WorldWideScience

Sample records for steel pressure vessels

  1. Metallurgy of steels for PWR pressure vessels

    International Nuclear Information System (INIS)

    Kepka, M.; Mocek, J.; Barackova, L.

    1980-01-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure. (B.S.)

  2. Metallurgy of steels for PWR pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kepka, M; Mocek, J; Barackova, L [Skoda, Plzen (Czechoslovakia)

    1980-09-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure.

  3. Development of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed

  4. Development of PWR pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed.

  5. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  6. East/west steels for reactor pressure vessels

    International Nuclear Information System (INIS)

    Davies, M.; Kryukov, A.; Nikolaev, Y.; English, C.

    1997-01-01

    The report consist of three parts dealing with comparison of the irradiation behaviour of 'Eastern' and 'Western' steels, mechanisms of irradiation embrittlement and the role of compositional variations on the irradiation sensitivity of pressure vessels. Nickel, copper and phosphorus are the elements rendering the most essential influence on behaviour of pressure vessel steels under irradiation and subsequent thermal annealing. For WWER-440 reactor pressure vessel (RPV) steels in which nickel content does nor exceed 0.3% the main affecting factors are phosphorous and copper. For WWER-1000 RPV welds in which nickel content generally exceed 1.5% the role of nickel in radiation embrittlement is decisive. In 'Western' type steels main influencing elements are nickel and copper. The secondary role of phosphorus in radiation embrittlement of 'Western' steels is caused by lower relative content compared to 'Eastern' steels. The process of how copper, phosphorus and nickel contents affect the irradiation sensitivity of both types of steel seem to be similar. Some distinctions between the observed radiation effects is apparently caused by differences in the irradiation conditions and ratios of the contents of above mentioned elements in both types of steel. For 'Eastern' RPV steels the dependence of the recovery degree of irradiated steels due to postirradiation thermal annealing id obviously dependent on phosphorus contents and the influence of nickel contents on this process is detectable

  7. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  8. Internal Friction of Pressure Vessel Steel Embrittlement

    International Nuclear Information System (INIS)

    Van Ouytsel, K.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. The thesis contains a literature study, a description of the construction details of a new inverted torsion pendulum. This device was designed to investigate pressure-vessel steels at high amplitudes (10 -4 to 10 -2 ) and over a wide temperature range (90-700K) at approximately 1 Hz in the irradiated condition. Results of measurements on a variety of reactor pressure vessel steels by means of the torsion penduli are reported and interpreted

  9. Reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-01-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use

  10. Microstructural evolution in neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    English, C.A.; Phythian, W.J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. The microstructural evolution in neutron irradiated reactor pressure vessel steels is described. The damage mechanisms are elaborated and techniques for examining the microstructure are suggested. The importance of the initial damage event is analysed, and the microstructural evolution in RPV steels is examined

  11. Modeling irradiation embrittlement in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 10, numerical modeling of irradiation embrittlement in reactor vessel steels are introduced. Physically-based models are developed and their role in advancing the state-of-the-art of predicting irradiation embrittlement of RPV steels is stressed

  12. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  13. Topic 1. Steels for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Brynda, J.; Kepka, M.; Barackova, L.; Vacek, M.; Havel, S.; Cukr, B.; Protiva, K.; Petrman, I.; Tvrdy, M.; Hyspecka, L.; Mazanec, K.; Kupca, L.; Brezina, M.

    1980-01-01

    Part 1 of the Proceedings consists of papers on the criteria for the selection and comparison of the properties of steel for pressure vessels and on the metallurgy of the said steels, the selection of suitable material for internal tubing systems, the manufacture of high-alloy steels for WWER components, the mechanical and metallurgical properties of steel 22K for WWER 440 pressure components, and of steel 10MnNi2Mo for the WWER primary coolant circuit, and the metallographic assessment of steel 0Kh18N10T. (J.P.)

  14. Integrity of Magnox reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Flewitt, P.E.J.; Williams, G.H.; Wright, M.B.

    1992-01-01

    The background to the safety assessment of the steel reactor pressure vessels for Magnox power stations is reviewed. The evolved philosophy adopted for the 1991 safety cases prepared for the continued operation of four Magnox power stations operated by Nuclear Electric plc is described, together with different aspects of the multi-legged integrity argument. The main revisions to the materials mechanical property data are addressed together with the assessment methodology adopted and their implications for the overall integrity argument formulated for the continued safe operation of these reactor pressure vessels. (author)

  15. Radiation embrittlement of Spanish nuclear reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Bros, J.; Ballesteros, A.; Lopez, A.

    1993-01-01

    Commercial pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants contain a series of pressure vessel steel surveillance capsules as the principal means of monitoring radiation effects on the pressure vessel. Changes in fracture toughness are more severe in surveillance capsules than in reactor vessel materials because of their proximity of the reactor core. Therefore, it is possible to predict changes in fracture toughness of the reactor vessel materials. This paper describes the status of the reactor vessel surveillance program relating to Spanish nuclear power plants. To date, twelve capsules have been removed and analyzed from seven of the nine Spanish reactors in operation. The results obtained from the analysis of these capsules are compared with the predictions of the Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Rev. 2, by means of measured and expected increase of the nil-ductility transition reference temperature (RT NDT ). The comparison is made considering the different variables normally included in the studies of radiation response of reactor pressure vessel materials, such as copper content of steel, level of neutron fluence above 1 MeV, base metal or weld metal, and so forth. The surveillance data have been used for determining the adjusted reference temperatures and upper shelf energies at any time. The results have shown that the seven pressure vessels are in excellent condition to continue operating with safety against brittle fracture beyond the design life, without the need to recuperate the degraded properties of the materials by annealing of the vessel

  16. Ultrasonic stress evaluation through thickness of a stainless steel pressure vessel

    International Nuclear Information System (INIS)

    Javadi, Yashar; Pirzaman, Hamed Salimi; Raeisi, Mohammadreza Hadizadeh; Najafabadi, Mehdi Ahmadi

    2014-01-01

    This paper investigates ultrasonic method in stress measurement through thickness of a pressure vessel. Longitudinal critically refracted (L CR ) waves are employed to measure the welding residual stresses in a vessel constructed from austenitic stainless steel 304L. The acoustoelastic constant is measured through a hydro test to keep the pressure vessel intact. Hoop and axial residual stresses are evaluated by using different frequency range of ultrasonic transducers. The welding processes of vessel shell and caps are simulated by a 3D finite element (FE) model which is validated by hole-drilling method. The residual stresses calculated by FE simulation are then compared with those obtained from the ultrasonic measurement while a good agreement is observed. It is demonstrated that the residual stresses through thickness of the stainless steel pressure vessel can be evaluated by combining FE and L CR method (known as FEL CR method). - Highlights: • The main goal is ultrasonic evaluation of through thickness stresses. • Welding processes of a stainless steel pressure vessel are modelled by FE. • The hole-drilling method is used to validate the FE results. • Residual stresses are measured by four different series of ultrasonic transducers. • The comparison between ultrasonic and FE results show an acceptable agreement

  17. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  18. Research to sustain cases for Magnox-reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Graham, W.J.

    1997-01-01

    Britain's Magnox Electric plc owns and operates six power stations, each of which has twin gas-cooled reactors of the Magnox-fuel type. The older group of four power stations has steel pressure-circuits. The reactor cores are housed within spherical, steel vessels. This article describes some of the research which is undertaken to sustain the safety cases for these steel vessels which have now been in operation for just over 30 years. (author) 2 figs., 4 refs

  19. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  20. Niobium Application, Metallurgy and Global Trends in Pressure Vessel Steels

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for a variety of pressure vessel applications. Through the application of these Nb-bearing steels in demanding applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the pressure vessel design and performance. The Nb-microalloy alloy designs also result in reduced operational production cost at the steel operation, thereby embracing the value-added attribute Nb provides to both the producer and the end user throughout the supply chain. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are considering improved designs which offer improved manufacturability, lower overall cost and better life cycle performance.

  1. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology program series 4 and 5)

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.; Thoms, K.R.; Menke, B.H.

    1985-01-01

    This report presents studies on the irradiation effects in low-alloy reactor pressure vessel steels. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (''current practice welds''). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds. 27 refs., 22 figs

  2. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Griess, J.C.; Naus, D.J.

    The purpose of this investigation was to determine the corrosion behavior of a high strength steel (ASTM A416-74 grade 270), typical of those used as tensioning tendons in prestressed concrete pressure vessels, in several corrosive environments and to demonstrate the protection afforded by coating the steel with either of two commercial petroleum-base greases or Portland Cement grout. In addition, the few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors are reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection but small flaws in the grease coatings were detrimental; flaws or cracks less than 1 mm wide in the grout were without effect

  3. Study of radiation damage of steels for light water pressure vessels at UJV

    International Nuclear Information System (INIS)

    Vacek, N.; Stoces, B.

    1980-01-01

    Preoperational determination of radiation resistance of pressure vessel steels is performed at accelerated neutron exposure in a test or materials research reactor. The results obtained at accelerated and operating exposure are not fully identical and surveillance bodies are therefore used manufactured from the pressure vessel material. Currently, the following steels are used for the manufacture of light water reactor pressure vessels: Mn-Mo-Ni (ASTM-A533-B, ASTM-A508), Cr-Mo-V (15Kh2M1FA). At UJV Rez, for irradiation Chanca-M probes imported from France are used featuring electric temperature control. Almost identical radiation embrittlement was measured for all three steels after irradiation with a neutron fluence of 3x10 23 n.m -2 at a temperature of 290 degC. (H.S.)

  4. Safety of steel vessel Magnox pressure circuits

    International Nuclear Information System (INIS)

    Stokoe, T.Y.; Bolton, C.J.; Heffer, P.J.H.

    1991-01-01

    The maintenance of pressure circuit integrity is fundamental to nuclear safety at the steel vessel Magnox stations. To confirm continued pressure circuit integrity the CEGB, as part of the Long Term Safety Review, has carried out extensive assessment and inspection in recent years. The assessment methods and inspection techniques employed are based on the most modern available. Reactor pressure vessel integrity is confirmed by a combination of arguments including safety factors inferred from the successful pre-service overpressure test, leak-before-break analysis and probabilistic assessment. In the case of other parts of the pressure circuits that are more accessible, comprising the boiler shells and interconnecting gas duct work, in-service inspection is a major element of the safety substantiation. The assessment and inspection techniques and the materials property data have been underpinned for many years by extensive research and development programmes and in-reactor monitoring of representative samples has also been undertaken. The paper summarises the work carried out to demonstrate the long term integrity of the Magnox pressure circuits and provides examples of the results obtained. (author)

  5. Development of PIE techniques for irradiated LWR pressure vessel steels

    International Nuclear Information System (INIS)

    Nishi, Masahiro; Kizaki, Minoru; Sukegawa, Tomohide

    1999-01-01

    For the evaluation of safety and integrity of light water reactors (LWRs), various post irradiation examinations (PIEs) of reactor pressure vessel (RPV) steels and fuel claddings have been carried out in the Research Hot Laboratory (RHL). In recent years, the instrumented Charpy impact testing machine was remodeled aiming at the improvement of accuracy and reliability. By this remodeling, absorbed energy and other useful information on impact properties can be delivered from the force-displacement curve for the evaluation of neutron irradiation embrittlement behavior of LWR-RPV steels at one-time striking. In addition, two advanced PIE technologies are now under development. One is the remote machining of mechanical test pieces from actual irradiated pressure vessel steels. The other is development of low-cycle and high-cycle fatigue test technology in order to clarify the post-irradiation fatigue characteristics of structural and fuel cladding materials. (author)

  6. Fatigue crack propagation in neutron-irradiated ferritic pressure-vessel steels

    International Nuclear Information System (INIS)

    James, L.A.

    1977-01-01

    The results of a number of experiments dealing with fatigue crack propagation in irradiated reactor pressure-vessel steels are reviewed. The steels included ASTM alloys A302B, A533B, A508-2, and A543, as well as weldments in A543 steel. Fluences and irradiation conditions were generally typical of those experienced by most power reactors. In general, the effect of neutron irradiation on the fatigue crack propagation behavior of these steels was neither significantly beneficial nor significantly detrimental

  7. Dynamic fracture characterization of a pressure vessel steel

    International Nuclear Information System (INIS)

    Schmitt, W.; Boehme, W.; Klemm, W.; Memhard, D.; Winkler, S.

    1991-01-01

    Dynamic events are characterized by time and space-dependent stress and strain fields caused by wave or inertia effect. The dynamic effect at cracks may be originated from the rapid loading rate or impact loading of a structure containing a stationary crack or the time-dependent stress and strain fields of a propagating or arresting crack itself. Dynamic effects complicate the analysis of crack tip stress and strain fields, and usually considerable experimental effort and numerical technique are required. High loading rate influences the deformation and yield behavior and also the fracture toughness of materials. In order to know the propagation and arrest behavior of cracks, a heat of a German reactor pressure vessel steel was investigated, and the dynamic J-resistance curves were evaluated with large three-point bending specimens by impact loading, moreover, the crack propagation energy at large crack extension was determined with wide tension plates. The material tested was a ferritic pressure vessel steel, ASTM A 508 Cl 2. The dynamic J-resistance curves and numerical simulation and fractographic examination, and crack propagation energy are reported. (K.I.)

  8. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  9. Pressure Vessel Steel Research: Belgian Activities

    International Nuclear Information System (INIS)

    Van Walle, E.; Fabry, A.; Ait Abderrahim, H.; Chaouadi, R.; D'hondt, P.; Puzzolante, J.L.; Van de Velde, J.; Van Ransbeeck, T.; Gerard, R.

    1994-03-01

    A review of the Belgian research activities on Nuclear Reactor Pressure Vessel Steels (RPVS) and on related Neutron Dosimetry Aspects is presented. Born out of the surveillance programmes of the Belgian nuclear power plants, this research has lead to the development of material saving techniques, like reconstitution and miniaturization, and to improved neutron dosimetry techniques. A physically- justified RPVS fracture toughness indexation methodology, supported by micro-mechanistic modelling, is based on the elaborate use of the instrumented Charpy impact signal. Computational tools for neutron dosimetry allow to reduce the uncertainties on surveillance capsule fluences significantly

  10. Pressure Vessel Steel Research: Belgian Activities

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E; Fabry, A; Ait Abderrahim, H; Chaouadi, R; D` hondt, P; Puzzolante, J L; Van de Velde, J; Van Ransbeeck, T [Centre d` Etude de l` Energie Nucleaire, Mol (Belgium); Gerard, R [TRACTEBEL, Brussels (Belgium)

    1994-03-01

    A review of the Belgian research activities on Nuclear Reactor Pressure Vessel Steels (RPVS) and on related Neutron Dosimetry Aspects is presented. Born out of the surveillance programmes of the Belgian nuclear power plants, this research has lead to the development of material saving techniques, like reconstitution and miniaturization, and to improved neutron dosimetry techniques. A physically- justified RPVS fracture toughness indexation methodology, supported by micro-mechanistic modelling, is based on the elaborate use of the instrumented Charpy impact signal. Computational tools for neutron dosimetry allow to reduce the uncertainties on surveillance capsule fluences significantly.

  11. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Hennion, A.

    1999-03-01

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  12. Creep of A508/533 Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  13. Corrosion fatigue of pressure vessel steels in PWR environments--influence of steel sulfur content

    International Nuclear Information System (INIS)

    Scott, P.M.; Druce, S.G.; Truswell, A.E.

    1984-01-01

    Large effects of simulated light water reactor environments at 288 C on fatigue crack growth in low alloy pressure vessel steels are observed only when specific mechanical, metallurgical, and electrochemical conditions are satisfied simultaneously. In this paper, the relative importance of three key variables--steel impurity content, water chemistry, and flow rate--and their interaction with loading rate or strain rate are examined. In particular, the results of a systematic examination of the influence of a steel's sulfur content are described

  14. Corrosion fatigue of pressure vessel steels in PWR environments--influence of steel sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.M.; Druce, S.G.; Truswell, A.E.

    1984-07-01

    Large effects of simulated light water reactor environments at 288 C on fatigue crack growth in low alloy pressure vessel steels are observed only when specific mechanical, metallurgical, and electrochemical conditions are satisfied simultaneously. In this paper, the relative importance of three key variables--steel impurity content, water chemistry, and flow rate--and their interaction with loading rate or strain rate are examined. In particular, the results of a systematic examination of the influence of a steel's sulfur content are described.

  15. Effect of radiation damage on operating safety of steel pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Vacek, M.; Havel, S.; Stoces, B.; Brumovsky, M.

    1980-01-01

    The effects are assessed of the environment upon mechanical properties of steel used generally for pressure vessels of light water nuclear reactors. Changes caused by radiation affect the reliability of vessels. Deterioration of steel properties is mainly due to neutron radiation. The article deals with factors bearing upon damage and with methods allowing to evaluate the reliability of vessels and predict their service life. Operating reliability of vessels is very unfavourably affected by planned and accidental reactor transients. (author)

  16. Influence of steel-making process and heat-treatment temperature on the fatigue and fracture properties of pressure vessel steels

    International Nuclear Information System (INIS)

    Koh, S. K.; Na, E. G.; Baek, T. H.; Won, S. Y.; Park, S. J.; Lee, S. W.

    2001-01-01

    In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as Vacuum Degassing(VD) and Electro-Slag Remelting(ESR) methods. After the steel-making process, they were normalized at 955 deg. C, quenched at 843 .deg. C, and finally tempered at 550 .deg. C or 450 deg. C, resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-Cycle Fatigue(LCF) tests, Fatigue Crack Growth Rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process

  17. Applicability of newly developed 610MPa class heavy thickness high strength steel to boiler pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Norihiko; Kaihara, Shoichiro; Ishii, Jun [Ishikawajima-Harima Heavy Industries Corp., Yokohama (Japan); Kajigaya, Ichiro [Ishikawajima-Harima Heavy Industries Corp., Tokyo (Japan); Totsuka, Takehiro; Miyazaki, Takashi [Ishikawajima-Harima Heavy Industries Corp., Aioi (Japan)

    1995-11-01

    Construction of a 350 MW Class PFBC (Pressurized Fluidized Bed Combustion) boiler plant is under planning in Japan. Design temperature and pressure of the vessel are maximum 350 C and 1.69 MPa, respectively. As the plate thickness of the vessel exceeds over 100 mm, high strength steel plate of good weldability and less susceptible to reheat cracking was required and developed. The steel was aimed to satisfy the tensile strength over 610 MPa at 350 C after postweld heat treatment (PWHT), with good notch toughness. The authors investigated the welding performances of the newly developed steel by using 150 mm-thick plate welded by pulsed-MAG and SAW methods. It was confirmed that the newly developed steel and its welds possess sufficient strength and toughness after PWHT, and applicable to the actual pressure vessel.

  18. Pressure vessel steels: influence of chemical composition on irradiation sensitivity

    International Nuclear Information System (INIS)

    Ghoniem, M.M.; Hammad, F.H.

    1998-01-01

    Neutron irradiation of the steels used in the construction of the nuclear reactor pressure vessels can lead to the embrittlement of these materials, increasing the ductile-to-brittle transition temperature and decreasing the fracture energy, which can limit the plant life. The knowledge of irradiation embrittlement and the means for minimizing such degradation is therefore important in the field of assuring the safety of the nuclear power plants. Irradiation embrittlement is quite a complex process. It involves many variables. The most important of these are irradiation temperature, neutron fluence (neutron dose), neutron flux (neutron dose rate), and chemical composition of the irradiated material. This paper is concerned with the effect of chemical composition, the role of residual and alloying elements in the irradiation embrittlement of nuclear reactor pressure vessel steels in light water reactors. It presents a critical review for the published work in this field through the last 25 years

  19. Overview of research trends and problems on Cr-Mo low alloy steels for pressure vessel

    International Nuclear Information System (INIS)

    Chi, Byung Ha; Kim, Jeong Tae

    2000-01-01

    Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding

  20. Microstructural evolution in reactor pressure vessel steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Katsumi; Fukuya, Koji [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Understanding microstructural changes in reactor pressure vessel steels is important in order to evaluate radiation-induced embrittlement, one of the major aging phenomena affecting the extension of plant life. In this study, actual surveillance test specimens and samples of rector vessel low-alloy steel (A533B steel) irradiated in a research reactor were examined using state-of-the-art techniques to clarify the neutron flux effect on the microstructural changes. These techniques included small angle neutron scattering and atom probes. Microstructural changes which are considered to be the main factors affecting embrittlement, including the production of copper-rich precipitates and the segregation of impurity elements, were confirmed by the results of the study. In addition, the mechanical properties were predicted based on the obtained quantitative data such as the diameters of precipitates. Consequently, the hardening due to irradiation was almost simulated. (author)

  1. Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Neyra Astudillo, Miriam Rocío, E-mail: neyra@cnea.gov.ar [IT Sabato, Universidad Nacional de San Martín, UNSAM, Av. General Paz 1499, Buenos Aires (Argentina); Universidad Tecnológica Nacional UTN, Regional Delta, Buenos Aires (Argentina); López Pumarega, María Isabel, E-mail: lopezpum@cnea.gov.ar [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Núñez, Nicolás Marcelo, E-mail: nnunez@cnea.gov.ar [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Pochettino, Alberto, E-mail: alberto.poch@gmail.com [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental (3iA), Campus Miguelete, UNSAM, Av. 25 de Mayo y Francia, 1650 San Martín Argentina (Argentina); Ruzzante, José, E-mail: ruzzante@gmail.com [Universidad Tecnológica Nacional UTN, Regional Delta, Buenos Aires (Argentina); Universidad Nacional de Tres de Febrero UNTREF, Caseros, Buenos Aires (Argentina); Universidad Nacional de Chilecito, UNdeC, La Rioja (Argentina)

    2017-03-15

    Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE) were studied in A508 Class II forged steel used for pressure vessels in nuclear power stations. The magnetic experimental determinations were completed with a macro graphic study of sulfides and the texture analysis of the material. The analysis of these results allows us to determine connections between the magnetic anisotropy, texture and microstructure of the material. Results clearly suggest that the plastic flow direction is different from the forging direction indicated by the material supplier - Highlights: • MBN and MAE studied in nuclear power pressure vessel steel. • Comparison with macro graphic study of sulfides and texture analysis of the material. • Connections with magnetic anisotropy, texture and microstructure of material. • Plastic flow direction different from the forging direction indicated.

  2. Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel

    International Nuclear Information System (INIS)

    Neyra Astudillo, Miriam Rocío; López Pumarega, María Isabel; Núñez, Nicolás Marcelo; Pochettino, Alberto; Ruzzante, José

    2017-01-01

    Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE) were studied in A508 Class II forged steel used for pressure vessels in nuclear power stations. The magnetic experimental determinations were completed with a macro graphic study of sulfides and the texture analysis of the material. The analysis of these results allows us to determine connections between the magnetic anisotropy, texture and microstructure of the material. Results clearly suggest that the plastic flow direction is different from the forging direction indicated by the material supplier - Highlights: • MBN and MAE studied in nuclear power pressure vessel steel. • Comparison with macro graphic study of sulfides and texture analysis of the material. • Connections with magnetic anisotropy, texture and microstructure of material. • Plastic flow direction different from the forging direction indicated.

  3. Mechanical properties of reactor pressure vessel steels studied by static and dynamic torsion tests

    International Nuclear Information System (INIS)

    Munier, A.; Maamouri, M.; Schaller, R.; Mercier, O.

    1993-01-01

    Internal friction measurements and torsional plastic deformation tests have been performed in reactor pressure vessel steels (unirradiated, irradiated and irradiated/annealed specimens). The results of these experiments have been interpreted with help of transmission electron microscopy observations (conventional and in situ). It is shown how the interactions between screw dislocations and obstacles (Peierls valleys, impurities and precipitates) could explain the low temperature hardening and the irradiation embrittlement of ferritic steels. In addition, it appears that the nondestructive internal friction technique could be used advantageously to follow the evolution of the material properties under irradiation, as for instance the irradiation embrittlement of the reactor pressure vessel steels. (orig.)

  4. The electrogas and electroslag multipass high speed welding of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Eichhorn, F.; Hirsch, P.; Langenbahn, H.W.; Wubbels, B.

    1978-01-01

    High-speed electroslag and electrogas welding of 15 Mn Ni63 steel plates to achieve high strength and toughness joints for reactor pressure vessels are described. Mechanical testing of overheating-resistant, brittle fracture resistant low alloy steels is discussed. (UK)

  5. Effect of heterogeneities on the thermoelectric power of pressure vessel steel

    International Nuclear Information System (INIS)

    Simonet, L.

    2006-12-01

    In service working conditions, the vessel of the Pressurized Water Reactors (PWR) undergoes an ageing due to irradiation. In order to follow the evolution of the mechanical characteristics of the steel in service, EDF launched a surveillance program which consists to carry out mechanical tests on samples aged in reactor. However, the results of these tests have the disadvantage to be affected by the presence of heterogeneities within the steel. Indeed, because of its manufacturing process, the steel contains segregated areas. Thus, EDF launched Thermoelectric Power Measurements (TEP) on the resilience samples of the surveillance program, to complete the mechanical tests and to help with their interpretation. However, these measurements are today difficult to analyse because they include at the same time the effect of the irradiation and the effect of the metallurgical heterogeneities. The aim of this work consisted in evaluating the effect of the heterogeneities on the TEP of the non-irradiated vessel steel. For that, a numerical model was developed which allows to calculate the TEP of a composite structure. We have shown that the model is pertinent to highlight the effect of the heterogeneities on the TEP of the vessel steel, which is considered like a 'matrix'/'segregation' composite. The model allowed us to put emphasis on the influence of different parameters on the TEP measurement. We have thus showed that the measurements conditions have an important effect on the obtained TEP value (influence of the applied pressure, the position of the sample on the device, the site of the metallurgical heterogeneities,...). (author)

  6. APFIM investigation of clustering in neutron-irradiated Fe-Cu alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Blavette, D.

    1996-01-01

    Pressure vessel steels used in PWRs are known to be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are commonly supposed to result from the formation of point defects, dislocation loops, voids and copper-rich precipitates. However, the real nature of the irradiation induced damage, in these particularly low copper steels (>0,1 wt%), has not been clearly identify yet. A new experimental work has been carried out thanks to atom probe and field ion microscopy (APFIM) facilities and, more particularly with a new generation of atom probe recently developed, namely the tomographic atom probe (TAP), in order to improve: the understanding of the complex behavior of copper precipitation which occurs when low-alloyed Fe-Cu model alloys are irradiated with neutrons; the microstructural characterization of the pressure vessel steel of the CHOOZ A reactor under various fluences (French Surveillance Programme). The investigations clearly reveal the precipitation of copper-rich clusters in irradiated Fe-Cu alloys while more complicated Si, Ni, Mn and Cu-solute 'clouds' were observed to develop in the low-copper ferritic solid solution of the pressure vessel steel. (authors)

  7. The irradiation embrittlement of two pressure vessel steels -Contribution of local approach

    Energy Technology Data Exchange (ETDEWEB)

    Soulat, P; Marini, B [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Recherches Metallurgiques Appliquees; Miannay, D; Horowitz, H [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Schill, R [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    1994-12-31

    Within the IAEA Coordinated Research Programme on ``Optimizing the Reactor Pressure Vessel Surveillance Programmes and their Analyses``, the French participation has been focused on the contribution of the local approach to the determination of the sensitivity to radiation embrittlement of two different pressure vessel steels: a low sensitive French forging steel (FFA) and a high sensitive ``monitor`` Japanese plate steel (JRQ) were irradiated to a fluence of 3.10{sup 19} n/cm{sup 2} at 290 C. The irradiation embrittlement of the two steels measured by the shift of Charpy V transition curves is in good agreement with the estimated shifts given by theoretical prediction. The fracture toughness properties were examined at low temperature with brittle fracture, and at service temperature (290 C), with ductile tearing. The values of K{sub 1C} or K{sub JC} for the brittle fracture and J{sub 1C} for the ductile fracture are compared to predictions established using the local approach of cleavage fracture (Weibull analysis) and the critical rate of void growth respectively. 8 refs., 14 figs., 10 tabs.

  8. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  9. Pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The invention applies to a pressure vessel for nuclear reactors whose shell, made of cast metal segments, has a steel liner. This liner must be constructed to withstand all operational stresses and to be easily repairable. The invention solves this problem by installing the liner at a certain distance from the inner wall of the pressure vessel shell and by filling this clearance with supporting concrete. Both the concrete and the steel liner must have a lower prestress than the pressure vessel shell. In order to avoid damage to the liner when prestressing the pressure vessel shell, special connecting elements are provided which consist of welded-on fastening elements projecting into recesses in the cast metal segments of the pressure vessel. Their design is described in detail. (TK) [de

  10. Neutron irradiation effects in reactor pressure vessel steels and weldments. Working document

    International Nuclear Information System (INIS)

    1998-10-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. A separate abstract was prepared for the introduction and for each of the eleven chapters, which are: 1. Reactor Pressure Vessel Design, 2. Reactor Pressure Materials, 3. WWER Pressure Vessels, 4. Determination of Mechanical Properties, 5. Neutron Exposure, 6. Methodology of Irradiation Experiments, 7. Effect of Irradiation on Mechanical Properties, 8. Mechanisms of Irradiation Embrittlement, 9. Modelling of Irradiation Damage, 10. Annealing of Irradiation Damage, 11. Safety Assessment using Surveillance Programmes and Data Bases

  11. Influence of heat treatments on thermoelectric power of pressure vessel steels: effect of microstructural evolutions of strongly segregated areas

    International Nuclear Information System (INIS)

    Houze, M.

    2002-12-01

    Thermoelectric power measurement (TEP) is a very potential non destructive evaluation method considered to follow ageing under neutron irradiation of pressure vessel steel of nuclear reactor. Prior to these problems, the aim of this study is to establish correlations between TEP variations and microstructural evolutions of pressure vessel steels during heat treatments. Different steels, permitting to simulate heterogeneities of pressure vessel steels and to deconvoluate main metallurgical phenomenons effects were studied. This work allowed to emphasize effect on TEP of: austenitizing and cooling conditions and therefore of microstructure, metallurgical transformations during tempering (recovery, precipitation of alloying elements), and particularly molybdenum precipitation associated to secondary hardening, residual austenite amount or partial austenitizing. (author)

  12. Relationships between Charpy impact shelf energies and upper shelf Ksub(IC) values for reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Witt, F.J.

    1983-01-01

    Charpy shelf data and lower bound estimates of Ksub(IC) shelf data for the same steels and test temperatures are given. Included are some typical reactor pressure vessel steels as well as some less tough or degraded steels. The data were evaluated with shelf estimates of Ksub(IC) up to and exceeding 550 MPa√m. It is shown that the high shelf fracture toughness representative of tough reactor pressure vessel steels may be obtained from a knowledge of the Charpy shelf energies. The toughness transition may be obtained either by testing small fracture toughness specimens or by Charpy energy indexing. (U.K.)

  13. Neutron irradiation effects in pressure vessel steels and weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ianko, L [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Power; Davies, L M

    1994-12-31

    This paper deals with the effects of neutron irradiation on the steel and welds used for the pressure vessels which house the reactor cores in light water reactors: irradiation effects on mechanical properties and the shift in ductile-brittle transition temperature, importance of the knowledge of the neutron fluence and of the monitoring and surveillance programmes; empirical and mechanistic modelling of irradiation effects and the necessity of data extension to new operational limits; consequences on the manufacturing and structural design of materials and structures; mitigation of irradiation effects by annealing; international activities and programmes in the field of neutron irradiation effects on PV steels and welds. 37 refs., 22 figs.

  14. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  15. The reactor vessel steels

    International Nuclear Information System (INIS)

    Bilous, W.; Hajewska, E.; Szteke, W.; Przyborska, M.; Wasiak, J.; Wieczorkowski, M.

    2005-01-01

    In the paper the fundamental steels using in the construction of pressure vessel water reactor are discussed. The properties of these steels as well as the influence of neutron irradiation on its degradation in the time of exploitation are also done. (authors)

  16. Hydrogen induced plastic damage in pressure vessel steel of 2.25Cr-1Mo

    International Nuclear Information System (INIS)

    Han, G.W.; Song, Y.J.

    1995-01-01

    2.25Cr-1Mo steel is generally employed as a hydrogenation reaction vessel material used at elevated temperature and in a hydrogen containing environment. During service of the reaction vessel, a large number of hydrogen atoms would enter its wall. When the reaction vessel is shutdown and the temperature reduces to about ambient temperature, the hydrogen atoms remaining in the wall would induce plastic damage in the steel. The mechanism of hydrogen induced plastic damage is different for various materials with different microstructures. Investigations have demonstrated that the hydrogen induced plastic damage in carbide annealed carbon steels is caused by hydrogen accelerating the initiating and growing of microvoids from the carbide particles. However, SEM examination on the fracture surface of hydrogen charged tensile specimen of 2.25Cr-1Mo steel show that a large number of fisheyes appear on the fracture surface. This indicates that hydrogen induced plastic damage in 2.25Cr-1Mo steel is related to the occurrence of fisheye cracks during plastic deformation. By means of micro-fracture mechanics to analyze fisheye crack occurrence from the first generation microvoid, the mechanism of hydrogen induced plastic damage in the pressure vessel steel is investigated

  17. Radiation embrittlement of WWER 440 pressure vessel steel and of some improved steels by western producers

    International Nuclear Information System (INIS)

    Koutsky, J.; Vacek, M.; Stoces, B.; Pav, T.; Otruba, J.; Novosad, P.; Brumovsky, M.

    1982-01-01

    The resistance was studied of Cr-Mo-V type steel 15Kh2MFA to radiation embrittlement at an irradiation temperature of around 288 degC. Studied was the steel used for the manufacture of the pressure vessel of the Paks nuclear reactor in Hungary. The obtained results of radiation embrittlement and hardening of steel 15Kh2MFA were compared with similar values of Mn-Ni-Mo type steels A 533-B and A 508 manufactured by leading western manufacturers within the international research programme coordinated by the IAEA. It was found that the resistance of steel 15Kh2MFA to radiation embrittlement is comparable with steels A 533-B and A 508 by western manufacturers. (author)

  18. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  19. Positron annihilation and Moessbauer studies of neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Brauer, G.; Matz, W.; Liszkay, L.; Molnar, B.

    1990-11-01

    Positron annihilation (lifetime, Doppler broadening) and Moessbauer studies on unirradiated, neutron irradiated and neutron irradiated plus annealed reactor pressure vessel steels (Soviet type 15Kh2NMFA) are presented. The role of microstructural properties and the formation of irradiation-induced precipitates is discussed. (orig.) [de

  20. Failure prediction of low-carbon steel pressure vessel and cylindrical models

    International Nuclear Information System (INIS)

    Zhang, K.D.; Wang, W.

    1987-01-01

    The failure loads predicted by failure assessment methods (namely the net-section stress criterion; the EPRI engineering approach for elastic-plastic analysis; the CEGB failure assessment route; the modified R6 curve by Milne for strain hardening; and the failure assessment curve based on J estimation by Ainsworth) have been compared with burst test results on externally, axially sharp notched pressure vessel and open-ended cylinder models made from typical low-carbon steel St45 seamless tube which has a transverse true stress-strain curve of straight-line and parabola type and a high value of ultimate strength to yield. It was concluded from the comparison that whilst the net-section stress criterion and the CEGB route did not give conservative predictions, Milne's modified curve did give a conservative and good prediction; Ainsworth's curve gave a fairly conservative prediction; and EPRI solutions also could conditionally give a good prediction but the conditions are still somewhat uncertain. It is suggested that Milne's modified R6 curve is used in failure assessment of low-carbon steel pressure vessels. (author)

  1. Ultimate Pressure Capacity of Prestressed Concrete Containment Vessels with Steel Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The ultimate pressure capacity (UPC) of the prestressed concrete containment vessel (PCCV) is very important since the PCCV are final protection to prevent the massive leakage of a radioactive contaminant caused by the severe accident of nuclear power plants (NPPs). The tensile behavior of a concrete is an important factor which influence to the UPC of PCCVs. Hence, nowadays, it is interested that the application of the steel fiber to the PCCVs since that the concrete with steel fiber shows an improved performance in the tensile behavior compared to reinforced concrete (RC). In this study, we performed the UPC analysis of PCCVs with steel fibers corresponding to the different volume ratio of fibers to verify the effectiveness of steel fibers on PCCVs

  2. Neutron irradiation embrittlement of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Steele, L.E.

    1975-01-01

    The reliability of nuclear power plants depends on the proper functioning of complex components over the whole life on the plant. Particular concern for reliability is directed to the primary pressure boundary. This report focuses on the portion of the primary system exposed to and significantly affected by neutron radiation. Experimental evidence from research programmes and from reactor surveillance programmes has indicated radiation embrittlement of a magnitude sufficient to raise doubts about reactor pressure vessel integrity. The crucial nature of the primary vessel function heightens the need to be alert to this problem, to which, fortunately, there are positive aspects: for example, steels have been developed which are relatively immune to radiation embrittlement. Further, awareness of such embrittlement has led to designs which can accomodate this factor. The nature of nuclear reactors, of the steels used in their construction, and of the procedures for interpreting embrittlement and minimizing the effects are reviewed with reference to the reactors that are expected to play a major role in electric power production from now to about the turn of the century. The report is intended as a manual or guidebook; the aim has been to make each chapter or major sub-division sufficiently comprehensive and self-contained for it to be understood and read independently of the rest of the book. At the same time, it is hoped that the whole is unified enough to make a complete reading useful and interesting to the several classes of reader that are involved with only specific aspects of the topic

  3. Study of cladding toughness in a pressure vessel steel water reactor

    International Nuclear Information System (INIS)

    Soulat, P.; Al Mundheri, M.

    1984-12-01

    Toughness of cladding and pressure vessel steel were determined at different temperatures in order to appreciate the participation of cladding resistance against crack propagation. The toughness of cladding is comparable with typical results on austenitic welds. The test on covered CT specimens shows the possibility of having a relatively good prevision of the behaviour of a coated structure

  4. Effect of stress relief parameters on the mechanical properties of pressure vessel steels and weldments

    International Nuclear Information System (INIS)

    Canonico, D.A.; Stelzman, W.J.

    1976-01-01

    Post weld heat treatments of thick-section A533B steel for nuclear pressure vessels are discussed with reference to the ASME code. The discussion is in the form of a lecture and summarized by noting that the ASME code, in particular Section III, Division 1, imposes a post weld heat treatment requirement on pressure vessels fabricated from low alloy high strength steels. The Code permits a holding temperature range, the high side of which could result in poorer toughness properties. Long times in excess of 100 hours and/or high temperatures, 649 0 C can result in an increase in the NDT and a decrease in the upper shelf energy

  5. Neutron irradiation embrittlement of reactor pressure vessel steel 20 MnMoNi55 weld

    International Nuclear Information System (INIS)

    Ghoneim, M.M.

    1987-05-01

    The effect of neutron irradiation on the mechanical and fracture properties of an 'improved' 20 MnMoNi 55 Pressure Vessel Steel (PVS) weld was investigated. In addition to very low residual element content, especially Cu (0.035 wt.%), and relatively higher Ni content (0.9 wt.%), this steel has higher strength (30% more) than the steels used currently in nuclear reactor pressure vessels. The material was irradiated to 3.5x10 19 and 7x10 19 n/cm 2 (E > 1 Mev) at 290 0 C and 2.5x10 19 n/cm 2 (E > 1 MeV) at 160 0 C in FRJ-1 and FRJ-2 research reactors at KFA, Juelich, F.R.G. Test methods used in the evaluation included instrumented impact testing of standard and precracked Charpy specimens, tensile, and fracture toughness testing. Instrumented impact testing provided load and energy vs. time (deflection) data in addition to energy absorption data. The results indicated that the investigated high strength improved steel is more resistant to irradiation induced embrittlement than conventional PVSs. (orig./IHOE)

  6. Apparent embrittlement saturation and radiation mechanisms of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pachur, D.

    1981-01-01

    The irradiation and annealing results of three different reactor pressure vessel steels are reported. Steel A, a basic material according to ASTM A-533 B having 0.15 percent vanadium; and Steel C contained 3.2 percent nickel. The steels were irradiated at 150, 300, and 400 degree C with neutron fluxes of 6 multiplied by 10 11 and 3 multiplied by 10 13 neutrons (n)/cm 2 /s. An apparent saturation-in-irradiation effect was found within certain neutron fluence ranges. During the annealing, various recovery processes occur in different temperature ranges. These are characterized by various activation energies. The individual processes were determined by the different time dependencies at various temperatures. Two causes for the apparent saturation were discovered from the behavior of the annealing curves

  7. Pressure vessels for reactors made from structural steel with limited tensile strength

    International Nuclear Information System (INIS)

    Machatti, H.

    1973-01-01

    The reactor pressure vessel is prestressed in several directions with prestressing elements fabricated of steel with a high yielding point. This design allows a substantial reduction of wall thickness or an increase of the inner diameter at equal wall thickness. The prestress of the prestressing elements is designed to achieve a maximum stress release of the vessel walls at normal operating conditions and to fully utilize the maximum load of the vessel walls. For safety reasons the cross section of the prestressing elements is constructed in a way that strain is always 20 % lower the yield point. (P.K.)

  8. A three-dimensional rupture analysis of steel liners anchored to concrete pressure and containment vessels

    International Nuclear Information System (INIS)

    Bangash, Y.

    1987-01-01

    Steel liners or plates are anchored to concrete pressure and containment vessels for nuclear and offshore facilities. Due to extreme loading conditions a liner may buckle due to the pull-out or shearing of anchors from the base metal and concrete. Under certain conditions attributed to loadings, liner metal deterioration and cracking of concrete behind the liner, the liner may fail by rupture. This paper presents a three-dimensional analysis of steel-concrete elements, using finite elements analysis in which a provision is made for liner instability, anchor strength and stiffness, concrete cracking and finally liner rupture. The analysis is tested first on an octagonal slab with and without an anchored steel liner. It is then extended to concrete pressure and containment vessels. The analytical results obtained are compared well with those available from the experimental tests and other sources. (author)

  9. The influence of fire exposure on austenitic stainless steel for pressure vessel fitness-for-service assessment: Experimental research

    Science.gov (United States)

    Li, Bo; Shu, Wenhua; Zuo, Yantian

    2017-04-01

    The austenitic stainless steels are widely applied to pressure vessel manufacturing. The fire accident risk exists in almost all the industrial chemical plants. It is necessary to make safety evaluation on the chemical equipment including pressure vessels after fire. Therefore, the present research was conducted on the influences of fire exposure testing under different thermal conditions on the mechanical performance evolution of S30408 austenitic stainless steel for pressure vessel equipment. The metallurgical analysis described typical appearances in micro-structure observed in the material suffered by fire exposure. Moreover, the quantitative degradation of mechanical properties was investigated. The material thermal degradation mechanism and fitness-for-service assessment process of fire damage were further discussed.

  10. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  11. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  12. Evaluation of defects induced by neutron radiation in reactor pressure vessels steels

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.

    1978-01-01

    We have developed a method for calculating the production of neutron induced defects (depleted zone and crowdions) in ferritic pressure vessel steels for different neutron spectra. They have been analysed both the recoil primary atoms produced by elastic and inelastic collisions with fast neutrons and the ones produced by gamma-ray emission by thermal neutron absorption. Theoretical modelling of increasing in the ductile-brittle transition temperature of ferritic steels has been correlated with experimental data at irradiation temperature up to 400 degree centigree (Author) 15 refs

  13. Hydrogen attack of pressure-vessel steel. Progress report, April 1, 1980-March 31, 1981

    International Nuclear Information System (INIS)

    Shewmon, P.G.

    1980-12-01

    The nucleation and growth of methane bubbles in the hydrogen attack of pressure vessel steel has been shown to obey models developed to describe the growth of bubbles limiting the creep ductility of metals. This has been done through studies of the effect of prior deformation on bubble nucleation as well as the effect of methane pressure (stress) and temperature on growth kinetics. A comprehensive model of the factors limiting growth has been developed. Its application to the hydrogen attack of a 2 1/4 Cr-1 Mo steel leads to several interesting predictions

  14. Electron-microscopic investigation of a pressure vessel steel after neutron irradiation

    International Nuclear Information System (INIS)

    Klaar, H.J.

