N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, -50 °C, and -80 °C). The resistance to S-N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to -80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to -50 °C) over the entire ∆ K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (-50 °C to -80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ∆K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.

  5. Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

    International Nuclear Information System (INIS)

    James, L.A.; Poskie, T.J.; Auten, T.A.; Cullen, W.H.

    1996-01-01

    Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 degrees C, under loading conditions (ΔK, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC

  6. Strength of interface in stainless clad steels

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Nakai, Yoshikazu; Hashimoto, Shinji

    1990-01-01

    Mechanical tests were conducted on four kinds of stainless clad steels to establish test methods for determining crack growth resistance of bimaterial interface. In tension tests, smooth specimens and shallow notched specimens were employed. In these tests, all of the smooth specimens were broken in carbon steel, not along the bimaterial interface. On the other hand, most of the shallow notched specimens were broken along the interface, when the notch root was located at the interface. Therefore, the shallow notched specimens were suitable for estimating the strength of the interface in tension tests. For fracture toughness tests, chevron notched specimens are recommended, since pre-fatigue cracks were susceptible to initiate and grow in carbon steel for conventional straight notched specimens. In fatigue crack growth tests, side-grooved and non-side-grooved specimens were employed. Although the side-grooves were machined so that the minimum cross-sectional plane of the specimens coincided with the plane of the bimaterial interface, cracks did not always propagate along the interface. Therefore, the side-grooves were judged not to be effective for cracks to propagate along the bimaterial interface. Both in fracture toughness tests and fatigue tests, the crack growth resistance along bimaterial interface was much lower than the resistance of matrix steels. In all of the mechanical tests conducted, the crack growth resistance along the interface was higher for the normalized material than that for the as-rolled material. The nickel foil inserted between carbon steel and stainless steel improved the growth resistance of interfacial cracks. (author)

  7. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    OpenAIRE

    Abidin Kamal Ariff Zainal; Ismail Elya Atikah; Zainuddin Azman; Hussain Patthi

    2014-01-01

    Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagat...

  8. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  9. Introduction d'une représentation dynamique de matériau dans l'équation de diffusion du champ magnétique

    Science.gov (United States)

    Raulet, M. A.; Masson, J. P.; Gaude, D.

    1998-01-01

    The knowledge of the dynamical behavior of magnetic materials is of first importance in the iron losses prediction. For the simple shaped Epstein frame, the field diffusion equation resolution in the laminations cross section, limited to eddy currents, leads to inaccurate results. This paper presents a simple method to take into account dynamical distributed phenomena in the field diffusion equation. The study will be limited to dynamical first magnetization excitations. La connaissance du comportement dynamique des matériaux magnétiques est importante pour l'évaluation des pertes fer dans les machines électriques. Pour les sollicitations simples d'une tôle dans un cadre Epstein ou un tore fin, la résolution de l'équation de la diffusion du champ magnétique dans le plan de la section de la tôle limitée aux seuls courants de Foucault, ne fournit qu'une description insuffisamment précise des phénomènes. Cet article présente une méthode simple de prise en compte des phénomènes dynamiques locaux dans l'équation de diffusion. L'étude sera limitée à des sollicitations de première aimantation dynamique. Une validation expérimentale de ce modèle en fonction de la fréquence est aussi présentée.

  10. AE Characteristics affecting the Notch Effect of the Cold Steel SKD11

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eung Kyo; Kim, Ki Choong; Kwon, Dong Ho; Kim, Jae Yeor [Hanyang University, Seoul (Korea, Republic of)

    1986-11-15

    Acoustic Emission is not only expected as a non-destructive evaluation technique in practice but also noted as a new powerful means of evaluation of materials. AE occurs with plastic deformation and propagation of crack, and this patterns of occurrence of AE vary with materials. AE which comes from propagation of crack depends oil the shapes and properties of materials. Like this AE has characteristic of material. The present work is an attempt to evaluate characteristics of carbon steel (SM55C) and Die steel(SKD11) by means of dynamic response of AE method

  11. Hydrogen embrittlement of the 22 Cr5 Ni austeno-ferritic stainless steel. Role of the microstructure

    International Nuclear Information System (INIS)

    Iacoviello, Francesco

    1997-01-01

    Austenitic-ferritic stainless steels are characterised by very good mechanical properties and by a high corrosion resistance, especially to stress-corrosion and to pitting. However, their duplex structure shows a sensitivity to hydrogen embrittlement. Among duplex stainless steels, the 22 Cr 5 Ni grade has gradually became the most used. In this work the tensile properties and the resistance to fatigue crack propagation of 22 Cr5 Ni duplex stainless steel have been analysed, with and without hydrogen charging, after it had been treated at temperatures ranging between 200-1050 deg. C for varying times. The heat treatment times and temperatures were chosen to characterise completely the effects of the different intermetallic and the carbide and nitride phases and to compare these results with those from the tensile tests and those in the literature. A technique for obtaining the hydrogen diffusion coefficient in the steel was optimised and was shown to be alternative to the permeation technique. Thermal analysis was used to determine the activation energy of the hydrogen traps in the steel. From the results the following conclusions were established: - Grain boundaries and dislocations have very little influence on the process of hydrogen diffusion. - The quantity of hydrogen absorbed depends in that any type of precipitate decrease the absorption. This decrease was probably due to changes in the diffusivity and solubility of hydrogen caused by the precipitation. - The charging with hydrogen caused a large decrease in ε m pc for the steel for all heat treatments temperature, except 1050 deg. C. At this temperature the effect was much less as the dislocation density was very low and the precipitates were now in solution. - Hydrogen charging of the steel did not affect the YS and the decrease in UTS produced depended on the microstructure. Use of the embrittlement index 'F' showed that spinodal decomposition and precipitation of G phase decrease hydrogen embrittlement

  12. Dynamiques de résistance aux normes révolutionnaires à Cuba

    OpenAIRE

    Geoffray, Marie-Laure

    2013-01-01

    Les normes du régime révolutionnaire sont, à Cuba, inscrites dans l’espace. Elles fonctionnent comme des signes performatifs qui à la fois rappellent constamment la présence du pouvoir et catégorisent les individus selon leur conformité aux normes. Mais, depuis la crise économique des années 1990, des logiques centrifuges à l’œuvre au sein de la société cubaine viennent remettre en question la capacité du régime à générer une socialisation révolutionnaire homogène. On observe des dynamiques s...

  13. Mechanistic dissimilarities between environmentally-influenced fatigue-crack propagation at near-threshold and higher growth rates in lower-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, S.; Ritchie, R. O.

    1981-11-01

    The role of hydrogen gas in influencing fatigue crack propagation is examined for several classes of lower strength pressure vessel and piping steels. Based on measurements over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, crack propagation rates are found to be significantly higher in dehumidified gaseous hydrogen compared to moist air in two distinct regimes of crack growth, namely (i) at the intermediate range of growth typically above approx. 10/sup -5/ mm/cycle, and (ii) at the near-threshold region below approx. 10/sup -6/ mm/cycle approaching lattice dimensions per cycle. Both effects are seen at maximum stress intensities (K/sub max/) far below the sustained-load threshold stress intensity for hydrogen-assisted cracking (K/sub Iscc/). Characteristics of environmentally influenced fatigue crack growth in each regime are shown to be markedly different with regard to fractography and the effect of such variables as load ratio and frequency. It is concluded that the primary mechanisms responsible for the influence of the environment in each regime are distinctly different. Whereas corrosion fatigue behavior at intermediate growth rates can be attributed to hydrogen embrittlement processes, the primary role of moist environments at near-threshold levels is shown to involve a contribution from enhanced crack closure due to the formation of crack surface corrosion deposits at low load ratios.

  14. Fatigue crack propagation under elastic plastic medium at elevated temperature

    International Nuclear Information System (INIS)

    Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.

    1980-01-01

    The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)

  15. Corrosion of Steel in Concrete, Part I – Mechanisms

    DEFF Research Database (Denmark)

    Küter, André; Møller, Per; Geiker, Mette Rica

    2006-01-01

    prematurely. Reinforcement corrosion is identified to be the foremost cause of deterioration. Steel in concrete is normally protected by a passive layer due the high alkalinity of the concrete pore solution; corrosion is initiated by neutralization through atmospheric carbon dioxide and by ingress...... of depassivation ions, especially chloride ions. The background and consequences of deterioration of reinforced concrete structures caused by steel corrosion are summarized. Selected corrosion mechanisms postulated in the literature are briefly discussed and related to observations. The key factors controlling...... initiation and propagation of corrosion of steel in concrete are outlined....

  16. Wastage-resistant characteristics of 12Cr steel tube material. Small leak sodium-water reaction test

    International Nuclear Information System (INIS)

    Shimoyama, Kazuhito

    2004-03-01

    In the water leak accident of a steam generator designed for a sodium cooled reactor in the Feasibility Study, the localization of tube failure propagation by using an advanced water leak detector will be required from the viewpoints of the safety and economical efficiency of the plant. So far, the conventional knowledge and analytical tools have been used in the investigation and evaluation of water leak phenomenon; nevertheless, there was neither test data nor the study of quantitative evaluation on the corrosion behavior, so-called wastage-resistant characteristics, of 12Cr steel tube material in sodium-water reactions. Wastage tests for the 12Cr steel tube material were conducted in small water leaks by use of the Sodium-Water Reaction Test Rig (SWAT-1R), and the data of wastage rate were obtained in the parameter of water leak rate under the constant sodium temperature and distance between leak and target tubes. The test results lead to the following conclusions: (1) The wastage-resistibility of 12Cr steel is 1.6 times greater than that of 9Cr steel and is 2.7 times greater than that of 2.25Cr-1Mo steel. (2)The wastage-resistibility of 12Cr steel increases in smaller water leaks; especially in water leak rates of 1 g/sec or less, it is more excellent than that of SUS321 stainless steel used as Monju superheater tube material. (3) Based on the correlation of wastage rate for the 9Cr steel, the correlation for the 12Cr steel has been obtained to be used for the evaluation of tube failure propagation. As the correlation of wastage rate for the 12Cr steel is based on the correlation for the 9Cr steel, it gives enough conservatism in smaller water leaks. To serve in accurately evaluating the tube failure propagation in smaller water leaks, it is necessary to obtain new correlation of wastage rate for the 12Cr steel based on the data in the wide range of water leak rates. (author)

  17. Influence of a gaseous atmosphere on fatigue crack propagation

    International Nuclear Information System (INIS)

    Henaff, G.

    2002-01-01

    The paper presents a review of the current knowledge on the influence of gaseous atmospheres, and primarily ambient air, on fatigue crack propagation in metallic alloys. Experimental evidence of the effect of exposure to ambient air or any moist environment on fatigue crack propagation in steels is first proposed. The different interacting processes are analyzed so as to clearly uncouple the influence of the various factors on crack growth resistance. Two distinct mechanisms are identified: the adsorption of vapour molecules and hydrogen assisted fracture at crack tip. (author)

  18. Comparison of fracture properties for two types of low alloy steels

    International Nuclear Information System (INIS)

    Nasreldin, A.M.

    2004-01-01

    The fracture properties of two types of low alloy steels used in the pressure vessel and boilers industry were determined. The first type was the steel A533-B which comprised a fully bainitic microstructure. The second one was the C-Mn steel which consisted of ferritic-pearlitic microstructure. The following fracture properties were determined using instrumented impact testing: the total fracture energy, the crack initiation and propagation energies, the brittleness transition temperature and the local fracture stress. The steel A533-B showed better fracture properties at high testing temperatures, while the C-Mn steel displayed higher resistance to brittle fracture at low testing temperatures. The results were discussed in relation to the difference in microstructure and fracture surface morphology for both steels

  19. Les prairies de l’estuaire de la Loire : étude de la dynamique de la végétation de 1982 à 2014

    Directory of Open Access Journals (Sweden)

    Mathieu Le Dez

    2017-01-01

    Full Text Available L’analyse diachronique de cartes de végétation est réalisée pour caractériser les dynamiques de la végétation de l’estuaire de la Loire à différentes échelles spatiales et temporelles. Le modèle des matrices de transition est utilisé pour décrire quantitativement les dynamiques observées. Les analyses révèlent notamment la régression des prairies, le développement des roselières et des boisements ainsi que la progression des végétations halophiles. Ces résultats sont mis en relation avec l’évolution des usages sur ce territoire et les modifications du fonctionnement hydro-sédimentaire de l’estuaire.

  20. Detection of Interfacial Debonding in a Rubber-Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers.

    Science.gov (United States)

    Feng, Qian; Kong, Qingzhao; Jiang, Jian; Liang, Yabin; Song, Gangbing

    2017-09-01

    Rubber-steel-layered structures are used in many engineering applications. Laminated rubber-steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber-steel-layered structures. Interfacial debonding in rubber-steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber-steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel-rubber debonding. When the rubber-steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber-steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber-steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber-steel debonding failure in real time. The active sensing

  1. Fatique crack propagation in bimetallic welds influence of residual stresses and metallurgical look

    International Nuclear Information System (INIS)

    Zahouane, A.I.

    1988-06-01

    Generally, in nuclear power plants, many components made of austenitic stainless steels are very often replaced by low alloyed steels cladded with stainless steels, mainly for economical reasons. Due to cracks existing at the limit of the two kinds of steel, it is interesting to try to understand how they appear. Residual stresses are generally identified as one of the factors which act to produce these cracks. Measurements of such residual stresses have been performed, using the hole drilling method (drilling of a hole at the center of a gauge roset stuck at the surface of the material). Owing to the obtained results, it is possible to explain the decrease in the crack propagation rate observed, on fatigue crack growth test performed on specimens taken in the transition ferritic/austenitic zone. The stress intensity factor due to the residual stresses is valued by weight function method. It is possible to explain qualitatively the phenomena observed under cyclic loading when using the obtained value of this stress intensity factor. A more quantitative approach based on the use of an efficient stress intensity factor, allow to better describe the effect of residual stresses on the fatigue crack propagation in bimetallic welds [fr

  2. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  3. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    International Nuclear Information System (INIS)

    Haddar, N.

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  4. The application of low frequency longitudinal guided wave mode for the inspection of multi-hole steel floral pipes

    International Nuclear Information System (INIS)

    Liu, Z H; Xie, X D; Wu, B; Li, Y H; He, C F

    2012-01-01

    Shed-pipe grouting technology, an effective advanced supporting method, is often used in the excavation of soft strata. Steel floral pipes are one of the key load-carrying components of shed-pipe grouting supporting structures. Guided waves are a very attractive methodology to inspect multi-hole steel floral pipes as they offer long range inspection capability, mode and frequency tuning, and cost effectiveness. In this contribution, preliminary experiments are described for the inspection of steel floral pipes using a low frequency longitudinal guided wave mode, L(0,2). The relation between the number of grouting holes and the peak-to-peak amplitude of the first end-reflected signal was obtained. The effect of the grouting holes in steel floral pipes on the propagation velocity of the L(0,2) mode at 30 kHz was analyzed. Experimental results indicate that the typical grouting holes in steel floral pipe have no significant effect on the propagation of this mode. As a result, low frequency longitudinal guided wave modes have potential for the non-destructive long range inspection of multi-hole steel floral pipes. Furthermore, the propagation velocity of the investigated L(0,2) mode at 30 kHz decreases linearly with the increase of the number of grouting holes in a steel floral pipe. It is also noticeable that the effect of the grouting holes cumulates along with the increase in the number of grouting holes and subsequent increase in reflection times of longitudinal guided waves in the steel floral pipe. The application potential of the low frequency longitudinal guided wave technique for the inspection of embedded steel floral pipes is discussed.

  5. Reinforcement steel corrosion in passive state and by carbonation: Consideration of galvanic currents and interface steel - concrete defaults

    International Nuclear Information System (INIS)

    Nasser, A.

    2010-01-01

    This thesis aims to study the durability of nuclear waste deep storage structures. The work carried out is essentially an experimental study, and focuses on the corrosion of steel in the passive state with aerated or non-aerated conditions on the one hand, and the corrosion of steel in carbonated concrete during the propagation phase on the other hand. Indeed, the pore solution of concrete in contact with the metal is alkaline (pH between 12 and 13). Under these conditions, steel reinforced concrete remains passive by forming a stable and protective oxide layer (corrosion of steel in the passive state). This passive layer limits the steel corrosion rate at very low values (negligible on a short life time) but not null. For the nuclear waste storage structures due to a very long life time (up to several hundred years), this low corrosion rate can become a risk. Therefore, it is necessary to study the evolution of the oxide layer growth over time. The objectives of the thesis are to study the influence of the steel-concrete interface quality on reinforcement corrosion in passive and active state, and the possible occurrence of galvanic corrosion currents between different reinforcement steel areas. (author)

  6. Propagation of steel corrosion in concrete: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Michel, Alexander; Otieno, M.; Stang, Henrik

    2016-01-01

    This paper focuses on experimental and numerical investigations of the propagation phase of reinforcement corrosion to determine anodic and cathodic Tafel constants and exchange current densities, from corrosion current density and corrosion potential measurements. The experimental program includ...

  7. Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds

    International Nuclear Information System (INIS)

    Liu, L.; Xiao, L.; Chen, D.L.; Feng, J.C.; Kim, S.; Zhou, Y.

    2013-01-01

    Highlights: ► Mg/steel dissimilar spot weld had the same fatigue strength as Mg/Mg similar weld. ► Crack propagation path of Mg/Mg and Mg/steel welds was the same. ► Penetration of Zn into the Mg base metal led to crack initiation of Mg/steel weld. ► HAZ weakening and stress concentration led to crack initiation of Mg/Mg weld. -- Abstract: The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.

  8. Directionality and Orientation Effects on the Resistance to Propagating Shear Failure

    Science.gov (United States)

    Leis, B. N.; Barbaro, F. J.; Gray, J. M.

    Hydrocarbon pipelines transporting compressible products like methane or high-vapor-pressure (HVP) liquids under supercritical conditions can be susceptible to long-propagating failures. As the unplanned release of such hydrocarbons can lead to significant pollution and/or the horrific potential of explosion and/or a very large fire, design criteria to preclude such failures were essential to environmental and public safety. Thus, technology was developed to establish the minimum arrest requirements to avoid such failures shortly after this design concern was evident. Soon after this technology emerged in the early 1970sit became evident that its predictions were increasinglynon-conservative as the toughness of line-pipe steel increased. A second potentially critical factor for what was a one-dimensional technology was that changes in steel processing led to directional dependence in both the flow and fracture properties. While recognized, this dependence was tacitly ignored in quantifying arrest, as were early observations that indicated propagating shear failure was controlled by plastic collapse rather than by fracture processes.

  9. Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel

    International Nuclear Information System (INIS)

    Wang, Chengduo; Qiu, Hai; Kimura, Yuuji; Inoue, Tadanobu

    2016-01-01

    The tempered lath martensite and its crack propagation have significant influence on the ductility and toughness of the warm tempformed medium-carbon steel. The martensitic microstructures of these medium-carbon steels are transformed from twinned austenite and the orientation relationship of lath martensite (α′) with prior austenite (γ) is distinctive. In the present paper we investigate the microstructure and fracture mode of a quenched and tempered 0.4%C-2%Si-1%Cr-1%Mo steel using electron backscatter diffraction technique. The results showed that the orientation relationship between γ and α′ is Greninger-Troiano (G-T) relationship. A single γ grain was divided into 4 packets and each packet was subdivided into 3 blocks. The misorientation angles between adjacent blocks were ~54.3° or ~60.0° in a packet. Most γ grains were twins sharing a {111} γ plane. There were 7 packets in a twinned γ grain and the twin boundaries were in a special packet. Besides the common packet, there were three packets in each twin. Being different from the cleavage fracture along the {001} planes in conventional martensitic steels, both cleavage and intergranular cracks were present in our medium-carbon steel. The former was in the larger blocks and it propagated along the {001}, {011}, and {112} planes. The latter propagated along the block, packet, or prior austenite boundaries. The intergranular cracks were generally in the fine block region. These results suggested that the block size is the key factor in controlling the brittle fracture mode of lath martensitic steel.

  10. High temperature cracking of steels: effect of geometry on creep crack growth laws

    International Nuclear Information System (INIS)

    Kabiri, M.R.

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C * and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C * parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C * parameter, a second non singular term, denoted here as Q * , is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C * parameter (da/dt - C * ), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C * type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C * ), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical expressions utilised for the experimental

  11. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  12. A Study on the Fatigue-Fractured Surface of Normalized SS41 Steel and M.E.F. Dual Phase Steel by an X-ray Diffraction Technique

    International Nuclear Information System (INIS)

    Oh, Sae Wook; Park, Young Chul; Park, Soo Young; Kim, Deug Jin; Hue, Sun Chul

    1996-01-01

    This study verified the relationship between fracture mechanics parameters and X-ray parameters for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation test were carried out and X-ray diffraction technique was applied to fatigue fractured surface. The change in X-ray parameters(residual stress, half-value breadth) according to the depth of fatigue fractured surface were investigated. The depth of maximum plastic zone, W y , were determined on the basis of the distribution of the half-value breadth for normalized SS41 steel and that of the residual stress for M.E.F. dual phase steel. K max could be estimated by the measurement of W y

  13. Structural damage identification based on laser ultrasonic propagation imaging technology

    Science.gov (United States)

    Chia, Chen-Ciang; Jang, Si-Gwang; Lee, Jung-Ryul; Yoon, Dong-Jin

    2009-06-01

    An ultrasonic propagation imaging (UPI) system consisted of a Q-switched Nd-YAG pulsed laser and a galvanometer laser mirror scanner was developed. The system which requires neither reference data nor fixed focal length could be used for health monitoring of curved structures. If combined with a fiber acoustic wave PZT (FAWPZT) sensor, it could be used to inspect hot target structures that present formidable challenges to the usage of contact piezoelectric transducers mainly due to the operating temperature limitation of transducers and debonding problem due to the mismatch of coefficient of thermal expansion between the target, transducer and bonding material. The inspection of a stainless steel plate with a curvature radius of about 4 m, having 2mm×1mm open-crack was demonstrated at 150°C using a FAWPZT sensor welded on the plate. Highly-curved surfaces scanning capability and adaptivity of the system for large laser incident angle up to 70° was demonstrated on a stainless steel cylinder with 2mm×1mm open-crack. The imaging results were presented in ultrasonic propagation movie which was a moving wavefield emerged from an installed ultrasonic sensor. Damages were localized by the scattering wavefields. The result images enabled easy detection and interpretation of structural defects as anomalies during ultrasonic wave propagation.

  14. Fast fracture: an adiabatic restriction on thermally activated crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.J.

    1978-01-01

    Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.

  15. In Situ SEM Observations of Fracture Behavior of Laser Welded-Brazed Al/Steel Dissimilar Joint

    Science.gov (United States)

    Xia, Hongbo; Tan, Caiwang; Li, Liqun; Ma, Ninshu

    2018-03-01

    Laser welding-brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.

  16. Simulation of crack propagation in steel plate with strain softening model

    Energy Technology Data Exchange (ETDEWEB)

    Chan, O.B.; Elwi, A.E.; Grondin, G.Y.

    2006-05-15

    A new material model for simulating the fracture behaviour of structural steel was presented. Recent research on crack initiation and continuum damage mechanics was presented. A modified continuum damage model was also evaluated. Strain softening elements were then used to simulate material cracks in a steel structure. The analysis then compared load versus displacement and load versus clip-gauge displacement curves from various different experimental and numerical studies. A finite element analysis technique was used to simulate the fracture behaviour of 3-points bending specimens. Results of the analysis showed that the model predicted 90 per cent of the load and stress intensity factor at fracture initiation. A BE 365 electric shovel boom was used in the study to simulate fracture behaviour. Coupon test specimens were used to validate analysis predictions. It was concluded that the model was able to reduce the stiffness of the boom when the softening element reached yield strength limits during fracture initiation. 29 refs., 12 tabs., 58 figs.

  17. Study on creep-fatigue evaluation of chrome-molybdenum steel

    International Nuclear Information System (INIS)

    Aoto, Kazumi; Wada, Yusaku

    1993-01-01

    Though chrome-molybdenum steel has quite different basic material properties from austenitic stainless steel, the life fraction rule based on an advanced ductility exhaustion theory proposed for SUS304 is able to give proper prediction for creep-fatigue life of chrome-molybdenum steel. The applicability of the present evaluation method to chrome-molybdenum steel is validated by both mechanical study and micro-structural observation. The mechanism of creep-fatigue failure of Mod.9Cr-1Mo(NT) is one of the most controversial subjects among researchers. However, it is clarified in this report that creep-fatigue damage of this material under actual loading conditions is dominated by creep-cavitation of grain boundaries as same way as that of austenitic stainless steel. Furthermore, for the life reduction of low cycle fatigue of chrome-molybdenum steel with compression-side strain hold, both effects of mean stress and oxide-wedge are denied and it is insisted that the acceleration of fatigue-crack propagation is occurred by oxide-progress location and its thickness. (author)

  18. IGSCC in cold worked austenitic stainless steel in BWR environment

    International Nuclear Information System (INIS)

    Persson, B.; Lindblad, B.

    1989-09-01

    The survey shows that austenitic stainless steels in a cold worked condition can exhibit IGSCC in BWR environment. It is also found that IGSCC often is initiated as a transgranular crack. Local stresses and surface defects very often acts as starting points for IGSCC. IGSCC due to cold working requires a cold working magnitude of at leas 5%. During cold working a formation of mechanical martensite can take place. The transgranular corrosion occurs in the martensitic phase due to sensitation. The crack propagates integranularly due to anodic solvation of α'-martensite. Sensitation of the martensitic phase is fasten in BCC-structures than in a FCC-structures mainly due to faster diffusion of chromium and carbon which cause precipitation of chromium carbides. Experiments show that a carbon content as low as 0.008% is enough for the formation of 68% martensite and for sensitation. Hydrogen induced cracking is regarded as a mechanism which can accelerate IGSCC. Such cracking requires a hydrostatic stress near the crack tip. Since the oxide in the crack tip is relatively impermeable to hydrogen, cracks in the oxide layer are required for such embrittlement. Hydrogen induced embrittlement of the martensitic phase, at the crack tip, can cause crack propagation. Solution heat treated unstabilized stainless steels are regarded to have a good resistance to IGSCC if they have not undergone cold working. In general, though, Mo-alloyed steels have a better resistance to IGSCC in BWR environment. Regarding the causes for IGSCC, the present literature survey shows that many mechanisms are suggested. To provide a safer ground for the estimation of crack propagation rates, SA recommends SKI to finance a project with the aim to determine the crack propagation rate on proper material. (authors) (65 refs.)

  19. Multispecimen fatigue crack propagation testing

    International Nuclear Information System (INIS)

    Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.

    1981-01-01

    Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs

  20. Crack propagation in touch ductile materials. Phase II

    International Nuclear Information System (INIS)

    Venter, R.D.; Sinclair, A.N.; McCammond, D.

    1989-06-01

    The thrust of this work was to investigate published J material resistance and stress-strain data applicable to the understanding of crack propagation in tough ductile steels, particularly SA 106 Grade B pipe steel. This data has been assembled from PIFRAC, AECB report INFO-0254-1 and Ontario Hydro sources and has been uniformly formatted and presented to facilitate comparison and assessment. While the data is in many aspects incomplete it has enabled an evaluation of the influence of temperature, specimen thickness and specimen orientation to be made in the context of the experimental J-R curves so determined. Comparisons of the stress-strain data within the Ramburg-Osgood formulation are also considered. A further component of this report addresses the development of the required software to utilize what is referred to as the engineering approach to elasto-plastic analysis to investigate the load carrying capacity of selected cracked pipe geometries which are representative of applied crack propagation studies associated with piping systems in the nuclear industry. Three specific geometries and loading situations, identified as Condition A, B and C have been evaluated; the results are presented and illustrate the variation in applied load as a function of an initial and final crack extension leading to instability

  1. ETUDE DU COMPORTEMENT MECANIQUE DES ACIERS HYPEREUTECTOIDES DANS LE DOMAINE DE TEMPERATURE INTERCRITIQUE DYNAMIQUE

    Directory of Open Access Journals (Sweden)

    R GHERIANI

    2001-06-01

    Full Text Available L'étude que nous présentons contribue à une meilleure compréhension de l'influence de la vitesse de déformation et de la température sur le comportement mécanique des aciers hypereutectoïdes dans le domaine de température intercritique dynamique. Les courbes expérimentales obtenues en torsion présentent un intérêt notable dans la mesure où elles permettent de caractériser le comportement mécanique de l'acier 100C6; de plus, elles fournissent  des informations précieuses sur la capacité maximale de déformation de l'alliage. Les essais de torsion, menés jusqu'à rupture des éprouvettes, permettent d'effectuer un classement des matériaux selon leur ductilité. Les résultats obtenus sur l'acier 100C6 ont permis de préciser le comportement mécanique à tiède  de cet acier. Les aciers hypoeutectoïdes présentent, dans les domaines de température compris entre Ac1 et Ac3 en condition dynamique, une capacité de déformation élevée résultant de l'évolution, en cours de déformation, des phases a et g et de leurs mécanismes d'adoucissement. Nous nous sommes alors posé la question: quel est le comportement d'un acier hypereutectoïde, donc ne présentant  pas de domaine biphasé (a + g à l'équilibre, lorsqu'il est déformé à une température supérieure à Ac1?

  2. Fire-induced collapse mechanisms of steel buildings

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Aiuti, Riccardo; Bontempi, Franco

    2013-01-01

    This paper presents a study on the failure modes of steel building in fire, with the aim of identify basic collapse mechanisms and design characteristics that play a role in the development and propagation of failures through the structural system. In particular, the effect of deformations...... and eigen-stresses induced by a restrained thermal expansion are not considered by current design methods and regulations, but are known to have driven the collapse of several steel and composite structures. In this study, the effect of restrained thermal expansions of steel beams exposed to fire...... is investigated with respect to two different structural typologies, i.e. single- and multi-story frames. In single-story buildings, such as car parks or industrial halls, the presence of stiff beams, typically required by large spans and higher service loads due to the different occupancy of the premises, may...

  3. Prediction of cleavage crack propagation and arrest in a nuclear pressure vessel steel (16MND5) under thermal shock

    International Nuclear Information System (INIS)

    Yang, Xiaoyu

    2015-01-01

    The purpose of this PhD study is to predict the propagation and arrest of cleavage cracks in a French PWR vessel steel (16MND5). This is accomplished through use of a local criterion based on the critical stress calculated ahead of crack tip. Previous work has shown that fracture mechanism was cleavage associated with the ductile shear zone between the different planes of cracking. Thus, the critical stress at crack tip depends on stain rate. This thesis consists of numerical optimization, identification and validation of a local criterion based on experiments which have complex thermomechanical loads. The criterion accounts for various crack paths, deepening the knowledge about micro mechanisms during crack propagation in order to justify the established criterion. Criterion identification was carried out by using numerical simulations of tension tests performed on CT (Compact Tension) specimens at four different temperatures (-150 C, -125 C, -100 C and -75 C). The eXtended Finite Element Method (X-FEM) was used in CAST3M FE software to model dynamic crack propagation and arrest. The analysis results in 2D and 3D showed that the critical stress at crack tip increased with the inelastic strain rate. Therefore, a criterion based on the critical stress was established. An analytical model was developed to justify the identified criterion. The critical stress given by the local criterion was considered as the sum of the critical cleavage stress and the stress generated by the deformation of ligaments behind the crack tip. In order to quantify this phenomenon, measurements of ligaments' characteristics have been performed on fracture surfaces and on cross-sections of the specimens. The stress profile of the crack lips generated by ligaments was calculated by modeling of multi-cracks on specimen's cross-section. The contribution of stress generated by ligaments to the critical stress at crack tip was obtained with this method, and then the analytical model of

  4. Hydrogen-related stress corrosion cracking in line pipe steel

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    1997-01-01

    A correlation between hydrogen concentration (C0) and the critical stress intensity factor for propagation of hydrogen-related cracks has been established by fracture mechanical testing of CT-specimens for the heat affected zone of an X-70 pipeline steel. This has been compared with field...

  5. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. For this somewhat ductile material of A533B steel, Weiss' criterion was extended of dynamic fracture without modification. This dynamic-fracture criterion enabled a unique comparison to be obtained for the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation-shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear stress-strain where Von-Misses yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. In previous publications, the authors have compared their preliminary results for the shell motion obtained through their model for a fracturing pipe with those of Kanninen, et al., and Freund, et al., to evaluate the effects of pressure loading on the crack flaps and the differences between small and large deflection results. In this paper, the differences in crack-propagation behavior of a fracturing pipe composed of the same A533B but subjected to a brittle or a ductile-fracture criterion are discussed. An important conclusion in fracture dynamics derived from analyses is that a smoothly-varying crack velocity will require a non-unique crack-velocity-versus-dynamic-fracture-parameter-relation while a unique and smoothly-varying crack-velocity-versus-dynamic-fracture-parameter-relation will demand an intermittently-propagating crack

  6. Heat treatments in a conventional steel to reproduce the microstructure of a nuclear grade steel

    International Nuclear Information System (INIS)

    Rosalio G, M.