    1975-01-01

    As an introduction, changes in the mechanical properties of pressure vessel steels on neutron irradiation and the causes of radiation embrittlement are discussed. After this, the author describes his own experiments with steel of the composition 0.19% C; 3.88% Ni; 1.57% Cr; 0.51% Mo; 0.2% V. Samples of this material were irradiated in-pile at 300 0 C with various neutron doses. To study the influence of neutron dose, irradiation temperature, and heat treatment on the mechanical properties, tensile tests, notched bar impact bending tests, hardness tests and structural analyses were carried out. The findings are reported. (GSC) [de

  15. Influence of crack depth on the fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Theiss, T.J.; Bryson, J.W.

    1991-01-01

    The Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. Recently, it has been shown that, in notched beam testing, shallow cracks tend to exhibit an elevated toughness as a result of a loss of constraint at the crack tip. The loss of constraint takes place when interaction occurs between the elastic-plastic crack-tip stress field and the specimen surface nearest the crack tip. An increased shallow-crack fracture toughness is of interest to the nuclear industry because probabilistic fracture-mechanics evaluations show that shallow flaws play a dominant role in the probability of vessel failure during postulated pressurized-thermal-shock (PTS) events. Tests have been performed on beam specimens loaded in 3-point bending using unirradiated reactor pressure vessel material (A533 B). Testing has been conducted using specimens with a constant beam depth (W = 94 mm) and within the lower transition region of the toughness curve for A533 B. Test results indicate a significantly higher fracture toughness associated with the shallow flaw specimens compared to the fracture toughness determined using deep-crack (a/W = 0.5) specimens. Test data also show little influence of thickness on the fracture toughness for the current test temperature (-60 degree C). 21 refs., 5 figs., 3 tabs

  16. Investigation of irradiation embrittlement and annealing behaviour of JRQ pressure vessel steel by instrumented impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Rintamaa, R; Nevalainen, M; Wallin, K; Torronen, K [Technical Research Centre of Finland, Espoo (Finland); Tipping, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-12-31

    Seven series of A533-B type pressure vessel steel specimens irradiated as well as irradiated - annealed - re-irradiated to different fast neutron fluences (up to 5.10{sup 19}/cm{sup 2}) have been tested with a new type of instrumented impact test machine. The radiation embrittlement and the effect of the intermediate annealing was assessed by using the ductile and cleavage fracture initiation toughness. Although the ductile fracture initiation toughness exhibited scatter, the transition temperature shift corresponding to the dynamic cleavage fracture initiation agreed well with the 41 J Charpy-V shift. The results indicate that annealing is beneficial in restoring mechanical properties in an irradiated nuclear pressure vessel steel. (authors). 8 refs., 11 figs., 1 tab.

  17. Stress corrosion cracking studies of reactor pressure vessel steels. Final report

    International Nuclear Information System (INIS)

    Van Der Sluys, W.A.

    1996-10-01

    The objective of this project was to perform a critical review of the information available in open literature on stress corrosion cracking of reactor pressure vessel materials in simulated light-water-reactor (LWR) conditions, develop a test procedure for conducting stress corrosion crack growth experiments in simulated LWR environments, and conduct a test program in an effort to duplicate some of the data available from the literature. The authors concluded that stress corrosion crack growth has been observed in pressure vessel steels under laboratory test conditions. The composition of the water in most cases where growth was observed is outside of the composition specified for operating conditions. Crack growth was observed in the experiments performed in this program, and it was intermittent. The cracking would start and stop for no apparent reason. In most instances, it would not restart without the change of some external variable. In a few instances, it restarted on its own. Crack growth rates as high as 3.6 x 10 -9 m/sec were observed in pressure vessel steels in high-purity water with 8 ppm oxygen. These high crack growth rates were observed for extremely short bursts in crack extension. They could not be sustained for crack growth extensions greater than a few tenths of a millimeter. From the results of this project it appears highly unlikely that stress corrosion cracking will be observed in operating nuclear plants where the coolant composition is maintained within water chemistry guidelines. However, more work is needed to better define the contaminations that cause crack growth. The crack growth rates are so high and the threshold values for crack nucleation are so low that the conditions causing them need to be well defined and avoided

  18. Effects of irradiation at lower temperature on the microstructure of Cr-Mo-V-alloyed reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, M; Boehmert, J; Gilles, R [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1998-10-01

    The microstructural damage process due to neutron irradiation [1] proceeds in two stages: - formation of displacement cascades - evolution of the microstructure by defect reactions. Continuing our systematic investigation about the microstructural changes of Russian reactor pressure vessel steel due to neutron irradiation the microstructure of two laboratory heats of the VVER 440-type reactor pressure vessel steel after irradiation at 60 C was studied by small angle neutron scattering (SANS). 60 C-irradiation differently changes the irradiation-induced microstructure in comparison with irradiation at reactor operation temperature and can, thus, provide new insights into the mechanisms of the irradiation damage. (orig.)

  19. Application of small specimens to fracture mechanics characterization of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; Wallin, K.; McCabe, D.E.

    1996-01-01

    In this study, precracked Charpy V-notch (PCVN) specimens were used to characterize the fracture toughness of unirradiated and irradiated reactor pressure vessel steels in the transition region by means of three-point static bending. Fracture toughness at cleavage instability was calculated in terms of elastic-plastic K Jc values. A statistical size correction based upon weakest-link theory was performed. The concept of a master curve was applied to analyze fracture toughness properties. Initially, size-corrected PCVN data from A 533 grade B steel, designated HSST Plate O2, were used to position the master curve and a 5% tolerance bound for K Jc data. By converting PCVN data to IT compact specimen equivalent K Jc data, the same master curve and 5% tolerance bound curve were plotted against the Electric Power Research Institute valid linear-elastic K Jc database and the ASME lower bound K Ic curve. Comparison shows that the master curve positioned by testing several PCVN specimens describes very well the massive fracture toughness database of large specimens. These results give strong support to the validity of K Jc with respect to K Ic in general and to the applicability of PCVN specimens to measure fracture toughness of reactor vessel steels in particular. Finally, irradiated PCVN specimens of other materials were tested, and the results are compared to compact specimen data. The current results show that PCVNs demonstrate very good capacity for fracture toughness characterization of reactor pressure vessel steels. It provides an opportunity for direct measurement of fracture toughness of irradiated materials by means of precracking and testing Charpy specimens from surveillance capsules. However, size limits based on constraint theory restrict the operational test temperature range for K Jc data from PCVN specimens. 13 refs., 8 figs., 1 tab

  20. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Wu, Sujun; Jin, Huijin; Sun, Yanbin; Cao, Luowei

    2014-01-01

    The critical cleavage fracture stress of SA508 Gr.4N and SA508 Gr.3 low alloy reactor pressure vessel (RPV) steels was studied through the combination of experiments and finite element method (FEM) analysis. The results showed that the value of the local cleavage fracture stress, σ F , of SA508 Gr.4N steel was significantly higher than that of SA508 Gr.3 steel. Detailed microstructural analysis was carried out using FEGSEM which revealed much smaller grains, finer and more homogenous carbide particles formed in SA508 Gr.4N steel. Compared with the SA508 Gr.3 steel currently used in the nuclear industry, the SA508 Gr.4N steel possesses higher strength and notch toughness as well as improved cleavage fracture behavior, and is considered a better candidate RPV steel for the next generation nuclear reactors. - Highlights: • Critical cleavage fracture stress was calculated through experiments and FEM. • Effects of both grain and carbide particle sizes on σ F were discussed. • The SA508 Gr.4N steel is a better candidate for the next generation nuclear reactors

  1. Reactor pressure vessel design

    International Nuclear Information System (INIS)

    Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 2, the general principles of reactor pressure vessel design are elaborated. Crack and fracture initiation and propagation are treated in some detail

  2. Stress corrosion cracking of nuclear reactor pressure vessel and piping steels

    International Nuclear Information System (INIS)

    Speidel, M.O.; Magdowski, R.M.

    1988-01-01

    This paper presents an extensive investigation of stress corrosion cracking of nuclear reactor pressure vessel and piping steels exposed to hot water. Experimental fracture mechanics results are compared with data from the literature and other laboratories. Thus a comprehensive overview of the present knowledge concerning stress corrosion crack growth rates is provided. Several sets of data confirm that 'fast' stress corrosion cracks with growth rates between 10 -8 and 10 -7 m/s and threshold stress intensities around 20 MN m -3/2 can occur under certain conditions. However, it appears possible that specific environmental, mechanical and metallurgical conditions which may prevail in reactors can result in significantly lower stress corrosion crack growth rates. The presently known stress corrosion crack growth rate versus stress intensity curves are discussed with emphasis on their usefulness in establishing safety margins against stress corrosion cracking of components in service. Further substantial research efforts would be helpful to provide a data base which permits well founded predictions as to how stress corrosion cracking in pressure vessels and piping can be reliably excluded or tolerated. It is emphasized, however, that the nucleation of stress corrosion cracks (as opposed to their growth) is difficult and may contribute substantially to the stress corrosion free service behaviour of the overwhelming majority of pressure vessels and pipes. (author)

  3. Characteristics of Modified 9Cr-1Mo Steel for Reactor Pressure Vessel of Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Ryu, W. S.; Han, Chang Hee; Yoon, J. H.; Chang, Jong Hwa

    2004-11-15

    Many researches and developments have been progressed for the construction of VHTR by 2020 in Korea. Modified 9Cr-1Mo steel has been receiving attention for the application to the reactor pressure vessel material of VHTR. We collected and analyzed the research data for modified 9Cr-1Mo steel in order to understand the characteristics of modified 9Cr-1Mo steel. The modified 9Cr-1Mo steel is a modified alloy system similar to conventional 9Cr-1Mo grade ferritic steel. Modifications include additions of vanadium, niobium, and nitrogen, as well as lower carbon content. In this report, we summarized the change of microstructure and mechanical properties after tempering, thermal aging, and irradiation. Modified 9Cr-1Mo steel has high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. But the irradiation embrittlement behavior of modified 9Cr-1Mo steel should be evaluated and the evaluation methodology also should be developed. At the same time, the characteristics of weldment which is the weak part in pressure vessel should be evaluated.

  4. Fracture toughness determination of the pressure vessel steel A508 Cl 2 between 100 and 350 degree C

    International Nuclear Information System (INIS)

    Rao, S.

    1980-09-01

    The fracture toughness of the pressure vessel steel A508 was determined in the temperature range 100 - 350 degree C. The J-integral method with crack growth resistance curves, the so-called R-curves, was used. The results show that the steel does not have an 'upper-shelf' and the fracture toughness, K sub (JC), decreases with increasing temperature to a minimum around 300 degree C and an increase above it. These results are compared to those obtained previously on an other pressure vessel steel A533B which has essentially the same temperature dependence. The results were also analysed using the Tearing modulus, T. The conclusion iw that the crack growth resistance and the crack initiation resistance (K sub (JC)) show a significant decrease around the operating temperatures as compared to 100 degree C. (author)

  5. Revision of the fracture models in steels for nuclear pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, F A.I. [Pontificia Univ. Catolica do Rio de Janeiro (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1981-01-01

    The variation of toughness with the temperature of steels used in the fabrication of nuclear pressure vessels is presented and discuted by mathematical models aiming to reach a critical value of stress or deformation at the moment of the fracture. The mathematical model considered are compatible with the fracture micromechanisms in action and they are capable of foreseeing the variations in the toughness from the mechanical properties evaluated in the tension test. The neutron irradiation effects in the toughness as well as in the variation of this toughness with the operating temperature are still described.

  6. Heavy section steel technology program technical report No. 38. Fracture toughness characterization of HSST intermediate pressure vessel material

    International Nuclear Information System (INIS)

    Mager, T.R.; Yanichko, S.E.; Singer, L.R.

    1974-12-01

    The primary objective of the Heavy Section Steel Technology (HSST) Program is to develop pertinent fracture technology to demonstrate the structural reliability of present and contemplated water-cooled nuclear reactor pressure vessels. In order to demonstrate the ability to predict failure of large, heavy-walled pressure vessels under service type loading conditions, the fracture toughness properties of the vessel's materials must be characterized. The sampling procedure and test results are presented for vessel material supplied by the Oak Ridge National Laboratory that were used to characterize the fracture toughness of the HSST Intermediate Test Vessels. The metallurgical condition and heat treatment of the test material was representative of the vessel simulated service test condition. Test specimen locations and orientations were selected by the Oak Ridge National Laboratory and are representative of flaw orientations incorporated in the test vessels. The fracture toughness is documented for the materials from each of the eight HSST Intermediate Pressure Vessels tested to date. 7 references. (U.S.)

  7. Acoustic emission during the elastic-plastic deformation of low alloy reactor pressure vessel steels. I

    International Nuclear Information System (INIS)

    Holt, J.; Goddard, D.J.

    1980-01-01

    Measurements of the acoustic emission behaviour of A533B and C-Mn low alloy reactor pressure vessel steels subjected to uniaxial tensile deformation are described. The effects on the emission activity of the rolling plane orientation and the carbide morphology were examined. Detailed discussions are given of the stress dependence of the emission activity below yield and of its recovery by annealing at the stress relief temperature. It is shown that the dominant emission source is the same in both steels and is associated with inclusions, such as MnS, elongated by the rolling process, the carbide morphology being relatively unimportant. A criterion for the occurrence of an emission is obtained which is directly analogous to the general criterion for yielding. It is also shown that a large fraction, at least, of the emission activity arises from a recoverable process such as localized yielding around inclusions or limited inclusion decohesion and not from inclusion fracture. Low activity in C-Mn steel taken from reactor pressure vessels, previously attributed to spheroidization of carbides, is shown to be due to the limited acoustic recovery of these relatively high sulphur content steels when annealed at the stress relief temperature. It is concluded that the limited amplitudes of these emissions during deformation severely restrict their potential application in practice. (Auth.)

  8. Effect of aging on properties of pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.G.; Gage, G.; Jordan, G.

    1986-04-01

    Manganese-molybdenum-nickel steels are used in nuclear pressure vessels operating at temperatures up to 350/sup 0/C. The effects of thermal ageing in the temperature range 300-550/sup 0/C for durations up to 2 x 10/sup 4/ h have been studied in conventionally quenched and tempered and simulated heat-affected-zone (HAZ) microstructural conditions. Quantitative fractography and Auger spectroscopy have been used to relate changes in mechanical properties with changes in fracture mode and grain boundary chemistry. Aging increases the ductile-brittle transition temperature by an amount dependent on material, prior heat treatment, aging temperature and time. Embrittlement is associated with segregation of phosphorus to grain boundaries and is modelled using McLean's approach to equilibrium segregation.

  9. Acoustic emission test on a 25mm thick mild steel pressure vessel with inserted defects

    International Nuclear Information System (INIS)

    Bentley, P.G.; Dawson, D.G.; Hanley, D.J.; Kirby, N.

    1976-12-01

    Acoustic emission measurements have been taken on an experimental mild steel vessel with 4 inserted defects ranging in severity up to 90% of through thickness. The vessel was subjected to a series of pressure excursions of increasing magnitude until failure occurred by extension of the largest inserted defect through the vessel wall. No acoustic emission was detected throughout any part of the tests which would indicate the presence of such serious defects or of impending failure. Measurements of acoustic emission from metallurgical specimens are included and the results of post test inspection using conventional NDT and metallographic techniques are reported. (author)

  10. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  11. Reactor pressure vessel steels[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-07-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use.

  12. Formation of microcracks during stress-relief annealing of a weldment in pressure vessel steel of type A508 C1 2

    International Nuclear Information System (INIS)

    Liljestrand, L.-G.; Oestberg, G.; Lindhagen, P.

    1978-01-01

    Crack formation in the heat-affected zones of heavy section weldments of type A 508 C1 2 pressure vessel steel during stress-relief annealing has been studied on an actual weldment and on simulated structures. Mechanical testing of the latter showed that stress relaxation of the order of magnitude occuring during stress-relief annealing can produce cracks of the same kind as occasionally found in weldments of pressure vessel steel. The primary cause is believed to be grain boundary sliding, possibly but not necessarily enhanced by impurities. (Auth.)

  13. Guide to the periodic inspection of nuclear reactor steel pressure vessels

    International Nuclear Information System (INIS)

    1969-01-01

    This Guide is intended to provide general information and guidance to reactor owners or operators, inspection authorities, certifying authorities or regulatory bodies who are responsible for establishing inspection procedures for specific reactors or reactor types, and for the preparation of national codes or standards. The recommendations of the Guide apply primarily to water-cooled steel reactor vessels which are at a sufficiently early stage of design so that recommendations to provide accessibility for inspection can be incorporated into the early stages of design and inspection planning. However, much of the contents of the Guide are also applicable in part to vessels for other reactor types, such as gas-cooled, pressure-tube, or liquid-metal-cooled reactors, and also to some existing water-cooled reactors and reactors which are in advanced stage of design or construction. 46 refs, figs, 1 tab

  14. Modeling of irradiation embrittlement and annealing/recovery in pressure vessel steels

    International Nuclear Information System (INIS)

    Lott, R.G.; Freyer, P.D.

    1996-01-01

    The results of reactor pressure vessel (RPV) annealing studies are interpreted in light of the current understanding of radiation embrittlement phenomena in RPV steels. An extensive RPV irradiation embrittlement and annealing database has been compiled and the data reveal that the majority of annealing studies completed to date have employed test reactor irradiated weldments. Although test reactor and power reactor irradiations result in similar embrittlement trends, subtle differences between these two damage states can become important in the interpretation of annealing results. Microstructural studies of irradiated steels suggest that there are several different irradiation-induced microstructural features that contribute to embrittlement. The amount of annealing recovery and the post-anneal re-embrittlement behavior of a steel are determined by the annealing response of these microstructural defects. The active embrittlement mechanisms are determined largely by the irradiation temperature and the material composition. Interpretation and thorough understanding of annealing results require a model that considers the underlying physical mechanisms of embrittlement. This paper presents a framework for the construction of a physically based mechanistic model of irradiation embrittlement and annealing behavior

  15. Effects of nickel on irradiation embrittlement of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC was developed under the IAEA Coordinated Research Project (CRP) entitled Effects of Nickel on Irradiation Embrittlement of Light Water Reactor Pressure Vessel (RPV) Steels. This CRP is the sixth in a series of CRPs to determine the influence of the mechanism and quantify the influence of nickel content on the deterioration of irradiation embrittlement of reactor pressure vessel steels of the Ni-Cr-Mo-V or Mn-Ni-Cr-Mo types. The scientific scope of the programme includes procurement of materials, determination of mechanical properties, irradiation and testing of specimens in power and/or test reactors, and microstructural characterization. Eleven institutes from eight different countries and the European Union participated in this CRP and six institutes conducted the irradiation experiments of the CRP materials. In addition to the irradiation and testing of those materials, irradiation experiments of various national steels were also conducted. Moreover, some institutes performed microstructural investigations of both the CRP materials and national steels. This TECDOC presents and discusses all the results obtained and the analyses performed under the CRP. The results analysed are clear in showing the significantly higher radiation sensitivity of high nickel weld metal (1.7 wt%) compared with the lower nickel base metal (1.2 wt%). These results are supported by other similar results in the literature for both WWER-1000 RPV materials, pressurized water reactor (PWR) type materials, and model alloys. Regardless of the increased sensitivity of WWER-1000 high nickel weld metal (1.7 wt%), the transition temperature shift for the WWER-1000 RPV design fluence is still below the curve predicted by the Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86). For higher fluence, no data were available and the results should not be extrapolated. Although manganese content was not incorporated directly in this CRP

  16. Reactor pressure vessel steels ASTM A533B and A508 Cl.2

    International Nuclear Information System (INIS)

    Pelli, R.; Kemppainen, M.; Toerroenen, K.

    1979-11-01

    This report presents the tensile test results of steels ASTM A533B and A508 Cl.2 obtained in connection with a programme initiated to gather and create information needed for the assessment of the structural integrity of the reactor pressure vessels. The tensile properties were studied between -196 and 300 degC varying austenitizing and tempering temperatures and having two different carbon contents for the heats of A533B. (author)

  17. Fatigue of non-welded pressure vessels made of high strength steel

    International Nuclear Information System (INIS)

    Rauscher, F.

    2003-01-01

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed

  18. Fatigue of non-welded pressure vessels made of high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, F

    2003-03-01

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed.

  19. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Reactor Pressure Vessels

    International Nuclear Information System (INIS)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-01-01

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  20. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Potirniche, Gabriel [Univ. of Idaho, Moscow, ID (United States); Barlow, Fred D. [Univ. of Idaho, Moscow, ID (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States); Rink, Karl [Univ. of Idaho, Moscow, ID (United States)

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  1. Thermal embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-01-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels

  2. Historical summary of the heavy-section steel technology program and some related activities in light-water reactor pressure vessel safety research

    International Nuclear Information System (INIS)

    Whitman, G.D.

    1986-03-01

    The accomplishments of the Heavy-Section Steel Technology Program and other programs having a close relationship to the development of information used in the assessment of light-water reactor pressure vessel integrity are reviewed. The early Pressure Vessel Research Committee planning, the principals contributing to program formulation, the role of the US Atomic Energy Commission, and the developments under the US Nuclear Regulatory Commission sponsorship are identified. The need for major research and development accomplishments in fracture mechanics, heavy-section steel procurement, materials properties, irradiation effects, fatigue crack growth, and structural testing are summarized. The impact of program results on regulatory issues and the development of data used in the preparation of codes, standards, and guides are discussed. Continuing activities and recommendations for future research and development in support of pressure vessel integrity assessments are presented

  3. The relevance of crack arrest phenomena for pressure vessel structural integrity assessment

    International Nuclear Information System (INIS)

    Connors, D.C.; Dowling, A.R.; Flewitt, P.E.J.

    1996-01-01

    The potential role of a crack arrest argument for the structural integrity assessments of steel pressure vessels and the relationship between crack initiation and crack arrest philosophies are described. A typical structural integrity assessment using crack initiation fracture mechanics is illustrated by means of a case study based on assessment of the steel pressure vessels for Magnox power stations. Evidence of the occurrence of crack arrest in structures is presented and reviewed, and the applications to pressure vessels which are subjected to similar conditions are considered. An outline is given of the material characterisation that would be required to undertake a crack arrest integrity assessment. It is concluded that crack arrest arguments could be significant in the structural integrity assessment of PWR reactor pressure vessels under thermal shock conditions, whereas for Magnox steel pressure vessels it would be limited in its potential to supporting existing arguments. (author)

  4. Advance of investigation of irradiation embrittlement mechanism of nuclear reactor pressure vessel steels. History and future of irradiation embrittlement researches

    International Nuclear Information System (INIS)

    Ishino, Shiori

    2007-01-01

    The nuclear reactor pressure vessel is the most important component of LWR plants required to be safe. This paper describes contents of the title consisting of four chapters. The first chapter states the general theory of irradiation effects, irradiation embrittlement and decreasing of toughness, and some kinds of pressure vessel steels. The second chapter explains history of irradiation embrittlement investigations and the advance of research methods for experiments and calculation. The third chapter contains information of inner structure of irradiated materials and development of prediction equations, recent information of embrittlement mechanism and mechanism guided prediction method, USA model and Central Research Institute of Electric Power Industry (CRIEPI) model. The fourth chapter states recent problems from viewpoints of experimental and analytical approaches. Comparison of standards of LWR pressure vessel steels between Japan and USA, relation between the density of number of cluster and the copper content, effect of flux on clustering of copper atoms, and CRIEPI's way of approaching the prediction method are illustrated. (S.Y.)

  5. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    International Nuclear Information System (INIS)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-01-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented

  6. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    Science.gov (United States)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  7. Safety of light-water reactor pressure vessels against brittle fracture

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    The results are surveyed of research by SKODA Trust into brittle failure resistance of materials for WWER type reactor pressure vessels and into pressure vessel operating safety. Conditions are discussed in detail decisive for initiation, propagation and arrest of brittle fracture. The tests on the Cr-Mo-V type steel showed high resistance of the steel to the formation and the propagation of brittle fracture. They also confirmed the high operating reliability and the required service life of the steel. (B.S.)

  8. Evolution of precipitation in reactor pressure vessel steel welds under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Kristina, E-mail: kristina.lindgren@chalmers.se [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Boåsen, Magnus [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Stiller, Krystyna [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Efsing, Pål [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Vattenfall Ringhals AB, SE-430 22 Väröbacka (Sweden); Thuvander, Mattias [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-05-15

    Reactor pressure vessel steel welds are affected by irradiation during operation. The irradiation results in nanometre cluster formation, which in turn affects the mechanical properties of the material, e.g. the ductile-to-brittle transition temperature is shifted to higher levels. In this study, cluster formation is characterised in high Ni (1.58%) low Cu (0.04%) steel welds identical to Ringhals R4 welds, using atom probe tomography in both surveillance material and in material irradiated at accelerated dose rates. Clusters containing mainly Ni and Mn, but also some Si and Cu were observed in all of the irradiated materials. Their evolution did not change drastically during irradiation; the clusters grew and new clusters were nucleated. Hence, both the cluster number density and the average size increased with irradiation time. Some flux effects were observed when comparing the high flux material and the surveillance material. The surveillance material has a lower cluster number density, but larger clusters. The resulting impact on the mechanical properties of these two effects cancel out, resulting in a measured hardness that seems to be on the same trend as the high flux material. The dispersed barrier hardening model with an obstacle strength factor of 0.15 was found to reproduce the increase in hardness. In the investigated high flux materials, the clusters' Cu content was higher. - Highlights: •Clustering in a low Cu, high Ni reactor pressure vessel steel weld is studied. •The clusters nucleate and grow during irradiation, and consist of Ni, Mn, Si, and Cu. •High flux neutron irradiated material is compared to surveillance material. •High flux was found to result in smaller clusters with a larger number density. •Hardness follows the same dependence on fluence, independent of flux.

  9. Crack propagation on spherical pressure vessels

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1975-01-01

    The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here

  10. R and D Developments. Research Programs on Irradiation Embrittlement of Reactor Vessel Steels

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.; Perosanz, F.

    2000-01-01

    Irradiation embrittlement of pressure vessel steels is a degradation mechanism time dependent that can lead to operational restrictions with adverse effects in the efficiency and life of a plant. For the last year, several research programs have been devoted to study thye evaluation of neutronic radiation effect on mechanical properties of pressure vessel steels. However, at the present, there is a growing interest on the development of new methodologies to optimize the surveillance program information, and the understanding of the irradiation damage mechanism. This paper give an overview of international research programs, and on the R+D activities carried out by the Structural Materials Project on irradiation embrittlement on pressure vessel steels. (Author)

  11. Effects of temperature on corrosion fatigue crack growth of pressure vessel steels in PWR coolant

    International Nuclear Information System (INIS)

    Tice, D.R.; Bramwell, I.L.; Fairbrother, H.; Worswick, D.

    1994-01-01

    This paper presents experimental results concerning crack propagation rates in A508-III pressure vessel steel (medium sulphur content) exposed to PWR primary water at temperatures between 130 and 290 C. The results indicate that the greatest increase in corrosion fatigue crack growth rate occurs at temperatures in the range 150 to 200 C. Under these conditions, there was a marked change in the appearance of the fracture surface, with extensive micro-branching of the crack front and occasional bifurcation of the whole crack path. In contrast, at 290 C, the fracture surface is smoother, similar to that due to inert fatigue. The implication of these observations for assessment of the pressure vessel integrity, is examined. 14 refs., 15 figs., 3 tabs

  12. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  13. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    International Nuclear Information System (INIS)

    McHenry, H.I.; Alers, G.A.

    1998-01-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs

  14. Microstructural characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.

    1993-01-01

    In order to characterize the microstructural evolution of iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions, and, for comparison, low copper model alloys irradiated with neutrons and electrons, have been studied through small angle neutron scattering and atom probe experiments. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex; solute atoms such as Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  15. Microstructural characterization of atom clusters in irradiated pressure vessel steels and model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Auger, P; Pareige, P [Rouen Univ., 76 - Mont-Saint-Aignan (France); Akamatsu, M; Van Duysen, J C [Electricite de France (EDF), 77 - Ecuelles (France)

    1994-12-31

    In order to characterize the microstructural evolution of iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions, and, for comparison, low copper model alloys irradiated with neutrons and electrons, have been studied through small angle neutron scattering and atom probe experiments. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex; solute atoms such as Ni, Mn and Si, sometimes associated with Cu, segregate as ``clouds`` more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs.

  16. On flux effects in a low alloy steel from a Swedish reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Boåsen, Magnus, E-mail: boasen@kth.se [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Efsing, Pål [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Ehrnstén, Ulla [VTT Technical Research Centre of Finland Ltd, PO Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    This study aims to investigate the presence of Unstable Matrix Defects in irradiated pressure vessel steel from weldments of the Swedish PWR Ringhals 4 (R4). Hardness tests have been performed on low flux (surveillance material) and high flux (Halden reactor) irradiated material samples in combination with heat treatments at temperatures of 330, 360 and 390 °C in order to reveal eventual recovery of any hardening features induced by irradiation. The experiments carried out in this study could not reveal any hardness recovery related to Unstable Matrix Defects at relevant temperatures. However, a difference in hardness recovery was found between the low and the high flux samples at heat treatments at higher temperatures than expected for the annihilation of Unstable Matrix Defects–the observed recovery is here attributed to differences of the solute clusters formed by the high and low flux irradiations. - Highlights: • Hardness testing is combined with post irradiation annealing at 330, 360 and 390 °C. • Unstable matrix defects is studied in a reactor pressure vessel steel. • Comparison between surveillance material and accelerated irradiation. • No evidence of unstable matrix defects, i.e. not present in studied material. • Difference in hardness recovery between irradiation conditions found at 390 °C.

  17. Shallow-crack toughness results for reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Theiss, T.J.; Shum, D.K.M.; Rolfe, S.T.

    1992-01-01

    The Heavy Section Steel Technology Program (HSST) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. To complete this investigation, techniques were developed to determine the fracture toughness from shallow-crack specimens. A total of 38 deep and shallow-crack tests have been performed on beam specimens about 100 mm deep loaded in 3-point bending. Two crack depths (a ∼ 50 and 9 mm) and three beam thicknesses (B ∼ 50, 100, and 150 mm) have been tested. Techniques were developed to estimate the toughness in terms of both the J-integral and crack-tip opening displacement (CTOD). Analytical J-integral results were consistent with experimental J-integral results, confirming the validity of the J-estimation schemes used and the effect of flaw depth on fracture toughness. Test results indicate a significant increase in the fracture toughness associated with the shallow flaw specimens in the lower transition region compared to the deep-crack fracture toughness. There is, however, little or no difference in toughness on the lower shelf where linear-elastic conditions exist for specimens with either deep or shallow flaws. The increase in shallow-flaw toughness compared with deep-flaw results appears to be well characterized by a temperature shift of 35 degree C

  18. Correlation between radiation damage and magnetic properties in reactor vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, R.A., E-mail: kempf@cnea.gov.ar [División Caracterización, GCCN, CAC-CNEA (Argentina); Sacanell, J. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Milano, J. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Guerra Méndez, N. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Winkler, E.; Butera, A. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Troiani, H. [División Física de Metales, CAB-CNEA and Instituto Balseiro (UNCU), CONICET (Argentina); Saleta, M.E. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Fortis, A.M. [Departamento Estructura y Comportamiento. Gerencia Materiales-GAEN, CAC-CNEA (Argentina)

    2014-02-01

    Since reactor pressure vessel steels are ferromagnetic, provide a convenient means to monitor changes in the mechanical properties of the material upon irradiation with high energy particles, by measuring their magnetic properties. Here, we discuss the correlation between mechanical and magnetic properties and microstructure, by studying the flux effect on the nuclear pressure vessel steel used in reactors currently under construction in Argentina. Charpy-V notched specimens of this steel were irradiated in the RA1 experimental reactor at 275 °C with two lead factors (LFs), 93 and 183. The magnetic properties were studied by means of DC magnetometry and ferromagnetic resonance. The results show that the coercive field and magnetic anisotropy spatial distribution are sensitive to the LF and can be explained by taking into account the evolution of the microstructure with this parameter. The saturation magnetization shows a dominant dependence on the accumulated damage. Consequently, the mentioned techniques are suitable to estimate the degradation of the reactor vessel steel.

  19. Residual stresses in weld-clad reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Bertram, W.

    1975-01-01

    Cladding of low alloy nuclear reactor pressure vessel steel with austenitic stainless steel introduces in heavy section components high residual stresses which may cause microcrack formation in stress relief heat treatment. In this investigation an attempt is made to contribute to the solution of the stress relief cracking problem by determining quantitatively the magnitude and distribution of the residual stresses after cladding and after subsequent stress relief heat treatment. The distribution of residual stresses was determined on the basis of a combined experimental-mathematical procedure. Heavy section plate specimens of low alloy steel as base material were given an austenitic monolayer-cladding using the techniques of strip electrode and plasma hot wire cladding, respectively. A number of plates was stress relief heat treated. Starting from the cladded surface the thickness of the plates was reduced by subsequent removal of layers of material. The elastic strain reaction to the removal of each layer was measured by strain gauges. From the data obtained the biaxial residual stress distribution was computed as a function of thickness using relations which are derived for this particular case. In summary, lower residual stresses are caused by reduced thickness of the components. As the heat input, is decreased at identical base material thickness, the residual stresses are lowered also. The height of the tensile residual stress peak, however, remains approximataly constant. In stress relief annealed condition the residual stresses in the cladding are in tension; in the base material the residual stresses are negligibly small

  20. Characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.

    1993-12-01

    In order to characterize the microstructural evolution of the iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions and, for comparison, low copper model alloys irradiated with neutrons and electrons have been studied. The characterization has been carried out mainly thanks to small angle neutron scattering and atom probe experiments. Both techniques lead to the conclusion that clusters develop with irradiations. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex. Solute atoms like Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  1. Eddy current testing of composite pressure vessels

    Science.gov (United States)

    Casperson, R.; Pohl, R.; Munzke, D.; Becker, B.; Pelkner, M.

    2018-04-01

    The use of composite pressure vessels instead of conventional vessels made of steel or aluminum grew strongly over the last decade. The reason for this trend is the tremendous weight saving in the case of composite vessels. However, the long-time behavior is not fully understood for filling and discharging cycles and creep strength and their influence on the CFRP coating (carbon fiber reinforced plastics) and the internal liner (steel, aluminum, or plastics). The CFRP ensures the pressure resistance while the inner liner is used as a container for liquid or gas. To overcome the missing knowledge of aging, BAM started an internal project to investigate degradation of these material systems. Therefore, applicable testing methods like eddy current testing are needed. Normally, high-frequency eddy current testing (HF-ET, f > 10 MHz) is deployed for CFRP due to its low conductivity of the fiber, which is in the order of 0.01 MS/s, and the capacitive coupling between the fibers. Nevertheless, in some cases conventional ET can be applied. We show a concise summary of studies on the application of conventional ET of composite pressure vessels.

  2. Light-water reactor pressure vessel surveillance standards

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel steels throughout a pressure vessel's service life. Some of these are existing American Society for Testing and Materials (ASTM) standards, some are ASTM standards that have been modified, and some are newly proposed ASTM standards. The current (1) scope, (2) areas of application, (3) interrelationships, and (4) status and time table of development, improvement, validation, and calibration for a series of 16 ASTM standards are defined. The standard also includes a discussion of LWR pressure vessel surveillance - justification, requirements, and status of work

  3. Application of electron beam welding to large size pressure vessels made of thick low alloy steel

    International Nuclear Information System (INIS)

    Kuri, S.; Yamamoto, M.; Aoki, S.; Kimura, M.; Nayama, M.; Takano, G.

    1993-01-01

    The authors describe the results of studies for application of the electron beam welding to the large size pressure vessels made of thick low alloy steel (ASME A533 Gr.B cl.2 and A533 Gr.A cl.1). Two major problems for applying the EBW, the poor toughness of weld metal and the equipment to weld huge pressure vessels are focused on. For the first problem, the effects of Ni content of weld metal, welding conditions and post weld heat treatment are investigated. For the second problem, an applicability of the local vacuum EBW to a large size pressure vessel made of thick plate is qualified by the construction of a 120 mm thick, 2350 mm outside diameter cylindrical model. The model was electron beam welded using local vacuum chamber and the performance of the weld joint is investigated. Based on these results, the electron beam welding has been applied to the production of a steam generator for a PWR. (author). 3 refs., 10 figs., 4 tabs

  4. Underwater cutting of stainless steel plate and pipe for dismantling reactor pressure vessels

    International Nuclear Information System (INIS)

    Hamasaki, M.; Tateiwa, F.; Kanatani, F.; Yamashita, S.

    1982-01-01

    A consumable electrode water jet cutting technique is described. Satisfactory underwater cutting of 80mm stainless steel plate using a current of 2000A and at a water depth of 200mm has been demonstrated. The electrical requirements for this arc welding method applied to cutting were found to be approximately one third those required for conventional plasma arc cutting for the same thickness plate. An application of this technique might be found in the dismantling of atomic reactor pressure vessels, and parts of commercial atomic reactors. (author)

  5. RPV-1: A Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Van-Duysen, Jean Claude

    2005-01-01

    Many key components in commercial nuclear reactors are subject to neutron irradiation which modifies their mechanical properties. So far, the prediction of the in-service behavior and the lifetime of these components has required irradiations in so-called 'Experimental Test Reactors'. This predominantly empirical approach can now be supplemented by the development of physically based computer tools to simulate irradiation effects numerically. The devising of such tools, also called Virtual Test Reactors (VTRs), started in the framework of the REVE Project (REactor for Virtual Experiments). This project is a joint effort among Europe, the United States and Japan aimed at building VTRs able to simulate irradiation effects in pressure vessel steels and internal structures of LWRs. The European team has already built a first VTR, called RPV-1, devised for pressure vessel steels. Its inputs and outputs are similar to those of experimental irradiation programs carried out to assess the in-service behavior of reactor pressure vessels. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or convey data. A user friendly Python interface eases the running of the simulations and the visualization of the results. RPV-1 is sensitive to its inputs (neutron spectrum, temperature, ...) and provides results in conformity with experimental ones. The iterative improvement of RPV-1 has been started by the comparison of simulation results with the database of the IVAR experimental program led by the University of California Santa Barbara. These first successes led 40 European organizations to start developing RPV-2, an advanced version of RPV-1, as well as INTERN-1, a VTR devised to simulate irradiation effects in stainless steels, in a large effort (the PERFECT project) supported by the European Commission in the framework of the 6th Framework Program

  6. Micromechanisms of ductile stable crack growth in nuclear pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, W.P.A.; Druce, S.G.

    1981-10-01

    The objective of this work was to investigate the relationship between the micromechanisms of ductile crack growth, the microstructural constituent phases present in nuclear pressure vessel steel, and the observed fracture behavior as determined by impact and fracture mechanics tests. Results from a microstructural and mechanical property comparison of an A508 Class 3 pressurized water reactor nozzle forging cutout and a 150-mm-thick A533B Class 1 plate are reported. The variation of upper-shelf toughness between the two steels and its orientation sensitivity are discussed on the basis of inclusion and precipitate distributions. Inclusion clusters in A533B, deformed to elongated disks in the rolling plane, have a profound effect on short transverse fracture properties. Data derived using the multi-specimen J-integral method to characterize the initiation of ductile crack extension and resistance to stable crack growth are compared with equivalent Charpy results. Results of the J /SUB R/ -curve analyses indicate (1) that the A533B short transverse crack growth resistance is approximately half that observed from transverse and longitudinal specimen orientations, and (2) that the A508 initiation toughness and resistance to stable crack growth are insensitive to position through the forging wall, and are higher than exhibited by A533B at any orientation in the midthickness position.

  7. Models for ductile crack initiation and tearing resistance under mode 1 loading in pressure vessel steels

    International Nuclear Information System (INIS)

    Jones, M.R.

    1988-06-01

    Micromechanistic models are presented which aim to predict plane strain ductile initiation toughness, tearing resistance and notched bar fracture strains in pressure vessel steels under monotonically increasing tensile (mode 1) loading. The models for initiation toughness and tearing resistance recognize that ductile fracture proceeds by the growth and linkage of voids with the crack-tip. The models are shown to predict the trend of initiation toughness with inclusion spacing/size ratio and can bound the available experimental data. The model for crack growth can reproduce the tearing resistance of a pressure vessel steel up to and just beyond crack growth initiation. The fracture strains of notched bars pulled in tension are shown to correspond to the achievement of a critical volume fraction of voids. This criterion is combined with the true stress - true strain history of a material point ahead of a blunting crack-tip to predict the initiation toughness. An attempt was made to predict the fracture strains of notched tensile bars by adopting a model which predicts the onset of a shear localization phenomenon. Fracture strains of the correct order are computed only if a ''secondary'' void nucleation event at carbide precipitates is taken into account. (author)

  8. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    International Nuclear Information System (INIS)

    Burke, M.G.; Freyer, P.D.; Mager, T.R.

    1993-01-01

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ''precipitation-type'' and a ''damage-type'' component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs

  9. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M G; Freyer, P D; Mager, T R

    1994-12-31

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ``precipitation-type`` and a ``damage-type`` component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs.

  10. Warm pre-stress experiments on highly irradiated reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Landron, C.; Ait-Bachir, M.; Moinereau, D.; Molinie, E.; Garbay, E.

    2015-01-01

    In the aim to justify in-service integrity of reactor pressure vessel beyond 40 years, experimental warm pre-stress (WPS) tests were performed on irradiated materials representative of RPV steels corresponding to 40 operating years. Different types of WPS loading path have been considered to cover typical postulated accidental transients. These results confirmed the beneficial effect of WPS on the cleavage fracture resistance of the irradiated materials. No fracture occurred during the cooling phase of the loading path and the fracture toughness values are higher than that measured with conventional isothermal tests. The analyses of the experiments, conducted using either simplified engineering models or more refined fracture models based on local approach to cleavage fracture, are in agreement with the experimental results. (authors)

  11. The metrological problems of irradiation embrittlement of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Vodenicharov, S.; Kamenova, Ts.

    1993-01-01

    Neutron irradiation of reactor pressure vessel steels increases the T k -values of transition temperature from ductile to brittle fracture. This effect is very important in emergency situations, when the water cooling injection in the reactor results in high thermal gradients. In such cases there is a risk from the appearance of a brittle fracture with catastrophic crack propagation speed at relatively low stresses. That is why the T k -value determination is very important for the safe operation of the reactor systems. Some advanced experimental methods for T k -testing and control have been discussed in the present article and the standards of different countries have been compared. The methods applying subsize specimens and welding-restored specimens have been reviewed. (author)

  12. Stress corrosion cracking studies on ferritic low alloy pressure vessel steel - water chemistry and modelling aspects

    International Nuclear Information System (INIS)

    Tipping, P.; Ineichen, U.; Cripps, R.

    1994-01-01

    The susceptibility of low alloy ferritic pressure vessel steels (A533-B type) to stress corrosion cracking (SCC) degradation has been examined using various BWR type coolant chemistries. Fatigue pre-cracked wedge-loaded double cantilever beams and also constantly loaded 25 mm thick compact tension specimens have shown classical SCC attack. The influence of parameters such as dissolved oxygen content, water impurity level and conductivity, material chemical composition (sulphur content) and stress intensity level are discussed. The relevance of SCC as a life-limiting degradation mechanism for low alloy ferritic nuclear power plant PV steel is examined. Some parameters, thought to be relevant for modelling SCC processes in low alloy steels in simulated BWR-type coolant, are discussed. 8 refs., 1 fig., 4 tabs

  13. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  14. Heavy-Section Steel Technology Program intermediate-scale pressure vessel tests

    International Nuclear Information System (INIS)

    Bryan, R.H.; Merkle, J.G.; Smith, G.C.; Whitman, G.D.

    1977-01-01

    The tests of intermediate-size vessels with sharp flaws permitted the comparison of experimentally observed behavior with analytical predictions of the behavior of flawed pressure vessels. Fracture strains estimated by linear elastic fracture mechanics (LEFM) were accurate in the cases in which the flaws resided in regions of high transverse restraint and the fracture toughness was sufficiently low for unstable fracture to occur prior to yielding through the vessel wall. When both of these conditions were not present, unstable fracture did occur, always preceded by stable crack growth; and the cylinders with flaws initially less than halfway through the wall attained gross yield prior to burst. Predictions of failure pressure of the vessels with flawed nozzles, based upon LEFM estimates of failure strain, were very conservative. LEFM calculations of critical load were based upon small-specimen fracture toughness test data. Whenever gross yielding preceded failure, the actual strains achieved were considerably greater than the estimated strains at failure based on LEFM. In such cases the strength of the vessel may be no longer dependent upon plane-strain fracture toughness but upon the capacity of the cracked section to carry the imposed load stably in the plastic range. Stable crack growth, which has not been predictable quantitatively, is an important factor in elastic-plastic analysis of strength. The ability of the flawed vessels to attain gross yield in unflawed sections has important qualitative implications on pressure vessel safety margins. The gross yield condition occurs in light-water-reactor pressure vessels at about 2 x design pressure. The intermediate vessel tests that demonstrated a capacity for exceeding this load confirm that the presumed margin of safety is not diminished by the presence of flaws of substantial size, provided that material properties are adequate

  15. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  16. The non-destructive examination of reactor pressure vessel steels by positron annihilation

    International Nuclear Information System (INIS)

    Highton, J.P.

    1983-01-01

    The rapid radiation hardening of copper bearing reactor pressure vessel steels has been linked with microvoids that are associated with copper based complexes in the metal lattice. These microvoids are active in the sense that their size appears to be related to the temperature of irradiation, which thus determines their influence on dislocation mobility. These sites appear to grow by vacancy condensation which causes a reduction in the local lattice energy. Thus prolonged exposure to PWR temperatures, even in the absence of a neutron flux, may also cause embrittlement. It has been found that these sites, which represent a local negative charge, act as traps to positrons. The size of each site dictates its positron trapping potential. As the trapping potential increases so too does the probability that the positrons will annihilate with low momentum conduction electrons. The momentum of the annihilating electrons will determine the degree of Doppler broadening of the 511 keV annihilation gamma peak. Thus careful analysis of this peak can yield useful information on the degree of embrittlement caused by these active defect complexes. In this way positron annihilation offers a powerful non-destructive alternative to current methods of assessing the integrity of nuclear reactor pressure vessels. (author)

  17. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  18. Guidelines for pressure vessel safety assessment

    Science.gov (United States)

    Yukawa, S.