    2014-01-01

    The ferritic steels used in the manufacture of pressurized vessels of Boiling Water Reactors (BWR) suffer degradation in their mechanical properties due to damage caused by the neutron fluxes of high energy bigger to a Mega electron volt (E> 1 MeV) generated in the reactor core. The materials with which the pressurized vessels of nuclear reactors cooled by light water are built correspond to low alloy ferritic steels. The effect of neutron irradiation on these steels is manifested as an increase in hardness, mechanical strength, with the consequent decrease in ductility, fracture toughness and an increase in temperature of ductile-brittle transition. The life of a BWR is 40 years, its design must be considered sufficient margin of safety because pressure forces experienced during operation, maintenance and testing of postulated accident conditions. It is necessary that under these conditions the vessel to behave ductile and likely to propagate a fracture is minimized. The vessels of light water nuclear reactors have a bainite microstructure. Specifically, the reactor vessels of the nuclear power plant of Laguna Verde (Veracruz, Mexico) are made of a steel Astm A-533, Grade B Class 1. At present they are carrying out some welding tests for the construction of a model of a BWR, however, to use nuclear grade steel such as Astm A-533 to carry out some of the welding tests, is very expensive; perform these in a conventional material provides basic information. Although the microstructure present in the conventional material does not correspond exactly to the degree of nuclear material, it can take of reference. Therefore, it is proposed to conduct a pilot study to establish the thermal treatment that reproduces the microstructure of nuclear grade steel, in conventional steel. The resulting properties of the conventional steel samples will be compared to a JRQ steel, that is a steel Astm A-533, Grade B Class 1, provided by IAEA. (Author)

  7. Contribution méthodologique à l'analyse cinématique et dynamique tridimensionnelle du mouvement

    OpenAIRE

    DUMAS, R

    2010-01-01

    L'ensemble des travaux présentés dans ce mémoire d'HDR porte sur l'analyse tridimensionnelle du mouvement et plus particulièrement sur les aspects méthodologiques des calculs de cinématique et de dynamique.Plusieurs pistes d'amélioration qui ont été explorées pour lever des verrous scientifiques en analyse cinématique sont présentées : généralisation des « systèmes de coordonnées segmentaires », adaptation des « systèmes de coordonnées articulaires », compensation des « artefacts des tissus m...

  8. Creep and Creep Crack Growth Behaviors for SMAW Weldments of Gr. 91 Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Park, Ji Yeon; Hong, Sung Deok; Kim, Yong Wan; Park, Jae Young

    2010-01-01

    High Cr ferritic resistance steels with tempered martensite microstructures posses enhanced creep strength at the elevated temperatures. Those steels as represented by a modified 9Cr-1Mo steel (ASME Grade 91, hereafter Gr.91) are regarded as main structural materials of sodium-cooled fast reactors (SFR) and reactor pressure vessel materials of very high temperature reactors (VHTR). The SFR and VHTR systems are designed during long-term duration reaching 60 years at elevated temperatures and often subjected to non-uniform stress and temperature distribution during service. These conditions may generate localized creep damage and propagate the cracks and ultimately may cause a fracture. A significant portion of its life is spent in crack propagation. Therefore, a creep crack growth rate (CCGR) due to creep damage should be assessed for both the base metal (BM) and welded metal (WM). Enough CCGR data for them should be provided for assessing their structural integrities. However, their CCGR data for the Gr. 91 steels is still insufficient. In this study, the CCGR for the BM and the WM of the Gr. 91 steel was comparatively investigated. A series of the CCG tests were conducted under different applied loads for the BM and the WM at 600 .deg. C. The CCGR was characterized in terms of the C parameter, and their CCG behavior were compared, respectively

  9. On the transition of short cracks into long fatigue cracks in reactor pressure vessel steels

    Directory of Open Access Journals (Sweden)

    Singh Rajwinder

    2018-01-01

    Full Text Available Short fatigue cracks, having dimension less than 1 mm, propagate at much faster rates (da/dN even at lower stress intensity factor range (da/dN as compared to the threshold stress intensity factor range obtained from long fatigue crack growth studies. These short cracks originate at the sub-grain level and some of them ultimately transit into critical long cracks over time. Therefore, designing the components subjected to fatigue loading merely on the long crack growth data and neglecting the short crack growth behavior can overestimate the component’s life. This aspect of short fatigue cracks become even more critical for materials used for safety critical applications such as reactor pressure vessel (RPV steel in nuclear plants. In this work, the transition behaviour of short fatigue crack gowth into long fatigue crack is studied in SA508 Grade 3 Class I low alloy steel used in RPVs. In-situ characterization of initiation, propagation and transition of short fatigue cracks is performed using fatigue stage for Scanning Electron Microscope (SEM in addition to digital microscopes fitted over a servo-hydraulic fatigue machine and correlated with the microtructural information obtained using electron backscatter diffraction (EBSD. SA508 steel having an upper bainitic microstructure have several microstructural interfaces such as phase and grain boundaries that play a significant role in controlling the short fatigue crack propagation. Specially designed and prepared short fatigue specimens (eletro-polished with varying initial crack lengths of the order of tens of microns are used in this study. The transition of such short initial cracks into long cracks is then tracked to give detailed insight into the role of each phase and phase/grain boundary with an objective of establishing Kitagawa-Takahashi diagram for the given RPV steel. The behavior of the transited long cracks is then compared with the crack propagation behavior obtained using

  10. Properties of low-alloy steel with tellurium

    International Nuclear Information System (INIS)

    Popova, L.V.; Lebedev, D.V.; Litvinenko, D.A.; Nasibov, A.G.

    1983-01-01

    The results of investigations into 09G2 and 09G2F steels alloyed with tellurium after controlled rolling are presented. 0.002-0.011% tellurium additions did not change strength and plastic properties of the steels after controlled rolling. Tellurium additions results in 40-50% increase of the steel impact strength on samples With circular and sharp cuts in brittle-viscous region. 0.002-0.003% of tellurium is considered to be the optimum content from the view point of increa=. sing steel strength. Increase of impact strength takes place at the expense of growth of both work function of crack formation and work function of crack propagation but in different temperature ranges: at the expense of firstone at 80-40 deg C, at the expense of second one at 20-40 deg C. 0.002-0.011% teilurium additions mainly at the expense of sulphide globularization bring about decrease of anisotropy of steet properties by impact strength reducing anisotropy factor from 2 to 1.5

  11. Dynamical recrystallization of high purity austenitic stainless steels; Recristallisation dynamique d'aciers inoxydables austenitiques de haute purete

    Energy Technology Data Exchange (ETDEWEB)

    Gavard, L

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  12. Effect of liquid metal embrittlement on low cycle fatigue properties and fatigue crack propagation behavior of a modified 9Cr–1Mo ferritic–martensitic steel in an oxygen-controlled lead–bismuth eutectic environment at 350 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pierre.marmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling, E-mail: Ling.Qin@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Verlinden, Bert, E-mail: Bert.Verlinden@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Wevers, Martine, E-mail: Martine.Wevers@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2014-11-17

    The low cycle fatigue properties of a modified 9Cr–1Mo ferritic–martensitic steel (T91) have been tested in stagnant liquid lead–bismuth eutectic (LBE) with oxygen concentrations ranging from 1.16×10{sup −6} to 6.0×10{sup −10} wt% at 350 °C. The effect of liquid metal embrittlement (LME) on fatigue endurance, fatigue crack propagation modes and secondary cracking has been studied. The results showed that the fatigue lives of T91 steel in a low oxygen concentration LBE were drastically reduced compared to those in vacuum due to the presence of LME. The microstructural observations on the fatigue crack propagation modes revealed that fatigue cracks in LBE mainly propagate across prior-austenite grain boundaries and then cut through martensitic lath boundaries, simultaneously leaving a few plastic flow traces and characteristic brittle features. Intergranular and interlath cracking occurred occasionally and their occurrence depended on the orientation of the boundaries relative to the stress axis. The complexity of the LME-induced fracture features can be attributed to a mixture of the multiple failure modes. No obvious plastic shear strain localization was present around the crack tips when LME occurred. However, using a high resolution electron backscatter diffraction (EBSD) technique, highly localized plastic shear strain was observed in the vicinity of the crack tips in vacuum, manifested by the presence of very fine subgrains along the crack walls. A qualitative mechanism was proposed to account for the LME phenomenon in the T91/LBE system. In addition, the secondary cracking at fatigue striations was different in the presence of LBE compared to vacuum. This phenomenon was elucidated by taking into account the influence of the LME on the fatigue crack propagation rate.

  13. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  14. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  15. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints; Propagation de fissures semi-elliptiques en fatigue-fluage a 650 deg. C dans des plaques d'acier 316L(N) avec ou sans joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Curtit, F

    2000-07-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C{sup *}. These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C{sup *}. These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C{sup *}{sub s} considers a continuous evolution of creep deformations rate during the all test. (author)

  16. Fatigue life prediction for a cold worked T316 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1983-01-01

    Permanent damage curves of initiation-life and propagation-life which predict the fatigue life of specimens of a cold-worked type 316 stainless steel under complex strain-range histories were generated by a limited test program. Analysis of the test data showed that fatigue damage is not linear throughout life and that propagation life is longer than initiation-life at high strain ranges but is shorter at low strain ranges. If permanent damage has been initiated by prior history and/or fabrication, propagation to a given life can occur at a lower strain range than that estimated from the fatigue curves for constant CSR. (author) [pt

  17. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature; Propagation de fissure par fatigue dans les aciers austeno-ferritiques moules: influence de la microstructure, du vieillissement et de la temperature d'essai

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, V

    2001-07-15

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  18. Results of neutron propagation in steel sodium mixtures with various source spectra on Harmonie and Tapiro

    International Nuclear Information System (INIS)

    Calamand, D.; Desprets, A.; Rancurel, H.

    1977-01-01

    The first results of a joint CEA/CNEN neutron propagation program conducted on the source reactors HARMONIE and TAPIRO are presented. In both cases, a buffer zone representative of the blanket of a commercial fast power reactor is interposed between the source reactor and the medium in which neutron propagation is measured. This buffer zone provides a realistic source spectrum to be propagated. Experimental results are compared to older results obtained without the buffer zone. The effect of the source spectrum on neutron propagation is discussed, as well as the coherence of the results obtained with the two installations

  19. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    Science.gov (United States)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-04-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth™ technology to a PC.

  20. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    International Nuclear Information System (INIS)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-01-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth TM technology to a PC

  1. Initiation and inhibition of pitting corrosion on reinforcing steel under natural corrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Wanees, S., E-mail: s_wanees@yahoo.com [Chemistry Department, Faculty of Science, University of Tabuk, Tabuk (Saudi Arabia); Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt); Bahgat Radwan, A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Alsharif, M.A. [Chemistry Department, Faculty of Science, University of Tabuk, Tabuk (Saudi Arabia); Abd El Haleem, S.M. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt)

    2017-04-01

    Initiation and inhibition of pitting corrosion on reinforcing steel in saturated, naturally aerated Ca(OH){sub 2} solutions, under natural corrosion conditions, are followed through measurements of corrosion current, electrochemical impedance spectroscopy and SEM investigation. Induction period for pit initiation and limiting corrosion current for pit propagation are found to depend on aggressive salt anion and cation-types, as well as, concentration. Ammonium chlorides and sulfates are more corrosive than the corresponding sodium salts. Benzotriazole and two of its derivatives are found to be good inhibitors for pitting corrosion of reinforcing steel. Adsorption of these compounds follows a Langmuir adsorption isotherm. The thermodynamic functions ΔE{sup ∗}, ΔH{sup ∗} and ΔS{sup ∗} for pitting corrosion processes in the absence and presence of inhibitor are calculated and discussed. - Highlights: • Cl{sup −} and SO{sub 4} {sup 2-} induce pitting corrosion on passive reinforcing steel. • Initiation and propagation of pitting depend on cation and anion types. • Inhibition is based on adsorption according to Langmuir isotherm.

  2. Mechanistic model of stress corrosion cracking (scc) of carbon steel in acidic solution with the presence of H2s

    International Nuclear Information System (INIS)

    Asmara, Y P; Juliawati, A; Sulaiman, A; Jamiluddin

    2013-01-01

    In oil and gas industrial environments, H 2 S gas is one of the corrosive species which should be a main concern in designing infrastructure made of carbon steel. Combination between the corrosive environment and stress condition will cause degradation of carbon steel increase unpredictably due to their simultaneous effects. This paper will design a model that involves electrochemical and mechanical theories to study crack growth rate under presence of H 2 S gas. Combination crack and corrosion propagation of carbon steel, with different hydrogen concentration has been investigated. The results indicated that high concentration of hydrogen ions showed a higher crack propagation rate. The comparison between corrosion prediction models and corrosion model developed by researchers used to verify the model accuracy showed a good agreement

  3. Strength gradient enhances fatigue resistance of steels

    Science.gov (United States)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  4. Studying of Compressive, Tensile and Flexural Strength of Concrete by Using Steel Fibers

    Directory of Open Access Journals (Sweden)

    Muslim Abdul-Ameer

    2016-12-01

    Full Text Available This research aims to study the effect of adding steel fibers on the mechanical properties of concrete. Steel fiber has a very significant effect on concrete because it delays the propagation of micro cracks that generate due to loading on concrete members such as beams and slabs, therefore ,it increases the strength of concrete. The steel fiber was used in this study as a percentage of the volume of concrete. Mix proportion was 1: 2:4 (cement: sand: gravel by volume for all mixes and using 0% as (control mix,0.1 %,0.2%,0.5 % and 1.0% of steel fibers, these ratios leads to increase the compressive, tensile ,and flexural strength of concrete, where the improvement in flexural strength was significant

  5. Formulary for neutron propagation in sodium-steel media for the fast reactor shields

    International Nuclear Information System (INIS)

    Bouteau, F.; Caumette, P.; Khairallah, A.; Oceraies, Y.; Devillers, C.

    1975-01-01

    The simplified calculational tool (''formulary'') for neutron propagation in the shields of fast reactors, being developed at CEA, has two objectives: to reduce the cost of the major part of design calculations, without a significant loss of accuracy; to facilitate the adjustment of the calculational tool with the results of the program of integral propagation experiments, which is conducted in parallel with the development of the calculational method. The version 0 (i.e. before any adjustment) of the formulary and a first test of its validity as compared to the results of integral measurements are presented [fr

  6. Dynamique de changement de l’arganeraie entre sur-usage et mutations sociales : une opportunité d’équilibre socio-écologique ?

    Directory of Open Access Journals (Sweden)

    Farid El Wahidi

    2014-12-01

    agit dans une première étape, d’estimer le rythme et connaître le type de dégradation des forêts. La seconde étape, consiste à relier les estimations de ces dynamiques de changement à des facteurs précis issus de l’analyse des modes de gestion coutumière et aux dynamiques démographiques, sociales et économiques dans la zone d’étude. Les résultats obtenus permettent de préciser le discours ambigu autour de la dégradation de l’arganeraie, du moins celle de montagne, le long de la bande atlantique. Ils impliquent un faible rythme de régression de la surface forestière ne dépassant guère un taux de 0.2 % entre 1993 et 2006. Quant à la densité des souches, elle décline de moins d’une cépée (en moyenne 0.61 à l’ha sur 22 ans. Ces changements, le plus souvent ponctuels, sont observés essentiellement (96.5 % en domaine commun (mouchaa à usage libre échappant au règlement de la gestion coutumière imposé par la communauté riveraine. L’arganeraie des Haha connaît une dynamique de changement à long terme corollaire d’une dynamique démographique, sociale et économique supposée favorable à sa préservation. Néanmoins, elle souffre d'une dégradation qualitative de ses individus et d’un dysfonctionnement des processus naturels contraignant toute dynamique d’autoréparation écologique et rendant discutable la fiabilité et la durabilité de la forêt paysanne.

  7. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C–1.1Si–1.7Mn steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengci [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Guoming, E-mail: zhuguoming@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Kang, Yonglin, E-mail: kangylin@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-08-05

    The purpose of this study was to analyze the microstructure of lath martensite in 0.1C–1.1Si–1.7Mn (wt.%) steel and its effect on mechanical properties and fracture behavior. The microstructure was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron back scattering diffraction (EBSD). Charpy V-notch impact samples and compact tension (CT) samples were used to investigate the Charpy impact properties and fatigue crack growth behavior of the steel, respectively. The propagation of cleavage crack and fatigue crack were analyzed to figure out the effective grain size. The results showed that the typical hierarchical lath martensite structure contained prior austenite grains, packets, blocks and laths; packet size and block width were positively correlated to prior austenite grain size, while lath width was maintained at about 0.29 μm. Yield strength was related to prior austenite grain size, packet size and block width, and obeyed Hall–Petch relationship. Grain refinement was effective in improving the resistance to cleavage fracture by introducing barriers to crack propagation; packet boundaries and block boundaries hold similar ability to impede the propagation of crack. Paris model can well describe the FCG behavior of the investigated steel. Block width governs the effective grain size for strength, toughness and fatigue crack propagation. - Graphical abstract: Mechanical properties and fracture behavior of 0.1C–1.1Si–1.7Mn steel. - Highlights: • Hall–Petch relationship is obeyed between yield strength and martensite microstructure size. • Packet boundaries and block boundaries hold similar ability to impede the propagation of crack. • Block width is the effective grain size for strength, toughness and fatigue crack propagation.

  8. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  9. Corrosion fatigue behaviors of steel wires used in coalmine

    International Nuclear Information System (INIS)

    Wang, Songquan; Zhang, Dekun; Chen, Kai; Xu, Linmin; Ge, Shirong

    2014-01-01

    Highlights: • The CF life of steel wire in acid solution is the shortest. • The fatigue source zone showed dimple morphology when coupled with anode potential. • The area of dimple increases with the increase of the applied anode potential. • The strong cathode potential cannot reduce the CF life of the smooth steel wire. • The hydrogen impacted mainly on the plastic deformation of the wire surface. - Abstract: The corrosion fatigue (CF) behaviors of the mining steel wire in different solutions at different applied polarization potentials were investigated in this paper. The surfaces and fracture morphologies of the steel wire at different applied potentials were observed by scanning electron microscope (SEM). The results showed that the CF life of steel wire in acid solution is the shortest. Moreover, the strong anodic polarization potential greatly reduced the CF life of steel wire, while the strong cathode potential did not reduce the CF life. For the smooth steel wire, the hydrogen impacted mainly on the plastic deformation of the wire surface. There was obvious dimple in the fatigue source zone of the wire when coupled with anode potential, and the area of the dimple increased with the increase of the applied anode potential. Conversely, the fatigue source zone of the fracture was relatively smooth at cathode polarization potential, which indicated that the crack propagation followed the mechanism of hydrogen induced cracking

  10. Small fatigue crack propagation in Y2O3 strengthened steels

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Kuběna, Ivo; Ševčík, Martin; Šmíd, Miroslav; Kruml, Tomáš; Náhlík, Luboš

    2014-01-01

    Roč. 452, 1-3 (2014), s. 370-377 ISSN 0022-3115 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GP13-28685P Institutional support: RVO:68081723 Keywords : oxide dispersion strengthened steel * small fatigue crack * J-integral * fatigue life prediction Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.865, year: 2014

  11. Effects of friction and high torque on fatigue crack propagation in mode III

    International Nuclear Information System (INIS)

    Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.

    1982-01-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m 2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ΔK /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10 -6 to 10 -2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ΔK /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔGAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10 -6 to 10 -2 mm per cycle

  12. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2017-03-01

    Full Text Available Medium-carbon steel is commonly used for the rail, wire ropes, tire cord, cold heading, forging steels, cold finished steel bars, machinable steel and so on. Its fatigue behavior analysis and fatigue life estimation play an important role in the machinery industry. In this paper, the estimation of fatigue life of medium-carbon steel with different surface roughness using established S-N and P-S-N curves is presented. To estimate the fatigue life, the effect of the average surface roughness on the fatigue life of medium-carbon steel has been investigated using 75 fatigue tests in three groups with average surface roughness (Ra: 0.4 μm, 0.8 μm, and 1.6 μm, respectively. S-N curves and P-S-N curves have been established based on the fatigue tests. The fatigue life of medium-carbon steel is then estimated based on Tanaka-Mura crack initiation life model, the crack propagation life model using Paris law, and material constants of the S-N curves. Six more fatigue tests have been conducted to validate the presented fatigue life estimation formulation. The experimental results have shown that the presented model could estimate well the mean fatigue life of medium-carbon steel with different surface roughness.

  13. Effect of short-term overloads on crack propagation under creep

    International Nuclear Information System (INIS)

    Sushok, V.V.; Sobolev, N.D.; Zolotukhin, S.Yu.

    1986-01-01

    Kinetics of crack propagation after overload has been studied using plane samples of Kh18N10T steel. Tests of samples with a notch have been carried out in the air at 293 K. Observation of the crack growth has been carried out by the microscope and the method of electric potential difference. It is established that during overload besides crack tip blunting, decrease of creep rate of the material stregthened near it, that leads to crack retardation, decrease of plasticity and formation of microcracks in front of the tip of the main-line crack occurs. It is marked that, estimating serviceability of a member, it is necessary to take into account the decrease of crack propagation rate after short term overloads

  14. Incorporating plastic collapse into the linear elastic fracture mechanics methodology in determining crack propagation lifetimes

    International Nuclear Information System (INIS)

    Glasgow, B.B.; Wolfer, W.G.

    1986-01-01

    Crack growth can result in a breech of a pressure boundary causing coolant loss or in total structural failure. This paper discusses brittle and plastic failure in terms of a unified structural model called the Two Criteria model. The model takes into account the flow stress of the material as well as the fracture toughness. Our results indicate that for fusion reactor first wall structures, ferritic steel is better able to resist crack propagation and subsequent structural failure than 316 stainless steel under the same wall loadings and geometry

  15. A proposal of predictive methods of crack propagation life and remaining life of structural metal under creep-fatigue interacted conditions by use of X-ray profile analysis

    International Nuclear Information System (INIS)

    Ohnami, M.; Sakane, M.; Nishino, S.

    1987-01-01

    The following two series of studies are described: One is crack propagation life prediction in high-temperature low-cycle fatigue tests under triangular and trapezoidal strain or stress waves for austenitic stainless steel by X-ray fractography. Another is remaining life prediction of the steel under creep-fatigue interacted conditions by applying the concept of the remaining life diagram and X-ray profile analysis. Particle size and microstrain obtained by X-ray profile analysis were effective nondestructive parameters for estimating crack propagation life and remaining life in creep-fatigue interaction

  16. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  17. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media

    International Nuclear Information System (INIS)

    Avci, R.; Davis, B.H.; Wolfenden, M.L.; Beech, I.B.; Lucas, K.; Paul, D.

    2013-01-01

    Highlights: •In carbon steel, pits are initiated in the immediate surroundings of MnS inclusions. •Unlike stainless steel, MnS inclusions do not dissolve during pit initiation. •The presence of biofilms accelerates pit growth and development. -- Abstract: In a saline anaerobic sulfidogenic environment, pitting on 1018 carbon steel was initiated within a 20–30 nm zone at the MnS inclusion boundary. Nanoscale analysis was performed using scanning electron microscopy and a scanning Auger nanoprobe. The pitting was more pronounced in the presence of a biofilm of sulfate-reducing bacteria than in abiotic sulfide medium. It is proposed that initiation of an anodic reaction leading to dissolution of Fe matrix and subsequent pitting of steel in MnS inclusion boundary regions is due to disorder and strain exerted on the Fe matrix by MnS contamination of the interface from metallurgical processes

  18. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    Science.gov (United States)

    Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.

    2010-05-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  19. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    International Nuclear Information System (INIS)

    Auzoux, Q.; Allais, L.; Caes, C.; Monnet, I.; Gourgues, A.F.; Pineau, A.

    2010-01-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 deg. C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  20. Statistical analysis of fatigue crack growth behavior for grade B cast steel

    International Nuclear Information System (INIS)

    Li, W.; Sakai, T.; Li, Q.; Wang, P.

    2011-01-01

    Tests for fatigue crack growth rate (FCGR) and crack-tip opening displacement (CTOD) were performed to clarify the fatigue crack growth behavior of a railway grade B cast steel. The threshold values of this steel with specific survival probabilities are evaluated, in which the mean value is 8.3516 MPa m 1/2 , very similar to the experimental value, about 8.7279 MPa m 1/2 . Under the conditions of plane strain and small-scale yielding, the values of fracture toughness for this steel with specific survival probabilities are converted from the corresponding critical CTOD values, in which the mean value is about 138.4256 MPa m 1/2 . In consideration of the inherent variability of crack growth rates, six statistical models are proposed to represent the probabilistic FCGR curves of this steel in entire crack propagation region from the viewpoints of statistical evaluation on the number of cycles at a given crack size and the crack growth rate at a given stress intensity factor range, stochastic characteristic of crack growth as well as statistical analysis of coefficient and exponent in FCGR power law equation. Based on the model adequacy checking, result shows that all models are basically in good agreement with test data. Although the probabilistic damage-tolerant design based on some models may involve a certain amount of risk in stable crack propagation region, they just accord with the fact that the dispersion degree of test data in this region is relatively smaller.

  1. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zuo-peng [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Qiao, Gui-ying [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Tang, Lei [Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Hong-wei; Liao, Bo [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-03-07

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10{sup 5} cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m{sup 1/2}. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  2. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    International Nuclear Information System (INIS)

    Zhao, Zuo-peng; Qiao, Gui-ying; Tang, Lei; Zhu, Hong-wei; Liao, Bo; Xiao, Fu-ren

    2016-01-01

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10"5 cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m"1"/"2. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  3. Explicit dynamics for numerical simulation of crack propagation by the extended finite element method; Dynamique explicite pour la simulation numerique de propagation de fissure par la methode des elements finis etendus

    Energy Technology Data Exchange (ETDEWEB)

    Menouillard, T

    2007-09-15

    Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation

  4. Deformation and fracture of Cu alloy-stainless steel layered structures under dynamic loading

    International Nuclear Information System (INIS)

    McCoy, J.H.; Kumar, A.S.

    1998-01-01

    Fracture resistance of the current ITER first wall configuration, a copper alloy-stainless steel layered structure, is a major design issue. The question of dynamic crack propagation into and through the first wall structure is examined using dynamic finite element modeling (FEM). Several layered configurations that incorporate both strain and frictional energy dissipation during the fracture process are considered. With fixed overall specimen geometry, the energy required to extend a precrack is examined as a function of material properties, and the layer structure. It is found that the crack extension energies vary dramatically with the fracture strain of materials, and to a much lesser extent with the number of layers. In addition, it is found that crack propagation through the lower ductility copper alloy layer may be deflected at the stainless steel-copper interface and not result in total fracture of the structure. Although the total energy required is affected only to a small degree by the interface properties, the time to extend the precrack is strongly affected. By making proper selections of the interface and the layered material, crack propagation rates and the possibility of full fracture can be substantially reduced. (orig.)

  5. A Stress Measurement Method for Steel Strands Based on LC Oscillation

    Directory of Open Access Journals (Sweden)

    Dongjun Chen

    2018-01-01

    Full Text Available The prestress loss is one of the main factors affecting the safety of prestressed concrete structure. While the detecting signals like sound and light are difficult to spread in steel strands, there is no effective method for prestress detection of the bonded prestressed steel strands in existing structures yet. In this paper, taking into consideration that the electromagnetic oscillation characteristic can make the signal propagate effectively on the bonded prestressed steel strands, a nondestructive prestress detection method based on the electromagnetic effect to detect oscillation frequency is proposed. In a detection circuit, the steel strands are simulated as an inductance component, in which an induced electromagnetic signal passes through the steel strands to form resonance. And then, a frequency meter is used to detect the oscillation frequency of the resonant circuit. The oscillation frequency is supposed to have relationship with the prestress loading on the steel strands. A section of steel strands with a length of 1.2 m is adopted to test the correlation of stress and oscillation frequency. Both the theoretical and experimental results show that the resonant frequency of the circuit decreases with the increase of the stress of the strand and is linear in a certain range.

  6. The lack of penetration effect on fatigue crack propagation resistance of atmospheric corrosion resistant steel welded joints

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Cimini Junior, Carlos Alberto; Godefroid, Leonardo Barbosa

    2005-01-01

    The welding process introduces defects on the welded joints, as lack of fusion and penetration, porosity, between others. These defects can compromise the structures or components, relative to the crack propagation. This engagement can be studied by fatigue crack propagation tests. The efficiency of the structure, when submitted to a cyclic loading can be evaluated by these tests. The aim of this work is to study the behavior of welded joints containing defects as lack of penetration at the root or between welding passes relative to crack propagation resistance properties, and to compare these properties with the properties of the welded joints without defects. This study was accomplished from fatigue crack propagation test results, in specimens containing lack of penetration between welding passes. With the obtained results, the Paris equation coefficients and exponents that relate the crack propagation rate with the stress intensity cyclic factor for welded joints with and without defects were obtained. (author)

  7. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  8. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...... microns in front of the fatigue crack tip, which is comparable with the relevant mean free carbide spacing....

  9. Shock Wave Speed and Transient Response of PE Pipe with Steel-Mesh Reinforcement

    Directory of Open Access Journals (Sweden)

    Wuyi Wan

    2016-01-01

    Full Text Available A steel mesh can improve the tensile strength and stability of a polyethylene (PE pipe in a water supply pipeline system. However, it can also cause more severe water hammer hazard due to increasing wave speed. In order to analyze the influence of the steel mesh on the shock wave speed and transient response processes, an improved wave speed formula is proposed by incorporating the equivalent elastic modulus. A field measurement validates the wave speed formula. Moreover, the transient wave propagation and extreme pressures are simulated and compared by the method of characteristics (MOC for reinforced PE pipes with various steel-mesh densities. Results show that a steel mesh can significantly increase the shock wave speed in a PE pipe and thus can cause severe peak pressure and hydraulic surges in a water supply pipeline system. The proposed wave speed formula can more reasonably evaluate the wave speed and improve the transient simulation of steel-mesh-reinforced PE pipes.

  10. Multi-physics corrosion modeling for sustainability assessment of steel reinforced high performance fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Lepech, M.; Michel, Alexander; Geiker, Mette

    2016-01-01

    and widespread depassivation, are the mechanism behind experimental results of HPFRCC steel corrosion studies found in the literature. Such results provide an indication of the fundamental mechanisms by which steel reinforced HPFRCC materials may be more durable than traditional reinforced concrete and other......Using a newly developed multi-physics transport, corrosion, and cracking model, which models these phenomena as a coupled physiochemical processes, the role of HPFRCC crack control and formation in regulating steel reinforcement corrosion is investigated. This model describes transport of water...... and chemical species, the electric potential distribution in the HPFRCC, the electrochemical propagation of steel corrosion, and the role of microcracks in the HPFRCC material. Numerical results show that the reduction in anode and cathode size on the reinforcing steel surface, due to multiple crack formation...

  11. Le logement social urbain et la dynamique spatiale. Stratégie des acteurs décideurs à Oran (1990-2000)

    OpenAIRE

    Said, Aïmène

    2013-01-01

    Le constat établi depuis plus d’une décennie, sur la ville d’Oran, fait état d’un mouvement de développement urbain assez intense. Cette dynamique urbaine bien que périphérique se caractérise par une production massive de logements. Avec ses diverses configurations immobilières, le logement social tient une place centrale dans cette production, pour devenir et de loin, le premier consommateur foncier. Notre article tente de suivre l’apport des filières de logement social dans le tracé urbain....

  12. Effect of mechanical pre-loadings on corrosion resistance of chromium-electroplated steel rods in marine environment

    Science.gov (United States)

    Shubina Helbert, Varvara; Dhondt, Matthieu; Homette, Remi; Arbab Chirani, Shabnam; Calloch, Sylvain

    2018-03-01

    Providing high hardness, low friction coefficient, as well as, relatively good corrosion resistance, chromium-plated coatings (∼20 μm) are widely used for steel cylinder rods in marine environment. However, the standardized corrosion test method (ISO 9227, NSS) used to evaluate efficiency of this type of coatings does not take into account in-service mechanical loadings on cylinder rods. Nevertheless, the uniform initial network of microcracks in chromium coating is changing under mechanical loadings. Propagation of these microcracks explains premature corrosion of the steel substrate. The aim of the study was to evaluate relationship between mechanical loadings, propagation of microcracks network and corrosion resistance of chromium coatings. After monotonic pre-loading tests, it was demonstrated by microscopic observations that the microcracks propagation started at stress levels higher than the substrate yield stress (520 MPa). The microcracks become effective, i.e. they have instantly undergone through the whole coating thickness to reach the steel substrate. The density of effective microcracks increases with the total macroscopic level, i.e. the intercrack distance goes from 60 ± 5 μm at 1% of total strain to approximately 27 ± 2 μm at 10%. Electrochemical measurements have shown that the higher the plastic strain level applied during mechanical loading, the more the corrosion potential of the sample decreased until reaching the steel substrate value of approximately ‑0.65 V/SCE after 2 h of immersion. The polarization curves have also highligthed an increase in the corrosion current density with the strain level. Therefore, electrochemical measurements could be used to realize quick and comprehensive assesment of the effect of monotonic pre-loadings on corrosion properties of the chromium coating.

  13. Unstable propagation behavior of a ductile crack in SUS-304 stainless steel under high compliance tensile loading

    International Nuclear Information System (INIS)

    Tomoda, Yoshio

    1981-01-01

    In relation to the safe maintenance of nuclear power plants, it is necessary to prevent reactor coolant pipings from burst type failure caused by the unstable propagation of defects and cracks, such as stress corrosion cracking and fatigue cracks. In ductile materials, crack propagation is stable in tensile loading under fixed grip condition, when a specimen is controlled to deform in proportion to the increase of tensile load. However, it has been known that the instability of ductile cracks occurs after tensile load reached the maximum, especially under constant loading condition arising in the loading devices with high compliance or low tensile rigidity. In order to confirm the reliability of SUS 304 stainless pipes subjected to SCC, the crack propagation behavior was examined with the specimens having center cracks, using both testing machines with high compliance and low compliance. The instability of ductile cracks and the propagation velocity of unstable cracks were analyzed, and the calculated results were compated with the experimental results. Not only the compliance of testing machines but also the conditions of specimens affected the propagation of cracks. (Kako, I.)

  14. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  15. Influence of surface defects on the fatigue crack initiation in pearlitic steel

    Directory of Open Access Journals (Sweden)

    Toribio Jesús

    2014-06-01

    Full Text Available Tensile fatigue tests were performed under load control, with constant stress range Δσ on pearlitic steel wires, from the hot rolled bar to the commercial prestressing steel wire (which has undergone seven cold drawing steps. Results show that fatigue cracks in pearlitic steels initiate at the wire surface starting from small defects, whose size decreases with the drawing process. Fatigue cracks created from defects (initiation phase exhibit a fractographic appearance consisting of ductile microtearing events which can be classified as tearing topography surface or TTS, and exhibit a remarkably lower spacing in the prestressing steel wire than in the hot rolled bar. In addition, some S-N tests were performed in both material forms under a stress range of about half the yield strength. In these tests, the main part of the fatigue life corresponds to the propagation stage in the hot rolled bar whereas such a main part of the life is associated with the initiation stage in the case of the prestressing steel wire.

  16. High Frequency Waves Propagating in Octagonal Bars: a Low Cost Computation Algorithm

    Directory of Open Access Journals (Sweden)

    Alessandro Marzani

    2009-02-01

    Full Text Available In this paper a hybrid semi-analytical Finite Element formulation is proposed to efficiently calculate the time dependent response due to stress waves propagating in a slender solid with uniform cross-section when excited by impulsive forces. The formulation takes advantage of the direct and inverse Fourier transform to formulate and solve the governing wave equation. The framework is applied to an octagonal viscoelastic isotropic steel bar.

  17. Propagation of cracks by stress corrosion in conditions of BWR type reactor

    International Nuclear Information System (INIS)

    Merino C, F.J.; Fuentes C, P.

    2004-01-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  18. Experiments on leak-selfwastage and leak-propagation

    International Nuclear Information System (INIS)

    Voss, J.; Vagt, P.; Westenbrugge, J.K. van; Joziasse, J.

    1984-01-01

    During the last years a considerable number of selfwastage experiments with small leaks of different shape and size and for different ferritic materials (2 1/4% Cr - and 12% Cr-steel) were performed by TNO and by INTERATOM, using several sodium test facilities. Many fabrication-methods of artificial micro-leaks were applied and examined. Selfplugging-, selfwastage- and reopening-effects were observed and evaluated during different time periods and under various test conditions. The main results will be discussed. Concerning the leak propagation program of INTERATOM, the first series of experiments was carried out this year. A short status report and some first results will be given. (author)

  19. Strength behaviour of sintered steel from the view of design-relevant material data

    International Nuclear Information System (INIS)

    Sonsino, C.M.; Esper, F.J.; Leuze, G.

    1982-01-01

    A reliable design of sintered components and an aimed material's selection requires the knowledge of designrelevant material data as Cyclic stress-strain-curves, crack propagation and fracture toughness properties as well as statistically evaluated S-N-curves, because conventional material data as tensile strength, monotonic yield strength, elongation, area reduction and impact strength can lead to a false estimation of the material's fatigue behaviour. For this reason the powder metallurgical industry began to determine design-relevant material data on the example of the porous Fe-Cu-C- and Fe-Cu-Ni-alloys. The fatigue tests with notched specimen and different modes of loading show that porous sintered parts having mechanical notches are less sensitive to external notches than wrought steel, because crack-propagation is delayed by pores. The possibility to manufacture cyclic hardening alloys, their relative notch-insensitivity and with wrought steel comparable scatter of fatigue properties show the importance of sintered alloys as alternative materials. (orig.) [de

  20. Crack propagation and arrest simulation of X90 gas pipe

    International Nuclear Information System (INIS)

    Yang, Fengping; Huo, Chunyong; Luo, Jinheng; Li, He; Li, Yang

    2017-01-01

    To determine whether X90 steel pipe has enough crack arrest toughness or not, a damage model was suggested as crack arrest criterion with material parameters of plastic uniform percentage elongation and damage strain energy per volume. Fracture characteristic length which characterizes fracture zone size was suggested to be the largest mesh size on expected cracking path. Plastic uniform percentage elongation, damage strain energy per volume and fracture characteristic length of X90 were obtained by five kinds of tensile tests. Based on this criterion, a length of 24 m, Φ1219 × 16.3 mm pipe segment model with 12 MPa internal gas pressure was built and computed with fluid-structure coupling method in ABAQUS. Ideal gas state equation was used to describe lean gas behavior. Euler grid was used to mesh gas zone inside the pipe while Lagrangian shell element was used to mesh pipe. Crack propagation speed and gas decompression speed were got after computation. The result shows that, when plastic uniform percentage elongation is equal to 0.054 and damage strain energy per volume is equal to 0.64 J/mm"3, crack propagation speed is less than gas decompression speed, which means the simulated X90 gas pipe with 12 MPa internal pressure can arrest cracking itself. - Highlights: • A damage model was suggested as crack arrest criterion. • Plastic uniform elongation and damage strain energy density are material parameters. • Fracture characteristic length is suggested to be largest mesh size in cracking path. • Crack propagating simulation with coupling of pipe and gas was realized in ABAQUS. • A Chinese X90 steel pipe with 12 MPa internal pressure can arrest cracking itself.

  1. Study of cladding toughness in a pressure vessel steel water reactor

    International Nuclear Information System (INIS)

    Soulat, P.; Al Mundheri, M.

    1984-12-01

    Toughness of cladding and pressure vessel steel were determined at different temperatures in order to appreciate the participation of cladding resistance against crack propagation. The toughness of cladding is comparable with typical results on austenitic welds. The test on covered CT specimens shows the possibility of having a relatively good prevision of the behaviour of a coated structure

  2. Effect of steel fibres on mechanical properties of high-strength concrete

    International Nuclear Information System (INIS)

    Holschemacher, K.; Mueller, T.; Ribakov, Y.

    2010-01-01

    Steel fibre reinforced concrete (SFRC) became in the recent decades a very popular and attractive material in structural engineering because of its good mechanical performance. The most important advantages are hindrance of macrocracks' development, delay in microcracks' propagation to macroscopic level and the improved ductility after microcracks' formation. SFRC is also tough and demonstrates high residual strengths after appearing of the first crack. This paper deals with a role of steel fibres having different configuration in combination with steel bar reinforcement. It reports on results of an experimental research program that was focused on the influence of steel fibre types and amounts on flexural tensile strength, fracture behaviour and workability of steel bar reinforced high-strength concrete beams. In the frame of the research different bar reinforcements (2o6 mm and 2o12 mm) and three types of fibres' configurations (two straight with end hooks with different ultimate tensile strength and one corrugated) were used. Three different fibre contents were applied. Experiments show that for all selected fibre contents a more ductile behaviour and higher load levels in the post-cracking range were obtained. The study forms a basis for selection of suitable fibre types and contents for their most efficient combination with regular steel bar reinforcement.

  3. Effect of carbon activity on the creep behaviour of 21/4Cr, 1Mo steel in sodium

    International Nuclear Information System (INIS)

    Cordwell, J.E.; Charnock, W.; Nicholson, R.D.

    1979-02-01

    The creep endurance and creep cracking behaviour of 2 1/4Cr, 1Mo steel in sodium at 475 0 C have been studied at three different sodium carbon activities. Creep endurance was found to increase with increasing carbon activity of the sodium. Tests carried out in high carbon activity sodium were discontinued before fracture. Creep crack initiation displacement at notches decreased with increasing carbon activity, presumably as a result of notch tip carburisation. The plastic zones at the tips of blunt notches in specimens exposed in high carbon activity sodium were preferentially carburised. These observations were similar to those made previously on 9Cr, 1Mo steel. One difference detected metallographically was that in a high carburising environment uniform carburisation was obtained in the 2 1/4Cr, 1Mo steel specimens whereas carburisation gradients were observed in the 9Cr, 1Mo steel. Creep crack propagation rates for given notch opening displacement rates in low and intermediate carbon activity sodium were indistinguishable. However, the strenthening that resulted from the mild carburisation of the specimen in the intermediate carbon activity sodium caused slower notch opening displacement rates and crack propagation rates than in the low carbon activity sodium, when the rates were compared at the same crack length. (author)

  4. The Effect of Type and Volume Fraction (Vf) of Steel Fiber on the Mechanical Properties of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Ghanbarpour, S.; Mazaheripour, H.; Mirmoradi, S. H.

    2010-01-01

    is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self-compacting concrete (SFRSCC). Design/methodology/approach – For this purpose, Micro wire and Wave type steel fibers......Purpose – Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their propagation, and improve several characteristics and properties of the SCC. The purpose of this paper...... – It was found that, inclusion of steel fibers significantly affect the split tensile and flexural strength of SCC accordance with type and vf. Besides, mathematical expressions were developed to estimate the flexural, modulus of elasticity and split tensile strength of SFRSCCs regarding of compressive strength...

  5. Crack growth testing of cold worked stainless steel in a simulated PWR primary water environment to assess susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Tice, D.R.; Stairmand, J.W.; Fairbrother, H.J.; Stock, A.

    2007-01-01

    Although austenitic stainless steels do not show a high degree of susceptibility to stress corrosion cracking (SCC) in PWR primary environments, there is limited evidence from laboratory testing that crack propagation may occur under some conditions for materials in a cold-worked condition. A test program is therefore underway to examine the factors influencing SCC propagation in good quality PWR primary coolant. Type 304 stainless steel was subjected to cold working by either rolling (at ambient or elevated temperature) or fatigue cycling, to produce a range of yield strengths. Compact tension specimens were fabricated from these materials and tested in simulated high temperature (250-300 o C) PWR primary coolant. It was observed that the degree of crack propagation was influenced by the degree of cold work, the crack growth orientation relative to the rolling direction and the method of working. (author)

  6. Stress corrosion cracking of duplex stainless steels in caustic solutions

    Science.gov (United States)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  7. Behaviour of reinforced concrete slabs with steel fibers

    Science.gov (United States)

    Baarimah, A. O.; Syed Mohsin, S. M.

    2017-11-01

    This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.

  8. Politiques et dynamique des systèmes de production: comment concilier défi alimentaire, compétitivité et environnement ?

    OpenAIRE

    Chatellier, Vincent; Dupraz, Pierre

    2011-01-01

    Cette communication propose une réflexion portant sur l’influence des politiques publiques (commerciale, agricole et environnementale) sur la dynamique des systèmes de production en agriculture. Elle rappelle, dans un premier temps, que les politiques commerciales définies dans le cadre des accords de l’OMC contribuent à une libéralisation accentuée des marchés agricoles internationaux. En se focalisant sur les principales productions agricoles développées dans l’Union européenne (céréales, l...

  9. Effect of microplastic strain on hydrogen behaviour in steel and resistance to hydrogen embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Gribanova, L.I.; Sarrak, V.I.; Filippov, G.A.; Shlyafirner, A.M. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1981-01-01

    A connection between the tendency to delayed fracture and resistance to microplastic deformation is studied in the presence of hydrogen on smooth samples of the 40Kh steel. Tests for delayed fracture have been carried out at the ''Instron'' machine. Two critical levels of strains during delayed fracture in the hydridation process are found out (sigmasub(cr1)=0.3sigmasub(0.2) and sigmasub(cr2)=0.5sigmasub(0.2)). At stresses below the sigmasub(cr1) hydrogen does not influence on the resistance to microplastic deformation of steel and does not cause delayed fracture. Propagation of cracks arising from defects occurring as a result of mutual effect of hydrogen and elastic stresses runs in the stress range from sigmasub(cr1) up to sigmasub(cr2). At stresses higher than sigmasub(cr2) the crack propagates from defects existing in the moment of hydridation process beginning.

  10. Influence of stress relieve heat treatment on fatigue crack propagation in structural steel resistant to atmospheric corrosion welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Geraldo de Paula; Villela, Jefferson Jose; Rabello, Emerson Giovani [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: gpm@cdtn.br; jjv@cdtn.br; egr@cdtn.br; Cimini Junior, Carlos Alberto[Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: cimini@demet.ufmg.br; Godefroid, Leonardo Barbosa [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Metalurgia]. E-mails: leonardo@demet.em.ufop.br

    2007-07-01

    In this work, the influence of stress relieve heat treatment (SRHT) on the fatigue crack propagation in USI-SAC 50 structural welded joints at the heat affected zone (HAZ) region was studied. Hardness measurements before and after the SRHT were made and crack propagation tests in specimens as welded (AW) and in specimens that were submitted to SRHT, which were accomplished. A reduction in hardness at the regions of HAZ and melted zone (MZ) after the SRHT were observed. It were also verified that the crack propagation rates (da/dN) versus DK on the specimens AW presented regions of retardation on the crack propagation rate, and in the specimens that were submitted to SRHT the crack propagation rate were homogeneous. (author)

  11. Fracture propagation in gas pipelines - relevance to submarine lines

    Energy Technology Data Exchange (ETDEWEB)

    Fearnehough, G D [British Gas Corp., Newcastle upon Tyne. Engineering Research Station

    1976-09-01

    This paper reviews the factors which control fracture propagation in pipes and suggests how they are influenced by submarine environments. If fracture arrest capability is required then these factors should be considered in terms of the design philosophy and the maximum tolerable length of fracture which can be repaired. The paper shows that brittle fracture characteristics of submarine pipelines are probably similar to land based lines and fracture arrest can only be guaranteed by appropriate material toughness specification. Resistance to ductile fracture propagation in submarine lines is enhanced by lower design stresses, thicker pipe, concrete coating and the effect of hydrostatic head on gas dynamics. However, additional factors due to submarine design can be deleterious viz: uncertainty about backfill integrity and a tendency of thicker steels to low fracture resistance arising from 'separation' formation. Attention is drawn to problems which may arise with transportation of gases rich in hydrocarbons and the use of mechanical methods of fracture arrest.

  12. Bascule d'un modèle poutre à un modèle 3D en dynamique des machines tournantes

    OpenAIRE

    Tannous , Mikhael; Cartraud , Patrice; Dureisseix , David; Torkhani , Mohamed

    2013-01-01

    National audience; Les problèmes de machines tournantes incluant un contact rotor-stator, nécessitent un maillage 3D de la zone de contact. Cependant, un modèle 3D pour toute la durée de simulation conduit à des temps de calcul rédhibitoires. Or un modèle poutre est suffisant pour décrire la dynamique de la machine tournante hors contact. Une stratégie qui permet d'utiliser un modèle poutre et un autre 3D, pendant deux phases différentes durant la même simulation, permet donc de gagner en tem...

  13. Fatigue crack retardation of high strength steel in saltwater

    International Nuclear Information System (INIS)

    Tokaji, K.; Ando, Z.; Imai, T.; Kojima, T.

    1983-01-01

    A high strength steel was studied in 3 percent saltwater to investigate the effects of a corrosive environment and sheer thickness on fatigue crack propagation behavior following the application of a single tensile overload. Experiments were carried out under sinusoidally varying loads at a load ratio of 0 and frequency of 10 H /SUB z/ . A single tensile overload was found to cause delayed retardation, and the crack propagation rate at first increased, followed by fairly rapid decrease to a minimum value and then increased gradually to its steady-state value, just as it did in air. The overload affected zone size and the retardation cycles increased with decreasing sheet thickness, just as they did in air. However, the zone size and the cycles were larger in 3 percent saltwater than in air. Since the crack propagation rates through the overload affected zone were not affected by the test environment, the longer retardation cycles in 3 percent saltwater were attributed to an enlargement of the overload affected zone size. The crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was well explained by the crack closure concept

  14. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  15. Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

    International Nuclear Information System (INIS)

    Kim, Young H.; Sung, Jin Woo

    2013-01-01

    In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

  16. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-03-23

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.

  17. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-01-01

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members. PMID:28773347

  18. Enhancement of low temperature toughness of nanoprecipitates strengthened ferritic steel by delamination structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu; Xu, Songsong; Li, Junpeng; Zhang, Jian [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China); Sun, Liangwei; Chen, Liang; Sun, Guangai; Peng, Shuming [Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 621999 (China); Zhang, Zhongwu, E-mail: zwzhang@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China)

    2017-04-13

    This study investigated the effects of aging and thermomechanical treatments on the microstructure evolution and mechanical properties of a nanoprecipitates strengthened ferritic steel. The toughness of steel at various temperatures was measured carefully and correlated with microstructural features. Tensile tests show that aging can improve the mechanical strength without scarifying the ductility. With high yield strength of ~1000 MPa, excellent low temperature Charpy impact energy more than 300 J at −80 °C can be obtained. The ductile brittle transition temperature (DBTT) is lower than −80 °C. The high strength can be contributed by the nanocluster precipitation as determined by small angle neutron scattering and transmission electron microscopy. The excellent low temperature toughness is attributed to the delamination structure of the steel, which blunts the cracks and restrains the crack propagation.

  19. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    Science.gov (United States)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  20. Characteristics of coupled acoustic wave propagation in metal pipe

    International Nuclear Information System (INIS)

    Kim, Ho Wuk; Kim, Min Soo; Lee, Sang Kwon

    2008-01-01

    The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies

  1. Tests and analysis on steam generator tube failure propagation

    International Nuclear Information System (INIS)

    Tanabe, Hiromi

    1990-01-01

    The understanding of leak enlargement and failure propagation behavior is essential to select a design basis leak (DBL) of LMFBR steam generators. Therefore, various series of experiments, such as self-enlargement tests, target wastage tests, failure propagation tests were conducted in a wide range of leak using test facilities of SWAT at PNC/OEC. Especially, in the large leak tests, potential of overheating failure was investigated under a prototypical steam cooling condition inside target tubes. In the small leak, the difference of wastage resistivity was clarified among several tube materials such as 9-chrome steels. In regard to an analytical approach, a computer code LEAP (Leak Enlargement and Propagation) was developed on the basis of all of these experimental results. The code was used to validate the previously selected DBL of the prototype reactor, Monju, steam generator. This approach proved to be successful in spite of somewhat over-conservatism in the analysis. Moreover, LEAP clarified the effectiveness of a rapid steam dump and an enhanced leak detection system. The code improvement toward a realistic analysis is desired, however, to lessen the DBL for a future large plant and then the re-evaluation of the experimental data such as the size of secondary failure is under way. (author). 4 refs, 8 figs, 1 tab

  2. Developmental techniques for ultrasonic flaw detection and characterization in stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.

    1983-04-01

    Flaw detection and characterization by ultrasonic methods is particularly difficult for stainless steel. This paper focuses on two specific problem areas: (a) the inspection of centrifugally cast stainless steel (CCSS) and (b) the differentiation of intergranular stress-corrosion cracking (IGSCC) from geometrical reflectors such as the weld root. To help identify optimal conditions for the ultrasonic inspection of CCSS, the effect of frequency on propagation of longitudinal and shear waves was examined in both isotropic and anisotropic samples. Good results were obtained with isotropic CCSS and 0.5-MHz angle beam shear waves. The use of beam-scattering patterns (i.e. signal amplitude vs skew angle) as a tool for discriminating IGSCC from geometrical reflectors is also discussed

  3. Study of the influence of liquid sodium on the mechanical behavior of T91 steel in liquid sodium

    International Nuclear Information System (INIS)

    Hemery, S.

    2013-01-01

    We studied the sensitivity of T91 steel to embrittlement by liquid sodium. An experimental procedure was set up to proceed to mechanical testing in sodium under an inert atmosphere. The introduction of a liquid sodium pre-exposure step prior to mechanical testing enabled the study of both the wettability of T91 by sodium and the structure of the sodium steel/interface as a function of the exposure parameters. The mechanical properties of T91 steel are significantly reduced in liquid sodium provided the wetting conditions are good. The use of varying oxygen and hydrogen concentrations suggests that oxygen plays a major role in enhancing the wettability of T91. The sensitivity of the embrittlement to strain rate and temperature was characterized. These results showed the existence of a ductile to brittle transition depending on both parameters. Its characterization suggests that a diffusion step is the limiting rate phenomenon of this embrittlement case. TEM and EBSD analysis of arrested cracks enabled us to establish that the fracture mode is inter-lath or intergranular. This characteristic is coherent with the crack path commonly reported in liquid metal embrittlement. A similar procedure was applied to the unalloyed XC10 steel. The results show a behavior which is similar to the one of T91 steel and suggest a common mechanism for liquid sodium embrittlement of body centered cubic steels. Moreover, they confirm that the ductile to brittle transition seems associated with a limited crack propagation rate. The propagation is thermally activated with activation energy of about 50 kJ/mol. Finally, it was shown that 304L austenitic steel is sensitive to liquid sodium embrittlement as well. Some fracture surfaces testify of an intergranular fracture mode, but some questions still remain about the crack path. (author) [fr

  4. Propagation of semi-elliptical surface cracks in ferritic and austenitic steel plates under thermal cyclic loading

    International Nuclear Information System (INIS)

    Bethge, K.

    1989-05-01

    Theoretical and experimental investigations of crack growth under thermal and thermomechanical fatigue loading are presented. The experiments were performed with a ferritic reactor pressure vessel steel 20 MnMoNi 5 5 and an austenitic stainless steel X6 CrNi 18 11. A plate containing a semi-elliptical surface crack is heated up to a homogeneous temperature and cyclically cooled down by a jet of cold water. On the basis of linear elastic fracture mechanics stress-intensity factors are calculated with the weight function method. The prediction of crack growth under thermal fatigue loading using data from mechanical fatigue tests is compared with the experimental result. (orig.) [de

  5. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  6. Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions

    Directory of Open Access Journals (Sweden)

    JING Hong-yang

    2017-05-01

    Full Text Available Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ctavg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.

  7. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. The dynamic-fracture criterion used enabled the authors to obtain a unique comparison of the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear-stress-strain where Von-Mises yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. (Auth.)

  8. Applicability of JIS SPV 50 steel to primary containment vessels of nuclear power stations

    International Nuclear Information System (INIS)

    Iida, K.; Ishikawa, K.; Satoh, M.; Soya, I.

    1980-01-01

    The fracture toughness of JIS SPV 50 steel and its weldment has been examined in order to verify the applicability of these materials to primary containment vessels of nuclear power stations. Test results were evaluated using elastic plastic fracture mechanics through the COD and the J integral concepts for non ductile fracture initiation characteristics. Linear fracture mechanics was employed for propagation arrest characteristics. Results showed that the materials tested here have a sufficient fracture toughness to prevent nonductile fracture and that this steel is a suitable material for use in construction of primary containment vessels of nuclear power stations. (author)

  9. Stress Corrosion Cracking Behaviour of Dissimilar Welding of AISI 310S Austenitic Stainless Steel to 2304 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Thiago AmaroVicente

    2018-03-01

    Full Text Available The influence of the weld metal chemistry on the stress corrosion cracking (SCC susceptibility of dissimilar weldments between 310S austenitic stainless steel and 2304 duplex steels was investigated by constant load tests and microstructural examination. Two filler metals (E309L and E2209 were used to produce fusion zones of different chemical compositions. The SCC results showed that the heat affected zone (HAZ on the 2304 base metal side of the weldments was the most susceptible region to SCC for both filler metals tested. The SCC results also showed that the weldments with 2209 duplex steel filler metal presented the best SCC resistance when compared to the weldments with E309L filler metal. The lower SCC resistance of the dissimilar joint with 309L austenitic steel filler metal may be attributed to (1 the presence of brittle chi/sigma phase in the HAZ on the 2304 base metal, which produced SC cracks in this region and (2 the presence of a semi-continuous delta-ferrite network in the fusion zone which favored the nucleation and propagation of SC cracks from the fusion zone to HAZ of the 2304 stainless steel. Thus, the SC cracks from the fusion zone associated with the SC cracks of 2304 HAZ decreased considerably the time-of-fracture on this region, where the fracture occurred. Although the dissimilar weldment with E2209 filler metal also presented SC cracks in the HAZ on the 2304 side, it did not present the delta ferrite network in the fusion zone due to its chemical composition. Fractography analyses showed that the mixed fracture mode was predominant for both filler metals used.

  10. In situ fatigue-crack-propagation experiment

    International Nuclear Information System (INIS)

    Ermi, A.M.; Chin, B.A.

    1981-01-01

    An in-reactor fatigue experiment was conducted in the Oak Ridge Research Reactor to determine the effects of dynamic irradiation on fatigue crack propagation. Eight 20% cold-worked 316 stainless steel specimens were precracked to various initial crack lengths, linked together to form a chain, and inserted into a specially designed in-reactor fatigue machine. Test conditions included a maximum temperature of 460 0 C, an environment of sodium, a frequency of 1 cycle/min, and a stress ratio of 0.10. Results indicated that (1) no effects of dynamic irradiation were observed for a fluence of 1.5 x 10 21 n/cm 2 (E > 0.1 MeV); and (2) crack growth rates in elevated temperature sodium were a factor of 3 to 4 lower than in room temperature air

  11. Numerical simulation of a Charpy test and correlation of fracture toughness with fracture energy. Vessel steel and duplex stainless steel of the primary loop

    International Nuclear Information System (INIS)

    Breban, P; Eripret, C.

    1995-01-01

    The analysis methods used to evaluate the harmlessness of defects in the components of the primary coolant circuit of pressurized water reactor are based on the knowledge of the failure properties of concerned materials. The toughness is used to be measured through tests performed on normalized samples. But in some cases, especially for the vessel steel submitted to irradiation effects or for cast components in duplex stainless steel sensitive to thermal ageing, these measurements are not available on the material aged in operation. Therefore, fracture resistance has been evaluated through Charpy tests. Toughness is thus obtained on the basis of an empirical correlation. To improve these predictions, a modeling of the Charpy test in the framework of the local approach to fracture has been performed, for both materials. For the vessel steel, a complete evaluation of toughness has been achieved on the basis of a bidimensional viscoplastic modeling under large strain assumptions and a post-treatment with a Weibull model (cleavage fracture). The main hypothesis (partition between plain stress and plain strain areas in the bidimensional modeling) was corrected after a three dimensional calculations with the finite element program Code-Aster. The fracture analysis put into evidence that damage considerations like cavity nucleation and growth have to be introduced in the model in order to improve the description of physical phenomena. Two ways of progress have been suggested and are in course of being investigated, one in the framework of local approach to failure, the other with the help of micro-macro relationship. With regard to the duplex steel, the description of a Charpy (U) test allowed to clearly discriminate between crack initiation and propagation phases. A modeling through an equivalent homogenous material with a damage law based on a modified Gurson potential enables to describe quantitatively both phases of fracture. It clearly appears that a reliable

  12. L'impact de Quizlet sur la dynamique motivationnelle des élèves lors de l'apprentissage du vocabulaire allemand

    OpenAIRE

    André, Joanne; Berrio, Lucas; Pellet, Jean-Philippe

    2017-01-01

    Pour ce travail, nous nous sommes intéressés à l'effet que pouvait avoir les TIC sur la motivation des élèves. Nous nous sommes penchés sur la plate-forme web Quizlet qui propose différents outils pour réviser un contenu préalablement défini par l'enseignant. Ainsi, nous avons dirigé notre recherche sur l'impact de Quizlet sur la dynamique motivationnelle des élèves dans le cadre de l'apprentissage du vocabulaire allemand. Nous comparons cette méthode d'apprentissage avec les méthodes dites t...

  13. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  14. Acoustic emission from hydrogen saturated Type 304L stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1978-01-01

    Acoustic emission is attributed to energy release within a material body by localized plastic deformation or failure processes. The elastic stress waves may come from slip band formation, mechanical twinning, martensite transformation, or crack propagation. Each of these processes has slightly different acoustic characteristics allowing for easy identification. Acoustic emission was monitored during tensile tests of Type 304L austenitic stainless steel to explore the applicability of the technique to hydrogen-assisted fracture

  15. Thermal Aging Evaluation of Mod. 9Cr-1Mo Steel using Nonlinear Rayleigh Waves

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Kim, Hoe-Woong; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Marino, Daniel; Kim, Jin-Yeon; Jacobs, L.J [Georgia Institute of Technology, Atlanta (United States); Ruiz, Alberto [UMSNH, Morelia (Mexico)

    2014-10-15

    Thermal aging can pose a high risk to decreases in the mechanical properties such as strength or creep resistance. This can lead to an unexpected failure during long term operation. Nonlinear NDE techniques are preferred over conventional NDE techniques (linear ultrasonic measurements) because nonlinear ultrasonic techniques have shown their capability to detect a microstructural damage in the structures undergoing fatigue and creep. These nonlinear ultrasonic techniques make use of the fact that the dislocation density increases, which will create a nonlinear distortion of an ultrasonic wave; this damage causes the generation of measurable higher harmonic components in an initially mono-chromatic ultrasonic signal. This study investigates the recently developed non-contact nonlinear ultrasonic technique to detect the microstructural damage of mod. 9Cr-1Mo steel based on nonlinear Rayleigh wave with varying propagation distances. Nonlinear Rayleigh surface wave measurements using a non-contact, air-coupled ultrasonic transducer have been applied for the thermal aging evaluation of modified 9Cr-1Mo ferritic-martensitic steel. Thermal aging for various heat treatment times of mod.. 9Cr-1Mo steel specimens is performed to obtain the nucleation and growth of precipitated particles in specimens. The amplitudes of the first and second harmonics are measured along the propagation distance and the relative nonlinearity parameter is obtained from these amplitudes. The relative nonlinearity parameter shows a similar trend with the Rockwell C hardness.

  16. Effects of friction and high torque on fatigue crack propagation in Mode III

    Science.gov (United States)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  17. Solid-state diffusion bonding of high-Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: sh-noh@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kasada, Ryuta; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan)

    2011-05-15

    Research highlights: > Oxide dispersion strengthened ferritic steel joined by solid-state diffusion bonding. > Free of precipitates and micro-voids at the bonding interface was existed. > Joints had the same tensile properties with anisotropy of the base material. > USE of joints was fully reserved in L-R bonding orientation. > Cracks did not propagate on the bonding interface at the Charpy impact test. - Abstract: Solid-state diffusion bonding (SSDB) was employed to join high-Cr oxide dispersion strengthened (ODS) ferritic steel (Fe-15Cr-2W-0.2Ti-0.35Y{sub 2}O{sub 3}) blocks under uniaxial hydrostatic pressure using a high-vacuum hot press, and the microstructure and mechanical properties of the joints were investigated. High-Cr ODS ferritic steels were successfully diffusion bonded at 1200 deg. C for 1 h, without precipitates and microvoids at the bonding interface or degradation in the base materials. Transmission electron microscopic observation revealed that the nano-oxide particles near the bonding interface were uniformly distributed in the matrix and that the chemical composition across the bonding interface was virtually constant. At room temperature, the joint had nearly the same tensile properties and exhibited anisotropic behavior similar to that of the base material. The tensile strength of the joint region at elevated temperatures is nearly the same as that of the base material, with necking behavior at several micrometers from the bonding interface. The total elongation of the joint region decreased slightly at 700 {sup o}C, with an exfoliation fracture surface at the bonding interface. Although a small ductile-brittle transition temperature shift was observed in the joints, the upper shelf energy was fully reserved in the case of joints with L-R bonding orientation, for which cracks did not propagate on the bonding interface. Therefore, it is concluded that SSDB can be potentially employed as a joining method for high-Cr ODS ferritic steel owing to

  18. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  19. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  20. Effect of specimen size on the upper shelf energy of ferritic steels

    International Nuclear Information System (INIS)

    Kumar, A.S.

    1990-01-01

    A methodology is proposed that can be used to predict the upper shelf energy (USE) of ferritic steels based on subsize specimen data. The proposed methodology utilizes the partitioning of the USE into energies required for crack initiation and crack propagation. Notched-only Charpy specimens are used in conjunction with precracked specimens to separate the two components. An unirradiated ferritic steel, HT-9, was used to demonstrate the validity of the methodology. Unlike previous correlations that were limited in their applicability to either highly ductile or brittle material, the proposed methodology is expected to be applicable over a wide range of ductility and to be particularly useful for materials that harden significantly during irradiation

  1. Effect of constraint on fatigue crack propagation near threshold in medium carbon steel

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Seitl, Stanislav; Knésl, Zdeněk

    2006-01-01

    Roč. 37, 1-2 (2006), s. 51-57 ISSN 0927-0256 R&D Projects: GA ČR GA101/03/0331; GA ČR GP101/04/P001 Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue crack propagation rate * Constraint * Two-parameter fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.104, year: 2006

  2. Reliability-based condition assessment of steel containment and liners

    International Nuclear Information System (INIS)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs

  3. Effect of overloads on fatigue crack propagation rate

    International Nuclear Information System (INIS)

    Kogaev, V.P.; Bojtsov, B.V.; Petukhov, Yu.V

    1986-01-01

    An overload coefficient Q, the number of overload cycles Nsub(0), the value of the stress intensity coefficient swing of basic loading conditions ΔK are experimentally studied for their effect on the delay of the fatigue crack propagation Nsub(D) in 30KhGSNA steel. Results of the study are presented. It is shown that as a result of single overloads the value attains 60 - 10 thous. cycles. The delay Nsub(D) grows with the overload coefficient Q=Ksub(max)sup(0)/Ksub(max) and the number of the overload cycles Nsub(0). The regularity indicated is described by the equations valid within the limits of variation in Q and Nsub(0) values studied in the paper

  4. Behavior of stainless steels in pressurized water reactor primary circuits

    International Nuclear Information System (INIS)

    Féron, D.; Herms, E.; Tanguy, B.