    1990-04-01

    A technical overview and information on metallic pressure containment vessels and tanks is given. The intent is to provide Occupational Safety and Health Administration (OSHA) personnel and other persons with information to assist in the evaluation of the safety of operating pressure vessels and low pressure storage tanks. The scope is limited to general industrial application vessels and tanks constructed of carbon or low alloy steels and used at temperatures between -75 and 315 C (-100 and 600 F). Information on design codes, materials, fabrication processes, inspection and testing applicable to the vessels and tanks are presented. The majority of the vessels and tanks are made to the rules and requirements of ASME Code Section VIII or API Standard 620. The causes of deterioration and damage in operation are described and methods and capabilities of detecting serious damage and cracking are discussed. Guidelines and recommendations formulated by various groups to inspect for the damages being found and to mitigate the causes and effects of the problems are presented.

  19. Thermal annealing of an embrittled reactor pressure vessel

    International Nuclear Information System (INIS)

    Mager, T.R.; Dragunov, Y.G.; Leitz, C.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 11 deals with thermal annealing of an embrittled reactor pressure vessel. Anneal procedures for vessels from both the US and the former USSR are mentioned schematically, wet anneals at lower temperature and dry anneals above RPV design temperatures are investigated. It is shown that heat treatment is a means of recovering mechanical properties which were degraded by neutron radiation exposure, thus assuring reactor pressure vessel compliance with regulatory requirements

  20. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, F; Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)

    1999-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  1. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Seitisleam, F.; Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  2. Fracture toughness behavior and its analysis on nuclear pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Iwadate, Tadao; Tanaka, Yasuhiko; Ono, Shin-ichi; Tsukada, Hisashi [Japan Steel Works Ltd., Muroran, Hokkaido. Muroran Plant

    1983-02-01

    A drop weight J sub(Id) testing machine has been developed successfully, by which the multiple specimen J resistance curve test technique can be applied to measure the fracture toughness. In this study, the use of a small size round compact tension (RCT) specimen for measuring the fracture toughness J sub(Ic) or J sub(Id) of the nuclear pressure vessel steels is recommended and confirmed for the surveillance tests. The static and dynamic fracture toughness of ASTM A508 C 1.2, A508 C 1.3 and A533 Gr.B C 1.1 steels in the wide range of temperature including the upper shelf have been measured and their behavior has been analysed. The fracture toughness behavior under various strain rates and in a wide temperature range can be explained by the behavior of stretched zone formation preceding the crack initiation. The scatter of K sub(J) values in the transition range is caused by the amount of crack extension contained in the specimens. In this paper, the method to obtain the fracture toughness equivalent to the K sub(Ic) from the K sub(J) value is also presented.

  3. Effect of Macrosegregation on the Microstructure and Mechanical Properties of a Pressure-Vessel Steel

    Science.gov (United States)

    Yan, Guanghua; Han, Lizhan; Li, Chuanwei; Luo, Xiaomeng; Gu, Jianfeng

    2017-07-01

    Macrosegregation refers to the chemical segregation, which occurs quite commonly in the large forgings such as nuclear reactor pressure vessel. This work assesses the effect of macrosegregation and homogenization treatment on the mechanical properties of a pressure-vessel steel (SA508 Gr.3). It was found that the primary reason for the inhomogeneity of the microstructure was the segregation of Mn, Mo, and Ni. Martensite, and coarse upper bainite with M-A (martensite-austenite) islands have been obtained, respectively, in the positive and negative segregation zone during a simulated quenching process. During tempering, the carbon-rich M-A islands decomposed into a mixture of ferrite and numerous carbides which deteriorated the toughness of the material. The segregation has been substantially minimized by a homogenizing treatment. The results indicate that the material homogenized has a higher impact toughness than the material with segregation, due to the reduction in M-A island in the negative segregation zone. It can be concluded that the microstructure and mechanical properties have been improved remarkably by means of homogenization treatment.

  4. The Investigation on Strain Strengthening Induced Martensitic Phase Transformation of Austenitic Stainless Steel: A Fundamental Research for the Quality Evaluation of Strain Strengthened Pressure Vessel

    Science.gov (United States)

    Li, Bo; Cai Ren, Fa; Tang, Xiao Ying

    2018-03-01

    The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.

  5. Thermodynamic Alloy Design of High Strength and Toughness in 300 mm Thick Pressure Vessel Wall of 1.25Cr-0.5Mo Steel

    Directory of Open Access Journals (Sweden)

    Hye-sung Na

    2018-01-01

    Full Text Available In the 21st century, there is an increasing need for high-capacity, high-efficiency, and environmentally friendly power generation systems. The environmentally friendly integrated gasification combined-cycle (IGCC technology has received particular attention. IGCC pressure vessels require a high-temperature strength and creep strength exceeding those of existing pressure vessels because the operating temperature of the reactor is increased for improved capacity and efficiency. Therefore, high-pressure vessels with thicker walls than those in existing pressure vessels (≤200 mm must be designed. The primary focus of this research is the development of an IGCC pressure vessel with a fully bainitic structure in the middle portion of the 300 mm thick Cr-Mo steel walls. For this purpose, the effects of the alloy content and cooling rates on the ferrite precipitation and phase transformation behaviors were investigated using JMatPro modeling and thermodynamic calculation; the results were then optimized. Candidate alloys from the simulated results were tested experimentally.

  6. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A.

    1996-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or open-quotes recovery,close quotes of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed

  7. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or open-quotes recovery,close quotes of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed

  8. Tribology aspects of a pressure vessel closure subjected to pressure cycling

    International Nuclear Information System (INIS)

    George, A.F.; Williams, M.E.

    1988-04-01

    A repair method being considered for a steel pressure vessel is to cut away the faulty part leaving an unreinforced circular hole in the curved wall and cover it with a sealed plate placed inside. In order to investigate the structural properties of such a repair a large model vessel (6m by 2m) was tested under pressure (about 2.5 MPa) and pressure cycling. This cycling caused relative movements at the loaded interface between the lid and the vessel. A tribological examination of the rubbing surfaces was carried out. The tribological examination is described and a small supporting programme of laboratory scaling tests. It gives the results and attempts to interpret them with particular attention given to wear, fretting fatigue and scaling to plant conditions. (author)

  9. Void nucleation by the helium atoms during lifetime of reactor pressure vessel

    International Nuclear Information System (INIS)

    Rahman, F.A.

    1984-01-01

    Void formation and growth has a great influence on the reactor pressure vessel steels during its lifetime and during post-irradiation annealing to increase its life. The present investigation aimed at the fact that if one can prevent void nucleation, accordingly one would not wary about void formation and growth. From that concept a model for helium production by transmutation reaction and corresponding swelling under irradiation conditions for several number of steels have been developed. This was done for recommending a steel type that can oppose such a phenomena. In the same time the present investigation gives a procedure utilizing such phenomena for checking the validity of pressure vessel steel used in the NPP

  10. Nuclear reactors sited deep underground in steel containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bourque, Robert [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Although nuclear power plants are certainly very safe, they are not perceived as safe by the general populace. Also, there are concerns about overland transport of spent fuel rods and other irradiated components. It is hereby proposed that the nuclear components of nuclear power plants be placed in deep underground steel vessels with secondary coolant fed from them to turbines at or near the surface. All irradiated components, including spent fuel, would remain in the chamber indefinitely. This general concept was suggested by the late Edward Teller, generated some activity 20-25 years ago and appears to be recently reviving in interest. Previous work dealt with issues of geologic stability of underground, possibly reinforced, caverns. This paper presents another approach that makes siting independent of geology by placing the reactor components in a robust steel vessel capable of resisting full overburden pressure as well as pressures resulting from accident scenarios. Structural analysis of the two vessel concepts and approximate estimated costs are presented. This work clears the way for the extensive discussions required to evaluate the advantages of this concept. (author)

  11. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  12. Swedish Work on Brittle-Fracture Problems in Nuclear Reactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M

    1966-03-15

    After a short review of the part of the Swedish nuclear energy program that is of interest in this context the Swedish reactor pressure vessels and the reasoning behind the choice of materials are surveyed. Problems and desirable aims for future reactors are discussed. Much work is now being done on new types of pressure vessel steels with high strength, low transition temperature and good corrosion resistance. These steels are of the martensitic austenitic type Bofors 2RMO (13 % Cr, 6 % Ni, 1. 5 % Mo) and of the ferritic martensitic austenitic type Avesta 248 SV (16 % Cr, 5 % Ni, 1 % Mo). An applied philosophy for estimating the brittle-fracture tendency of pressure vessels is described. As a criterion of this tendency we use the crack-propagation transition temperature, e. g. as measured by the Robertson isothermal crack-arrest test. An estimate of this transition temperature at the end of the reactor' s lifetime must take increases due to fabrication, welding, geometry, ageing and irradiation into account. The transition temperature vs. stress curve moves towards higher temperatures during the reactor' s lifetime. As long as this curve does not cross the reactor vessel stress vs. temperature curve the vessel is considered safe. The magnitude of the different factors influencing the final transition temperature are discussed and data for the Marviken reactor's pressure vessel are presented. At the end of the reactor's lifetime the estimated transition temperature is 115 deg C, which is below the maximum permissible value. A program for the study of strain ageing has been initiated owing to the uncertainty as to the extent of strain ageing at low strains. A study of a simple crack-arrest test, developed in Sweden, is in progress. An extensive irradiation-effects program on several steels is in progress. Results from tests on the Swedish carbon-manganese steels 2103/R3, SIS 142103 and SIS 142102, the low-alloy steels Degerfors DE-631A, Bofors NO 345 and Fortiweld

  13. Swedish Work on Brittle-Fracture Problems in Nuclear Reactor Pressure Vessels

    International Nuclear Information System (INIS)

    Grounes, M.

    1966-03-01

    After a short review of the part of the Swedish nuclear energy program that is of interest in this context the Swedish reactor pressure vessels and the reasoning behind the choice of materials are surveyed. Problems and desirable aims for future reactors are discussed. Much work is now being done on new types of pressure vessel steels with high strength, low transition temperature and good corrosion resistance. These steels are of the martensitic austenitic type Bofors 2RMO (13 % Cr, 6 % Ni, 1. 5 % Mo) and of the ferritic martensitic austenitic type Avesta 248 SV (16 % Cr, 5 % Ni, 1 % Mo). An applied philosophy for estimating the brittle-fracture tendency of pressure vessels is described. As a criterion of this tendency we use the crack-propagation transition temperature, e. g. as measured by the Robertson isothermal crack-arrest test. An estimate of this transition temperature at the end of the reactor' s lifetime must take increases due to fabrication, welding, geometry, ageing and irradiation into account. The transition temperature vs. stress curve moves towards higher temperatures during the reactor' s lifetime. As long as this curve does not cross the reactor vessel stress vs. temperature curve the vessel is considered safe. The magnitude of the different factors influencing the final transition temperature are discussed and data for the Marviken reactor's pressure vessel are presented. At the end of the reactor's lifetime the estimated transition temperature is 115 deg C, which is below the maximum permissible value. A program for the study of strain ageing has been initiated owing to the uncertainty as to the extent of strain ageing at low strains. A study of a simple crack-arrest test, developed in Sweden, is in progress. An extensive irradiation-effects program on several steels is in progress. Results from tests on the Swedish carbon-manganese steels 2103/R3, SIS 142103 and SIS 142102, the low-alloy steels Degerfors DE-631A, Bofors NO 345 and Fortiweld

  14. Monitoring the aging of pressure vessel steels by TEP measurements: Advantages and current limitations of the method

    International Nuclear Information System (INIS)

    Kleber, X.; Saillet, S.

    2011-01-01

    The TEP (Thermoelectric Power or Seebeck coefficient) characterizes the ability of a material to generate an electrical potential difference when the material is subjected to a heat flux. It can be defined from the Seebeck effect, which manifests itself in a circuit formed by two different metals subjected to a temperature gradient. The origin of the thermoelectric power is, as the resistivity, due to electronic phenomena occurring at the atomic scale in relation to the crystallographic structure of the material. TEP measurements are used to characterize small microstructural changes at the scale of crystal defects. The high sensitivity of TEP makes it an excellent probe able of detecting small changes in the microstructural state, including precipitation, dissolution of alloying elements, hardening and recovery after deformation. It has been shown recently that the TEP of pressure vessels steels was sensitive to irradiation, making this measurement technique a potential candidate for monitoring the aging of the pressure vessel steel. However, the first measurements on Charpy specimens of the EDF monitoring program (Pressure Vessel Surveillance Program) showed a strong negative effect of specimen geometry on the accuracy that can be achieved. In this paper we show what the origins of these inaccuracies are. From numerical simulation and finite element model, we describe the roles of the thermal contact resistance as well as the influence of the geometry of the blocks device. A model is proposed to overcome these negative effects. We also show the effect of the presence of heterogeneities in the material on the TEP measurement, and the importance of their localization. Finally, solutions are proposed to improve the device for measuring TEP on PVSP Charpy specimens. (authors)

  15. Test of 6-in.-thick pressure vessels. Series 3: intermediate test vessel V-7

    International Nuclear Information System (INIS)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.; Bryan, R.H.

    1976-08-01

    The test of intermediate test vessel V-7 was a crack-initiation fracture test of a 152-mm-thick (6-in.), 990-mm-OD (39-in.) vessel of ASTM A533, grade B, class 1 steel plate with a sharp outside surface flaw 457 mm (18 in.) long and about 135 mm (5.3 in.) deep. The vessel was heated to 91 0 C (196 0 F) and pressurized hydraulically until leakage through the flaw terminated the test at a peak pressure of 147 MPa (21,350 psi). Fracture toughness data obtained by testing precracked Charpy-V and compact-tension specimens machined from a prolongation of the cylindrical test shell were used in pretest analyses of the flawed vessel. The vessel, as expected, did not burst. Upon depressurization, the ruptured ligament closed so as to maintain static pressure without leakage at about 129 MPa

  16. Stability of ferritic steel to higher doses: Survey of reactor pressure vessel steel data and comparison with candidate materials for future nuclear systems

    International Nuclear Information System (INIS)

    Blagoeva, D.T.; Debarberis, L.; Jong, M.; Pierick, P. ten

    2014-01-01

    This paper is illustrating the potential of the well-known low alloyed clean steels, extensively used for the current light water Reactor Pressure Vessels (RPV) steels, for a likely use as a structural material also for the new generation nuclear systems. This option would provide, especially for large components, affordable, easily accessible and a technically more convenient solution in terms of manufacturing and joining techniques. A comprehensive comparison between several sets of surveillance and research data available for a number of RPV clean steels for doses up to 1.5 dpa, and up to 12 dpa for 9%Cr steels, is carried out in order to evaluate radiation stability of the currently used RPV clean steels even at higher doses. Based on the numerous data available, positive preliminary conclusions are drawn regarding the eventual use of clean RPV steels for the massive structural components of the new reactor systems. - Highlights: • Common embrittlement trend between RPV and advanced steels till intermediate doses. • For doses >1.5 dpa, damage rate saturation tendency is observed for RPV steels. • RPV steels might be conveniently utilised also outside their foreseen dose range

  17. Biaxial Loading Tests for steel containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, T. [Nuclear Power Engineering Corp., Tokyo (Japan); Wright, D.J.; Arai, S.

    1999-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  18. Biaxial Loading Tests for steel containment vessel

    International Nuclear Information System (INIS)

    Miyagawa, T.; Wright, D.J.; Arai, S.

    1999-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  19. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels; Microstructure et fragilisation des aciers de cuve des reacteurs nucleaires VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, A

    1999-03-15

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  20. The mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels: The case of Fe-Cu model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, A.V., E-mail: Alexey.V.Subbotin@gmail.com [Scientific and Production Complex Atomtechnoprom, Moscow 119180 (Russian Federation); Panyukov, S.V., E-mail: panyukov@lpi.ru [PN Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924 (Russian Federation)

    2016-08-15

    Mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels is proposed and developed in case of Fe-Cu model alloys. The suggested solute-drag mechanism is analogous to the well-known zone-refining process. We show that the obtained results are in good agreement with available experimental data on the parameters of clusters enriched with the alloying elements. Our model explains why the formation of solute-enriched clusters does not happen in austenitic stainless steels with fcc lattice structure. It also allows to quantify the method of evaluation of neutron irradiation dose for the process of RPV steels hardening.

  1. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  2. Kinetics of annealing of irradiated surveillance pressure vessel steel

    International Nuclear Information System (INIS)

    Harvey, D.J.; Wechsler, M.S.

    1982-01-01

    Indentation hardness measurements as a function of annealing were made on broken halves of Charpy impact surveillance samples. The samples had been irradiated in commercial power reactors to a neutron fluence of approximately 1 x 10 18 neutrons per cm 2 , E > 1 MeV, at a temperature of about 300 0 C (570 0 F). Results are reported for the weld metal, which showed greater radiation hardening than the base plate or heat-affected zone material. Isochronal and isothermal anneals were conducted on the irradiated surveillance samples and on unirradiated control samples. No hardness changes upon annealing occurred for the control samples. The recovery in hardness for the irradiated samples took place mostly between 400 and 500 0 C. Based on the Meechan-Brinkman method of analysis, the activation energy for annealing was found to be 0.60 +- 0.06 eV. According to computer simulation calculations of Beeler, the activation energy for migration of vacancies in alpha iron is about 0.67 eV. Therefore, the results of this preliminary study appear to be consistent with a mechanism of annealing of radiation damage in pressure vessel steels based on the migration of radiation-produced lattice vacancies

  3. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  4. Mass optimization of a small pressure vessel using metal/FRP (fiber reinforced polymers) hybrid structures

    International Nuclear Information System (INIS)

    Nisar, J.A.; Abdullah, A.N.; Iqbal, N.

    2004-01-01

    In hybrid pressure vessels, composite (Fiber) is wound over a metallic liner (Steel/Aluminum) in hoop direction. In this concept of hybrid pressure vessel structure, metallic liner takes all the axial loads and fiber reinforced polymers (FRP/sub s/) takes load in circumferential (Hoop) direction. Hybrid structures combine the relatively high shear stiffness and ductility of metal alloy with high specific stiffness, strength and fatigue properties of FRP/sub s/. The relatively simple methods for producing hybrid structures circumvent the need for the complex and expensive equipment that is used for advanced composites processing. This paper presents an efficient way of designing a hybrid pressure vessel where prime concern is weight reduction over an equivalent aluminum structure and investigates various methodologies regarding combinations of metals and FRP/sub s/ for optimization of a given pressure vessel. For this purpose we adopted two different methods of simulation one is computer simulation using ANSYS and other is experimental verification by hydrostatic testing of manufactured pressure vessel. Two different pressure vessels one with aluminum liner and other with steel liner were fabricated. Kevlar 49/epoxy was wrapped around the liners in hoop direction. Both the pressure vessels were put into hydrostatic test. Strains were measured during the test and then converted into corresponding stresses. Results of hydrostatic test were quite in favor of the ANSYS results. In this way we have successfully designed, manufactured and tested the Hybrid pressure vessel saving almost 40% weight in case of aluminum liner and 43.6% in case of steel liner. (author)

  5. Studies of fragileness in steels of vessels of BWR reactors

    International Nuclear Information System (INIS)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2003-01-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA MARK lll reactor and separately with Ni +3 ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A 2 . (Author)

  6. Welding in repair of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Pilous, V.; Kovarik, R.

    1987-01-01

    Specific welding conditions are described in repair of the pressure vessels of nuclear reactors in operation and the effect is pointed out to of neutrons on changes in steel properties. Some of the special regulations are discussed to be observed in welding jobs. The welding methods are briefly described; the half-bead method is most frequently used. It is stressed that the defect must first be identified using a nondestructive method and the stages must be defined of the welding repair of the pressure vessel. (J.B.). 4 figs., 1 tab., 16 refs

  7. Estimation of residual stresses in reactor pressure vessel steel specimens clad by stainless steel strip electrodes

    International Nuclear Information System (INIS)

    Schimmoeller, H.A.; Ruge, J.L.

    1978-01-01

    The equations to determine a two-dimensional state of residual stress in flat laminated plates are well known from an earlier work by one of the authors. The derivation of these equations leads to a linear, inhomogeneous system of Volterra's integral equations of the second kind. To ascertain the unknown residual stresses from these equations it is necessary to cut down the thickness of the test plate layer by layer. This results in two-dimensional deformation reactions in the rest of the test plate, which can be measured, e.g. by a strain gauge rosette applied to the opposite side of the plate. The above-mentioned stress analysis has been transferred to 86mm thick reactor pressure vessel steel specimens (Type 22NiMoCr 37, DIN-No. 1.6751, similar to ASTM A508, Class 2) double-run clad by austenitic stainless steel strip electrodes (first layer 24/13 Cr-Ni steel, second layer 21/10 Cr-Ni steel). The overall dimensions of the clad specimens investigated amounted to 200 x 200 x (86+4.5+4.5)mm. At the surface of the austenitic cladding there is a two-dimensional tensile normal stress state of about 200N/mm 2 parallel, and about 300N/mm 2 transverse, to the welding direction. The maximum tensile stress was 8mm below the interface (fusion line, material transition) in the parent material. The stress distributions of the specimens investigated, determined on the basis of the above-mentioned combined experimental mathematical procedure, are presented graphically for the as-welded (as-delivered) and annealed (600 0 C/12hr) conditions. (author)

  8. Heavy Section Steel Technology Program. Part II. Intermediate vessel testing

    International Nuclear Information System (INIS)

    Whitman, G.D.

    1975-01-01

    The testing of the intermediate pressure vessels is a major activity under the Heavy Section Steel Technology Program. A primary objective of these tests is to develop or verify methods of fracture prediction, through the testing of selected structures and materials, in order that a valid basis can be established for evaluating the serviceability and safety of light-water reactor pressure vessels. These vessel tests were planned with sufficiently specific objectives that substantial quantitative weight could be given to the results. Each set of testing conditions was chosen so as to provide specific data by which analytical methods of predicting flaw growth, and in some cases crack arrest, could be evaluated. Every practical effort was made to assure that results would be relevant to some aspect of real reactor pressure vessel performance through careful control of material properties, selection of test temperatures, and design of prepared flaws. 5 references

  9. Effects of thermal ageing on toughness properties of pressure vessel steel

    International Nuclear Information System (INIS)

    Todeschini, P.; Churier-Bossennec, H.; Massoud, J.P.; Frund, J.M.

    2015-01-01

    The reactor pressure vessel of pressurized water reactors operates at temperatures up to 325 C. degrees. The compositions and microstructures of its constitutive steel are optimized to obtain good initial toughness values and to minimize the effects of thermal ageing during service life. Intergranular segregation of embrittling elements like phosphorus is the main thermal ageing mechanism which might affect the long term toughness properties of low copper steels, despite the low diffusivity of phosphorus at the temperatures of interest. For long term operation, these effects are taken into account by prediction formulae which have been developed in the eighties and are included in the RCC-M and RSE-M codes. The presented study aims at validating these prediction formulae by exposures at moderately increased temperatures, up to 350 C. degrees, relatively to service conditions. The investigated materials are representative forgings and their welds, taking into account envelope phosphorus concentrations relatively to the French fleet. Predicted and measured embrittlement for base and weld metals are low and consistent together for the lowest phosphorus levels. The predicted effect of phosphorus content seems to be overestimated. The single coarse grain structure has been studied on one forging and shows a susceptibility to ageing similar to the fine grain one. The various heat affected zone microstructures studied with the plate having a phosphorus content of 0.017 % (fusion line, fine grains, inter-critical coarse grains) have given quite contrasted results. Inter-critical coarse grains notch positions show the lowest shifts. Code predictions are bounding the results of all considered heat affected zone microstructures with substantial margin. The increased susceptibility of heat affected zone compared to base metal seems globally overestimated

  10. Re-austenitisation of chromium-bearing pressure vessel steels during the weld thermal cycle

    International Nuclear Information System (INIS)

    Dunne, Druce; Li, Huijun; Jones, Christopher

    2013-01-01

    Steels with chromium contents between 0.5 and 12 wt% are commonly used for fabrication of creep resistant pressure vessels (PV) for the power generation industry. Most of these steels are susceptible to Type IV creep failure in the intercritical and/ or grain refined regions of the heat affected zone (HAZ) of the parent metal. The re-austenitisation process plays a central role in establishing the transformed microstructures and the creep resistance of the various sub-zones of the HAZ. The high alloy content and the presence of alloy-rich carbides in the as-supplied parent plate can significantly retard the kinetics of transformation to austenite, resulting in both incomplete austenitisation and inhomogeneous austenite. Overlapping weld thermal cycles in multi-pass welds add further complexity to the progressive development of microstructure over the course of the welding process. In order to clarify structural evolution, thermal simulation has been used to study the effects of successive thermal cycles on the structures and properties of the HAZ of 2.25Cr-1Mo steel. The results showed that, before post-weld heat treatment (PWHT), the HAZ microstructures and properties, particularly in doubly reheated sub-zones, were highly heterogeneous and differed markedly from those of the base steel. It is concluded that close control of the thermal cycle by pre-heat, weld heat input and post-heat is necessary to obtain a heat affected zone with microstructures and properties compatible with those of the base plate.

  11. Problems in Pressure Vessel Design and Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, O [Uddeholms AB, Degerfors (Sweden); Nilson, Ragnar [AB Atomenergi, Nykoeping (Sweden)

    1963-05-15

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels.

  12. Problems in Pressure Vessel Design and Manufacture

    International Nuclear Information System (INIS)

    Hellstroem, O.; Nilson, Ragnar

    1963-05-01

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels

  13. Preliminary results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Matsumoto, T.; Komine, K.; Arai, S.

    1997-01-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented

  14. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1994-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (74-90 mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments. Under severe accident loading conditions, the steel containment vessel in a typical Mark-I or Mark-II plant may deform under internal pressurization such that it contacts the inner surface of a shield building wall. (Thermal expansion from increasing accident temperatures would also close the gap between the SCV and the shield building, but temperature effects are not considered in these analyses.) The amount and location of contact and the pressure at which it occurs all affect how the combined structure behaves. A preliminary finite element model has been developed to analyze a model of a typical steel containment vessel con-ling into contact with an outer structure. Both the steel containment vessel and the outer contact structure were modelled with axisymmetric shell finite elements. Of particular interest are the influence that the contact structure has on deformation and potential failure modes of the containment vessel. Furthermore, the coefficient of friction between the two structures was varied to study its effects on the behavior of the containment vessel and on the uplift loads transmitted to the contact structure. These analyses show that the material properties of an outer contact structure and the amount

  15. Strain ageing of nuclear pressure vessel steels A533B and A508 cl.2

    International Nuclear Information System (INIS)

    Pelli, R.; Toerroenen, K.

    1978-04-01

    The susceptibility of the reactor pressure vessel steels A533B and A508 cl.2 to strain ageing has been studied using conventional tensile and impact testing of prestrained and aged specimens. The results show a modest susceptibility, seen as an increase in yield strength and Charpy V transition temperatures. The effect of varying alloying additions within the range of normal production was not observed, but the initial mechanical properties clearly affect the strain ageing. The lower the initial yield strength, the higher increase in strength and the lower increase in transition temperature is observed. (author)

  16. Characterisation of creep cavitation damage in a stainless steel pressure vessel using small angle neutron scattering

    CERN Document Server

    Bouchard, P J; Treimer, W

    2002-01-01

    Grain-boundary cavitation is the dominant failure mode associated with initiation of reheat cracking, which has been widely observed in austenitic stainless steel pressure vessels operating at temperatures within the creep range (>450 C). Small angle neutron scattering (SANS) experiments at the LLB PAXE instrument (Saclay) and the V12 double-crystal diffractometer of the HMI-BENSC facility (Berlin) are used to characterise cavitation damage (in the size range R=10-2000 nm) in a variety of creep specimens extracted from ex-service plant. Factors that affect the evolution of cavities and the cavity-size distribution are discussed. The results demonstrate that SANS techniques have the potential to quantify the development of creep damage in type-316H stainless steel, and thereby link microstructural damage with ductility-exhaustion models of reheat cracking. (orig.)

  17. Characterization of phosphorus segregation in neutron-irradiated Russian pressure vessel steel weld

    International Nuclear Information System (INIS)

    Miller, M.K.; Jayaram, R.; Russell, K.F.

    1995-01-01

    An atom probe field ion microscopy characterization of three Russian pressure vessel steels has been performed. Field ion micrographs of several lath boundaries have indicated that they are decorated with a semicontinuous film of discrete brightly-imaging precipitates that were identified as molybdenum carbonitrides. In addition, extremely high phosphorus levels were measured at the lath boundaries. The phosphorus was found to be confined to an extremely narrow region indicative of monolayer type segregation. The phosphorus coverage determined from the atom probe results of the unirradiated materials agree with predictions based on McLean's equilibrium model of grain boundary segregation. The boundary phosphorus coverage of a neutron-irradiated weld material was significantly higher than in the unirradiated material. Ultrafine darkly-imaging copper- and phosphorus-enriched precipitates were also observed in the matrix of the neutron-irradiated material. (orig.)

  18. Multiple shell pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1988-01-01

    A method is described of fabricating a pressure vessel comprising the steps of: attaching a first inner pressure vessel having means defining inlet and outlet openings to a top flange, placing a second inner pressure vessel, having means defining inlet and outlet opening, concentric with and spaced about the first inner pressure vessel and attaching the second inner pressure vessel to the top flange, placing an outer pressure vessel, having inlet and outlet openings, concentric with and spaced apart about the second inner pressure vessel and attaching the outer pressure vessel to the top flange, attaching a generally cylindrical inner inlet conduit and a generally cylindrical inner outlet conduit respectively to the inlet and outlet openings in the first inner pressure vessel, attaching a generally cylindrical outer inlet conduit and a generally cylindrical outer outlet conduit respectively to the inlet and outlet opening in the second inner pressure vessel, heating the assembled pressure vessel to a temperature above the melting point of a material selected from the group, lead, tin, antimony, bismuth, potassium, sodium, boron and mixtures thereof, filling the space between the first inner pressure vessel and the second inner pressure vessel with material selected from the group, filling the space between the second inner pressure vessel and the outer pressure vessel with material selected from the group, and pressurizing the material filling the spaces between the pressure vessels to a predetermined pressure, the step comprising: pressurizing the spaces to a pressure whereby the wall of the first inner pressure vessel is maintained in compression during steady state operation of the pressure vessel

  19. Initiation and arrest - two approaches to pressure vessel safety

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Stepanek, S.

    1976-01-01

    The safety analysis is described of the reactor pressure vessel related to brittle fracture based on the fracture mechanics theory using two different approximations, i.e., the Crack Arrest Temperature (CAT) or Nil Ductility Temperature (NDT), and fracture toughness. The variation of CAT with stress was determined for different steel specimens of 120 to 200 mm in thickness. A diagram is shown of CAT variation with stress allowing the determination of crack arrest temperature for all types of commonly used steels independently of the NDT initial value. The diagram also shows that the difference between fracture transition elastic (FTE) and NDT depends on the type of material and determines the value of the ΔTsub(sigma) factor typical of the safety coefficient. The so-called fracture toughness reference value Ksub(IR) is recommended for the computation of pressure vessel criticality. Also shown is a defect analysis diagram which may be used for the calculation of pressure vessel safety prior to and during operation and which may also be used in making the decision on what crack sizes are critical, what cracks may be arrested and what cracks are likely to expand. The diagram is also important for the fact that it is material-independent and may be employed for the estimates of pre-operational and operational inspections and for pressure vessel life prediction. It is generally applicable to materials of greater thickness in the region where the validity of linear elastic fracture mechanics is guaranteed. (J.P.)

  20. Lay-out and construction of a pressure vessel built-up of cast steel segments for a pebble-bed high temperature reactor with a thermal power of 3000 MW

    International Nuclear Information System (INIS)

    Voigt, J.

    1978-03-01

    The prestressed cast vessel is an alternative to the prestressed concrete vessel for big high temperature reactors. In this report different cast steel vessel concepts for an HTR for generation of current with 3000 MW(th) are compared concerning their realization and economy. The most favourable variant serves as a base for the lay-out of the single vessel components as cast steel segments, bracing, cooling and outer sealing. Hereby the actual available possibilities of production and transport are considered. For the concept worked out possibilities of inspection and repair are suggested. A comparison of costs with adequate proposititons of the industry for a prestressed concrete and a cast iron pressure vessel investigates the economical competition. (orig.) [de

  1. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10 19 n/cm 2 (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10 19 n/cm 2 (>l MeV). In both cases, irradiations were conducted at ∼290 C and annealing treatments were conducted at ∼454 C. The ORNL and RRC

  2. Changes of the mechanical properties of ASTM A 533 type B class 1 (JRQ) steel used in pressure vessels of nuclear power plants

    International Nuclear Information System (INIS)

    Balderrama, Juan J.; Iorio, Antonio F.

    1999-01-01

    The steels used in pressure vessels generally present a non-homogenous microstructure across the thickness of their walls due to their manufacturing process. Average thickness being between 200-250 mm also makes the problem more serious. These facts lead us to think that the variation affects not only microstructure, but also mechanical properties. For this reason the methodology for the evaluation of materials should be standardized for their use before and after radiation by means of a surveillance program which allows us to verify the conditions of the steel of the pressure vessel by using Charpy-v, tensile and fracto-mechanics specimens inside the reactor to obtain information about the condition of the pressure vessel material. In order to analyze these changes, tests were carried out using Charpy-v specimens with different orientation inside the block representing the wall thickness and the corresponding ductile-to-brittle transition curves were made for each direction. The orientations to be considered will be four in all and will be those called TL, LT, ST and LS by ASTM E 399 (1993). The conclusions reached arise from a comparative analysis of the results obtained for each orientation under study and confirm the recommendation by Standards regarding the selection of the TL orientation as the most conservative. (author)

  3. Radiation embrittlement in pressure vessels of power reactors

    International Nuclear Information System (INIS)

    Kempf, Rodolfo; Fortis, Ana M.

    2007-01-01

    It is presented the project to study the effect of lead factors on the mechanical behavior of Reactor Pressure Vessel steels. It is described the facility designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. The objective is to obtain the fracture behavior of irradiated specimens with different lead factors and to know their dependence with the diffusion of alloy elements. (author) [es

  4. Progress in Investigation of WWER-440 Reactor Pressure Vessel Steel by Gamma and Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Hascik, J.; Slugen, V.; Lipka, J.; Hinca, R.; Toth, I.; Groene, R.; Uvacik, P.; Kupca, L.

    1998-01-01

    Gamma spectroscopic analyse and first experimental results of original irradiated reactor pressure vessel surveillance specimens are discussed in. In 1994, the new ''Extended Surveillance Specimen Program for nuclear Reactor Material Study'' was started in collaboration with the nuclear power plants (NPP) V-2 Bohunice (Slovakia). The first batch of MS samples (after 1 year, which is equivalent to 5 years of loading RPV-steel) was measured and interpreted using the new four components approach with the aim to observe microstructural changes due to thermal and neutron treatment resulting from operating conditions in NPP. The systematic changes in the relative areas of Moessbauer spectra components were observed. (author)

  5. The flow effect in the irradiation embrittlement in pressure vessel steels of nuclear power plants

    International Nuclear Information System (INIS)

    Kempf, Rodolfo A.; Cativa Tolosa, Sebastian; Fortis, Ana M.

    2009-01-01

    This paper deals with the advances in the study of the mechanical behavior of the Reactor Pressure Vessel steels under accelerate irradiations. The objective is to study the effect of lead factors on the interpretation of the mechanisms that induced the embrittlement of the RPV, like those of the reactors Atucha II and CAREM. It is described a device designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. It is presented also an automatic digital image processing technique for partitioning Charpy fracture surface into regions with a clear physical meaning and appropriate for the work in hot cells. The aim is to obtain the fracture behavior of irradiated specimens with different lead factors in the range of high fluencies and to know the dependence with the composition of the alloy and with the diffusion of other alloy elements. (author)

  6. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1993-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (50--90mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments

  7. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W. Jr.; Pennell, W.E.

    1995-03-01

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  8. Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Wells, Peter B.; Yamamoto, Takuya; Miller, Brandon; Milot, Tim; Cole, James; Wu, Yuan; Odette, G. Robert

    2014-01-01

    Formation of a high density of Mn–Ni–Si nanoscale precipitates in irradiated Cu-free and Cu-bearing reactor pressure vessel steels could lead to severe unexpected embrittlement. Models long ago predicted that these precipitates, which are not treated in current embrittlement prediction models, would emerge only at high fluence. However, the mechanisms and variables that control Mn–Ni–Si precipitate formation, and their detailed characteristics, have not been well understood. High flux irradiations of six steels with systematic variations in Cu and Ni contents were carried out at ∼295 °C to high and very high neutron fluences of ∼1.3 × 10 20 and ∼1.1 × 10 21 n cm −2 . Atom probe tomography shows that significant mole fractions of Mn–Ni–Si-dominated precipitates form in the Cu-bearing steels at ∼1.3 × 10 20 n cm −2 , while they are only beginning to develop in Cu-free steels. However, large mole fractions of these precipitates, far in excess of those found in previous studies, are observed at 1.1 × 10 21 n cm −2 at all Cu contents. At the highest fluence, the precipitate mole fractions primarily depend on the alloy Ni, rather than Cu, content. The Mn–Ni–Si precipitates lead to very large increases in measured hardness, corresponding to yield strength elevations of up to almost 700 MPa

  9. Temperature dependence of the fracture toughness and the cleavage fracture strength of a pressure vessel steel

    International Nuclear Information System (INIS)

    Kotilainen, H.

    1980-01-01

    A new model for the temperature dependence of the fracture toughness has been sought. It is based on the yielding processes at the crack tip, which are thought to be competitive with fracture. Using this method a good correlation between measured and calculated values of fracture toughness has been found for a Cr-Mo-V pressure vessel steel as well as for A533B. It has been thought that the application of this method can reduce the number of surveillance specimens in nuclear reactors. A method for the determination of the cleavage fracture strength has been proposed. 28 refs

  10. Integrity assessment of TAPS reactor pressure vessel at extended EOL using surveillance test results

    International Nuclear Information System (INIS)

    Chatterjee, S.; Shah, Priti Kotak

    2008-05-01

    Integrity assessment of pressure vessels of nuclear reactors (RPV) primarily concentrates on the prevention of brittle failure and conditions are defined under which brittle failure can be excluded. Accordingly, two approaches based on Transition Temperature Concept and Fracture Mechanics Concept were adopted using the impact test results of three credible surveillance data sets obtained from the surveillance specimens of Tarapur Atomic Power Station. RT NDT data towards end of life (EOL) were estimated from the impact test results in accordance with the procedures of USNRC Regulatory Guide 1.99, Rev. 2 and were used as primary input for assessment of the vessel integrity. SA302B (nickel modified) steel cladded with stainless steel is used as the pressure vessel material for the two 210 MWe boiling water reactors of the Tarapur Atomic Power Station (TAPS). The reactors were commissioned during the year 1969. The chemical compositions of SA302B (modified) steel used in fabricating the vessel and the specified tensile property and the Charpy impact property requirements of the steel broadly meet ASME specified requirements. Therefore, the pressure temperature limit curves prescribed by General Electric (G.E.) were compared with those as obtained using procedures of ASME Section XII, Appendix G. The tensile and the Charpy impact properties at 60 EFPY of vessel operation as derived from the surveillance specimens even fulfilled the specified requirements for the virgin material of ASME. Integrity assessment carried out using the two approaches indicated the safety of the vessel for continued operation up to 60 EFPY. (author)

  11. The response of pressure vessel steel specimens on drop weight loading

    International Nuclear Information System (INIS)

    Winkler, S.; Kalthoff, J.F.; Gerscha, A.

    1979-01-01

    Load records obtained in instrumented impact tests in general are disturbed by inertia effects. The influence of mechanical damping provisions on these disturbing inertia effects is investigated. Precracked bend specimens are dynamically loaded in a drop weight testing system. The specimens of size 620 mm x 150 mm (25 mm or 50 mm thick) were machined from the pressure vessel steel 22 NiMoCr 37 which was heat treated to achieve a specially hardened condition. The tests were performed at two different low temperatures. The impact velocity was about 4 m/s. As it is usual in instrumented impact testing, the load at the tup of the impining striker is recorded as a function of time during the impact process. In addition the specimen is instrumented by a strain gage close to the crack tip in order to directly measure the stress intensification. Experiments were performed under pure and damped impact conditions. Damping was achieved by utilizing a soft aluminum plate between the striker and the specimen. (orig.)

  12. Studies on the welding of heavy-section ASTM A542 Cl. 1 steel for large-sized pressure vessels

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Aota, Toshiichi; Kasahara, Masayuki

    1977-01-01

    ASTM A 542, Cl. 1 steel was developed and standardized recently, and is excellent in the high temperature strength and toughness as compared with conventionally used A 387, Grade 22 steel, accordingly the application to large pressure vessels is planned. This steel is a low alloy steel, and in case of large thickness, the possibility of cracking in the welded part is large. Also many times of annealing are required for the prevention of welding cracking, the relieving of residual stress, and the softening of hardened portion, but the possibility of cracking during stress-relieving annealing is large. In this study, Tekken type cracking test was carried out by coated electrode welding, and restricted cracking test was carried out by submerged arc welding of the A 542, Cl. 1 steel and A 387, Grade 22 steel, thus the welding cracking property was investigated, and the optimal welding conditions were selected. Also the test of cracking during the stress-relieving annealing of both steels was carried out, and the method of preventing the cracking was studied. The optimal conditions of stress-relieving annealing were selected, and the mechanism of the cracking was clarified. The mechanical properties of the joints welded and stress-relieved under the selected conditions were confirmed. (Kako, I.)

  13. On the composition and structure of nanoprecipitates in irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.; Liu, C.L.; Wirth, B.D.

    1997-01-01

    Nanoscale Cu rich precipitates (CRPs) are widely believed to be the dominant hardening feature resulting in severe embrittlement in irradiated reactor pressure vessel (RPV) steels. However, this view has recently been challenged by interpretations of atom probe field ion microscopy (APFIM) measurements that describe the dominant nanofeatures as dilute solute atmospheres (DSAs). The practical impact of these differing views is very significant. This work compares and contrasts the CRP versus DSA descriptions to a wide variety of pertinent data. Mechanical property trends as well as small angle neutron scattering (SANS) and field emission scanning transmission electron microscopy (FEGSTEM) measurements support the presence of CRPs. CRPs are also consistent with the fundamental thermodynamic and kinetic laws. However, standard theory cannot provide the atomic level resolution needed to fully understand the nanofeatures. Therefore, a new Lattice Monte Carlo (LMC) atomistic method is used to simulate the complex chemical structures of the CRPs. The LMC method unifies the SANS/FEGSTEM and APFIM data within a well founded physical framework

  14. The IAEA data base ageing of reactor pressure vessel steels and welds

    International Nuclear Information System (INIS)

    Gillemot, F.; Ianko, L.; Davies, L.M.

    1995-01-01

    This paper describes one aspect of the International Atomic Energy Agency (IAEA) data base, that is to do with the ageing of reactor pressure vessel (RPV) steels and welds. It describes the background and the need for and the benefits deriving from such an international data base encompassing a greater number of sources than currently incorporated in existing international and national data bases. The paper describes the organization of this data base and the controls necessary for data acquisition and control. The current state of progress is described. Membership of and participation in this project is given and data access is also described. The technical features of the data base are described in terms of the structure of the data base and the hardware and software. New features are proposed such as the inclusion of measured curve data and metallographic data. Technical aspects of data evaluation are also included. (author). 1 ref., 6 figs

  15. Light-water-reactor pressure-vessel surveillance dosimetry using solid-state track recorders

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.

    1983-07-01

    The accumulation of neutron dose by the pressure vessel of an operating nuclear power plant results in damage in the form of steel embrittlement. In order to ascertain the safe operating lifetime of the reactor pressure vessel, dosimetric measurements must be made to evaluate the neutron dose to the pressure vessel and relate this dose to the cumulative radiation damage. Advanced dosimetry techniques are being evaluated for surveillance of operating reactors. Solid-state track recorder (SSTR) techniques are included among these advanced dosimetry techniques. Described herein are low neutron fluence calibration and standardization measurements that are being carried out in pressure vessel mockup benchmark neutron fields in the USA, Belgium, and England. In addition, high fluence SSTR dosimetry capsules have been irradiated with metallurgical specimens in a pressure vessel mockup facility. The design and deployment of advances SSTR dosimetry capsules in operating power reactors are also described

  16. Test of 6-in.-thick pressure vessels. Series 3: intermediate test vessel V-7A under sustained loading

    International Nuclear Information System (INIS)

    Bryan, R.H.; Cate, T.M.; Holz, P.P.; King, T.A.; Merkle, J.G.; Robinson, G.C.; Smith, G.C.; Smith, J.E.; Whitman, G.D.