    2012-01-01

    Stainless steels are widely used in primary circuits of pressurized water reactors (PWRs). Operating experience with the various grades of stainless steels over several decades of years has generally been excellent. Nevertheless, stress corrosion failures have been reported in few cases. Two main factors contributing to SCC susceptibility enhancement are investigated in this study: cold work and irradiation. Irradiation is involved in the stress corrosion cracking and corrosion of in-core reactor components in PWR environment. Irradiated assisted stress corrosion cracking (IASCC) is a complex and multi-physics phenomenon for which a predictive modeling able to describe initiation and/or propagation is not yet achieved. Experimentally, development of initiation smart tests and of in situ instrumentation, also in nuclear reactors, is an important axis in order to gain a better understanding of IASCC kinetics. A strong susceptibility for SCC of heavily cold worked austenitic stainless steels is evidenced in hydrogenated primary water typical of PWRs. It is shown that for a given cold-working procedure, SCC susceptibility of austenitic stainless steels materials increases with increasing cold-work. Results have shown also strong influences of the cold work on the oxide layer composition and of the maximum stress on the time to fracture.

  5. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC); Propagacion de grietas en acero inoxidable AISI304L en condiciones de quimica de hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Castano M, V. [IFA-UNAM, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup ++} ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10{sup -9} m/s (3.6 {mu}m/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  6. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    International Nuclear Information System (INIS)

    Briottet, L.; Batisse, R.; De Dinechin, G.; Langlois, P.; Thiers, L.

    2012-01-01

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  7. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  8. Effect of Microstructure on HIC Susceptibility of API X70MS Linepipe Steel

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Joon-Ho; Sim, Ho-Seop; Park, Byung-Gyu [Dongkuk Steel R and D Center, Pohang (Korea, Republic of); Cho, Kyung-Mox [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The resistance of hydrogen induced cracking (HIC) was investigated with different microstructures of API X70MS steel. Ferrite/acicular ferrite (F/AF), deformed ferrite/acicular ferrite, ferrite/bainite (F/B) and single acicular ferrite (AF) were obtained by thermo-mechanical controlled process (TMCP) with changing rolling and cooling conditions. HIC resistance was found to be affected by the type as well as morphology of the microstructure, and thus the behavior of crack initiation and propagation could be analyzed. It was found that single AF and deformed F/AF with uniformly distributed dislocation reduced HIC initiation. Banded microstructure with a hardness value below 250 HV, such as AF, showed good HIC propagation resistance due to high toughness. AF generally exhibited excellent crack initiation and propagation resistance, namely the best HIC susceptibility performance. AF might redeem the HIC resistance for the banded microstructure also.

  9. Study on aging embrittlement of 17-4PH martensite stainless steel at 350 degree C

    International Nuclear Information System (INIS)

    Wang Jun; Shen Baoluo

    2005-01-01

    The transformation of microstructure and hardness with the extension of aging time on the 17-4PH Martensite stainless steel at 350 degree C is studied, and the change of dynamic fracture toughness and fractography of the stainless steel for various holding time at this temperature are also studied by instrumental impact test and scanning electron microscope. The results indicate that the crack initiation energy (E i ), crack propagation energy (E p ), absorbed-in-fracture energy (E t ) and dynamic fracture toughness (K 1d ) of this type of alloy Charpy v-notch sample is decreased with the continuation of time at 350 degree C. It means that the toughness of the alloy is degraded, and the hardness of the steel is ascended when aging time is expanded and reaches the maximum at 9000 h. The fractography of this steel changes from dimple fracture into cleavage fracture and inter-granular rapture. (authors)

  10. Internal defect propagation studies in carbon steel in H2S-H2O system (Pre print No. MI-1C)

    International Nuclear Information System (INIS)

    Dalvi, M.S.; Kini, R.A.; Tangri, V.K.; Sadhukhan, H.K.

    1989-04-01

    Carbon steel is the material of construction for major equipment of heavy water plant using H 2 S-H 2 O exchange process for production of heavy water. The main corrosion product in this system is iron sulphide and hydrogen which is liberated in nascent form. It is known that such hydrogen liberated in-situ in the equipment has tendency to penetrate in the metal, giving rise to phenomena of embrittlement. Similarly, if parent metal has internal defect then this nascent hydrogen gets trapped in them and gets converted to diatomic form and consequent rise in pressure. This leads to the spread of the defect and can lead to severe loss in the strength of metal. This phenomena was studied on the walls of an autoclave used in a corrosion test assembly for simulated investigation of material of construction for H 2 S-H O exchange process. These studies indicate that internal defect propagation and generation definitely takes place in the system. However, no failures were encountered. These studies have been very qualitative in nature but showed the importance of this aspect of corrosion in H 2 S-H 2 O system and is a subject matter for further studies. It also implies that intial testing of plates for internal defects is very important. (author). 3 figs

  11. Kinematics of deformation bands in an austenitic FeMnC TWIP steel

    International Nuclear Information System (INIS)

    Chateau, J P; Jacques, A; Lebedkina, T A; Lebyodkin, M A; Allain, S

    2010-01-01

    Tensile tests on a Fe22Mn0.6C steel at room temperature and different strain rates show serrations on the curves similar to Portevin-Le Chatelier (PLC) serrations of type A, associated with negative strain rate sensitivity. Propagation of deformation bands have been observed by high-rate extensometry over more than two orders of magnitude of the applied strain rate. This constitutes a remarkable difference with the PLC effect which shows a transition to static bands (type B or C) when the applied strain rate decreases. In this steel, bands moving as slow as a few tenth of mm/s are observed instead of static bands, which is two orders of magnitude lower than what is reported for type A PLC bands. This emphasises a strong correlation between plastic events, also confirmed by multifractal analysis of the tensile curves. Twinning which is responsible of the high strain hardening rate of this steel at room temperature is discussed as one of mechanisms of correlation between instabilities.

  12. Dynamique de nanobulles et nanoplasmas generes autour de nanoparticules plasmoniques irradiees par des impulsions ultracourtes

    Science.gov (United States)

    Dagallier, Adrien

    L'emergence des lasers a impulsion ultrabreves et des nanotechnologies a revolutionne notre perception et notre maniere d'interagir avec l'infiniment petit. Les gigantesques intensites generees par ces impulsions plus courtes que les temps de relaxation ou de diffusion du milieu irradie induisent de nombreux phenomenes non-lineaires, du doublement de frequence a l'ablation, dans des volumes de dimension caracteristique de l'ordre de la longueur d'onde du laser. En biologie et en medecine, ces phenomenes sont utilises a des fins d'imagerie multiphotonique ou pour detruire des tissus vivants. L'introduction de nanoparticules plasmoniques, qui concentrent le champ electromagnetique incident dans des regions de dimensions nanometriques, jusqu'a une fraction de la longueur d'onde, amplifie les phenomenes non-lineaires tout en offrant un controle beaucoup plus precis de la deposition d'energie, ouvrant la voie a la detection de molecules individuelles en solution et a la nanochirurgie. La nanochirurgie repose principalement sur la formation d'une bulle de vapeur a proximite d'une membrane cellulaire. Cette bulle de vapeur perce la membrane de maniere irreversible,entrainant la cellule a sa mort, ou la perturbe temporairement, ce qui permet d'envisager de faire penetrer dans la cellule des medicaments ou des brins d'ADN pour de la therapie genique. C'est principalement la taille de la bulle qui va decider de l'issue de l'irradiation laser. Il est donc necessaire de controler finement les parametres du laser et la geometrie de la nanoparticule afin d'atteindre l'objectif fixe. Le moyen le plus direct a l'heure actuelle de valider un ensemble de conditions experimentales est de realiser l'experience en laboratoire,ce qui est long et couteux. Les modeles de dynamique de bulle existants ne prennent pas en compte les parametres de l'irradiation et ajustent souvent leurs conditions initiales a partir de leurs mesures experimentales, ce qui limite la portee du modele au cas pour

  13. Finite element simulation of photoacoustic fiber optic sensors for surface corrosion detection on a steel rod

    Science.gov (United States)

    Tang, Qixiang; Owusu Twumasi, Jones; Hu, Jie; Wang, Xingwei; Yu, Tzuyang

    2018-03-01

    Structural steel members have become integral components in the construction of civil engineering infrastructures such as bridges, stadiums, and shopping centers due to versatility of steel. Owing to the uniqueness in the design and construction of steel structures, rigorous non-destructive evaluation techniques are needed during construction and operation processes to prevent the loss of human lives and properties. This research aims at investigating the application of photoacoustic fiber optic transducers (FOT) for detecting surface rust of a steel rod. Surface ultrasonic waves propagation in intact and corroded steel rods was simulated using finite element method (FEM). Radial displacements were collected and short-time Fourier transform (STFT) was applied to obtain the spectrogram. It was found that the presence of surface rust between the FOT and the receiver can be detected in both time and frequency domain. In addition, spectrogram can be used to locate and quantify surface rust. Furthermore, a surface rust detection algorithm utilizing the FOT has been proposed for detection, location and quantification of the surface rust.

  14. X-ray fractography on fatigue fracture surface of high manganese austenitic steel

    International Nuclear Information System (INIS)

    Akita, Koichi; Misawa, Hiroshi; Kodama, Shotaro; Saito, Tetsuro.

    1997-01-01

    Fatigue tests were carried out under constant stress amplitude, using a non-magnetic high manganese Mn-Cr steel. X-ray fractography was applied on the fatigue fractured surface to investigate the relationship between stress intensity factor and residual stress or half-value breadth of the X-ray diffraction profile. The fatigue crack propagation rate of this non-magnetic Mn-Cr steel had the same tendency as in the ordinary structural ferritic steels. The relationship between stress intensity factor and the residual stress or half-value breadth of the steel was almost the same as that of the ferritic cyclic work hardening steels. No stress induced transformation was observed on the fracture surface, but the residual stress on the fractured surface was compressive in the high stress intensity factors range, which is typical in the cyclic work hardening steels. The half-value breadth on the fractured surface increased with increasing effective stress intensity factor range. The relationship between the half-value breadth and stress intensity factor range was represented by a linear line regardless of the stress ratio. Therefore, the acting stress intensity factor range at the time of fracture can be estimated from the half-value breadth. The depth of monotonic plastic zone was estimated from the distribution of half-value breadth beneath the fractured surface. The relationship between the maximum stress intensity factor and half-value breadth was expressed by the equation ω m α(K max /σ y ) 2 , where the value of α was 0.025. This is about one sixth of the value for ferritic steels, and the fact shows the severe work hardening occuring in the plastic zone in this manganese steel. (author)

  15. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    International Nuclear Information System (INIS)

    Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong

    2007-01-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated

  16. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  17. The thermal fatigue behaviour of creep-resistant Ni-Cr cast steel

    Directory of Open Access Journals (Sweden)

    B. Piekarski

    2007-12-01

    Full Text Available The study gives a summary of the results of industrial and laboratory investigations regarding an assessment of the thermal fatigue behaviour of creep-resistant austenitic cast steel. The first part of the study was devoted to the problem of textural stresses forming in castings during service, indicating them as a cause of crack formation and propagation. Stresses are forming in carbides and in matrix surrounding these carbides due to considerable differences in the values of the coefficients of thermal expansion of these phases. The second part of the study shows the results of investigations carried out to assess the effect of carbon, chromium and nickel on crack resistance of austenitic cast steel. As a criterion of assessment the amount and propagation rate of cracks forming in the specimens as a result of rapid heating followed by cooling in running water was adopted. Tests were carried out on specimens made from 11 alloys. The chemical composition of these alloys was comprised in a range of the following values: (wt-%: 18-40 %Ni, 17-30 %Cr, 1.2-1.6%Si and 0.05-0.6 %C. The specimens were subjected to 75 cycles of heating to a temperature of 900oC followed by cooling in running water. After every 15 cycles the number of the cracks was counted and their length was measured. The results of the measurements were mathematically processed. It has been proved that the main factor responsible for an increase in the number of cracks is carbon content in the alloy. In general assessment of the results of investigations, the predominant role of carbon and of chromium in the next place in shaping the crack behaviour of creep-resistant austenitic cast steel should be stressed. Attention was also drawn to the effect of high-temperature corrosion as a factor definitely deteriorating the cast steel resistance to thermal fatigue.

  18. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys

    Science.gov (United States)

    Ashida, Yugo; Daigo, Yuzo; Sugahara, Katsuo

    2017-08-01

    Commercial metals and alloys like carbon steels, stainless steels, and nickel-based super alloys frequently encounter the problem of environmentally assisted cracking (EAC) and resulting failure in engineering components. This article aims to provide a perspective on three critical industrial applications having EAC issues: (1) corrosion and cracking of carbon steels in automotive applications, (2) EAC of iron- and nickel-based alloys in salt production and processing, and (3) EAC of iron- and nickel-based alloys in supercritical water. The review focuses on current industrial-level understanding with respect to corrosion fatigue, hydrogen-assisted cracking, or stress corrosion cracking, as well as the dominant factors affecting crack initiation and propagation. Furthermore, some ongoing industrial studies and directions of future research are also discussed.

  19. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Rementeria, Rosalia, E-mail: rosalia.rementeria@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Morales-Rivas, Lucia, E-mail: lucia.morales@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Kuntz, Matthias, E-mail: matthias.kuntz2@de.bosch.com [Robert Bosch GmbH, Materials and Processing Department, Renningen, 70465 Stuttgart (Germany); Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Kerscher, Eberhard, E-mail: kerscher@mv.uni-kl.de [University of Kaiserslautern, Materials Testing, Gottlieb-Damiler-Straße, 67663 Kaiserslautern (Germany); Sourmail, Thomas, E-mail: thomas.sourmail@ascometal.com [Ascometal-CREAS (Research Centre) Metallurgy, BP 70045, Hagondange Cedex 57301 (France); Caballero, Francisca G., E-mail: fgc@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain)

    2015-04-10

    Nanostructured bainite is not a novel laboratory-scale steel anymore and the interest on the commercial production of these microstructures by steelmakers and end-users is now conceivable. These microstructures are achieved through the isothermal transformation of high-carbon high-silicon steels at low temperature, leading to nanoscale plates of ferrite with thickness of 20–40 nm and retained austenite. Nanostructured bainitic steels present the highest strength/toughness combinations ever recorded in bainitic steels (2.2 GPa/40 MPa m{sup 1/2}) and the potential for engineering components is alluring. However, fatigue properties, responsible of the durability of a component, remain to be examined. In order to understand the role of the microstructure during the fatigue crack propagation, the crack path in three nanoscale bainitic structures has been analysed on the basis of the relationships between grain misorientations and grain boundaries by Electron Backscatter Diffraction. Active slip systems in bainitic ferrite and crack deflection at grain boundaries have been identified, while retained austenite is cast doubt on its role.

  20. Study of the Weldability of Austenitic PH Steel for Power Plants

    Directory of Open Access Journals (Sweden)

    Ziewiec A.

    2016-06-01

    Full Text Available The article presents the results of Transvarestraint test of a modern precipitation hardened steel X10CrNiCuNb18-9-3 with copper. For comparison, the results of tests of conventional steel without the addition of copper X5CrNi18-10 are presented. The total length of all cracks and the maximum length of cracks were measured. The study of microstructure (LM, SEM showed that the austenitic stainless steel X10CrNiCuNb18-9-3 is very prone to hot cracking. After performing the Transvarestraint tests three types of cracks were observed: solidification cracks occurring during crystallization, liquation cracks due to segregation in the heat affected zone (HAZ and surface cracks. Niobium carbonitrides dispersed in the bands of segregation are the reason of high susceptibility to liquation cracking. Segregation of copper occurring during solidification causes of surface cracking. A combined effect of copper and stresses contributes to formation of hot microcracks. These microcracks propagate to a depth of 20-30 μm.

  1. Post-irradiation characterization of PH13-8Mo martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.; Schmalz, F.; Rensman, J.W. [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Luzginova, N.V., E-mail: luzginova@nrg.eu [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Wouters, O.; Hegeman, J.B.J.; Laan, J.G. van der [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-10-01

    The irradiation response of PH13-8Mo stainless steel was measured up to 2.5 dpa at 200 and 300 deg. C irradiation temperatures. The PH13-8Mo, a martensitic precipitation-hardened steel, was produced by Hot Isostatic Pressing at 1030 deg. C. The fatigue tests (high cycle fatigue and fatigue crack propagation) showed a test temperature dependency but no irradiation effects. Tensile tests showed irradiation hardening (yield stress increase) of approximately 37% for 200 deg. C irradiated material tested at 60 deg. C and approximately 32% for 300 deg. C irradiated material tested at 60 deg. C. This contradicts the shift in reference temperature (T{sub 0}) measured in toughness tests (Master Curve approach), where the {Delta}T{sub 0} for 300 deg. C irradiated is approximately 170 deg. C and the {Delta}T{sub 0} for the 200 deg. C irradiated is approximately 160 deg. C. This means that the irradiation hardening of PH13-8Mo steel is not suitable to predict the shift in the reference temperature for the Master Curve approach.

  2. Nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung, E-mail: leejink@deu.ac.kr [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Bae, Dong Su [Department of Advanced Materials Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Sang Pill; Hwang, Sung Guk [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-11-01

    Highlights: • We have studied on the nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel. An ultrasonic test (UT) is an useful method to evaluate the mechanical properties of material. By measuring the velocity and the attenuation of ultrasonic wave propagating the hydrogen charged stainless steel, the relation of ultrasonic wave and mechanical properties of hydrogen charged 316L stainless steel was discussed. However, in order to evaluate the dynamic behavior of materials, an acoustic emission (AE) technique was applied to investigate the corrosion characteristics of hydrogen charged specimen. Acoustic emission is one of elastic waves caused by dislocation, cracks initiation and propagation within material from loading outside. The waveform of the acoustic emission is different depending on the damage mechanism of material. Lots of AE parameters such as energy, duration time, event and amplitude were used to analyze the dynamic behavior of the hydrogen charged specimen. • A conventional 316L stainless steel was used in this study, and electrochemical treat system for hydrogen charging of the specimen. ASTM (G142) type tensile specimens (diameter 6.0 mm, gage length 28.6 mm) were prepared, and sulfuric acid(H{sub 2}SO{sub 4}) and arsenic trioxide(As{sub 2}O{sub 3}) were used as the electrolyte, and potentiostat(HA 151) supplied the current to platinum wire and specimen. • Tensile strength and attenuation coefficient has a relation to some extent. Therefore, we could estimate the tensile strength and the hydrogen charging time by measuring the attenuation coefficient using ultrasonic wave nondestructively. • Acoustic emission technique was useful to evaluate the dynamic damage because AE parameters of AE event, average energy and average frequency showed various change by external loading at the specimens with and without hydrogen. - Abstract: Caused corrosion by hydrogen on stainless steel using

  3. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes

    International Nuclear Information System (INIS)

    Lin Bin; Hu Ronggang; Ye Chenqing; Li Yan; Lin Changjian

    2010-01-01

    Scanning electrochemical probes of corrosion potential and chloride ions were developed for the in situ monitoring of localized corrosion processes of reinforcing steel in NaCl-containing solution. The results indicated that the chloride ions (Cl - ) preferentially adsorbed and accumulated at the imperfect/defective sites, resulting in initiation and propagation of pitting corrosion on the reinforcing steel surface. An electron microprobe analyzer (EMPA) was used to examine the corrosion morphology and elemental distribution at the corroded location to investigate the origins of the preferential Cl - adsorption and pitting corrosion. By combining the in situ and ex situ images, we concluded that manganese sulfide inclusions in reinforcing steel are the most susceptible defects to pitting corrosion in chloride-containing solution.

  4. Magnetic flux gradient observation during fatigue crack propagation: A case study of SAE 1045 carbon steel used for automotive transmission parts

    Directory of Open Access Journals (Sweden)

    Ahmad S.R.

    2017-01-01

    Full Text Available The objective of this study is to evaluate the application of the metal magnetic memory (MMM technique for investigations on fatigue crack propagation in a ferromagnetic material. Fatigue failure caused by stress concentration is serious in practical engineering. However, early fatigue damages cannot be detected by using traditional nondestructive testing (NDT methods. Therefore this paper study about NDT method called metal magnetic memory (MMM that has potentials for evaluating the fatigue damage at the early damage and critical fracture stages. While its capacity to evaluate the distribution of self-magnetic leakage field signals on the component’s surface is well-established, there remains a need to scrutinize the physical mechanism and quantitative analysis aspects of this method. To begin with, a fatigue test involving a loading of 7kN was conducted on a SAE 1045 carbon steel specimen. This material is frequently used in the manufacturing of automotive transmission components that include the axle and spline shaft. MMM signals were measured along a scanning distance of 100 mm and analysed during the propagation stage. Other than revealing that the value of the magnetic flux gradient signals dH(y/dx increased in tandem with the crack length, the results also led to the detection of the crack growth location. It was anticipated that the dH(y/dx value will also exhibit an upward trend with a rise in the fatigue growth rate of da/dN. A modified Paris equation was utilized to correlate dH(y/dx with da/dn through the replacement of the stress intensity factor range ΔK. This resulted in the log-log plot of da/dN versus dH(y/dx portraying an inclination similar to the log-log plot of da/dN versus ΔK. A linear relationship was established between dH(y/dx and ΔK with the R2 value as 0.96. Players in the automotive industry can benefit from the disclosure that dH(y/dx can effectively replace ΔK for the monitoring of fatigue crack growth

  5. In-situ bending under tension shear fracture analysis and microstructure “earthquake” of DP780 dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yixi, E-mail: yxzhao@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, Sheng [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Dan, Wenjiao; Zhang, Weigang [Innovation Center for Advanced Ship and Deep-Sea Exploration, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Shuhui [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-05-17

    Dual phase (DP) steels consist of hard brittle martensite phase and soft ductile ferrite phase. With a novel bending under tension test system, in-situ symmetrical bending under tension experiments were carried out and photomicrographs of bending surface were recorded. The microstructure “earthquake” of DP780 dual phase steels was observed in the bending under tension process. By analyzing the in-situ images serious, the initiation, coalescence of cavities and propagation of micro-cracks until final fracture were analyzed. The micro-cracks form only in the outside surface of bending radius, and mainly appear near the phase boundary of ferrite and martensite. Micro-cracks coalesce and propagate in the direction perpendicular to the stretching direction approximately, and at the phase boundary of martensite and ferrite. Furthermore, digital image correlation technology was used in this study to analysis the strain distribution between ferrite and martensite during the bending under tension deformation and fracture.

  6. Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45%C steel

    Energy Technology Data Exchange (ETDEWEB)

    Chongchong, Li [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Lihong, Dong, E-mail: lihong.dong@126.com [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Haidou, Wang [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Guolu, Li [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Binshi, Xu [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China)

    2016-05-01

    Monitoring fatigue crack propagation behavior of ferromagnetic components is very important. In this paper, the tension–tension fatigue tests of center cracked tension (CCT) specimens were carried out; the variation regularity of both tangential and normal components of magnetic signals during fatigue process were investigated. The results showed that the initial abnormal signals which appeared at the notch were reversed after cyclic loading. The abnormal magnetic signals became more significant with the increase of fatigue cycles and reversed again after failure. The characteristic parameters, i.e., the peak value of tangential component, B{sub tp}, and maximum gradient value of normal component, K{sub m}, showed similar variation trends during the fatigue process, which can be divided into three different stages. An approximate linear relationship was found between the characteristic parameters and fatigue crack length 2a. The feasibility of predicting the fatigue crack propagation using the abnormal magnetic signals was discussed. What's more, the variation and distribution of the magnetic signals were also analyzed based on the theory of magnetic charge. - Highlights: • A novel and passive NDT method, i.e. MMMT method, is proposed. • Both tangential and normal components of magnetic signals were investigated. • The prediction of crack propagation by abnormal magnetic signals was discussed. • A linear relationship was found between the parameters and fatigue crack length 2a. • The parameters can be potentially used to evaluate the crack propagation state.

  7. Persistent Memory Effects and the Mid- and Post-Brick Dynamic Behaviour of Three-Way Automotive Catalysts Effets mémoires persistants et comportement dynamique des briques médiane et postérieure de catalyseurs automobiles à trois voies

    Directory of Open Access Journals (Sweden)

    Peyton Jones J.C.

    2011-09-01

    Full Text Available This paper presents the results of an experimental study into the dynamic behaviour of a three-way automotive catalyst and its associated exhaust gas oxygen sensors. Motivated by issues of feedback sensor location, the study seeks to overlay the results of repeat experiments, with sensors and fast-response gas analyzers positioned at different locations, in order to obtain a detailed picture of system dynamics at different points within the catalyst. Initial results demonstrated that the dynamic response of the catalyst can be significantly affected by a persistent memory effect in addition to reversible deactivation dynamics and the familiar oxygen storage/release dynamics of the system. In particular, the effects of prior rich or stoichiometric operation are shown to persist even after extended periods of lean operation. This memory effect is important, not only because of its potential impact on conversion efficiency, but also because of its impact on the repeatability of experiments carried out under what would appear to be near-identical operating conditions. By pre-conditioning under rich conditions highly repeatable experiments were achieved. The results were combined to give a detailed picture of catalyst dynamics at pre-, mid- and post-catalyst locations, and provide insight into catalyst and (non-ideal exhaust gas oxygen sensor behavior. Cet article présente les résultats d’une étude expérimentale en matière de comportement dynamique d’un catalyseur automobile à trois voies et de ses capteurs d’oxygène de gaz d’échappement associés. Motivée par les problèmes de localisation des capteurs de retour d’information, l’étude cherche à corréler les résultats d’expériences répétées, capteurs et analyseurs de gaz à réponse rapide étant disposés en des emplacements différents afin d’obtenir une image détaillée des dynamiques de système en différents points à l’intérieur du catalyseur. Les r

  8. The effect of crack propagation mechanism on the fractal dimension of fracture surfaces in steels

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Strnadel, B.

    2008-01-01

    Roč. 75, č. 3-4 (2008), s. 726-738 ISSN 0013-7944 R&D Projects: GA ČR(CZ) GA106/06/0646; GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : low-alloyed steel * fracture surface * fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  9. Dynamical behaviour of fast electrons in a crystalline lamella; Comportement dynamique des electrons rapides dans une lamelle cristalline

    Energy Technology Data Exchange (ETDEWEB)

    Perio, Pierre; Tournarie, Max [Commissariat a l' energie atomique et aux energies alternatives - CEA (France)

    1960-07-01

    The substitution of the reciprocal space by a 'mixed space' simplifies the use of the dynamical equation. The Friedel law is preserved. The Ventzel-Kramers-Brillouin-Rayleigh approximation appears as a planar approximation and explains the evolution of some images in electron microscopy. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 2218-2220, sitting of 23 November 1959 [French] La substitution d'un 'espace mixte' a l'espace reciproque facilite la manipulation de l'equation dynamique. La loi de Friedel est conservee. L'approximation Ventzel-Kramers-Brillouin-Rayleigh apparait comme une approximation plane et explique l'evolution de certaines images en microscopie electronique. Reproduction d'un article publie dans les Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 2218-2220, seance du 23 novembre 1959.

  10. Experimental assessment of an RFID-based crack sensor for steel structures

    Science.gov (United States)

    E Martínez-Castro, R.; Jang, S.; Nicholas, J.; Bansal, R.

    2017-08-01

    The use of welded steel cover plates had been a common design practice to increase beam section capacity in regions of high moment for decades. Many steel girder bridges with cover plates are still in service. Steel girder bridges are subject to cyclic loading, which can initiate crack formation at the toe of the weld and reduce beam capacity. Thus, timely detection of fatigue cracks is of utmost importance in steel girder bridge monitoring. To date, crack monitoring methods using in-house radio frequency identification (RFID)-based sensors have been developed to complement visual inspection and provide quantitative information of damage level. Offering similar properties at a reduced cost, commercial ultra-high frequency (UHF) passive RFID tags have been identified as a more financially viable option for pervasive crack monitoring using a dense array of sensors. This paper presents a study on damage sensitivity of low-cost commercial UHF RFID tags for crack detection and monitoring on metallic structures. Using backscatter power as a parameter for damage identification, a crack sensing system has been developed for single and multiple tag configurations for increased sensing pervasiveness. The effect on backscatter power of the existence and stage of crack propagation has been successfully characterized. For further automation of crack detection, a damage index based on the variation of backscatter power has also been established. The tested commercial RFID-based crack sensor contributes to the usage of this technology on steel girder bridges.

  11. Self-healing phenomena on corroding steel in simulated pore water and mortar, substantiated via cyclic voltammetry and surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koleva, D. A.; Breugel, K. van [Delft University of Technology, The Netherlands Faculty of CiTG, Department Materials and Environment, Delf (Netherlands); Hu, J. [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); Kolev, H. [Bulgarian Academy of Sciences, Institute of Catalysis, Sofia (Bulgaria)

    2013-07-01

    The application of polymeric nano-particles was investigated as an approach to control corrosion and/or self-heal corrosion damage on steel in simulated alkaline medium and reinforced mortar. The “self-healing agent”, present in the closed inner volume of PEO-b-PS vesicles was Ca-based and chosen as such due to the natural predominance of Ca in the investigated system. The vesicles’ concentration was 0.0024 wt.% in the model medium and 0.025 wt.% per cement weight for the case of mortar. Therefore, a “self-repair” or “self-healing” of the steel product layer solely due to the Ca- component is not realistic in view of these minimal concentrations. The most plausible mechanism is the nature of incorporation of the Ca-containing vesicles in the product layer, enhanced chloride binding effects and adsorption on active sites on the steel surface. A more uniform and stable surface layer, initial pitting formation and propagation, but consecutive “healing”, are evidenced by surface analysis and electrochemical response i.e. largely reduced anodic and corrosion currents and no further pit propagation are observed when Ca-containing vesicles are present in the model medium. Corrosion products-free steel/cement paste interface is relevant for the reinforced mortar, containing Ca-rich vesicles in contrast to vesicles-free and empty vesicles-containing matrix. Key words: corrosion; concrete; polymeric nano-particles; CVA; SEM; XRD; XPS.

  12. Instrumented impact testing as a way to obtain further information on the behaviour of steel in welded constructions

    International Nuclear Information System (INIS)

    Nielsen, A.

    1976-05-01

    Based on experience gained from instrumented impact testing of ten different mild steels using test pieces of different geometrical shape (Charpy V-notch, Charpy knife-notch, DVM, Schnadt K 0 , Ksub(0.5), K 1 and K 2 ), some general features of the fracture process during impact testing are discussed. Steels can be divided into two main groups that are significantly different with respect to the behaviour during Charpy V-notch testing. The difference vanishes when a crack-like notch is used, and other properties of steel are revealed. It is evident that, even when modified impact testing bears little resemblance to what is happening in an actual steel construction. For the purpose of investigating the fracture conditions in welds, it seems more significant to relate the dynamic aspects to the speed of propagation of the crack when it starts to penetrate the volume considered at a certain stress level. (author)

  13. Crack growth behavior of low-alloy bainitic 51CrV4 steel

    OpenAIRE

    Canadinç, Demircan; Lambers, H. G.; Gorny B.; Tschumak, S.; Maier, H.J.

    2010-01-01

    The crack growth behavior of low-alloy bainitic 51CrV4 steel was investigated. The current results indicate that the stress state present during the isothermal bainitic transformation has a strong influence on the crack propagation behavior in the near threshold regime, when the crack growth direction is perpendicular to the loading axis of the original sample undergoing phase transformation. However, the influence of stresses superimposed during the bainitic transformation on the crack growt...

  14. The effect of potential upon the high-temperature fatigue crack growth response of low-alloy steels. Part 1: Crack growth results

    International Nuclear Information System (INIS)

    James, L.A.; Moshier, W.C.

    1997-01-01

    Corrosion-fatigue crack propagation experiments were conducted on several low-alloy steels in elevated temperature aqueous environments, and experimental parameters included temperature, sulfur content of the steel, applied potential level, and dissolved hydrogen (and in one case, dissolved oxygen) concentration in the water. Specimen potentials were controlled potentiostatically, and the observation (or non-observation) of accelerated fatigue crack growth rates was a complex function of the above parameters. Electrochemical results and the postulated explanation for the complex behavior are given in Part II

  15. Influence of quantity of non-martensite products of transformation on resistance to fracture of improving structural steel

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Golovanenko, Yu.S.; Zikeev, V.N.