    1978-01-01

    HSST intermediate test vessel V-7 was repaired after being tested hydrostatically to leakage and was retested pneumatically as vessel V-7A. Except for the method of applying the load, the conditions in both tests were nearly identical. In each case, a sharp outside surface flaw 547 mm long (18 in.) by about 135 mm deep (5.3 in.) was prepared in the 152-mm-thick (6-in.) test cylinder of A533, grade B, class 1 steel. The inside surface of vessel V-7A was sealed in the region of the flaw by a thin metal patch so that pressure could be sustained after rupture. Vessel V-7A failed by rupture of the flaw ligament without burst, as expected. Rupture occurred at 144.3 MPa (20.92 ksi), after which pressure was sustained for 30 min without any indication of instability. The rupture pressure of vessel V-7A was about 2 percent less than that of vessel V-7

  17. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Becka, J.

    1975-01-01

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm 2 the welded joints in the reactor core are exposed to an integral dose of 3x10 18 n/cm 2 . The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  18. Development of improved SGV480 steel plate for containment vessel in PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Norioki [Advanced Nuclear Equipment Research Inst., Tokyo (Japan); Morikage, Yasushi; Okayama, Yutaka; Higashikubo, Tomohiro

    2001-01-01

    When a nuclear containment vessel made of steel plate at PWR plants in Japan is produced, SGV480 steel plate made by annealing method according to JIS G3118 is usually used in main. And, when thickness of welding portion of the vessel is larger than 38 mm, as heat treatment after welding is regulated to carry out according to the ministerial ordinance, it is difficult in actual to carry out the heat treatment of the actual welded portions. In a leading plant, approval of welding using a special method without heat treatment less than 47.25 mm of SGV480 carbon steel plate for JIS G3118 middle and ordinary pressure vessel was carried out to supply it for actual use. And, it is required for protection of welding fracture to carry out pre-heat treatment before welding. Because of increasing plate thickness requiring for lower temperature and more seismic resistance in construction condition, in order to produce a containment vessel without heat treatment after welding, more toughness is required for using material and welded portion. Therefore, a new SGV480 steel plate was developed by using TMCP method of modern steel manufacturing technology, to establish lower carbon equivalence and finer texture with upgrading of both toughness and weldability, without heat treatment after welding and pre-heat treatment before welding, at the Shin-Nippon Steel Co, Ltd. and Kawasaki Steel, Co. Ltd., respectively. (G.K.)

  19. Results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.; Komine, Kuniaki; Matsumoto, Tomoyuki; Costello, J.F.

    1998-05-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed by the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed

  20. The prediction of failure of welded steel plates for pressure vessels

    International Nuclear Information System (INIS)

    Gulvin, T.F.; Terry, P.; Webster, S.E.

    1980-01-01

    The avoidance of brittle fracture in pressure vessels and other welded steel fabrications is a matter of considerable importance. The application of fracture mechanics to this problem has led to the evolution of a philosophy which, among other things, permits estimation of tolerable crack sizes so that practical working limits can be set on inspection procedures and on material and welded joint toughness levels. The use of small-scale fracture mechanics tests, particularly crack opening displacement (COD) tests, to make the necessary material and/or joint property assessments is now commonplace. A number of possible analytical techniques have been considered. Initially, the COD data have been used with the Burdekin-Dawes design curve approach taking into account all the possible stress conditions and, it can be demonstrated, that consistently safe predictions of allowable flaw sizes can be made. Also considered, is the fracture analysis diagram approach of Harrison, Loosemore, and Milne in which a combination of fracture toughness data and mechanical property data is used to assess the probability of failure. Similarly the approach defined by Irvine and Quirk which makes use of mechanical property data without resorting to fracture mechanics and finally, a simple approach using uniaxial tensile property data only has also been examined. Comparisons have been made between these four approaches using, initially, the body of data referring to fracture tests on a single material with various defect sizes and aspect ratios, etc. and latterly, to the specific cases in the body of data on high strength steels. The results are discussed. (author)

  1. Long-term ageing effects in reactor pressure vessel steels investigated by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butterling, Maik; Anwand, Wolfgang; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany); Bergner, Frank; Ulbricht, Andreas; Wagner, Arne [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany)

    2014-07-01

    Neutron irradiation of reactor pressure vessel steels leads to the formation of nano-sized defects which can deteriorate the material. An understanding of the microstructural evolution of the material is important for making reliable security assessments about possible future long-term operation of nuclear power plants. So-called late-blooming phases are formed after long-term irradiation and lead to considerable material ageing effects. Encouraging factors for the formation of these phases are a low Cu-content, moderate to high contents of Mn and Ni, low irradiation temperatures and different neutron fluxes. Positron annihilation lifetime spectroscopy which is ideally suited for the detection and characterization of these irradiation-induced defects was applied for different selected materials which fulfill these conditions in order to investigate the occurrence and behavior of these phases.

  2. The criteria of fracture in the case of the leak of pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Habil; Ziliukas, A.

    1997-04-01

    In order to forecast the break of the high pressure vessels and the network of pipes in a nuclear reactor, according to the concept of leak before break of pressure vessels, it is necessary to analyze the conditions of project, production, and mounting quality as well as of exploitation. It is also necessary to evaluate the process of break by the help of the fracture criteria. In the Ignalina Nuclear Power Plant of, in Lithuania, the most important objects of investigation are: the highest pressure pipes, made of Japanese steel 19MN5 and having an anticorrosive austenitic: coal inside, the pipes of distribution, which arc made of 08X1810T steel. The steel of the network of pipes has a quality of plasticity: therefore the only criteria of fragile is impossible to apply to. The process of break would be best described by the universal criteria of elastic - plastic fracture. For this purpose the author offers the criterion of the double parameter.

  3. Innovations in prestressed concrete pressure vessel design

    International Nuclear Information System (INIS)

    Chow, P.Y.; Ngo, D.; Lin, T.Y.

    1979-01-01

    The study explored a new approach to the design of a high-pressure PCPV that accepts tension and tension cracks in the outer region of the PCPV. It examined the possibility of incorporating artificially-introduced preformed separations that pre-determined crack locations in the design as a method of controlling high tensile stresses generated by internal temperature and pressure. The results showed that the PCPV so designed was, in the extreme case of the DSV, approximately 70% cheaper than the 18 steel vessels of equivalent capacity it replaces. (orig.)

  4. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  5. Pressure vessel for nuclear reactor plant consisting of several pre-stressed cast pressure vessels

    International Nuclear Information System (INIS)

    Bodmann, E.

    1984-01-01

    Several cylindrical pressure vessel components made of pressure castings are arranged on a sector of a circle around the cylindrical cast pressure vessel for accommodating the helium cooled HTR. Each component pressure vessel is connected to the reactor vessel by a horizontal gas duct. The contact surfaces between reactor and component pressure vessel are in one plane. In the spaces between the individual component pressure vessels, there are supporting blocks made of cast iron, which are hollow and also have flat surfaces. With the reactor vessel and the component pressure vessels they form a disc-shaped connecting part below and above the gas ducts. (orig./PW)

  6. A fracture mechanics approach to predicting the effects of warm prestressing and its applications to pressure vessels

    International Nuclear Information System (INIS)

    Chell, G.G.

    1979-01-01

    A theory of warm prestressing based on the J-integral is described. The theory is validated using experimental warm pre-stressing data obtained on a carbon-manganese steel, two pressure vessel steels and mild steel. The theory is applied to the pressurised water reactor and the effects of warm prestressing evaluated after irradiation damage to the pressure vessel, and in the case of a loss of coolant accident. Warm prestressing increases the resistance to inhibits the initiation and propagation of the cracks. The benefits of warm prestressing for shallow cracks is less certain and a more detailed analysis is required. (orig.)

  7. Test of 6-inch-thick pressure vessels. Series 2. Intermediate test vessels V-3, V-4, and V-6

    International Nuclear Information System (INIS)

    Bryan, R.H.; Merkle, J.G.; Raftenberg, M.N.; Robinson, G.C.; Smith, J.E.

    1975-11-01

    The second series of intermediate vessel tests were crack initiation fracture tests of 6-in.-thick 39-in.-OD steel vessels with sharp surface flaws approximately 2 1 / 2 in. deep by 8 in. long in the longitudinal weld seams of the test cylinders. Fracture was initiated by means of hydraulic pressurization. One vessel was tested at each of three temperatures: 75, 130, and 190 0 F. Pretest analyses were made to predict the failure pressures and strains. Fracture toughness data obtained by equivalent-energy analysis of precracked Charpy-V tests and compact-tension specimen tests were used in the fracture analyses. The vessels behaved generally as had been expected. Posttest fracture analyses were also performed for each vessel. Detailed discussions of the fracture analysis methods developed in support of the vessel tests described are included. 34 references

  8. Special enclosure for a pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.; Wedellsborg, U.W.

    1993-01-01

    A pressure vessel enclosure is described comprising a primary pressure vessel, a first pressure vessel containment assembly adapted to enclose said primary pressure vessel and be spaced apart therefrom, a first upper pressure vessel jacket adapted to enclose the upper half of said first pressure vessel containment assembly and be spaced apart therefrom, said upper pressure vessel jacket having an upper rim and a lower rim, each of said rims connected in a slidable relationship to the outer surface of said first pressure vessel containment assembly, mean for connecting in a sealable relationship said upper rim of said first upper pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, means for connecting in a sealable relationship said lower rim of said first upper pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, a first lower pressure vessel jacket adapted to enclose the lower half of said first pressure vessel containment assembly and be spaced apart therefrom, said lower pressure vessel jacket having an upper rim connected in a slidable relationship to the outer surface of said first pressure vessel containment assembly, and means for connecting in a sealable relationship said upper rim of said first lower pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, a second upper pressure vessel jacket adapted to enclose said first upper pressure vessel jacket and be spaced apart therefrom, said second upper pressure vessel jacket having an upper rim and a lower rim, each of said rims adapted to slidably engage the outer surface of said first upper pressure vessel jacket, means for sealing said rims, a second lower pressure vessel jacket adapted to enclose said first lower pressure vessel jacket and be spaced apart therefrom

  9. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  10. Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanwei; Han, Lizhan; Yan, Guanghua; Liu, Qingdong; Luo, Xiaomeng; Gu, Jianfeng, E-mail: gujf@sjtu.edu.cn

    2016-11-15

    The microstructural evolution of reactor pressure vessel (RPV) steel and its effect on the mechanical properties during tempering at 650 °C were studied to reveal the time-dependent toughness and temper embrittlement. The results show that the toughening of the material should be attributed to the decomposition of the martensite/austenite constituents and uniform distribution of carbides. When the tempering duration was 5 h, the strength of the investigated steel decreased to strike a balance with the material impact toughness that reached a plateau. As the tempering duration was further increased, the material strength was slightly reduced but the material impact toughness deteriorated drastically. This time-dependent temper embrittlement is different from traditional temper embrittlement, and it can be partly attributed to the softening of the matrix and the broadening of the ferrite laths. Moreover, the dimensions and distribution of the grain carbides are the most important factors of the impact toughness. - Highlights: • The fracture mechanism of reactor pressure vessel (RPV) steels under impact load was investigated. • The Charpy V-notch impact test and the hinge model were employed for the study. • Grain boundary carbides play a key role in the impact toughness and fracture toughness. • The dependence of the deterioration of impact toughness on tempering time was analyzed for the first time.

  11. Experimental studies of oxidic molten corium-vessel steel interaction

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V.

    2001-01-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere

  12. Experimental studies of oxidic molten corium-vessel steel interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. E-mail: niti-npc@sbor.net; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V

    2001-12-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere.

  13. Further fields of application for prestressed cast iron pressure vessels (PCIV)

    International Nuclear Information System (INIS)

    Guelicher, L.; Schilling, F.E.

    1977-01-01

    The redundancy of the prestressing system of prestressed structures as well as the clear separation of sealing and load-carrying functions of prestressed cast iron pressure vessels offer substantial advantages over conventional welded steel pressure vessels. Because of the temperature resistance of cast iron up to 400 0 C it is possible to build prestressed pressure vessels commercially as hot-working structures. The compressive strength of cast iron, which is 25 times as high as that of concrete allows for a very compact design of the PCIV. Further specific properties of the PCIV like pre-fabrication of the vessel in the production plant - made possible by a structure assembled from segments - short assembly periods at the construction site etc., may open more fields of application. - PCIV as pressurized storage tanks for the emergency shut down system in nuclear power stations. - PCIV as high pressure vessel for the chemical industry. - PCIV as energy storage. - PCIV for light water reactors. - PCIV as burst protection. It is concluded that the application of prestressed cast iron promises to be successful where either structures with large volumes and high pressures and/or temperatures are required or where aspects of safety allow for efficient use of prestressed structures. (Auth.)

  14. Microstructural parameters and yielding in a quenched and tempered Cr-Mo-V pressure vessel steel

    International Nuclear Information System (INIS)

    Toerroenen, Kari

    1979-01-01

    In this work the plastic deformation behaviour of a Cr-Mo-V pressure vessel steel is studied at ambient and low temperatures. To produce a wide range of microstructures, different austenitizing, quenching and tempering treatments are performed. The microstructures, including grain and dislocation structures as well as carbides, are evaluated. A qualitative model is proposed for the martensitic and bainitic transformations explaining the morphology and crystallography of the transformation products. Based on microstructural observations of undeformed and deformed materials, as well as the tensile test results, the role of various obstacles to dislocation motion in plastic deformation is evaluated. Finally the strength increment, its temperature dependence and the effect due to combinations of various obstacles are analyzed. The results are intended to serve as basis for further fracture behaviour analyses. (author)

  15. Residual stresses in a weldment of pressure vessel steel

    International Nuclear Information System (INIS)

    Gott, K.E.

    1978-01-01

    A study was made of the distribution of residual stresses around a typical weld from a light water reactor pressure vessel by an X-ray double-exposure camera technique. So that the magnitude, sign, and distribution of the residual stresses were as similar as possible to those found in practice, a wide, full-thickness specimen of A533B Cl 1 steel containing a submerged-arc weld was stress-relief annealed. To obtain a three-dimensional distribution of the stresses the specimen was examined at different levels through the thickness. Following the removal of material by milling, the specimen surface was electropolished to free it from cold work. Corrections have been made to take into account specimen relaxation. To completely define the original stress system it is desirable also to measure the change in curvature on removing a layer of material. Unless this is done assumptions must be made which complicate the calculations unnecessarily. This became apparent after the experimental work was completed. In the centre of the plate the methods of correction which can be used are sensitive to errors in the measurements. The corrected results show that the dominant residual stress is perpendicular to the weld. It is positive at the surfaces and negative in the centre of the plate. The maximum value can reach the yield stress. The residual stresses in the weld metal can locally vary considerably: from 100 to 350N/mm 2 over a distance of 5mm. Such large variations have been found to coincide with the heat-affected zones of the individual weld runs. (author)

  16. Empirical correlation between mechanical and physical parameters of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Tipping, P.; Solt, G.; Waeber, W.

    1991-02-01

    Neutron irradiation embrittlement of nuclear reactor pressure vessel (PV) steels is one of the best known ageing factors of nuclear power plants. If the safety limits set by the regulators for the PV steel are not satisfied any more, and other measures are too expensive for the economics of the plant, this embrittlement could lead to the closure of the plant. Despite this, the fundamental mechanisms of neutron embrittlement are not yet fully understood, and usually only empirical mathematical models exist to asses neutron fluence effects on embrittlement, as given by the Charpy test for example. In this report, results of a systematic study of a French forging (1.2 MD 07 B), irradiated to several fluences will be reported. Mechanical property measurements (Charpy tensile and Vickers microhardness), and physical property measurements (small angle neutron scattering - SANS), have been done on specimens having the same irradiation or irradiation-annealing-reirradiation treatment histories. Empirical correlations have been established between the temperature shift and the decrease in the upper shelf energy as measured on Charpy specimens and tensile stresses and hardness increases on the one hand, and the size of the copper-rich precipitates formed by the irradiation on the other hand. The effect of copper (as an impurity element) in enhancing the degradation of mechanical properties has been demonstrated; the SANS measurements have shown that the size and amount of precipitates are important. The correlations represent the first step in an effort to develop a description of neutron irradiation induced embrittlement which is based on physical models. (author) 6 figs., 27 refs

  17. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  18. Recent experiences and problems in conducting pressure vessel surveillance examinations

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1979-01-01

    Each of the commercial power reactors in the U.S.A. has a pressure vessel surveillance program. The purpose of the programs is to monitor the effects of radiation on the mechanical properties on the steel pressure vessels. A program for a given reactor includes a series of irradiation capsules containing neutron dosimeters and mechanical property specimens. The capsules are periodically removed during the life of the reactor and evaluated. The surveillance capsule examinations conducted to date have been valuable in assessing the effects of radiation on pressure vessels. However, a number of problems have been observed in the course of capsule examinations which potentially could reduce the maximum value of the data obtained. These problems are related to specimen design and preparation, capsule design and preparation, capsule installation and removal, capsule disassembly, specimen testing and evaluation, program documentation, and quality assurance. Examples of problems encountered in the preceding areas are presented in the present paper, and recommendations are made for minimization or prevention of these problems in future programs. Included in the recommendations is that appropriate ASTM standards, ASME Boiler and Pressure Vessel Code sections, and NRC regulations provide the appropriate framework for prevention of problems

  19. Sub-critical crack growth and clad integrity in a PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tice, D.R.; Foreman, A.J.E.; Sharples, J.K.

    1987-10-01

    The possibility of in-service growth of sub-critical defects in a PWR reactor pressure vessel to a critical size which could result in vessel failure was addressed in both the 1976 and 1982 reports of the Light Water Reactor Study Group (LWRSG), under the Chairmanship of Dr W Marshall (now Lord Marshall). An addendum to this report was published by UKAEA in April 1987. The section of the addendum dealing with subcritical crack growth and the related issue of integrity of the stainless steel cladding on the inner vessel surface is reproduced in this report. This section of the LWRSG addendum provides a review of the current status of fatigue crack growth and environmentally assisted cracking research for pressure vessel steels in light water reactor environments, as well as a review of developments in crack growth assessment methods. The review concludes that the alternative assessment procedures now being developed give a more realistic prediction of in service crack growth than the ASME Section XI Appendix A fatigue crack growth curves. (author)

  20. AE/flaw characterization for nuclear pressure vessels

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.

    1984-01-01

    This chapter discusses the use of acoustic emission (AE) detected during continuous monitoring to identify and evaluate growing flaws in pressure vessels. Off-reactor testing and on-reactor testing are considered. Relationships for identifying acoustic emission (AE) from crack growth and using the AE data to estimate flaw severity have been developed experimentally by laboratory testing. The purpose of the off-reactor vessel test is to evaluate AE monitoring/interpretation methodology on a heavy section steel vessel under simulated reactor operating conditions. The purpose of on-reactor testing is to evaluate the capability of a monitor system to function in the reactor environment, calibrate the ability to detect AE signals, and to demonstrate that a meaningful criteria can be established to prevent false alarms. An expanded data base is needed from application testing and methodology standardization

  1. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  2. Potential high fluence response of pressure vessel internals constructed from austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.; Harrod, D.L.

    1993-08-01

    Many of the in-core components in pressurized water reactors are constructed of austenitic stainless steels. The potential behavior of these components can be predicted using data on similar steels irradiated at much higher displacement rates in liquid-metal reactors or water-cooled mixed-spectrum reactors. Consideration of the differences between the pressurized water environment and that of the other reactors leads to the conclusion that significant amounts of void swelling, irradiation creep, and embrittlement will occur in some components, and that the level of damage per atomic displacement may be larger in the pressurized water environment

  3. Acoustoelastic evaluation of welding and heat treatment stress relieving of pressure vessel steel for Angra 3

    International Nuclear Information System (INIS)

    Moraes, Bruno C. de; Bittencourt, Marcelo de S.Q.

    2015-01-01

    Currently the knowledge of non-destructive techniques allows to evaluate the stresses on components and mechanical structures, aiming at physical security, preservation of the environment and avoid financial losses associated with the construction and operation of industrial plants. The search for new techniques, especially applied in the nuclear industry to assess status more accurately, voltage safety and to ensure structural integrity, for example, core components of the primary circuit, such as the reactor pressure vessel and steam generator has become of great importance within the community of non-destructive testing .This paper aims to contribute to the non-destructive technique development in order to ensure the structural integrity of nuclear components. One acoustoelastic evaluation of steel 20 MnMoNi 55, used in pressure vessels of nuclear power plants were performed. The acoustic birefringence technique was use to evaluate the acoustoelastic behavior of the test material in the as received condition, after welding and after the stress relief heat treatment. The constant acoustoelastic material was obtained by an uniaxial loading test. It was found a slight anisotropy in the material as received. After welding, a marked variation of acoustic birefringence in the region near the weld bead was observed. The heat treatment indicated a new change of acoustic birefringence. Obtaining the acoustoelastic constant allowed the evaluation of stress in the different conditions of the weld and treated material. (author)

  4. Acoustoelastic evaluation of welding and heat treatment stress relieving of pressure vessel steel for Angra 3

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Bruno C. de, E-mail: bruno.cesar@nuclep.gov.br [Nuclebras Equipamentos Pesados S.A (NUCLEP), Itaguai, RJ (Brazil); Bittencourt, Marcelo de S.Q., E-mail: bruno.cesar@nuclep.gov.br, E-mail: bittenc@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Currently the knowledge of non-destructive techniques allows to evaluate the stresses on components and mechanical structures, aiming at physical security, preservation of the environment and avoid financial losses associated with the construction and operation of industrial plants. The search for new techniques, especially applied in the nuclear industry to assess status more accurately, voltage safety and to ensure structural integrity, for example, core components of the primary circuit, such as the reactor pressure vessel and steam generator has become of great importance within the community of non-destructive testing .This paper aims to contribute to the non-destructive technique development in order to ensure the structural integrity of nuclear components. One acoustoelastic evaluation of steel 20 MnMoNi 55, used in pressure vessels of nuclear power plants were performed. The acoustic birefringence technique was use to evaluate the acoustoelastic behavior of the test material in the as received condition, after welding and after the stress relief heat treatment. The constant acoustoelastic material was obtained by an uniaxial loading test. It was found a slight anisotropy in the material as received. After welding, a marked variation of acoustic birefringence in the region near the weld bead was observed. The heat treatment indicated a new change of acoustic birefringence. Obtaining the acoustoelastic constant allowed the evaluation of stress in the different conditions of the weld and treated material. (author)

  5. A determination of the benefits of annealing irradiated pressure vessel weldments

    International Nuclear Information System (INIS)

    Lott, R.G.; Mager, T.R.

    1988-01-01

    The long-term benefit of annealing an irradiated reactor pressure vessel steel may be described in terms of a benefit factor, B. The benefit factor compares the mechanical properties of an annealed and reirradiated specimen with an equivalent specimen having no intermediate anneal. The benefit factor was determined using a series of microhardness specimens prepared from nuclear pressure vessel surveillance program materials. These specimens were annealed and then reirradiated in a test reactor. There was an obvious long-term benefit in the specimens annealed at 450 0 C. The long-term benefit was less obvious at 400 0 C and no significant benefit was noted at 350 0 C. The benefit factor may also be used as the basis of a surveillance program for an annealed pressure vessel. A strategy for such a surveillance program is described. (author)

  6. In-place thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-04-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. The Amry SM-1A test reactor vessel was wet annealed in 1967 at less than 343 0 C (650 0 F), and wet annealing of the Belgian BR-3 reactor vessel at 343 0 C (650 0 F) has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place at temperatures as high as 454 0 C (850 0 F) is feasible, but solvable engineering problems do exist. Economic considerations have not been totally evaluated in assessing the cost-effectiveness of in-place annealing of commercial nuclear vessels. An American Society for Testing and Materials (ASTM) task group is upgrading and revising guide ASTM E 509-74 with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (e.g., the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  7. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  8. Thermal and stress analyses of the reactor pressure vessel lower head of the Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Hashimoto, K.; Onizawa, K.; Kurihara, R.; Kawasaki, S.; Soda, K.

    1992-01-01

    Thermal and stress analyses were performed using the finite element analysis code ABAQUS to clarify the factors which caused tears in the stainless steel liner of the reactor pressure vessel lower head of the Three Mile Island Unit 2 (TMI-2) reactor pressure vessel during the accident on 28 March 1979. The present analyses covered the events which occurred after approximately 20 tons of molten core material were relocated to the lower head of the reactor pressure vessel. They showed that the tensile stress was highest in the case where the relocated core material consisting of homogeneous UO 2 debris was assumed to attack the lower head and the debris was then quenched. The peak tensile stress was in the vicinity of the welded zone of the penetration nozzle. This result agrees with the findings from the examination of the TMI-2 reactor pressure vessel that major tears in the stainless steel liner were observed around two penetration nozzles of the lower head. (author)

  9. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  10. Evaluation of creep damage due to stress relaxation in SA533 grade B class 1 and SA508 class 3 pressure vessel steels

    International Nuclear Information System (INIS)

    Hoffmann, C.L.; Urko, W.

    1993-01-01

    Creep damage can result from stress relaxation of residual stresses in components when exposed to high temperature thermal cycles. Pressure vessels, such as the reactor vessel of the modular high-temperature gas reactor (MHTGR), which normally operate at temperatures well below the creep range can develop relatively high residual stresses in high stress locations. During short term excursions to elevated-temperatures, creep damage can be produced by the loadings on the vessel. In addition, residual stresses will relax out, causing greater creep damage in the pressure vessel material than might otherwise be calculated. The evaluation described in this paper assesses the magnitude of the creep damage due to relaxation of residual stresses resulting from short term exposure of the pressure vessel material to temperatures in the creep range. Creep relaxation curves were generated for SA533 Grade B, Class 1 and SA508 Class 3 pressure vessel steels using finite element analysis of a simple uniaxial truss loaded under constant strain conditions to produce an initial axial stress equal to 1.25 times the material yield strength at temperature. The strain is held constant for 1000 hours at prescribed temperatures from 700 F to 1000 F. The material creep law is used to calculate the relaxed stress for each time increment. The calculated stress relaxation versus time curves are compared with stress relaxation test data. Creep damage fractions are calculated by integrating the stress relaxation versus time curves and performing a linear creep damage summation using the minimum stress to rupture curves at the respective relaxation temperatures. Cumulative creep damage due to stress relaxation as a function of time and temperature is derived from the linear damage summation

  11. Microscopic examination of crack growth in a pressure vessel steel

    International Nuclear Information System (INIS)

    Isacsson, M.; Narstroem, T.

    1997-01-01

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material

  12. Microscopic examination of crack growth in a pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Isacsson, M.; Narstroem, T. [Royal Inst. of Tech., Stockholm (Sweden)

    1997-01-01

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material. 19 refs, 8 figs, 3 tabs.

  13. An assessment of acoustic emission for nuclear pressure vessel monitoring

    International Nuclear Information System (INIS)

    Scruby, C.B.

    1983-01-01

    Recent research has greatly improved our understanding of the basic mechanisms of deformation and fracture that generate detectable acoustic emission signals in structural steels. A critical review of the application of acoustic emission (AE) to the fabrication, proof testing and in-service monitoring of nuclear pressure vessels is presented in the light of this improved understanding. The detectability of deformation and fracture processes in pressure vessel steels is discussed, and recommendations made for improving source location accuracy and the development of quantitative source assessment techniques. Published data suggest that AE can make an important contribution to fabrication monitoring, and to the detection of defects in lower toughness materials during vessel proof testing. In high toughness materials, however, the signals generated during ductile crack growth may frequently be too weak for reliable detection. The feasibility of AE for continuous monitoring has not yet been adequately demonstrated because of high background noise levels and uncertainty about AE signal strengths from the defect growth processes that occur in service. In-service leak detection by AE shows considerable promise. It is recommended that further tests are carried out with realistic defects, and under realistic conditions of loading (including thermal shock and fatigue) and of environment. (author)

  14. A phenomenological method of mechanical properties definition of reactor pressure vessels (RPV) steels VVER according to the ball indentation diagram

    International Nuclear Information System (INIS)

    Bakirov, M. B.; Potapov, V.V.; Massoud, J.P.

    2002-01-01

    This work presents specimen-free methods of a standard uniaxial tension diagram construction and RPV (reactor pressure vessel) steels VVER strength properties definition out of a continuous ball indentation diagram. A similarity phenomenon of uniaxial tension strain curves at a hardening area and an area of a ball indentation constitutes the ground of the methods. The methods are developed on the basis of the uniform graphic representation of elasto-plastic strain processes by indentation and tension and with the reception of the unified yield curve at a hardening area. The calculation results on the phenomenological method conducted for a wide range of RPV steels conditions of nuclear reactors have shown a good precision as far as strain curves construction by the uniaxial tension out of the elasto-plastic indentation diagram is concerned. (authors)

  15. DOMPAC dosimetry experiment. Neutronic simulation of the thickness of a PWR pressure vessel. Irradiation damages

    International Nuclear Information System (INIS)

    Alberman, A.; Faure, M.; Thierry, M.; Hoclet, O.; Le Dieu de Ville, A.; Nimal, J.C.; Soulat, P.

    1979-01-01

    For suitable extrapolation of irradiated PWR ferritic steel results, proper irradiation of the pressure vessel has been 'simulated' in test reactor. For this purpose, a huge steel block (20 cm in depth) was loaded with Saclay's graphite (GAMIN) and tungsten damage detectors. Core-block water gap was optimized through spectrum indexes method, by ANISN and SABINE codes so that spectrum in 1/4 thickness matches with ANISN computations for PWR Fessenheim 1. A good experimental agreement is found with calculated dpa damage gradient. 3D Monte Carlo computation (TRIPOLI), was performed on the DOMPAC device, and spectrum indexes evolution was found consistent with experimental results. Surveillance rigs behind a 'thermal shield' were also simulated, including damage and activation monitors. Dosimetry results give an order of magnitude of accuracies involved in projecting steel sample embrittlement to the pressure vessel [fr

  16. Computational methods for fracture analysis of heavy-section steel technology (HSST) pressure vessel experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1983-01-01

    This paper summarizes the capabilities and applications of the general-purpose and special-purpose computer programs that have been developed for use in fracture mechanics analyses of HSST pressure vessel experiments. Emphasis is placed on the OCA/USA code, which is designed for analysis of pressurized-thermal-shock (PTS) conditions, and on the ORMGEN/ADINA/ORVIRT system which is used for more general analysis. Fundamental features of these programs are discussed, along with applications to pressure vessel experiments

  17. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    International Nuclear Information System (INIS)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-01-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288 degrees C (550 degrees F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288 degrees C (550 degrees F) base line air environment. The growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology

  18. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    This paper is concerned with corrosion of a cooled vessel steel structure interacting with molten corium in air and neutral (nitrogen) atmospheres during an in-vessel retention scenario. The data on corrosion kinetics at different temperatures on the heated steel surface, heat flux densities and oxygen potential in the system are presented. The post-test physico-chemical and metallographic analyses of melt samples and the corium-specimen ingot have clarified certain mechanisms of steel corrosion taking place during the in-vessel melt interaction

  19. Irradiation induced tensile property change of SA 508 Cl.3 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Hong, Jun-Hwa; Kuk, Il-Hiun

    1998-01-01

    Irradiation induced tensile property change of four kinds of reactor pressure vessel steels manufactured by different steel refining process was compared based on the differences in the unirradiated and irradiated microstructure. Microvickers hardness, indentation, and miniature tensile specimen tests were conducted for mechanical property measurement and optical microscope (OM) and transmission electron microscope (TEM) were used for microstructural characterization. Specimens were 2 irradiated to a neutron fluence of 2.7x10 19 n/cm 2 (E ≥ 1 MeV) at 288 deg. C. Investigation on the unirradiated microstructures showed largely a same microstructure in that tempered acicular bainite and ferrite with bainitic phase prevailing in the unirradiated condition. Band-shaped segregations were also clearly observed except a kind of materials. A large difference in the unirradiated microstructure appeared in the grain size and carbide microstructure. Of carbide microstructures, noticeable differences were observed in the size and distribution of cementite, and bainitic lath microstructures. No noticeable changes were observed in the optical and thin film TEM microstructures after irradiation. Complicated microstructural. state of heat treated bainitic low alloy microstructure prevents easy quantification of microstructural changes due to irradiation. Apparent differences, however, were observed in the results of mechanical testing. Results of tensile testing and hardness measurement show that a steel refined by vacuum carbon deoxidation(VCD) method exhibits the highest radiation hardening behavior. Some of mechanical testing results on irradiated materials were possible to understand based on the initial microstructure, but further investigations using a wide array of sophisticated tools (for example, SANS, APFIM) are required to understand and characterize irradiation induced defects that are responsible for irradiation hardening behavior but are not revealed by

  20. Irradiation induced tensile property change of SA 508 Cl. 3 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Hong, Jun Hwa; Kuk, Il Hiun

    1998-01-01

    Irradiation induced tensile property change of four kinds of reactor pressure vessel steels manufactured by different steel refining process was compared based on the differences in the miniature tensile specimen tests were conducted for mechanical property measurement and optical microscope (OM) and transmission electron microscope (TEM) were used for microstructural characterization. Specimens were irradiated to a neutron fluence of 2.7 x 10 19 n/cm 2 (E ≥ 1 MeV) at 288 deg C. Investigation on the unirradiated microstructures showed largely a same microstructure in that tempered acicular bainite and ferrite with bainitic phase prevailing in the unirradiated condition. Ban-shaped segregations were also clearly observed except a kind of materials. A large difference in the unirradiated microstructure appeared in the grain size and carbide microstructure. Of carbide microstructures, noticeable differences were observed in the size and distribution of cementite, and bainitic lath microstructures. No noticeable changes were observed in the optical and thin film TEM microstructures after irradiation. Complicated microstructural state of heat treated bainitic low alloy microstructure prevents easy quantification of microstructural changes due to irradiation. Apparent differences, however, were observed in the results of mechanical testing. Results of tensile testing and hardness measurement show that a steel refined by vacuum carbon deoxidation (VCD) method exhibits the highest radiation hardening behavior. Some of mechanical testing results on irradiated materials were possible to understand based on the initial microstructure, but further investigations using a wide array of sophisticated tools (for example, SANS, APFIM) are required to understand and characterize irradiation induced defects that are responsible for irradiation hardening behavior but are not revealed by conventional TEM. (author)

  1. Low temperature radiation embrittlement for reactor vessel steels

    International Nuclear Information System (INIS)

    Ginding, I.A.; Chirkina, L.A.

    1978-01-01

    General conceptions of cold brittleness of bcc metals are in a review. Considered are experimental data and theoretical representations about the effect of irradiation conditions, chemical composition, phase and structural constitutions, grain size, mechanical and thermomechanical treatments on low-temperature irradiation embrittlement of reactor vessel steels. Presented are the methods for increasing radiation stability of metals (carbon and Cr-Mo steels) used in manufacturing reactor vessels

  2. Evaluation of fatigue damage of pressure vessel materials by observation of microstructures

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1994-01-01

    As the important factor as the secular change mode of pressure vessel materials, there is fatigue damage. In USA, there is the move to use LWRs by extending their life, and it becomes necessary to show the soundness of the structures of machinery and equipment for long period. For exactly evaluating the soundness of the structures of machinery and equipment, it is important to clarify the degree of secular deterioration of the materials. In this report, by limiting to the fatigue damage of LWR pressure vessel steel, the method of grasping the change of microstructure and the method of estimating the degree of fatigue damage from the change of microstructure are shown. The change of microstructure arising in materials due to fatigue advances in the following steps, namely, the multiplication of dislocations, the tangling of dislocations, the formation of cell structure, the turning of cells, the formation of microcracks, the growth of cracks and fracture. In the case of pressure vessel steel, due to the quenching and tempering, the cell structure is formed from the beginning, and the advance of fatigue is recognized as the increase of the turning angle of cell structures. The detection of fatigue damage by microstructure is reported. (K.I.)

  3. Comparative assessment of cyclic J-R curve determination by different methods in a pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Tamshuk, E-mail: tamshuk@gmail.com [Deep Sea Technologies, National Institute of Ocean Technology, Chennai, 600100 (India); Sivaprasad, S.; Bar, H.N.; Tarafder, S. [Fatigue & Fracture Group, Materials Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007 (India); Bandyopadhyay, N.R. [School of Materials Science and Engineering, Indian Institute of Engineering, Science and Technology, Shibpur, Howrah, 711103 (India)

    2016-04-15

    Cyclic J-R behaviour of a reactor pressure vessel steel using different methods available in literature has been examined to identify the best suitable method for cyclic fracture problems. Crack opening point was determined by moving average method. The η factor was experimentally determined for cyclic loading conditions and found to be similar to that of ASTM value. Analyses showed that adopting a procedure analogous to the ASTM standard for monotonic fracture is reasonable for cyclic fracture problems, and makes the comparison to monotonic fracture results straightforward. - Highlights: • Different methods of cyclic J-R evaluation compared. • A moving average method for closure point proposed. • η factor for cyclic J experimentally validated. • Method 1 is easier, provides a lower bound and direct comparison to monotonic fracture.

  4. Stress-relieving annealing of Cr-Mo steel for high temperature pressure vessels and the quality change in use

    International Nuclear Information System (INIS)

    Makioka, Minoru; Hirano, Hiromichi

    1976-01-01

    The securing of good mechanical properties is difficult in thick plates for large pressure vessels because cooling rate is insufficient and time is prolonged in heat treatment. Cr-Mo steel plates are usually used in the state of improved notch toughness though somewhat reduced strength by normalizing or accelerated cooling and tempering. If the time for heat treatment is prolonged, the embrittlement occurs. The effects of temperature, holding time, and cooling rate in stress-relieving treatment on the mechanical properties of 1-1/4Cr - 1/2Mo, 2-1/4Cr - 1Mo, 3Cr - 1Mo, and 5Cr - 1/2Mo steels were investigated. The tensile strength lowered almost linearly as the hollomon-Jaffe parameter of heat treatment condition increased in all the steels. The transition temperature shifted continuously to high temperature side in 1-1/4Cr - 1/2Mo steel, but the notch toughness was improved up to certain values and then the tendency turning to brittleness was shown in the other steels, as the H-J parameter increased. When the holding time became longer, the transition temperature shifted to higher temperature side, but the cooling rate showed no effect. The condition for stress relieving treatment must be selected so that the ferrite bands observed in welded metal do not arise. The embrittlement at the operation temperature of 400 - 450 0 C for a long time is evaluated by the comparison with that by stepped cooling method. (Kako, I.)

  5. Computational methods for fracture analysis of heavy-section steel technology (HSST) pressure vessel experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1985-01-01

    This paper summarizes the capabilities and applications of the general-purpose and special-purpose computer programs that have been developed at ORNL for use in fracture mechanics analyses of HSST pressure vessel experiments. Emphasis is placed on the OCA/USA code, which is designed for analysis of pressurized-thermal-shock (PTS) conditions, and on the ORMGEN/ADINA/ORVIRT system which is used for more general analysis. Fundamental features of these programs are discussed, along wih applications to pressure vessel experiments. (orig./HP)

  6. Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei, E-mail: wei.guo-2@manchester.ac.uk [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom); Dong, Shiyun [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom); Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Guo, Wei; Francis, John A.; Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom)

    2015-02-11

    SA508 steels are typically used in civil nuclear reactors for critical components such as the reactor pressure vessel. Nuclear components are commonly joined using arc welding processes, but with design lives for prospective new build projects exceeding 60 years, new welding technologies are being sought. In this exploratory study, for the first time, autogenous laser welding was carried out on 6 mm thick SA508 Cl.3 steel sheets using a 16 kW fiber laser system operating at a power of 4 kW. The microstructure and mechanical properties (including microhardness, tensile strength, elongation, and Charpy impact toughness) were characterized and the microstructures were compared with those produced through arc welding. A three-dimensional transient model based on a moving volumetric heat source model was also developed to simulate the laser welding thermal cycles in order to estimate the cooling rates included by the process. Preliminary results suggest that the laser welding process can produce welds that are free of macroscopic defects, while the strength and toughness of the laser welded joint in this study matched the values that were obtained for the parent material in the as-welded condition.

  7. Evaluation of defects induced by neutron radiation in reactor pressure vessels steels; Evaluacion de los defectos inducidos por la radiacion neutronica en los aceros de vasijas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J

    1978-07-01

    We have developed a method for calculating the production of neutron induced defects (depleted zone and crowdions) in ferritic pressure vessel steels for different neutron spectra. They have been analysed both the recoil primary atoms produced by elastic and inelastic collisions with fast neutrons and the ones produced by gamma-ray emission by thermal neutron absorption. Theoretical modelling of increasing in the ductile-brittle transition temperature of ferritic steels has been correlated with experimental data at irradiation temperature up to 400 degree centigree (Author) 15 refs.

  8. Study on the welding continuous cooling transformation and weldability of SA508Gr4 steel for nuclear pressure vessels

    International Nuclear Information System (INIS)

    Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Chen, Zhongyi

    2017-01-01

    SA508Gr4 is a newly developed high-strength steel for nuclear reactor pressure vessels. Its welding characteristics remain largely unexplored. In this work, the simulated heat affected zone continuous cooling transformation (SH-CCT) diagram of SA508Gr4 steel was constructed and the high-temperature cooling phase compositions and the properties of the heat affected zone (HAZ) were characterized using dilatometry and microscopic tests. The results show that the phase transformation in the HAZ was divided into bainite and martensite transformation stages. When 4.6 ≤ t_8_/_5 (the HAZ cooling time from 800 C to 500 C) ≤ 15 s, lath-shaped martensite was fully developed, resulting in extensive hardening and cold cracking in the HAZ, while the cooling time required to form the bainite completely exceeds 1 200 s. Thus, to improve weld quality, preheating to 196 C or higher is recommended.

  9. Study on the welding continuous cooling transformation and weldability of SA508Gr4 steel for nuclear pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Chen, Zhongyi [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Material and Metallurgy; Kang, Xiaolan [Baotou Vocational and Technical College (China)

    2017-02-15

    SA508Gr4 is a newly developed high-strength steel for nuclear reactor pressure vessels. Its welding characteristics remain largely unexplored. In this work, the simulated heat affected zone continuous cooling transformation (SH-CCT) diagram of SA508Gr4 steel was constructed and the high-temperature cooling phase compositions and the properties of the heat affected zone (HAZ) were characterized using dilatometry and microscopic tests. The results show that the phase transformation in the HAZ was divided into bainite and martensite transformation stages. When 4.6 ≤ t{sub 8/5} (the HAZ cooling time from 800 C to 500 C) ≤ 15 s, lath-shaped martensite was fully developed, resulting in extensive hardening and cold cracking in the HAZ, while the cooling time required to form the bainite completely exceeds 1 200 s. Thus, to improve weld quality, preheating to 196 C or higher is recommended.

  10. Inservice inspection of Halden BWR pressure vessel

    International Nuclear Information System (INIS)

    Foerli, O.; Hernes, T.

    1978-01-01

    A description is given of how the recertification inspection of the 20 years old Halden Reactor pressure vessel was carried out in accordance with the latest ASME-CODES, despite the fact that inspection accessibility was poor. As no volumetric inspection had been carried out since the preservice radiography in 1957, the ultrasonic inspection included the high flux region of all welds. In total 70% of longitudinal welds and 20% of bottom circumferential welds were inspected as well as the bottom nozzle connection. The vessel was not designed with provisions for inservice inspection, the welds are unaccessible from the outside and removal of the lid is virtually impossible. The ultrasonic probes could only be loaded through 77 mm diameter holes in the top lid and remotely positioned inside the vessel. The inspection was performed using 450C and 60OC 1 MHz angle probes and 2.25 MHz normal probes in immersion technique. In a zone around the welds, small regions with lack of bonding between the stainless steel cladding and the boiler steel were revealed. One root defect known and accepted from the preservice radiographs was examined. The defect was found to be 6x30mm as a maximum and well within acceptable limits according to the fracture mechanics analysis method recommended in ASME X1. The inspection required a period of three weeks' work in the reactor hall. (UK)

  11. Assessment of environmentally assisted cracking in PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Tice, D.R.

    1991-01-01

    There is a possibility that extension of pre-existing flaws in the reactor pressure vessel of a pressurised water reactor (PWR) may occur by environmentally assisted cracking, in particular by corrosion fatigue under cyclic transient loading. Crack growth predictions have usually been carried out using cyclic crack growth rate (da/dN) versus stress intensity range (δK) curves, such as those given in Section XI, Appendix A of the ASME Boiler and Pressure Vessel Code. However, the inherent time dependent nature of environmental cracking processes renders such an approach unrealistic. The present paper describes the development of an alternative time based assessment methodology. Illustrative calculations of expected crack growth of assumed defects made using the cyclic (ASME XIA) and time-based approaches are compared. The results illustrate that crack growth predicted by the time-based approach can be greater or less than that calculated by the traditional method. For a PWR operated with good control of water chemistry, actual crack growth rates are expected to be well below those predicted by the ASME code. (Author)

  12. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  13. Study on prediction model of irradiation embrittlement for reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Wang Rongshan; Xu Chaoliang; Huang Ping; Liu Xiangbing; Ren Ai; Chen Jun; Li Chengliang

    2014-01-01

    The study on prediction model of irradiation embrittlement for reactor pres- sure vessel (RPV) steel is an important method for long term operation. According to the deep analysis of the previous prediction models developed worldwide, the drawbacks of these models were given and a new irradiation embrittlement prediction model PMIE-2012 was developed. A corresponding reliability assessment was carried out by irradiation surveillance data. The assessment results show that the PMIE-2012 have a high reliability and accuracy on irradiation embrittlement prediction. (authors)

  14. Flaw density examinations of a clad boiling water reactor pressure vessel segment

    International Nuclear Information System (INIS)

    Cook, K.V.; McClung, R.W.

    1986-01-01

    Flaw density is the greatest uncertainty involved in probabilistic analyses of reactor pressure vessel failure. As part of the Heavy-Section Steel Technology (HSST) Program, studies have been conducted to determine flaw density in a section of reactor pressure vessel cut from the Hope Creek Unit 2 vessel [nominally 0.7 by 3 m (2 by 10 ft)]. This section (removed from the scrapped vessel that was never in service) was evaluated nondestructively to determine the as-fabricated status. We had four primary objectives: (1) evaluate longitudinal and girth welds for flaws with manual ultrasonics, (2) evaluate the zone under the nominal 6.3-mm (0.25-in.) clad for cracking (again with manual ultrasonics), (3) evaluate the cladding for cracks with a high-sensitivity fluorescent penetrant method, and (4) determine the source of indications detected

  15. On the transition of short cracks into long fatigue cracks in reactor pressure vessel steels

    Directory of Open Access Journals (Sweden)

    Singh Rajwinder

    2018-01-01

    Full Text Available Short fatigue cracks, having dimension less than 1 mm, propagate at much faster rates (da/dN even at lower stress intensity factor range (da/dN as compared to the threshold stress intensity factor range obtained from long fatigue crack growth studies. These short cracks originate at the sub-grain level and some of them ultimately transit into critical long cracks over time. Therefore, designing the components subjected to fatigue loading merely on the long crack growth data and neglecting the short crack growth behavior can overestimate the component’s life. This aspect of short fatigue cracks become even more critical for materials used for safety critical applications such as reactor pressure vessel (RPV steel in nuclear plants. In this work, the transition behaviour of short fatigue crack gowth into long fatigue crack is studied in SA508 Grade 3 Class I low alloy steel used in RPVs. In-situ characterization of initiation, propagation and transition of short fatigue cracks is performed using fatigue stage for Scanning Electron Microscope (SEM in addition to digital microscopes fitted over a servo-hydraulic fatigue machine and correlated with the microtructural information obtained using electron backscatter diffraction (EBSD. SA508 steel having an upper bainitic microstructure have several microstructural interfaces such as phase and grain boundaries that play a significant role in controlling the short fatigue crack propagation. Specially designed and prepared short fatigue specimens (eletro-polished with varying initial crack lengths of the order of tens of microns are used in this study. The transition of such short initial cracks into long cracks is then tracked to give detailed insight into the role of each phase and phase/grain boundary with an objective of establishing Kitagawa-Takahashi diagram for the given RPV steel. The behavior of the transited long cracks is then compared with the crack propagation behavior obtained using

  16. Reactor Pressure Vessel (RPV) Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    The Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Reactor Pressure Vessel (RPV). This component will be larger than any nuclear reactor pressure vessel presently in service in the United States. The RPV will be taller, larger in diameter, thicker walled, heavier and most likely fabricated at the Idaho National Laboratory (INL) site of multiple subcomponent pieces. The pressure vessel steel can either be a conventional materials already used in the nuclear industry such as listed within ASME A508/A533 specifications or it will be fabricated from newer pressure vessel materials never before used for a nuclear reactor in the US. Each of these characteristics will present a

  17. Applicability of JIS SPV 50 steel to primary containment vessel of nuclear power station

    International Nuclear Information System (INIS)

    Iida, Kunihiro; Ishikawa, Koji; Sakai, Keiichi; Onozuka, Masakazu; Sato, Makoto.

    1979-01-01

    The space within reactor containment vessels must be expanded in order to improve the reliability of nuclear power plants, accordingly the adoption of large reactor containment vessels is investigated. SGV 42 and 49 steels in JIS G 3118 have been used for containment vessels so far, but stress relief annealing is required when the thickness exceeds 38 mm. The time has come when the use of thicker conventional plates without stress relieving or the use of high strength steel must be examined in detail. In this study, the tests of confirming material properties were carried out on SPV 50 in JIS G 3115, Steels for pressure vessels, aiming at the method of fabrication without stress relieving. The highest and lowest temperatures in use were set at 171 deg and -8 deg C, respectively. The chemical composition and the mechanical properties of the plates tested, the method of welding, the results of tensile test on the parent metal and the welds, the required lowest preheating temperature, the fracture toughness at low temperature and the brittle fracture causing test are reported. The parent metal and the welded joints of SPV 50 have the properties suitable to reactor containment vessels, namely the sufficient fracture toughness to guarantee the prevention of unstable fracture when the method of welding without stress relieving is adopted. (Kako, I.)

  18. Concept of a Prestressed Cast Iron Pressure Vessel for a Modular High Temperature Reactor

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang; Bounin, Dieter

    2014-01-01

    High Temperature Reactors (HTR) are representing one of the most interesting solutions for the upcoming generation of nuclear technology, especially with view to their inherent safety characteristics. To complete the safety concept of such plants already in the first phase of the technical development, Prestressed Cast Iron Pressure Vessels (PCIV) instead of the established forged steel reactor pressure vessels have been considered under the aspect of safety against bursting. A longterm research and development work, mainly performed in Germany, showed the excellent features of this technical solution. Diverse prototypic vessels were tested and officially proven. Design studies confirmed the feasibility of such a vessel concept also for Light Water Reactor types, too. The main concept elements of such a burst-proof vessel are: Strength and tightness functions are structurally separated. The tensile forces are carried by the prestressing systems consisting of a large number of independent wires. Compressive forces are applied to the vessel walls and heads. These are segmented into blocks of ductile cast iron. All cast iron blocks are prestressed to high levels of compression. The sealing function is assigned to a steel liner fixed to the cast iron blocks. The prestressing system is designed for an ultimate pressure of 2.3 times the design pressure. The prestress of the lids is designed for gapping at a much smaller pressure. Therefore, a drop of pressure will always occur before loss of strength (“leakage before failure”). In addition to these safety features further technical as well as economic aspects generate favorable assessment criteria: high design flexibility, feasibility of large vessel diameters; advantageous conditions for transport, assembly and decommissioning due to the segmented construction; advantage of workshop manufacturing; high-level quality control of components. Nowadays, considering the globally newly standardized safety requirements

  19. A-508 class 3 forgings for pressure vessels

    International Nuclear Information System (INIS)

    Comon, J.

    1977-01-01

    The manufacture of the forged parts of the first PWR nuclear pressure vessel installed in France started in the Creusot-Loire's Forge Plant in 1961. Since this date, more than 300 forgings of this type were delivered (flanges, rings, zones, and nozzles). The major part of these forgings were made of Mn, Ni, Mo steel (SA 508 class 3). They represent a population large and homogeneous enough to attempt a statistical analysis of chemical and mechanical test results. The aim of this analysis was double: (1) a better knowledge of the scattering of the results and a better estimate of what can be introduced or accepted in a specification, and (2) the setting up of correlations existing between these results, particularly between chemical analysis and mechanical test results. In addition to this statistical analysis concerning industrial results, several laboratory studies are presented, giving a more complete characterization of SA 508 class 3. All these results form a very complete documentation showing that SA 508 class 3 steel is suitable for the manufacture of large forged vessels requiring a high degree of reliability

  20. Low upper-shelf toughness, high transition temperature test insert in HSST [Heavy Section Steel Technology] PTSE-2 [Pressurized Thermal Shock Experiment-2] vessel and wide plate test specimens: Final report

    International Nuclear Information System (INIS)

    Domian, H.A.

    1987-02-01

    A piece of A387, Grade 22 Class 2 (2-1/4 Cr - 1 Mo) steel plate specially heat treated to produce low upper-shelf (LUS) toughness and high transition temperature was installed in the side wall of Heavy Section Steel Technology (HHST) vessel V-8. This vessel is to be tested by the Oak Ridge National Laboratory (ORNL) in the Pressurized Thermal Shock Experiment-2 (PTSE-2) project of the HSST program. Comparable pieces of the plate were made into six wide plate specimens and other samples. These samples underwent tensile tests, Charpy tests, and J-integral tests. The results of these tests are given in this report

  1. Evaluation of the a.c. potential drop method to determine J-crack resistance curves for a pressure vessel steel

    International Nuclear Information System (INIS)

    Gibson, G.P.

    1989-01-01

    An evaluation has been carried out of the a.c. potential drop technique for determining J-crack growth resistance curves for a pressure vessel steel. The technique involves passing an alternating current through the specimen and relating the changes in the potential drop across the crack mouth to changes in crack length occuring during the test. The factors investigated were the current and voltage probe positions, the a.c. frequency and the test temperature. In addition, by altering the heat treatment of the material, J-crack resistance curves were obtained under both contained and non-contained yielding conditions. In all situations, accurate J-R curves could be determined. (author)

  2. Evaluation of neutron irradiation embrittlement in the Korean reactor pressure vessel steels (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. H.; Lee, B. S.; Chi, S. H.; Kim, J. H.; Oh, Y. J.; Yoon, J. H.; Kwon, S. C.; Park, D. G.; Kang, Y. H.; Choo, K. N.; Oh, J. M.; Park, S. J.; Kim, B. K.; Shin, Y. T.; Cho, M. S.; Sohn, J. M.; Kim, D. S.; Choo, Y. S.; Ahn, S. B.; Oh, W. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-05-01

    Reactor pressure vessel materials, which were produced by a domestic company, Doosan Heavy Industries and construction Co., Ltd., have been evaluated using the neutron irradiation facility HANARO. For this evaluation, instrumented capsules were used for neutron irradiation of various kinds of specimens made of different heats of steels, which are VCD(Y4), VCD+Al(U4), Si+Al(Y5), U4 weld metal, and U4 HAZ, respectively. The fast neutron fluence levels ranged 1 to 5 (x10{sup 19} n/cm{sup 2}, E>1MeV) depending on the specimens and the irradiation temperature was controlled within 290{+-}10 deg C. The test results showed that, in the ranking of the material properties of the base metals, both before and after neutron irradiation, Y5 is the best, U4 the next and Y4 the last. Y4 showed a substantial change by neutron irradiation as well as the properties was worse than others in the unirradiated state. However, Y5, which showed the best properties in unirradiated state, was also the best in the resistance for irradiation embrittlement and one can hardly detect the property change after irradiation. The weldment showed a reasonably good resistance to irradiation embrittlement while the unirradiated properties were worse than base metals. The RPV steels are all expected to meet the screening criteria of the USNRC codes and regulations during the end of plant life. 39 refs., 42 figs., 27 tabs. (Author)

  3. Repairing method for shroud in reactor pressure vessel

    International Nuclear Information System (INIS)

    Watanabe, Yusuke.

    1996-01-01

    The present invention provides a method of repairing a shroud disposed in a pressure vessel of a BWR type reactor. Namely, a baffle plate is disposed on the outer surface of the lower portion of the shroud supported by a shroud support of the pressure vessel. The baffle plate is connected with a lug for securing a shroud head bolt disposed on the outer surface of an upper portion of the shroud by reinforcing members. With such a constitution, when crackings are caused in the shroud, the development of the crackings can be prevented without losing the function of securing the shroud head bolt. Further, if a material having thermal expansion coefficient lower than that of austenite stainless steel is used for the material of the reinforcing member, clamping load to be applied upon attaching the auxiliary member can be reduced. As a result, operation for the attachment is facilitated. (I.S.)

  4. Test of 6-in.-thick pressure vessels. Series 4: intermediate test vessels V-5 and V-9 with inside nozzle corner cracks

    International Nuclear Information System (INIS)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.

    1977-01-01

    Failure testing is described for two 99-cm-diam (39-in.), 15.2-cm-thick (6-in.) steel pressure vessels, each containing one flawed nozzle. Vessel V-5 was tested at 88 0 C (190 0 F) and failed by leaking without fracturing after extensive stable crack growth. Vessel V-9 was tested at 25 0 C (75 0 F) and failed by fracturing. Material properties measured before the tests were used for pretest and posttest fracture analyses. Test results supported by analysis indicate that inside nozzle corner cracks are not subject to plane strain under pressure loading. The preparation of inside nozzle corner cracks is described in detail. Extensive experimental data are tabulated and plotted

  5. Problems in development of pressure vessel steels

    International Nuclear Information System (INIS)

    McMahon, C.Y.

    1980-01-01

    The tendency of steels to intercrystalline fracture at low stresses is the main factor, limiting fracture resistance of steels in agressive media at conventional and elevated temperatures. The reasons for the phenomenon are analyzed. In particular, the role of grain boundary segregations of non-metallic impurities is pointed out. The ways of the problem solving both at the expense of corresponding microstructure control and by means of selection of the steel chemical composition are considered

  6. Corrosion fatigue crack growth of pressure vessel welds in PWR environment

    International Nuclear Information System (INIS)

    Bamford, W.H.; Ceschini, L.J.; Moon, D.M.

    1983-01-01

    The fatigue crack growth rate behavior of several pressure vessel steel welds in PWR environment is discussed. The behavior is compared with associated heat-affected zone behavior, and with comparable base metal results. The welds show different degrees of susceptibility to the environmental influence, and this is discussed in some detail, along with fractographic observations on the tested specimens

  7. Filament wound pressure vessels with load sharing liners for space shuttle orbiter applications

    International Nuclear Information System (INIS)

    Ecord, G.M.

    1976-01-01

    Early in the development of orbiter propulsion and environmental control subsystems it was recognized that use of overwrapped pressure vessels with load sharing liners may provide significant weight savings for high pressure gas containment. A program is described which was undertaken by Rockwell International to assess the utility for orbiter applications of titanium 6Al--4V and Inconel 718 liners overwrapped with Kevlar fibers. Also briefly described are programs administered by the NASA Lewis Research Center to evaluate cryoformed steel liners overwrapped with Kevlar fibers and to establish a method that can guarantee cyclic life of the vessels

  8. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  9. Stereofractographic investigation of static start and dynamic jump of a fatigue crack in pressure vessel steel

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Shtukaturova, A.S.; Yasnij, P.V.; AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-01-01

    Results of investigaytion have been discussed ipto the effect of certain temperature-force factors on regularities in the formation of stretch zones during the crack initiation static and transition zones at crack jumps in the process of cyclic loading. The 15Kh2NMFA pressure vessel steel has been investigated. The steel fracture toughnesKub(Ic) has been determined testing s the specimens for excentric stretching or a bending through an angle. It has been shown that transition zones in a front of fatique cracks at the jump beginning and end are formed through the shift mechanism owing to the material separation along the maximum failure zone contour, i.e. along the plastic zone contour in a crack vertex. This is the mait difference of regularities in the formation of the transition zones during fatique crack jumps from stretching zones formed through the break-away mechanism of crack vertex bluntness during its static move. It is noted that a final conclusion on the mechanism of transition zone formation during fartique crack jumps allows one to perform systematic investigation into the plastic zone configuration in a fatique crack verteX and stereofractographic measurement of two identically conjugate jump surfaces on opposite fractures of the same samples

  10. Experimental study of the effect of neutron radiation on pressurised water reactor vessel steel resilience - First part

    International Nuclear Information System (INIS)

    Verdeau, Jean-Jacques

    1969-12-01

    After having outlined the importance of the embrittlement of vessel steels by neutrons during the exploitation of pressurised water reactors, the author reports a set of tests which aimed at determining the effect of neutron irradiation on vessel steel resilience for operated, under construction or projected pressurized water reactors. He also tries to highlight the influence of irradiation temperature and of initial thermal treatments, and to look for a restoration thermal treatment of neutron-induced damages which could be applied to the considered vessels. Tests were performed on V Charpy resilience samples. Some samples have been irradiated by the Pile Department of the Grenoble CEN and then broken by the Laboratory of very high activity, whereas other samples have been irradiated in a prototype vessel and broken by a Cadarache department. The author presents characteristics of the studied steels (chemical compositions, thermal treatments), describes sample irradiation conditions, and the method of assessment of the transition temperature after irradiation, presents experimental results, discusses their interpretation, and presents future tests to be performed [fr

  11. The behavior of shallow flaws in reactor pressure vessels

    International Nuclear Information System (INIS)

    Rolfe, S.T.

    1991-11-01

    Both analytical and experimental studies have shown that the effect of crack length, a, on the elastic-plastic toughness of structural steels is significant. The objective of this report is to recommend those research investigations that are necessary to understand the phenomenon of shallow behavior as it affects fracture toughness so that the results can be used properly in the structural margin assessment of reactor pressure vessels (RPVs) with flaws. Preliminary test results of A 533 B steel show an elevated crack-tip-opening displacement (CTOD) toughness similar to that observed for structural steels tested at the University of Kansas. Thus, the inherent resistance to fracture initiation of A 533 B steel with shallow flaws appears to be higher than that used in the current American Society of Mechanical Engineers (ASME) design curves based on testing fracture mechanics specimens with deep flaws. If this higher toughness of laboratory specimens with shallow flaws can be transferred to a higher resistance to failure in RPV design or analysis, then the actual margin of safety in nuclear vessels with shallow flaws would be greater than is currently assumed on the basis of deep-flaw test results. This elevation in toughness and greater resistance to fracture would be a very desirable situation, particularly for the pressurized-thermal shock (PTS) analysis in which shallow flaws are assumed to exist. Before any advantage can be taken of this possible increase in initiation toughness, numerous factors must be analyzed to ensure the transferability of the data. This report reviews those factors and makes recommendations of studies that are needed to assess the transferability of shallow-flaw toughness test results to the structural margin assessment of RPV with shallow flaws. 14 refs., 8 figs

  12. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  13. Measurement of the yield and tensile strengths of neutron-irradiated and post-irradiation recovered vessel steels with notched specimens

    International Nuclear Information System (INIS)

    Valiente, A.

    1996-01-01

    Tensile circumferentially notched bars are examined as test specimens for measuring the yield and tensile strengths of nuclear pressure vessel steels under several conditions of irradiation and temperature that a vessel can experience during its service life, including recovery post-irradiation treatment. For all the vessel steels, notch geometries and conditions explored, it has been found that notched specimens fail by plastic collapse, and simple formulae have been derived that allow the yield and tensile strengths to be determined from the yielding and plastic collapse load of a notched specimen. Values measured in this way show good agreement with those measured by the standard tensile test method. (orig.)

  14. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  15. Reactors with pressure vessel in pre-stressed concrete

    International Nuclear Information System (INIS)

    Devillers, Christian; Lafore, Pierre

    1964-12-01

    After having proposed a general description of the evolution of the general design of reactors with a vessel in pre-stressed concrete, this report outlines the interest of this technical solution of a vessel in pre-stressed concrete with integrated exchangers, which is to replace steel vessel. This solution is presented as much safer. The authors discuss the various issues related to protection: inner and outer biological protection of the vessel, material protection (against heating, steel irradiation, Wigner effect, and moderator radiolytic corrosion). They report the application of calculation methods: calculation of vessel concrete heating, study of the intermediate zone in integrated reactors, neutron spectrum and flows in the core of a graphite pile

  16. Improved fireman's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  17. Specific Features of Structural-Phase State and Properties of Reactor Pressure Vessel Steel at Elevated Irradiation Temperature

    Directory of Open Access Journals (Sweden)

    E. A. Kuleshova

    2017-01-01

    Full Text Available This paper considers influence of elevated irradiation temperature on structure and properties of 15Kh2NMFAA reactor pressure vessel (RPV steel. The steel is investigated after accelerated irradiation at 300°C (operating temperature of VVER-1000-type RPV and 400°C supposed to be the operating temperature of advanced RPVs. Irradiation at 300°C leads to formation of radiation-induced precipitates and radiation defects-dislocation loops, while no carbide phase transformation is observed. Irradiation at a higher temperature (400°C neither causes formation of radiation-induced precipitates nor provides formation of dislocation loops, but it does increase the number density of the main initial hardening phase—of the carbonitrides. Increase of phosphorus concentration in grain boundaries is more pronounced for irradiation at 400°C as compared to irradiation at 300°C due to influence of thermally enhanced diffusion at a higher temperature. The structural-phase changes determine the changes of mechanical properties: at both irradiation temperatures irradiation embrittlement is mainly due to the hardening mechanism with some contribution of the nonhardening one for irradiation at 400°C. Lack of formation of radiation-induced precipitates at T = 400°C provides a small ΔTK shift (17°C. The obtained results demonstrate that the investigated 15Kh2NMFAA steel may be a promising material for advanced reactors with an elevated operating temperature.

  18. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    International Nuclear Information System (INIS)

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development

  19. FE-simulation of the viscoplastic behaviour of different RPV steels in the frame of in-vessel melt retentions scenarios

    International Nuclear Information System (INIS)

    Altstadt, E.; Willschuetz, H.G.; Mueller, G.

    2004-01-01

    Assuming the hypothetical scenario of a severe accident with subsequent core meltdown and formation of a melt pool in the reactor pressure vessel (RPV) lower plenum of a Light Water Reactor (LWR) leads to the question about the behavior of the RPV. One accident management strategy could be to stabilize the in-vessel debris configuration in the RPV as one major barrier against uncontrolled release of heat and radio nuclides. To get an improved understanding and knowledge of the melt pool convection and the vessel creep and possible failure processes and modes occurring during the late phase of a core melt down accident the FOREVER-experiments (Failure Of REactor VEssel Retention) have been performed at the Division of Nuclear Power Safety of the Royal Institute of Technology Stockholm. These experiments are simulating the behavior of the lower head of the RPV under the thermal loads of a convecting melt pool with decay heating, and under the pressure loads that the vessel experiences in a depressurization scenario. The geometrical scale of the experiments is 1:10 compared to a common LWR. This paper deals with the experimental, numerical, and metallographical results of the creep failure experiment EC-FOREVER-4, where the American pressure vessel steel SA533B was applied for the lower head. For comparison the results of the experiment EC-FOREVER-3B, build of the French 16MND5 steel, are discussed, too. Emphasis is put on the differences in the viscoplastic behaviour of different heats of the RPV steel. For this purpose, the creep tests in the frame of the LHF/OLHF experiments are reviewed, too. As a hypothesis it is stated that the sulphur content could be responsible for differences in the creep behaviour. (orig.)

  20. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  1. Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: Revised Object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Messina, L. [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Olsson, P. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2017-02-15

    This work presents a revised set of parameters to be used in an Object kinetic Monte Carlo model to simulate the microstructure evolution under neutron irradiation of reactor pressure vessel steels at the operational temperature of light water reactors (∼300 °C). Within a “grey-alloy” approach, a more physical description than in a previous work is used to translate the effect of Mn and Ni solute atoms on the defect cluster diffusivity reduction. The slowing down of self-interstitial clusters, due to the interaction between solutes and crowdions in Fe is now parameterized using binding energies from the latest DFT calculations and the solute concentration in the matrix from atom-probe experiments. The mobility of vacancy clusters in the presence of Mn and Ni solute atoms was also modified on the basis of recent DFT results, thereby removing some previous approximations. The same set of parameters was seen to predict the correct microstructure evolution for two different types of alloys, under very different irradiation conditions: an Fe-C-MnNi model alloy, neutron irradiated at a relatively high flux, and a high-Mn, high-Ni RPV steel from the Swedish Ringhals reactor surveillance program. In both cases, the predicted self-interstitial loop density matches the experimental solute cluster density, further corroborating the surmise that the MnNi-rich nanofeatures form by solute enrichment of immobilized small interstitial loops, which are invisible to the electron microscope.

  2. Stresses in reactor pressure vessel nozzles -- Calculations and experiments

    International Nuclear Information System (INIS)

    Brumovsky, M.; Polachova, H.

    1995-01-01

    Reactor pressure vessel nozzles are characterized by a high stress concentration which is critical in their low-cycle fatigue assessment. Program of experimental verification of stress/strain field distribution during elastic-plastic loading of a reactor pressure vessel WWER-1000 primary nozzle model in scale 1:3 is presented. While primary nozzle has an ID equal to 850 mm, the model nozzle has ID equal to 280 mm, and was made from 15Kh2NMFA type of steel. Calculation using analytical methods was performed. Comparison of results using different analytical methods -- Neuber's, Hardrath-Ohman's as well as equivalent energy ones, used in different reactor Codes -- is shown. Experimental verification was carried out on model nozzles loaded statically as well as by repeated loading, both in elastic-plastic region. Strain fields were measured using high-strain gauges, which were located in different distances from center of nozzle radius, thus different stress concentration values were reached. Comparison of calculated and experimental data are shown and compared

  3. 46 CFR 42.09-30 - Additional survey requirements for steel-hull vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Additional survey requirements for steel-hull vessels...-30 Additional survey requirements for steel-hull vessels. (a) In addition to the requirements in § 42...) When the vessel is in drydock, the hull plating, etc., shall be examined. (c) The holds, 'tween decks...

  4. Development of a crack monitoring technique for use in a corrosion fatigue study of SA533-B pressure vessel steel

    International Nuclear Information System (INIS)

    Benson, J.M.; Tait, R.B.; Garrett, G.G.

    1981-10-01

    At present there does not exist a realistic crack growth law which will provide a good description of the relationship between the alternating stress intensity factor and the crack growth per cycle of stress. Such a law should be applicable to either the pressurized water reactor environment (PWR) or boiling water reactor environmnt (BWR). This project was formulated with the aim of examining the fatigue crack growth rate of SA533-B steel (a nuclear pressure vessel steel) in the threshold region in a simulated PWR environment. The aim of this report is to develop a crack monitoring technique for use in corrosion fatigue studies. Factors affecting fatigue crack propagation include: frequency, stress range, the effect of irradiation, ageing and environment. The mechanisms of crack propagation that are discussed include: slip dissolution, hydrogen assisted cracking, corrosion potential, and morphology studies. D.C. electrical potential, the compliance technique and the back-faced strain gauge method can be used for crack monitoring. Details are also given on the experimental equipment and programme. The results of the experiment has shown that the potential difference technique for monitoring crack length is a valuable one and is well suited for use in fatigue testing applications

  5. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Lambrecht, M.; Meslin, E.; Malerba, L.; Hernandez-Mayoral, M.; Bergner, F.; Pareige, P.; Radiguet, B.; Almazouzi, A.

    2010-01-01

    A correlation is attempted between microstructural observations by various complementary techniques, which have been implemented within the PERFECT project and the hardening measured by tensile tests of reactor pressure vessel steel and model alloys after irradiation to a dose of ∼7 x 10 19 n cm -2 . This is done, using the simple hardening model embodied by the Orowan equation and applying the most suitable superposition law, as suggested by a parametric study using the DUPAIR line tension code. It is found that loops are very strong obstacles to dislocation motion, but due to their low concentration, they only play a minor role in the hardening itself. For the precipitates, the contrary is found, although they are quite soft (due to their very small sizes and their coherent nature), they still play the dominant role in the hardening. Vacancy clusters are important for the formation of both loops and precipitates, but they will play almost no role in the hardening by themselves.

  6. Postirradiation recovery of a reactor pressure vessel steel investigated by positron annihilation and microhardness measurements

    International Nuclear Information System (INIS)

    Pareja, R.; Diego, N. De; Cruz, R.M. de la; Del Rio, J.

    1993-01-01

    Positron lifetime and microhardness measurements have been performed on untreated, thermal-aged, neutron-irradiated, and postirradiation-annealed samples of reactor pressure vessel steels with the purpose of investigating the mechanisms of irradiation-induced hardening and recovery of the mechanical properties in these materials. The positron lifetime experiments have not revealed any evidence of the formation of a significant concentration of voids or vacancy clusters in samples irradiated at ∼290 C with fluences ≤2.71 x 10 23 n/m 2 (E>1 MeV), but they suggest a dislocation annealing induced by the irradiation. Isochronal annealing experiments with neutron-irradiated samples show a simultaneous recovery in their positron lifetime and microhardness at ∼340 C. From the microhardness measurements, the yield strength of the irradiated material has been estimated. The results appear to be consistent with a model of hardening due to irradiation-induced dissolution of precipitates with formation of small metastable precipitates after postirradiation aging and recovery induced by the disappearance of these metastable precipitates

  7. Study on Material Selection of Reactor Pressure Vessel of SCWR

    Science.gov (United States)

    Ma, Shuli; Luo, Ying; Yin, Qinwei; Li, Changxiang; Xie, Guofu

    This paper first analyzes the feasibility of SA-508 Grade 3 Class 1 Steel as an alternative material for Supercritical Water-Cooled Reactor (SCWR) Reactor Pressure Vessel (RPV). This kind of steel is limited to be applied in SCWR RPV due to its quenching property, though large forging could be accomplished by domestic manufacturers in forging aspect. Therefore, steels with higher strength and better quenching property are needed for SWCR RPV. The chemical component of SA-508 Gr.3 Cl.2 steel is similar to that of SA-508 Gr.3 Cl.1 steel, and more appropriate matching of strength and toughness could be achieved by the adjusting the elements contents, as well as proper control of tempering temperature and time. In light of the fact that Cl.2 steel has been successfully applied to steam generator, it could be an alternative material for SWCR RPV. SA-508 Gr.4N steel with high strength and good toughness is another alternative material for SCWR RPV. But large amount of research work before application is still needed for the lack of data on welding and irradiation etc.

  8. Applicability of the fracture toughness master curve to irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; McCabe, D.E.; Alexander, D.J.; Nanstad, R.K.

    1997-01-01

    The current methodology for determination of fracture toughness of irradiated reactor pressure vessel (RPV) steels is based on the upward temperature shift of the American Society of Mechanical Engineers (ASME) K Ic curve from either measurement of Charpy impact surveillance specimens or predictive calculations based on a database of Charpy impact tests from RPV surveillance programs. Currently, the provisions for determination of the upward temperature shift of the curve due to irradiation are based on the Charpy V-notch (CVN) 41-J shift, and the shape of the fracture toughness curve is assumed to not change as a consequence or irradiation. The ASME curve is a function of test temperature (T) normalized to a reference nit-ductility temperature, RT NDT , namely, T-RT NDT . That curve was constructed as the lower boundary to the available K Ic database and, therefore, does not consider probability matters. Moreover, to achieve valid fracture toughness data in the temperature range where the rate of fracture toughness increase with temperature is rapidly increasing, very large test specimens were needed to maintain plain-strain, linear-elastic conditions. Such large specimens are impractical for fracture toughness testing of each RPV steel, but the evolution of elastic-plastic fracture mechanics has led to the use of relatively small test specimens to achieve acceptable cleavage fracture toughness measurements, K Jc , in the transition temperature range. Accompanying this evolution is the employment of the Weibull distribution function to model the scatter of fracture toughness values in the transition range. Thus, a probabilistic-based bound for a given data population can be made. Further, it has been demonstrated by Wallin that the probabilistic-based estimates of median fracture toughness of ferritic steels tend to form transition curves of the same shape, the so-called ''master curve'', normalized to one common specimen size, namely the 1T [i.e., 1.0-in

  9. Irradiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Bros, J.

    2000-01-01

    From the historical decision of closing the Yankee Rowe NPP because of the uncertainties on the level of reactor pressure vessel neutron embrittlement, this paper reviews the technical-scientist bases of the degradation phenomena, and refers to the evolution of reactor pressure vessel radiation surveillance programs. (Author)

  10. Pressure vessels and methods of sealing leaky tubes disposed in pressure vessels

    International Nuclear Information System (INIS)

    Larson, G.C.

    1980-01-01

    This invention relates to pressure vessels and to methods of sealing leaky tubes in them and is especially applicable to pressure vessels in the form of sheet-and-tube type heat exchangers constructed with a large number of relatively small diameter tubes grouped in a bundle. To seal off a leaky tube in such a heat exchanger an explosive activated plug in the form of a hollow metal body is used, inserted at each end of the tube to be sealed. Using the arrangement of pressure vessel and associated tube sheets and the explosive activated plug method of sealing a leaky tube as described in this invention it is claimed that distortion of the adjacent tubes and the tube sheets is reduced when the explosive activated plugs are detonated. (U.K.)

  11. Fracture toughness of irradiated and recovered vessel steels

    International Nuclear Information System (INIS)

    Perosanz, F.; Lapena, J.

    1998-01-01

    This paper presents the fracture toughness measurements carried out on three vessel steels in an irradiated condition and after a post-irradiation recovery treatment. A statistical approach and the fracture parameters corresponding to two theoretical models of the fracture tests are used for evaluating toughness. Test results show that the neutron fluence gradually transforms the fracture behaviour of the vessel steels from ductile to brittle and seriously reduces their fracture toughness. The effectiveness of the recovery treatment, as evaluated from the toughness measurements, is confirmed, although the efficiency is not the same for the steels and depends on the evaluation parameter except in the case of almost complete recovery. The recovery effect increases with the received neutron fluence if the toughness values after treatment are compared with those in the irradiated condition rather than those in the as received condition. (orig.)

  12. Reactor pressure vessel structural integrity research

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  13. Acoustic emission monitoring during hydrotest of a thin wall pressure vessel

    International Nuclear Information System (INIS)

    Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.

    1976-01-01

    Results are presented of the acoustic emission monitoring during hydrotests of a thin wall steel pressure vessel. Location of acoustic sources was based on longitudinal wave front detection. The careful calibration of the three sensors used for acoustic source location was found to be very useful, and allowed an accurate location error analysis. Acoustic emission in the hydrotests was found to be due mainly to stress release in weld seams

  14. Ultrasonic inspection of the Calder Hall and Chaplecross reactor pressure vessels

    International Nuclear Information System (INIS)

    Pennick, A.M.

    1993-01-01

    This paper describes the ultrasonic inspection surveys that have recently been carried out on the Calder Hall and Chapelcross Magnox steel reactor pressure vessels. The development of the inspection system, which is based on the Rediman manipulator and uses the Sonomatic Zipscan equipment and Time-of-Flight diffraction techniques is discussed. The inspection results are presented and compared with the original inspection findings and limiting crack sizes. (author)

  15. Joining dissimilar stainless steels for pressure vessel components

    International Nuclear Information System (INIS)

    Zheng Sun; Huai-Yue Han

    1994-01-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCrl3Ni4Mo) and AISI 347, respectively. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. Based on the weldability tests, a welding procedure - tungsten inert gas (TIG) welding for root passes with HNiCrMo-2B wire followed by manual metal arc (MMA) welding using coated electrode ENiCrFe-3B - was developed and a PWHT at 600 deg C/2h was recommended. Furthermore, the welding of tube/tube joints between these dissimilar steels is described. (21 refs., 11 figs., 14 tabs.)

  16. Electrode for welding steel for WWER-1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    Of two types of electrodes, ie., with an alloyed core and with an unalloyed core, an electrode was chosen consisting of a basic coat and an unalloyed core. Fluctuations are shown of shear strength, tensile strenght and contraction with the welding mode and annealing temperature. It was found that pre-heating to 250 and 350 degC, respectively, was most suitable for welding a pressure vessel manufactured from material designated SKODA A3/II. Annealing aimed at removing stress was chosen at 650 to 700 degC. (H.S.)

  17. Reactor pressure vessel structural integrity research in the US Nuclear Regulatory Commission HSST and HSSI Programs

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    This report discusses development on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels containing flaws. Fracture mechanics tests on reactor pressure vessel steel have shown that local brittle zones do not significantly degrade the material fracture toughness, constraint relaxation at the crack tip of shallow surface flaws results in increased fracture toughness, and biaxial loading reduces but does not eliminate the shallow-flaw fracture toughness elevation. Experimental irradiation investigations have shown that the irradiation-induced shift in Charpy V-notch versus temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement and the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  18. Pressure vessel integrity 1991

    International Nuclear Information System (INIS)

    Bhandari, S.; Doney, R.O.; McDonald, M.S.; Jones, D.P.; Wilson, W.K.; Pennell, W.E.

    1991-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on nuclear industry applications. The papers were prepared for technical sessions developed under the sponsorship of the ASME Pressure Vessels and Piping Division Committees for Codes and Standards, Computer Technology, Design and Analysis, and Materials Fabrication. They were presented at the 1991 Pressure Vessels and Piping Division Conference in San Diego, California, June 23-27. The primary objective of the sponsoring organization is to provide a forum for the dissemination and discussion of information on development and application of technology for the structural integrity assessment of pressure vessels and piping. This publication includes contributions from authors from Australia, France, Japan, Sweden, Switzerland, the United Kingdom, and the United States. The papers here are organized in six sections, each with a particular emphasis as indicated in the following section titles: Fracture Technology Status and Application Experience; Crack Initiation, Propagation and Arrest; Ductile Tearing; Constraint, Stress State, and Local-Brittle-Zones Effects; Computational Techniques for Fracture and Corrosion Fatigue; and Codes and Standards for Fatigue, Fracture and Erosion/Corrosion

  19. The failure behavior of duplex 316 L steel-TA6V titanium alloy spherical pressure vessels

    International Nuclear Information System (INIS)

    Miannay, D.

    1980-05-01

    The purpose of this paper is to compare the experimental residual stresses of spherical vessels made of TA6V alloy which exhibits plasticity before failure in toughness testing and cracked with several configurations, with stresses estimated according to the afore mentioned theories. An internal austenitic 316 L steel is used to prevent 'leak before break' [fr

  20. Correlation of mechanical property changes in neutron-irradiated pressure vessel steels on the basis of spectral effects

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1991-01-01

    Comparisons are made of tensile data on specimens of A212B and A302B pressure vessel steels irradiated at low temperatures (40-90degC) and to low doses (<0.1 dpa) with 14 MeV D-T fusion neutrons in the Rotating Target Neutron Source (RTNS-II), with fission reactor neutrons in the Omega West Reactor (OWR) and the Oak Ridge Research Reactor (ORR), and with the highly thermal spectrum at the pressure vessel surveillance positions of the High Flux Isotope Reactor (HFIR). For each neutron spectrum, damage cross sections are determined for several defect production functions derived from atomistic computer simulations of collision cascades. Displacements per atom (dpa) and the numbers of freely migrating defects are tested as damage correlation parameters for the tensile data. The data from RTNS-II, OWR and ORR correlate fairly well when compared on the basis of dpa, but the data from HFIR show only about one sixth as many dpa are needed to produce the same radiation-induced yield stress changes as in the other neutron spectra. In the HFIR surveillance position a significant fraction of the displacements is produced by recoils resulting from thermal neutron captures. Having energies of about 400 eV, these recoils are much more efficient per unit energy at producing freely migrating defects than the high energy recoils responsible for most of the displacements in the other neutron spectra considered. A significantly better correlation of data from HFIR with those from the other spectra is achieved when the property changes are compared on the basis of the production of freely migrating self-interstitial defects. (orig./MM)

  1. The elevated temperature and thermal shock fracture toughnesses of nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kobayashi, Hideo; Nakazawa, Hajime; Nara, Atsushi.

    1979-01-01

    Thermal shock experiments were conducted on nuclear pressure vessel steel A533 Grade B Class 1. Elastic-plastic fracture toughness tests were carried out within the same high temperature range of the thermal shock experiment and the relation between stretched zone width, SZW and J-integral was clarified. An elastic-plastic thermal shock fracture toughness value. J sub(tsc) was evaluated from a critical value of stretched zone width, SZW sub(tsc) at the initiation of thermal shock fracture by using the relation between SZW and J. The J sub(tsc) value was compared with elastic-plastic fracture toughness values, J sub( ic), and the difference between the J sub(tsc) and J sub( ic) values was discussed. The results obtained are summarized as follows; (1) The relation between SZW and J before the initiation of stable crack growth in fracture toughness test at a high temperature can be expressed by the following equation regardless of test temperature, SZW = 95(J/E), where E is Young's modulus. (2) Elevated temperature fracture toughness values ranging from room temperature to 400 0 C are nearly constant regardless of test temperature. It is confirmed that upper shelf fracture toughness exists. (3) Thermal shock fracture toughness is smaller than elevated temperature fracture toughness within the same high temperature range of thermal shock experiment. (author)

  2. Critical experiments, measurements, and analyses to establish a crack arrest methodology for nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Hahn, G.T.

    1977-01-01

    Substantial progress was made in three important areas: crack propagation and arrest theory, two-dimensional dynamic crack propagation analyses, and a laboratory test method for the material property data base. The major findings were as follows: Measurements of run-arrest events lent support to the dynamic, energy conservation theory of crack arrest. A two-dimensional, dynamic, finite-difference analysis, including inertia forces and thermal gradients, was developed. The analysis was successfully applied to run-arrest events in DCB (double-cantilever-beam) and SEN (single-edge notched) test pieces. A simplified procedure for measuring K/sub D/ and K/sub Im/ values with ordinary and duplex DCB specimens was demonstrated. The procedure employs a dynamic analysis of the crack length at arrest and requires no special instrumentation. The new method was applied to ''duplex'' specimens to measure the large K/sub D/ values displayed by A533B steel above the nil-ductility temperature. K/sub D/ crack velocity curves and K/sub Im/ values of two heats of A533B steel and the corresponding values for the plane strain fracture toughness associated with static initiation (K/sub Ic/), dynamic initiation (K/sub Id/), and the static stress intensity at crack arrest (K/sub Ia/) were measured. Possible relations among these toughness indices are identified. During the past year the principal investigators of the participating groups reached agreement on a crack arrest theory appropriate for the pressure vessel problem. 7 figures

  3. Review of in-service thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1984-01-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper-shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. A test reactor pressure vessel has been wet annealed at less than 343 0 C (650 0 F), and annealing of the Belgian BR-3 reactor vessel has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place is feasible, but solvable engineering problems do exist. The materials with highest radiation sensitivity in the older reactor vessels are submerged-arc weld metals with high copper and nickel concentrations. The limited Charpy V-notch and fracture toughness data available for five such welds were reviewed. The review suggested that significant recovery results from annealing at 454 0 C (850 0 F) for one week. Two of the main concerns with a localized heat treatment at 454 0 C (850 0 F) are the degree of distortion that may occur after the annealing cycle and the extent of residual stresses. A thermal and structural analysis of a reactor vessel for distortions and residual stresses found no problems with the reactor vessel itself but did indicate a rotation at the nozzle region of the vessel that would plastically deform the attached primary piping. Further analytical studies are needed. An American Society for Testing and Materials (ASTM) task group is upgrading and revising the ASTM Recommended Guide for In-Service Annealing of WaterCooled Nuclear Reactor Vessels (E 509-74) with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (for example, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  4. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    Probabilistic fracture mechanics (PFM) analysis is a major element of the comprehensive probabilistic methodology endorsed by the Nuclear Regulatory Commission (NRC) for evaluation of the integrity of pressurized water reactor pressure vessels subjected to pressurized-thermal-shock (PTS) transients. OCA-P and VISA-II are PTS PFM computer codes that are currently referenced in Regulatory Guide 1.154 as acceptable codes for performing plant-specific analyses. These codes perform PFM analyses to estimate the increase in vessel failure probability as the vessel accumulates radiation damage over the operating life of the vessel. Experience with the application of these codes in the last few years has provided insights into areas where they could be improved. As more plants approach the PTS screening criteria and are required to perform plant-specific analyses, there will be an increasing need for an improved and validated PTS PFM code that is accepted by the NRC and utilities. The NRC funded Heavy Section Steel Technology Program (HSST) at the Oak Ridge National Laboratory is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) code, which is expected to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as (1) a PFM global modeling methodology; (2) the calculation of the axial stress component associated with coolant streaming beneath an inlet nozzle; (3) a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an appropriate range of two and three dimensional inner-surface flaws; (4) the flexibility to generate a variety of output reports; and (5) enhanced user friendliness

  5. High-performance fiber/epoxy composite pressure vessels

    Science.gov (United States)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  6. RPV-1: a first virtual reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, St.

    2005-01-01

    The presented work was aimed at building a first VTR (virtual test reactor) to simulate irradiation effects in pressure vessel steels of nuclear reactor. It mainly consisted in: - modeling the formation of the irradiation induced damage in such steels, as well as their plasticity behavior - selecting codes and models to carry out the simulations of the involved mechanisms. Since the main focus was to build a first tool (rather than a perfect tool), it was decided to use, as much as possible, existing codes and models in spite of their imperfections. - developing and parameterizing two missing codes: INCAS and DUPAIR. - proposing an architecture to link the selected codes and models. - constructing and validating the tool. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or transmit data. A user friendly Python interface facilitates the running of the simulations and the visualization of the results. RPV-1 relies on many simplifications and approximations and has to be considered as a prototype aimed at clearing the way. According to the functionalities targeted for RPV-1, the main weakness is a bad Ni and Mn sensitivity. However, the tool can already be used for many applications (understanding of experimental results, assessment of effects of material and irradiation conditions,....). (O.M.)