    1978-01-01

    18KhNMFA, low-carbon, alloyed steel and 42KhMFA medium-carbon, alloyed steel have been examined. For the purpose of obtaining different structures in hardening the steel, different cooling rates, different temperatures and isothermal holding times are applied. The following has been shown: on tempering to the same hardness (HV 300), the presence of non-martensite structures in hardened state does not practically influence the standard mechanical properties of steel (sigmasub(B), sigmasub(0.2), delta, PSI). The resistance of steel to the brittle failure is enhanced by the uniform, fine-disperse distribution of the carbide phase in the structure of lower bainite (up to 80 % bainite in martensite for 42KhMF steel to be improved), as well as strongly fragmented packages of rack martensite-bainite (up to 50 % lower bainite in martensite of 18KhNMFA steel). The formation of the upper bainite in the structure of the hardened steels 18KhNMFA and 42KhMF results on tempering in the formation of coarse, non-uniform, branched carbide inclusions, and this, in its turn, leads to raising the cold-shortness threshold and to lowering the amount of work as required for propagation of a crack. The presence of ferritic-pearlitic structures in the structural steels hardened to martensite and bainite results in reducing the resistance of steel to the brittle failure; the presence of every 10 % ferritic-pearlitic component in martensite of the structural steels 18KhNMFA and 42KhMFA to be thermally improved, raises T 50 by 8 deg and 20 deg C, respectively

  16. Ferrite channel effect on ductility and strain hardenability of ultra high strength dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Kumar B., E-mail: ravik@nmlindia.org [CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Patel, Nand Kumar [O.P Jindal University, Raigarh 496001 (India); Mukherjee, Krishnendu; Walunj, Mahesh; Mandal, Gopi Kishor [CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Venugopalan, T. [Tata Steel Limited, Jamshedpur 831001 (India)

    2017-02-08

    This study describes an effect of controlled austenite decomposition on microstructure evolution in dual phase steel. Steel sheets austenitized at various annealing temperatures were rapidly cooled to the inter-critical annealing temperature of 800 °C for the isothermal decomposition of austenite and then ultra fast cooled to room temperature. The scanning electron microscope analysis of evolving microstructure revealed ferrite nucleation and growth along prior austenite grain boundaries leading to ferrite network/channel formation around martensite. The extent of ferrite channel formation showed a strong dependence on the degree of undercooling in the inter-critical annealing temperature regime. Uniaxial tensile deformation of processed steel sheets showed extensive local inter-lath martensite damage activity. Extension/propagation of these local micro cracks to neighboring martensite grains was found to be arrested by ferrite channels. This assisted in delaying the onset of global damage which could lead to necking and fracture. The results demonstrated an alternate possible way of inducing ductility and strain hardenability in ultra high strength dual phase steels.

  17. Développement d'un modèle ostéoarticulaire du genou humain pour une analyse dynamique du contact en grands déplacements

    OpenAIRE

    Bideau , Nicolas; Dao , T.T.; Rassineux , Alain; Ho Ba Tho , Marie-Christine

    2011-01-01

    National audience; Le principal objectif de ce travail est le développement d'un modèle tridimensionnel de l'articulation du genou en grands déplacements. A partir des données d'imagerie médicale (IRM), un modèle géométrique 3D a été développé. Ce modèle est résolu par la méthode des éléments finis. La simulation proposée permet de comprendre le comportement dynamique des différentes structures articulaires lors d'un mouvement de grande amplitude.

  18. Dynamique de transfert des matières organiques et inorganiques le long du continuum fluvial de la Garonne : impact de la retenue de Malause

    OpenAIRE

    Mamoudou, Mohamadou

    2008-01-01

    Les fleuves sont à l'origine des transferts de matières organiques et inorganiques des continents vers les océans. Ces matières peuvent être séparées par filtration (généralement à 0,45 ou 0,22µm) entre une phase particulaire et une phase dissoute. Le devenir des formes organiques va dépendre de leurs origines. Les formes labiles sont souvent rapidement minéralisées lors de leur transfert tandis que les formes réfractaires ont un comportement conservatif. Nous avons étudié la dynamique de tou...

  19. A case study of environmental assisted cracking in a low alloy steel under simulated environment of pressurized water reactor

    International Nuclear Information System (INIS)

    Shahzad, M.; Qureshi, A.H.; Waqas, H.; Hussain, N.

    2011-01-01

    Highlights: → We study environmental assisted cracking (EAC) in simulated PWR environment. → The corrosion rate in simulated coolant is low but increases with B conc. → A516 steel shows EAC in simulated coolant particularly at high oxygen levels. → Fracture occurs when the surface cracks join the subsurface cracks. → Corrosion of MnS inclusions and ferrite provide crack nucleation sites. -- Abstract: The electromechanical behavior of a pressure vessel grade steel A516 has been investigated using potentiodynamic polarization curves and slow strain rate test (SSRT) in simulated environment of pressurized water reactor. The anodic polarization behavior shows that the steel remains active in the solution till localized attack (pitting) starts. The cracks initiated at the surface propagate in a trans-granular mode. These cracks are initiated at the inclusion (MnS) sites and at the interfaces between local anode (ferrite) and local cathode (pearlite). It seems that the ultimate fracture occurs when the propagating surface cracks join the subsurface hydrogen induced cracks. The addition of oxygen in the testing chamber to supersaturation levels shifts the corrosion potential to anodic side and significantly lowers the strength and ductility. Compared to the room temperature properties, the UTS and tensile elongation in various simulated conditions are reduced by 10-25% and 25-75%, respectively.

  20. Experimental and field achievements in the ultrasonic examination of austenitic stainless steel

    International Nuclear Information System (INIS)

    Dombret, P.; Cermak, J.; Delaide, M.; Verspeelt, D.; Caussin, P.

    1988-01-01

    In spite of the many disturbances caused in the propagation of acoustic waves by the metallurgical structure of austenitic stainless steel, ultrasonic examination can provide in many cases key information in the process of assessing the structural integrity of industrial installations made from such materials. Indeed the steel structure variability makes every cases peculiar, with the consequence that the achievement of a dedicated feasibility study will often enhance drastically the examination performance. Such an exploratory exercise imposes to use a careful methodology regarding transducer and pulser selection, data analysis, performance evaluation, procedure qualification and field implementation. Through various examples from the nuclear industry field, the paper illustrates that kind of approach, as well as the extent to which it has been made possible to optimize the actual inspection capability and reliability. (author)

  1. Hydrogen Embrittlement Mechanism in Fatigue Behaviour of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Brück Sven

    2018-01-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behaviour of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations was the changes in the mechanisms of short crack propagation. The aim of the ongoing investigation is to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions.

  2. Experimental and field achievements in the ultrasonic examination of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Dombret, P; Cermak, J; Delaide, M; Verspeelt, D; Caussin, P

    1988-12-31

    In spite of the many disturbances caused in the propagation of acoustic waves by the metallurgical structure of austenitic stainless steel, ultrasonic examination can provide in many cases key information in the process of assessing the structural integrity of industrial installations made from such materials. Indeed the steel structure variability makes every cases peculiar, with the consequence that the achievement of a dedicated feasibility study will often enhance drastically the examination performance. Such an exploratory exercise imposes to use a careful methodology regarding transducer and pulser selection, data analysis, performance evaluation, procedure qualification and field implementation. Through various examples from the nuclear industry field, the paper illustrates that kind of approach, as well as the extent to which it has been made possible to optimize the actual inspection capability and reliability. (author).

  3. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Science.gov (United States)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  4. Averaged strain energy density-based synthesis of crack initiation life in notched steel bars under torsional fatigue

    Directory of Open Access Journals (Sweden)

    Filippo Berto

    2016-10-01

    Full Text Available The torsional fatigue behaviour of circumferentially notched specimens made of austenitic stainless steel, SUS316L, and carbon steel, SGV410, characterized by different notch root radii has been recently investigated by Tanaka. In that contribution, it was observed that the total fatigue life of the austenitic stainless steel increases with increasing stress concentration factor for a given applied nominal shear stress amplitude. By using the electrical potential drop method, Tanaka observed that the crack nucleation life was reduced with increasing stress concentration, on the other hand the crack propagation life increased. The experimental fatigue results, originally expressed in terms of nominal shear stress amplitude, have been reanalysed by means of the local strain energy density (SED averaged over a control volume having radius R0 surrounding the notch tip. To exclude all extrinsic effects acting during the fatigue crack propagation phase, such as sliding contact and/or friction between fracture surfaces, crack initiation life has been considered in the present work. In the original paper, initiation life was defined in correspondence of a 0.1÷0.4-mm-deep crack. The control radius R0 for fatigue strength assessment of notched components, thought of as a material property, has been estimated by imposing the constancy of the averaged SED for both smooth and cracked specimens at NA = 2 million loading cycles

  5. Metallographic approach to the damage of austenitic stainless steels under plastic fatigue or under creep: description and physical interpretation of fatigue-creep-oxidation interactions

    International Nuclear Information System (INIS)

    Levaillant, Christophe

    1984-01-01

    This research thesis reports the study of interactions between fatigue, creep and oxidation in austenitic stainless steels which are to be used in the construction of fast breeder reactors. This study is addressed by means of low cycle plastic fatigue test with imposed strain, performed at 600 C with tensile relaxation hold times which may reach 24 hours. Continuous fatigue tests (without hold time) and pure creep tests have also been performed to define 'pure' fatigue damages and 'pure' creep damages. Two grades of Z3 CND 17-13 steel have been studied. Thus fracture mechanisms, crack initiation and propagation, and crack kinetic propagation have been studied. Metallographic measurements of damage have been performed. Damage types have been identified: propagation of cracks initiated at the surface, and intergranular de-cohesion within the material. An approximate modelling is proposed, as well as a critical comparison of various published models of fatigue-creep interaction. In order to predict structure lifetime, a new test methodology is proposed, based on experimental results

  6. Steel fibre concrete, a safer material for reactor construction. A general theory for rupture prediction

    International Nuclear Information System (INIS)

    Rammant, J.P.; Van Laethem, L.; Backx, E.

    1977-01-01

    The effect of steel fibre reinforcement on the mechanical behavior of concrete reactor structures is studied. It is shown that this material leads to a higher safety factor for highly stressed concrete structures like prestressed concrete pressure vessels. The reinforcement of concrete with short steel fibres results clearly in a fundamental change of the material properties. The study comprises basic experiments, the elaboration of an expression of the material laws, the development of a general computer program and the comparison of computational results with more elaborate experiments. Basic experimental work is conducted to determine the material characteristics of the fibre reinforced concrete. It is shown how the fibre reinforcement mechanism is translated into mathematical formulae by expressing the principal characteristics as matrix relationships. These relationships describe the elasto-plastic behavior and the cracked behavior. Probabilistic principles are used to express to fibre efficiency, such that a general stress-strain relationship is incorporated in a subsequent computer program. A general finite element program is developed which includes the new matrix relationships, the pull-out of fibres and the general stress-strain equations. A nonlinear calculation method gives the propagation of the distributed cracks with increasing load untill failure of the structure. Similarly, thermal cycling conditions are accounted for. For example the crack propagation in a fibre reinforced beam was measured by the photostress coating technique: the comparison with the computed crack propagation reveals an excellent agreement. Other comparative studies on simple structural parts are also reported

  7. Distinct Fracture Patterns in Construction Steels for Reinforced Concrete under Quasistatic Loading— A Review

    Directory of Open Access Journals (Sweden)

    Fernando Suárez

    2018-03-01

    Full Text Available Steel is one of the most widely used materials in construction. Nucleation growth and coalescence theory is usually employed to explain the fracture process in ductile materials, such as many metals. The typical cup–cone fracture pattern has been extensively studied in the past, giving rise to numerical models able to reproduce this pattern. Nevertheless, some steels, such as the eutectoid steel used for manufacturing prestressing wires, does not show this specific shape but a flat surface with a dark region in the centre of the fracture area. Recent studies have deepened the knowledge on these distinct fracture patterns, shedding light on some aspects that help to understand how damage begins and propagates in each case. The numerical modelling of both fracture patterns have also been discussed and reproduced with different approaches. This work reviews the main recent advances in the knowledge on this subject, particularly focusing on the experimental work carried out by the authors.

  8. Ultrasonic inspectability of austenitic stainless steel and dissimilar metal weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Pudovikov, S.; Bulavinov, A.; Kroening, M. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren IZFP, Saarbruecken (Germany)

    2008-07-01

    Since their invention in 1912, austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, austenitic stainless steel material is qualified to meet the design criteria of high quality, safety related applications, for example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The ''Sampling Phased Array'' technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with image reconstruction techniques using ''SynFoc'' algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priory, we implement a new phase adjustment called ''Reverse Phase Matching'' technique. This algorithm permits the acquisition of phase-corrected A-scans that represent the actual sound propagation in the anisotropic structure; this technique can be utilized for image reconstruction. (orig.)

  9. Heavy-Section Steel Technology program fracture issues

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1989-10-01

    Large scale fracture mechanics tests have resulted in the identification of a number of fracture technology issues. Identification of additional issues has come from the reactor vessel materials irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized thermal shock (PTS) analysis. Mixed mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy Section Steel Technology (HSST) program at ORNL. 24 refs., 18 figs

  10. Heavy-section steel technology program: Fracture issues

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-01-01

    Large-scale fracture mechanics tests have resulted in the identification of a number of fracture technology issues. Identification of additional issues has come from the reactor vessel materials irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized thermal shock (PTS) analysis. Mixed mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low-strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring-forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy Section Steel Technology (HSST) program at ORNL

  11. High-energy air shock study in steel and grout pipes

    International Nuclear Information System (INIS)

    Glenn, H.D.; Kratz, H.R.; Keough, D.D.; Duganne, D.A.; Ruffner, D.J.; Swift, R.P.; Baum, D.

    1979-01-01

    Voitenko compressors are used to generate 43 mm/μs air shocks in both a steel and a grout outlet pipe containing ambient atmospheric air. Fiber-optic ports provide diaphragm burst times, time-of-arrival (TOA) data, and velocities for the shock front along the 20-mm-ID exit pipes. Pressure profiles are obtained at higher enthalpy shock propagation than ever before and at many locations along the exit pipes. Numerous other electronic sensors and postshot observations are described, as well as experimental results. The primary objectives of the experiments are as follows: (1) provide a data base for normalization/improvement of existing finite-difference codes that describe high-energy air shocks and gas propagation; (2) obtain quantitative results on the relative attenuation effects of two very different wall materials for high-energy air shocks and gas flows. The extensive experimental results satisfy both objectives

  12. Prediction of ttt curves of cold working tool steels using support vector machine model

    Science.gov (United States)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    The cold working tool steels are of high carbon steels with metallic alloy additions which impart higher hardenability, abrasion resistance and less distortion in quenching. The microstructure changes occurring in tool steel during heat treatment is of very much importance as the final properties of the steel depends upon these changes occurred during the process. In order to obtain the desired performance the alloy constituents and its ratio plays a vital role as the steel transformation itself is complex in nature and depends very much upon the time and temperature. The proper treatment can deliver satisfactory results, at the same time process deviation can completely spoil the results. So knowing time temperature transformation (TTT) of phases is very critical which varies for each type depending upon its constituents and proportion range. To obtain adequate post heat treatment properties the percentage of retained austenite should be lower and metallic carbides obtained should be fine in nature. Support vector machine is a computational model which can learn from the observed data and use these to predict or solve using mathematical model. Back propagation feedback network will be created and trained for further solutions. The points on the TTT curve for the known transformations curves are used to plot the curves for different materials. These data will be trained to predict TTT curves for other steels having similar alloying constituents but with different proportion range. The proposed methodology can be used for prediction of TTT curves for cold working steels and can be used for prediction of phases for different heat treatment methods.

  13. Fatigue fracture analysis in medium carbon structural steel and austenitic stainless steel by X-ray fractography

    International Nuclear Information System (INIS)

    Rao, N.N.; Azmi bin Rahmat

    1994-01-01

    Apart from the reidual stresses present in the bulk material, a growing fatigue crack may develop its own stress field ahead of the crack tip which in turn could influence the crack propagation behaviour. A fracture surface analysis through measurement of the residual stress of a failed component may provide some additional useful information to that obtained through conventional metallurgical and fracture mechanics investigations. This method of fracture surface analysis using x-ray diffraction technique is known as X -ray Fractography . Residual stress (ρ sub γ) and the full width at half maximum (FWHM) of the x-ray diffraction profile of any reflection are determined at different crack lengths on the fracture surface. These are then corelated to the fracture toughness parameters such as fracture toughness K sub I sub C, the maximum stress intensity factor K sub max and the stress intensity factor range δK. The present investigation aims at detailed x-ray analysis of the fatigue fractured surfaces of the compact tension specimens prepared from ferritic and austenitic stainless steels. The ferritic steel has been subjected to various heat treatments to obtain different microstructures and mechanical properties. The overall observations are analyzed through fatigue (cumulative) damage and material science concepts

  14. Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-04-01

    In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.

  15. SCC propagation and cessation behavior near the fusion boundary of dissimilar weld joint with Ni-based weld metal and low alloy steel

    International Nuclear Information System (INIS)

    Ishizawa, Makoto; Abe, Hiroshi; Watanabe, Yutaka

    2009-01-01

    The purpose of this study is to investigate the following items focused on the microstructure near the fusion boundary of dissimilar weld joint with Ni-based weld metal and low alloy steel; (1) Microstructural characteristics near the fusion boundary, (2) Dominant factor that makes crack retardation near the fusion boundary. Main conclusions can be summarized as follows; (1) From the results of CBB tests, it has been understood that the low alloy steel has no SCC susceptibility and that there is a difference in oxidation behavior between high and low sulfur containing low alloy steel, (2) In Alloy182/LAS sample, most of crack tips were located at the fusion boundary. It has been thought that crack become less active when crack reach at fusion boundary, (3) It has been suggested that the dominant factor of crack retardation is low SCC susceptibility of low alloy steel in high temperature water. (author)

  16. Jumps in the curve of creep of the stainless steel

    International Nuclear Information System (INIS)

    Silveira, T.L.; Monteiro, S.N.

    The discontinuous flow observed in creep for several stainless steels at certain streels conditions in the interval of temperatures from 550 to 800 0 C has been investigated. This phenomenon appears as repetitive jumps with strain and stress increments that could be evaluated and related to the tests variables. The stress increment increases, consistently, with the stress level at the jump. This Δo versus sigma relation is due to strain aging effects and is a consequence of the variation of the stain rate during the deformation band propagation which causes the jump [pt

  17. Ultrasonic examination of stainless steel weldments

    International Nuclear Information System (INIS)

    Mullan, J.V.

    1976-01-01

    Atomic Energy of Canada Ltd. have specified a combination of liquid penetrant, radiography and ultrasonic examination of welds in austenitic stainless steel. In the past, angle wedges attached to ultrasonic transducers have been designed so that only shear waves are propagated in the medium. Shear waves, however, do not penetrate one half inch of weld metal without high transmission losses, so that the signal-to-noise ratio is poor. Canadian Vickers have therefore developed a method using longitudinal waves at 45 deg in the material. The presence also of a shear wave at an angle of 19 deg does not cause confusion, because the shear wave travels slower, and has farther to travel. Some considerations for the design of transducers and wedges are outlined. (N.D.H.)

  18. Fire Propagation Performance of Intumescent Fire Protective Coatings Using Eggshells as a Novel Biofiller

    Directory of Open Access Journals (Sweden)

    M. C. Yew

    2014-01-01

    Full Text Available This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens’ B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I=4.3 and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.

  19. EIS and adjunct electrical modeling for material selection by evaluating two mild steels for use in super-alkaline mineral processing

    DEFF Research Database (Denmark)

    Bakhtiyari, Leila; Moghimi, Fereshteh; Mansouri, Seyed Soheil

    2012-01-01

    The production of metal concentrates during mineral processing of ferrous and non-ferrous metals involves a variety of highly corrosive chemicals which deteriorate common mild steel as the material of choice in the construction of such lines, through rapid propagation of localized pitting...... in susceptible parts, often in sensitive areas. This requires unscheduled maintenance and plant shut down. In order to test the corrosion resistance of different available materials as replacement materials, polarization and electrochemical impedance spectroscopy (EIS) tests were carried out. The EIS numerical...... software-enhanced polarization resistance, and reduced capacitance added to much diminished current densities, verified the acceptable performance of CK45 compared with high priced stainless steel substitutes with comparable operational life. Therefore, CK45 can be a suitable alternative in steel...

  20. Deformation-Induced Microstructural Banding in TRIP Steels

    Science.gov (United States)

    Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.

    2018-05-01

    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.

  1. Crack closure in near-threshold fatigue crack propagation in railway axle steel EA4T

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Pavel; Vojtek, Tomáš; Náhlík, Luboš; Hutař, Pavel

    2017-01-01

    Roč. 185, NOV (2017), s. 2-19 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Fatigue crack propagation * crack closure * EA4T * Railway axle Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering , reliability analysis Impact factor: 2.151, year: 2016

  2. Mechanical properties of austenitic stainless steels in sodium

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1978-03-01

    A detailed review of the mechanical properties of austenitic stainless steels in liquid sodium is presented. Consideration has been given to the influence of the of the impurities in reactor sodium and metallurgical variables upon the stress rupture life, the low cycle fatigue and combined creep/fatigue resistance, elastic-plastic crack propagation rates, the high cycle fatigue life, tensile properties and fracture toughness. The effects of exposure to contaminated sodium prior to testing are also discussed. Examples of the success of mechanistic interpretations of materials behaviour in sodium are given and additionally, the extent to which mechanical properties in sodium may be predicted with the use of appropriate data. (author)

  3. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Science.gov (United States)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  4. A Review on Strengthening Steel Beams Using FRP under Fatigue

    Directory of Open Access Journals (Sweden)

    Mohamed Kamruzzaman

    2014-01-01

    Full Text Available In recent decades, the application of fibre-reinforced polymer (FRP composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

  5. A review on strengthening steel beams using FRP under fatigue.

    Science.gov (United States)

    Kamruzzaman, Mohamed; Jumaat, Mohd Zamin; Sulong, N H Ramli; Islam, A B M Saiful

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

  6. A Review on Strengthening Steel Beams Using FRP under Fatigue

    Science.gov (United States)

    Jumaat, Mohd Zamin; Ramli Sulong, N. H.

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221

  7. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  8. Angio-RM morphologique et dynamique sans injection de contraste dans l’exploration des pathologies neurovasculaires à l’étage cervical et encéphalique

    OpenAIRE

    Raoult , Hélène

    2014-01-01

    ProblématiqueL’angio-IRM (ARM) est devenue incontournable dans la prise en charge des pathologies neurovasculaires. Elle permet en effet d’évaluer les pathologies modifiant la dynamique circulatoire, telles les sténoses artérielles, plus fréquentes à l’étage cervical et générant des flux sanguins accélérés voire turbulents en amont et ralentis en aval; ou bien les shunts artério-veineux, telles les malformations artério-veineuses encéphaliques, caractérisés par des flux accélérés et complexes...

  9. Effect of ETA treatment on corrosion fatigue in rotors and blades and stress corrosion cracking in 3.5 NiCrMoV steel low-pressure turbine discs

    International Nuclear Information System (INIS)

    Hitomi, Itoh; Takashi, Momoo; Takayuki, Shiomi

    2001-01-01

    In recent years, to increase the reliability and reduce the amount of feed water iron to prevent of fouling of steam generator tubes, ethanolamine (ETA) treatment has been adopted into the secondary system. In this investigation, the authors verified that ethanolamine treatment does not adversely affect the susceptibility of either stress corrosion cracking (SCC) in the turbine discs that are the principal units in the secondary system or corrosion fatigue (CF) in rotors and blades. In the first stage, a laboratory investigation was made of (1) SCC initiation and propagation in 3,5 NiCrMoV steel and (2) CF in 3,5 NiCrMoV steel and blade steels, in both cases using deaerated water to which had been added ethanolamine with few organic acids that is 10 times the estimated concentration. It was confirmed that the ethanolamine treatment had almost no effect. In the second stage, test pieces (removed from the disc steel inserted into the turbine extraction chamber before the ethanolamine treatment was started) were used to observe the initiation and propagation of SCC. Even after long-term observation, ethanolamine treatment into the secondary system was found to have almost no effect on the susceptibility of SCC in discs. (author)

  10. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Directory of Open Access Journals (Sweden)

    Ming Qin

    Full Text Available FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10−7–5.748 × 10−7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa m. The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface. Keywords: FV520B, Wedge opening loading specimen, Stress corrosion cracking, Hydrogen sulfide

  11. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  12. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  13. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

    Science.gov (United States)

    Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.

    2018-05-01

    Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

  14. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  15. Fabrication of irradiation capsule for IASCC irradiation tests (2). Irradiation capsule for crack propagation test (Joint research)

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Ishitsuka, Etsuo; Kawamura, Hiroshi; Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi

    2008-03-01

    It is known that irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, it is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack propagation test is reported. (author)

  16. MANGO PROPAGATION

    OpenAIRE

    ALBERTO CARLOS DE QUEIROZ PINTO; VICTOR GALÁN SAÚCO; SISIR KUMAR MITRA; FRANCISCO RICARDO FERREIRA

    2018-01-01

    ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud) as well as the main asexual propagation methods...

  17. Vibration stress relief treatment in welded samples of ST-3 steel

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Echevarria, J.F.; Estevez, A.; Perez, A.; Aragon, B.

    1996-01-01

    The presented work is aimed to find the optimal vibration frequency and treatment duration for ST-3 steel welded test pieces. In the experiment transversal stresses were not virtually relieved by the application of vibrations at the three natural frecuencies. With regard to the optimal frequency for our system, the firths natural frequency appears to be most effective one, wherewith a maximum 35-70 % longitudinal stress relief was obtained. The influence of the propagation direction (transversal or longitudinal) of vibrations on stress relief in a welded joint was confirmed

  18. Fatigue damage in coarse-grained lean duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar; Hereñú, S.; Marinelli, M.C.; Alvarez-Armas, I.

    2016-04-06

    The present investigation is focused on assessing the effect of a thermal treatment for grain coarsening on the low cycle fatigue damage evolution in two types of Lean Duplex Stainless Steels (LDSSs). The dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Additionally, a detailed analysis of short crack initiated and grown during low cycle fatigue (LCF) is performed by means of optical and scanning electron (SEM) microscopy in combination with automated electron back-scattered diffraction (EBSD) technique. Though in both coarse-grained LDSSs the short cracks nucleate in the ferrite phase, in each steels its origin is different. The embrittlement caused by the Cr{sub 2}N precipitation and the plastic activity sustained by each phase can explain this difference. The propagation behavior of the short cracks present two alternative growing mechanisms: the crack grows along a favorable slip plane with high Schmid Factor (SF) or the crack alternates between two slip systems. In both cases, the crack follows the path with the smallest tilt angle (β) at a grain boundary.

  19. Metallurgical analysis of a failed maraging steel shear screw used in the band separation system of a satellite launch vehicle

    Directory of Open Access Journals (Sweden)

    S.V.S. Narayana Murty

    2016-10-01

    Full Text Available Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.

  20. Microstructure evolution in TRIP-aided seamless steel tube during T-shape hydroforming process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiyuan [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Zhang, Zicheng, E-mail: zhangzicheng2004@126.com [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Manabe, Ken-ichi [Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397 (Japan); Li, Yanmei [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Misra, R.D.K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, 44130 Lafayette, LA 70504-4130 (United States)

    2014-08-15

    Transformation-induced plasticity aided seamless steel tube comprising of ferrite, bainite, and metastable austenite was processed through forging, piercing, cold-drawing, and two-stage heat treatment. T-shape hydroforming is a classic forming method for experimental research and practical production. The current work studied austenite-to-martensite transformation and microcrack initiation and propagation of the tube during T-shape hydroforming using electron backscattering diffraction, scanning electron microscopy, and transmission electron microscopy. The strain distribution in the bcc-phase and fcc-phase was studied by evaluating changes in the average local misorientation. Compared to the compressive stress, metastable austenite with similar strain surrounding or inside the grains transformed easier under tensile loading conditions. The inclusions were responsible for microcrack initiation. The propagation of the cracks is hindered by martensite/austenite constituent due to transformation induced plasticity effect. The volume fraction of untransformed retained austenite decreased with increase in strain implying transformation-induced plasticity effect. - Highlights: • Hydroformed tubes processed via TRIP concept • EBSD provided estimate of micro local strain. • Retained austenite hinders propagation of microcracks.

  1. X-ray diffraction study of microstructural changes during fatigue damage initiation in steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, B., E-mail: bianca@lts.coppe.ufrj.br [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Lesage, J. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Pasqualino, I. [Subsea Technology Laboratory (LTS), Ocean Engineering Department, COPPE/Federal University of Rio de Janeiro, PO Box 68508, Cidade Universitaria, CEP 21945-970, Rio de Janeiro/RJ (Brazil); Benseddiq, N. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Bemporad, E. [Interdepartmental Laboratory of Electron Microscopy (LIME), University of Rome TRE, Via Della Vasca Navale 79, 00146 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer In this work we study the fatigue damage evolution in an API 5L X60 steel. Black-Right-Pointing-Pointer Microstructural changes and residual stresses are evaluated during fatigue tests. Black-Right-Pointing-Pointer Microdeformations and macro residual stresses are estimated by X-ray diffraction. Black-Right-Pointing-Pointer Results are discussed in view of an indicator of fatigue damage initiation. Black-Right-Pointing-Pointer This indicator could allow the prediction of residual life before macrocracking. - Abstract: Steel pipes used in the oil and gas industry undergo the action of cyclic loads that can cause their failure by fatigue. A consistent evaluation of the fatigue damage during the initiation phase should fundamentally be based on a nanoscale approach, i.e., at the scale of the dislocation network, in order to take into account the micromechanisms of fatigue damage that precede macrocrack initiation and propagation until the final fracture. In this work, microstructural changes related to fatigue damage initiation are investigated in the API 5L X60 grade steel, used in pipe manufacturing. Microdeformations and macro residual stress are evaluated using X-ray diffraction in real time during alternating bending fatigue tests performed on samples cut off from an X60 steel pipe. The aim of this ongoing work is to provide ground for further development of an indicator of fatigue damage initiation in X60 steel. This damage indicator could allow a good residual life prediction of steel pipes previously submitted to fatigue loading, before macroscopic cracking, and help to increase the reliability of these structures.

  2. Low cycle thermomechanical fatigue of reactor steels: Microstructural and fractographic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Kasl, Josef; Jandova, Dagmar [Výzkumný a zkušební ústav Plzeň s.r.o., Tylova 1581/46, 316 00 Plzen (Czech Republic); Jóni, Bertalan [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Eötvös Loránd University, Egyetem tér 1-3, Budapest H-1053 (Hungary); Misják, Fanni [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. 29-33, Budapest H-1121 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-07-29

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of a VVER-440 reactor pressure vessel were investigated under fully reversed total strain controlled low cycle fatigue tests. The measurements were carried out in isothermal conditions at 260 °C and with thermal-mechanical conditions in the range 150–270 °C using a GLEEBLE-3800 servo-hydraulic thermal-mechanical simulator. The low cycle fatigue results were evaluated with the Coffin–Manson law, and the parameters of the Ramberg–Osgood stress–strain relation were investigated. Fracture mechanics behavior was observed using scanning electron microscopic analysis of the crack shapes and fracture surfaces. Crack propagation was assessed in relation to the actual crack size and the loading level. Interrupted fatigue tests were also carried out to investigate the kinetics of the fatigue evolution of the materials. Microstructural evaluation of the samples was performed using light, scanning and transmission electron microscopy as well as X-ray diffraction, and measurement of dislocations was completed using TEM and XRD. The course of dislocation density in relation to cumulative usage factor was similar for both steels. However, the nature and distribution of dislocations were different in the individual steels and this resulted in different mechanical behaviors. The nature of the fracture surfaces of both steels appeared similar despite differences in dislocation arrangement. The distances between striation lines initially increased with increasing crack length and then became saturated. The low cycle fatigue behavior investigated can provide a reference for the remaining life assessment and lifetime extension analysis of nuclear power plant components.

  3. Applications of sub-optimality in dynamic programming to location and construction of nuclear fuel processing plant; Application de la sous-optimalite en programmation dynamique a la localisation et la cadence optimales de construction des equipements

    Energy Technology Data Exchange (ETDEWEB)

    Thiriet, L; Deledicq, A [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires, section des etudes economiques generales

    1968-09-01

    First, the point of applying Dynamic Programming to optimization and Operational Research problems in chemical industries are recalled, as well as the conditions in which a dynamic program is illustrated by a sequential graph. A new algorithm for the determination of sub-optimal politics in a sequential graph is then developed. Finally, the applications of sub-optimality concept is shown when taking into account the indirect effects related to possible strategies, or in the case of stochastic choices and of problems of the siting of plants... application examples are given. (authors) [French] On rappelle d'abord l'interet de la Programmation Dynamique dans les problemes d'optimisation et de Recherche Operationnelle dans les industries chimiques, et les conditions de representation d'un programme dynamique par un graphe sequentiel. On expose ensuite un nouvel algorithme de determination de politiques sous-optimales dans un graphe sequentiel. On montre enfin les applications du concept de sous-optimalite a la prise en compte d'effets indirects lies aux politiques possibles, aux choix dans l'aleatoire, a des problemes de localisation optimale d'usines... et on donne des exemples d'utilisation. (auteurs)

  4. Environment-Assisted Cracking in Custom 465 Stainless Steel

    Science.gov (United States)

    Lee, E. U.; Goswami, R.; Jones, M.; Vasudevan, A. K.

    2011-02-01

    The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.