  7. Crashworthy sealed pressure vessel for plutonium transport

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1980-01-01

    A rugged transportation package for the air shipment of radioisotopic materials was recently developed. This package includes a tough, sealed, stainless steel inner containment vessel of 1460 cc capacity. This vessel, intended for a mass load of up to 2 Kg PuO 2 in various isotopic forms (not to exceed 25 watts thermal activity), has a positive closure design consisting of a recessed, shouldered lid fastened to the vessel body by twelve stainless-steel bolts; sealing is accomplished by a ductile copper gasket in conjunction with knife-edge sealing beads on both the body and lid. Follow-on applications of this seal in newer, smaller packages for international air shipments of plutonium safeguards samples, and in newer, more optimized packages for greater payload and improved efficiency and utility, are briefly presented

  8. Nuclear power plant pressure vessels. Inservice inspections

    International Nuclear Information System (INIS)

    1995-01-01

    The requirements for the planning and reporting of inservice inspections of nuclear power plant pressure vessels are presented. The guide specifically applies to inservice inspections of Safety class 1 and 2 nuclear power plant pressure vessels, piping, pumps and valves plus their supports and reactor pressure vessel internals by non- destructive examination methods (NDE). Inservice inspections according to the Pressure Vessel Degree (549/73) are discussed separately in the guide YVL 3.0. (4 refs.)

  9. Flexible Composite-Material Pressure Vessel

    Science.gov (United States)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  10. Experimental Study of Interactions Between Sub-oxidized Corium and Reactor Vessel Steel

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Granovsky, V.S.; Krushinov, E.V.; Vitol, S.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Fischer, M.; Piluso, P.; Altstadt, E.; Willschutz, H.G.; Fichoti, F.

    2006-01-01

    One of the critical factors in the analysis of in-vessel melt retention is the vessel strength. It is, in particular, sensitive to the thickness of intact vessel wall, which, in its turn, depends on the thermal conditions and physicochemical interactions with corium. Physicochemical interaction of prototypic UO 2 -ZrO 2 -Zr corium melt and VVER vessel steel was examined during the 2. Phase of the ISTC METCOR Project. Rasplav-3 test facility was used for conducting four tests, in which the Zr oxidation degree and interaction front temperature were varied; in one of the tests, stainless steel was added to the melt. Direct experimental measurements and post-test analyses were used for determining corrosion kinetics and maximum corrosion depth (i.e. the physicochemical impact of corium on the cooled vessel steel specimens), as well as the steel temperature conditions during the interaction, and finally the structure and composition of crystallized ingots, including the interaction zone. The minimum temperature on the interaction front boundary, which determined its final position and maximum corrosion depth was ∼ 1090 deg. C. An empirical correlation for calculation of corrosion kinetics has been derived. (authors)

  11. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  12. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Science.gov (United States)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  13. Nonlinear analysis of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Connor, J.J.

    1975-01-01

    The numerical procedures for predicting the nonlinear behavior of a prestressed concrete reactor vessel over its design life are discussed. The numerical models are constructed by combining three-dimensional isoparametric finite elements which simulate the concrete, thin shell elements which simulate steel linear plates, and layers of reinforcement steel, and axial elements for discrete prestressing cables. Nonlinearity under compressive stress, multi-dimensional cracking, shrinkage and stress/temperature induced creep of concrete are considered in addition to the elasti-plastic behavior of the liner and reinforcing steel. Various failure theories for concrete have been proposed recently. Also, there are alternative strategies for solving the discrete system equations over the design life, accounting for test loads, pressure and temperature operational loads, creep unloading and abnormal loads. The proposed methods are reviewed, and a new formulation developed by the authors is described. A number of comparisons with experimental tests results and other numerical schemes are presented. These examples demonstrate the validity of the formulation and also provide valuable information concerning the cost and accuracy of the various solution strategies i.e., total vs. incremental loading and initial vs. tangent stiffness. Finally, the analysis of an actual PCRV is described. Stress contours and cracking patterns in the region of cutouts corresponding to operational pressure and temperature loads are illustrated. The effects of creep, unloading, and creep recovery are then shown. Lastly, a strategy for assessing the performance over its design life is discussed

  14. Nuclear power plant pressure vessels. Control of piping

    International Nuclear Information System (INIS)

    2000-01-01

    The guide presents requirements for the pipework of nuclear facilities in Finland. According to the section 117 of the Finnish Nuclear Energy Degree (161/88), the Radiation and Nuclear Safety Authority of Finland (STUK) controls the pressure vessels of nuclear facilities in accordance with the Nuclear Energy Act (990/87) and, to the extent applicable in accordance with the Act of Pressure Vessels (98/73) and the rules and regulations issued by the virtue of these. In addition STUK is an inspecting authority of pressure vessels of nuclear facilities in accordance with the Pressure Vessel Degree (549/1973). According to the section of the Pressure Vessel Degree, a pressure vessel is a steam boiler, pressure container, pipework of other such appliance in which the pressure is above or may come to exceed the atmospheric pressure. Guide YVL 3.0 describes in general terms how STUK controls pressure vessels. STUK controls Safety Class 1, 2 and 3 piping as well as Class EYT (non-nuclear) and their support structures in accordance with this guide and applies the provisions of the Decision of the Ministry of Trade and Industry on piping (71/1975) issued by virtue of the Pressure Vessel Decree

  15. Computations for the 1:5 model of the THTR pressure vessel compared with experimental results

    International Nuclear Information System (INIS)

    Stangenberg, F.

    1972-01-01

    In this report experimental results measured at the 1:5-model of the prestressed concrete pressure vessel of the THTR-nuclear power station Schmehausen in 1971, are compared with the results of axis-symmetrical computations. Linear-elastic computations were performed as well as approximate computations for overload pressures taking into consideration the influences of the load history (prestressing, temperature, creep) and the effects of the steel components. (orig.) [de

  16. Experimental modelling of core debris dispersion from the vault under a PWR pressure vessel. Pt. 2

    International Nuclear Information System (INIS)

    Rose, P.W.

    1987-12-01

    In previous experiments, done on a 1/25 scale model in Perspex of the vault under a PWR pressure vessel, the instrument tubes support structure built into the vault was not included. It consists of a number of grids made up of fairly massive steel girders. These have now been added to the model and experiments performed using water to simulate molten core debris assumed to have fallen on to the vault floor and high-pressure air to simulate the discharge of steam or gas from the assumed breach at the bottom of the pressure vessel. The results show that the tubes support structure considerably reduces the carry-over of liquid via the vault access shafts. (author)

  17. Use of miniature and standard specimens to evaluate effects of irradiation temperature on pressure vessel steels

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.; Byrne, S.T.

    1991-01-01

    The effects of neutron irradiation on the steel reactor vessel for the modular high-temperature gas-cooled reactor (MHTGR) are being investigated, primarily because the operating temperatures are low [121 to 210 degrees C (250--410 degrees F)] compared to those for commercial light-water reactors (LWRs) [∼288 degrees C (550 degrees F)]. The need for design data on the reference temperature shift necessitated the irradiation at different temperatures of A 533 grade B class 1 plate. A 508 class 3 forging, and welds used for the vessel shell, vessel closure head, the vessel flange. This paper presents results from the first four irradiation capsules of this program. The four capsules were irradiated in the University of Buffalo Reactor to an effective fast fluence of 1 x10 18 neutron/cm 2 [0.68 x 10 18 neutron/cm 2 (>1 MeV)] at temperatures of 288, 204, 163, and 121 degrees C (550, 400, 325, and 250 degrees F), respectively. The yield and ultimate strengths of both steel plate materials of the MHTGR Program increased with decreasing irradiation temperature. Similarly, the 41-J Charpy V-notch (CVN) transition temperature shift increased with decreasing irradiation temperature (in agreement with the increase in yield strength). The miniature tensile and automated ball indentation (ABI) test results (yield strength and flow properties) were in good agreement with those from standard tensile specimens. The miniature tensile and ABI test results were also used in a model that utilizes the changes in yield strength to estimate the CVN ductile-to-brittle transition temperature shift due to irradiation. The model predictions were compared with CVN test results obtained here and in earlier work. 5 refs., 11 figs., 6 tabs

  18. Prestressed cast iron pressure vessels as burst-proof pressure vessels for innovative nuclear applications

    International Nuclear Information System (INIS)

    Froehling, W.; Boettcher, A.; Bounin, D.; Steinwarz, W.; Geiss, M.; Trauth, M.

    2000-01-01

    The amendment to the German Atomic Energy Act from July 28, 1994 requires that events 'whose occurrence is practically excluded by the measures against damages', i.e. events of the category residual risk, must not necessitate far reaching protective measures outside the plant. For a conventional reactor pressure vessel, the residual risk consists in the very small probability of a catastrophic failure (formation of a large fracture opening, bursting of the vessel). With a prestressed cast iron vessel (PCIV), the formation of a large fracture opening or bursting of the vessel, respectively, is impossible due to its design properties. Against this background the possibility of the use of this type of pressure vessel for lightwater reactors has been studied in the frame of a 'Working Group for Innovative Nuclear Technology', founded by different research institutes and industrial companies. Furthermore, it has been studied whether the use of the PCIV support the realization of a corecatcher system. The results are presented in this report. Already many years earlier, Siempelkamp has performed industrial development and Forschungszentrum Juelich related experimental and theoretical safety research for the PCIV as an innovative, bust-proof pressure vessel concept. This development of the PCIV as well as its safety properties are also presented in a conclusive manner. (orig.) [de

  19. Heavy-Section Steel Irradiation Program on irradiation effects in light-water reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Corwin, W.R.; Alexander, D.J.; Haggag, F.M.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.; Stoller, R.E.

    1995-01-01

    The safety of commercial light-water nuclear plants is highly dependent on the structural integrity of the reactor pressure vessel (RPV). In the absence of radiation damage to the RPV, fracture of the vessel is difficult to postulate. Exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory, sponsored by the US Nuclear Regulatory Commission (USNRC), is assessing the effects of neutron irradiation on RPV material behavior, especially fracture toughness. The results of these and other studies are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety. In assessing the effects of irradiation, prototypic RPV materials are characterized in the unirradiated condition and exposed to radiation under varying conditions. Mechanical property tests are conducted to provide data which can be used in the development of guidelines for structural integrity evaluations, while metallurgical examinations and mechanistic modeling are performed to improve understanding of the mechanisms responsible for embrittlement. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. This irradiation-induced degradation of the materials can be mitigated by thermal annealing, i.e., heating the RPV to a temperature above that of normal operation. Thus, thermal annealing and evaluation of reirradiation behavior are major tasks of the HSSI Program. This paper describes the HSSI Program activities by summarizing some past and recent results, as well as current and planned studies. 30 refs., 8 figs., 1 tab

  20. Model tests for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Stoever, R.

    1975-01-01

    Investigations with models of reactor pressure vessels are used to check results of three dimensional calculation methods and to predict the behaviour of the prototype. Model tests with 1:50 elastic pressure vessel models and with a 1:5 prestressed concrete pressure vessel are described and experimental results are presented. (orig.) [de

  1. Heavy wall pressure vessels for energy systems

    International Nuclear Information System (INIS)

    Canonico, D.A.

    Modifications of steels currently accepted in the Code appear to provide improved mechanical properties. These steels may permit the fabrication of larger diameter vessels with thinner section sizes and improved reliability and integrity. Adapting current specifications should expedite Code approval. Finally the challenge of improving welding procedures and adapting processes for field applications will result in higher quality weldments

  2. Temper-bead repair-welding of neutron-irradiated reactor (pressure) vessel by low-heat-input TIG and YAG laser welding

    International Nuclear Information System (INIS)

    Nakata, Kiyotomo; Ozawa, Masayoshi; Kamo, Kazuhiko

    2006-01-01

    Weldability in neutron-irradiated low alloy steel for reactor (pressure) vessel has been studied by temper-bead repair-welding of low-heat-input TIG and YAG laser welding. A low alloy steel and its weld, and stainless steel clad and nickel (Ni)-based alloy clad were irradiated in a materials test reactor (LVR-15, Czech Republic) up to 1.4 x 10 24 n/m 2 (>1 MeV) at 290degC, which approximately corresponds to the maximum neutron fluence of 60-year-operation plants' vessels. The He concentration in the irradiated specimens was estimated to be up to 12.9 appm. The repair-welding was carried out by TIG and YAG laser welding at a heat input from 0.06 to 0.86 MJ/m. The mechanical tests of tensile, impact, side bend and hardness were carried out after the repair-welding. Cracks were not observed in the irradiated low alloy steel and its weld by temper-bead repair-welding. Small porosities were formed in the first and second layers of the repair-welds of low alloy steel (base metal). However, only a few porosities were found in the repair-welds of the weld of low alloy steel. From the results of mechanical tests, the repair-welding could be done in the irradiated weld of low alloy steel containing a He concentration up to 12.9 appm, although repair-welding could be done in base metal of low alloy steel containing up to only 1.7 appmHe. On the other hand, cracks occurred in the heat affected zones of stainless steel and Ni-based alloy clads by repair-welding, except by YAG laser repair-welding at a heat input of 0.06 MJ/m in stainless steel clad containing 1.7 appmHe. Based on these results, the determination processes were proposed for optimum parameters of repair-welding of low alloy steel and clad used for reactor (pressure) vessel. (author)

  3. Analysis of the microstructural evolution of the damage by neutron irradiation in the pressure vessel of a nuclear power reactor BWR

    International Nuclear Information System (INIS)

    Moranchel y R, M.

    2012-01-01

    Nuclear reactor pressure vessel type BWR, installed in Mexico and in many other countries, are made of an alloy of low carbon steel. The American Society for Testing and Materials (Astm) classifies this alloy as A533-B, class 1. Both the vessel and other internal structures are continuously exposed to the neutron flux from the reactions of fission in nuclear fuel. A large number of neutrons reach the vessel and penetrate certain depth depending on their energy. Its penetration in the neutron collides with the nuclei of the atoms out of their positions in the crystal lattice of steel, producing vacancies, interstitial, segregations, among other defects, capable of affecting its mechanical properties. Analyze the micro-structural damage to the vessel due to neutron irradiation, is essential for reasons of integrity of this enclosure and safety of any nuclear power plant. The objective of this thesis work is theoretical and experimentally determine the microstructural damage of a type nuclear reactor vessel steel BWR, due to neutron radiation from the reactor core, using microscopic and spectroscopic techniques as well as Monte Carlo simulation. Microscopy Optical, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersion of X-rays Spectrometry and X-rays Diffractometry were the techniques used in this research. These techniques helped in the characterization of both the basis of design of pressure vessel steel and steel irradiated, after eight years of neutron irradiation on the vessel, allowing know the surface morphology and crystal structures of the previous steel and post-irradiation, analyze the change in the microstructure of the steel vessel, morphological damage to surface level in an irradiated sample, among which are cavities in the order of microns produced by Atomic displacements due to the impact of neutronic, above all in the first layers of thickness of the vessel, the effect of swelling, regions of greater damage and Atomic

  4. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  5. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  6. Proactive life extension of pressure vessels

    Science.gov (United States)

    Mager, Lloyd

    1998-03-01

    For a company to maintain its competitive edge in today's global market every opportunity to gain an advantage must be exploited. Many companies are strategically focusing on improved utilization of existing equipment as well as regulatory compliance. Abbott Laboratories is no exception. Pharmaceutical companies such as Abbott Laboratories realize that reliability and availability of their production equipment is critical to be successful and competitive. Abbott Laboratories, like many of our competitors, is working to improve safety, minimize downtime and maximize the productivity and efficiency of key production equipment such as the pressure vessels utilized in our processes. The correct strategy in obtaining these objectives is to perform meaningful inspection with prioritization based on hazard analysis and risk. The inspection data gathered in Abbott Laboratories pressure vessel program allows informed decisions leading to improved process control. The results of the program are reduced risks to the corporation and employees when operating pressure retaining equipment. Accurate and meaningful inspection methods become the cornerstone of a program allowing proper preventative maintenance actions to occur. Successful preventative/predictive maintenance programs must utilize meaningful nondestructive evaluation techniques and inspection methods. Nondestructive examination methods require accurate useful tools that allow rapid inspection for the entire pressure vessel. Results from the examination must allow the owner to prove compliance of all applicable regulatory laws and codes. At Abbott Laboratories the use of advanced NDE techniques, primarily B-scan ultrasonics, has provided us with the proper tools allowing us to obtain our objectives. Abbott Laboratories uses B-scan ultrasonics utilizing a pulse echo pitch catch technique to provide essential data on our pressure vessels. Equipment downtime is reduced because the nondestructive examination usually takes

  7. Computational evaluation of the constraint loss on the fracture toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Serrano Garcia, M.

    2007-01-01

    The Master Curve approach is included on the ASME Code through some Code Cases to assess the reactor pressure vessel integrity. However, the margin definition to be added is not defined as is the margin to be added when the Master Curve reference temperature T 0 is obtained by testing pre-cracked Charpy specimens. The reason is that the T 0 value obtained with this specimen geometry is less conservative than the value obtained by testing compact tension specimens possible due to a loss of constraint. The two parameter fracture mechanics, considered as an extension of the classical fracture mechanics, coupled to a micromechanical fracture models is a valuable tool to assess the effect of constraint loss on fracture toughness. The definition of a parameter able to connect the fracture toughens value to the constraint level on the crack tip will allow to quantify margin to be added to the T 0 value when this value is obtained testing the pre-cracked Charpy specimens included in the surveillance capsule of the reactor pressure vessel. The Nuclear Regulatory Commission (NRC) define on the To value obtained by testing compact tension specimens and ben specimens (as pre-cracked Charpy are) bias. the NRC do not approved any of the direct applications of the Master Curve the reactor pressure vessel integrity assessment until this bias will be quantified in a reliable way. the inclusion of the bias on the integrity assessment is done through a margin to be added. In this thesis the bias is demonstrated an quantified empirical and numerically and a generic value is suggested for reactor pressure vessel materials, so that it can be used as a margin to be added to the T 0 value obtained by testing the Charpy specimens included in the surveillance capsules. (Author) 111 ref

  8. Positron annihilation spectroscopy and small angle neutron scattering characterization of nanostructural features in high-nickel model reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Glade, Stephen C. [Nuclear Engineering Department, University of California, Berkeley, CA 94720-1730 (United States); Wirth, Brian D. [Nuclear Engineering Department, University of California, Berkeley, CA 94720-1730 (United States)]. E-mail: bdwirth@nuc.berkeley.edu; Odette, G. Robert [University of California, Santa Barbara, CA (United States); Asoka-Kumar, P. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2006-06-01

    Irradiation embrittlement in nuclear reactor pressure vessel steels results from the hardening by a high number density of nanometer scale features. In steels with more than {approx}0.10% Cu, the dominant features are often Cu-rich precipitates typically alloyed with Mn, Ni and Si. At low-Cu and low-to-intermediate Ni levels, so-called matrix hardening features are believed to be vacancy-solute cluster complexes, or their remnants. However, Mn-Ni-Si rich precipitates, with Mn plus Ni contents greater than Cu, can form at high alloy Ni contents and are promoted at irradiation temperatures lower than the nominal 290 deg. C. Even at very low-Cu levels, late blooming Mn-Ni-Si rich precipitates are a significant concern due to their potential to form large volume fractions of hardening features. Positron annihilation spectroscopy (PAS) and small angle neutron scattering neutron (SANS) measurements were used to characterize the fine-scale microstructure in split-melt A533B steels with varying Ni and Cu contents, irradiated at selected conditions from 270 to 310 deg. C between {approx}0.04 and 1.6 x 10{sup 23} n m{sup -2}. The objective was to assess the character, composition and magnetic properties of Cu-rich precipitates, as well as to gain insight on the matrix features. The results suggest that the irradiated very low-Cu and intermediate Ni steel contains small vacancy-Mn-Ni-Si cluster complexes, but not large, well-formed and highly enriched Mn-Ni-Si phases. The hardening features in steels containing 0.2% and 0.4% Cu, and 0.8% and 1.6% Ni are consistent with well-formed, non-magnetic Cu-Ni-Mn precipitates. The precipitate number densities and volume fractions increase, while their sizes decrease, with increasing Ni and decreasing irradiation temperature. The precipitates evolve with fluence in stages of nucleation, growth and limited coarsening.

  9. Fracture-mechanics data deduced from thermal-shock and related experiments with LWR pressure-vessel material

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Canonico, D.A.; Iskander, S.K.; Bolt, S.E.; Holz, P.P.; Nanstad, R.K.; Stelzman, W.J.

    1982-01-01

    Pressurized water reactors (PWRs) are susceptible to certain types of hypothetical accidents that can subject the reactor pressure vessel to severe thermal shock, that is, a rapid cooling of the inner surface of the vessel wall. The thermal-shock loading, coupled with the radiation-induced reduction in the material fracture toughness, introduces the possibility of propagation of preexistent flaws and what at one time were regarded as somewhat unique fracture-oriented conditions. Several postulated reactor accidents have been analyzed to discover flaw behavior trends; seven intermediate-scale thermal-shock experiments with steel cylinders have been conducted; and corresponding materials characterization studies have been performed. Flaw behavior trends and related fracture-mechanics data deduced from these studies are discussed

  10. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    Dubois, F.

    1965-01-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm 2 ; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  11. Advances in crack-arrest technology for reactor pressure vessels

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs

  12. Appropriate welding conditions of temper bead weld repair for SQV2A pressure vessel steel

    International Nuclear Information System (INIS)

    Mizuno, R.; Matsuda, F.; Brziak, P.; Lomozik, M.

    2004-01-01

    Temper bead welding technique is one of the most important repair welding methods for large structures for which it is difficult to perform the specified post weld heat treatment. In this study, appropriate temper bead welding conditions to improve the characteristics of heat affected zone (HAZ) are studied using pressure vessel steel SQV2A corresponding to ASTM A533 Type B Class 1. Thermal/mechanical simulator is employed to give specimens welding thermal cycles from single to quadruple cycle. Charpy absorbed energy and hardness of simulated CGHAZ by first cycle were degraded as compared with base metal. Improvability of these degradations by subsequent cycles is discussed and appropriate temper bead thermal cycles are clarified. When the peak temperature lower than Ac1 and near Ac1 in the second thermal cycle is applied to CGAHZ by first thermal cycle, the characteristics of CGHAZ improve enough. When the other peak temperatures (that is, higher than Ac1) in the second thermal cycle are applied to the CGHAZ, third or more thermal cycle temper bead process should be applied to improve the properties. Appropriate weld condition ranges are selected based on the above results. The validity of the selected ranges is verified by the temper bead welding test. (orig.)

  13. Pressure test method for reactor pressure vessel in construction field

    International Nuclear Information System (INIS)

    Takeda, Masakado; Ushiroda, Koichi; Miyahara, Ryohei; Takano, Hiroshi; Matsuura, Tadashi; Sato, Keiya.

    1998-01-01

    Plant constitutional parts as targets of both of a primary pressure test and a secondary pressure test are disposed in communication with a reactor pressure vessel, and a pressure of the primary pressure test is applied to the targets of both tests, so that the primary pressure test and the second pressure test are conducted together. Since the number of pressure tests can be reduced to promote construction, and the number of workers can also be reduced. A pressure exceeding the maximum pressure upon use is applied to the pressure vessel after disposing the incore structures, to continuously conduct the primary pressure test and the secondary pressure test joined together and an incore flowing test while closing the upper lid of the pressure vessel as it is in the construction field. The number of opening/closing of the upper lid upon conducting every test can be reduced, and since the pressure resistance test is conducted after arranging circumference conditions for the incore flowing test, the tests can be conducted collectively also in view of time. (N.H.)

  14. Sealing performance test for main flange of pressure vessel of T2 test section in HENDEL

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Inagaki, Yoshiyuki; Matsumoto, Kiminori; Kondou, Yasuo; Suzuki, Kunihiko; Miyamoto, Yoshiaki; Asami, Masanobu.

    1990-12-01

    A pressure vessel of T 2 test section in helium engineering demonstration loop (HENDEL) was fabricated to the same scale of the reactor pressure vessel made of 2(1/4)Cr-1Mo steel in high temperature engineering test reactor (HTTR). Also, the sealing structure of a main flange of pressure vessel in T 2 test section was composed of the double metal O-rings and Ω-seal which would be used in the sealing structure of HTTR. The sealing performance test for the main flange of the pressure vessel in T 2 test section was carried out to confirm the integrity of sealing structure of a main flange in HTTR. T 2 test section has been operated about 7700 hours in previous 18 cycles. The leakage of helium gas from inner metal O-ring was measured by the static pressurized process under the operating condition of HTTR (helium gas: 400degC, 40kg/cm 2 G, 4gk/s). The calculated leakage of helium gas was less than 9.6x10 -7 atm·cm 3 /sec. From the result, it is expected that the sealing structure of main flange in HTTR would maintain the leak tightness in the life. (author)

  15. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  16. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments

  17. Corrosion of vessel steel during its interaction with molten corium

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation)]. E-mail: bechta@sbor.spb.su; Khabensky, V.B. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Vitol, S.A. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Krushinov, E.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Granovsky, V.S. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Lopukh, D.B. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Gusarov, V.V. [Institute of Silicate Chemistry of Russian Academy of Science (ISC of RAS), Odoevsky str., b. 24/2, 199155 St. Petersburg (Russian Federation); Martinov, A.P. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Martinov, V.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Fieg, G. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Tromm, W. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Bottomley, D. [Europaeische Kommission, General Direktion GFS, Institut fuer Transurane (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tuomisto, H. [Fortum Engineering Ltd. 00048 FORTUM, Rajatorpantie 8, Vantaa (Finland)

    2006-07-15

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments.

  18. Acoustic emission monitoring during hydrotests of a thin wall pressure vessel

    International Nuclear Information System (INIS)

    Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.

    1975-01-01

    The results are presented of an acoustic emission monitoring performed during hydrotests of a thin wall steel pressure vessel. The location of acoustic sources was based on longitudinal wave front detection. The careful calibration of the three sensors instrumentation system used for acoustic source location was found to be useful, and alllowed an accurate location error analysis. Acoustic emission in the hydrotests was found to be mainly due to stress release in weld seams. (Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.)

  19. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  20. Reactor pressure vessel embrittlement: Insights from neural network modelling

    Science.gov (United States)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  1. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Domain, C. [EDF R& D, Département Matériaux et Mécanique des Composants, Les Renardières, F-77250 Moret sur Loing (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a “grey alloy” approach that extends the already existing OKMC model for neutron irradiated Fe–C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe–C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  2. Program to develop acoustic emission-flaw relationship for inservice monitoring of nuclear pressure vessels. Annual report, July 1, 1976 - October 1, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, P.H.; Kurtz, R.J.; Schwenk, E.B.; Pavloff, C.

    1978-06-01

    Laboratory mechanical tests were conducted to evaluate AE during uniaxial tensile, fracture and fatigue crack growth in A533B pressure vessel steel. The A533B steel included two heats of Class 1, one heat of Class 2 and a weldment made for the Heavy Section Steel Technology (HSST) Program. Specimen types included uniaxial tensile specimens, size 2 compact tension specimens for fatigue crack growth and fracture tests, and a single-edge notch specimen also for fatigue crack growth through material that was uniformly strained 3% prior to fatigue testing. In addition, AE monitoring was conducted on the HSST V-7B 6-inch thick pressure vessel test. AE data were partitioned into four ranges of signal amplitude and rise time. All the AE data were analyzed, with respect to mechanical behavior of A533B steel. Linear elastic fracture mechanics analysis methods were used to relate AE parameters to fracture and fatigue crack growth parameters. AE data from the V-7B vessel test were correlated with stress intensity factor and crack opening displacement. AE data from the fatigue crack growth tests were investigated using models based on fatigue crack growth rate, fatigue crack area and theoretical crack tip plastic zone size.

  3. Program to develop acoustic emission-flaw relationship for inservice monitoring of nuclear pressure vessels. Annual report, July 1, 1976--October 1, 1977

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Schwenk, E.B.; Pavloff, C.

    1978-03-01

    Laboratory mechanical tests were conducted to evaluate AE during uniaxial tensile, fracture and fatigue crack growth in A533B pressure vessel steel. The A533B steel included two heats of Class 1, one heat of Class 2 and a weldment made for the Heavy Section Steel Technology (HSST) Program. Specimen types included uniaxial tensile specimens, size 2 compact tension specimens for fatigue crack growth and fracture tests, and a single-edge notch specimen also for fatigue crack growth through material that was uniformly strained 3% prior to fatigue testing. In addition, AE monitoring was conducted on the HSST V-7B 6-inch thick pressure vessel test. AE data were partitioned into four ranges of signal amplitude and rise time. All the AE data were analyzed, with respect to mechanical behavior of A533B steel. Linear elastic fracture mechanics analysis methods were used to relate AE parameters to fracture and fatigue crack growth parameters. AE data from the V-7B vessel test were correlated with stress intensity factor and crack opening displacement. AE data from the fatigue crack growth tests were investigated using models based on fatigue crack growth rate, fatigue crack area and theoretical crack tip plastic zone size

  4. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation)], E-mail: bechta@sbor.spb.su; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I. [Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Lopukh, D.B. [SPb State Electrotechnical University (SPbGETU), St. Petersburg (Russian Federation); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA NP GmbH, Erlangen (Germany); Piluso, P. [CEA/DEN/DSNI, Saclay (France); Miassoedov, A.; Tromm, W. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Altstadt, E. [Forschungszentrum Rossendorf (FZR), Dresden (Germany); Fichot, F. [IRSN/DPAM/SEMCA, St. Paul lez Durance (France); Kymalainen, O. [FORTUM Nuclear Services Ltd., Espoo (Finland)

    2009-06-15

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  5. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    International Nuclear Information System (INIS)

    Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2009-01-01

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  6. Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Almjashev, V.I. [Alexandrov Scientific-Research Technology Institute (NITI), Sosnovy Bor (Russian Federation); Bechta, S.V. [KTH, Stockholm (Sweden); Gusarov, V.V. [SPb State Technology University (SPbGTU), St. Petersburg (Russian Federation); Barrachin, M. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [EC-Joint Research Centre, Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, St Paul lez Durance (France)

    2014-10-15

    Highlights: • The METCOR facility simulates vessel steel corrosion in contact with corium. • Steel corrosion rates in UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} coria accelerate above 1050 K. • However corrosion rates can also be limited by melt O{sub 2} supply. • The impact of this on in-vessel retention (IVR) strategy is discussed. - Abstract: During a severe accident with core meltdown, the in-vessel molten core retention is challenged by the vessel steel ablation due to thermal and physicochemical interaction of melt with steel. In accidents with oxidizing atmosphere above the melt surface, a low melting point UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} corium pool can form. In this case ablation of the RPV steel interacting with the molten corium is a corrosion process. Experiments carried out within the International Scientific and Technology Center's (ISTC) METCOR Project have shown that the corrosion rate can vary and depends on both surface temperature of the RPV steel and oxygen potential of the melt. If the oxygen potential is low, the corrosion rate is controlled by the solid phase diffusion of Fe ions in the corrosion layer. At high oxygen potential and steel surface layer temperature of 1050 °C and higher, the corrosion rate intensifies because of corrosion layer liquefaction and liquid phase diffusion of Fe ions. The paper analyzes conditions under which corrosion intensification occurs and can impact on in-vessel melt retention (IVR)

  7. Some aspects of reactor pressure vessel integrity

    International Nuclear Information System (INIS)

    Korosec, D.; Vojvodic, G.J.

    1996-01-01

    Reactor pressure vessel of the pressurized water reactor nuclear power plant is the subject of extreme interest due to the fact that presents the pressure boundary of the reactor coolant system, which is under extreme thermal, mechanical and irradiation effects. Reactor pressure vessel by itself prevents the release of fission products to the environment. Design, construction and in-service inspection of such component is governed by strict ASME rules and other forms of administrative control. The reactor pressure vessel in nuclear power plant Kriko is designed and constructed in accordance with related ASME rules. The in-service inspection program includes all requests presented in ASME Code section XI. In the present article all major requests for the periodic inspections of reactor pressure vessel and fracture mechanics analysis are discussed. Detailed and strict fulfillment of all prescribed provisions guarantee the appropriate level of nuclear safety. (author)

  8. Steel, specially for the fabrication of welded structure working under pressure in nuclear installations

    International Nuclear Information System (INIS)

    Dolbenko, E.T.; Astafiev, A.A.; Kark, G.S.

    1981-01-01

    The present invention is in the field of metallurgy. Steels have found an increasing number of applications in mechanical constructions, and notably in the construction of materials for the production of energy and for the fabrication of welded structures operating under pressure at temperatures as high as 450 0 C. A possible application is the pressurized vessels of nuclear facilities. The steels of interest contain carbon, silicon, manganese, nickel, molybdenum, vanadium, aluminium, nitrogen, phosphorus and iron, but are characterized by the fact that they also contain arsenic, tin and calcium. The sum of the weighted percentages of nickel and manganese and the weighted percentage of phosphorous are related as follows: (Ni + Mn) . P [fr

  9. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  10. On the dynamic fracture toughness and crack tip strain behavior of nuclear pressure vessel steel: Application of electromagnetic force

    International Nuclear Information System (INIS)

    Yagawa, G.; Yoshimura, S.

    1986-01-01

    This paper is concerned with the application of the electromagnetic force to the determination of the dynamic fracture toughness of materials. Taken is an edge-cracked specimen which carries a transient electric current and is simply supported in a steady magnetic field. As a result of their interaction, the dynamic electromagnetic force occurs in the whole body of the specimen, which is then deformed to fracture in the opening mode of cracking. Using the electric potential and the J-R curve methods to determine the dynamic crack initiation point in the experiment, together with the finite element method to calculate the extended J-integral with the effects of the electromagnetic force and inertia, the dynamic fracture toughness values of nuclear pressure vessel steel A508 class 3 are evaluated over a wide temperature range from lower to upper shelves. The strain distribution near the crack tip in the dynamic process of fracture is also obtained by applying a computer picture processing. (orig.)

  11. The near-threshold high R-ratio fatigue crack growth characteristics of SA508 cl III reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Achilles, R.D.; Bulloch, J.H.

    1989-01-01

    This paper describes the effect of frequency and environment on the near-threshold fatigue crack growth behaviour of SA508 cl III reactor pressure vessel (RPV) steel. The study has shown that in the near-threshold regime microstructure and environment markedly affect fatigue crack growth behaviour. In an aqueous environment, fatigue crack growth behaviour became even more sensitive to microstructure, and the fatigue crack growth rate increased by a factor of four in the case of the 3Hz test, while that for the 0.3Hz test was increased by a factor of approximately sixteen. This environmental enhancement manifested itself in the form of intergranular failure. For the 0.3Hz test the percentage intergranular failure decreased from 18% to <1% with an increase in ΔK level. The transition from microstructure-sensitive to microstructure-insensitive occurs when the cyclic plastic zone size is of the order of the prior austenite grain size. (author)

  12. Tests on model of a prestressed concrete nuclear pressure vessel with multiple cavities

    International Nuclear Information System (INIS)

    Favre, R.; Koprna, M.; Jaccoud, J.P.

    1977-01-01

    The prestressed concrete pressure vessel (prototype) is a cylinder having a diameter of 48 m and a height of 39 m. It has 25 vertical cavities (reactor, heat exchangers, heat recuperators) and 3 horizontal cavities (gas turbines of 500 kw). The cavities are closed by plugs, and their tightness is ensured by a steel lining. A model, on a scale of 1/20, made of microconcrete, was loaded in several cycles, by a uniform inner pressure in the cavities, increasing to the point of failure. The three successive stages were examined: stage of globally elastic behavior, cracking stage, ultimate stage. The behavior of the model is globally elastic up to an inner pressure of 120 to 130 kp/cm 2 , corresponding to about twice the maximum pressure of service, equal to 65 kp/cm 2 . The prestressed tendons at this stage show practically no stress increase. The first detectable cracks appear on the lateral side half-way up the model, as soon as the pressure exceeded 120 kp/cm 2 . From 150-165 kp/cm 2 , the cracking stage can be considered as achieved and the main crack pattern entirely formed. A horizontal crack continues in the middle of the barrel, as well as vertical cracks at each outer cavity. Beyond a pressure of 150-165 kp/cm 2 the ultimate stage begins. The strains of the stresses in the tendons grow more rapidly. The steel lining is highly solicited. Above about 210 kp/cm 2 the model behaves like a structure composed of a group of concrete blocks bound by the tendons and the lining. The failure (240 kp/cm 2 ) occurred through a mechanism of ejection and bending of the concrete ring at the periphery of the barrel of the vessel, which was solicited mainly in tension

  13. Foundamental characteristics of layered pressure vessel

    International Nuclear Information System (INIS)

    Moriwaki, Yoshikazu; Fugino, Masayuki; Shimizu, Yasuhiro; Nakamura, Takeshi

    1978-01-01

    Pressure vessels become larger and the working pressure become higher with the remarkable development of petroleum, chemical, thermal power generation and atomic energy industries. Multi-layered pressure vessels can be manufactured cheaply without large installations, and large wall thickness can be made, therefore they are suitable for large pressure vessels. The stress and deformation behaviors of such vessels are very complex because of the effect of frictional force working between layers. In this study, the phenomena arising in multiple layers and the difference as compared with single wall were studied fundamentally as one step for analyzing multi-layered pressure vessels as a whole. Finite element technique was employed as the analyzing method, and the behavior of multiple layers was analyzed, regarding it as multiple contact problem. The behavior of multiple layers seems to appear conspicuously in case of bending load, therefore the basic characteristics regarding bending were examined. The evaluation of interfacial stiffness was carried out by experiment. The computer program for analyzing multiple contact problem was developed. In order to examine the validity of the program, comparison with the analytical solution heretofore and the result of calculation by finite element technique was carried out. Moreover, the experimental proof with multi-layered models was made. The frictional force between layers hardly contributes to the stiffness. (Kako, I.)

  14. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  15. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-01-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  16. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter. [CGD 85-080, 61...

  17. Chemical methods for the use of niobium from pressure vessel cladding as a fast neutron dosimeter

    International Nuclear Information System (INIS)

    Karnani, Hari

    1986-08-01

    the steel samples from the cladding of a pressure vessel of an operating nuclear power reactor were obtained by scraping. The cladding material of the pressure vessel contained about 0.5 % niobium. It was desired to use the niobium as a dosimeter for estimating fast fluences at the pressure vessel. The weak radiation from the reaction product 93m Nb cannot be measured in the presence of other elements and interfering activities. A method was developed to separate niobium from other metals present; the concentration and yield of niobium were determined spectrophotometrically. The irradiated niobium was electrodeposited from aqueous solutions on copper discs. The amount of the deposited niobium was determined by a radiochemical method which makes use of its own radioactivity - measured with a liquid scintillation counter - and the known starting mass of niobium. It was possible to determine the deposited niobium masses (5 to 200 microgram) with a desired degree of accuracy. The absolute emission rate of X-rays could then be measured without any self-absorption or interference from other activities. The mass of niobium on each preparate and its X-ray emission rate, later on, were used as basic experimental data for the estimation of last neutron doses at the pressure vessel

  18. Conformable pressure vessel for high pressure gas storage

    Science.gov (United States)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  19. Evaluation of ductile-brittle transition behavior with neutron irradiation in nuclear reactor pressure vessel steels using small punch test

    International Nuclear Information System (INIS)

    Kim, M. C.; Lee, B. S.; Oh, Y. J.

    2003-01-01

    A Small Punch (SP) test was performed to evaluate the ductile-brittle transition temperature before and after neutron irradiation in Reactor Pressure Vessel (RPV) steels produced by different manufacturing (refining) processes. The results were compared to the standard transition temperature shifts from the Charpy test and Master Curve fracture toughness test in accordance with the ASTM standard E1921. The samples were taken from 1/4t location of the vessel thickness and machined into a 10x10x0.5mm dimension. Irradiation of the samples was carried out in the research reactor at KAERI (HANARO) at about 290 .deg. C of the different fluence levels respectively. SP tests were performed in the temperature range of RT to -196 .deg. C using a 2.4mm diameter ball. For the materials before and after irradiation, SP transition temperatures (T sp ), which are determined at the middle of the upper and lower SP energies, showed a linear correlation with the Charpy index temperature, T 41J . T sp from the irradiated samples was increased as the fluence level increased and was well within the deviation range of the unirradiated data. The TSP had a correlation with the reference temperature (T 0 ) from the master curve method using a pre-cracked Charpy V-notched (PCVN) specimen

  20. Compressed natural gas transportation by utilizing FRP composite pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S.C. [Trans Ocean Gas Inc., St. John' s, NF (Canada)

    2004-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). As demand for natural gas increases and with half of the world's reserves considered stranded, a method to transport natural gas by ship is needed. CNG transportation is widely viewed as a viable method. Transported as CNG, stranded gas reserves can be delivered to existing markets or can create new natural gas markets not applicable to liquefied natural gas (LNG). In contrast to LNG, compressed gas requires no processing to offload. TOG proposes that CNG be transported using fiber reinforced plastic (FRP) pressure vessels which overcome all the deficiencies of proposed steel-based systems. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. 1 fig.

  1. Heat treatments in a conventional steel to reproduce the microstructure of a nuclear grade steel

    International Nuclear Information System (INIS)

    Rosalio G, M.

    2014-01-01

    The ferritic steels used in the manufacture of pressurized vessels of Boiling Water Reactors (BWR) suffer degradation in their mechanical properties due to damage caused by the neutron fluxes of high energy bigger to a Mega electron volt (E> 1 MeV) generated in the reactor core. The materials with which the pressurized vessels of nuclear reactors cooled by light water are built correspond to low alloy ferritic steels. The effect of neutron irradiation on these steels is manifested as an increase in hardness, mechanical strength, with the consequent decrease in ductility, fracture toughness and an increase in temperature of ductile-brittle transition. The life of a BWR is 40 years, its design must be considered sufficient margin of safety because pressure forces experienced during operation, maintenance and testing of postulated accident conditions. It is necessary that under these conditions the vessel to behave ductile and likely to propagate a fracture is minimized. The vessels of light water nuclear reactors have a bainite microstructure. Specifically, the reactor vessels of the nuclear power plant of Laguna Verde (Veracruz, Mexico) are made of a steel Astm A-533, Grade B Class 1. At present they are carrying out some welding tests for the construction of a model of a BWR, however, to use nuclear grade steel such as Astm A-533 to carry out some of the welding tests, is very expensive; perform these in a conventional material provides basic information. Although the microstructure present in the conventional material does not correspond exactly to the degree of nuclear material, it can take of reference. Therefore, it is proposed to conduct a pilot study to establish the thermal treatment that reproduces the microstructure of nuclear grade steel, in conventional steel. The resulting properties of the conventional steel samples will be compared to a JRQ steel, that is a steel Astm A-533, Grade B Class 1, provided by IAEA. (Author)

  2. Reactor vessel pressure transient protection for pressurized water reactors

    International Nuclear Information System (INIS)

    Zech, G.

    1978-09-01

    During the past few years the NRC has been studying the issue of protection of the reactor pressure vessels at Pressurized Water Reactors (PWRs) from transients when the vessels are at a relatively low temperature. This effort was prompted by concerns related to the safety margins available to vessel damage as a result of such events. Nuclear Reactor Regulation Category A Technical Activity No. A-26 was established to set forth the NRC plan for resolution of the generic aspects of this safety issue. The purpose of the report is to document the completion of this generic technical activity

  3. Product consistency testing of three reference glasses in stainless steel and perfluoroalkoxy resin vessels

    International Nuclear Information System (INIS)

    Olson, K.M.; Smith, G.L.; Marschman, S.C.

    1995-03-01

    Because of their chemical durability, silicate glasses have been proposed and researched since the mid-1950s as a medium for incorporating high-level radioactive waste (HLW) generated from processing of nuclear materials. A number of different waste forms were evaluated and ranked in the early 1980s; durability (leach resistance) was the highest weighted factor. Borosilicate glass was rated the best waste form available for incorporation of HLW. Four different types of vessels and three different glasses were used to study the possible effect of vessel composition on durability test results from the Production Consistency Test (PCT). The vessels were 45-m 304 stainless steel vessels, 150-m 304 L stainless steel vessels, and 60-m perfluoroalkoxy (PFA) fluoropolymer resin vessels. The three glasses were the Environmental Assessment glass manufactured by Corning Incorporated and supplied by Westinghouse Savannah River company, and West Valley Nuclear Services reference glasses 5 and 6, manufactured and supplied by Catholic University of America. Within experimental error, no differences were found in durability test results using the 3 different glasses in the 304L stainless steel or PFA fluoropolymer resin vessels over the seven-day test period

  4. How to replace a reactor pressure vessel

    International Nuclear Information System (INIS)

    Huber, R.

    1996-01-01

    A potential life extending procedure for a nuclear reactor after, say, 40 years of service life, might in some circumstances be the replacement of the reactor pressure vessel. Neutron induced degradation of the vessel might make replacement by one of a different material composition desirable, for example. Although the replacement of heavy components, such as steam generators, has been possible for many years, the pressure vessel presents a much more demanding task if only because it is highly irradiated. Some preliminary feasibility studies by Siemens are reported for the two removal strategies that might be considered. These are removal of the entire pressure vessel in one piece and dismantling it into sections. (UK)

  5. The pressure vessel for the NSF tandem

    International Nuclear Information System (INIS)

    Jones, C.W.

    1979-04-01

    The pressure vessel is a major component of the 30 MV tandem Van de Graaff electrostatic accelerator to be used in nuclear structure research at Daresbury Laboratory. The accelerator will be capable of accelerating the full range of ions in the form of a beam. Acceleration takes place in a vertical evacuated tube (beam tube) by means of a high potential on a terminal at the central position, the terminal and beam tube assembly being supported by an insulated stack structure within the pressure vessel. Under operating conditions the vessel is filled with sulphur hexafluoride gas (SF 6 ) at high pressure which acts as an insulating medium between the centre terminal and the vessel wall. The vessel is situated inside a concrete tower which besides supporting the injector room above the vessel also acts as radiation shielding around the accelerator. The report covers: functional requirements; fundamental considerations with regard to the design and procurement; detail design; materials; manufacture; acceptance test; surface treatment; final leak test. (U.K.)