  5. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  6. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    International Nuclear Information System (INIS)

    Halim, Zakiah Abd; Jamaludin, Nordin; Junaidi, Syarif; Yahya, Syed Yusainee Syed

    2015-01-01

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  7. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part A Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. This paper presents a statistical analysis of high frequency stress wave signals captured from a newly developed noninvasive, non-destructive tube inspection technique known as the vibration impact acoustic emission (VIAE) technique. Acoustic emission (AE) signals have been introduced into the ASTM A179 seamless steel tubes using an impact hammer, and the AE wave propagation was captured using an AE sensor. Specifically, a healthy steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AE features extracted from the captured signals are rise time, peak amplitude, duration and count. The VIAE technique also analysed the AE signals using statistical features such as root mean square (r.m.s.), energy, and crest factor. It was evident that duration, count, r.m.s., energy and crest factor could be used to automatically identify the presence of defect in carbon steel tubes using AE signals captured using the non-invasive VIAE technique.

  8. Relationship of acoustic emission to the kinetics and micromechanism of fatigue failure of high-strength steel with a martensitic structure

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Kirillov, K.I.; Zima, Yu.V.; Nikiforchin, G.N.

    1987-01-01

    Techniques and results are presented for the rules of change in acoustic emission in fatigue crack propagation in hardened and low-temperature tempered 40Kh steel intended, in this study, for use as a reactor material. The results of the acoustic measurements are compared with data of quantitative aimed microfractography conducted during mechanical fracture tests

  9. Effect of Grain Orientation and Boundary Distributions on Hydrogen-Induced Cracking in Low-Carbon-Content Steels

    Science.gov (United States)

    Masoumi, Mohammad; Coelho, Hana Livia Frota; Tavares, Sérgio Souto Maior; Silva, Cleiton Carvalho; de Abreu, Hamilton Ferreira Gomes

    2017-08-01

    Hydrogen-induced cracking (HIC) causes considerable economic losses in a wide range of steels exposed to corrosive environments. The effect of crystallographic texture and grain boundary distributions tailored by rolling at 850 °C in three different steels with a body-centered cube structure was investigated on HIC resistance. The x-ray and electron backscattered diffraction techniques were used to characterize texture evolutions during the rolling process. The findings revealed a significant improvement against HIC based on texture engineering. In addition, increasing the number of {111} and {110} grains, associated with minimizing the number of {001} grains in warm-rolled samples, reduced HIC susceptibility. Moreover, the results showed that boundaries associated with low {hkl} indexing and denser packing planes had more resistance against crack propagation.

  10. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    International Nuclear Information System (INIS)

    Huguenin, P.

    2012-01-01

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σ max max/YV) 11,5 . The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress

  11. Crack initiation and propagation in welded joints of turbine and boiler steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Lindblom, J.; Sandstroem, R.; Linde, L.; Henderson, P.

    1990-01-01

    Low cycle fatigue (LCF) tests have been performed at 300 and 565 degrees C on welded joints and on microstructures to be found in or near welded joints in a low alloy ferritic steel 0.5 Cr, 0.5 Mo, 0.25 V. The difference in lifetimes between the 300 degrees C and 565 degrees C tests was small comparing the same microstructures and strain ranges, although the stress amplitude was greater at 300 degrees C. Under constant stress conditions the fatigue life depended on the fatigue life of the parent metal but under constant strain conditions the lifetime was governed by that of the bainitic structures. Strain controlled LCF tests have been performed at 750 degrees C on welded joints in the austenitic steel AISI 316 and on different parent and weld metals used in these joints. In continuously cycled samples all cracks were transgranular and initiated at the surface; hold-time samples displayed internally initiated intergranular cracking in the weld metal. Under constant strain conditions the 316 parent and weld metals exhibited similar lifetimes. When considering a constant stress situation the strength of the microsturctures decreased in the following order: Sanicro weld metal, cold deformed parent metal, undeformed parent metal and weld metal (K.A.E.)

  12. Study of toughening mechanisms through the observations of crack propagation in nanostructured and layered metallic sheet

    International Nuclear Information System (INIS)

    Chen, A.Y.; Li, D.F.; Zhang, J.B.; Liu, F.; Liu, X.R.; Lu, J.

    2011-01-01

    Highlights: → A nanostructured and layered steel exhibits high strength and large ductility. → The excellent combination originates from a multiple interlaminar cracking. → The initiation and propagation of cracks are controlled by three aspects. → The cracks are deflected by interface and arrested by compressive residual stress. → Finally, the cracks are blunted by the graded grain size distribution. - Abstract: A layered and nanostructured (LN) 304 SS sheet was produced by combination of surface mechanical attrition treatment (SMAT) with warm co-rolling. The microstructure of LN sheet is characterized by a periodic distribution of nanocrystalline layers and micron-grained layers with a graded transition of grain size. Tensile test results show that exceptional properties of high yield strength and large elongation to fracture are achieved. A multiple interlaminar cracking was observed by scanning electron microscopy, which is induced by repeated crack initiation and propagation. The toughening mechanisms of the LN sheet are proposed to be controlling the crack propagation path by several strategies. The main cracks initiating at interface defects are arrested by large compressive residual stress, deflected by weak interface bonding and blunted by the graded grain size distribution.

  13. Material equations for the calculations of steel fiber reinforced concrete members

    International Nuclear Information System (INIS)

    Jonas, W.

    1993-01-01

    Steel fiber reinforced concrete (SFRC) is made by the addition of steel fibers to fresh concrete. Usually the fibers are about 0.4-0.8mm in diameter and 25-80mm long. The addition of about 50-120 kg/m 3 is a practical and useful amount. That is about 0.6-1.5% by volume. The fibers are uniformly dispersed with a suitable concrete mix, so that clusters and uneven concentrations are prevented. The tensile strength of steel fiber reinforced concrete is scarcely better compared to that of plain concrete, but the fibers are very effective at preventing the propagation of tensile cracks. Thereby the tensile strength of fiber reinforced concrete is a reliable value. The addition of steel fibers also leads to a considerable increase of plastic deformations in the post cracking region, in comparison to plain concrete members. For nuclear power plant construction the use of steel fiber concrete with additional reinforcement of normal or prestressing steel is of special interest. The finished members exhibit good crack behaviour, increased shear strength and a considerable ability to absorb mechanical energy. These are valuable properties for members providing protection against extreme load cases (e.g. aircraft crash, earthquake, blast caused by explosion, debris due to hurricane, internal pressure loads or debris due to bursting of vessels or pipes). The behaviour of a reinforced concrete beam with steel fiber reinforced concrete against that of a reinforced beam without is shown. Until now the use of steel fiber reinforced concrete in civil engineering has been restricted because of the lack of design rules. For the preparation of fundamental principles and for the development of design rules HOCHTIEF has undertaken a series of tests on steel fiber reinforced concrete members with and without additional bar reinforcement. For this purpose HOCHTIEF has carried out several series of tests using either static, impact or cyclic loadings. In section 2 of this paper the elements

  14. Structural characterization and magnetic properties of steels subjected to fatigue

    International Nuclear Information System (INIS)

    Lo, C.C.H.; Tang, F.; Biner, S.B.; Jiles, D.C.

    2000-01-01

    Studies have been made on the effects of residual stress and microstructure on the variations of magnetic properties of steels during fatigue. Strain-controlled fatigue tests have been conducted on 0.2wt% C steel samples which were (1) cold-worked (2) cold-worked and annealed at 500 deg. C to relieve residual stress, and (3) annealed at 905 deg. C to produce a ferrite/pearlite structure. The changes of surface microstructure were studied by SEM replica technique. The dislocation structures of samples fatigued for different numbers of cycle were studied by TEM. In the initial stage of fatigue coercivity was found to behave differently for samples which have different residual stress levels. In the intermediate stage the magnetic hysteresis parameters became stable as the dislocation cell structure developed in the samples. In the final stage the magnetic parameters decreased dramatically. The decrease rate is related to the propagation rate of fatigue cracks observed in the SEM study, which was found to be dependent on the sample microstructure. The present results indicate that the magnetic inspection technique is able to differentiate the residual stress effects from the fatigue damage induced by cyclic loading, and therefore it is possible to detect the onset of fatigue failure in steel components via measurements of the changes in magnetic properties.--This work was sponsored by the National Science Foundation, under grant number CMS-9532056

  15. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  16. MANGO PROPAGATION

    Directory of Open Access Journals (Sweden)

    ALBERTO CARLOS DE QUEIROZ PINTO

    2018-03-01

    Full Text Available ABSTRACT This Chapter has the objectives to search, through the review of the available literature, important informations on the evolution of mango propagation regarding theoretical and practical aspects from cellular base of sexual propagation, nursery structures and organizations, substrate compositions and uses, importance of rootstock and scion selections, also it will be described the preparation and transport of the grafts (stem and bud as well as the main asexual propagation methods their uses and practices. Finally, pattern and quality of graft mangos and their commercialization aspects will be discussed in this Chapter.

  17. Low temperature tensile properties and stress corrosion cracking resistance in the super duplex stainless steels weldments

    International Nuclear Information System (INIS)

    Lee, Jeung Woo; Sung, Jang Hyun; Lee, Sung Keun

    1998-01-01

    Low temperature tensile properties and SCC resistances of super duplex stainless steels and their weldments are investigated. Tensile strengths increase remarkably with decreasing test temperature, while elongations decrease steeply at -196 .deg. C after showing peak or constant value down to -100 .deg. C. Owing to the low tensile deformation of weld region, elongations of welded specimen decrease in comparison to those of unwelded specimen. The welded tensile specimen is fractured through weld region at -196 .deg. C due to the fact that the finely dispersed ferrite phase in the austenite matrix increases an opportunity to supply the crack propagation path through the brittle ferrite phase at low temperature. The stress corrosion cracking initiates preferentially at the surface ferrite phase of base metal region and propagates through ferrite phase. When the corrosion crack meets with the fibrously aligned austenite phase to the tensile direction, the ferrite phase around austenite continues to corrode. Eventually, fracture of the austenite phase begins without enduring the tensile load. The addition of Cu+W to the super duplex stainless steel deteriorates the SCC resistance in boiling MgCl 2 solution, possibly due to the increment of pits in the ferrite phase and reduction of N content in the austenite phase

  18. Tribological and wear behavior of yttria stabilized zirconia thermal barrier coatings on mild steel

    International Nuclear Information System (INIS)

    Farooq, M.; Pervez, A.

    2012-01-01

    The perfection of the temperature confrontation of the engine essentials can be obtained by claim of a single ceramic thermal barrier coating (TBC) or several composite layers. Engine elements protected by TBC can work safely in elevated temperature range above 1000 degree C. Continuous endeavor to increase thermal resistance of engine the elements requires, apart from laboratory investigations, also numerical study of the different engine parts. The high temperatures and stress concentrations can act as the local sources of damage initiation and defects propagation in the form of cracks. The current study focuses the development of Yttria stabilized zirconia thermal barrier coating by Thermal spray technique. Mild steel was used as a substrate and the coating was then characterized for tribological analysis followed by the optical analysis of wear tracks and found the TBC behavior more promising then steel. (author)

  19. A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds

    Science.gov (United States)

    Aviles Santillana, I.; Boyer, C.; Fernandez Pison, P.; Foussat, A.; Langeslag, S. A. E.; Perez Fontenla, A. T.; Ruiz Navas, E. M.; Sgobba, S.

    2018-03-01

    The ITER magnet system is based on the "cable-in-conduit" conductor (CICC) concept, which consists of stainless steel jackets filled with superconducting strands. The jackets provide high strength, limited fatigue crack growth rate and fracture toughness properties to counteract the high stress imposed by, among others, electromagnetic loads at cryogenic temperature. Austenitic nitrogen-strengthened stainless steels have been chosen as base material for the jackets of the central solenoid and the toroidal field system, for which an extensive set of cryogenic mechanical property data are readily available. However, little is published for their welded joints, and their specific performance when considering different combinations of parent and filler metals. Moreover, the impact of post-weld heat treatments that are required for Nb3Sn formation is not extensively treated. Welds are frequently responsible for cracks initiated and propagated by fatigue during service, causing structural failure. It becomes thus essential to select the most suitable combination of parent and filler material and to assess their performance in terms of strength and crack propagation at operation conditions. An extensive test campaign has been conducted at 7 K comparing tungsten inert gas (TIG) welds using two fillers adapted to cryogenic service, EN 1.4453 and JK2LB, applied to two different base metals, AISI 316L and 316LN. A large set of fracture toughness data are presented, and the detrimental effect on fracture toughness of post-weld heat treatments (unavoidable for some of the components) is demonstrated. In this study, austenitic stainless steel TIG welds with various filler metals have undergone a comprehensive fracture mechanics characterization at 7 K. These results are directly exploitable and contribute to the cryogenic fracture mechanics properties database of the ITER magnet system. Additionally, a correlation between the impact in fracture toughness and microstructure

  20. Acoustic Emission Assessment of Impending Fracture in a Cyclically Loading Structural Steel

    Directory of Open Access Journals (Sweden)

    Igor Rastegaev

    2016-11-01

    Full Text Available Using the advanced acoustic emission (AE technique, we address the problem of early identification of crack initiation and growth in ductile structural steels under cyclic loading. The notched 9MnSi5 steel specimens with weld joints were fatigue tested at room and lower temperatures with concurrent AE measurements. Detection of AE in ductile materials where fatigue crack initiation and propagation is mediated by local dislocation behavior ahead of the notch or crack tip is challenging because of an extremely low amplitude of the AE signal. With account of this issue, two new practically oriented criteria for recognition of different stages of fatigue are proposed on the basis of AE data: (1 a power spectrum-based criterion and (2 a pattern recognition-based criterion utilizing modern clustering algorithms. The applicability of both criteria is verified using obtained AE data. A good correspondence between AE outcomes and experimental observations of the fatigue behavior was obtained and is discussed.

  1. Fatigue of welded joint in a stainless steel AISI 304 L

    International Nuclear Information System (INIS)

    Kuromoto, N.K.; Guimaraes, A.S.; Miranda, P.E.V. de

    1986-01-01

    The flexion fatigue behavior for the base metal and welded joint of an AISI 304 L stainless steel type, used in the Angra-1 reactor, was determined. An automatic welding process was used with improved procedures in order to assure better welding metallurgy. Fatigue tests samples reinforcements were done to allow the evaluation of metallurgical variables, specially the role played by delta ferrite. The resulting welded joint showed better fatigue life than the base metal. Delta ferrite was found to play an important role on the initiation and propagation processes of the fatigue cracks. (Author) [pt

  2. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  3. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, So Young; Kim, Jong Do [Korea Maritime and Ocean University, Busan (Korea, Republic of); Kim, Jong Su [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-01-15

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained.

  4. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    International Nuclear Information System (INIS)

    Choi, So Young; Kim, Jong Do; Kim, Jong Su

    2015-01-01

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained

  5. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel.

    Science.gov (United States)

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing

    2017-11-14

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.

  6. Fragilisation par le zinc liquide des aciers haute résistance pour l'automobile Liquid zinc embrittlement of high strength automotive steels

    Directory of Open Access Journals (Sweden)

    Frappier Renaud

    2013-11-01

    Full Text Available Cette étude présente les investigations menées sur la fragilisation par le zinc liquide d'un acier électro-zingué. La caractérisation mécanique par essais de traction à haute température montre un important puits de ductilité entre environ 700 ∘C et environ 950 ∘C. L'observation au MEB des éprouvettes de traction indique que, dans la gamme de température observée pour laquelle il y a fragilisation, on a mouillage intergranulaire des joints de grains de l'acier à l'interface acier/revêtement par des films de Zn. La corrélation entre mouillage intergranulaire thermiquement activé d'une part, et propagation de fissure lors du chargement d'autre part, est discutée. This study deals with liquid zinc embrittlement for electro-galvanized steel. Mechanical characterization by high temperature tensile tests shows a drastic loss of ductility between 700 ∘C and 950 ∘C. SEM investigations show that steel grain boundaries under the steel/coating interface are penetrated by a liquid Zn channel, only in the temperature range of embrittlement. A correlation can be drawn between i thermal activated-grain boundary wetting and ii crack propagation in presence of external stress.

  7. Fatigue crack growth in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bethmont, M.; Cheissoux, J.L.; Lebey, J.

    1981-04-01

    The study presented in this paper is being carried out with a view to substantiating the calculations of the fatigue crack growth in pipes made of 316 L stainless steel. The results obtained may be applied to P.W.R. primary piping. It is divided into two parts. First, fatigue tests (cyclic pressure) are carried out under hot and cold conditions with straight pipes machined with notches of various dimensions. The crack propagation and the fatigue crack growth rate are measured here. Second, calculations are made in order to interpret experimental results. From elastic calculations the stress intensity factor is assessed to predict the crack growth rate. The results obtained until now and presented in this paper relate to longitudinal notches

  8. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    Science.gov (United States)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  9. Current status of stainless steel industry and development of stainless steel

    International Nuclear Information System (INIS)

    Lee, Yong Deuk; Lee, Chan Soo; Kim Kwang Tae

    2000-01-01

    Stainless steel is not only clean and smooth in its surface, but also it is superior in quality in terms of corrosion resistance and strength. So that, it is widely in use in the field of construction, chemical installations, and other industries. Growth of stainless steel industry started since the steel technology was developed for mass production in 1960s. Since then stainless steel industry grew rapidly on account of diversified development in this field and growth rate went up to 5.8% per year comparable to 2.3% of steel growth. The rapid growth is attributed to significant industry developments in Europe and Japan in the years of 1970s and 1980s. In addition to these the expansion of stainless steel industry in Korea and Taiwan. Presently Korea produces about 120,000 tons of stainless steel and occupies about 8% of international market. This means Korea become the second largest single country in world in stainless steel production. Moreover Korea is to reinforce its domestic production line by affiliating production companies, increasing of production capability, and specializing in types of stainless steel. This paper is to describe activity of material development, and types of stainless steel for industry use. (Hong, J. S.)

  10. Temporal scaling in information propagation

    Science.gov (United States)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  11. Crack growth in an austenitic stainless steel at high temperature; Propagation de fissure a haute temperature dans un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Polvora, J.P

    1998-12-31

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C*{sub s}. Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors) 104 refs.

  12. Effects of commercial cladding on the fracture behavior of pressure vessel steel plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Alexander, D.J.; Bolt, S.E.; Cook, K.V.; Corwin, W.R.; Oland, B.C.; Nanstad, R.K.; Robinson, G.C.

    1988-01-01

    The objective of this program is to determine the effect, if any, of stainless steel cladding upon the propagation of small surface cracks subjected to stress states similar to those produced by thermal shock conditions. Preliminary results from testing at temperature 10 deg. C and 60 deg. C below NDT have shown that (1) a tough surface layer (cladding and/or HAZ) has arrested running flaws under conditions where unclad plates have ruptured, and (2) the residual load-bearing capacity of clad plates with large subclad flaws significantly exceeded that of an unclad plate. (author)

  13. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  14. Study on Characteristics of Corrosion Fatigue Crack Propagation for Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Lim, Uh Joh; Kim, Bu Ahn

    1988-01-01

    The characteristics of the corrosion fatigue cracking of both TIG weld heat affected zone and base metal for austenitic stainless steel were investigated under the environments of various specific resistance and the air. The corrosion fatigue crack initiation sensitivity was quantitatively investigated for SUS 304 weldments in the various specific resistances. Also, the characteristics of corrosion fatigue cracking for the weldments were investigated from mechanical, electrochemical, and microstructural point of view. Main results obtained are as follows: (1) The corrosion fatigue crack initiation sensitivity on the base metal and weld hea affected zone increases as the specific resistance of corrosion environment decreases, and the sensitivity of the weld heat affected zone appears increasing more than that of the base metal. (2) The corrosion potentials of various specific resistances are almost constant in initial corrosion fatigue cracking, but the corrosion potential becomes less noble promptly with the corrosion fatigue crack growth as the specific resistances decrease. (3) The corrosion fatigue crack growth of the weld heat affected zone rapid than that of the base metal, because of the softening and the less noble potential caused by welding heat cycle

  15. EDF program on SCC initiation of cold-worked stainless steels in primary water

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, P.; Vaillant, F.; Couvant, T. [Electricite de France (EDF/RD), Site des Renardieres, 77 - Moret sur loing (France); Buisse, L. [EDF UTO, 93 - Noisy-Le-Grand (France); Huguenin, P.; Crepin, J.; Duhamel, C.; Proudhon, H. [MINES ParisTech, Centre des Materiaux, 91 - Evry (France); Ilevbare, G. [EPRI California (United States)

    2009-07-01

    A few cases of Intergranular Stress Corrosion Cracking (IGSCC) on cold-worked austenitic stainless steels in primary water have been detected in French Pressurized Water Reactors (PWRs). A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with cyclic loading favoured SCC, whereas cracking under static conditions appeared to be difficult. A propagation model was also proposed. The first available results of the present study demonstrate the strong influence of a trapezoidal cyclic loading on the creep of 304L austenitic stainless steel. While no creep was detected under a pure static loading, the creep rate was increased by a factor 102 under a trapezoidal cyclic loading. The first results of SCC initiation performed on notched specimens under a trapezoidal cyclic loading at low frequency are presented. The present study aims at developing an engineering model for IGSCC initiation of 304L, 316L and weld 308L stainless steels. The effect of the pre-straining on the SCC mechanisms is more specifically studied. Such a model will be based on (i) SCC initiation tests on notched and smooth specimens under 'trapezoidal' cyclic loading and, (ii) constant strain rate SCC initiation tests. The influence of stress level, cold-work level, strain path, surface roughness and temperature is particularly investigated. (authors)

  16. Numerical simulation of micro-crack occurring in pipe made of stainless steel

    Science.gov (United States)

    Wotzka, Daria

    2017-10-01

    Research works carried out regard to studies aiming at determination of the effect of cumulative duty operation on the development of micro-cracks in pipelines for transport of chemical substances. This paper presents results of computer simulations of a pipeline made of stainless steel. The model was investigated using the COMSOL Multiphysics environment. The object under study was divided into sub areas and then discretized according to the FEM method. The physico-chemical parameters of individual areas were defined based on measurement data. The main aim of research works was the modeling of acoustic emission wave, which is emitted in the vicinity of the tip of micro-crack as a result of its development. In order to solve the task, heterogeneity in the structure of the material, referred to damage/micro-crack, causing local stresses was assumed. The local stresses give rise to elastic waves, which propagate in the material in all directions. When the emission waves reach the boundaries of the pipe they are then transferred into acoustic waves and propagate in the surround air, until their natural attenuation. The numerical model takes into account the effect of high pressure (3.6 MPa) and negative temperature (-100°C) of the gas, transported inside the pipe. The influence of changes of these values in the range of ± 20% on the obtained results was investigated. The main contribution of the works is the multiphysical simulation model of transportation pipe made of steel, coupling structural mechanics, thermal conductivity and acoustic waves.

  17. Numerical simulation of micro-crack occurring in pipe made of stainless steel

    Directory of Open Access Journals (Sweden)

    Wotzka Daria

    2017-01-01

    Full Text Available Research works carried out regard to studies aiming at determination of the effect of cumulative duty operation on the development of micro-cracks in pipelines for transport of chemical substances. This paper presents results of computer simulations of a pipeline made of stainless steel. The model was investigated using the COMSOL Multiphysics environment. The object under study was divided into sub areas and then discretized according to the FEM method. The physico-chemical parameters of individual areas were defined based on measurement data. The main aim of research works was the modeling of acoustic emission wave, which is emitted in the vicinity of the tip of micro-crack as a result of its development. In order to solve the task, heterogeneity in the structure of the material, referred to damage/micro-crack, causing local stresses was assumed. The local stresses give rise to elastic waves, which propagate in the material in all directions. When the emission waves reach the boundaries of the pipe they are then transferred into acoustic waves and propagate in the surround air, until their natural attenuation. The numerical model takes into account the effect of high pressure (3.6 MPa and negative temperature (-100̊C of the gas, transported inside the pipe. The influence of changes of these values in the range of ± 20% on the obtained results was investigated. The main contribution of the works is the multiphysical simulation model of transportation pipe made of steel, coupling structural mechanics, thermal conductivity and acoustic waves.

  18. microstructure change in 12 % Cr steel during creep

    International Nuclear Information System (INIS)

    Winatapura, D. S.; Panjaitan, E.; Arslan, A.; Sulistioso, G.S.

    1998-01-01

    The microstructure change in steel containing of 12% Cr or DIN X20CrMoV 12 1 during creep has been studied by means of optical microscopy and Transmission Electron Microscope (TEM). The creep testing at 650 o C was conducted under constant load of 650 Mpa. The heat treatment of the specimen before creep testing was austenization, followed by tempering for 2 hours. The obtained microstructure was tempered martensitic. This microstructure consisted of the martensite laths, and distributed randomly in the matrix. During tempering, chromium carbide particles of Cr 7 C 6 less than 0,2 μmin-size were precipitated on or and in the subgrain and lath martensite grain boundary. During creep testing those particles transformed and precipitated as chrome carbide precipitates of Cr 23 C 6 . At the secondary creep stage, the void formation occurred, and then it developed into the creep cracks. At tertiary creep stage for 3554 hours, the specimen was failure. The creep cracks were informs of transgranular and intergranular modes which propagated almost perpendicular to the stress axis. From this observation, it is suggested that tempering caused the ductility of martensitic microstructure, which increased the creep resistant or Cr 12% steel

  19. [Factors influencing electrocardiogram results in workers exposed to noise in steel-making and steel-rolling workshops of an iron and steel plant].

    Science.gov (United States)

    Li, Y H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Jiao, J

    2016-02-20

    To investigate the factors influencing the electrocardiogram results in the workers exposed to noise in steel-making and steel rolling workshops of an iron and steel plant. From September to December, 2013, cluster sampling was used to select 3 150 workers exposed to noise in the steel-making and steel-rolling workshops of an iron and steel plant, and a questionnaire survey and physical examinations were performed. The number of valid workers was 2 915, consisting of 1 606 workers in the steel-rolling workshop and 1 309 in the steel-making workshop. The electrocardiogram results of the workers in steel-making and steel-rolling workshops were analyzed. The overall abnormal rate of electrocardiogram was 26.35%, and the workers in the steel-making workshop had a significantly higher abnormal rate of electrocardiogram than those in the steel-rolling workshop(32.24% vs 21.54%, Pelectrocardiogram than female workers(27.59% vs 18.61%, Pelectrocardiogram than those who did not drink(28.17% vs 23.75%, Pelectrocardiogram than those who were not exposed to high temperature(29.43% vs 20.14%, Pelectrocardiogram in the workers with cumulative noise exposure levels of electrocardiogram results. High cumulative noise exposure, alcohol consumption, and high temperature may affect the abnormal rate of electrocardiogram in the workers exposed to noise in steel-making and steel-rolling workshops.

  20. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  1. Synergistic enhancing effect of N+C alloying on cyclic deformation behaviors in austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Z.N. [National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2014-07-29

    Cyclic plastic and elastic strain controlled deformation behaviors of Mn18Cr7 austenitic steel with N0.6C0.3 synergistic enhancing alloying have been investigated using tension-compression low cycle fatigue and three-point bending high cycle fatigue testing. Results of cyclic deformation characteristic and fatigue damage mechanism have been compared to that in Mn12C1.2 steel. Mn18Cr7N0.6C0.3 steel always shows cyclic softening caused by enhanced planar sliding due to the interaction between N+C and the substitutional atoms as well as the dislocation, which is totally different from cyclic hardening in Mn12C1.2 steel caused by the interaction between C members of C–Mn couples with the dislocation. Enhanced effective stress is obtained due to the solid solution strengthening effect caused by the short range order at low strain amplitude while this effect does not work at high strain amplitude. Internal stress contributes most to the cyclic softening with the increase of strain amplitudes. Significant planar slip characteristic can be observed resulting from low stacking fault energy and high short range order effects in Mn18Cr7N0.6C0.3 steel and finally the parallel or intersecting thin sheets with dislocation tangles separated by dislocation free sheets are obtained with the prolonged cycles under cyclic elastic or plastic strain controlled fatigue testing. There exist amounts of small cracks on the surface of the Mn18Cr7N0.6C0.3 steel because fatigue crack initiation is promoted by the cyclic plastic strain localization. However, the zigzag configuration of the cracks reveals that the fatigue crack propagation is highly inhibited by the planar slip characteristic, which eventually improves the fatigue life.

  2. Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450 °C-550 °C

    Science.gov (United States)

    Zhao, Yanyun; Liang, Mengtian; Zhang, Zhenyu; Jiang, Man; Liu, Shaojun

    2018-04-01

    In order to analyze the fracture toughness and fracture behavior (J-R curves) of China Low Activation Martensitic (CLAM) steel under the design service temperature of Test Blanket Module of the International Thermonuclear Experimental Reactor, the quasi-static fracture experiment of CLAM steel was carried out under the temperature range of 450 °C-550 °C. The results indicated that the fracture behavior of CLAM steel was greatly influenced by test temperature. The fracture toughness increased slightly as the temperature increased from 450 °C to 500 °C. In the meanwhile, the fracture toughness at 550 °C could not be obtained due to the plastic deformation near the crack tip zone. The microstructure analysis based on the fracture topography and the interaction between dislocations and lath boundaries showed two different sub-crack propagation modes: growth along 45° of the main crack direction at 450 °C and growth perpendicular to the main crack at 500 °C.

  3. Fracture analysis procedure for cast austenitic stainless steel pipe with an axial crack

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Since the ductility of cast austenitic stainless steel pipes decreases due to thermal aging embrittlement after long term operation, not only plastic collapse failure but also unstable ductile crack propagation (elastic-plastic failure) should be taken into account for the structural integrity assessment of cracked pipes. In the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME), Z-factor is used to incorporate the reduction in failure load due to elastic-plastic failure. However, the JSME code does not provide the Z-factor for axial cracks. In this study, Z-factor for axial cracks in aged cast austenitic stainless steel pipes was derived. Then, a comparison was made for the elastic-plastic failure load obtained from different analysis procedures. It was shown that the obtained Z-factor could derive reasonable elastic-plastic failure loads, although the failure loads were more conservative than those obtained by the two-parameter method. (author)

  4. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  5. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  6. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  7. Effects of sulfur addition on pitting corrosion and machinability behavior of super duplex stainless steel containing rare earth metals: Part 2

    International Nuclear Information System (INIS)

    Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    Research highlights: → The mechanisms on the effects of rare earth metals (REM) and sulfur (S) additions on the initiation and propagation of pitting corrosion and machinabillity of a super duplex stainless steel (SDSS) were elucidated → It was found that, in consideration of the ratio of lifetime (the resistance to pitting corrosion) to cost (machining and raw material), a costly austenitic stainless steel with high Ni , medium Mo and low N can be replaced by the high S and REM added SDSS with 7 wt.% Ni-4 wt% Mo-0.3 wt.% N → The resistance to pitting corrosion of the tested super duplex stainless steel was affected by the type of inclusions, the preferential interface areas between inclusions and the substrate, and the PREN difference between the γ-phase and the α-phase for the initiation and propagation of the pitting corrosion. - Abstract: To elucidate the effects of sulfur addition on pitting corrosion and machinability behavior of alloys containing rare earth metals, a potentiostatic polarization test, a critical pitting temperature test, a SEM-EDS analysis of inclusions, and a tool life test were conducted. As sulfur content increased, the resistance to pitting corrosion decreased due to the formation of numerous manganese sulfides deteriorating the corrosion resistance and an increase in the preferential interface areas for the initiation of the pitting corrosion. With an increase in sulfur content, the tool life increased due to the lubricating films of manganese sulfides adhering to tool surface.

  8. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  9. Investigating pitting in X65 carbon steel using potentiostatic polarisation

    Science.gov (United States)

    Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.

    2017-11-01

    Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.

  10. Response of reinforced concrete structures to macrocell corrosion of reinforcements. Part I: Before propagation of microcracks via an analytical approach

    International Nuclear Information System (INIS)

    Kiani, Keivan; Shodja, Hossein M.

    2011-01-01

    Highlights: ► Response of RC structures to macrocell corrosion of a rebar is studied analytically. ► The problem is solved prior to the onset of microcrack propagation. ► Suitable Love's potential functions are used to study the steel-rust-concrete media. ► The role of crucial factors on the time of onset of concrete cracking is examined. ► The effect of vital factors on the maximum radial stress of concrete is explored. - Abstract: Assessment of the macrocell corrosion which deteriorates reinforced concrete (RC) structures have attracted the attention of many researchers during recent years. In this type of rebar corrosion, the reduction in cross-section of the rebar is significantly accelerated due to the large ratio of the cathode's area to the anode's area. In order to examine the problem, an analytical solution is proposed for prediction of the response of the RC structure from the time of steel depassivation to the stage just prior to the onset of microcrack propagation. To this end, a circular cylindrical RC member under axisymmetric macrocell corrosion of the reinforcement is considered. Both cases of the symmetric and asymmetric rebar corrosion along the length of the anode zone are studied. According to the experimentally observed data, corrosion products are modeled as a thin layer with a nonlinear stress–strain relation. The exact expressions of the elastic fields associated with the steel, and concrete media are obtained using Love's potential function. By imposing the boundary conditions, the resulting set of nonlinear equations are solved in each time step by Newton's method. The effects of the key parameters which have dominating role in the time of the onset of concrete cracking and maximum radial stress field of the concrete have been examined.

  11. Study of the fatigue behaviour and damage of a aged duplex stainless steel; Etude du comportement et de l'endommagement en fatigue d'un acier inoxydable austeno-ferritique moule vieilli

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J.Ch

    2000-07-01

    Cast duplex stainless steels are commonly used in components of pressurized water reactors primary circuit. When submitted to in-service temperatures embrittlement occurs because of the nucleation and growth of a harder phase in the ferrite by spinodal composition. Macrostructure of this steel (ferritic primary grain size is about 4-5 mm) and embrittlement of ferrite due to aging lead to a very high scattering of mechanical properties for monotonous loadings. We showed that, in spite of this macrostructure, the cyclic behaviour of aged duplex stainless steels fits usual Manson-Coffin law while initial hardening is followed by softening, in part because of the demodulation of the composition. The fatigue crack propagation rate of material follows a Paris law. While crack initiation mainly appears next to the millimetric cast defects, fatigue crack propagation remains a continuous mechanism. Ferritic and austenitic elements break successively (ferrite first breaks by cleavage, then austenite breaks by ductile fatigue). In spite of the fact that the aged ferrite is embrittled, cleavage microcracks, for load levels examined, seldom appear in ferrite at the crack tip and on both sides of the main crack. Effects of cast defects and crystallographic ferrite orientation were also studied. Propagation fatigue crack behaviour was modeled assuming that the crack tip material behaves as if it was submitted to low cycle fatigue loadings. If we consider a homogeneous material, results are in good agreement with experiments. (authors)

  12. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  13. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  14. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  15. Stress wave propagation in thin long-fiber carbon/epoxy composite panel. Numerical and experimental solutions

    Directory of Open Access Journals (Sweden)

    Kroupa T.

    2007-10-01

    Full Text Available The article deals with experimental and numerical analysis of stress wave propagation in a thin long fiber carbon/epoxy composite material. Experiments were performed on in-plane loaded square composite panels with dimensions 501mm x 501mm x 2:2 mm. The panels have several fiber orientations (0°, 30°, 60° and 90° measured from the loaded edge. They were loaded by in-plane impact of steel sphere. The impact area was on the edge, exactly 150mm from top left corners corner of the panels. The loading force was approximated by atime dependent function. Its shape was obtained from three dimensional contact analysis, which was performed on smaller area of panel. The function was used in further plane stress analysis of the whole panels. The comparison of the numerical and experimental results was executed. An attempt at determination of velocity of propagation of Rayleigh waves on the loaded edge was performed and the results are discussed in the paper. Further directions of the research are proposed.

  16. Kinetics of fatigue crack growth and crack paths in the old puddled steel after 100-years operating time

    Directory of Open Access Journals (Sweden)

    G. Lesiuk

    2015-10-01

    Full Text Available The goal of the authors’ investigations was determination of the fatigue crack growth in fragments of steel structures (of the puddled steel and its cyclic behavior. Tested steel elements coming from the turn of the 19th and 20th were gained from still operating ancient steel construction (a main hall of Railway Station, bridges etc.. This work is a part of investigations devoted to the phenomenon of microstructural degradation and its potential influence on their strength properties. The analysis of the obtained results indicated that those long operating steels subject to microstructure degradation processes consisting mainly in precipitation of carbides and nitrides inside ferrite grains, precipitation of carbides at ferrite grain boundaries and degeneration of pearlite areas [1, 2]. It is worth noticing that resistance of the puddled steel to fatigue crack propagation in the normalized state was higher. The authors proposed the new kinetic equation of fatigue crack growth rate in such a steel. Thus the relationship between the kinetics of degradation processes and the fatigue crack growth rate also have been shown. It is also confirmed by the materials research of the viaduct from 1885, which has not shown any significant changes in microstructure. The non-classical kinetic fatigue fracture diagrams (KFFD based on deformation ( or energy (W approach was also considered. In conjunction with the results of low- and high-cycle fatigue and gradual loss of ductility as a consequence (due to the microstructural degradation processes - it seems to be a promising construction of the new kinetics fatigue fracture diagrams with the energy approach.

  17. Corrosion fatigue crack growth in clad low-alloy steels. Part 2: Water flow rate effects in high-sulfur plate steel

    International Nuclear Information System (INIS)

    James, L.A.; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1997-01-01

    Corrosion fatigue crack propagation tests were conducted on a high-sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 C, under loading conditions (ΔK, R, cyclic frequency) conducive to environmentally assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/s or 4.7 m/s was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi-stagnant conditions, but water flow rates at 1.7 m/s and 5.0 m/s parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity

  18. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  19. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Science.gov (United States)

    Zhao, Jing; Ji, Honghong

    2017-01-01

    The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325

  20. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels

    International Nuclear Information System (INIS)

    Mente, Tobias

    2015-01-01

    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  1. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  2. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    Directory of Open Access Journals (Sweden)

    Linfeng Sun

    2016-02-01

    Full Text Available Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain.

  3. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  4. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan

    1984-01-01

    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  5. Microstructural study of thermally aged duplex stainless steel deformation and fracture modes

    International Nuclear Information System (INIS)

    Verhaeghe, B.

    1996-01-01

    The aim of this work is to study the micro mechanisms of deformation and rupture of an austeno ferritic stainless steel (Z 3 CND 22-10 M) with 33 % of ferrite. It is studied after ageing 1 000 h at 400 deg. C and 8 000 h at 350 deg. C and compared to the 'as received' state. During ageing the ferritic phase undergoes microstructural evolutions which affects its properties. The two ageing treatments lead to roughly the same level of embrittlement. Microstructural characterisation shows that both phases percolate and exhibit orientation relationships close to Kurdjumov-Sachs ones. Mechanical properties of the steel were characterised for different ageing treatments at room temperature and at 320 deg. C. The interface is particularly strong and ensures the load transfer to ferrite even if this phase contains cleavage cracks. Moreover the interface does not oppose slip transmission which is instead controlled by localised glide in the ferritic phase. If activated slip systems of austenite are common with ferrite, slip transmission from austenite to ferrite indeed occurs through the=e interface. If they are not common, dislocations cross-slip back into the austenite. At 320 deg. C cross-slip occurs even far from the interface. Damage starts by nucleation in ferrite of cleavage cracks which propagate between austenite islands. Crack propagation is controlled by stretching of austenite ligaments. The material breaks by ductile tearing of austenite islands when the crack eventually percolates in the ferritic phase. The ductility of the material can be correctly describer using a simple model that takes into account the tearing-off the ductile-phase. (author)

  6. Substitution of modified 9 Cr-1 Mo steel for austentic stainless steels

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1982-04-01

    This report describes the current program to develop a high-strength ferritic-martensitic steel. The alloy is essentially Fe-9% Cr-1% Mo with small additions of V and Nb and is known as modifed 9 Cr-1 Mo steel. Its elevated-temperature properties and design allowable stresses match those of type 304 stainless steel for temperatures up to 600 0 C and exceed those of other ferritic steels by factors of 2 to 3. The improved strength of this alloy permits its use in place of stainless steels for many applications

  7. Stress corrosion cracking of austenitic stainless steels in NaCl-AlCl/sub 3/ at 175C

    International Nuclear Information System (INIS)

    Smyrl, W.H.

    1987-01-01

    Austenitic stainless steels are susceptible to stress corrosion cracking in chloride media. A test that is often used to determine the susceptibility of a new alloy involves boiling aqueous MgCl/sub 2/ solutions. The compositions of the solution is not controlled in the tests, and changes as water is evaporated. The pH may change as well. Such poorly defined conditions make any mechanistic interpretation very tenuous, and the results may be tabulated as purely empirical data. the choice of the molten salt in the present investigation was made for two reasons. First, the studies could be carried in the molten salt media with the exclusion of H/sub 2/O. Second, the crack propagation could be investigated under well controlled electrochemical conditions. Therefore, the results may help to identify the controlling processes that occur during stress corrosion cracking, and the comparison to results in boiling MgCl/sub 2/ may help to reveal the controlling processes in that medium as well. Crack propagation has been studied for several nitronic stainless steels in the molten salt medium under controlled electrochemical potential conditions. The alloys were studied under fully austenitic conditions. The material was studied in the annealed and work hardened condition, and both were susceptible to cracking in the molten salt. The velocity of cracking was studied as a function of applied stress at several electrochemical potentials

  8. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  9. Effect of Reheating Temperature and Cooling Treatment on the Microstructure, Texture, and Impact Transition Behavior of Heat-Treated Naval Grade HSLA Steel

    Science.gov (United States)

    Sk, Md. Basiruddin; Ghosh, A.; Rarhi, N.; Balamuralikrishnan, R.; Chakrabarti, D.

    2017-07-01

    In order to achieve the desired mechanical properties [YS > 390 MPa, total elongation >16 pct and Charpy impact toughness of 78 J at 213 K (-60 °C)] for naval application, samples from a low-carbon microalloyed steel have been subjected to different austenitization (1223 K to 1523 K) (950 °C to 1250 °C) and cooling treatments (furnace, air, or water cooling). The as-rolled steel and the sample air cooled from 1223 K (950 °C) could only achieve the required tensile properties, while the sample furnace cooled from 1223 K (950 °C) showed the best Charpy impact properties. Water quenching from 1223 K (950 °C) certainly contributed to the strength but affected the impact toughness. Overall, predominantly ferrite matrix with fine effective grain size and intense gamma-fiber texture was found to be beneficial for impact toughness as well as impact transition behavior. Small size and fraction of precipitates (like TiN, Nb, and V carbonitrides) eliminated the possibility of particle-controlled crack propagation and grain size-controlled crack propagation led to cleavage fracture. A simplified analytical approach has been used to explain the difference in impact transition behavior of the investigated samples.

  10. Temperature and environmentally assisted cracking in low alloy steel

    International Nuclear Information System (INIS)

    Auten, T.A.; Monter, J.V.

    1995-04-01

    Environmental assisted cracking (EAC) can be defined as the propagation of fatigue cracks in water at rates from 3 to over 40 times the growth rates in air. For low alloy steels with sulfur contents > 0.0125% by weight, EAC is normal behavior in the 240 to 290C range. However, literature yields mixed results for low alloy steels with compositions just below this sulfur level; some reports indicate EAC while others do not. Also, several authors have reported an increased tendency toward EAC when the water temperatures were lowered. In the present work, five ASTM A 508 Class 2 forgings with ladle and check analyses that ranged from 0.010 to 0.019 wt% S were tested in high purity deaerated water in the temperature range of 93 to 260C. At 260C these forgings did not exhibit EAC, reinforcing earlier results for two similar forgings. This broad sampling indicates strong resistance to EAC for this class of forging at 260C. On the other hand, EAC occurred consistently in the three of these forgings that were tested below 204C, provided the test conditions (loading frequency, ΔK, and R) were high enough to produce a high baseline fatigue crack growth rate (FCGR), where the baseline FCGR is that expected in air. At 149C, EAC occurred at test conditions that combined to yield a baseline FCGR greater than ∼2E-6 mm/s. At 204, 121, and 93C, this critical crack growth rate appeared to shift to lower baseline values. The EAC that occurred at lower temperatures was a factor of 3 to 12 times higher than baseline air rates, which was not as strong as the effect for higher sulfur steels at 240 to 290C. Also, no plateau in the growth rates occurred as it does with the higher sulfur steels. In another approach, EAC was induced at 93 and at 260C by raising the dissolved oxygen content of the water from 15 ppb

  11. Mechanical behavior and fracture characterization of the T91 martensitic steel in liquid sodium environment

    International Nuclear Information System (INIS)

    Hamdane, Ouadie

    2012-01-01

    The T91 martensitic steel is designed to constitute structural material of future sodium fast reactors of fourth generation, where it will be subjected to stresses in presence of liquid sodium. This study presents a qualitative and quantitative estimate of the sensitivity of T91 steel towards the phenomenon of liquid metal embrittlement. The effect of liquid sodium on T91 steel was studied and quantified according to the temperature and the cross head rate displacement, by using a set-up of Small Punch Test, three and four bending test, developed in laboratory. Mechanical tests in sodium environment are carried out inside a Plexiglas cell, conceived and developed at the laboratory. The atmosphere inside this cell is severely purified and controlled, in order to avoid on the one hand an explosive reaction of sodium with moisture, or an ignition with oxygen, and on the other hand to minimize the presence of impurities in liquid sodium used. The presence of sodium accelerates T91 steel fracture at low temperature, without modifying its ductile character. The T91 pre-immersion in sodium makes it possible to dissolve the protective layer of chromium oxide, and to obtain an intimate contact with the molten metal. However, pre-immersion generates a surface defects which cause a partial embrittlement by sodium. The hardening of T91 steel by heat treatment with a tempering temperature of 550 C (T91-TR550) causes a total embrittlement of steel in presence of sodium, with and without pre-immersion. The rupture of the T91-TR550 steel takes then place by intergranular de-cohesion, corresponding to the crack initiation phase, followed by laths de-cohesion, corresponding to the phase of propagation of these cracks. The mechanism suggested in this study is based on the intergranular penetration of sodium, supported by the presence of segregated impurities such phosphorus, and by the plastic deformation [fr

  12. Database for propagation models

    Science.gov (United States)

    Kantak, Anil V.

    1991-07-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  13. A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel

    Science.gov (United States)

    Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.

    2018-03-01

    A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.

  14. Survey of the effect of heat-to-heat variations upon the fatigue-crack propagation behavior of types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    James, L.A.

    1975-05-01

    The fatigue-crack growth behavior of four heats of annealed Type 304 stainless steel and three heats of annealed Type 316 stainless steel were studied at elevated temperature using the techniques of linear-elastic fracture mechanics. It is estimated that a factor of 1.5 applied above and below the mean line would provide upper and lower bounds that would account for heat-to-heat variations. In addition, the three heats of Type 316 represented three different melt practices: air-melt, vacuum-arc-remelt, and double-vacuum-melt processes. No effect on fatigue-crack growth behavior was noted due to melt practice. (U.S.)

  15. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  16. The dynamic behaviour of heat exchangers; Etude du comportement dynamique des echangeurs de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Fonteray, J; Rozenholc, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    In order to study the dynamics of nuclear power plants, one needs mathematical models made up of ordinary differential equations. This report deals with models for heat exchangers. These models allow exact evaluations of the temperatures for any steady state. The deformation of the temperature maps during transients is taken into account. To do this, average temperatures are evaluated keeping In mind, on one hand the partial differential equations, on the other hand, the physical phenomenons which are involved. Seven ordinary differential equations at most, are necessary for one heat exchanger. Theses models were compared with mathematically exact ones and also with experimental results, that EDF was able to measure on EDF-1 heat exchangers. The results appear to be correct. (authors) [French] Les etudes de dynamique sur les centrales nucleaires exigent l'elaboration de modeles apparaissant sous forme d'equations differentlelles ordinaires. Ce rapport est consacre a la recherche de modeles d'echangeurs. Dans ces modeles les temperatures sont calculees exactement pour n'importe quel regime permanent. Pour tenir compte de la deformation des distributions de temperature en regime transitoire, on evalue les temperatures moyennes dans l'echangeur en s'appuyant, d'une part, sur les equations aux derivees partielles et, d'autre part, sur une analyse des phenomenes physiques. Les modeles contiennent au plus sept equations differentielles ordinaires. Ces modeles ont ete compares aux modeles mathematiques exacts et aussi a des resultats experimentaux, obtenus par l'EDF, sur les echangeurs d'EDF-1. Les resultats paraissent satisfaisants. (auteurs)

  17. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    Directory of Open Access Journals (Sweden)

    Elena Gordo

    2003-12-01

    Full Text Available HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W, to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results carried out to improve the compressibility of HCx are presented. The way to attempt this improvement is the dilution of base material with two stainless steels, the ferritic 430LHC and the austenitic 316L. The powder mixes prepared were uniaxially pressed to study the compressibility. The sinterability was study by determining of density, hardness, transverse rupture strength (TRS and microstructural evolution after vacuum sintering at different temperatures. As a result, better compressibility is observed in the mixes although not all of them present the properties required.

  18. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue; Fatigue thermique d'un acier inoxydable austenitique 304L: simulation de l'amorcage et de la croissance des fissures courtes en fatigue isotherme et anisotherme

    Energy Technology Data Exchange (ETDEWEB)

    Haddar, N

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  19. Low cycle fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water

    International Nuclear Information System (INIS)

    Jang, Hun

    2008-02-01

    steel - heat A showed ductile striations in ferrite phase. Also, secondary and surface crack of SA508 Gr.1a low alloy steel - heat A grew into ferrite phase and ferrite - pearlite phase boundaries. The increase in stress intensity at the pearlite crack tip by restricted strain may contribute to fatigue crack propagation along ferrite - pearlite phase boundaries. On the other hand, the fatigue surfaces of SA508 Gr.1a - heat B and SA508 Gr.3 low alloy steels showed relatively less striations due to their homogeneous carbides. And the secondary and surface cracks of SA508 Gr.1a low alloy steel - heat B and SA508 Gr.3 low alloy steel grew into ferrite phase between carbides. The homogeneous carbides could more effectively decrease the crack growth rate. Therefore, the fatigue crack growth rate in SA508 Gr.1a low alloy steel - heat A could be higher than those in SA508 Gr.1a low alloy steel - heat B and SA508 Gr.3 low alloy steel. Also, the fatigue crack growth rate of SA508 Gr.3 low alloy steel may be shorter than that SA508 Gr.1a low alloy steel - heat B due to its low ductility and high yield strength

  20. Transient dynamic crack propagation in gas pressurised pipelines

    International Nuclear Information System (INIS)

    Caldis, E.S.; Owen, D.R.J.; Taylor, C.

    1983-01-01

    The prime limitation of dynamic fracture analysis is the lack of a fundamental crack advance theory which can be easily and economically adopted for use with numerical models. The necessity for the inclusion of inertia effects in the solution of certain problem classes is now evident, but most transient dynamic fracture models considered to date include (of necessity) some intuitive/empirical parameters with a frequent need of a priori knowledge of experimental solutions. The particular problem considered in this study is Mode I transient dynamic crack propagation in gas pressurised pipelines. The steel pipe is modelled using thin shell Semiloof finite elements and its transient response is coupled to a one-dimensional finite element model of the compressible gas equations, incorporating a lateral gas flow parameter. The pipe is governed by the usual dynamic equilibrium equation which is discretised in the time domain by a central difference explicit algorithm. The compressible gas response is modelled by the Continuity and Momentum equations and time discretisation is performed by means of a fully backward difference scheme in time. (orig./GL)

  1. Boron Steel: An Alternative for Costlier Nickel and Molybdenum Alloyed Steel for Transmission Gears

    Directory of Open Access Journals (Sweden)

    A. Verma

    2010-06-01

    Full Text Available Case Carburized (CC low carbon steels containing Ni, Cr and Mo alloying elements are widely used for transmission gears in automobile, as it possesses desired mechanical properties. In order to cut cost and save scarce materials like Ni and Mo for strategic applications, steel alloyed with Boron has been developed, which gives properties comparable to Ni-Cr-Mo alloyed steel. In the process of steel development, care was taken to ensure precipitation of boron which results in precipitation hardening. The characterization of the developed boron steel had exhibited properties comparable to Ni-Cr-Mo alloyed steel and superior to conventional boron steel.

  2. Les déterminants de la dynamique spatiale de la ville de Bingerville (sud de la Côte d'Ivoire de 1960 à nos jours

    Directory of Open Access Journals (Sweden)

    Akou Don Franck Valéry Loba

    2010-09-01

    Full Text Available Le présent article rend compte des déterminants de la dynamique spatiale de Bingerville, une ville historique du sud de la Côte d’Ivoire. Les sources cartographiques émanant de missions aériennes ont permis de faire la synthèse de la dynamique spatiale. Une enquête auprès du service technique de la mairie a fourni les informations relatives à la gestion du foncier.L’étude révèle que de 1960, date de proclamation de l’indépendance, jusqu’en 1985, en dépit des interventions de l’Etat-providence, la croissance de la tache urbaine a été très peu significative. A la volonté de l’Etat de bâtir une ville moderne se sont opposées la méfiance et l’hostilité des autochtones, redoutant d’éventuelles expropriations.Avec les changements institutionnels survenus après 1985, qui ont vu l’apparition de nouveaux pouvoirs locaux décentralisés, la ville va connaître un regain de croissance. La communalisation, en mettant à l’ordre du jour l’implication des populations autochtones dans les mécanismes de création du sol urbain, est parvenue à relancer la dynamique des lotissements. Ainsi, sous l’impulsion d’opérateurs immobiliers privés, la ville a vu s’ajouter à son noyau initial de nouveaux quartiers ; elle connaît depuis lors un étirement en direction de ses périphéries ouest et nord et devient partie intégrante du front d’urbanisation oriental de la ville d’Abidjan.This article reports on the spatial dynamics of Bingerville, a historic city in southern Côte d'Ivoire. The study aims to examine data on the nature of the determinants of this dynamic space. The cartographic sources from aerial missions were allowed to synthesize spatial dynamics. A survey of the technical department of the council has provided information on land management.In 1960, the date of declaration of independence until 1985, despite the interventions of the welfare state, the growth of the urban stain was very

  3. Development of a crack monitoring technique for use in a corrosion fatigue study of SA533-B pressure vessel steel

    International Nuclear Information System (INIS)

    Benson, J.M.; Tait, R.B.; Garrett, G.G.

    1981-10-01

    At present there does not exist a realistic crack growth law which will provide a good description of the relationship between the alternating stress intensity factor and the crack growth per cycle of stress. Such a law should be applicable to either the pressurized water reactor environment (PWR) or boiling water reactor environmnt (BWR). This project was formulated with the aim of examining the fatigue crack growth rate of SA533-B steel (a nuclear pressure vessel steel) in the threshold region in a simulated PWR environment. The aim of this report is to develop a crack monitoring technique for use in corrosion fatigue studies. Factors affecting fatigue crack propagation include: frequency, stress range, the effect of irradiation, ageing and environment. The mechanisms of crack propagation that are discussed include: slip dissolution, hydrogen assisted cracking, corrosion potential, and morphology studies. D.C. electrical potential, the compliance technique and the back-faced strain gauge method can be used for crack monitoring. Details are also given on the experimental equipment and programme. The results of the experiment has shown that the potential difference technique for monitoring crack length is a valuable one and is well suited for use in fatigue testing applications

  4. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  5. In-reactor fatigue crack propagation

    International Nuclear Information System (INIS)

    Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.

    1979-08-01

    An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods

  6. Interaction model of steel ladle of continuous caster in steel works

    Directory of Open Access Journals (Sweden)

    Huang Bang Fu

    2016-01-01

    Full Text Available For further research on the precondition and interoperability model of interaction ladles among continuous caster, this article takes steel ladle of Y steel works as the object of research. On the basis of turnover number calculation model of single cast steel ladle, the relationship between cast number and the turnover number and turnover times and last turnover number are further analyzed. The simulation of steel ladle turnover rules was taken on the 2 continuous casters with Gantt chart. After that, the relationships between turnover number and last turnover number and non-turnover number are researched deeply. Combining with the Gantt chart, the expressions of start casting time and empty ladle ending time and heavy ladle starting time were put forward. The precondition of steel ladle interaction is obtained, which means the exchange ladle should not undertaking transport task in first stop continuous caster, and the empty ladle end time of exchange ladle of first stop continuous caster should early than the heavy ladle start time of last stop continuous caster. After applying the model to practice, 3 steel ladles of No.2 continuous caster can be reduced. This research results is supplying theoretical basis for steel ladle controlling and production organization optimization, and enriches the theory and method of metallurgical process integration.

  7. Critical experiments, measurements, and analyses to establish a crack arrest methodology for nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Hahn, G.T.

    1977-01-01

    Substantial progress was made in three important areas: crack propagation and arrest theory, two-dimensional dynamic crack propagation analyses, and a laboratory test method for the material property data base. The major findings were as follows: Measurements of run-arrest events lent support to the dynamic, energy conservation theory of crack arrest. A two-dimensional, dynamic, finite-difference analysis, including inertia forces and thermal gradients, was developed. The analysis was successfully applied to run-arrest events in DCB (double-cantilever-beam) and SEN (single-edge notched) test pieces. A simplified procedure for measuring K/sub D/ and K/sub Im/ values with ordinary and duplex DCB specimens was demonstrated. The procedure employs a dynamic analysis of the crack length at arrest and requires no special instrumentation. The new method was applied to ''duplex'' specimens to measure the large K/sub D/ values displayed by A533B steel above the nil-ductility temperature. K/sub D/ crack velocity curves and K/sub Im/ values of two heats of A533B steel and the corresponding values for the plane strain fracture toughness associated with static initiation (K/sub Ic/), dynamic initiation (K/sub Id/), and the static stress intensity at crack arrest (K/sub Ia/) were measured. Possible relations among these toughness indices are identified. During the past year the principal investigators of the participating groups reached agreement on a crack arrest theory appropriate for the pressure vessel problem. 7 figures

  8. Analyzing the effects of geometrical discontinuity on dynamic strain aging behavior of ferritic steels

    International Nuclear Information System (INIS)

    Lee, Sa Yong; Kim, Jin Weon

    2012-01-01

    Low carbon ferritic steels, such as A106 Gr.B and A508 Gr.1a, are commonly used as piping material in nuclear power plants (NPPs). These ferritic steels are known to exhibit dynamic strain aging (DSA) when exposed to a certain range of elevated temperatures, including operating temperatures of NPPs, during deformation. DSA in low carbon steels is related to the interactions between free carbon and nitrogen atoms and dislocations during plastic deformation, and it leads to abnormal increase in strength and decrease in ductility and fracture toughness. Also, the DSA behavior is sensitive to the deformation rate. Therefore, DSA phenomenon has been considered to be a cause of uncertainty in the integrity evaluation of carbon steel components in NPPs, and a number of studies have been investigated the behavior of DSA under uni-axial tensile deformation. However, the behavior has not been clearly investigated under nonuniform stress and strain states induced by geometrical discontinuity. Our previous study only experimentally evaluated the effect of geometrical discontinuity on the DSA behavior via a series of tensile tests on the notched-bar and standard specimens. Thus, the present study performed finite element (FE) simulations on tensile data given by our previous study and evaluated the stress and strain states for each type of specimen during deformation. A relationship between DSA behavior and stress and strain states was obtained by comparing the results of experiment and FE simulation, and it was confirmed by crack propagation tests using compact tension (CT) specimens with electro discharge machining (EDM) notch

  9. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    Science.gov (United States)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  10. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2017-12-01

    Full Text Available The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.

  11. Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongsheng, E-mail: chen.dongsheng85@gmail.com [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko; Han, Wentuo; Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-10-15

    Highlights: • The role of oxide particles in α/α′ phase decomposition behavior; microstructure of phase decomposition observed by TEM. • The characteristics of ductility loss caused by age-hardening. • Correlation of phase decomposition and age-hardening explained by dispersion strengthened models. • Age-hardening susceptibility of ODS steels and SUS430 steel. - Abstract: The effect of aging on high-Cr ferritic steels was investigated with focusing on the role of oxide particles in α/α′ phase decomposition behavior. 12Cr-oxide dispersion strengthened (ODS) steel, 15Cr-ODS steel and commercial SUS430 steel were isothermally aged at 475 °C for up to 10,000 h. Thermal aging caused a larger hardening in SUS430 than 15Cr-ODS, while 12Cr-ODS showed almost no hardening. A characteristic of the ODS steels is that the hardening was not accompanied by the significant loss of ductility that was observed in SUS430 steel. After aging for 2000 h, SUS430 steel shows a larger ductile–brittle transition temperature (DBTT) shift than 15Cr-ODS steel, which suggests that the age-hardening susceptibility is lower in 15Cr-ODS steel than in conventional SUS430 steel. Thermal aging leaded to a large number of Cr-rich α′ precipitates, which were confirmed by transmission electron microscopy (TEM). Correlation of age-hardening and phase decomposition was interpreted by Orowan type strengthening model. Results indicate that oxide particles cannot only suppress ductility loss, but also may influence α/α′ phase decomposition kinetics.

  12. Corrosion fatigue studies on F82H mod. martensitic steel in reducing water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M F; Masci, A [ENEA, Casaccia (Italy). Centro Ricerche Energia

    1998-03-01

    Load-controlled low cycle fatigue tests have been carried out on F82H martensitic steel in 240degC oxygen-free water with and without dissolved hydrogen, in order to simulate realistic coolant boundary conditions to be approached in DEMO. It was found that water independently of its hydrogen content, determined the same fatigue life reduction compared to the base-line air results. Water cracks exhibited in their first propagation stages similar fracture morphologies which were completely missing on the air cracks, and were attributed to the action of an environment related component. Lowering frequency gave rise to an increase in F82H fatigue lifetimes without any change in cracking mode in air, and to fatigue life reduction by microvoid coalescence alone in water. The data were discussed in terms of (i) frequency dependent concurrent processes for crack initiation and (ii) frequency-dependent competitive mechanisms for crack propagation induced by cathodic hydrogen from F82H corrosion. (author)

  13. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  14. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  15. Effect of HTGR helium on fatigue and creep properties of 2 1/4Cr-1Mo steel

    International Nuclear Information System (INIS)

    Kurumaji, T.; Yamazaki, H.; Kudo, A.

    1982-01-01

    Low cycle fatigue and creep tests have been carried out on 2 1/4Cr-1Mo steel (candidate steel for VHTR reactor pressure vessel) in helium environment containing 200 approx. 300 μatm of H 2 , 100 approx. 150 μatm CO, 7 approx. 10 μatm CH 4 , 7 approx. 10 μatm CO 2 and 1 μatm H 2 O (JAERI B Helium). Fatigue life in helium environment was longer than that in air at 450 0 C. This results can be explained by supposing that oxidation at the crack tip causes the wedge effect to promote crack propagation in air. On the otherhand, creep rupture strength showed no significant difference in both helium and air. Equivalent creep rupture strength in both helium and air may be due to the fact that detrimental internal oxidation and carburization or decarburization hardly occur at 400 approx. 450 0 C

  16. The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels

    Science.gov (United States)

    Deng, Yu; Li, Zhe; Chen, Juan; Qi, Xin

    2018-04-01

    This study has been done by separately measuring Magnetic Barkhausen noise (MBN) under different structure characteristics, namely the carbon content, hardness, roughness, and elastic modulus in commercial steels. The result of the experiments shows a strong dependence of MBN parameters (peak height, Root mean square (RMS), and average value) on structure characteristics. These effects, according to this study, can be explained by two kinds of source mechanisms of the MBN, domain wall nucleation and wall propagation. The discovery obtained in this paper can provide basic knowledge to understand the existing surface condition problem of Magnetic Barkhausen noise as a non-destructive evaluation technique and bring MBN into wider application.

  17. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mohtadi-Bonab, M.A., E-mail: m.mohtadi@usask.ca; Eskandari, M.; Szpunar, J.A.

    2015-01-03

    In the present study, API X60 and X60SS pipeline steels were cathodically charged by hydrogen for 8 h using 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate. After charging, SEM observations showed that the hydrogen induced cracking (HIC) appeared at the center of cross section in the X60 specimen. However, HIC did not appear in the X60SS steel. Therefore, electron backscatter diffraction (EBSD) technique was used to analyze the center of cross section of as-received X60SS, X60 and HIC tested X60 specimens. The results showed that the HIC crack not only can propagate through 〈100〉||ND oriented grains but also its growth may happen in various orientations. In HIC tested X60 specimen, an accumulation of low angle grain boundaries around the crack path documented that full recrystallization was not achieved during hot rolling. Kernel Average Misorientaion (KAM) histogram illustrated that the deformation is more concentrated in as-received and HIC tested X60 specimens rather than in as-received X60SS specimen. Moreover, the concentration of coincidence site lattice (CSL) boundary in HIC tested X60 specimen was very low compared with other samples. The recrystallization area fraction in X60SS steel was very high. This high amount of recrystallization fraction with no stored energy is one of the main reasons for high HIC resistance of this steel to HIC. The orientation distribution function (ODF) of the recrystallized, substructured and deformed fractions in as-received X60SS and X60 steel showed relative close orientations in both as-received specimens.

  18. Effect of irradiation and chemical composition on deformation and fracture of steel of OH16N15 type during long-term test

    International Nuclear Information System (INIS)

    Averin, S.A.; Deniskin, Yu.S.; Shushlebin, V.V.; Panchenko, V.L.

    1992-01-01

    Thermal and radiation creep, as well as long-term strength of an austenitic stainless steel were investigated as a function of sulphur content and niobium addition. Interrelation between the grain boundary sleep and the intergranular fracture, and an important role of the surface in the nucleation and propagation of crack were revealed by quantitative structural and fractographic studies. Irradiation and chemical composition were found to influence these processes

  19. Nitrogen-alloyed martensitic steels

    International Nuclear Information System (INIS)

    Berns, H.