  6. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  7. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. For the purpose of evaluating this problem a state-of-the-art fracture mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure today if subjected to a Rancho Seco (1978) or TMI-2 (1979) type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  8. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. A state-of-the-art fracture-mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure in a few years if subjected to a Rancho Seco-type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  9. Results of reactor pressure vessels ISI

    International Nuclear Information System (INIS)

    Cepcek, S.

    1994-01-01

    To find out the possible influence of the annealing process to reactor pressure vessel integrity, a large in-service inspection programme has been implemented as an associated activity to reactor pressure vessel annealing. In this paper the approach to the RPV in-service inspection is shown. Also, the main results and conclusions following in-service inspection are presented. (author). 3 refs, 1 fig

  10. Problems and chances for probabilistic fracture mechanics in the analysis of steel pressure boundary reliability

    Energy Technology Data Exchange (ETDEWEB)

    Staat, M [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-12-01

    It is shown that the difficulty for probabilistic fracture mechanics (PFM) is the general problem of the high reliability of a small population. There is no way around the problem as yet. Therefore what PFM can contribute to the reliability of steel pressure boundaries is demonstrated with the example of a typical reactor pressure vessel and critically discussed. Although no method is distinguishable that could give exact failure probabilities, PFM has several additional chances. Upper limits for failure probability may be obtained together with trends for design and operating conditions. Further, PFM can identify the most sensitive parameters, improved control of which would increase reliability. Thus PFM should play a vital role in the analysis of steel pressure boundaries despite all shortcomings. (author). 19 refs, 7 figs, 1 tab.

  11. Problems and chances for probabilistic fracture mechanics in the analysis of steel pressure boundary reliability

    International Nuclear Information System (INIS)

    Staat, M.

    1996-01-01

    It is shown that the difficulty for probabilistic fracture mechanics (PFM) is the general problem of the high reliability of a small population. There is no way around the problem as yet. Therefore what PFM can contribute to the reliability of steel pressure boundaries is demonstrated with the example of a typical reactor pressure vessel and critically discussed. Although no method is distinguishable that could give exact failure probabilities, PFM has several additional chances. Upper limits for failure probability may be obtained together with trends for design and operating conditions. Further, PFM can identify the most sensitive parameters, improved control of which would increase reliability. Thus PFM should play a vital role in the analysis of steel pressure boundaries despite all shortcomings. (author). 19 refs, 7 figs, 1 tab

  12. Leak detection device for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Ikeda, Jun.

    1988-01-01

    Purpose: To test the leakage of a nuclear reactor pressure vessel during stopping for a short period of time with no change to the pressure vessel itself. Constitution: The device of the present invention comprises two O-rings disposed on the flange surface that connects a pressure vessel main body and an upper cover, a leak-off pipeway derived from the gap of the O-rings at the flange surface to the outside of the pressure vessel, a pressure detection means connected to the end of the pipeway, a humidity detection means disposed to the lead-off pipeway, a humidity detection means disposed to the lead-off pipeway, and gas supply means and gas suction means disposed each by way of a check valve to a side pipe branched from the pipeway. After stopping the operation of the nuclear reactor and pressurizing the pressure vessel by filling water, gases supplied to the gap between the O-rings at the flange surface by opening the check valve. In a case where water in the pressure vessel should leak to the flange surface, when gas suction is applied by properly opening the check valve, increase in the humidity due to the steams of leaked water diffused into the gas is detected to recognize the occurrence of leakage. (Kamimura, M.)

  13. Holographic and acoustic emission evaluation of pressure vessels

    International Nuclear Information System (INIS)

    Boyd, D.M.

    1980-01-01

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality

  14. Proof testing of an explosion containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, E.D. [Esparza (Edward D.), San Antonio, TX (United States); Stacy, H.; Wackerle, J. [Los Alamos National Lab., NM (United States)

    1996-10-01

    A steel containment vessel was fabricated and proof tested for use by the Los Alamos National Laboratory at their M-9 facility. The HY-100 steel vessel was designed to provide total containment for high explosives tests up to 22 lb (10 kg) of TNT equivalent. The vessel was fabricated from an 11.5-ft diameter cylindrical shell, 1.5 in thick, and 2:1 elliptical ends, 2 in thick. Prior to delivery and acceptance, three types of tests were required for proof testing the vessel: a hydrostatic pressure test, air leak tests, and two full design charge explosion tests. The hydrostatic pressure test provided an initial static check on the capacity of the vessel and functioning of the strain instrumentation. The pneumatic air leak tests were performed before, in between, and after the explosion tests. After three smaller preliminary charge tests, the full design charge weight explosion tests demonstrated that no yielding occurred in the vessel at its rated capacity. The blast pressures generated by the explosions and the dynamic response of the vessel were measured and recorded with 33 strain channels, 4 blast pressure channels, 2 gas pressure channels, and 3 displacement channels. This paper presents an overview of the test program, a short summary of the methodology used to predict the design blast loads, a brief description of the transducer locations and measurement systems, some of the hydrostatic test strain and stress results, examples of the explosion pressure and dynamic strain data, and some comparisons of the measured data with the design loads and stresses on the vessel.

  15. Failure internal pressure of spherical steel containments

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1985-01-01

    An application of the British CEGB's R6 Failure Assessment Approach to the determination of failure internal pressure of nuclear power plant spherical steel containments is presented. The presence of hypothetical cracks both in the base metal and in the welding material of the containment, with geometrical idealizations according to the ASME Boiler and Pressure Vessel Code (Section XI), was taken into account in order to analyze the sensitivity of the failure assessment with the values of the material fracture properties. Calculations of the elastoplastic collapse load have been performed by means of the Finite Element System SAMCEF. The clean axisymmetric shell (neglecting the influence of nozzles and minor irregularities) and two major penetrations (personnel and emergency locks) have been taken separately into account. Large-strain elastoplastic behaviour of the material was considered in the Code, using lower bounds of true stress-true strain relations obtained by testing a collection of tensile specimens. Assuming the presence of cracks in non-perturbed regions, the reserve factor for test pressure and the failure internal pressure have been determined as a function of the flaw depth. (orig.)

  16. Reactor pressure vessel status report

    International Nuclear Information System (INIS)

    Strosnider, J.; Wichman, K.; Elliot, B.

    1994-12-01

    This report gives a brief description of the reactor pressure vessel (RPV), followed by a discussion of the radiation embrittlement of RPV beltline materials and the two indicators for measuring embrittlement, the end-of-license (EOL) reference temperature and the EOL upper-shelf energy. It also summarizes the GL 92-01 effort and presents, for all 37 boiling water reactor plants and 74 pressurized water reactor plants in the United States, the current status of compliance with regulatory requirements related to ensuring RPV integrity. The staff has evaluated the material data needed to predict neutron embrittlement of the reactor vessel beltline materials. These data will be stored in a computer database entitled the reactor vessel integrity database (RVID). This database will be updated annually to reflect the changes made by the licensees in future submittals and will be used by the NRC staff to assess the issues related to vessel structural integrity

  17. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  18. Long term integrity of reactor pressure vessel and primary containment vessel after the severe accidents in Fukushima Daiichi Nuclear Power Station. Leaching property of spent oxide fuel segment and corrosion property of a carbon steel under artificial seawater immersion

    International Nuclear Information System (INIS)

    2014-06-01

    Primary containment vessel (PCV), reactor pressure vessel and pedestal in Fukushima Daiichi Nuclear power station units 1 through 3 have been exposed to severe thermal, chemical and mechanical conditions due to core meltdown events and seawater injections for emergent core cooling. These components will be immersed in diluted seawater with dissolved fission products under irradiation until the end of debris removal. Fresh water injected into the cores contacts with debris to cool, dissolves or erodes their constituents, mixed with retained water, and becomes 'accumulated water' with radioactive nuclides. We have focused the leaching of fission products into the accumulated water under lower temperature (323 K). FUGEN spent oxide fuel segments were immersed to determine the leaching factor of fission product and actinide elements. Since PCV made from carbon steel is one of the most important boundaries to prevent from fission products release, corrosion behavior has been paid attention to evaluate their integrity. Carbon steel specimens were immersion- and electrochemical-tested in diluted seawater with simulants of the accumulated water at 323 K in order to evaluate the effect of fission products in particular cesium and radiation. (author)

  19. Computerized reactor pressure vessel materials information system

    International Nuclear Information System (INIS)

    Strosnider, J.; Monserrate, C.; Kenworthy, L.D.; Tether, C.D.

    1980-10-01

    A computerized information system for storage and retrieval of reactor pressure vessel materials data was established, as part of Task Action Plan A-11, Reactor Vessel Materials Toughness. Data stored in the system are necessary for evaluating the resistance of reactor pressure vessels to flaw-induced fracture. This report includes (1) a description of the information system; (2) guidance on accessing the system; and (3) a user's manual for the system

  20. Pressure vessel for a BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To prevent the retention of low temperature water and also prevent the thermal fatigue of the pressure vessel by making large the curvature radius of a pressure vessel of a feed water sparger fitting portion and accelerating the mixing of low-temperature water at the feed water sparger base and in-pile hot water. Constitution: The curvature radius of the corner of the feed water sparger fitting portion in a pressure vessel is formed largely. In-pile circulating water infiltrates up to the base portion of the feed water sparger to carry outside low-temperature water at the base part, which is mixed with in-pile hot water. Accordingly, low temperature water does not stay at the base portion of the feed water sparger and generation of thermal fatigue in the pressure vessel can be prevented and the safety of the BWR type reactor can be improved. (Yoshino, Y.)

  1. Dismantling id the reactor pressure vessel insulation and dissecting of the MZFR reactor pressure vessel

    International Nuclear Information System (INIS)

    Loeb, Andreas; Stanke, Dieter; Thoma, Markus; Eisenmann, Beata; Prechtl, Erwin; Dehnke, Burckhard

    2008-01-01

    The MZFR reactor was decommissioned in 1984. The authors describe the dismantling of the reactor pressure vessel insulation that consists of asbestos containing mineral fiber wool. The appropriate remote handling and cutting tools had to be adapted with respect to the restrained space in the containment. The dismantling of the reactor pressure vessel has been completed, the dissected parts have been packaged into 200 containers for the final repository Konrad. During the total project time no reportable events and no damage to persons occurred.

  2. Heat treatment device for extending the life of a pressure vessel, particularly a reactor pressure vessel

    International Nuclear Information System (INIS)

    Krauss, P.; Mueller, E.; Poerner, H.; Weber, R.

    1979-01-01

    A support body in the form of an insulating cylinder is tightly sealed by connected surfaces at its outer circumference to the inner wall of the pressure vessel. It forms an annular heating space. The heat treatment or tempering of the pressure vessel takes place with the reactor space empty and screened from the outside by ceiling bolts. Heating gas or an induction winding can be used as the means of heating. (DG) [de

  3. Creep deformation and crack growth in a low alloy steel welded pressure vessel containing defects

    International Nuclear Information System (INIS)

    Coleman, M.C.

    1982-01-01

    A full-size pressure vessel was tested for effects of welding residual stresses on creep deformation and crack growth. The vessel, based on 1/2 Cr 1/2 Mo 1/4 V main steam pipe, contained four 2CrMo manual metal arc welds, two in the as-welded condition and two stress-relieved. All the welds contained pre-existing defects machined in the heat affected zones. Testing was carried out at two internal steam pressures, 250 and 350 bar, and 565 0 C. Cracked and uncracked areas of the vessel were monitored continuously. Results are presented for the continuous creep deformation observed in both the hoop and axial directions of the welds throughout the 11,400 h of testing, as well as the intermittent strain data obtained during inspections. Crack growth observations are described based on nondestructive examination. The residual stresses measured are also given for both the as-welded and stress relieved weldments. Results obtained are discussed in terms of the effects of welding residual stress on the hoop and axial deformations observed in the welds. Similarly, the effects of residual stress on creep crack growth are considered together with compositional and microstructural implications. 9 figures, 5 tables

  4. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Science.gov (United States)

    2010-10-01

    ... that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure piping... tests conducted in accordance with this section shall be either hydrostatic tests or pneumatic tests. (1... times the maximum allowable working pressure. (2) When a pneumatic test is conducted on a pressure...

  5. Pressure vessel integrity and weld inspection procedure

    International Nuclear Information System (INIS)

    Solomon, K.A.; Okrent, D.; Kastenberg, W.E.

    1975-01-01

    The primary objective of this paper is to develop a simple methodology which, when coupled with existing observations on pressure vessel behavior, provides an inter-relation between pressure vessel integrity, and the parameters of the in-service inspection program, including inspection sample size, frequency and efficiency. A modified Markov process is employed and a computer code was written to obtain numerical results. The Markov process mathematically describes the following physical events. In a nuclear reactor pressure vessel weld, some defects may exist prior to the zeroth inspection (i.e., prior to vessel operation). During the zeroth inspection and repair processes, some of these defects are removed. During the first cycle of vessel operation, the existing defects may grow and some new defects may be generated. Those defects that are found at the first (and succeeding) inspection interval and warrant repair, are repaired. The above process continues through several operating cycles to the end of vessel life. During any inspection, only a portion of the welds may be inspected, and with less than perfect efficiency

  6. Strain ageing in welds of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Otterberg, R.; Karlsson, C.

    1979-01-01

    Static and dynamic strain ageing have been investigated on submerged-arc welds and repair welds from plates of the pressure vessel steel A 533B. The results permit the determination of the worst strain ageing conditions existing in a nuclear pressure vessel. Static strain ageing was investigated by means of data from tension tests, hardness measurements and Charpy-V impact properties for prestrained and aged material for ageing temperatures from room temperature to 350 deg C and ageing times up to 1000h. Dynamic strain ageing was investigated by tensile tests up to 350 deg C at different strain rates. At the most static strain ageing was found to increase the impact transition temperature from -75 deg C in the as-received condition to -55 deg C after prestraining and ageing for the plate material, from -35 to -10 deg C for the submerged arc weld and from -90 to -40 deg C for the repair weld. Approximately 10 deg C of the deleterious effect is due to the effect of ageing for the two former materials whereas the corresponding figure for the repair weld amounts to 35 deg C. The dynamic strain ageing is strongest at very low strain rates at temperatures just below 300 deg C. The effect of strain ageing can be reduced by stress relief heat treatment or by other means decreasing the content of nitrogen in solution. (author)

  7. Prestressed pressure vessel for nuclear power plants

    International Nuclear Information System (INIS)

    1974-01-01

    The pressure vessel consists of a wall, a bottom, and a closure head, the wall being composed of annular segments. The closure head can be seated on the edge of the wall. Wall and closure head have got axial prestressing channels in which through-going steel tendons are arranged. They are concentrated in bundles and held above the head by anchoring devices. Within the prestressing channels of the head there are supporting jackets attached to the edge of the wall and projecting from the head through a coller. The anchoring devices, e.g. anchoring plates, may be optionally supported on the collars of the supporting jackets or on the closure head by means of auxiliary devices. The auxiliary devices for this purpose consist of extension nuts attached to the anchoring plates and closure head connecting shells. The closure head therefore may be drawn off over the anchoring devices. (DG) [de

  8. Development of advanced low alloy steel for nuclear RPV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Shin, K. S.; Lee, S. H.; Lee, B. J. [Seoul National Univ., Seoul (Korea)

    2000-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining toughness is more difficult than strength. When taking into account the loss of toughness due to neutron irradiation, attaining as low transition temperature as possible prior to operation is a critical task in the production of nuclear pressure vessels. In the present study, we investigated detrimental microstructural features of SA508III steels to toughness, then alloy design directions to achieve improved mechanical properties were devised. The next step of alloy design was determined based on phase equilibrium thermodynamics and obtained results. Low carbon low alloy steels having low transition temperatures with enough strength and hardenability were developed. Microstructure and mechanical properties of HAZ of SA508III steels and alloy designed steels were investigated. 22 refs., 147 figs., 38 tabs. (Author)

  9. Reactor pressure vessel support

    International Nuclear Information System (INIS)

    Butti, J.P.

    1977-01-01

    A link and pin support system provides the primary vertical and lateral support for a nuclear reactor pressure vessel without restricting thermally induced radial and vertical expansion and contraction. (Auth.)

  10. Radiation effects on reactor pressure vessel supports

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1996-05-01

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue

  11. Recent evaluation of 'wet' thermal annealing to resolve reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Server, W.L.; Biemiller, E.C.

    1993-01-01

    Prior to the decision to close the Yankee Rowe plant in 1992, a great deal of effort was expended in trying to resolve the degree of neutron embrittlement that the reactor pressure vessel had experienced after 30 years of operation. One mitigative measure that was examined in detail was the possibility of performing a relatively low temperature thermal anneal (at approximately 650 deg. F) to partially restore the original design level of mechanical properties of the reactor pressure vessel beltline region which were lost due to the neutron radiation exposure. This low temperature anneal was to involve heating of the primary coolant water using pump heat in a similar manner as that used to anneal the Belgian BR-3 reactor pressure vessel in the early 1980s. This 'wet' anneal was successful in recovering mechanical properties for the BR-3 vessel, but the extent of the recovery, as well as the rate of re-embrittlement after the anneal, were issues that were difficult to quantify since the exact reactor pressure vessel steels were not available for experimental verification. For the case of Yankee Rowe, material was available from past surveillance programs for at least one of the materials in the vessel, as well as materials obtained from various sources which could act as bounding surrogates. An irradiation /annealing/reirradiation program was developed to better quantify the degree of recovery and re-embrittlement for these materials, but this program was halted before significant test results were obtained. Prior to the initiation of the testing program, a review of past annealing data was performed and the data were scrutinized for direct relevance to the annealing response of the Yankee Rowe vessel. This paper discusses the results derived from this review. The results from the critical review of the past annealing data indicated that a 'wet' anneal of the Yankee Rowe vessel may have been successful in reducing the degree of embrittlement to the point that the

  12. Magnetic and electrical properties of ITER vacuum vessel steels

    International Nuclear Information System (INIS)

    Mergia, K.; Apostolopoulos, G.; Gjoka, M.; Niarchos, D.

    2007-01-01

    Full text of publication follows: Ferritic steel AISI 430 is a candidate material for the lTER vacuum vessel which will be used to limit the ripple in the toroidal magnetic field. The magnetic and electrical properties and their temperature dependence in the temperature range 300 - 900 K of AISI 430 ferritic stainless steels are presented. The temperature variation of the coercive field, remanence and saturation magnetization as well as electrical resistivity and the effect of annealing on these properties is discussed. (authors)

  13. Nickel hydrogen common pressure vessel battery development

    Science.gov (United States)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  14. Pressurized wet digestion in open vessels (T11)

    International Nuclear Information System (INIS)

    Kettisch, P.; Maichin, P.; Zischka, M.; Knapp, G.

    2002-01-01

    Full text: Pressurized wet digestion in closed vessels, microwave assisted or with conventional conductive heating, is the most important sample preparation technique for digestion or leaching procedures in element analysis. In comparison to open vessel digestion closed vessel digestion methods have many advantages, but there is one disadvantage - complex and expensive vessel designs. A new technique - pressurized wet digestion in open vessels - combine the advantages of closed vessel sample digestion with the application of simple and cheap open vessels made of quartz or PFA. The vessels are placed in a high pressure Asher HPA, which is adapted with a Teflon liner and filled partly with water. The analytical results with 30 ml quartz vessels, 22 ml PFA vessels and 1.5 ml PIA auto sampler cups will be shown. In principle every dimensions of vessels can be used. The vessels are loaded with sample material (max. 1.5 g with quartz vessels, max. 0.5 g with PFA vessels and 50 mg with auto sampler cups) and digestion reagent. Afterwards the vessels are simply covered with PTFE stoppers and not sealed. The vessels are transferred into a special adapted HPA and digested at temperatures up to 270 o C. The digestion time is 90 min. and cooling down to room temperature 30 min. The analytical results of CRM's are within the certified values and no cross contamination and losses of volatile elements could be observed. (author)

  15. Assessment of Radiation Embrittlement in Nuclear Reactor Pressure Vessel Surrogate Materials

    Science.gov (United States)

    Balzar, Davor

    2010-10-01

    The radiation-enhanced formation of small (1-2 nm) copper-rich precipitates (CRPs) is critical for the occurrence of embrittlement in nuclear-reactor pressure vessels. Small CRPs are coherent with the bcc matrix, which causes local matrix strain and interaction with the dislocation strain fields, thus impeding dislocation mobility. As CRPs grow, there is a critical size at which a phase transformation occurs, whereby the CRPs are no longer coherent with the matrix, and the strain is relieved. Diffraction-line-broadening analysis (DLBA) and small-angle neutron scattering (SANS) were used to characterize the precipitate formation in surrogate ferritic reactor-pressure vessel steels. The materials were aged for different times at elevated temperature to produce a series of specimens with different degrees of copper precipitation. SANS measurements showed that the precipitate size distribution broadens and shifts toward larger sizes as a function of ageing time. Mechanical hardness showed an increase with ageing time, followed by a decrease, which can be associated with the reduction in the number density as well as the loss of coherency at larger sizes. Inhomogeneous strain correlated with mechanical hardness.

  16. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  17. Detection and characterization of flaws in segments of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; McClung, R.W.

    1988-01-01

    Studies have been conducted to determine flaw density in segments cut from light water reactor )LWR) pressure vessels as part of the Oak Ridge National Laboratory's Heavy-Section Steel Technology (H SST) Program. Segments from the Hope Creek Unit 2 vessel and the Pilgrim Unit 2 Vessel were purchased from salvage dealers. Hope Creek was a boiling water reactor (BWR) design and Pilgrim was a pressurized water reactor (PWR) design. Neither were ever placed in service. Objectives were to evaluate these LWR segments for flaws with ultrasonic and liquid penetrant techniques. Both objectives were successfully completed. One significant indication was detected in a Hope Creek seam weld by ultrasonic techniques and characterized by further analyses terminating with destructive correlation. This indication [with a through-wall dimension of ∼6 mm (∼0.24 in.)] was detected in only 3 m (10 ft) of weldment and offers extremely limited data when compared to the extent of welding even in a single pressure vessel. However, the detection and confirmation of the flaw in the arbitrarily selected sections implies the Marshall report estimates (and others) are nonconservative for such small flaws. No significant indications were detected in the Pilgrim material by ultrasonic techniques. Unfortunately, the Pilgrim segments contained relatively little weldment; thus, we limited our ultrasonic examinations to the cladding and subcladding regions. Fluorescent liquid penetrant inspection of the cladding surfaces for both LWR segments detected no significant indications [i.e., for a total of approximately 6.8 m 2 (72 ft 2 ) of cladding surface]. (author)

  18. Pressure vessel rupture within a chamber: the pressure history on the chamber wall

    International Nuclear Information System (INIS)

    Baum, M.R.

    1989-04-01

    Generally there is a large number of pressure vessels containing high pressure gas on power stations and chemical plant. In many instances, particularly on power plant, these vessels are within the main building. If a pressure vessel were to fail, the surrounding structures would be exposed to blast loads and the forces resulting from jets of fluid issuing from the breached vessel. In the case where the vessel is in a relatively closed chamber there would also be a general overpressurisation of the chamber. At the design stage it is therefore essential to demonstrate that the plant could be safely shut down in the event of a pressure vessel failure, that is, it must be shown that the chamber will not collapse thus putting the building at risk or hazarding equipment essential for a safe shut down. Such an assessment requires the loads applied to the chamber walls, roof, etc. to be known. (author)

  19. Procurement of replacement pressure vessels for MURR

    International Nuclear Information System (INIS)

    Meyer, W.A. Jr.; Edwards, C.B. Jr.; McKibben, J.C.; Schoone, A.R.

    1989-01-01

    The University of Missouri Research Reactor Facility (MURR) located in Columbia, Missouri, is the highest powered, highest steady-state flux university research reactor in the United States. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-reflected, flux trap reactor. MURR has a compact core (0.033 m 3 ) composed of eight fuel elements of the materials test reactor type arranged as an annular right circular cylinder between the inner and outer aluminum pressure vessels. Conservative engineering judgment resulted in the decision in 1988 to purchase new inner and outer pressure vessels. This paper details the difficulties encountered in procuring replacements for aluminum pressure vessels built to standards that are no longer applicable in attempting to meet nuclear standards that are not applicable to nonferrous material

  20. Nuclear reactor pressure vessel flaw distribution development

    International Nuclear Information System (INIS)

    Kennedy, E.L.; Foulds, J.R.; Basin, S.L.

    1991-12-01

    Previous attempts to develop flaw distributions for probabilistic fracture mechanics analyses of pressurized water reactor (PWR) vessels have aimed at the estimation of a ''generic'' distribution applicable to all PWR vessels. In contrast, this report describes (1) a new flaw distribution development analytic methodology that can be applied to the analysis of vessel-specific inservice inspection (ISI) data, and (2) results of the application of the methodology to the analysis of flaw data for each vessel case (ISI data on three PWR vessels and laboratory inspection data on sections of the Midland reactor vessel). Results of this study show significant variation among the flaw distributions derived from the various data sets analyzed, strongly suggesting than a vessel-specific flaw distribution (for vessel integrity prediction under pressurized thermal shock) is preferred over a ''generic'' distribution. In addition, quantitative inspection system flaw sizing accuracy requirements have been identified for developing a flaw distribution from vessel ISI data. The new flaw data analysis methodology also permits quantifying the reliability of the flaw distribution estimate. Included in the report are identified needs for further development of several aspects of ISI data acquisition and vessel integrity prediction practice

  1. Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence

    International Nuclear Information System (INIS)

    Pachur, D.

    1982-01-01

    Heat treatment after irradiation of reactor pressure vessel steels showed annealing of irradiation embrittlement. Depending on the irradiation temperature, the embrittlement started to anneal at about 220 0 C and was completely annealed at 500 0 C with 4 h of annealing time. The annealing behavior was normally measured in terms of the Vickers hardness increase produced by irradiation relative to the initial hardness as a function of the annealing temperature. Annealing results of other mechanical properties correspond to hardness results. During annealing, various recovery mechanisms occur in different temperature ranges. These are characterized by activation energies from 1.5 to 2.1 eV. The individual mechanisms were determined by the different time dependencies at various temperatures. The relative contributions of the mechanisms showed a neutron fluence dependence, with the lower activation energy mechanisms being predominant at low fluence and vice versa. In the temperature range where partial annealing of a mechanism took place during irradiation, an increase in activation energy was observed. Trend curves for the increase in transition temperature with irradiation, for the relative increase of Vickers hardness and yield strength, and for the relative decrease of Charpy-V upper shelf energy are interpreted by the behavior of different mechanisms

  2. Expanded Fermilab pressure vessel directory program

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, A.

    1983-01-01

    Several procedures have been written to manage the information pertaining to the vacuum tanks and pressure vessels for which the laboratory is responsible. These procedures have been named TANK1 for the vessels belonging to the Accelerator Division, TANK2 and TANK3 for the vessels belonging to the Research Division and to Technical Support respectively, and TANK4 for the vessels belonging to the Business Division. The operating procedures are otherwise identical in every respect.

  3. Expanded Fermilab pressure vessel directory program

    International Nuclear Information System (INIS)

    Tanner, A.

    1983-01-01

    Several procedures have been written to manage the information pertaining to the vacuum tanks and pressure vessels for which the laboratory is responsible. These procedures have been named TANK1 for the vessels belonging to the Accelerator Division, TANK2 and TANK3 for the vessels belonging to the Research Division and to Technical Support respectively, and TANK4 for the vessels belonging to the Business Division. The operating procedures are otherwise identical in every respect

  4. Trends in steel technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants

  5. Standard Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards, E706(0)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel (PV) and support structure steels throughout a pressure vessel's service life (Fig. 1). Some of these are existing ASTM standards, some are ASTM standards that have been modified, and some are proposed ASTM standards. General requirements of content and consistency are discussed in Section 6 . More detailed writers' and users' information, justification, and specific requirements for the nine practices, ten guides, and three methods are provided in Sections 3-5. Referenced documents are discussed in Section 2. The summary-type information that is provided in Sections 3 and 4 is essential for establishing proper understanding and communications between the writers and users of this set of matrix standards. It was extracted from the referenced documents, Section 2 and references (1-106) for use by individual writers and users. 1...

  6. Program to develop acoustic emission: flaw relationship for inservice monitoring of nuclear pressure vessels. Progress report No. 1, July 1, 1976--February 1, 1977

    International Nuclear Information System (INIS)

    Hutton, P.H.; Schwenk, E.B.

    1977-03-01

    This is a laboratory research program to characterize acoustic emission (AE) from flaw growth and noise from innocuous sources in A533B Class 1 pressure vessel steel. The objectives are: characterize AE from a limited range of defects and material property conditions of concern to reactor pressure vessel integrity; characterize AE from innocuous sources (including defects); develop criteria for distinguishing significant flaws from innocuous sources; and develop an AE flaw damage model to serve as a basis for relating in-service AE to pressure vessel integrity. The purpose of the program is to build an experimental evaluation of the feasibility of detecting and analyzing flaw growth in reactor pressure boundaries by continuously monitoring for AE. A detailed program plan in the form of an analysis-before-test document has been prepared and approved

  7. Ultrasound periodic inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Haniger, L.

    1980-01-01

    Two versions are described of ultrasonic equipment for periodic inspections of reactor pressure vessels. One uses the principle of exchangeable programmators with solid-state logic while the other uses programmable logic with semiconductor memories. The equipment is to be used for inspections of welded joints on the upper part of the V-1 reactor pressure vessel. (L.O.)

  8. Steels and welding nuclear

    International Nuclear Information System (INIS)

    Sessa, M.; Milella, P.P.

    1987-01-01

    This ENEA Data-Base regards mechanical properties, chemical composition and heat treatments of nuclear pressure vessel materials: type A533-B, A302-B, A508 steel plates and forgings, submerged arc welds and HAZ before and after nuclear irradiation. Irradiation experiments were generally performed in high flux material test reactors. Data were collected from international available literature about water nuclear reactors pressure vessel materials embrittlement

  9. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  10. Reactor pressure vessel integrity research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Corwin, W.R.; Pennell, W.E.; Pace, J.V.

    1995-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the integrity inherent in the RPV. For this reason, the U.S. Nuclear Regulatory Commission has established the related research programs at ORNL described herein to provide for the development and confirmation of the methods used for: (1) establishing the irradiation exposure conditions within the RPV in the Embrittlement Data Base and Dosimetry Evaluation Program, (2) assessing the effects of irradiation on the RPV materials in the Heavy-Section Steel Irradiation Program, and (3) developing overall structural and fracture analyses of RPVs in the Heavy-Section Steel Technology Program

  11. Preliminary investigation of ultrasonic shear wave holography with a view to the inspection of pressure vessels

    International Nuclear Information System (INIS)

    Aldridge, E.E.; Clare, A.B.; Shepherd, D.A.

    1975-01-01

    The manner in which holography would fit into the general scheme of pressure vessel inspection is discussed. Compared to conventional A, B and C presentations holography requires a different processing of the ultrasonic signal and a mechanical scan which may be more demanding than that normally provided for a C display. Preliminary results are presented of the examination of artificial defects in steel plate using shear wave holography. (author)

  12. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  13. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel containing the heat source, an outer shell enclosing the primary pressure vessel and acting as a secondary means of containment for this vessel against outside projectiles. Multiple auxiliary equipment points are arranged outside the outer shell which comprises a part of a lower wall around the primary pressure vessel, an annular part integrated in the lower wall and extending outwards as from this wall and an upper part integrated in the annular part and extending above this annular part and above the primary pressure vessel. The annular part and the primary pressure vessel are formed with vertical penetrations which can be closed communicating respectively with the auxiliary equipment points and with inside the pressure vessel whilst handling gear is provided in the upper part for vertically raising reactor components through these penetrations and for transporting them over the annular part and over the primary pressure vessel [fr

  14. Interaction between molten corium UO2+x-ZrO2-FeOy and VVER vessel steel

    International Nuclear Information System (INIS)

    Bechta, S. V.; Granovsky, V. S.; Khabensky, V. B.; Krushinov, E. V.; Vitol, S. A.; Sulatsky, A. A.; Gusarov, V. V.; Almiashev, V. I.; Lopukh, D. B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2010-01-01

    In case of in-vessel corium retention during a severe accident in a light water reactor, weakening of the vessel wall and deterioration of the vessel steel properties can be caused both by the melting of the steel and by its physicochemical interaction with corium. The interaction behavior has been studied in medium-scale experiments with prototypic corium. The experiments yielded data for the steel corrosion rate during interaction with UO 2+x -ZrO 2 -FeO y melt in air and steam at different steel surface temperatures and heat fluxes from the corium to the steel. It has been observed that the corrosion rates in air and steam atmosphere are almost the same. Further, if the temperature at the interface increases beyond a certain level, corrosion intensifies. This is explained by the formation of liquid phases in the interaction Zone. The available experimental data have been used to develop a correlation for the corrosion rate as a function of temperature and heat flux. (authors)

  15. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-01-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  16. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  17. Unaxial stress relaxation and creep behaviour in weldments of the pressure vessel steel A533B between 600 and 640 degree C

    International Nuclear Information System (INIS)

    Otterberg, R.

    1979-10-01

    In order to predict the stress reduction during stress relief heat treatment in welded joints of the pressure vessel steel A533B, uniaxial stress relaxation as well as creep tests have been performed. The specimens were isothermally stress relaxed between 600 and 640 degree C from initial stresses corresponding to specimen elongations of 0.25, 0.5 and 0.2 percent. The stress relaxation results are excellently described by a Norton relationship. The magnitude of the initial stress has been found to affect the stress relaxation in the beginning of the tests, but at times longer than one hour the effect is very small. Creep strain data from creep tests in the actual temperature interval was converted to describe stress relaxation behaviour as well. The results will be used in a forthcoming study to predict the multiaxial stress reduction in thick weldments of A533B. (author)

  18. Burst pressure investigation of filament wound type IV composite pressure vessel

    Science.gov (United States)

    Farhood, Naseer H.; Karuppanan, Saravanan; Ya, H. H.; Baharom, Mohamad Ariff

    2017-12-01

    Currently, composite pressure vessels (PVs) are employed in many industries such as aerospace, transportations, medical etc. Basically, the use of PVs in automotive application as a compressed natural gas (CNG) storage cylinder has been growing rapidly. Burst failure due to the laminate failure is the most critical failure mechanism for composite pressure vessels. It is predominantly caused by excessive internal pressure due to an overfilling or an overheating. In order to reduce fabrication difficulties and increase the structural efficiency, researches and studies are conducted continuously towards the proper selection of vessel design parameters. Hence, this paper is focused on the prediction of first ply failure pressure for such vessels utilizing finite element simulation based on Tsai-Wu and maximum stress failure criterions. The effects of laminate stacking sequence and orientation angle on the burst pressure were investigated in this work for a constant layered thickness PV. Two types of winding design, A [90°2/∓θ16/90°2] and B [90°2/∓θ]ns with different orientations of helical winding reinforcement were analyzed for carbon/epoxy composite material. It was found that laminate A sustained a maximum burst pressure of 55 MPa for a sequence of [90°2/∓15°16/90°2] while the laminate B returned a maximum burst pressure of 45 MPa corresponding to a stacking sequence of [90°2/±15°/90°2/±15°/90°2/±15° ....] up to 20 layers for a constant vessel thickness. For verification, a comparison was done with the literature under similar conditions of analysis and good agreement was achieved with a maximum difference of 4% and 10% for symmetrical and unsymmetrical layout, respectively.

  19. Firefighter's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  20. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P H; Ahlstroem, P E; Pershagen, B

    1961-04-15

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D{sub 2}O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D{sub 2}O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960.

  1. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    International Nuclear Information System (INIS)

    Margen, P.H.; Ahlstroem, P.E.; Pershagen, B.

    1961-04-01

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D 2 O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D 2 O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960

  2. Technology development and production of elongated shell for reactor vessel active zone of WWER-TOI project from steel 15Cr2NiMoVN class 1

    International Nuclear Information System (INIS)

    Shklyaev, S.Eh.; Titova, T.I.; Ratushev, D.V.; Shul'gan, N.A.; Eroshkin, S.B.; Durynin, V.A.; Efimov, S.V.; Dub, V.S.; Kulikov, A.P.; Romashkin, A.N.

    2015-01-01

    Production process for the elongated shell blank of the active zone of the reactor pressure vessel made from steel 15Cr2NiMoVN Class 1 with finished sizes Dext=4.655 mm, Dint=4.240 mm, H=4.910 mm (height for heat treatment – 5.750 mm) is presented. For the first time in Russia in production site of OMZ-Special steel LLC a unique elongated shell blank of the reactor vessel active zone was made from ingot 420.0 t for WWER-TOI project fully meeting the specified requirements in terms of metallurgical quality and set of service properties [ru

  3. Proof, interpretation and evaluation of radiation-induced microstructural changes in WWER reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Boehmert, J.; Gokhman, A.; Grosse, M.; Ulbricht, A.

    2003-06-01

    Neutron embrittlement is a special issue for the VVER-type reactors. One of the fundamentals for a reliable assessment of the current material state is knowledge of the causes and mechanisms of neutron embrittlement. The aim of the project is to understand and to quantify the microstructural appearances due to neutron radiation in VVER-type reactor pressure vessel steels. The material base is a broad variation of irradiation probes taken from the irradiation programme Rheinsberg, surveillance programmes of Russian, Ukrainian or Hungarian NPPs or irradiation experiments with mockup-alloys. The microstructure was investigated by different methods. The small angle neutron scattering (SANS) proved to be the most suitable method. A procedure was developed to determine mean diameter, size distribution and volume fraction of irradiation-induced microstructure from SANS experiments in a reliable and comparable manner. With this method microstructural parameters were systematically determined and the main factors of influence were identified. Apart from the neutron fluence the volume fraction of radiation defects mainly changes with the copper or nickel content whereas phosphorus is hardly relevant. Annealing remedies the radiation-induced microstructural appearances. The ratio between nuclear and magnetic neutron scattering provides information on the type of radiation defects. This leads to the conclusion that the material composition changes the radiation defects. The change occurs gradually rather than abruptly. The radiation defects detected by SANS correlate with the radiation hardening and embrittlement. Generally, the results suggest a bimodal mechanism due to radiation-enhanced and radiation-induced defect evolution. A kinetic model on base of the rate theory approach was established. (orig.)

  4. Stress analysis of pressure vessels

    International Nuclear Information System (INIS)

    Kim, B.K.; Song, D.H.; Son, K.H.; Kim, K.S.; Park, K.B.; Song, H.K.; So, J.Y.

    1979-01-01

    This interim report contains the results of the effort to establish the stress report preparation capability under the research project ''Stress analysis of pressure vessels.'' 1978 was the first year in this effort to lay the foundation through the acquisition of SAP V structural analysis code and a graphic terminal system for improved efficiency of using such code. Software programming work was developed in pre- and post processing, such as graphic presentation of input FEM mesh geometry and output deformation or mode shope patterns, which was proven to be useful when using the FEM computer code. Also, a scheme to apply fracture mechanics concept was developed in fatigue analysis of pressure vessels. (author)

  5. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Greenhalgh, F.G.

    1975-01-01

    An apparatus is described for moving an ultrasonic scanning mechanism over the interior surface of a pressure vessel and comprising a mast for supporting the scanning mechanism inside the vessel and a carriage for traversing the mast within the vessel, the mast being pivotably secured to the carriage so that when the ultrasonic scanning mechanism contacts the interior surface of the pressure vessel the mast is caused to pivot. (auth)

  6. Nonlinear analysis of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Berg, S.; Loeseth, S.; Holand, I.

    1977-01-01

    A computational model for circular symmetric reinforced concrete shell problems is described. The model is based on the Finite Element Method. Non-linear stress-strain constitutive relations are used for the concrete, the reinforcement and for the liner. The reinforcement layers may be of different steel qualities. Each layer may be given a specified prestressing. This can be done at the beginning of the computations or the specific reinforcement layer can be considered inactive until a specified level of loading is reached. Thus, the prestressing procedure may also be analyzed in detail. Bond-slip effects are not accounted for. However, no bond may be assumed for prestressing cables by inserting special reinforcement elements. Several models of prestressed concrete reactor pressure vessels which have been tested up to rupture have been analysed. Analytical (numerical) models for reinforced concrete are also discussed on a more general basis. (Auth.)

  7. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  8. Development of a shallow-flaw fracture assessment methodology for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Dickson, T.L.; McAfee, W.J.; Pennell, W.E.

    1996-01-01

    Shallow-flaw fracture technology is being developed within the Heavy-Section Steel Technology (HSST) Program for application to the safety assessment of radiation-embrittled nuclear reactor pressure vessels (RPVs) containing postulated shallow flaws. Cleavage fracture in shallow-flaw cruciform beam specimens tested under biaxial loading at temperatures in the lower transition temperature range was shown to be strain-controlled. A strain-based dual-parameter fracture toughness correlation was developed and shown to be capable of predicting the effect of crack-tip constraint on fracture toughness for strain-controlled fracture. A probabilistic fracture mechanics (PFM) model that includes both the properties of the inner-surface stainless-steel cladding and a biaxial shallow-flaw fracture toughness correlation gave a reduction in probability of cleavage initiation of more than two orders of magnitude from an ASME-based reference case

  9. Experience in dismantling and packaging of pressure vessel and core internals

    International Nuclear Information System (INIS)

    Pillokat, Peter; Bruhn, Jan Hendrik

    2011-01-01

    Nuclear Company AREVA is proud to look back on versatile experience in successfully dismantling nuclear components. After performing several minor dismantling projects and studies for nuclear power plants, AREVA completed the order for dismantling of all remaining Reactor Pressure Vessel internals at German Boiling Water Reactor Wuergassen NPP in October '08. During the onsite activities about 121 tons of steel were successfully cut and packed under water into 200l- drums, as the dismantling was performed partly in situ and partly in an underwater working tank. AREVA deployed a variety of different cutting techniques such as band sawing, milling, nibbling, compass sawing and water jet cutting throughout this project. After successfully finishing this task, AREVA dismantled the cylindrical part of the Wuergassen Pressure Vessel. During this project approximately 320 tons of steel were cut and packaged for final disposal, as dismantling was mainly performed by on air use of water jet cutting with vacuum suction of abrasive and kerfs material. The main clue during this assignment was the logistic challenge to handle and convey cut pieces from the pressure vessel to the packing area. For this, an elevator was installed to transport cut segments into the turbine hall, where a special housing was built for final storage conditioning. At the beginning of 2007, another complex dismantling project of great importance was acquired by AREVA. The contract included dismantling and conditioning for final storage of the complete RPV Internals of the German Pressurized Water Reactor Stade NPP. Very similar cutting techniques turned out to be the proper policy to cope this task. On-site activities took place in up to 5 separate working areas including areas for post segmentation and packaging to perform optimized parallel activities. All together about 85 tons of Core Internals were successfully dismantled at Stade NPP until September '09. To accomplish the best possible on

  10. Initial evaluation of ultrasonic attenuation measurements for estimating fracture toughness of RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. Jr.; Green, R.E. Jr. [Johns Hopkins Univ., Baltimore, MD (United States). Center for Nondestructive Evaluation

    1999-08-01

    Neutron bombardment of reactor pressure vessel (RPV) steels causes reductions in fracture toughness in these steels, termed neutron irradiation embrittlement. Currently, there are no accepted methods for nondestructive determination of the extent of the irradiation embrittlement nor the actual fracture toughness of the reactor pressure vessel. This paper provides initial results of an effort addressing the use of ultrasonic attenuation as a suitable parameter for nondestructive determination of irradiation embrittlement in RPV steels. (orig.)

  11. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  12. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1998-01-01

    The irradiation embrittlement of nuclear reactor pressure vessels (RPV) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. The objective of this work was to analyze the pertinent data and develop quantitative models for estimating the recovery in 41 J (30 ft-lb) Charpy transition temperature (TT) and Charpy upper shelf energy (USE) due to annealing. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Models were developed based on a combination of statistical techniques, including pattern recognition and transformation analysis, and the current understanding of the mechanisms governing embrittlement and recovery. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and a surrogate hardness data base. This work demonstrates that microhardness recovery is a good surrogate for shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes. (orig.)

  13. Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.W.; Han, L.Z.; Luo, X.M.; Liu, Q.D.; Gu, J.F., E-mail: gujf@sjtu.edu.cn

    2016-08-15

    The microstructure and mechanical properties of reactor pressure vessel (RPV) steel were investigated after tempering at different temperatures ranging from 580 to 700 °C for 5 h. With increasing tempering temperature, the impact toughness, which is qualified by Charpy V-notch total absorbed energy, initially increases from 142 to 252 J, and then decreases to 47 J, with a maximum value at 650 °C, while the ultimate tensile strength varies in exactly the opposite direction. Comparing the microstructure and fracture surfaces of different specimens, the variations in toughness and strength with the tempering temperature were generally attributed to the softening of the bainitic ferrite, the agminated Fe{sub 3}C carbides that resulted from decomposition of martensite/austenite (M/A) constituents, the precipitation of Mo{sub 2}C carbides, and the newly formed M/A constituents at the grain boundaries. Finally, the correlation between the impact toughness and the volume fraction of the M/A constituents was established, and the fracture mechanisms for the different tempering conditions are explained. - Highlights: • The dependence of the deterioration of impact toughness on tempering temperature has been analysed. • The instrumented Charpy V-notch impact test has been employed to study the fracture mechanism. • The influence of M/A constituents on different fracture mechanisms based on the hinge model has been demonstrated. • A correlation between the mechanical properties and the amount of M/A constituents has been established.

  14. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  15. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief Engineer...

  16. SNPDL work in support of collaborative programmes to study fatigue crack propagation in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    McMinn, A.

    1981-07-01

    Work performed at Springfields Nuclear Power Development Laboratories (SNL) in support of United Kingdom and international cooperative groups is described. For the UK collaborative group crack growth tests have been performed on A533-B pressure vessel steel in air at 1 Hz, and in a simulated PWR environment at 1 Hz and 0.0167 Hz, all tests being at a stress ratio (R) of 0.7. Tests were performed at SNL at ambient temperature and pressure. The results showed that enhancements in crack growth rates were obtained because of the aqueous environment and the lower cyclic frequency. Good inter-laboratory agreement was obtained for the air test, indicating that there was little variation in the mechanical control between laboratories. There was also good agreement between the results from laboratories where tests were performed under high temperature wet conditions at 1 Hz. SNL room temperature data demonstrated an effect of temperature, as the crack growth rates found were up to a factor of four lower than the high temperature data. Although crack growth could be maintained at 0.0167 Hz and low cyclic stress intensity levels at ambient temperature, this was not found to be possible by the laboratories performing the test at 288 0 C. The first international 'round robin' test at R = 0.2 and 0.0167 Hz (1 cycle/min) in an aqueous environment gave a significant amount of scatter in the results. (author)

  17. Dismantling method for reactor pressure vessel and system therefor

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Enomoto, Kunio; Kurosawa, Koichi; Saito, Hideyo.

    1994-01-01

    Upon dismantling of a reactor pressure vessel, a containment building made of concretes is disposed underground and a spent pressure vessel is contained therein, and incore structures are contained in the spent pressure vessel. Further, a plasma-welder and a pressing machine are disposed to a pool for provisionally placing reactor equipments in the reactor building for devoluming the incore structures by welding and compression. An overhead-running crane and rails therefor are disposed on the roof and the outer side of the reactor building for transporting the pressure vessel from the reactor building to the containment building. They may be contained in the containment building after incorporation of the incore structures into the pressure vessel at the outside of the reactor building. For the devoluming treatment, a combination of cutting, welding, pressing and the like are optically conducted. A nuclear power plant can be installed by using a newly manufactured nuclear reactor, with no requirement for a new site and it is unnecessary to provide a new radioactive waste containing facility. (N.H.)

  18. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ...), that an industry in the United States is materially injured by reason of imports of high pressure steel... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were... Publication 4328 (June 2012), entitled High Pressure Steel Cylinders from China: Investigation Nos. 701-TA-480...

  19. Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) Nickel-Hydrogen Battery Performance Under LEO Cycling Conditions

    Science.gov (United States)

    Miller, Thomas B.; Lewis, Harlan L.

    2004-01-01

    LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.

  20. Analysis code for pressure in reactor containment vessel of ATR. CONPOL

    International Nuclear Information System (INIS)

    1997-08-01

    For the evaluation of the pressure and temperature in containment vessels in the events which are classified in the abnormal change of pressure, atmosphere and others in reactor containment vessels in accident among the safety evaluation events of the ATR, the analysis code for the pressure in reactor containment vessels CONPOL is used. In this report, the functions of the analysis code and the analysis model are shown. By using this analysis code, the rise of the pressure and temperature in a containment vessel is evaluated when loss of coolant accident occurs, and high temperature, high pressure coolant flows into it. This code possesses the functions of computing blow-down quantity and heat dissipation from reactor cooling facility, steam condensing heat transfer to containment vessel walls, and the cooling effect by containment vessel spray system. As for the analysis techniques, the models of reactor cooling system, containment vessel and steam discharge pool, and the computation models for the pressure and temperature in containment vessels, wall surface temperature, condensing heat transfer, spray condensation and blow-down are explained. The experimental analysis of the evaluation of the pressure and temperature in containment vessels at the time of loss of coolant accident is reported. (K.I.)

  1. Effects of degradation on the mechanical properties and fracture toughness of a steel pressure-vessel weld metal

    International Nuclear Information System (INIS)

    Wu, S.J.; Knott, J.F.

    2003-01-01

    A degradation procedure has been devised to simulate the effect of neutron irradiation on the mechanical properties of a steel pressure-vessel weld metal. The procedure combines the application of cold prestrain together with an embrittling heat treatment to produce an increase in yield stress, a decrease in strain hardening rate, and an increased propensity for brittle intergranular fracture. Fracture tests were carried out using blunt-notch four-point-bend specimens in slow bend over a range of temperatures and the brittle/ductile transition was shown to increase by approximately 110 deg. C as a result of the degradation. Fractographic analysis of specimens broken at low temperatures showed about 30% intergranular failure in combination with transgranular cleavage. Predictions have been made of the ductile-brittle transition curves for the weld metal (sharp crack) fracture toughness in degraded and non-degraded states, based on the notched-bar test results and on finite element analyses of the stress distributions ahead of the notches and sharp cracks. The ductile-brittle transition temperature shift (ΔT=110 deg. C) between non-degraded and degraded weld metal at a notch opening displacement of 0.31 mm was combined with the Ritchie, Knott and Rice (RKR) model to predict an equivalent shift of 115 deg. C for sharp-crack specimens at a toughness level of 70 MN/m 3/2

  2. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter F...

  3. Prestressed concrete pressure vessels for nuclear reactors - 1973

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This standard deals with the design, construction, inspection and testing of prestressed concrete pressure vessels for nuclear reactors. Such pressure vessels serve the dual purpose of shielding and containing gas cooled nuclear reactors and are a form of civil engineering structure requiring particularly high integrity, and ensured leak tightness. (Metric)

  4. In-service ultrasonic inspection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Prepechal, J.; Sulc, J.

    1982-01-01

    Ultrasonic tests of pressure vessels for WWER 440 reactors, type 213 V, are carried out partly manually and partly by test equipment. The inner surface of the pressure vessel is tested using device REACTORTEST TRC which is fully mobile. The outer surface of the cylindrical parts and bottoms of the body is tested using handling equipment permanently in-built under the pressure vessel and dismountable testing heads. A set of these heads may be used for two reactor units. The testing equipment REACTORTEST TRC is equipped with a TRC 800 ultrasound device. The equipment for testing the outer surface of the vessel operates with the UDAR 16 ultrasound apparatus to which may be simultaneously connected 10 ultrasound probes and six probes for acoustic feedback. The whole system of ultrasonic tests makes possible a first-rate and reliable volume control of the whole pressure vessel and all points where cracks may originate and grow. (Z.M.)

  5. Modification of OCA-I for application to a reactor pressure vessel with cladding on the inner surface

    International Nuclear Information System (INIS)

    Sauter, A.; Cheverton, R.D.; Iskander, S.K.

    1983-01-01

    The computer code OCA-I calculates the temperature distribution through the walls of a cylinder during a thermal transient and then performs a two-dimensional linear-elastic fracture-mechanics analysis to obtain stress-intensity factors for long surface flaws, considering both pressure and thermal loads. The code has been particularly useful in evaluating flaw behavior in reactor pressure vessels during overcooling accidents, but it has not previously treated the stainless steel cladding on the inner surface of the vessel as a discrete region. Although the cladding is quite thin compared with the base material, the large difference in thermal conductivity and coefficient of thermal expansion between the two materials results in a significant effect of the cladding on stress-intensity factors for surface cracks. Thus, the cladding was recently included as a discrete region in OCA-I

  6. Assuring reliability of unconventional weld joint configurations in austenitic stainless steel pressure vessels through non-destructive examination

    International Nuclear Information System (INIS)

    Jayakumar, I.; Manimohan, M.; Chandrasekaran, G.V.; Abdul Majeeth, S.; Subrahmanyam, P.S.

    1996-01-01

    Design of weld configurations in engineering structures is based on NDE inspectability apart from other considerations. They are mostly standardised. This paper deals with the development of an effective NDE methodology for an unconventional weld joint configuration occurring in a critical pressure vessel with edge preparation orientations different from that normally encountered in fabrication of such vessels. It is K-type butt joint between a heavy load bearing member and a curved vessel wall resulting in an oblique fillet weld. The heavy load bearing functional requirement needs a high integrity fail safe joint during its operating life and the stringent quality level specified by customer was ensured at every stage of its workmanship through effective NDE relying on conventional methods as explained. (author)

  7. Steels for nuclear power. I

    International Nuclear Information System (INIS)

    Bohusova, O.; Brumovsky, M.; Cukr, B.; Hatle, Z.; Protiva, K.; Stefec, R.; Urban, A.; Zidek, M.

    1976-01-01

    The principles are listed of nuclear reactor operation and the reactors are classified by neutron energy, fuel and moderator designs, purpose and type of moderator. The trend and the development of light-water reactor applications are described. The fundamental operating parameters of the WWER type reactors are indicated. The effect is discussed of neutron radiation on reactor structural materials. The characteristics are described of steel corrosion due to the contact of the steel with steam or sodium in the primary coolant circuit. The reasons for stress corrosion are given and the effects of radiation on corrosion are listed. The requirements and criteria are given for the choice of low-alloy steel for the manufacture of pressure vessels, volume compensators, steam generators, cooling conduits and containment. A survey is given of most frequently used steels for pressure vessels and of the mechanical and structural properties thereof. The basic requirements for the properties of steel used in the primary coolant circuit are as follows: sufficient strength in operating temperature, toughness, good weldability, resistance to corrosion and low brittleness following neutron irradiation. The materials are listed used for the components of light-water and breeder reactors. The production of corrosion-resistant steels is discussed with a view to raw materials, technology, steel-making processes, melting processes, induction furnace steel-making, and to selected special problems of the chemical composition of steels. The effects are mainly discussed of lead, bismuth and tin as well as of some other elements on hot working of high-alloy steels and on their structure. The problems of corrosion-resistant steel welding and of pressure vessel cladding are summed up. Also discussed is the question of the concept and safeguards of the safety of nuclear installation operation and a list is presented of most commonly used nondestructive materials testing methods. The current

  8. Common-Pressure-Vessel Nickel-Hydrogen Battery Development

    OpenAIRE

    Otzinger, Burton; Wheeler, James

    1991-01-01

    The dual-cell, common-pressure vessel, nickel-hydrogen configuration has recently emerged as an option for small satellite nickel-hydrogen battery application. An important incentive is that the dual-cell, CPV configured battery presents a 30 percent reduction in volume and nearly 50 percent reduction in mounting footprint, when compared with an equivalent battery of individual pressure- vessel (IPV) cells. In addition energy density and cost benefits are significant. Eagle-Picher Industries ...

  9. Nuclear reactor pressure vessel-specific flaw distribution development

    International Nuclear Information System (INIS)

    Rosinski, S.T.

    1992-01-01

    Vessel integrity predictions performed through fracture mechanics analysis of a pressurized thermal shock event have been shown to be significantly sensitive to the overall flaw distribution input. It has also been shown that modem vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. Throughout the program, new insight was obtained into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. For example, the potential application of a vessel-specific flaw distribution now provides at least one method by which a vessel-specific reference flaw size applicable to pressure-temperature limit curves determination can be estimated. This paper will discuss the development and application of the methodology and the impact to future vessel integrity analyses

  10. Updated embrittlement trend curve for reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Kirk, M.; Santos, C.; Eason, E.; Wright, J.; Odette, G.R.

    2003-01-01

    The reactor pressure vessels of commercial nuclear power plants are subject to embrittlement due to exposure to high energy neutrons from the core. Irradiation embrittlement of RPV belt-line materials is currently evaluated using US Regulatory Guide 1.99 Revision 2 (RG 1.99 Rev 2), which presents methods for estimating the Charpy transition temperature shift (ΔT30) at 30 ft-lb (41 J) and the drop in Charpy upper shelf energy (ΔUSE). A more recent embrittlement model, based on a broader database and more recent research results, is presented in NUREG/CR-6551. The objective of this paper is to describe the most recent update to the embrittlement model in NUREG/CR-6551, based upon additional data and increased understanding of embrittlement mechanisms. The updated ΔT30 and USE models include fluence, copper, nickel, phosphorous content, and product form; the ΔT30 model also includes coolant temperature, irradiation time (or flux), and a long-time term. The models were developed using multi-variable surface fitting techniques, understanding of the ΔT30 mechanisms, and engineering judgment. The updated ΔT30 model reduces scatter significantly relative to RG 1.99 Rev 2 on the currently available database for plates, forgings, and welds. This updated embrittlement trend curve will form the basis of revision 3 to Regulatory Guide 1.99. (author)

  11. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  12. Pressure component for the non-nuclear part of a nuclear power plant

    International Nuclear Information System (INIS)

    Becker, E.; Bodmann, E.; Pradhan, M.

    1980-01-01

    A liner of steel is drawn in the He-pressure vessel of the NPP, placed in distance to the cylindrical pressure vessel and being provided with pressure equalization openings. The liner has the function of controlled pressure keeping if the pressure vessel bursts. (DG) [de

  13. Heissdampfreaktor (HDR) steel-containment-vessel and floodwater-storage-tank structural-dynamics tests

    International Nuclear Information System (INIS)

    Arendts, J.G.

    1982-01-01

    Inertance (vibration) testing of two significant vessels at the Heissdampfreaktor (HDR) facility, located near Kahl, West Germany, was recently completed. Transfer functions were obtained for determination of the modal properties (frequencies, mode shapes and damping) of the vessels using two different test methods for comparative purposes. One of the vessels tested was the steel containment vessel (SCV). The SCV is approximately 180 feet high and 65 feet in diameter with a 1.2-inch wall thickness. The other vessel, called the floodwater storage tank (FWST), is a vertically standing vessel approximately 40 feet high and 10 feet in diameter with a 1/2-inch wall thickness. The FWST support skirt is square (in plan views) with its corners intersecting the ellipsoidal bottom head near the knuckle region

  14. Gigacycle fatigue behaviour of austenitic stainless steels used for mercury target vessels

    International Nuclear Information System (INIS)

    Naoe, Takashi; Xiong, Zhihong; Futakawa, Masatoshi

    2016-01-01

    A mercury enclosure vessel for the pulsed spallation neutron source manufactured from a type 316L austenitic stainless steel, a so-called target vessel, suffers the cyclic loading caused by the proton beam induced pressure waves. A design criteria of the JSNS target vessel which is defined based on the irradiation damage is 2500 h at 1 MW with a repetition rate of 25 Hz, that is, the target vessel suffers approximately 10 9 cyclic loading while in operation. Furthermore, strain rate of the beam window of the target vessel reaches 50 s −1 at the maximum, which is much higher than that of the conventional fatigue. Gigacycle fatigue strength up to 10 9 cycles for solution annealed 316L (SA) and cold-worked 316L (CW) were investigated through the ultrasonic fatigue tests. Fatigue tests were performed under room temperature and 250 °C which is the maximum temperature evaluated at the beam window in order to investigate the effect of temperature on fatigue strength of SA and CW 316L. The results showed that the fatigue strength at 250 °C is clearly reduced in comparison with room temperature, regardless of cold work level. In addition, residual strength and microhardness of the fatigue tested specimen were measured to investigate the change in mechanical properties by cyclic loading. Cyclic hardening was observed in both the SA and CW 316L, and cyclic softening was observed in the initial stage of cyclic loading in CW 316L. Furthermore, abrupt temperature rising just before fatigue failure was observed regardless of testing conditions.

  15. PWR pressure vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1981-01-01

    Pressurized water reactors are susceptible to certain types of hypothetical accidents that under some circumstances, including operation of the reactor beyond a critical time in its life, could result in failure of the pressure vessel as a result of propagation of crack-like defects in the vessel wall. The accidents of concern are those that result in thermal shock to the vessel while the vessel is subjected to internal pressure. Such accidents, referred to as pressurized thermal shock or overcooling accidents (OCA), include a steamline break, small-break LOCA, turbine trip followed by stuck-open bypass valves, the 1978 Rancho Seco and the TMI accidents and many other postulated and actual accidents. The source of cold water for the thermal shock is either emergency core coolant or the normal primary-system coolant. ORNL performed fracture-mechanics calculations for a steamline break in 1978 and for a turbine-trip case in 1980 and concluded on the basis of the results that many more such calculations would be required. To meet the expected demand in a realistic way a computer code, OCA-I, was developed that accepts primary-system temperature and pressure transients as input and then performs one-dimensional thermal and stress analyses for the wall and a corresponding fracture-mechanics analysis for a long axial flaw. The code is briefly described, and its use in both generic and specific plant analyses is discussed

  16. Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels. [128 references

    Energy Technology Data Exchange (ETDEWEB)

    Grotke, G.E.

    1980-04-01

    Any evaluation of fabrication methods for massive pressure vessels must consider several welding processes with potential for heavy-section applications. These include submerged-arc and shielded metal-arc, narrow-joint modifications of inert-gas metal-arc and inert-gas tungsten-arc processes, electroslag, and electron beam. The advantage and disadvantages of each are discussed. Electroslag welding can be dropped from consideration for joining of 2 1/4 Cr-1 Mo steel because welds made with this method do not provide the required mechanical properties in the welded and stress relieved condition. The extension of electron-beam welding to sections as thick as 4 or 8 inches (100 or 200 mm) is too recent a development to permit full evaluation. The manual shielded metal-arc and submerged-arc welding processes have both been employed, often together, for field fabrication of large vessels. They have the historical advantage of successful application but present other disadvantages that make them otherwise less attractive. The manual shielded metal-arc process can be used for all-position welding. It is however, a slow and expensive technique for joining heavy sections, requires large amounts of skilled labor that is in critically short supply, and introduces a high incidence of weld repairs. Automatic submerged-arc welding has been employed in many critical applications and for welding in the flat position is free of most of the criticism that can be leveled at the shielded metal-arc process. Specialized techniques have been developed for horizontal and vertical position welding but, used in this manner, the applications are limited and the cost advantage of the process is lost.

  17. Seals for sealing a pressure vessel such as a nuclear reactor vessel or the like

    International Nuclear Information System (INIS)

    Bruns, H.J.; Huelsermann, K.H.

    1975-01-01

    A description is given of seals for sealing a pressure vessel such as a nuclear reactor vessel, steam boiler vessel, or any other vessel which is desirably sealed against pressure of the type including a housing and a housing closure that present opposed vertical sealing surfaces which define the sides of a channel. The seals of the present invention comprise at least one sealing member disposed in the channel, having at least one stop face, a base portion and two shank portions extending from the base portion to form a groove-like recess. The shank portions are provided with sealing surfaces arranged to mate with the opposed vertical pressure vessel sealing surfaces. A shank-spreading wedge element also disposed in the channel has at least one stop face and is engaged in the groove-like recess with the sealing member and wedge element stop face adjacent to each other

  18. Design optimization of a thin walled pressure vessel

    International Nuclear Information System (INIS)

    Sadiq, S.

    2001-01-01

    Design evaluation of a pressure vessel is not only to build confidence on its integrity but also to reduce structural weight and enhance the performance of the structure. Pressure vessel, e.g., a rocket motor not only has to withstand the high operating temperatures but it must also be able to survive the internal pressures and external aerodynamic forces and bending stresses during its operation in flight. A research program was devised to study the stresses, which are generated in a thin walled pressure vessel during actual operation and its simulation with cold testing technique, i.e., by means of hydrostatic testing employing electrical resistance strain gauges on the external surface of the cylinder. The objective of the research was to uphold the performance of the vessel by reducing its thickness from 6.09 to 5.5 mm (which of course reduces the safety factor margin from 1.8 to 1.5); thereby curtailing the overall structural weight and maintaining the efficiency of the vessel itself during its live operation. The techniques employed were hydrostatic testing, data acquisition system for obtaining data on strains from the electrical resistance strain gauges and later employing V on Mises yield criterion empirical relation to computer the stresses in hoop and longitudinal directions. (author)

  19. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1) Marine...

  20. Fracture risk assessment for the pressurized water reactor pressure vessel under pressurized thermal shock events

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2016-01-01

    Highlight: • The PTS loading conditions consistent with the USNRC's new PTS rule are applied as the loading condition for a Taiwan domestic PWR. • The state-of-the-art PFM technique is employed to analyze a reactor pressure vessel. • Novel flaw model and embrittlement correlation are considered in the study. • The RT-based regression formula of NUREG-1874 was also utilized to evaluate the failure risks of RPV. • For slightly embrittled RPV, the SO-1 type PTSs play more important role than other types of PTS. - Abstract: The fracture risk of the pressurized water reactor pressure vessel of a Taiwan domestic nuclear power plant has been evaluated according to the technical basis of the U.S.NRC's new pressurized thermal shock (PTS) screening criteria. The ORNL's FAVOR code and the PNNL's flaw models were employed to perform the probabilistic fracture mechanics analysis associated with plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule were applied as the loading conditions. Besides, an RT-based regression formula derived by the U.S.NRC was also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR pressure vessel has sufficient structural margin for the PTS attack until either the current license expiration dates or during the proposed extended operation periods.

  1. Examination of VVER-1000 Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Markulin, K.

    2008-01-01

    The increasing demand of a higher level of safety in the operation of the nuclear power plants requires the utilisation of more precise automated equipment to perform in-service inspections. That has been achieved by technological advances in computer technology, in robotics, in examination probe technology with the development of the advanced inspection technique and has also been due to the considerable and varied experience gained in the performance of such inspections. In-service inspection of reactor pressure vessel, especially Russian-designed WWER-1000 presents one of the most important and extensive examination of nuclear power plants primary circuit components. Such examination demand high standards of inspection technology, quality and continual innovation in the field of non-destructive testing advanced technology. A remote underwater contact ultrasonic technique is employed for the examination of the base metal of vessel and reactor welds, whence eddy current method is applied for clad surface examinations. Visual testing is used for examination of the vessel interior. The movement of inspection probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with inspection systems. The successful performance of reactor pressure vessel is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen non-destructive techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state-of-the-art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. This paper presents advanced approach in the reactor pressure vessel in-service inspections and it is especially developed for WWER-1000 nuclear power plants.(author)

  2. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  3. Characterization of the weld HAZ properties of nuclear reactor pressure vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Hag; Shin, H. S.; Moon, J. G. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    This work contains an investigation on the microstructure and toughness in the weld heat-affected zone (HAZ) of a quenched and tempered SA 508 Cl. 3 reactor pressure vessel (RPV) steel. In order to evaluate systematically the notch toughness and microstructural alterations, a unit HAZ concept was applied to the multipass weld HAZ of RPV steel. Seven typical positions were selected to evaluate the spatial distribution of notch toughness and microstructure in the unit HAZ. As a result of notch toughness evaluation, three coarse-grained regions and two fine-grained regions of SA 508 Cl. 3 RPV steel HAZ showed relatively good toughness. On the contrary, an intercritically reheated and a subcritically reheated region showed lower toughness than the base metal. The region which first and second peak temperatures are 700 deg C showed the lowest toughness among the low toughness region because of carbide coarsening. Therefore, it was proposed that the notch position in the surveillance HAZ specimen should be placed to the boundary between the HAZ and the base metal. The method, which evaluates the fracture toughness in the transition region of ferritic steel, was effectively applicable to the various HAZ regions of RPV steel. The fracture toughness test results were nearly same as the notch toughness test results. The volume fraction of tempered martensite phase was revealed as the most dominant factor that determines fracture toughness. 59 refs., 29 figs., 10 tabs. (Author)

  4. Behavior of underclad cracks in reactor pressure vessels - evaluation of mechanical analyses with tests on cladded mock-ups

    International Nuclear Information System (INIS)

    Moinereau, D.; Rousselier, G.; Bethmont, M.

    1993-01-01

    Innocuity of underclad flaws in the reactor pressure vessels must be demonstrated in the French safety analyses, particularly in the case of a severe transient at the end of the pressure vessel lifetime, because of the radiation embrittlement of the vessel material. Safety analyses are usually performed with elastic and elasto-plastic analyses taking into account the effect of the stainless steel cladding. EDF has started a program including experiments on large size cladded specimens and their interpretations. The purpose of this program is to evaluate the different methods of fracture analysis used in safety studies. Several specimens made of ferritic steel A508 C1 3 with stainless steel cladding, containing small artificial defects, are loaded in four-point bending. Experiments are performed at very low temperature to simulate radiation embrittlement and to obtain crack instability by cleavage fracture. Three tests have been performed on mock-ups containing a small underclad crack (with depth about 5 mn) and a fourth test has been performed on one mock-up with a larger crack (depth about 13 mn). In each case, crack instability occurred by cleavage fracture in the base metal, without crack arrest, at a temperature of about - 170 deg C. Each test is interpreted using linear elastic analysis and elastic-plastic analysis by two-dimensional finite element computations. The fracture are conservatively predicted: the stress intensity factors deduced from the computations (K cp or K j ) are always greater than the base metal toughness. The comparison between the elastic analyses (including two plasticity corrections) and the elastic-plastic analyses shows that the elastic analyses are often conservative. The beneficial effect of the cladding in the analyses is also shown : the analyses are too conservative if the cladding effects is not taken into account. (authors). 9 figs., 6 tabs., 10 refs

  5. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  6. Prestressed concrete pressure vessels for boiling water reactors

    International Nuclear Information System (INIS)

    Menon, S.

    1979-12-01

    Following a general description of the Scandinavian cooperative project on prestressed concrete pressure vessels for boiling water reactors, detailed discussion is given in four appendices of the following aspects: the verification programme of tests and studies, the development and testing of a liner venting system, a preliminary safety philosophy and comparative assessment of cold and hot liners. Vessel failure probability is briefly discussed and some figures presented. The pressure gradients in the vessel wall resulting from various stipulated linear cracks, with a liner venting system are presented graphically. (JIW)

  7. CNG transport by ship with FRP pressure vessels access to east coast gas

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S. [Trans Ocean Gas Inc., St. John' s, NL (Canada)

    2005-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). CNG transportation offers an alternative method for transporting stranded natural gas to existing markets and for creating new natural gas markets that are not feasible for liquefied natural gas (LNG) or pipelines. Trans Ocean Gas Inc. (TOG) modified an existing fibre reinforced plastic (FRP) pressure vessel technology to safely store CNG on a ship. The newly developed containment system has proven to overcome all the deficiencies of steel-based systems. TOG patented the containment system and will license its use to owners of stranded gas and shipping service providers around the world. The CNG systems will be built and assembled throughout facilities in Atlantic Canada. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. figs.

  8. Pressurized water reactor with reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1985-01-01

    The pressure vessel has a cylindrical jacket with a domed floor. A guide is arranged on the domed floor to even out the flow in the core. It consists of a cylindrical jacket, whose lower end has slots and fins. These fins are welded to the domed floor. (orig./PW)

  9. Pressurized water reactor with reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1980-01-01

    The pressure vessel has a cylindrical jacket with a domed floor. A guide is arranged on the domed floor to even out the flow in the core. It consists of a cylindrical jacket, whose lower end has slots and fins. These fins are welded to the domed floor. (DG) [de

  10. Application of ductile fracture assessment methods for the assessment of pressure vessels from high strength steels (HSS)

    International Nuclear Information System (INIS)

    Eisele, U.; Schiedermaier, J.

    2003-01-01

    The economical and safe design of pressure vessels requires, besides others, also a detailed knowledge of the vessel failure behaviour in the case of existing imperfections or cracks. The behaviour of a cracked component under a given loading situation depends on material toughness. For ferritic steels, the material toughness is varying with temperature. At low temperature dominantly brittle fracture behaviour is observed, at high temperature the failure mode is dominantly ductile fracture. The transition between these two extremes is floating. In the case of existing or postulated cracks, the safety analysis has to be performed using fracture mechanics methods. In the lower shelf of toughness, K iC as of ASTM E 399 is the characterising value for crack initiation and immediate unstable crack extension (cleavage). In the upper shelf level the characterising value is the ''actual crack initiation toughness'' J i acc. to ISO 12135, characterising the onset of slow stable crack extension. For the transition regime in ASTM E 1921 the instability values K JC are defined, characterising cleavage failure after more or less extended ductile crack growth. The safety analysis of a component operated in the upper shelf of the material toughness, has to consider initiation as well as stable crack extension following initiation. The inclusion of any crack extension into this consideration needs to consider the influence of the constraint in front of a crack tip, leading to multiaxial stress conditions and decreasing the material crack resistance significantly. Thus, the exclusion of crack initiation needs to be proven in a first step of each safety analysis. Assessing the component in a uniform way over the relevant temperature range is possible by using initiation characteristics, which also have the advantage of transferability. A change of criterion considering initiation at the lower shelf, instability in the transition range and again initiation in the upper shelf can be

  11. Fourier series analysis of a cylindrical pressure vessel subjected to axial end load and external pressure

    International Nuclear Information System (INIS)

    Brar, Gurinder Singh; Hari, Yogeshwar; Williams, Dennis K.

    2013-01-01

    This paper presents the comparison of a reliability technique that employs a Fourier series representation of random axisymmetric and asymmetric imperfections in a cylindrical pressure vessel subjected to an axial end load and external pressure, with evaluations prescribed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 Rules. The ultimate goal of the reliability technique described herein is to predict the critical buckling load associated with the subject cylindrical pressure vessel. Initial geometric imperfections are shown to have a significant effect on the calculated load carrying capacity of the vessel. Fourier decomposition was employed to interpret imperfections as structural features that can be easily related to various other types of defined imperfections. The initial functional description of the imperfections consists of an axisymmetric portion and a deviant portion, which are availed in the form of a double Fourier series. Fifty simulated shells generated by the Monte Carlo technique are employed in the final prediction of the critical buckling load. The representation of initial geometrical imperfections in the cylindrical pressure vessel requires the determination of respective Fourier coefficients. Multi-mode analyses are expanded to evaluate a large number of potential buckling modes for both predefined geometries in combination with asymmetric imperfections as a function of position within the given cylindrical shell. The probability of the ultimate buckling stress exceeding a predefined threshold stress is also calculated. The method and results described herein are in stark contrast to the “knockdown factor” approach as applied to compressive stress evaluations currently utilized in industry. Further effort is needed to improve on the current design rules regarding column buckling of large diameter pressure vessels subjected to an axial end load and external pressure designed in accordance with ASME Boiler and

  12. Stress analysis and evaluation of a rectangular pressure vessel

    International Nuclear Information System (INIS)

    Rezvani, M.A.; Ziada, H.H.; Shurrab, M.S.

    1992-10-01

    This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, Section VIII; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to Section VIII, Division I instead of Division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel

  13. The method of life extension for the High Flux Isotope Reactor vessel

    International Nuclear Information System (INIS)

    Chang, Shib-Jung.

    1995-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A hydrostatic pressure test (hydrotest) is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the reactor life from the safe hydrostatic pressure. The life extension calculation provides the following information on the remaining life of the reactor as a function of the nil ductility temperature increase: the probability of vessel fracture due to hydrotest vs vessel life at several hydrotest pressures; the hydrotest time interval vs the uncertainty of the nil ductility temperature increase rate; and the hydrotest pressure vs the uncertainty of the nil ductility temperature increase rate. It is understood that the use of a complete range of uncertainties of the nil ductility temperature increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degree F

  14. Overview of French activities on neutron radiation embrittlement of pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Brillaud, C [Electricite de France (EDF), 37 - Tours (France); Keroulas, F de [Electricite de France (EDF), 93 - Saint-Denis (France); Pichon, C [Electricite de France (EDF), 69 - Villeurbanne (France); Teissier, A [Electricite de France (EDF), 92 - Courbevoie (France). Service Etudes et Projets Thermiques et Nucleaires

    1994-12-31

    This paper describes recent developments in France`s pressure vessel surveillance program, particularly aimed at assessing the irradiation-caused embrittlement of EDF`s PWRs. The first part presents surveillance program results for base metal, weld metal and heat-affected zones for 74 capsules removed from 34 units. Fluence ranges from 0.3.10{sup 19} n.cm{sup -2} to 5.5.10{sup 19} n.cm{sup -2}. The second part considers research and development activities in this area: these include the metallurgical structure effects of segregated bands on mechanical properties and the embrittlement rate under irradiation, as well as the effect of irradiation parameters such as flux and neutron spectrum on irradiation embrittlement, and more especially to obtain the best damage assessment. (authors). 14 refs., 5 figs., 1 tab.

  15. Long-term irradiation effects on reactor-pressure vessel steels. Investigations on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Arne

    2017-06-01

    The exposure of reactor pressure vessel (RPV) steels to neutron irradiation gives rise to irradiation-enhanced diffusion, a rearrangement of solute atoms and, consequently, a degradation of the mechanical properties. The increasing age of existing nuclear power plants raises new questions specific to long-term operation. Two of them are addressed in this thesis: flux effects and the late-blooming effect. Can low-flux irradiations up to a given fluence be reproduced by more rapid high-flux irradiations up to the same fluence? Can the irradiation response of RPV steels be extrapolated to higher fluences or are there unexpected ''late-blooming'' effects. Small-angle neutron scattering (SANS), atom-probe tomography (APT) and Vickers-hardness testing were applied. A novel Monte-Carlo based fitting algorithm for SANS data was implemented in order to derive statistically reliable characteristics of irradiation-induced solute-atom clusters. APT was applied in selected cases to gain additional information on the composition and the shape of clusters. Vickers hardness testing was performed on the SANS samples to link the nanometer-scale changes to irradiation hardening. The investigations on flux effects show that clusters forming upon high-flux irradiation are smaller and tend to have a higher number density compared to low-flux irradiations at a given neutron fluence. The measured flux dependence of the cluster-size distribution is consistent with the framework of deterministic growth (but not with coarsening) in combination with radiation-enhanced diffusion. Since the two effects on cluster-size and volume fraction partly cancel each other out, no significant effect on the hardening is observed. The investigations of a possible late-blooming effect indicate that the very existence (yes or no) of such an effect depends on the irradiation conditions. Irradiations at lower fluxes and a lower temperature (255 C) give rise to a significant increase of the

  16. Detection and sizing of inside-surface cracks in reactor pressure vessels

    International Nuclear Information System (INIS)

    Kamata, Hiroshi; Kanazawa, Katsuo; Satoh, Kunio; Honma, Takashi

    1984-01-01

    According to the past operational experience of LWRs, most of the defects arising in reactor pressure vessels accompanying operation are cracks occurring in the build up welding of austenitic stainless steel on the internal surfaces. The detection of these cracks has been carried out by ultrasonic flaw detection from outside in BWRs and from inside in PWRs as in-service inspection. However, there are difficulties such as ultrasonic echoes often occur though defects do not exist, and the quantitative evaluation of detected cracks is difficult by this method because of its accuracy. One of the means to reduce the first difficulty is to use eddy current method together to help the judgement, and for overcoming the second, the ultrasonic method catching end peak echo, that catching diffracted waves, eddy current method and electric resistance method were tried and compared. It is desirable to detect cracks in early stage before they reach parent material. The techniques to detect cracks on the internal surfaces of pressure vessels from the inside and to measure the depth are reported in this paper. The methods of flaw detection examined and the instruments used, the experimental method and the results are reported. It was concluded that eddy current method can be used as the backup for ultrasonic remote flaw detection, and the accuracy of depth measurement was the highest in ultrasonic diffraction wave method. (Kako, I.)

  17. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer shall...

  18. Manufacturing and material properties of forgings for reactor pressure vessel of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Sato, I.; Suzuki, K.

    1994-01-01

    For the reactor pressure vessel (RPV) of high temperature engineering test reactor (HTTR) which has been developed by Japan Atomic Energy Research Institute (JAERI), 2 1/4Cr-1Mo steel is used first in the world. Material confirmation test has been carried out to demonstrate good applicability of forged low Si 2 1/4Cr-1Mo steel to the RPV of HTTR. Recently, JSW has succeeded in the manufacturing of large size ring forgings and large size forged cover dome integrated with nozzles for stand pipe for the RPV. This paper describes the results of the material confirmation test as well as the manufacturing and material properties of the large forged cover dome integrated with nozzles for stand pipe. (orig.)

  19. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  20. USER SPECIFICATIONS FOR PRESSURE VESSELS AND TECHNICAL INTEGRITY

    Directory of Open Access Journals (Sweden)

    K.S. Johnston

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Specifications translated from user requirements are prescribed in an attempt to capture and incorporate best practices with regards to the design, fabrication, testing, and operation of pressure vessels. The question as to whether these requirements affect the technical integrity of pressure vessels is often a subjective matter. This paper examines typical user requirement specifications against technical integrity of pressure vessels.
    The paper draws on a survey of a convenience sample of practising engineers in a diversified petrochemical company. When compared with failures on selected pressure vessels recorded by Phillips and Warwick, the respondent feedback confirms the user specifications that have the highest impact on technical integrity.

    AFRIKAANSE OPSOMMING: Gebruikersbehoeftes word saamgevat in spesifikasies wat lei tot goeie praktyk vir ontwerp, vervaarding, toetsing en bedryf van drukvate. Subjektiwiteit van die gebruikersbehoeftes mag soms die tegniese integriteit van ‘n drukvat beinvloed.
    Die navorsing maak by wyse van monsterneming gebruik van die kennis van ingenieurs wat werk in ‘n gediversifiseerde petrochemiese bedryf. Die terugvoering bevestig dat bogenoemde spesifikasies inderdaad die grootste invloed het op tegniese integriteit.

  1. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    International Nuclear Information System (INIS)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10 -4 Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  2. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  3. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  4. Applicability of JIS SPV 50 steel to primary containment vessels of nuclear power stations

    International Nuclear Information System (INIS)

    Iida, K.; Ishikawa, K.; Satoh, M.; Soya, I.

    1980-01-01

    The fracture toughness of JIS SPV 50 steel and its weldment has been examined in order to verify the applicability of these materials to primary containment vessels of nuclear power stations. Test results were evaluated using elastic plastic fracture mechanics through the COD and the J integral concepts for non ductile fracture initiation characteristics. Linear fracture mechanics was employed for propagation arrest characteristics. Results showed that the materials tested here have a sufficient fracture toughness to prevent nonductile fracture and that this steel is a suitable material for use in construction of primary containment vessels of nuclear power stations. (author)

  5. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  6. Experimental verification of lifetime of bolting joints for WWER reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Polachova, H.

    1992-01-01

    This paper presents results from experimental verification of cyclic lifetime of bolting joints of M 140x6 mm type used for WWER-440 MW reactor pressure vessels. Bolting joints or real dimensions were tested in a special testing equipment ZS 1000 in Skoda Concern. Stud bolts are made from 25Kh1MF or 38KhN3MFA type of steels. Tests were carried out at operating as well as at room temperatures with coefficient of asymmetry equal to 0.1; one tests was realized with given bending moment. Experimental results have been compared with calculated lifetimes according to ASME, Soviet and CMEA Codes. In all cases calculations give conservative assessments. (orig.)

  7. The need to pressure test prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Forgie, J.H.; Holland, J.A.

    1983-01-01

    In the period when PCRV were relatively unproven, proof pressure testing provided a useful demonstration of vessel integritiy and a confirmation of model testing and of analysis. No failures have occurred during concrete vessel tests in the UK or in the subsequent operational life of the vessels and much has been learned of their behaviour in service. The paper examines the advantages and disadvantages of proof testing PCRV in the light of the above increased knowledge of vessel performance. The paper draws attention to certain hypothetical loading cases that could be more onerous than the proof test and suggests that pressure testing could itself cause unnecessarily high loading to parts of the vessel. Always recognising the safety considerations and demonstrations of such are of prime importance, the authors suggest that a lower pressure level could be adopted without loss of original intent. In addition some ground rules are suggested as to cases where proof testing could be omitted. (orig./HP)

  8. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels in...

  9. Development of a supplemental surveillance program for reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Server, W.L.; Rosinski, S.T.

    1997-01-01

    The technical decision to thermally anneal a nuclear reactor pressure vessel (RPV) depends upon the level of embrittlement in the RPV steels, the amount of recovery of fracture toughness properties expected from the anneal, and the rate of re-embrittlement after the vessel is placed back into service. The recovery of Charpy impact toughness properties after annealing can be estimated initially by using a recovery model developed using experimental measurements of recovery (such as that developed by Eason et al. for U.S. vessel materials). However, actual validation measurements on plant-specific archived vessel materials (hopefully in the existing surveillance program) are needed; otherwise, irradiated surrogate materials, essentially the same as the RPV steels or bounding in expected behavior, must be utilized. The efficient use of any of these materials requires a supplemental surveillance program focused at both recovery and reirradiation embrittlement. Reconstituted Charpy specimens and new surveillance capsules will most likely be needed as part of this supplemental surveillance program. A new version of ASTM E 509 has recently been approved which provides guidance on thermal annealing in general and specifically for the development of an annealing supplemental surveillance program. The post-anneal re-embrittlement properties are crucial for continued plant operation, and the use of a re-embrittlement model, such as the lateral shift approach, may be overly conservative. This paper illustrates the new ASTM E 509 Standard Guide methodology for an annealing supplemental surveillance program. As an example, the proposed program for the Palisades RPV beltline steels is presented which covers the time from annealing to the end of operating license and beyond, if license renewal is pursued. The Palisades nuclear power plant RPV was planned to be annealed in 1998, but that plant is currently being re-evaluated. The proposed anneal was planned to be conducted at a

  10. Analysis of the micro-structural damages by neutronic irradiation of the steel of reactor vessels of the nuclear power plant of Laguna Verde. Characterization of the design steel

    International Nuclear Information System (INIS)

    Moranchel y Rodriguez, M.; Garcia B, A.; Longoria G, L. C.

    2010-09-01

    The vessel of a nuclear reactor is one of the safety barriers more important in the design, construction and operation of the reactor. If the vessel results affected to the grade of to have fracture and/or cracks it is very probable the conclusion of their useful life in order to guarantee the nuclear safety and the radiological protection of the exposure occupational personnel, of the public and the environment avoiding the exposition to radioactive sources. The materials of the vessel of a nuclear reactor are exposed continually to the neutronic irradiation that generates the same nuclear reactor. The neutrons that impact to the vessel have the sufficient energy to penetrate certain depth in function of the energy of the incident neutron until reaching the repose or to be absorbed by some nucleus. In the course of their penetration, the neutrons interact with the nuclei, atoms, molecules and with the same crystalline nets of the vessel material producing vacuums, interstitial, precipitate and segregations among other defects that can modify the mechanical properties of the steel. The steel A533-B is the material with which is manufactured the vessel of the nuclear reactors of nuclear power plant of Laguna Verde, is an alloy that, among other components, it contains atoms of Ni that if they are segregated by the neutrons impact this would favor to the cracking of the same vessel. This work is part of an investigation to analyze the micro-structural damages of the reactor vessels of the nuclear power plant of Laguna Verde due to the neutronic irradiation which is exposed in a continuous way. We will show the characterization of the design steel of the vessel, what offers a comprehension about their chemical composition, the superficial topography and the crystalline nets of the steel A533-B. It will also allow analyze the existence of precipitates, segregates, the type of crystalline net and the distances inter-plains of the design steel of the vessel. (Author)

  11. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...

  12. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    Science.gov (United States)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  13. Variable flaw shape analysis for a reactor vessel under pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Yang, C.Y.; Bamford, W.H.

    1984-01-01

    A study has been conducted to characterize the response of semi-elliptic surface flaws to thermal shock conditions which can result from safety injection actuation in nuclear reactor vessels. A methodology was developed to predict the behavior of a flaw during sample pressurized thermal shock events. The effects of a number of key variables on the flaw propagation were studied, including fracture toughness of the material and its gradient through the thickness, irradiation effects, effects of warm prestressing, and effects of the stainless steel cladding. The results of these studies show that under thermal shock loading conditions the flaw always tends to elongate along the vessel inside surface from the initial aspect ratio. However, the flaw shape always remains finite rather than becoming continuously long, as has often been assumed in earlier analyses. The final shape and size of the flaws were found to be rather strongly dependent on the effects of warm prestressing and the distribution of neutron flux. The improved methodology results in a more accurate and more realistic treatment of flaw shape changes during thermal shock events and provides the potential for quantifying additional margins for reactor vessel integrity analyses

  14. Analysis of aging mechanism and management for HTR-PM reactor pressure vessel

    International Nuclear Information System (INIS)

    Sun Yunxue; Shao Jin

    2015-01-01

    Reactor pressure vessel is an important part of the reactor pressure boundary, its important degree ranks high in ageing management and life assessment of nuclear power plant. Carrying out systematic aging management to ensure reactor pressure vessel keeping enough safety margins and executing design functions is one of the key factors to guarantee security and stability operation for nuclear power plant during the whole lifetime and prolong life. This paper briefly introduces the structure and aging mechanism of reactor pressure vessel in pressurized water reactor nuclear power plant, and introduces the design principle and structure characteristics of HTR-PM. At the same time, this paper carries out preliminary analysis and exploration. and discusses aging management of HTR-PM reacto