    1988-01-01

    A report is presented on initial results with pressure-nitrided martensitic steels. In heat-resistant steels, thermal stability and toughness are raised by nitrogen. In cold work steel, there is a more favourable corrosion behaviour. (orig./MM) [de

  20. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  1. Notch aspects of RSP steel microstructure

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2012-01-01

    Full Text Available For a rather long time, basic research projects have been focused on examinations of mechanical properties for Rapid Solidification Powder (RSP steels. These state-of-art steels are commonly known as “powdered steels“. In fact, they combine distinctive attributes of conventional steel alloys with unusual resistance of construction material manufactured by so called “pseudo-powdered” metallurgy.Choice of suitable materials for experimental verification was carried out based on characteristic application of so called “modern steel”. First, groups of stainless and tool steel types (steel grades ČSN 17 and 19 were selected. These provided representative specimens for the actual comparison experiment. For stainless steel type, two steel types were chosen: hardenable X47Cr14 (ČSN 17 029 stainless steel and non-hardenable X2CrNiMo18-14-3 (ČSN 17 350 steel. They are suitable e.g. for surgical tools and replacements (respectively. For tooling materials, C80U (ČSN 19 152 carbon steel and American D2 highly-alloyed steel (ČSN “equivalent” being 19 572 steel were chosen for the project. Finally, the M390 Böhler steel was chosen as representative of powdered (atomized steels. The goal of this paper is to discuss structural aspects of modern stainless and tool steel types and to compare them against the steel made by the RSP method. Based on the paper's results, impact of powdered steel structural characteristics on the resistance to crack initiation shall be evaluated.

  2. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  3. Phased array inspection of large size forged steel parts

    Science.gov (United States)

    Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre

    2018-04-01

    High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.

  4. Tropospheric radiowave propagation beyond the horizon

    CERN Document Server

    Du Castel, François

    1966-01-01

    Tropospheric Radiowave Propagation Beyond the Horizon deals with developments concerning the tropospheric propagation of ultra-short radio waves beyond the horizon, with emphasis on the relationship between the theoretical and the experimental. Topics covered include the general conditions of propagation in the troposphere; general characteristics of propagation beyond the horizon; and attenuation in propagation. This volume is comprised of six chapters and begins with a brief historical look at the various stages that have brought the technique of transhorizon links to its state of developmen

  5. Light propagation in linear optical media

    CERN Document Server

    Gillen, Glen D; Guha, Shekhar

    2013-01-01

    Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation o

  6. PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine

    Science.gov (United States)

    D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.

    2012-04-01

    PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three

  7. Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading

    Science.gov (United States)

    Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.

    2018-03-01

    SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.

  8. Cyclic crack resistance of anticorrosion cladding-15Kh2MFA steel joint

    International Nuclear Information System (INIS)

    Zvezdin, Yu.I.; Nikiforchin, G.N.; Timofeev, B.T.; Zima, Yu.V.; Andrusiv, B.N.

    1985-01-01

    Cyclie crack resistance of transition zone in austenitic cladding steel 15Kh2MFA joint is studied, taking into account the geometry of fatigue cracks, fracture micromechanism and crack closure effect. Kinetics of crack development from the cladding to the basic metal and vice versa is considered. Microstructure of transition zone is investigated. The results obtained are considered as applied to WWER. It is emphasized, that the braking of fatigue cracks is observed at low asymmetry of loading cycle. Increased loading asymmetry accelerates sharply the alloy fracture due to the growth of subcladding crack, at that, the direction of crack propagation and the structure of transition zone are not of great importance

  9. Cyclic and isothermal oxidation behavior of 2.25Cr-1Mo steel

    International Nuclear Information System (INIS)

    Proy, M.; Utrilla, M. v.; Otero, E.

    2014-01-01

    Cyclic and isothermal oxidation of chromium-molybdenum steel 2.25Cr-1Mo were analyzed at 550 degree centigrade and 650 degree centigrade during 360 hours in air atmospheres. The cycles were performed with two stages; one of heating in furnace during 90 minutes and then the sample were cooled to 50 degree centigrade by air flow. Thermogravimetric analyses were performed to obtain high temperature corrosion kinetics. Several characterization techniques have been used to identify the corrosion mechanism, as X-Ray Diffraction (XRD), Optical Microscopy (OM) and Scanning Electron Microscopy (SEM). Thermal cycling tests can changes the corrosion mechanism, due cracks propagation in oxide scale, that witch can favors the access of oxidant agent to the substrate. (Author)

  10. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  11. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  12. Semiclassical propagation of Wigner functions.

    Science.gov (United States)

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  13. Propagation phenomena in real world networks

    CERN Document Server

    Fay, Damien; Gabryś, Bogdan

    2015-01-01

    Propagation, which looks at spreading in complex networks, can be seen from many viewpoints; it is undesirable, or desirable, controllable, the mechanisms generating that propagation can be the topic of interest, but in the end all depends on the setting. This book covers leading research on a wide spectrum of propagation phenomenon and the techniques currently used in its modelling, prediction, analysis and control. Fourteen papers range over topics including epidemic models, models for trust inference, coverage strategies for networks, vehicle flow propagation, bio-inspired routing algorithms, P2P botnet attacks and defences, fault propagation in gene-cellular networks, malware propagation for mobile networks, information propagation in crisis situations, financial contagion in interbank networks, and finally how to maximize the spread of influence in social networks. The compendium will be of interest to researchers, those working in social networking, communications and finance and is aimed at providin...

  14. Flexural performance of steel fiber reinforced concrete (SFRC) ribbed slab with various topping thicknesses

    Science.gov (United States)

    Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina

    2017-11-01

    Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.

  15. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  16. Damascus steel ledeburite class

    Science.gov (United States)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  17. Computerized simulation study of the influence of the different parameters inducing crevice corrosion propagation of passivable alloys in chloride medium

    International Nuclear Information System (INIS)

    Girardin, G.; Proust, A.; Combrade, P.; Vuillemin, B.; Oltra, R.

    2006-01-01

    The most frequent case of crevice corrosion concerns passivable alloys, and particularly stainless steels in oxidizing chloride media. In order to be sure that its propagation is not possible, the corrosion potential has to be inferior to a critical value called 're-passivation potential'. An easy and flexible computerized simulation of the propagation of an active crevice in chloride medium has been developed to give a parametric study of the local medium and of the re-passivation conditions. This modeling allows to establish the stability domains of the solid and gaseous phases inside the crevice and to assess the influence of the potential of the free surfaces, of the amount of chloride in the exterior medium and the geometry on the local chemistry. It appears that the deepest crevices are not necessarily the strongest. The introduction, in crevice tip, of an easy re-passivation criteria shows the existence of a re-passivation potential depending of the crevice geometry. (O.M.)

  18. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  19. Propagation of dynamic measurement uncertainty

    International Nuclear Information System (INIS)

    Hessling, J P

    2011-01-01

    The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result

  20. Investigation of 12Kh1MF steel resistance to brittle fractures

    International Nuclear Information System (INIS)

    Bologov, G.A.; Rushchits, T.Yu.

    1977-01-01

    The metal of hot-rolled steam pipe made of 12Kh1MF steel, which has been subjected to thermal treatment under laboratory conditions, and metal samples from acting steam pipes after different exploitation periods at 510-565 deg C have been investigated. The dependence of impact viscosity and its constituents on conditions of thermal treatment has been established. The energy consumed by the developing crack has been used as an impact viscosity criterion. Appropriate thermal treatment is capable of rehabilitating the impact viscosity of embrittled metal. Cold plastic deformation increases crack propagation rate in the initial metal and promotes embrittlement during exploitation. Ageing of the working metal reduces its capacity of stopping the developing crack and shifts the temperature threshold of brittleness towards positive temperature

  1. The metrological problems of irradiation embrittlement of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Vodenicharov, S.; Kamenova, Ts.

    1993-01-01

    Neutron irradiation of reactor pressure vessel steels increases the T k -values of transition temperature from ductile to brittle fracture. This effect is very important in emergency situations, when the water cooling injection in the reactor results in high thermal gradients. In such cases there is a risk from the appearance of a brittle fracture with catastrophic crack propagation speed at relatively low stresses. That is why the T k -value determination is very important for the safe operation of the reactor systems. Some advanced experimental methods for T k -testing and control have been discussed in the present article and the standards of different countries have been compared. The methods applying subsize specimens and welding-restored specimens have been reviewed. (author)

  2. Stahlschüssel key to steel

    CERN Document Server

    Wegst, W S

    2016-01-01

    The Key to Steel (Stahlschlüssel/Stahlschluessel) cross reference book will help you to decode / decipher steel designations and find equivalent materials worldwide. The 2016 edition includes more than 70,000 standard designations and trade names from approximately 300 steelmakers and suppliers. Presentation is trilingual: English, French, and German. Materials covered include structural steels, tool steels, valve steels, high temperature steels and alloys, stainless and heat-resisting steels, and more. Standards and designations from 25 countries are cross-referenced.

  3. Methods of forging steel

    OpenAIRE

    Pečoler, Primož

    2014-01-01

    The following work presents processes of steel forming, challenges when forging steel, forming machines suitable for forging and which choice of machine is most suitable for forging. We can separate steel forming to free forging and drop forging. Free forging can be divided to hand forging and machine forging. The correct choice of furnaces is also very important. We must reach correct temperature in the furnace for raw steel to melt with less scalings. In diploma I mentioned some machine...

  4. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  5. Fatigue fracture of steel after mechanical and ultrasonic strengthening

    International Nuclear Information System (INIS)

    Stotskij, I.M.

    1978-01-01

    Fatigue fracture surfaces of samples after mechanical and ultrasonic strengthening have been studied metallographically and by electron fractography. Studied was the 40Kh steel hardened from 850 deg and then tempered at 180 deg or at 550 deg C. The ultrasound power was 25 kWt, the frequency was 20 kHz, the sample rotation velocity was 39.5 m/min. Mechanical and ultrasonic treatment was found to cause structural changes (formation of a white layer) and deformation of the material under the layer. The fatigue cracks were extending beyond the white layer; their propagation involved generation and coalescence of microcracks on account of segregation of carbides. It is concluded that mechanical and ultrasonic treatment should be used for increasing the fatigue strength of low and average strength materials rather than hardened or low-tempered ones

  6. Typologie et dynamique forestières: Un exemple en Barousse (Hautes Pyrénées

    Directory of Open Access Journals (Sweden)

    Mazars, Jacqueline

    1996-12-01

    Full Text Available An ecological analysis of the Pyrenean beech groves (Barousse points to hydric conditions as the main factor determining different ecological units on a same geological substratum. This approach, completed by the historical research that brings to light the manmade actions in the fir elimination of this area, can in part generate the knowledge of the real potential forestry (Fir-Beech, Fir. The structural analysis of stands, disturbed in the past by overexploitation, indicates that the upper stratum has closed, and that, often through pioneer phases, these woods have extended their area.

    [fr] L'analyse phytoécologique de hêtraies des Pyrénées Centrales (Barousse montre que ce sont surtout les variations des conditions hydriques qui déterminent, sur un même substrat colluvial, les différentes unités stationnelles observées. Cette approche, complétée par des études historiques 'mettant en lumière le déterminisme anthropique de la disparition presque totale du Sapin de cette région, permet, en partie, de connaître les potentialités forestières réelles (hêtraiesapinière, sapinière. L'analyse structurale des peuplements, anciennement ouverts par surexploitation, indique une fermeture généralisée du couvert et une dynamique d'extension de ces formations souvent par l'intermédiaire de phases pionnières.

  7. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  8. Effect of Microstructures and Tempering Heat Treatment on the Mechanical Properties of 9Cr-2W Reduced-Activation Ferritic-Martensitic Steel

    International Nuclear Information System (INIS)

    Park, Min-Gu; Kang, Nam Hyun; Moon, Joonoh; Lee, Tae-Ho; Lee, Chang-Hoon; Kim, Hyoung Chan

    2015-01-01

    The aim of this study was to investigate the effect of microstructures (martensite, ferrite, or mixed ferrite and martensite) on the mechanical properties. Of particular interest was the Charpy impact results for 9Cr-2W reduced-activation ferritic-martensitic (RAFM) steels. Under normalized conditions, steel with martensitic microstructure showed superior tensile strength and Charpy impact results. This may result from auto-tempering during the transformation of martensite. On the other hand, both ferrite, and ferrite mixed with martensite, showed unusually poor Charpy impact results. This is because the ferrite phases, and coarse M_23C_6 carbides at the ferrite-grain boundaries acted as cleavage crack propagation paths, and as preferential initiation sites for cleavage cracks, respectively. After the tempering heat treatment, although tensile strength decreased, the energy absorbed during the Charpy impact test drastically increased for martensite, and ferrite mixed with martensite. This was due to the tempered martensite. On the other hand, there were no distinctive differences in tensile and Charpy impact properties of steel with ferrite microstructure, when comparing normalized and tempered conditions.

  9. Corrosion characteristics of DMR-1700 steel and comparison with different steels in marine environment

    International Nuclear Information System (INIS)

    Gurrappa, I.; Malakondaiah, G.

    2005-01-01

    In the present paper, a systematic corrosion study has been carried out on DMR-1700 steel to understand the protective nature of oxide scale that forms on its surface under marine environmental conditions. Further, the studies related to oxide scales as well as pitting and crevice corrosion resistance of both stainless steels and widely used low alloy steel EN24 in marine environment have been studied for comparison purpose. The surface morphologies of corroded steels have been observed under scanning electron microscope (SEM) in order to understand the nature of corrosion. A high performance protective coating that has been developed for protection of low alloy steels DMR-1700 and EN24 against corrosion is presented after stressing the importance of surface engineering in enhancing the life of steels. Based on the studies with different techniques, DMR-1700 steel has been recommended for manufacture of components used in aerospace systems in association with appropriate protective coating for improving their efficiency

  10. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  11. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  12. Low cycle fatigue behavior in a medium-carbon carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-06-01

    In the paper, different morphologies of bainite were obtained through isothermal quenching at 320 °C and 395 °C in a medium-carbon carbide-free bainitic steel. The cyclic deformation mechanism was explored by using low cycle fatigue testing. The volume fraction of retained austenite was measured by X-ray diffraction and the space partitioning of the solute atoms was constructed by three-dimensional atom probe. Results showed that the fatigue life at 320 °C was always higher than that at 395 °C under low and high total strain amplitude. The cyclic softening at the early fatigue stage increased the plastic strain of the sample which was responsible for the reduction of the fatigue life at 395 °C. Strain-induced retained austenite to martensite contributed to initial cyclic hardening, but almost having no effect on the subsequent cyclic stable/softening behaviors. The finer bainitic ferrite sheaves obtained at 320 °C changed the small fatigue crack propagation direction and delayed the crack propagation rate, which was beneficial for the fatigue properties. In addition, the substitutional atoms did not redistribute between the retained austenite and bainitic ferrite before and after cyclic deformation.

  13. Monte Carlo simulation taking account of surface crack effect for stress corrosion cracking in a stainless steel SUS 304

    International Nuclear Information System (INIS)

    Tohgo, Keiichiro; Suzuki, Hiromitsu; Shimamura, Yoshinobu; Nakayama, Guen; Hirano, Takashi

    2008-01-01

    Stress corrosion cracking (SCC) in structural metal materials occurs by initiation and coalescence of micro cracks, subcritical crack propagation and multiple large crack formation or final failure under the combination of materials, stress and corrosive environment. In this paper, a Monte Carlo simulation for the process of SCC has been proposed based on the stochastic properties of micro crack initiation and fracture mechanics concept for crack coalescence and propagation. The emphasis in the model is put on the influence of semi-elliptical surface cracks. Numerical simulations are carried out based on CBB (creviced bent beam) test results of a sensitized stainless steel SUS 304 and the influence of micro crack initiation rate and coalescence condition on the simulation results is discussed. The numerical examples indicate the applicability of the present model to a prediction of the SCC behavior in real structures. (author)

  14. Methods of making bainitic steel materials

    Science.gov (United States)

    Bakas, Michael Paul; Chu, Henry Shiu-Hung; Zagula, Thomas Andrew; Langhorst, Benjamin Robert

    2018-01-16

    Methods of making bainitic steels may involve austenitizing a quantity of steel by exposing the quantity of steel to a first temperature. A composition of the quantity of steel may be configured to impede formation of non-bainite ferrite, pearlite, and Widmanstatten ferrite. The quantity of steel may be heat-treated to form bainite by exposing the quantity of steel to a second, lower temperature. The second, lower temperature may be stabilized by exposing the quantity of steel to the second, lower temperature in the presence of a thermal ballast.

  15. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  16. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Dartmouth College, Hanover, NH (United States); Baker, Ian [Dartmouth College, Hanover, NH (United States)

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  17. Modelling the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    Scaling of the Landau gauge gluon propagator calculated at {beta} = 6.0 and at {beta} = 6.2 is demonstrated. A variety of functional forms for the gluon propagator calculated on a large (32{sup 3} x 64) lattice at {beta} = 6.0 are investigated.

  18. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  19. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).

  20. Fatigue crack growth threshold of austenitic stainless steels in simulated PWR primary water

    International Nuclear Information System (INIS)

    Tsutsumi, Kazuya; Yamamoto, Kenji; Nitta, Yoshikazu

    2007-01-01

    Many studies have revealed that fatigue crack growth (FCG) rate of austenitic stainless steels is accelerated in light water reactor environment compared to that in air at room temperature. Major driving factors in the acceleration of FCG rate are stress ratio, temperature and stress rise time. Based on this knowledge, FCG curves have been developed considering these factors as parameters. However, there are few data of FCG threshold ΔK th in light water reactor environment. Hence it is necessary to clarify FCG rate under near-threshold condition for more accurate evaluation of fatigue crack growth behavior under cyclic stress with relatively low ΔK. In the present study, therefore, ΔK th was determined for austenitic stainless steels in simulated PWR primary water, and FCG behavior under near-threshold condition was revealed by collecting fatigue crack propagation data. The results are summarized as follows: No propagation of fatigue crack was found in high temperature water, and there was a definite ΔK th . Average ΔK eff,th was 4.3 MPa·m 0.5 at 325degC, 3.3 MPa·m 0.5 at 100degC, and there was no considerable reduction compared to currently known ΔK eff,th in air. Thus, it was revealed tha ambient conditions had minimal effect, on ΔK eff,th , ΔK th increases with increasing temperature and decreasing frequency. As a result of fracture surface observation, oxide-induced-crack-closure was considered to be a cause of the dependency described above. In addition, it was suggested that changes in material properties also had influence on ΔK th, since ΔK eff,th itself increased at elevated temperature. (author)

  1. Ductile to Brittle Transition Behaviour of HSLA-65 Steel Welds: Dynamic Tear Testing

    Science.gov (United States)

    2011-01-01

    soumises aux essais ne s’est avérée apte au service dans des conditions arctiques. DRDC Atlantic TM 2010-220 iii Executive summary...de transition obtenues antérieurement à l’aide de l’essai de choc Charpy. Un objectif secondaire de la présente étude consistait à comparer la méthode...dynamique de résistance à l’arrachement sont beaucoup plus élevées que celles obtenues à l’aide de l’essai de choc Charpy, ce qui appuie l’exigence

  2. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    International Nuclear Information System (INIS)

    Zhang Jun; Li, Victor C.

    2004-01-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known

  3. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    International Nuclear Information System (INIS)

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-01-01

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: ► FSW produced sound welds between st37 low carbon steel and 304 stainless steel. ► The SZ of the st37 steel contained some products of allotropic transformation. ► The material in the SZ of the 304 steel showed features of dynamic recrystallization. ► The finer microstructure in the SZ increased the hardness and tensile strength.

  4. Semiclassical propagator of the Wigner function.

    Science.gov (United States)

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  5. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage; Fissuration en relaxation des aciers inoxydables austenitiques - influence de l'ecrouissage sur l'endommagement intergranulaire

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  6. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  7. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    Science.gov (United States)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  8. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions

    International Nuclear Information System (INIS)

    Vankeerberghen, M.; Weyns, G.; Gavrilov, S.; Martens, B.; Deconinck, J.

    2009-01-01

    The crack propagation rate of Type 316 stainless steel in boric acid-lithium hydroxide solutions under PWR-relevant conditions was modelled. A film rupture/dissolution/repassivation mechanism is assumed and extended to cold worked materials by including a stress-dependent bare metal dissolution current density. The chemical and electrochemical conditions within the crack are calculated by finite element calculations, an analytical expression is used for the crack-tip strain rate and the crack-tip stress is assumed equal to 2.5 times the yield stress (plane-strain). First the model was calibrated against a literature published data set. Afterwards, the influence of various variables - dissolved hydrogen, boric acid and lithium hydroxide content, stress intensity, crack length, temperature, flow rate - was studied. Finally, other published crack growth rate tests were modelled and the calculated crack growth rates were found to be in reasonable agreement with the reported ones

  9. Hydrogen gas embrittlement of stainless steels mainly austenitic steels. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Azou, P.

    1988-01-01

    Steel behavior in regard to hydrogen is examined especially austenitic steels. Gamma steels are studied particularly the series 300 with various stabilities and gamma steels with improved elasticity limit for intermetallic phase precipitation and nitrogen additions. A two-phase structure γ + α' is also studied. All the samples are tested for mechanical behavior in gaseous hydrogen. Influence of metallurgical effects and of testing conditions on hydrogen embrittlement are evidenced. Microstructure resulting from mechanical or heat treatments, dislocation motion during plastic deformation and influence of deformation rate are studied in detail [fr

  10. Some comments about the situation of the Steel Industry in the Arab Countries (Arab Steel Summit)

    International Nuclear Information System (INIS)

    Haidar, Y.; Astier, J.

    2009-01-01

    The Arab Steel Summit, that convened in Abu Dhabi in April, gave us another opportunity to review the situation of the Arab Iron and Steel Industry, with regard to the present World economic context. We will address: - the World situation of steel production, focusing on the Arab Countries; - the related situation of steel consumption; - the steel trade, including imports, exports and prices; - the consequences for technology and economy. (authors)

  11. The corrosion behaviour of stainless steels in natural seawater: results of an european collaborative project

    Energy Technology Data Exchange (ETDEWEB)

    Scotto, V.; Mollica, A. [Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France); Feron, D. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees; Rogne, T.; Steinsmo, U. [Stiftelsen for Industriell og Teknisk Forskning (SINTEF), Trondheim (Norway); Compere, C.; Festy, D.; Audouard, J.P.; Taxen, C.; Thierry, D.

    1996-12-31

    One of the goals of the European collaborative Project `Marine Bio-film on Stainless steels: effects, monitoring and prevention`, started in 1992 and partially funded by the European Communities in the framework of the Marine Science and Technologies Program, was to give some conclusive and general remarks regarding the possible link, outlined in literature, between aerobic bio-film settlement and both the increased risk of localized corrosion onset and the propagation rate of ongoing localized corrosion on Stainless Steels. For this purpose several SS types of European production (austenitic and duplex), in form of tubes and plates, with and without artificial crevices preformed on their surfaces, have been exposed to flowing and quite seawater (flow rate from 0 to 1.5 m/s), at different marine stations (respectively located in the Mediterranean Sea, in the Eastern Atlantic, in the North and Baltic Seas) and the tests were repeated during each season of the year when seawater temperatures ranged from 6 up to 28 deg C. During each exposure, the SS free corrosion potentials were recorded. (authors).

  12. Petri neural network model for the effect of controlled thermomechanical process parameters on the mechanical properties of HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.

    1999-10-01

    The effect of composition and controlled thermomechanical process parameters on the mechanical properties of HSLA steels is modelled using the Widrow-Hoff's concept of training a neural net with feed-forward topology by applying Rumelhart's back propagation type algorithm for supervised learning, using a Petri like net structure. The data used are from laboratory experiments as well as from the published literature. The results from the neural network are found to be consistent and in good agreement with the experimented results. (author)

  13. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Suvi Papula

    2017-06-01

    Full Text Available Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility.

  14. Challenges in Special Steel Making

    Science.gov (United States)

    Balachandran, G.

    2018-02-01

    Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.

  15. Trends in steel technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants

  16. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  17. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  18. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  19. Underclad cracks growth under fatigue loading in stainless steel cladding

    International Nuclear Information System (INIS)

    Bernard, J.L.; Bodson, F.; Doule, A.; Slama, G.; Bramat, M.; Doucet, J.P.; Maltrud, F.

    1981-01-01

    Hydrogen induced cracks have been found in HAZ of PWR vessel nozzles under stainless steel cladding. Fatigue tests were performed to collect a large amount of data on the possible propagation of this type of flaws. Tests were conducted in two steps. The aim of the first step was to set up the experimental equipment and to device an adequate method for following cracks during fatigue loading. Clad plates with electroerosion machined slots were used for this purpose. The second step was then undertaken with material taken out of an actual nozzle containing hydrogen induced cracks in the HAZ under stainless steel cladding or flaws simulated by electroerosion machined slots. The test loadings were comparable to in service loadings of the nozzles. Special attention was taken to get representative R ratios. Again for the sake of representativity, the tests were performed at 300 0 C (In service temperature) and the hydrotest was simulated. The main results are: It was possible to follow the whole failure process by combining non-destructive examinations during fatigue testing and fractographic observations of broken specimens. Different striation patterns, before and after air has penetrated the actual embedded cracks were observed. Numerical simulation of fatigue crack growth of actual or simulated defects were consistent with experimental data, provided mainly that defect shape, effect of R ratio and of environment were taken into account. (orig.)

  20. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    Science.gov (United States)

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  1. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    Directory of Open Access Journals (Sweden)

    Wei Song

    2018-04-01

    Full Text Available The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  2. An assessment of carbon steel overpacks for radioactive waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Bland, I.D.; Taylor, K.J.; Sharland, S.; Tasker, P.

    1986-01-01

    The report summarizes the results obtained at Harwell in the second phase of a project evaluating the corrosion behaviour of high-level waste overpacks in geological disposal. It has concentrated on the use of carbon steel in granitic and argillaceous environments, and has aimed at estimating the corrosion allowance required to achieve a 1000-year overpack life. Experimental and mathematical modelling studies have indicated that 200 mm of steel should be more than sufficient to prevent overpack penetration by general or localized corrosion. A theoretical assessment of the possible effects of micro-organisms on overpack corrosion has concluded that such species are likely to be found in repositories, but that only a fraction of their population should be corrosive towards carbon steel. Making the pessimistic assumption that all organic carbon in a 500 mm bentonite backfill is utilized by corrosive sulphate reducing bacteria, it has been estimated that this will result in an additional metal loss of 13 mm. One form of corrosion which cannot be dealt with by the corrosion allowance approach is stress corrosion cracking, since even at the lowest reported propagation rates, a metal thickness exceeding 3 m would be penetrated in 1000 years. It has been concluded that the possibility of stress corrosion cannot be dismissed, but, because the process requires a certain minimum stress level before it can occur, it should be possible to avoid the problem by giving the overpacks a stress relief heat treatment. Tests in a model environment have shown that a heat treatment designed to reduce fabrication stresses to 50% of the yield strengh should be sufficient to prevent cracking. It is recommended that this conclusion be substantiated by scaled-up experiments with model overpacks. The report draws further attention to degradation by hydrogen embrittlement

  3. Ductile fracture of two-phase welds under 77K. [Steel-EhP810, steel-EhP666, steel-08Kh18N10T, steel-EhP659-VI, steel-chP810

    Energy Technology Data Exchange (ETDEWEB)

    Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel' , A.V.

    The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters sigmasub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulating the part of the basic metal in joint content.

  4. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  5. Fatigue damage of steel components

    DEFF Research Database (Denmark)

    Fæster, Søren; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials......Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials...

  6. Propagation engineering in wireless communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2016-01-01

    This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.

  7. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  8. The Study for Recycling NORM - Contaminated Steel Scraps from Steel Industry

    International Nuclear Information System (INIS)

    Tsai, K. F.; Lee, Y. S.; Chao, H. E.

    2003-01-01

    Since 1994, most of the major steel industries in Taiwan have installed portal monitor to detect the abnormal radiation in metal scrap feed. As a result, the discovery of NORM (Naturally Occurring Radioactive Material) has increased in recent years. In order to save the natural resources and promote radiation protection, an experimental melting process for the NORM contaminated steel scraps was carried out by the Institute of Nuclear Energy Research (INER) Taiwan, ROC. The experimental melting process has a pretreatment step that includes a series of cutting and removal of scales, sludge, as well as combustible and volatile materials on/in the steel scraps. After pretreatment the surface of the steel scraps are relatively clean. Then the scraps are melted by a pilot-type induction furnace. This experiment finally produced seven ingots with a total weight of 2,849 kg and 96.8% recovery. All of the surface dose rates are of the background values. The activity concentrations of these ingots are also below the regulatory criteria. Thus, these NORM-bearing steel scraps are ready for recycling. This study has been granted by the regulatory authority

  9. Quantitative characterization of initiation and propagation in stress corrosion cracking. An approach of a phenomenological model; Caracterisation quantitative de l`amorcage et de la propagation en corrosion sous contrainte. Approche d`une modelisation phenomenologique

    Energy Technology Data Exchange (ETDEWEB)

    Raquet, O

    1994-11-25

    A purely phenomenological study of stress corrosion cracking was performed using the couple Z2CN 18.10 (304L) austenitic stainless steel/boiling MgCl{sub 2} aqueous solution. The exploitation of the morphological information (shape of the cracks and size distribution) available after constant elongation rate tests led to the proposal of an analytical expression of the crack initiation and growth rates. This representation allowed to quantitatively characterize the influence of the applied strain rate as well as the effect of corrosion inhibitors on the crack initiation and propagation phases. It can be used in the search for the stress corrosion cracking mechanisms as a `riddle` for the determination of the rate controlling steps. As a matter of fact, no mechanistic hypothesis has been used for its development. (author).

  10. Thermal fatigue behaviour for a 316 L type steel

    Science.gov (United States)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  11. Steel: Price and Policy Issues

    National Research Council Canada - National Science Library

    Cooney, Stephen

    2006-01-01

    Steel prices remain at historically elevated levels. The rapid growth of steel production and demand in China is widely considered as a major cause of the increases in both steel prices and the prices of steelmaking inputs...

  12. Propagation into an unstable state

    International Nuclear Information System (INIS)

    Dee, G.

    1985-01-01

    We describe propagating front solutions of the equations of motion of pattern-forming systems. We make a number of conjectures concerning the properties of such fronts in connection with pattern selection in these systems. We describe a calculation which can be used to calculate the velocity and state selected by certain types of propagating fronts. We investigate the propagating front solutions of the amplitude equation which provides a valid dynamical description of many pattern-forming systems near onset

  13. Fracture toughness of the F-82H steel-effect of loading modes, hydrogen, and temperature

    International Nuclear Information System (INIS)

    Li, H.-X.; Jones, R.H.; Hirth, J.P.; Gelles, D.S.

    1996-01-01

    The effects of loading mode, hydrogen, and temperature on fracture toughness and tearing modulus were examined for a ferritic/martensitic steel (F-82H). The introduction of a shear load component, mode III, significantly decreased the initiation and propagation resistance of cracks compared to the opening load, mode I, behavior. Mode I crack initiation and propagation exhibited the highest resistance. A minimum resistance occurred when the mode I and mode III loads were nearly equal. The presence of 4 wppm hydrogen decreased the cracking resistance compared to behavior without H regardless of the loading mode. The minimum mixed-mode fracture toughness with the presence of hydrogen was about 30% of the hydrogen-free mode I fracture toughness. The mixed-mode toughness exhibited a lesser sensitivity to temperature than the mode I toughness. The J IC value was 284 kJ/m 2 at room temperature, but only 60 kJ/m 2 at -55 C and 30 kJ/m 2 at -90 C. The ductile to brittle transition temperature (DBTT) was apparently higher than -55 C. (orig.)

  14. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  15. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  16. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  17. Volatilization from PCA steel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Smolik, G.R.; McCarthy, K.A.; Petti, D.A.

    1996-08-01

    The mobilizations of key components from Primary Candidate Alloy (PCA) steel alloy have been measured with laboratory-scale experiments. The experiments indicate most of the mobilization from PCA steel is due to oxide formation and spalling but that the spalled particles are large enough to settle rapidly. Based on the experiments, models for the volatization of iron, manganese, and cobalt from PCA steel in steam and molybdenum from PCA steel in air have been derived.

  18. Risk of lung cancer according to mild steel and stainless steel welding

    DEFF Research Database (Denmark)

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni

    2007-01-01

    OBJECTIVES: Whether the elevated risk of lung cancer observed among welders is caused by welding emissions or by confounding from smoking or asbestos exposure is still not resolved. This question was addressed in a cohort with a long follow-up and quantified estimates of individual exposure.......06-1.70)]. Among the stainless steel welders, the risk increased significantly with increasing accumulative welding particulate exposure, while no exposure-response relation was found for mild steel welders, even after adjustment for tobacco smoking and asbestos exposure. CONCLUSIONS: The study corroborates...... earlier findings that welders have an increased risk of lung cancer. While exposure-response relations indicate carcinogenic effects related to stainless steel welding, it is still unresolved whether the mild steel welding process carries a carcinogenic risk....

  19. The propagator of quantum gravity in minisuperspace

    International Nuclear Information System (INIS)

    Louko, J.

    1985-04-01

    We study the quantum gravitational propagation amplitude between two spacelike three-surfaces in minisuperspaces where the supermomentum constraints are identically satisfied. We derive a well-defined path integral formula for the propagator and show that the propagator is an inverse of the canonical Hamiltonian operator. In an exactly solvable deSitter minisuperspace model the propagator is found to obey semi-classically correct boundary conditions. We discuss the implications for the full theory and suggest an approach to unravelling the physical meaning of the propagator. (orig.)

  20. Neural network construction via back-propagation

    International Nuclear Information System (INIS)

    Burwick, T.T.

    1994-06-01

    A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima