WorldWideScience

Sample records for steel hexagonal channels

  1. Experimental study of natural convective heat transfer in a vertical hexagonal sub channel

    International Nuclear Information System (INIS)

    Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur

    2012-01-01

    The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.

  2. Effects of Carrier Frequency Offset, Timing Offset, and Channel Spread Factor on the Performance of Hexagonal Multicarrier Modulation Systems

    Directory of Open Access Journals (Sweden)

    Kui Xu

    2009-01-01

    Full Text Available Hexagonal multicarrier modulation (HMM system is the technique of choice to overcome the impact of time-frequency dispersive transmission channel. This paper examines the effects of insufficient synchronization (carrier frequency offset, timing offset on the amplitude and phase of the demodulated symbol by using a projection receiver in hexagonal multicarrier modulation systems. Furthermore, effects of CFO, TO, and channel spread factor on the performance of signal-to-interference-plus-noise ratio (SINR in hexagonal multicarrier modulation systems are further discussed. The exact SINR expression versus insufficient synchronization and channel spread factor is derived. Theoretical analysis shows that similar degradation on symbol amplitude and phase caused by insufficient synchronization is incurred as in traditional cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM transmission. Our theoretical analysis is confirmed by numerical simulations in a doubly dispersive (DD channel with exponential delay power profile and U-shape Doppler power spectrum, showing that HMM systems outperform traditional CP-OFDM systems with respect to SINR against ISI/ICI caused by insufficient synchronization and doubly dispersive channel.

  3. A two-phase flow regime map for a MAPLE-type nuclear research reactor fuel channel: Effect of hexagonal finned bundle

    International Nuclear Information System (INIS)

    Harvel, G.D.; Chang, J.S.

    1997-01-01

    A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results

  4. Ultrafine grained steels processed by equal channel angular pressing

    International Nuclear Information System (INIS)

    Shin, Dong Hyuk; Park, Kyung-Tae

    2005-01-01

    Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability

  5. A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives

    Science.gov (United States)

    Hu, Xiao-Li; Wang, Xin-Long; Su, Zhong-Min

    2018-02-01

    A novel Zn-MOF (metal organic framework) [Zn3(NTB)2(DMA)2]·12DMA (NTB = 4,4‧,4″-nitrilotrisbenzoic acid; DMA = N,N-dimethylacetamide) (1) was obtained under solvothermal condition. The resulted MOF which is based on {Zn3} SBU displays an interesting (3,6)-connected three-dimensional net with nanosized, hexagonal channels. Additionally, 1 can be a useful fluorescent indicator for the detection of nitroaromatic explosives qualitatively and quantitatively via a strong quenching effect, especially for picric acid (PA). With increasing - NO2 groups, energy transfer from the electron-donating framework to high electron deficiency becomes more, making the effect of fluorescence quenching more obvious. The result demonstrates that the photo-induced electron transfer (PET) is responsible for the emission quenching.

  6. Analysis of Strengthening Steel Distribution Channel in Domestic Automotive Industry

    OpenAIRE

    Pangraksa, Sugeng; Djajadiningrat, Surna Tjahja

    2013-01-01

    Distribution has strategic role to spread up product from manufacturer into end-user. Automotive industry needs distribution channel which has: excellent data management, timely delivery management, excellent quality management, and competitive reducing cost. Krakatau Steel (KS) distributors has weaknesses to enter automotive market current that require tight prerequisite such as: consistency of product quality, good cooperation, close relationship, continuously cost reduction, wide spread to...

  7. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    Science.gov (United States)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the

  8. Experimental study on behavior of steel channel strengthened with CFRP

    Directory of Open Access Journals (Sweden)

    Tang Hongyuan

    2017-11-01

    Full Text Available This paper describes the behaviour of axially loaded long and eccentrically loaded short thin-walled steel channels, strengthened with transversely bonded carbon fibre reinforced polymer (CFRP sheets. Seven long members, each 1400 mm long, and seven short members, each 750mmlong, were tested. The main parameters were the number of CFRP plies (one or two and the clear spacing between the CFRP strips (50, 100 or 150 mm. The effect of CFRP sheet layer and clear spacing was studied. All the ultimate load capacity of the reinforced members was improved in different extent. A maximum strength gain of 9.13% was achieved for long members with two CFRP layers and 50 mm spacing of CFRP strips. The experimental results show that the global buckling happens to all the long specimens. For short members, the maximum strength gain of 12.1% was achieved with two CFRP layers and 50 mm spacing of CFRP strips. With the exception of the most heavily reinforced (2 plies at 50 and 100 mm, local buckling was observed prior to global buckling for short members, which was completely opposite of the control specimens. Meanwhile, when the clear spacing of CFRP strips is greater than theweb height of steel channel, the transversely bonded CFRP does not have a significant improvement in buckling load capacity of the short- and long-channel components. While the clear spacing is less than the web height, the more number of CFRP layer, the more enhancement of buckling load capacity.

  9. Study of martensitic transformation in stainless steel by CEMS and RBS channeling

    International Nuclear Information System (INIS)

    Hayashi, N.; Sakamoto, I.; Tanoue, H.

    1993-01-01

    The effect of Xe ion irradiation in a single crystal of 17/13 stainless steel has been studied, using RBS channeling techniques and conversion electron Moessbauer spectroscopy (CEMS). 300 keV Xe ions were used to induce martensitic transformation in the austentic steel. A dynamic behavior of the transformation was observed as functions of the fluence and depth dependence. The martensite appears abruptly at a critical fluence, in contrast with polycrystalline 17/7 stainless steel. (orig.)

  10. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    Science.gov (United States)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  11. A new constitutive analysis of hexagonal close-packed metal in equal channel angular pressing by crystal plasticity finite element method

    Science.gov (United States)

    Li, Hejie; Öchsner, Andreas; Yarlagadda, Prasad K. D. V.; Xiao, Yin; Furushima, Tsuyoshi; Wei, Dongbin; Jiang, Zhengyi; Manabe, Ken-ichi

    2018-01-01

    Most of hexagonal close-packed (HCP) metals are lightweight metals. With the increasing application of light metal products, the production of light metal is increasingly attracting the attentions of researchers worldwide. To obtain a better understanding of the deformation mechanism of HCP metals (especially for Mg and its alloys), a new constitutive analysis was carried out based on previous research. In this study, combining the theories of strain gradient and continuum mechanics, the equal channel angular pressing process is analyzed and a HCP crystal plasticity constitutive model is developed especially for Mg and its alloys. The influence of elevated temperature on the deformation mechanism of the Mg alloy (slip and twin) is novelly introduced into a crystal plasticity constitutive model. The solution for the new developed constitutive model is established on the basis of the Lagrangian iterations and Newton Raphson simplification.

  12. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    Science.gov (United States)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  13. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    Science.gov (United States)

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.

  14. Ferrite channel effect on ductility and strain hardenability of ultra high strength dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Kumar B., E-mail: ravik@nmlindia.org [CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Patel, Nand Kumar [O.P Jindal University, Raigarh 496001 (India); Mukherjee, Krishnendu; Walunj, Mahesh; Mandal, Gopi Kishor [CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Venugopalan, T. [Tata Steel Limited, Jamshedpur 831001 (India)

    2017-02-08

    This study describes an effect of controlled austenite decomposition on microstructure evolution in dual phase steel. Steel sheets austenitized at various annealing temperatures were rapidly cooled to the inter-critical annealing temperature of 800 °C for the isothermal decomposition of austenite and then ultra fast cooled to room temperature. The scanning electron microscope analysis of evolving microstructure revealed ferrite nucleation and growth along prior austenite grain boundaries leading to ferrite network/channel formation around martensite. The extent of ferrite channel formation showed a strong dependence on the degree of undercooling in the inter-critical annealing temperature regime. Uniaxial tensile deformation of processed steel sheets showed extensive local inter-lath martensite damage activity. Extension/propagation of these local micro cracks to neighboring martensite grains was found to be arrested by ferrite channels. This assisted in delaying the onset of global damage which could lead to necking and fracture. The results demonstrated an alternate possible way of inducing ductility and strain hardenability in ultra high strength dual phase steels.

  15. Hexagonalization of correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Thiago [Instituto de Física Teórica, UNESP - University Estadual Paulista,ICTP South American Institute for Fundamental Research,Rua Dr. Bento Teobaldo Ferraz 271, 01140-070, São Paulo, SP (Brazil); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline St N Waterloo, Ontario N2L 2Y5 (Canada)

    2017-01-30

    We propose a nonperturbative framework to study general correlation functions of single-trace operators in N=4 supersymmetric Yang-Mills theory at large N. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.

  16. The role of dislocation channeling in IASCC initiation of neutron irradiated stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2016-12-01

    This study intended to understand how dislocation channeling affects IASCC initiation using a novel four-point bend test. Stainless steels used in this study (irradiated in the BOR-60 reactor) included a commercial purity 304L alloy irradiated to 5.5, 10.2, and 47.5 dpa, and two high purity alloys, Fe−18Cr−12Ni and Fe−18Cr−25Ni, irradiated to ∼10 dpa. IASCC was enhanced by MnS inclusions, which dissolve in the NWC environment and form oxide caps, creating a crevice condition with a high propensity for crack initiation. Stress concentration at the grain boundary intersecting these sites induced crack initiation, resulting from discontinuous dislocation channels (DC). Stress to initiate IASCC decreased with dose due to earlier DC initiation. The HP Fe−18Cr−12Ni alloy had low IASCC susceptibility and the high Ni alloy did not crack. The difference was attributed to the propensity for DCs to transmit across grain boundaries, which controls stress accumulation at DC – grain boundary intersections. - Highlights: • MnS inclusions enhance susceptibility to IASCC initiation. • Local stress (typically caused by an intersecting dislocation channel) was required to cause cracking at a MnS inclusion. • The remotely applied stress at which IASCC initiation occurred decreased with increasing irradiation dose. • IASCC resistant alloys were more likely to transmit dislocation channels across grain boundaries.

  17. Assessment on Ultimate Load of Cold-formed Steel Channel (CFSC Stub Column

    Directory of Open Access Journals (Sweden)

    Mohd Sani Mohd Syahrul Hisyam

    2015-01-01

    Full Text Available Cold-formed steel is used as the non-structural and structural material in civil engineering work and building. Cold-formed steel channel is selected and cut into 100 mm, 200 mm, 300 mm, 400 mm and 500 mm. The slenderness ratio is calculated and noted as a stub or short column because below 40. The column is tested by using Universal Testing Machine to determine the ultimate load of the stub column. Besides, the CFSC is determined the material properties of CFSC for checking it’s the originality of steel based material. The experimental data are tested and compared with the Direct Strength Method (DSM. It showed that the CFSC1 with a height of 100 mm is reported to have a higher value of ultimate load when compared with other samples. When the height of the stub column increased, the ultimate load of the sample is decreased. Then, the CFSC1 also showed a higher in initial stiffness when compared with other samples. All samples are shown having a higher data in ultimate load when compared with the Direct Strength Method prediction. The ultimate load of experimental and DSM all gave a ratio below 1.03. Finally, all samples can further recommend determining the relation between the ultimate loads with variations of height of the column.

  18. Microstructure and mechanical properties after annealing of equal-channel angular pressed interstitial-free steel

    International Nuclear Information System (INIS)

    Hazra, Sujoy S.; Pereloma, Elena V.; Gazder, Azdiar A.

    2011-01-01

    The evolution of microstructure, microtexture and mechanical properties during isothermal annealing of an ultrafine-grained interstitial-free steel after eight passes of route B C room temperature equal-channel angular pressing (ECAP) was studied. The microstructure and microtexture were characterized by electron back-scattering diffraction, and mechanical properties were assessed by shear punch and uniaxial tensile testing. Homogeneous coarsening via continuous recrystallization of the ECAP microstructure is accompanied by minor changes in the ∼63% high-angle boundary population and a sharpening of the original ECAP texture. This is followed by abnormal growth during the final stages of softening due to local growth advantages. Linear correlations between shear and tensile data were established for yield, ultimate strength and total elongation. After yield, the changes in uniaxial tensile behaviour from geometrical softening after ECAP to load drop, Lueders banding and continuous yielding after annealing is attributable to a coarsening of the microstructure.

  19. Comparison of the monotonic and cyclic mechanical properties of ultrafine-grained low carbon steels processed by continuous and conventional equal channel angular pressing

    International Nuclear Information System (INIS)

    Niendorf, T.; Böhner, A.; Höppel, H.W.; Göken, M.; Valiev, R.Z.; Maier, H.J.

    2013-01-01

    Highlights: ► UFG low-carbon steel was successfully processed by continuous ECAP-Conform. ► Continuously processed UFG steel shows high performance. ► High monotonic strength and good ductility. ► Microstructural stability under cyclic loading in the LCF regime. ► Established concepts can be used for predicting the properties. - Abstract: In the current study the mechanical properties of ultra-fine grained low carbon steel processed by conventional equal channel angular pressing and a continuous equal channel angular pressing-Conform process were investigated. Both monotonic and cyclic properties were determined for the steel in either condition and found to be very similar. Microstructural analyses employing electron backscatter diffraction were used for comparison of the low carbon steels processed by either technique. Both steels feature very similar grain sizes and misorientation angle distributions. With respect to fatigue life the low carbon steel investigated shows properties similar to ultra-fine grained interstitial-free steel processed by conventional equal channel angular pressing, and thus, the general fatigue behavior can be addressed following the same routines as proposed for interstitial-free steel. In conclusion, the continuously processed material exhibits very promising properties, and thus, equal channel angular pressing-Conform is a promising tool for production of ultra-fine grained steels in a large quantity

  20. Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Timothy L. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2005-12-01

    As of the development of this thesis, no commercially available products have been identified for the digital communication of instrumented data across a thick ({approx} 6 n.) steel wall using ultrasound. The specific goal of the current research is to investigate the application of methods for digital communication of instrumented data (i.e., temperature, voltage, etc.) across the wall of a steel pressure vessel. The acoustic transmission of data using ultrasonic transducers prevents the need to breach the wall of such a pressure vessel which could ultimately affect its safety or lifespan, or void the homogeneity of an experiment under test. Actual digital communication paradigms are introduced and implemented for the successful dissemination of data across such a wall utilizing solely an acoustic ultrasonic link. The first, dubbed the ''single-hop'' configuration, can communicate bursts of digital data one-way across the wall using the Differential Binary Phase-Shift Keying (DBPSK) modulation technique as fast as 500 bps. The second, dubbed the ''double-hop'' configuration, transmits a carrier into the vessel, modulates it, and retransmits it externally. Using a pulsed carrier with Pulse Amplitude Modulation (PAM), this technique can communicate digital data as fast as 500 bps. Using a CW carrier, Least Mean-Squared (LMS) adaptive interference suppression, and DBPSK, this method can communicate data as fast as 5 kbps. A third technique, dubbed the ''reflected-power'' configuration, communicates digital data by modulating a pulsed carrier by varying the acoustic impedance at the internal transducer-wall interface. The paradigms of the latter two configurations are believed to be unique. All modulation methods are based on the premise that the wall cannot be breached in any way and can therefore be viably implemented with power delivered wirelessly through the acoustic channel using ultrasound. Methods

  1. Assessment of conditions of the spent nuclear fuel stored in the stainless steel channel-holders

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Cupac, S.; Maksin, T.; Dasic, N.

    2003-01-01

    The IAEA technical co-operation project 'Safe Removal of Spent Fuel of the Vinca RA Research Reactor' is carried out at the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since January 2003. Present activities will provide up-to-date information on the conditions of the spent nuclear fuel, stored in the stainless steel channel-holders ('chekhols') and on the water quality in the storage basins. Water samples taken out from the chekhols and the basins are measured to determine their activity and chemical parameters. Until September 2003, about 1/3 of the chekhols containing spent fuel elements with initial enrichment of 2% and 80% of uranium were inspected. High activity of Cs-137 was found in several water samples taken out from chekhols. All water samples show very high electrical conductivity, while those taken from the basins show the presence of chlorides and aluminium ions, too. Information on established procedures and measuring results are given in this paper. The obtained results, so far, show that the spent nuclear fuel elements are leaking in about 10% of chekhols. (author)

  2. Tension Behaviour on the Connection of the Cold-Formed Cut-Curved Steel Channel Section

    Science.gov (United States)

    Sani, Mohd Syahrul Hisyam Mohd; Muftah, Fadhluhartini; Fakri Muda, Mohd; Siang Tan, Cher

    2017-08-01

    Cold-formed steel (CFS) are utilised as a non-structural and structural element in construction activity especially a residential house and small building roof truss system. CFS with a lot of advantages and some of disadvantages such as buckling that must be prevented for roof truss production are being studied equally. CFS was used as a top chord of the roof truss system which normally a slender section is dramatically influenced to buckling failure and instability of the structure. So, the curved section is produced for a top chord for solving the compression member of the roof truss. Besides, there are lacked of design and production information about the CFS curved channel section. In the study, the CFS is bent by using a cut-curved method because of ease of production, without the use of skilled labour and high cost machine. The tension behaviour of the strengthening method of cut-curved or could be recognised as a connection of the cut-curved section was tested and analysed. There are seven types of connection was selected. From the testing and observation, it is shown the specimen with full weld along the cut section and adds with flange element plate with two self-drilling screws (F7A) was noted to have a higher value of ultimate load. Finally, there are three alternative methods of connection for CFS cut-curved that could be a reference for a contractor and further design.

  3. Calculation of control rod oscillations in a hexagonal flow channel by means of the non-stationary pressure distribution around the rods

    International Nuclear Information System (INIS)

    Grunwald, G.; Mueller, E.

    1983-08-01

    For the computation of control rod oscillations in a flow channel we set up the differential equations for the non-stationary pressure distribution around the control elements which are coupled with the motion equations of the rods. The equation system is solved by means of a finite difference method. An example shows the efficiency of the numerical calculation procedure. (author)

  4. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  5. Hexagon solar power panel

    Science.gov (United States)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  6. Fabrication and Characteristics of Sintered Cutting Stainless Steel Fiber Felt with Internal Channels and an Al2O3 Coating

    Directory of Open Access Journals (Sweden)

    Shufeng Huang

    2018-03-01

    Full Text Available A novel sintered cutting stainless steel fiber felt with internal channels (SCSSFFC composed of a stainless-steel fiber skeleton, three-dimensional interconnected porous structure and multiple circular microchannels is developed. SCSSFFC has a jagged and rough surface morphology and possesses a high specific surface area, which is approximately 2.4 times larger than that of the sintered bundle-drawing stainless steel fiber felt with internal channels (SBDSSFFC and is expected to enhance adhesive strength. The sol-gel and wet impregnation methods are adopted to prepare SCSSFFC with an Al2O3 coating (SCSSFFC/Al2O3. The adhesive strength of SCSSFFC/Al2O3 is investigated using ultrasonic vibration and thermal shock tests. The experimental results indicate that the weight loss rate of the Al2O3 coating has a 4.2% and 8.42% reduction compared with those of SBDSSFFCs based on ultrasonic vibration and thermal shock tests. In addition, the permeability of SCSSFFC/Al2O3 is investigated based on forced liquid flow tests. The experimental results show that the permeability and inertial coefficients of SCSSFFC/Al2O3 are mainly affected by the coating rate, porosity and open ratio; however, the internal microchannel diameter has little influence. It is also found that SCSSFFC/Al2O3 yields superior permeability, as well as inertial coefficients compared with those of other porous materials reported in the literature.

  7. Effectiveness Using Circular Fibre Steel Flap Gate As a Control Structure Towards the Hydraulic Characteristics in Open Channel

    Science.gov (United States)

    Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.

    2016-07-01

    Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.

  8. Nano-Channels Early Formation Investigation on Stainless Steel 316Ti after Immersion in Molten Pb-Bi

    Directory of Open Access Journals (Sweden)

    Abu Khalid Rivai

    2017-04-01

    Full Text Available Pb-Bi (lead-bismuth eutectic-LBE is a coolant of one of main candidates for the future nuclear reactor in the world (Generation IV reactors i.e. LFR (Lead alloy-cooled Fast Reactor, and also a spallation target material for ADS (Accelerator Driven Transmutation System. However, the development of fuel cladding and structural materials in LBE environment, especially at high temperature, is a critical issue for the deployment of LFR and ADS. This is because of the corrosive characteristic of LBE to metals as constituent materials of fuel cladding and structural of the reactors. In this study, corrosion test of a high-chromium austenitic steel i.e. SS316Ti in liquid Pb-Bi at 550ºC has been carried out for about 300 hours. The characterization using SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscope showed that an iron oxide as the outer layer and a chromium oxide as the inner layer on the surface of the specimen were formed which protected the steel specimen from corrosion and dissolution attack of Pb-Bi. However, small amount of Pb-Bi could penetrate into the iron oxide layer through ultra-thin channels. Atomic Force Microscopy (AFM was employed to investigate the phenomena of the channels formation. The results of the nano-scale investigation showed clearly the formation of the channels.

  9. Equal-channel angular sheet extrusion of interstitial-free (IF) steel: Microstructural evolution and mechanical properties

    International Nuclear Information System (INIS)

    Saray, O.; Purcek, G.; Karaman, I.; Neindorf, T.; Maier, H.J.

    2011-01-01

    Highlights: → IF-steel sheets can successfully be processed in the continuous manner using the equal-channel angular sheet extrusion (ECASE). → The ECASE produces the microstructures including dislocation cell and micro-shear bands inside the grains with mainly low-angle grain boundaries. → The ECASE results in a considerable increase in the strength but limited ductility. → A good strength-ductility balance in the ECASE-processed IF-steel sheets can be managed with a suitable annealing parameters. - Abstract: Interstitial-free steel (IF-steel) sheets were processed at room temperature using a continuous severe plastic deformation (SPD) technique called equal-channel angular sheet extrusion (ECASE). After processing, the microstructural evolution and mechanical properties have been systematically investigated. To be able to directly compare the results with those from the same material processed using discontinuous equal channel angular extrusion, the sheets were ECASE processed up to eight passes. The microstructural investigations revealed that the processed sheets exhibited a dislocation cell and/or subgrain structures with mostly low angle grain boundaries. The grains after processing have relatively high dislocation density and intense micro-shear band formation. The electron backscattering diffraction (EBSD) examination showed that the processed microstructure is not fully homogeneous along the sheet thickness due probably to the corner angle of 120 deg. in the ECASE die. It was also observed that the strengths of the processed sheets increase with the number of ECASE passes, and after eight passes following route-A and route-C, the yield strengths reach 463 MPa and 459 MPa, respectively, which is almost 2.5 times higher than that of the initial material. However, the tensile ductility considerably dropped after the ECASE. The limited ductility was attributed to the early plastic instability in the tensile samples due to the inhomogeneous

  10. Formation mechanism of channel segregation in carbon steels by inclusion flotation: X-ray microtomography characterization and multi-phase flow modeling

    International Nuclear Information System (INIS)

    Cao, Yan Fei; Chen, Yun; Li, Dian Zhong

    2016-01-01

    Recent experimental dissections of steel ingots and multi-scale simulations have led to the discovery of a potential driving force for channel segregation: the flotation of oxide-based inclusion (D. Li et al., Nat. Commun. 5:5572 (2014)). Further experimental analysis and numerical modeling are necessary to clarify this mechanism in detail. In this work, the inclusions in a carbon steel ingot that exhibits severe channel segregations were characterized by the 3D X-ray microtomography, which revealed a significant enrichment and growth of inclusions in the channels. Based on above microtomography characterization, a 2D macrosegregation model encompassing the inclusion flotation was established. In the model, the motions of solid inclusions and liquid were described using the multi-phase flow scheme within the Euler-Lagrange framework. The benchmark simulations showed that sufficient inclusion populations with appropriate sizes are capable of altering the local flow patterns and destabilize the mushy zone, initiating the subsequent channel segregation. The continuous interplay between melt convection, inclusion flotation and solidification eventually causes the formation of macroscale channel. The predicted sizes and volume fraction of inclusions that are able to trigger the channel segregation effectively are consistent with the data obtained via microtomography characterization. The macrosegregation model was then applied to predict the channel segregations in an industrial carbon steel ingot. A rather good agreement of A-segregates was achieved between the simulation and the dissected ingot.

  11. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  12. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  13. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    Science.gov (United States)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  14. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  15. Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser

    Science.gov (United States)

    Singh, Sanasam Sunderlal; Baruah, Prahlad Kr; Khare, Alika; Joshi, Shrikrishna N.

    2018-02-01

    Laser micromachining of metals for fabrication of micro-channels generate ridge formation along the edges accompanied by ripples along the channel bed. The ridge formation is due to the formation of interference pattern formed by back reflections from the beam splitter and other optical components involved before focusing on the work piece. This problem can be curtailed by using a suitable aperture or Iris diaphragm so as to cut the unwanted portion of the laser beam before illuminating the sample. This paper reports an experimental investigation on minimizing this problem by conditioning the laser beam using an Iris diaphragm and using optimum process parameters. In this work, systematic experiments have been carried out using the second harmonic of a Q-switched Nd:YAG laser to fabricate micro-channels. Initial experiments revealed that formation of ridges along the sides of micro-channel can easily be minimized with the help of Iris diaphragm. Further it is noted that a clean micro-channel of depth 43.39 μm, width up to 64.49 μm and of good surface quality with average surface roughness (Ra) value of 370 nm can be machined on stainless steel (SS) 316L by employing optimum process condition: laser beam energy of 30 mJ/pulse, 11 number of laser scans and scan speed of 169.54 μm/s with an opening of 4 mm diameter of Iris diaphragm in the path of the laser beam.

  16. Hexagonal response matrix using symmetries

    International Nuclear Information System (INIS)

    Gotoh, Y.

    1991-01-01

    A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)

  17. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  18. Effect of Web Holes and Bearing Stiffeners on Flexural-Shear Interaction Strength of Steel Cold-Formed C-Channel Sections

    Directory of Open Access Journals (Sweden)

    Iman Faridmehr

    Full Text Available Abstract This paper presents an investigation on interaction equation between the required flexural strength, M, and the required shear strength, V, of cold-formed C-channels with web holes and bearing stiffeners. The primarily shear condition test was employed to study total 8 back to back lipped C channel sections of 95 and 100 mm depth when bearing stiffeners and circular holes were placed at center and both ends of specimens. The interaction equation were evaluated via Direct Strength Method, DSM, in accordance with the American Iron and Steel Institute for the design of cold-formed steel structural members, AISI 2007. A nonlinear finite element model was developed and verified against the test results in terms of failure buckling modes. It was concluded that the M-V interaction equation for specimens with web stiffeners was conservative where these specimens experienced plastic failure mode rather than local (Msl or distortional (Msd buckling mode. Moreover, the results indicated that proposed M-V interaction equation calculated by local buckling strength (Msl adequately predicted the behavior of specimens with circular web holes.

  19. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  20. Dynamic response of cracked hexagonal subassembly ducts

    International Nuclear Information System (INIS)

    Glazik, J.L.; Petroski, H.J.

    1979-01-01

    The hexagonal subassembly ducts (hexcans) of current Liquid Metal Fast Breeder Reactor (LMFBR) designs are typically made of 20% coldworked Type 316 stainless steel. Prolonged exposure of this initially tough and ductile material to a fast neutron flux at high temperatures can result in severe embrittlement. Under these conditions, the unstable crack propagation of flaws, which may have been introduced during fabrication or transportation of the hexcans, is a problem of interest in LMFBR safety analysis. The abnormal overpressurization resulting from certain interactions within a subassembly, or the rupture of one or more fuel pins, may be sufficient to overload an otherwise subcritical crack in an embrittled hexcan. This paper examines the dynamic elastic response of flawed and unflawed fast reactor subassembly ducts. A plane-strain finite element analysis was performed for ducts containing internal corner cracks, as well as external midflat cracks. Two worst case loading situations were considered: rapid uniform internal pressurization and suddenly applied point loads at opposite midflats. The finite-element code CHILES, which can accomodate the stress singularities that occur at crack tips, was given dynamic capabilities through the inclusion of a consistent mass matrix and step-by-step time integration scheme. The SAP IV code was also employed for eigenvalue analysis and modal response. Although this code does not contain singular elements in its element library, dynamic stress intensity factors were calculated by a technique requiring only ordinary isoparametric quadrilaterals

  1. Automatic guided wave communication system using steel pipes as communication channel for flood detection in steel offshoreoilrigs; Sistema automatico de comunicacion de ondas guiadas para la deteccion de tubos de refuerzo inundados en plataformas petroleras costa fuera

    Energy Technology Data Exchange (ETDEWEB)

    Mijarez Cstro, Rito; Martinez Ramirez, Fernando [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-10-09

    An automatic guided wave Pulse Position Modulation (PPM) system, using steel tubes as communication channel, for detecting flooding in the hollow sub-sea structures of offshore oilrigs is presented. The system employs two smart piezoelectric based sensors and modulators and a demodulator based on a piezoelectric transducer, a Digital Signal Processor (DSP) and a microcontroller. Experiments performed in the laboratory, in a tubular steel heliport structure and the base of a deck of an oilrig under construction, have successfully distinguished automatically guided wave encoded information. [Spanish] Este articulo presenta un trabajo de investigacion en el cual se desarrolla un sistema automatico de comunicacion de ondas guiadas por modulacion por posicion de pulsos (PPM), orientado a la deteccion de miembros inundados en los tubos de refuerzo de las plataformas petroleras costa fuera. El sistema utiliza de manera novedosa tubos de acero como medio de comunicacion y emplea dos sensores/moduladores inteligentes compuestos de cristales piezoelectricos, electronica basada en un microcontrolador y baterias. La instrumentacion del demodulador consta de un transductor piezoelectrico de ultrasonido, un procesador digital de senales (DSP) y un microcontrolador, el cual lleva a cabo de manera automatica la deteccion de ondas guiadas. Los experimentos se realizaron en aire, en laboratorio, en una estructura tubular de acero del helipuerto y en la base de una plataforma bajo construccion.

  2. EVOLUTION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRA-FINE-GRAINED INTERSTITIAL-FREE STEEL PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING

    Directory of Open Access Journals (Sweden)

    Tomáš Krajňák

    2013-04-01

    Full Text Available Equal channel angular pressing (ECAP is one of the severe plastic deformation techniques which is widely used for producing metals with ultra-fine-grained microstructures. In the present work the influence of number of pressing by route BC on grain size, evolution of microstructure and mechanical properties of interstitial-free (IF steel has been investigated by means of optical microscopy, electron back-scattering diffraction (EBSD and tensile tests. It has been found, that the grain size decreases with increasing number of passes. Simultaneously tensile strength increases. The thermal stability of ECAP-processed microstructures has been also examined. It was found that the degradation of mechanical properties occurs only above 600 ˚C and 700 ˚C.

  3. The role of the sliding direction against a grooved channel texture on tool steel: An experimental study on tactile friction

    NARCIS (Netherlands)

    Zhang, S.; Rodriguez Urribarri, A.; Morales Hurtado, M.; Zeng, X.; Heide, E. van der

    2015-01-01

    To control tactile friction, that is the friction between fingertip and counter-body, the role of surface texture is required to be unveiled and defined. In this research, an experimental approach is used based on measuring tactile friction for directional texture (grooved channel) with varying

  4. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  5. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  6. Enhancement effect of inter-pass annealing during equal channel angular pressing on grain refinement and ductility of 9Cr1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ting, E-mail: hao.ting@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Tangi, Haiyin [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Luo, Guangnan [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang, Xianping; Liu, Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Fang, Qianfeng, E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China)

    2016-06-14

    To obtain enhanced mechanical property in both the strength and the ductility, 9Cr1Mo steel (T91) was severely deformed by equal channel angular pressing (ECAP) combined with an additional inter-pass annealing. Tensile results show that the additional inter-pass annealing can significantly improve the ductility (i.e. 18% of the total elongation after four-pass extrusion with the inter-pass annealing) but slightly decrease the tensile strength comparing with the case without the inter-pass annealing (i.e. 10% of the total elongation after four-pass ECAP processing). The average grain size of the two passes ECAP-processed materials with the inter-pass annealing (~0.8 µm) is smaller than that of the sample without inter-pass annealing (~2 µm), and the fraction of the high angle grain boundaries in the samples with the inter-pass annealing (~40%) is higher than that of ~34% (two-pass ECAP) without the inter-pass annealing based on electron backscattering diffraction analysis. The crystallite size and dislocation density were evaluated by means of the modified Williamson-Hall plot based on X-ray diffraction analysis. The microstructural analysis indicates that the enhanced ductility of the ECAP processed and inter-pass annealed materials can be attributed to the relatively smaller grain sizes, larger crystallite sizes and lower dislocation densities.

  7. Enhancement effect of inter-pass annealing during equal channel angular pressing on grain refinement and ductility of 9Cr1Mo steel

    International Nuclear Information System (INIS)

    Hao, Ting; Tangi, Haiyin; Luo, Guangnan; Wang, Xianping; Liu, Changsong; Fang, Qianfeng

    2016-01-01

    To obtain enhanced mechanical property in both the strength and the ductility, 9Cr1Mo steel (T91) was severely deformed by equal channel angular pressing (ECAP) combined with an additional inter-pass annealing. Tensile results show that the additional inter-pass annealing can significantly improve the ductility (i.e. 18% of the total elongation after four-pass extrusion with the inter-pass annealing) but slightly decrease the tensile strength comparing with the case without the inter-pass annealing (i.e. 10% of the total elongation after four-pass ECAP processing). The average grain size of the two passes ECAP-processed materials with the inter-pass annealing (~0.8 µm) is smaller than that of the sample without inter-pass annealing (~2 µm), and the fraction of the high angle grain boundaries in the samples with the inter-pass annealing (~40%) is higher than that of ~34% (two-pass ECAP) without the inter-pass annealing based on electron backscattering diffraction analysis. The crystallite size and dislocation density were evaluated by means of the modified Williamson-Hall plot based on X-ray diffraction analysis. The microstructural analysis indicates that the enhanced ductility of the ECAP processed and inter-pass annealed materials can be attributed to the relatively smaller grain sizes, larger crystallite sizes and lower dislocation densities.

  8. Fermionic pentagons and NMHV hexagon

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-05-01

    Full Text Available We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N=4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4 R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.

  9. Bronze-mean hexagonal quasicrystal

    Science.gov (United States)

    Dotera, Tomonari; Bekku, Shinichi; Ziherl, Primož

    2017-10-01

    The most striking feature of conventional quasicrystals is their non-traditional symmetry characterized by icosahedral, dodecagonal, decagonal or octagonal axes. The symmetry and the aperiodicity of these materials stem from an irrational ratio of two or more length scales controlling their structure, the best-known examples being the Penrose and the Ammann-Beenker tiling as two-dimensional models related to the golden and the silver mean, respectively. Surprisingly, no other metallic-mean tilings have been discovered so far. Here we propose a self-similar bronze-mean hexagonal pattern, which may be viewed as a projection of a higher-dimensional periodic lattice with a Koch-like snowflake projection window. We use numerical simulations to demonstrate that a disordered variant of this quasicrystal can be materialized in soft polymeric colloidal particles with a core-shell architecture. Moreover, by varying the geometry of the pattern we generate a continuous sequence of structures, which provide an alternative interpretation of quasicrystalline approximants observed in several metal-silicon alloys.

  10. Dynamic response of single hexagonal LMFBR core subassembly wrappers

    Energy Technology Data Exchange (ETDEWEB)

    Ash, J. E.; Marciniak, T. J.; (Argonne National Lab., IL (United States))

    1977-07-01

    To analyze the dynamic structural response of the LMFBR core subassembly hexagonal wrappers to postulated local energy releases and the sensitivity of the response to variations in both the pressure loading and the material properties of the stainless steel, a finite-element computer code STRAW has been developed. A series of experiments was performed to study the effects of variations in material properties. The amount of coldworking to which the Type 316 stainless steel is subjected has a strong influence upon the ductility and the elastic yield point. The usual fabrication process produced a nominally 20% coldworking with a yield point of about 680 MPa. By designing a special set of dies for the drawing process, a very low ductility hexcan was produced for which the yield point was raised to 820 MPa. Conversely, the yield point was lowered to 170 MPa by a solution annealing process producing a highly ductile test hexcan. A metallurgical study was conducted to find a representative brittle simulant material for the irradiated end-of-life steel properties. An aging treatment for Type 446 stainless steel was developed which reproduced the expected tensile-flow behavior of the in-pile subassembly. Further study is underway to investigate the fracture properties of the simulant material. The pressure pulses were generated by the controlled expansion of high-pressure detonation poducts from low-density explosives detonated inside a vented steel cannister. The orifice configuration of the cannister and the charge mixture ratio were designed to produce two specified pulse shapes. A charge containing 37,7 g PETN mixed with 35 wt % inert, hollow-glass microballoons developed a pressure pulse peak of 9.5 MPa at 1.0 ms. Increasing the PETN to 41 g resulted in a 14.6 MPa peak pressure, and increasing the explosive concentration to 90 wt % in the mixture increased the burning rate and the pulse risetime, so that the peak occurred at 0.6 ms.

  11. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  12. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.

    Science.gov (United States)

    Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun

    2014-07-22

    Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.

  13. design chart procedures for polygonal concrete-filled steel columns

    African Journals Online (AJOL)

    ADMIN

    hexagonal and octagonal steel-concrete composite columns subjected to ... This paper also outlines procedures that will enable preparation of ... buildings and in a variety of large-span building ... Likewise, hot-rolled steel tubes are used while ... small moderate large. Fig. 2. Possible arrangement of composite polygonal ...

  14. The effect of equal channel angular pressing on the tensile properties and microstructure of two medical implant materials: ASTM F-138 austenitic steel and Grade 2 titanium

    Science.gov (United States)

    Mendes Filho, A. de A.; Sordi, V. L.; Kliauga, A. M.; Ferrante, M.

    2010-07-01

    Titanium and F-138 stainless steel are employed in bone replacement and repair. The former material was ECAP-deformed at room temperature and at 300°C, followed in some cases by cold rolling. The steel was ECAP-deformed at room temperature only. Work-hardening behavior was studied by making use of the Kocks-mecking plots and microstructural evolution was followed by TEM. Conclusions show that for Ti, ECAP combined with cold rolling gives the best strength-ductility combination, whilst room temperature ECAP increases the tensile strength of the steel but caused substantial ductility loss.

  15. The effect of equal channel angular pressing on the tensile properties and microstructure of two medical implant materials: ASTM F-138 austenitic steel and Grade 2 titanium

    Energy Technology Data Exchange (ETDEWEB)

    Filho, A de A Mendes; Sordi, V L; Kliauga, A M; Ferrante, M, E-mail: ferrante@ufscar.b [Federal University of Sao Carlos, Materials Engineering Department, Sao Carlos, 13565-905 (Brazil)

    2010-07-01

    Titanium and F-138 stainless steel are employed in bone replacement and repair. The former material was ECAP-deformed at room temperature and at 300{sup 0}C, followed in some cases by cold rolling. The steel was ECAP-deformed at room temperature only. Work-hardening behavior was studied by making use of the Kocks-mecking plots and microstructural evolution was followed by TEM. Conclusions show that for Ti, ECAP combined with cold rolling gives the best strength-ductility combination, whilst room temperature ECAP increases the tensile strength of the steel but caused substantial ductility loss.

  16. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  17. Coincidence orientations of grains in hexagonal materials

    International Nuclear Information System (INIS)

    Grimmer, H.; Warrington, D.H.

    1986-06-01

    The connection between the rotation matrix in hexagonal lattice coordinates and an angle-axis quadruple is given. The multiplication law of quadruples is derived. It corresponds to multiplying two matrices and gives the effect of two successive rotations. The relation is given between two quadruples that describe the same relative orientation of two lattices due to their hexagonal symmetry; a unique standard description of the relative orientation is proposed. The restrictions satisfied by rotations generating coincidence site lattices (CSLs) are derived for any value of the axial ratio rho = c/a. It is shown that the law for cubic lattices, where the multiplicity SIGMA of the CSL was equal to the least common denominator of the elements of the rotation matrix, does not always hold for hexagonal lattices. A generalisation of this law to lattices of arbitrary symmetry is given and another, quicker method to determine SIGMA for hexagonal lattices is derived. Finally, convenient algorithms are described for determining bases of the CSL and the DSC lattice. (author)

  18. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu

    2009-04-06

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  19. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu; Zhang, Daliang; Chng, Leng Leng; Sun, Junliang; Zhao, L. J.; Zou, Xiaodong; Ying, Jackie

    2009-01-01

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  20. Chain hexagonal cacti with the extremal eccentric distance sum.

    Science.gov (United States)

    Qu, Hui; Yu, Guihai

    2014-01-01

    Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

  1. Extension of the analytic nodal diffusion solver ANDES to triangular-Z geometry and coupling with COBRA-IIIc for hexagonal core analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Jimenez, Javier; Garcia-Herranz, Nuria; Aragones, Jose-Maria

    2010-01-01

    In this paper the extension of the multigroup nodal diffusion code ANDES, based on the Analytic Coarse Mesh Finite Difference (ACMFD) method, from Cartesian to hexagonal geometry is presented, as well as its coupling with the thermal-hydraulic (TH) code COBRA-IIIc for hexagonal core analysis. In extending the ACMFD method to hexagonal assemblies, triangular-Z nodes are used. In the radial plane, a direct transverse integration procedure is applied along the three directions that are orthogonal to the triangle interfaces. The triangular nodalization avoids the singularities, that appear when applying transverse integration to hexagonal nodes, and allows the advantage of the mesh subdivision capabilities implicit within that geometry. As for the thermal-hydraulics, the extension of the coupling scheme to hexagonal geometry has been performed with the capability to model the core using either assembly-wise channels (hexagonal mesh) or a higher refinement with six channels per fuel assembly (triangular mesh). Achieving this level of TH mesh refinement with COBRA-IIIc code provides a better estimation of the in-core 3D flow distribution, improving the TH core modelling. The neutronics and thermal-hydraulics coupled code, ANDES/COBRA-IIIc, previously verified in Cartesian geometry core analysis, can also be applied now to full three-dimensional VVER core problems, as well as to other thermal and fast hexagonal core designs. Verification results are provided, corresponding to the different cases of the OECD/NEA-NSC VVER-1000 Coolant Transient Benchmarks.

  2. Diamagnetic response in zigzag hexagonal silicene rings

    International Nuclear Information System (INIS)

    Xu, Ning; Chen, Qiao; Tian, Hongyu; Ding, Jianwen; Liu, Junfeng

    2016-01-01

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  3. Diamagnetic response in zigzag hexagonal silicene rings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning, E-mail: nxu@ycit.cn [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Chen, Qiao [Department of Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Tian, Hongyu [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Ding, Jianwen [Department of Physics, Xiangtan University, Xiangtan 411105 (China); Liu, Junfeng, E-mail: liu.jf@sustc.edu.cn [Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China)

    2016-09-16

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  4. Efficient Offline Waveform Design Using Quincunx/Hexagonal Time-Frequency Lattices

    Directory of Open Access Journals (Sweden)

    Raouia Ayadi

    2017-01-01

    Full Text Available Conventional orthogonal frequency division multiplexing (OFDM may turn to be inappropriate for future wireless cellular systems services, because of extreme natural and artificial impairments they are expected to generate. Natural impairments result from higher Doppler and delay spreads, while artificial impairments result from multisource transmissions and synchronization relaxation for closed-loop signaling overhead reduction. These severe impairments induce a dramatic loss in orthogonality between subcarriers and OFDM symbols and lead to a strong increase in intercarrier interference (ICI and intersymbol interference (ISI. To fight against these impairments, we propose here an optimization of the transmit/receive waveforms for filter-bank multicarrier (FBMC systems, with hexagonal time-frequency (TF lattices, operating over severe doubly dispersive channels. For this, we exploit the Ping-pong Optimized Pulse Shaping (POPS paradigm, recently applied to rectangular TF lattices, to design waveforms maximizing the signal-to-interference-plus-noise ratio (SINR for hexagonal TF lattices. We show that FBMC, with hexagonal lattices, offers a strong improvement in SINR with respect to conventional OFDM and an improvement of around 1 dB with respect to POPS-FBMC, with rectangular lattices. Furthermore, we show that hexagonal POPS-FBMC brings more robustness to frequency synchronization errors and offers a 10 dB reduction in out-of-band (OOB emissions, with respect to rectangular POPS-FBMC.

  5. Calculation of the mechanical equilibrium in a lattice of deformed hexagonal subassemblies

    International Nuclear Information System (INIS)

    Bernard, A.

    1979-01-01

    Stainless steel swelling and irradiation creep in the hexagonal wrappers of fast breeder cores induce deformations (mostly bowing), hence mutual interaction (displacements, forces and stresses, which must be calculated). The HARMONIE code was developed to meet these requirements. In this three dimensional code, one minimizes the elastic potential bending energy (quadratic form), with given linear conditions (no overlapping between adjacent subassemblies). The convergence of this function is obtained through a numerical method (parallel gradient). The free bowing of the subassemblies are given as input datas; the output gives the equilibrium displacements and forces while stresses are calculated in a classical manner

  6. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    Science.gov (United States)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  7. Glycolthermal synthesis and characterization of hexagonal CdS round microparticles in flower-like clusters

    International Nuclear Information System (INIS)

    Phuruangrat, Anukorn; Ekthammathat, Nuengruethai; Thongtem, Titipun; Thongtem, Somchai

    2011-01-01

    Highlights: → CdS as one of II-VI semiconducting materials. → Lab-made Teflon-lined stainless steel autoclaves enable us to form hexagonal CdS. → By 100-200 deg. C processing, round microparticles in flower clusters were synthesized. → A promising material for multiple potential applications. - Abstract: Hexagonal CdS round microparticles in flower-like clusters were synthesized by glycolthermal reactions of CdCl 2 and thiourea as cadmium and sulphur sources in 1,2-propylene glycol (PG) at 100-200 deg. C for 10-30 h. Phase and morphology were detected using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM, TEM). The products were pure phase of hexagonal wurtzite CdS. The quantitative elemental analysis of Cd:S ratio was detected using energy dispersive X-ray (EDX) analyzer. Raman spectrometer revealed the presence of fundamental and overtone modes at 296 and 595 cm -1 , corresponding to the strong 1LO and weak 2LO modes, respectively. Photonic properties were investigated using UV-visible and photoluminescence (PL) spectroscopy. They showed the same absorption at 493-498 nm, and emission at 431 nm due to the excitonic recombination process. A possible formation mechanism was also proposed, according to experimental results.

  8. Glycolthermal synthesis and characterization of hexagonal CdS round microparticles in flower-like clusters

    Energy Technology Data Exchange (ETDEWEB)

    Phuruangrat, Anukorn, E-mail: phuruangrat@hotmail.com [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2011-10-13

    Highlights: > CdS as one of II-VI semiconducting materials. > Lab-made Teflon-lined stainless steel autoclaves enable us to form hexagonal CdS. > By 100-200 deg. C processing, round microparticles in flower clusters were synthesized. > A promising material for multiple potential applications. - Abstract: Hexagonal CdS round microparticles in flower-like clusters were synthesized by glycolthermal reactions of CdCl{sub 2} and thiourea as cadmium and sulphur sources in 1,2-propylene glycol (PG) at 100-200 deg. C for 10-30 h. Phase and morphology were detected using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM, TEM). The products were pure phase of hexagonal wurtzite CdS. The quantitative elemental analysis of Cd:S ratio was detected using energy dispersive X-ray (EDX) analyzer. Raman spectrometer revealed the presence of fundamental and overtone modes at 296 and 595 cm{sup -1}, corresponding to the strong 1LO and weak 2LO modes, respectively. Photonic properties were investigated using UV-visible and photoluminescence (PL) spectroscopy. They showed the same absorption at 493-498 nm, and emission at 431 nm due to the excitonic recombination process. A possible formation mechanism was also proposed, according to experimental results.

  9. On the perfect hexagonal packing of rods

    International Nuclear Information System (INIS)

    Starostin, E L

    2006-01-01

    In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids

  10. Diagonal form factors and hexagon form factors

    International Nuclear Information System (INIS)

    Jiang, Yunfeng; Petrovskii, Andrei

    2016-01-01

    We study the heavy-heavy-light (HHL) three-point functions in the planar N=4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program http://arxiv.org/abs/1505.06745. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  11. Diagonal form factors and hexagon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunfeng [Institute for Theoretical Physics, ETH Zürich,Honggerberg, Zürich, 8093 (Switzerland); Petrovskii, Andrei [Institut de Physique Théorique, CEA, URA 2306 CNRS Saclay,Gif-sur-Yvette, F91191 (France)

    2016-07-25

    We study the heavy-heavy-light (HHL) three-point functions in the planar N=4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program http://arxiv.org/abs/1505.06745. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  12. Dirac cones in isogonal hexagonal metallic structures

    Science.gov (United States)

    Wang, Kang

    2018-03-01

    A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.

  13. Spatial dependence of the void coefficient in the interstitial coolant channel positions of a stainless steel-clad TRIGA Mark I core

    International Nuclear Information System (INIS)

    Spriggs, Gregory D.; Nelson, George W.; Doane, Harry J.

    1982-01-01

    A new top grid plate was manufactured and installed in the U of A TRIGA. The new grid plate was identical to the old grid plate with respect to the fuel element array, but included two minor modifications; 1) 3/8'' holes were drilled in six interstitial positions between fuel element rings to allow for insertion of a small diameter void rod for void coefficient measurements in the coolant channels, and 2) flux wire holes were drilled in all remaining interstitial positions. The purpose of this report is to update the previously reported void coefficient measurements with data taken in one of the coolant channel positions

  14. Thermal transport across graphene and single layer hexagonal boron nitride

    International Nuclear Information System (INIS)

    Zhang, Jingchao; Hong, Yang; Yue, Yanan

    2015-01-01

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulate the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs

  15. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  16. Permeation of Light Gases through Hexagonal Ice

    Directory of Open Access Journals (Sweden)

    Luis Gales

    2012-09-01

    Full Text Available Gas separation using porous solids have attracted great attention due to their energetic applications. There is an enormous economic and environmental interest in the development of improved technologies for relevant processes, such as H2 production, CO2 separation or O2 and N2 purification from air. New materials are needed for achieving major improvements. Crystalline materials, displaying unidirectional and single-sized pores, preferentially with low pore tortuosity and high pore density, are promising candidates for membrane synthesis. Herein, we study hexagonal ice crystals as an example of this class of materials. By slowly growing ice crystals inside capillary tubes we were able to measure the permeation of several gas species through ice crystals and investigate its relation with both the size of the guest molecules and temperature of the crystal.

  17. Hexagonal boron nitride and water interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  18. Hexagonal wavelet processing of digital mammography

    Science.gov (United States)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  19. The hexagon hypothesis: Six disruptive scenarios.

    Science.gov (United States)

    Burtles, Jim

    2015-01-01

    This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity.

  20. Dancoff Correction in Square and Hexagonal Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1966-11-15

    This report presents the results of a series of calculations of Dancoff corrections for square and hexagonal rod lattices. The tables cover a wide range of volume ratios and moderator cross sections. The results were utilized for checking the approximative formula of Sauer and also the modification of Bonalumi to Sauer's formula. The modified formula calculates the Dancoff correction with an accuracy of 0.01 - 0.02 in cases of practical interest. Calculations have also been performed on square lattices with an empty gap surrounding the rods. The results demonstrate the error involved in treating this kind of geometry by means of homogenizing the gap and the moderator. The calculations were made on the Ferranti Mercury computer of AB Atomenergi before it was closed down. Since then FORTRAN routines for Dancoff corrections have been written, and a subroutine DASQHE is included in the report.

  1. Structural domain walls in polar hexagonal manganites

    Science.gov (United States)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  2. DUMA - a program to display distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Tran Quoc Dung; Makai, M.

    1987-09-01

    DUMA program displays hexagonal structures applied in WWER-440 reactors or one or two distributions in them. It helps users to display either integer, literal or real arrays in an arbitrary hexagonal structure. Possible applications: displaying reactor core layout, power distribution or activity measurements. (author)

  3. Loading pattern optimization in hexagonal geometry using PANTHER

    International Nuclear Information System (INIS)

    Parks, G.T.; Knight, M.P.

    1996-01-01

    The extension of the loading pattern optimization capability of Nuclear Electric's reactor physics code PANTHER to hexagonal geometry cores is described. The variety of search methods available and the code's performance are illustrated by an example in which three search different methods are used in turn in order to find an optimal reload design for a sample hexagonal geometry problem. (author)

  4. Direct numerical simulation of turbulence and heat transfer in a hexagonal shaped duct

    Science.gov (United States)

    Marin, Oana; Obabko, Aleks; Schlatter, Philipp

    2014-11-01

    Flows in hexagonal shapes frequently occur in nuclear reactor applications, and are also present in honeycomb-shaped settling chambers for e.g. wind tunnels. Whereas wall-bounded turbulence has been studied comprehensively in two-dimensional channels, and to a lesser degree also in square and rectangular ducts and triangles, only very limited data for hexagonal ducts is available, including resistance correlations and mean profiles. Here, we use resolved spectral-element simulations to compute velocity and temperature in fully-developed (periodic) hexagonal duct flow. The Reynolds number, based on the fixed flow rate and the hydraulic diameter, ranges between 2000 and 20000. The temperature assumes constant wall flux or constant wall temperature. First DNS results are focused on the mean characteristics such a head loss, Nusselt number, and critical Reynolds number for sustained turbulence. Profiles, both for mean and fluctuating quantities, are extracted and discussed in the context of square ducts and pipes. Comparisons to existing experiments, RANS and empirical correlations are supplied as well. The results show a complicated and fine-scale pattern of the in-plane secondary flow, which clearly affects the momentum and temperature distribution throughout the cross section.

  5. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  6. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  7. Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-02-14

    The present study is the first report on the synthesis and characterization of mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). A series of NR/HMS composites were prepared in tetrahydrofuran via an in situ sol–gel process using tetraethylorthosilicate as the silica precursor. The physicochemical properties of the composites were characterized by various techniques. The effects of the gel composition on the structural and textural properties of the NR/HMS composites were investigated. The Fourier-transform infrared spectroscopy (FTIR) and {sup 29}Si magic angle spinning nuclear magnetic resonance ({sup 29}Si MAS NMR) results revealed that the surface silanol groups of NR/HMS composites were covered with NR molecules. The powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated an expansion of the hexagonal unit cell and channel wall thickness due to the incorporation of NR molecules into the mesoporous structure. NR/HMS composites also possessed nanosized particles (∼79.4 nm) as confirmed by scanning electron microscopy (SEM) and particle size distribution analysis. From N{sub 2} adsorption–desorption measurement, the NR/HMS composites possessed a high BET surface area, large pore volume and narrow pore size distribution. Further, they were enhanced hydrophobicity confirmed by H{sub 2}O adsorption–desorption measurement. In addition, the mechanistic pathway of the NR/HMS composite formation was proposed. - Highlights: • NR molecules were incorporated into hexagonal meso-structure of HMS. • NR/HMS composites exhibited an expanded unit cell and channel wall thickness. • Nanosized NR/HMS composites with a lower particle size range were obtained. • NR/HMS had high surface area, large pore volume and narrow pore size distribution. • NR/HMS composites displayed an enhanced hydrophobicity.

  8. Theoretical Investigations of the Hexagonal Germanium Carbonitride

    Directory of Open Access Journals (Sweden)

    Xinhai Yu

    2018-04-01

    Full Text Available The structural, mechanical, elastic anisotropic, and electronic properties of hexagonal germanium carbonitride (h-GeCN are systematically investigated using the first-principle calculations method with the ultrasoft pseudopotential scheme in the frame of generalized gradient approximation in the present work. The h-GeCN are mechanically and dynamically stable, as proved by the elastic constants and phonon spectra, respectively. The h-GeCN is brittle because the ratio B/G and Poisson’s ratio v of the h-GeCN are less than 1.75 and 0.26, respectively. For h-GeCN, from brittleness to ductility, the transformation pressures are 5.56 GPa and 5.63 GPa for B/G and Poisson’s ratio v, respectively. The h-GeCN exhibits the greater elastic anisotropy in Young’s modulus and the sound velocities. In addition, the calculated band structure of h-GeCN reveals that there is no band gap for h-GeCN with the HSE06 hybrid functional, so the h-GeCN is metallic.

  9. Mathematical Foundation for Plane Covering Using Hexagons

    Science.gov (United States)

    Johnson, Gordon G.

    1999-01-01

    This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.

  10. Bootstrapping the Three-Loop Hexagon

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /CERN /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  11. Structure of grain boundaries in hexagonal materials

    International Nuclear Information System (INIS)

    Sarrazit, F.

    1998-05-01

    The work presented in this thesis describes experimental and theoretical aspects associated with the structure of grain boundaries in hexagonal materials. It has been found useful to classify grain boundaries as low-angle, special or general on the basis of their structure. High-angle grain boundaries were investigated in tungsten carbide (WC) using conventional electron microscopy techniques, and three examples characteristic of the interfaces observed in this material were studied extensively. Three-dimensionally periodic patterns are proposed as plausible reference configurations, and the Burgers vectors of observed interfacial dislocations were predicted using a theory developed recently. The comparison of experimental observations with theoretical predictions proved to be difficult as contrast simulation techniques require further development for analysis to be completed confidently. Another part of this work involves the characterisation of high-angle grain boundaries in zinc oxide (ZnO) using circuit mapping. Two boundaries displayed structural features characteristic of the 'special' category, however, one boundary presented features which did not conform to this model. It is proposed that the latter observation shows a structural transition from the special to a more general type. Material fluxes involved in defect interactions were considered using the topological framework described in this work. A genera) expression was derived for the total flux arising which allows the behaviour of line-defects to be studied in complex interfacial processes. (author)

  12. Hexagonal pixel detector with time encoded binary readout

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Varner, G.; Cooney, M.

    2009-01-01

    The University of Hawaii is developing continuous acquisition pixel (CAP) detectors for vertexing applications in lepton colliding experiments such as SuperBelle or ILC. In parallel to the investigation of different technology options such as MAPS or SOI, both analog and binary readout concepts have been tested. First results with a binary readout scheme in which the hit information is time encoded by means of a signal shifting mechanism have recently been published. This paper explains the hit reconstruction for such a binary detector with an emphasis on fake hit reconstruction probabilities in order to evaluate the rate capability in a high background environment such as the planned SuperB factory at KEK. The results show that the binary concept is at least comparable to any analog readout strategy if not better in terms of occupancy. Furthermore, we present a completely new binary readout strategy in which the pixel cells are arranged in a hexagonal grid allowing the use of three independent output directions to reduce reconstruction ambiguities. The new concept uses the same signal shifting mechanism for time encoding, however, in dedicated transfer lines on the periphery of the detector, which enables higher shifting frequencies. Detailed Monte Carlo simulations of full size pixel matrices including hit and BG generation, signal generation, and data reconstruction show that by means of multiple signal transfer lines on the periphery the pixel can be made smaller (higher resolution), the number of output channels and the data volume per triggered event can be reduced dramatically, fake hit reconstruction is lowered to a minimum and the resulting effective occupancies are less than 10 -4 . A prototype detector has been designed in the AMS 0.35μm Opto process and is currently under fabrication.

  13. PEP-4 geiger-mode hexagonal calorimeter

    International Nuclear Information System (INIS)

    Wenzel, W.A.

    1982-01-01

    The design and performance of the calorimeter are briefly described. Design aspects include illustrations of the active volume of the detector, edge connections, module assembly and analog electronics. Performance data for cosmic rays and radiation sources, including efficiency and channel sensitivity are discussed

  14. Quantification by image analysis of grain size of the high temperature phase (austenite) of martensitic steels 9Cr-1Mo

    International Nuclear Information System (INIS)

    Barcelo, F.; Brachet, J.C.

    1993-01-01

    In martensitic steels, the austenitic grain size before transformation may influence mechanical properties. 9Cr-1Mo steel (EM10) is used in hexagonal pipes fabrication in fast neutrons reactors. Image analysis allows to quantify the older grain size in function of the austenization heat treatment conditions. (A.B.). 2 figs

  15. Bifurcation theory for hexagonal agglomeration in economic geography

    CERN Document Server

    Ikeda, Kiyohiro

    2014-01-01

    This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distri...

  16. Novel high pressure hexagonal OsB2 by mechanochemistry

    Science.gov (United States)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-07-01

    Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.

  17. Novel high pressure hexagonal OsB2 by mechanochemistry

    International Nuclear Information System (INIS)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-01-01

    Hexagonal OsB 2 , a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB 2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB 2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB 2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from −225 °C to 1050 °C. The hexagonal OsB 2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB 2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. - Graphical abstract: High resolution transmission electron micrograph of hexagonal OsB 2 nanocrystallite with corresponding fast Fourier transform and simulated diffraction pattern. - Highlights: • Hexagonal OsB 2 has been synthesized for the first time by mechanochemical method. • Hexagonal OsB 2 crystallizes in P63/mmc space group (No. 194), a=2.916 Å and c=7.376 Å. • The hexagonal structure was confirmed by a transmission electron microscope. • No phase transformation was observed after being annealed at 1050 °C for 6 days. • 20 wt% of h-OsB 2 was transformed to o-OsB 2 after being sintered at 1500 °C for 5 min

  18. The extended family of hexagonal molybdenum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hartl, Monika [Los Alamos National Laboratory; Daemen, Luke [Los Alamos National Laboratory; Lunk, J H [NON LANL; Hartl, H [NON LANL; Frisk, A T [NON LANL; Shendervich, I [NON LANL; Mauder, D [NON LANL; Feist, M [NON LANL; Eckelt, R [NON LANL

    2009-01-01

    Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.

  19. A nodal expansion method using conformal mapping for hexagonal geometry

    International Nuclear Information System (INIS)

    Chao, Y.A.; Shatilla, Y.A.

    1993-01-01

    Hexagonal nodal methods adopting the same transverse integration process used for square nodal methods face the subtle theoretical problem that this process leads to highly singular nonphysical terms in the diffusion equation. Lawrence, in developing the DIF3D-N code, tried to approximate the singular terms with relatively simple polynomials. In the HEX-NOD code, Wagner ignored the singularities to simplify the diffusion equation and introduced compensating terms in the nodal equations to restore the nodal balance relation. More recently developed hexagonal nodal codes, such as HEXPE-DITE and the hexagonal version of PANTHER, used methods similar to Wagner's. It will be shown that for light water reactor applications, these two different approximations significantly degraded the accuracy of the respective method as compared to the established square nodal methods. Alternatively, the method of conformal mapping was suggested to map a hexagon to a rectangle, with the unique feature of leaving the diffusion operator invariant, thereby fundamentally resolving the problems associated with transverse integration. This method is now implemented in the Westinghouse hexagonal nodal code ANC-H. In this paper we report on the results of comparing the three methods for a variety of problems via benchmarking against the fine-mesh finite difference code

  20. Inserting Stress Analysis of Combined Hexagonal Aluminum Honeycombs

    Directory of Open Access Journals (Sweden)

    Xiangcheng Li

    2016-01-01

    Full Text Available Two kinds of hexagonal aluminum honeycombs are tested to study their out-of-plane crushing behavior. In the tests, honeycomb samples, including single hexagonal aluminum honeycomb (SHAH samples and two stack-up combined hexagonal aluminum honeycombs (CHAH samples, are compressed at a fixed quasistatic loading rate. The results show that the inserting process of CHAH can erase the initial peak stress that occurred in SHAH. Meanwhile, energy-absorbing property of combined honeycomb samples is more beneficial than the one of single honeycomb sample with the same thickness if the two types of honeycomb samples are completely crushed. Then, the applicability of the existing theoretical model for single hexagonal honeycomb is discussed, and an area equivalent method is proposed to calculate the crushing stress for nearly regular hexagonal honeycombs. Furthermore, a semiempirical formula is proposed to calculate the inserting plateau stress of two stack-up CHAH, in which structural parameters and mechanics properties of base material are concerned. The results show that the predicted stresses of three kinds of two stack-up combined honeycombs are in good agreement with the experimental data. Based on this study, stress-displacement curve of aluminum honeycombs can be designed in detail, which is very beneficial to optimize the energy-absorbing structures in engineering fields.

  1. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-01-01

    Highlights: • ReB 2 -type hexagonal OsB 2 powder has been densified by spark plasma sintering. • The sintered OsB 2 contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB 2 sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB 2 -type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics

  2. Characterization of new hexagonal large area Geiger Avalanche Photodiodes

    International Nuclear Information System (INIS)

    Boccone, V.; Aguilar, J.A.; Della Volpe, D.; Christov, A.; Montaruli, T.; Rameez, M.; Basili, A.

    2013-06-01

    Photomultipliers (PMTs) are the standard detector for construction of the current generation of imaging Atmospheric Cherenkov Telescopes (IACTs). Despite impressive improvements in QE and reliability in the last years, these devices suffer from the limitation of being unable to operate in the partially illuminated sky (during full or partial moon periods) as the excess light leads to a significant increase in the rate of ageing of the devices themselves and consequently limit the life of the camera. A viable alternative is the large area Geiger-mode avalanche photodiodes (G-APDs also known as Silicon Photomultipliers or SiPMs) that are commercially available from different producers in various types and dimensions. The sufficiency of the maturity of this technology for application to Cherenkov Astronomy has already been demonstrated by the FACT telescope. One of the camera designs under study for the 4 m Davies Cotton Telescope foresees the utilization of a large area G-APDs coupled to non imaging light concentrators. In collaboration with Hamamatsu and deriving from their current technology, we have designed a new hexagonal shaped large area G-APD HEX S12516 which when coupled to a Winston cone of 24 degrees cutting angle allows for a pixel angular resolution of 0.25 degrees for a f/D 1.4 telescope with a diameter of 4 m. The device, available in 2 different cell size configurations (50 μm and 100 μm), is divided into 4 different channels powered in common cathode mode. A temperature sensor was included for a better temperature evaluation in the characterization phase. The first 3 prototypes were fully characterized and the results are compared to the larger area devices commercially available such as the S10985-050C (2x2 array of 3x3 mm 2 G-APDs). The photo-detection efficiency is measured applying the Poisson statistics method using pulsed LED at 7 different wavelengths from 355 to 670 nm and for different bias over-voltages (V ov ). Optical crosstalk and

  3. The structure and electronic properties of hexagonal Fe{sub 2}Si

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chi Pui; Tam, Kuan Vai; Zhang, Xiaoping, E-mail: xpzhang@must.edu.mo [Lunar and Planetary Science Laboratory, Macau University of Science and Technology, Macau (Macao); Xiong, Shi Jie [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Cao, Jie [College of Science, Hohai University, Nanjing 211171 (China)

    2016-06-15

    On the basis of first principle calculations, we show that a hexagonal structure of Fe{sub 2}Si is a ferromagnetic crystal. The result of the phonon spectra indicates that it is a stable structure. Such material exhibits a spin-polarized and half-metal-like band structure. From the calculations of generalized gradient approximation, metallic and semiconducting behaviors are observed with a direct and nearly 0 eV band gap in various spin channels. The densities of states in the vicinity of the Fermi level is mainly contributed from the d-electrons of Fe. We calculate the reflection spectrum of Fe{sub 2}Si, which has minima at 275 nm and 3300 nm with reflectance of 0.27 and 0.49, respectively. Such results may provide a reference for the search of hexagonal Fe{sub 2}Si in experiments. With this band characteristic, the material may be applied in the field of novel spintronics devices.

  4. Steady squares and hexagons on a subcritical ramp

    International Nuclear Information System (INIS)

    Hoyle, R.B.

    1995-01-01

    Steady squares and hexagons on a subcritical ramp are studied, both analytically and numerically, within the framework of the lowest-order amplitude equations. On the subcritical ramp, the external stress or control parameter varies continuously in space from subcritical to supercritical values. At the subcritical end of the ramp, pattern formation is suppressed, and patterns fade away into the conduction solution. It is shown that three-dimensional patterns may change shape on a subcritical ramp. A square pattern becomes a pattern of rolls as it fades, with the roll axes aligned in the direction orthogonal to that in which the control parameter varies. Hexagons in systems with horizontal midplane symmetry become a pattern of rectangles before reaching the conduction solution. There is a suggestion that hexagons in systems which lack this symmetry might fade away through a roll pattern. Numerical simulations are used to illustrate these phenomena

  5. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  6. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  7. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  8. Comparison of PANTHER nodal solutions in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Knight, M.; Hutt, P.; Lewis, I.

    1995-01-01

    The reactor physics code PANTHER has been extended to hexagonal geometries. Steady-state, depletion, and transient calculations with feedback can all be performed. Two hexagonal nodal flux solutions have been developed. In the first method, transverse integration is performed exactly as in the rectangular case. The resulting transverse integrated equation has singular terms, which are simply ignored. The second approach applies a conformal mapping that transforms the hexagon onto a rectangle. Pin power reconstruction has also been developed with both methods. For a benchmark VVER-1000 reactor depletion problem, both methods give accurate results for standard depletion calculations. In the more extreme situation with all rods inserted, the simpler method breaks down. However, the accuracy of the conformal solution was found to be excellent in all cases studied

  9. New results for loop integrals. AMBRE, CSectors, hexagon

    International Nuclear Information System (INIS)

    Gluza, Janusz; Kajda, Krzysztof

    2009-03-01

    We report on the three Mathematica packages hexagon, CSectors, AMBRE. They are useful for the evaluation of one- and two-loop Feynman integrals with a dependence on several kinematical scales. These integrals are typically needed for LHC and ILC applications, but also for higher order corrections at meson factories. hexagon is a new package for the tensor reduction of one-loop 5-point and 6-point functions with rank R=3 and R=4, respectively; AMBRE is a tool for derivations of Mellin-Barnes representations; CSectors is an interface for the package sectordecomposition and allows a convenient, direct evaluation of tensor Feynman integrals. (orig.)

  10. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  11. Structural Characterization of Hexagonal Braiding Architecture Aided by 3D Printing

    Directory of Open Access Journals (Sweden)

    Li Zhengning

    2018-01-01

    Full Text Available Hexagonal braiding method has the advantages of high shape compatibility, interlacing density and high volume fraction. Based on hexagonal braiding method, a hexagonal preform was braided. Then, by following the characteristics of repeatability and concentricity of hexagonal braided preform, the printed geometry structure was got in order to understand and optimize geometric structure to make it more compact like the braided geometric structure. Finally, the unit cells were defined with hexagonal prism to analyze the micro-geometric structure of hexagonal braided preform.

  12. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  13. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    Science.gov (United States)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  14. Hexagon and stripe patterns in dielectric barrier streamer discharge

    International Nuclear Information System (INIS)

    Dong Lifang; He Yafeng; Yin Zengqian; Chai Zhifang

    2004-01-01

    We present a specially designed dielectric barrier discharge (DBD) system for the study of pattern formation. Hexagon and stripe patterns have been observed in a streamer discharge in a DBD for the first time. The phase diagram of pattern types as a function of applied voltage is given

  15. Moving antiplane shear crack in hexagonal piezoelectric crystals

    International Nuclear Information System (INIS)

    Tupholme, G.

    1998-01-01

    Closed form solutions are obtained and discussed for the stress and electric displacement fields around a loaded Griffith-type antiplane shear strip crack moving in hexagonal piezoelectric crystals. Representative numerical results are presented for ZnO and PZT-5H. (author)

  16. Coherent memory functions for finite systems: hexagonal photosynthetic unit

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1990-10-01

    Coherent memory functions entering the Generalized Master Equation are presented for an hexagonal model of a photosynthetic unit. Influence of an energy heterogeneity on an exciton transfer is an antenna system as well as to a reaction center is investigated. (author). 9 refs, 3 figs

  17. Scanning tunneling microscopy of hexagonal BN grown on graphite

    International Nuclear Information System (INIS)

    Fukumoto, H.; Hamada, T.; Endo, T.; Osaka, Y.

    1991-01-01

    The microscopic surface topography of thin BN x films grown on graphite by electron cyclotron resonance plasma chemical vapor deposition have been imaged with scanning tunneling microscopy in air. The scanning tunneling microscope has generated images of hexagonal BN with atomic resolution

  18. Epitaxial hexagonal materials on IBAD-textured substrates

    Science.gov (United States)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  19. Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires

    KAUST Repository

    Wang, Ping

    2015-12-22

    Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001 ̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about two-fold larger in magnitude than those on the (0001 ̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  20. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  1. Influence of strontium on the cubic to ordered hexagonal phase

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Influence of strontium on the cubic to ordered hexagonal phase transformation in barium magnesium niobate. M Thirumal A K Ganguli. Phase Transitions Volume 23 Issue 6 December 2000 pp 495-498 ...

  2. New approach for direct chemical synthesis of hexagonal Co nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Frank M., E-mail: fabel@udel.edu [Physics and Astronomy, University of Delaware (United States); Tzitzios, Vasilis [Institute of Nanoscience and Nanotechnology, NCSR, Demokritos (Greece); Hadjipanayis, George C. [Physics and Astronomy, University of Delaware (United States)

    2016-02-15

    In this paper, we explore the possibility of producing hexagonal Cobalt nanoparticles, with high saturation magnetization by direct chemical synthesis. The nanoparticles were synthesized by reduction of anhydrous cobalt (II) chloride by NaBH{sub 4} in tetraglyme at temperatures in the range of 200–270 °C under a nitrogen–hydrogen atmosphere. The reactions were done at high temperatures to allow for the formation of as-made hexagonal cobalt. The size of the particles was controlled by the addition of different surfactants. The best magnetic properties so far were obtained on spherical hexagonal Co nanoparticles with an average size of 45 nm, a saturation magnetization of 143 emu/g and coercivity of 500 Oe. the saturation magnetization and coercivity were further improved by annealing the Co nanoparticles leading to saturation magnetization of 160 emu/g and coercivity of 540 Oe. - Highlights: • We synthesized hexagonal cobalt nanoparticles by a new wet chemical method. • We considered the effects of different surfactants on particles magnetic properties. • The as-made Co nanoparticles had magnetic properties of 143 emu/g and 500 Oe. • After annealing magnetic properties of 160 emu/g and 540 Oe were obtained.

  3. Scattering phase functions of horizontally oriented hexagonal ice crystals

    International Nuclear Information System (INIS)

    Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.

    2006-01-01

    Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns

  4. Model for lattice dynamics of hexagonal close packed metals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R K [Tata Inst. of Fundamental Research, Bombay (India); Kumar, S [Meerut Coll. (India). Dept. of Physics

    1977-11-19

    A lattice dynamical model, which satisfies the requirements of translational invariance as well as the static equilibrium of hexagonal close packed lattice, has been proposed and applied to study the phonon dispersion relations in magnesium. The results revealed by this model have been claimed to be better than earlier ones.

  5. Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires

    KAUST Repository

    Wang, Ping; Yuan, Ying; Zhao, Chao; Wang, Xinqiang; Zheng, Xiantong; Rong, Xin; Wang, Tao; Sheng, Bowen; Wang, Qingxiao; Zhang, Yongqiang; Bian, Lifeng; Yang, Xue-Lin; Xu, Fu-Jun; Qin, Zhixin; Li, Xin-Zheng; Zhang, Xixiang; Shen, Bo

    2015-01-01

    by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  6. Epitaxial hexagonal materials on IBAD-textured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  7. Bywalled plasma formation in vacuum prolonged channels

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.

    1982-01-01

    To produce homogeneous along the channel length plasma the application of incomplete rate-in surface dielectric discharge for generating the bywalled plasma in prolonged cylindrical channels at a pressure of the residual gas of P approximately 10 -5 Torr is proposed. Experimental set-up consisted of a pulse voltage generator and a plasma channel. The plasma channel was a coaxial system of three tubes inserted into each other. The first outer tube is made of a stainless steel, the second - of a dielectric material, the third - of smallsized stainless steel greed. It is demonstrated that the plasma being formed in the process is sufficiently homogeneous by concentration of the components, by the channel length and azimuth. The length of the experimental channel under investigation was 1.6 m, its diameter amounted 0.05 m. The maximum concentration of electron component was 10 17 m -3

  8. Characterization of the secondary flow in hexagonal ducts

    Science.gov (United States)

    Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.

    2016-12-01

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress u w ¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120∘ aperture of its vertex, whereas in the square duct the 90∘ corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90∘ corner sets the location of a high-speed streak at a distance zv+≃50 from it, whereas in hexagons the 120∘ aperture leads to a shorter distance of zv+≃38 . At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.

  9. Hexagonal tube behaviour in fuel assemblies under neutron flux in a French fast neutron reactor core

    International Nuclear Information System (INIS)

    Bernard, A.; Ammann, P.

    This paper presents what is obtained in the field of the interpretation by calculation of the post irradiation examination of hexagonal tubes, and in the field of prevision by calculation of the behaviour of hexagonal tubes under fast flux [fr

  10. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal microresonators

    CSIR Research Space (South Africa)

    Sono, Tleyane J

    2017-08-01

    Full Text Available Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities...

  11. Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes

    International Nuclear Information System (INIS)

    Gawrisch, K.; Parsegian, V.A.; Hajduk, D.A.; Tate, M.W.; Gruner, S.M.; Fuller, N.L.; Rand, R.P.

    1992-01-01

    The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from -5 to +50C. At temperature above 22C, the dispersions form an inverse (H II ) phase at all water concentrations. Below 25C, an H II phase occurs at high water concentrations, an L α phase is formed at intermediate water concentrations, and finally the system switches back to an H II phase at low water concentrations. The enthalpy of the L α -H II -phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using 31 P and 2 H NMR and X-ray diffraction. The authors measured the trapped water volumes in H II and L α phases as a function of osmotic pressure. The change of the H II -phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The H II -L α -H II double-phase transition at temperatures below 22C can be shown to be a consequence of (1) the greater degree of hydration of the H II phase in excess water and (2) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams

  12. On the domestic fuel channel for BWR

    International Nuclear Information System (INIS)

    Fukada, Hiroshi

    1979-01-01

    Kobe Steel Ltd. started the domestic manufacture of fuel channel boxes for BWRs in 1967, and entered the actual production stage four years after that. Since 1976, the mass production system was adopted with the increase of the demand. The requirements about the surface contamination and the dimensional accuracy over whole length are very strict in the fuel channel boxes, moreover, special consideration must be given so as to prevent the deformation in use. The unique working methods such as electron beam welding, high temperature press forming and so on are employed in Kobe Steel Ltd. to satisfy such strict requirements, therefore the quality of the produced fuel channel boxes is superior to imported ones. At present, the fuel channel boxes domestically made by Kobe Steel Ltd. are used for almost all BWRs in Japan. The functions of fuel channel boxes are to flow boiling coolant uniformly upward, to guide control rods, and to increase the rigidity of fuel assembly. The fuel channel boxes are the square tubes of zircaloy 4 of 134.06 mm inside width, 2.03 mm thickness, and 4118 or 4239 mm length. The progress of the development and the features of the fuel channel boxes and the manufacturing processes are described. Zircaloy plates are formed into channels, and two channels are electron beam-welded after the edge preparation, to make a box. Ultrasonic examination and stress relief treatment are applied, and clips and spacers are welded. (Kako, I.)

  13. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  14. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  15. The Formation and Characterization of GaN Hexagonal Pyramids

    Science.gov (United States)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou

    2013-05-01

    GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.

  16. Switching behavior and novel stable states of magnetic hexagonal nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Yasir Rafique, M., E-mail: myasir.rafique@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Pan, Liqing; Guo, Zhengang [College of Science and Research Institute for New Energy, China Three Gorges University, Yichang 443002 (China)

    2017-06-15

    Micromagnetic simulations for Cobalt hexagonal shape nanorings show onion (O) and vortex state (V) along with new state named “tri-domain state”. The tri-domain state is observed in sufficiently large width of ring. The magnetic reversible mechanism and transition of states are explained with help of vector field display. The transitions from one state to other occur by propagation of domain wall. The vertical parts of hexagonal rings play important role in developing the new “tri-domain” state. The behaviors of switching fields from onion to tri-domain (HO-Tr), tri-domain to vortex state (HTr-V) and vortex to onion state and “states size” are discussed in term of geometrical parameter of ring.

  17. Hexagon OPE resummation and multi-Regge kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.M. [School of Physics & Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom); Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); LAPTh, CNRS, Université de Savoie,9 Chemin de Bellevue, F-74941 Annecy-le-Vieux Cedex (France); Papathanasiou, G. [LAPTh, CNRS, Université de Savoie,9 Chemin de Bellevue, F-74941 Annecy-le-Vieux Cedex (France)

    2016-02-29

    We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the 2→4 Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.

  18. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  19. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    OpenAIRE

    Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher r...

  20. Polymer- and salt-induced toroids of hexagonal DNA.

    OpenAIRE

    Ubbink, J; Odijk, T

    1995-01-01

    A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature contributions. With the help of an approximate analytical minimization procedure, the optimal torus dimensions are calculated as a function of t...

  1. Importance of the hexagonal lipid phase in biological membrane organization

    OpenAIRE

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particu...

  2. HEXAN - a hexagonal nodal code for solving the diffusion equation

    International Nuclear Information System (INIS)

    Makai, M.

    1982-07-01

    This report describes the theory of and provides a user's manual for the HEXAN program, which is a nodal program for the solution of the few-group diffusion equation in hexagonal geometry. Based upon symmetry considerations, the theory provides an analytical solution in a homogeneous node. WWER and HTGR test problem solutions are presented. The equivalence of the finite-difference scheme and the response matrix method is proven. The properties of a symmetric node's response matrix are investigated. (author)

  3. Electronic structure of nanoparticles of substoichometric hexagonal tungsten oxides

    International Nuclear Information System (INIS)

    Khyzhun, O Y; Solonin, Y M

    2007-01-01

    X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) methods were used to study the electronic structure of hexagonal h-WO 3 and h-WO 2.8 nanoparticles. For comparison, nanopowder substoichiometric monoclinic tungsten oxides with close content of oxygen atoms, namely m-WO 3 and m-WO 2.77 compounds, were also investigated. For the mentioned oxides, XPS valence-band and corelevel spectra, XES O Kα bands and XAS W L III and O 1s edges were derived. The XPS valence-band spectra and O Kα emission bands in the mentioned hexagonal and monoclinic tungsten oxides were compared on a common energy scale. Both the O Kα bands and XPS valence-band spectra broaden somewhat in the sequences h-WO 3 → h-WO 2.8 and m-WO 3 → m-WO 2.77 , with the half-widths of the spectra being somewhat higher for the hexagonal oxides as compared with those for the monoclinic compounds. The effective positive charge state of tungsten atoms in h-WO 2.8 is very close to that in m-WO 2.77 , but the negative charge states of oxygen atoms are close to each other for all the tungsten oxides under consideration

  4. Extension of the comet method to 2-D hexagonal geometry

    International Nuclear Information System (INIS)

    Connolly, Kevin John; Rahnema, Farzad; Zhang, Dingkang

    2011-01-01

    The capability of the heterogeneous coarse mesh radiation transport (COMET) method developed at Georgia Tech has been expanded. COMET is now able to treat hexagonal geometry in two dimensions, allowing reactor problems to be solved for those next-generation reactors which utilize prismatic block structure and hexagonal lattice geometry in their designs. The COMET method is used to solve whole core reactor analysis problems without resorting to homogenization or low-order transport approximations. The eigenvalue and fission density distribution of the reactor are determined iteratively using response functions. The method has previously proven accurate in solving PWR, BWR, and CANDU eigenvalue problems. In this paper, three simple test cases inspired by high temperature test reactor material cross sections and fuel block geometry are presented. These cases are given not in an attempt to model realistic nuclear power systems, but in order to test the ability of the improved method. Solutions determined by the new hexagonal version of COMET, COMET-Hex, are compared with solutions determined by MCNP5, and the results show the accuracy and efficiency of the improved COMET-Hex method in calculating the eigenvalue and fuel pin fission density in sample full-core problems. COMETHex determines the eigenvalues of these simple problems to an order of within 50 pcm of the reference solutions and all pin fission densities to an average error of 0.2%, and it requires fewer than three minutes to produce these results. (author)

  5. Hexagonal undersampling for faster MRI near metallic implants.

    Science.gov (United States)

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  6. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  7. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    International Nuclear Information System (INIS)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-01-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  8. Arrays of Molecular Rotors with Triptycene Stoppers: Surface Inclusion in Hexagonal Tris(o-phenylenedioxy)cyclotriphosphazene.

    Science.gov (United States)

    Kaleta, Jiří; Dron, Paul I; Zhao, Ke; Shen, Yongqiang; Císařová, Ivana; Rogers, Charles T; Michl, Josef

    2015-06-19

    A new generation of rod-shaped dipolar molecular rotors designed for controlled insertion into channel arrays in the surface of hexagonal tris(o-phenylenedioxy)cyclotriphosphazene (TPP) has been designed and synthesized. Triptycene is used as a stopper intended to prevent complete insertion, forcing the formation of a surface inclusion. Two widely separated (13)C NMR markers are present in the shaft for monitoring the degree of insertion. The structure of the two-dimensional rotor arrays contained in these surface inclusions was examined by solid-state NMR and X-ray powder diffraction. The NMR markers and the triptycene stopper functioned as designed, but half of the guest molecules were not inserted as deeply into the TPP channels as the other half. As a result, the dipolar rotators were distributed equally in two planes parallel to the crystal surface instead of being located in a single plane as would be required for ferroelectricity. Dielectric spectroscopy revealed rotational barriers of ∼4 kcal/mol but no ferroelectric behavior.

  9. Hegelian Steel

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    Even in our globalized world the notion of national economies remain incredibly strong, just as a considerable part of the literature on transnational governance and globalization continue to rely on a zero-sum perspective concerning the relationship between the national and the transnational. De...... of the European steel industry....

  10. Hexagonal nanorods of tungsten trioxide: Synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Neji [Laboratoire de Chimie de la Matiere Condensee, Institut Preparatoire aux Etudes d' Ingenieurs, Universite de Tunis (Tunisia); Perruchot, Christian; Aeiyach, Salah [Interfaces, Traitements, Organisation et DYnamique des Systemes (ITODYS), UMR 7086, Universite Paris Diderot Paris 7, 15, rue Jean de Baif, 75205 Paris Cedex 13 (France); Rutkowska, Iwona A.; Kulesza, Pawel J. [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland); Jouini, Mohamed, E-mail: jouini@univ-paris-diderot.fr [Interfaces, Traitements, Organisation et DYnamique des Systemes (ITODYS), UMR 7086, Universite Paris Diderot Paris 7, 15, rue Jean de Baif, 75205 Paris Cedex 13 (France)

    2011-07-15

    Tungsten trioxide, unhydrated with hexagonal structure (h-WO{sub 3}), has been prepared by hydrothermal method at a temperature of 180 {sup o}C in acidified sodium tungstate solution. Thus prepared h-WO{sub 3} has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 {mu}m length. Cyclic voltammetric characterization of thin films of h-WO{sub 3} nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO{sub 3} nanorods. In propylene carbonate containing LiClO{sub 4}, two successive redox processes of hexagonal WO{sub 3} nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO{sub 3} nanorods. On the other hand, in aqueous LiClO{sub 4} solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO{sub 3} nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm{sup -3} H{sub 2}SO{sub 4}).

  11. Hexagonal nanorods of tungsten trioxide: Synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis

    International Nuclear Information System (INIS)

    Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Neji; Perruchot, Christian; Aeiyach, Salah; Rutkowska, Iwona A.; Kulesza, Pawel J.; Jouini, Mohamed

    2011-01-01

    Tungsten trioxide, unhydrated with hexagonal structure (h-WO 3 ), has been prepared by hydrothermal method at a temperature of 180 o C in acidified sodium tungstate solution. Thus prepared h-WO 3 has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 μm length. Cyclic voltammetric characterization of thin films of h-WO 3 nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO 3 nanorods. In propylene carbonate containing LiClO 4 , two successive redox processes of hexagonal WO 3 nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO 3 nanorods. On the other hand, in aqueous LiClO 4 solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO 3 nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm -3 H 2 SO 4 ).

  12. Hexagonal nanorods of tungsten trioxide: Synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis

    Science.gov (United States)

    Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Néji; Perruchot, Christian; Aeiyach, Salah; Rutkowska, Iwona A.; Kulesza, Pawel J.; Jouini, Mohamed

    2011-07-01

    Tungsten trioxide, unhydrated with hexagonal structure (h-WO 3), has been prepared by hydrothermal method at a temperature of 180 °C in acidified sodium tungstate solution. Thus prepared h-WO 3 has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 μm length. Cyclic voltammetric characterization of thin films of h-WO 3 nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO 3 nanorods. In propylene carbonate containing LiClO 4, two successive redox processes of hexagonal WO 3 nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO 3 nanorods. On the other hand, in aqueous LiClO 4 solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO 3 nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm -3 H 2SO 4).

  13. Thermal stability of hexagonal OsB2

    Science.gov (United States)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-11-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  14. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  15. Response of hexagonal fuel assembly coupled with internal hydrodynamics

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Julke, R.T.

    1975-01-01

    For safety considerations of sodium cooled fast breeder reactors the mechanistic accident-initiating conditions must be studied. In previous investigations of such initiating accidents the models assumed axisymmetric configurations and in general neglected the coupling effects with the subassembly boundary. This paper presents a more precise treatment of the subassembly boundary and also provides feedback of the boundary response to the pressure source. This is accomplished by marking use of two computer codes: REXCO-HT and SADCAT. The internal hydrodynamics of the fuel subassembly is simulated by the REXCO-HT code which possesses certain models of fuel-coolant interactions (MFCI) to be used as a pressure source. The hexagonal boundary of the fuel subassembly is modeled by the SADCAT code. Since both codes involve explicit time integration, coupling between the two is effected at each time step. The pressure at the outside boundary of the REXCO-HT model provides the loading on the SADCAT model. Given the load, the SADCAT model yields the three-dimensional deformation of the hexagonal boundary. With the deformation known, the outside REXCO-HT model boundary is adjusted and the computation cycle of the coupling is completed. In effect, the coupling of the two codes substitutes a cylindrical vessel of the REXCO-HT code by a hexagonal duct. It is shown by the use of this procedure that the assumption of a cylindrical vessel of the same thickness as that of the hexcan is quite erroneous. The maximum deformation of the flat of the hexcan in the illustrative examples is larger by as much as one order of magnitude. The maximum strains at the inside CORNER of the hexcan are also underestimated by a similar amount

  16. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  17. Hexagon functions and the three-loop remainder function

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; Drummond, James M.; von Hippel, Matt; Pennington, Jeffrey

    2013-12-01

    We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar NN = 4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can be expressed in terms of multiple Goncharov polylogarithms. We also employ a more restricted class of hexagon functions which have the correct branch cuts and certain other restrictions on their symbols. We classify all the hexagon functions through transcendental weight five, using the coproduct for their Hopf algebra iteratively, which amounts to a set of first-order differential equations. The three-loop remainder function is a particular weight-six hexagon function, whose symbol was determined previously. The differential equations can be integrated numerically for generic values of the cross ratios, or analytically in certain kinematic limits, including the near-collinear and multi-Regge limits. These limits allow us to impose constraints from the operator product expansion and multi-Regge factorization directly at the function level, and thereby to fix uniquely a set of Riemann ζ valued constants that could not be fixed at the level of the symbol. The near-collinear limits agree precisely with recent predictions by Basso, Sever and Vieira based on integrability. The multi-Regge limits agree with the factorization formula of Fadin and Lipatov, and determine three constants entering the impact factor at this order. We plot the three-loop remainder function for various slices of the Euclidean region of positive cross ratios, and compare it to the two-loop one. For large ranges of the cross ratios, the ratio of the three-loop to the two-loop remainder function is relatively constant, and close to -7.

  18. Topological dynamics of vortex-line networks in hexagonal manganites

    Science.gov (United States)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  19. Inter-layer potential for hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Leven, Itai; Hod, Oded, E-mail: odedhod@tau.ac.il [Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Azuri, Ido; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  20. The hexagon gauge anomaly in type 1 superstring theory

    International Nuclear Information System (INIS)

    Green, M.B.; Schwarz, J.H.

    1985-01-01

    Hexagon diagrams with external on-mass-shell Yang-Mills gauge particles are investigated in type I superstring theory. Both the annulus and the Moebuis-strip diagrams are shown to give anomalies, implying that spurious longitudinal modes cannot be consistently decoupled. However, the anomalies cancel when the two diagrams are added together if the gauge group is chosen to be SO(32). In carrying out the analysis, two different regulators are considered, but the same conclusions emerge in both cases. We point out where various terms in the low-energy effective action originate in superstring diagrams. (orig.)

  1. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  2. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  3. Chromatic Dispersion Compensation Using Photonic Crystal Fibers with Hexagonal Distribution

    Directory of Open Access Journals (Sweden)

    Erick E. Reyes-Vera

    2013-11-01

    Full Text Available In this paper we show various configurations of photonic crystal fiber with hexagonal holes distribution for compensation of chromatic dispersion in optical communications links. The vectorial finite element method with scattering boundary condition was used for the analysis of the fibers. From these results it was estimated variation of the dispersion and the dispersion slope with respect to change in the diameter of the holes in the microstructure. With the above was possible to obtain values of dispersion in the C and L bands of telecommunications close to -850 ps / nm * km, with confinement losses 10-3 dB / km

  4. Hexagon POPE: effective particles and tree level resummation

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Lucía [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics and Astronomy & Guelph-Waterloo Physics Institute,University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada)

    2017-01-12

    We present the resummation of the full Pentagon Operator Product Expansion series of the hexagon Wilson loop in planar N=4 SYM at tree level. We do so by considering the one effective particle states formed by a fundamental flux tube excitation and an arbitrary number of the so called small fermions which are then integrated out. We derive the one effective particle measures at finite coupling. By evaluating these measures at tree level and summing over all one effective particle states we reproduce the full 6 point tree level amplitude.

  5. Inter-layer potential for hexagonal boron nitride

    International Nuclear Information System (INIS)

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-01-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures

  6. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  7. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  8. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  9. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  10. Tolerance measurements on internal- and external-hexagon implants.

    Science.gov (United States)

    Braian, Michael; De Bruyn, Hugo; Fransson, Håkan; Christersson, Cecilia; Wennerberg, Ann

    2014-01-01

    To measure the horizontal machining tolerances of the interface between internal- and external-hexagon implants and analogs with corresponding components after delivery from the manufacturer. These values may be a valuable tool for evaluating increasing misfit caused by fabrication, processing, and wear. Seven implants and seven analogs with external- and internal-hexagon connections (Biomet 3i) with corresponding prefabricated gold cylinders and gold screws, prefabricated cylindric plastic cylinders, and laboratory screws were studied. One set of components from the external and internal groups was measured manually and digitally. Measurements from the test subjects were compared with identical measurements from the virtual model to obtain threshold values. The virtual model was then used to obtain optimally oriented cuts. The horizontal machining tolerances for castable plastic abutments on external implants were 12 ± 89 μm, and for internal implants they were 86 ± 47 μm. Tolerance measurements on prefabricated gold abutments for external implants were 44 ± 9 μm, and for internal implants they were 58 ± 28 μm. The groups with metallic components showed the smallest tolerance at external group and internal group. The prefabricated plastic cylinder groups ranged from external and internal connection.

  11. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  12. FAINT LUMINESCENT RING OVER SATURN’S POLAR HEXAGON

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Alberto; D’Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico [Institute of Space Astrophysics and Planetology of INAF, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Moriconi, Maria Luisa, E-mail: alberto.adriani@iaps.inaf.it [Institute of Atmospheric Sciences and Climate of CNR, Via Fosso del Cavaliere 100, I-00133 Rome (Italy)

    2015-07-20

    Springtime insolation is presently advancing across Saturn's north polar region. Early solar radiation scattered through the gaseous giant's atmosphere gives a unique opportunity to sound the atmospheric structure at its upper troposphere/lower stratosphere at high latitudes. Here, we report the detection of a tenuous bright structure in Saturn's northern polar cap corresponding to the hexagon equatorward boundary, observed by Cassini Visual and Infrared Mapping Spectrometer on 2013 June. The structure is spectrally characterized by an anomalously enhanced intensity in the 3610–3730 nm wavelength range and near 2500 nm, pertaining to relatively low opacity windows between strong methane absorption bands. Our first results suggest that a strong forward scattering by tropospheric clouds, higher in respect to the surrounding cloud deck, can be responsible for the enhanced intensity of the feature. This can be consistent with the atmospheric dynamics associated with the jet stream embedded in the polar hexagon. Further investigations at higher spectral resolution are needed to better assess the vertical distribution and microphysics of the clouds in this interesting region.

  13. Experimental investigation of the coolability of blocked hexagonal bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hózer, Zoltán, E-mail: zoltan.hozer@energia.mta.hu; Nagy, Imre; Kunstár, Mihály; Szabó, Péter; Vér, Nóra; Farkas, Róbert; Trosztel, István; Vimi, András

    2017-06-15

    Highlights: • Experiments were performed with electrically heated hexagonal fuel bundles. • Coolability of ballooned VVER-440 type bundle was confirmed up to high blockage rate. • Pellet relocation effect causes delay in the cool-down of the bundle. • The bypass line does not prevent the reflood of ballooned fuel rods. - Abstract: The CODEX-COOL experimental series was carried out in order to evaluate the effect of ballooning and pellet relocation in hexagonal bundles on the coolability of fuel rods after a LOCA event. The effects of blockage geometry, coolant flowrate, initial temperature and axial profile were investigated. The experimental results confirmed that a VVER bundle up to 80% blockage rate remains coolable after a LOCA event under design basis conditions. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front.

  14. Vortex solitons at the interface separating square and hexagonal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Jović Savić, Dragana, E-mail: jovic@ipb.ac.rs; Piper, Aleksandra; Žikić, Radomir; Timotijević, Dejan

    2015-06-19

    Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – are demonstrated numerically. We consider the conditions for the existence of discrete vortex states at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. Various vortices with different size and topological charges are considered, as well as various lattice interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions and study their angular momentum. Dynamical instabilities occur for higher values of the propagation constant, or at higher beam powers. - Highlights: • We demonstrate vortex solitons at the square–hexagonal photonic lattice interface. • A novel type of five-lobe surface vortex solitons is observed. • Different phase structures of surface solutions are studied. • Orbital angular momentum transfer of such solutions is investigated.

  15. Saturnian north polar region: a triangle inside the hexagon?

    Science.gov (United States)

    Kochemasov, Gennady G.

    2010-05-01

    The famous and "mysterious" stable hexagon structure around the North Pole of Saturn was earlier interpreted as projections of faces of a structural tetrahedron [1]. This "hidden" simplest Plato's polyhedron is a result of an interference of four fundamental (wave 1) warping waves having in any rotating celestial body four directions: orthogonal and diagonal. Origin of the warping waves in any celestial body is due to their movements in elliptical keplerian orbits with periodically changing accelerations. The structural tetrahedron is an intrinsic geometric feature marking the celestial bodies ubiquitous tectonic dichotomy as in a tetrahedron always there is an opposition of a face (expansion) and a vertex (contraction). In the saturnian case the tetrahedron shows a face at the north and a vertex at the south. Morphologically this is manifested by the hexagon and opposing it in the south a vertex. Blue and pink hues of the northern and southern hemispheres also underline the tectonic dichotomy. These geometric expressions are enforced by a subtle dark equilateral triangle appearing in the image PIA11682 also around the north pole and inside the hexagon (the triangle side is about 15000 km long). One angle of the triangle is clearly visible, another one just shows itself and the third one is barely distinguished. The sides of the triangle are not strait lines but slightly broken amidst lines what makes the triangle appear a bit hexagonal (spherical) and the angle is a bit bigger than 60 degrees of a classical equilateral triangle (~70 degrees). The central part of the triangle is not imaged (a black hole in the PIA11682). This image also confirms that the wide northern polar region is also densely "peppered" with bright cloudy more or less isometric spots on average 400 to 800 km across as in other latitudinal belts of Saturn [2, 3, 4]. Earlier they were observed in IR wavelengths, now they show themselves in visible wavelengths. Their origin and size were

  16. Thermal stability of hexagonal OsB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Blair, Richard G. [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Cullen, David A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Andrew Payzant, E. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-11-15

    The synthesis of novel hexagonal ReB{sub 2}-type OsB{sub 2} ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of {sup 10}B and {sup 11}B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched {sup 11}B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB{sub 2} phase was the main product of synthesis with a small quantity of Os{sub 2}B{sub 3} phase present after synthesis as an intermediate product. In the second case, where coarse crystalline {sup 11}B powder was used as a raw material, only Os{sub 2}B{sub 3} boride was synthesized mechanochemically. The thermal stability of hexagonal OsB{sub 2} powder was studied by heating under argon up to 876 °C and cooling in vacuo down to −225 °C. During the heating, the sacrificial reaction 2OsB{sub 2}+3O{sub 2}→2Os+2B{sub 2}O{sub 3} took place due to presence of O{sub 2}/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B{sub 2}O{sub 3} and precipitation of Os metal out of the OsB{sub 2} lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB{sub 2} changed significantly. The shrinkage of the a lattice parameter was recorded in 276–426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB{sub 2} lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O{sub 2}, the hexagonal OsB{sub 2} ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice

  17. Thermal stability of hexagonal OsB2

    International Nuclear Information System (INIS)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-01-01

    The synthesis of novel hexagonal ReB 2 -type OsB 2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10 B and 11 B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11 B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB 2 phase was the main product of synthesis with a small quantity of Os 2 B 3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11 B powder was used as a raw material, only Os 2 B 3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB 2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to −225 °C. During the heating, the sacrificial reaction 2OsB 2 +3O 2 →2Os+2B 2 O 3 took place due to presence of O 2 /water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B 2 O 3 and precipitation of Os metal out of the OsB 2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB 2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276–426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB 2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O 2 , the hexagonal OsB 2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling. - Graphical abstract: The in situ high temperature XRD

  18. Whole core transport calculation for the VHTR hexagonal core

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.

    2007-01-01

    Recently, the DeCART code which performs the whole core calculation by coupling the radial MOC transport kernel with the axial nodal kernel has equipped a kernel to deal with the hexagonal geometry and applied to the VHTR hexagonal core to examine the accuracy and the computational efficiency of the implemented kernel. The implementation includes a modular ray tracing module based on the hexagonal assembly and a multi-group CMFD module to perform an efficient transport calculation. The requirements for the modular ray are: (1) the assembly based path linking and (2) the complete reflection capabilities. The first requirement is met by adjusting the azimuthal angle and the ray spacing for the modular ray to construct a core ray by the path linking. The second requirement is met by expanding the constructed azimuthal angle in the range of [0,30 degree] to the remained range to reflect completely at the core boundaries. The considered reflecting surface angles for the complete reflection are 30n's (n=1,2,1,12). The CMFD module performs the equivalent diffusion calculation to the radial MOC transport calculation based on the homogenized structure units. The structure units include the hexagonal pin cells and gap cells appearing at the assembly boundary. Therefore, the CMFD module is programmed to deal with the unstructured cells such as the gap cells. The CMFD equation consists of the two parts of (1) the conventional FDM and (2) the current corrective parts. Since the second part of the CMFD equation guarantees the reproducibility of the radial MOC transport solutions for the cell averaged reaction rate and the net current at the cell surfaces, how to build the first part of the CMFD equation is not important. Therefore, the first part of the CMFD equation is roughly built by using the normal distance from the gravity center to the surface. The VHTR core uses helium as a coolant which is realized as a void hole in a neutronics calculation. This void hole which

  19. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han,W.Q.

    2008-08-01

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c

  20. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  1. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  2. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large Tc value is unlikely.

  3. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe.

    Science.gov (United States)

    Parker, David S

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large T c value is unlikely.

  4. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  5. High-Entropy Alloys in Hexagonal Close-Packed Structure

    Science.gov (United States)

    Gao, M. C.; Zhang, B.; Guo, S. M.; Qiao, J. W.; Hawk, J. A.

    2016-07-01

    The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.

  6. A Computational Study of the Growth of Hexagonal Ice

    Science.gov (United States)

    Fulford, Maxwell; Salvalaglio, Matteo; Parrinello, Michele; Molteni, Carla

    Hexagonal ice (Ih) has two distinct crystallographic surfaces; a basal and prism surface. At low vapour pressures, Ih forms thin plates and elongated prisms, depending on the temperature. The macroscopic shape depends on the relative rate of growth of the basal and prism surfaces. The aim of our research is to estimate the relative rate of growth of the two surfaces for a range of temperatures and ultimately predict the shape of Ih, using computer simulations. Our simulations show the well-know phenomenon that the surface of ice lowers its interfacial free energy by forming a stable quasi-liquid layer (QLL). The QLL mediates crystal growth and has a thickness which varies with temperature and crystallographic surface. We use a combination of Molecular Dynamics and Metadynamics to study how the interfacial structure at the ice/quasi-liquid and quasi-liquid/vapour interfaces influence the adsorption potential, surface transport properties and growth shape..

  7. Critical heat flux in tubes and tight hexagonal rod lattices

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Cheng Xu; Zeggel, W.

    1994-01-01

    The critical heat flux (CHF) in small-diameter tubes and in tight hexagonal 7-rod and 37-rod bundles was investigated in the KRISTA test facility, using Freon 12 as the working fluid. The measurements in tubes showed that the influence of the tube diameter on CHF cannot be described as suggested by earlier publications with sufficient accuracy. CHF in bundles is lower than in tubes under comparable conditions. The influence of spacers (grid spacers, wire wraps) on CHF was found to be governed by local steam qualities. A comparison of the test results with some CHF prediction methods showed that the look-up table method reproduces the test results in circular tubes most accurately. Combined with CHF look-up tables, subchannel analysis and Ahmad's fluid-to-fluid scaling law, Freon experiments have proven to be a suitable tool for CHF prediction in water-cooled rod bundles. (orig.) [de

  8. Chemical synthesis of hexagonal indium nitride nanocrystallines at low temperature

    Science.gov (United States)

    Wang, Liangbiao; Shen, Qianli; Zhao, Dejian; Lu, Juanjuan; Liu, Weiqiao; Zhang, Junhao; Bao, Keyan; Zhou, Quanfa

    2017-08-01

    In this study, hexagonal indium nitride nanocystallines with high crystallinity have been prepared by the reaction of InCl3·4H2O, sulfur and NaNH2 in an autoclave at 160 °C. The crystal structures and morphologies of the obtained InN sample are characterized by X-ray diffraction and scanning electron microscope. As InCl3·4H2O is substituted by In(NO3)3·4.5H2O, InN nanocrystallines could also be obtained by using the similar method. The photoluminescence spectrum shows that the InN emits a broad peak positioned at 2.3 eV.

  9. Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition

    Science.gov (United States)

    Slepko, Alexander; Demkov, Alexander A.

    2015-02-01

    Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.

  10. Fractional Dynamics of Genetic Algorithms Using Hexagonal Space Tessellation

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2013-01-01

    Full Text Available The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.

  11. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  12. Effective cleaning of hexagonal boron nitride for graphene devices.

    Science.gov (United States)

    Garcia, Andrei G F; Neumann, Michael; Amet, François; Williams, James R; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2012-09-12

    Hexagonal boron nitride (h-BN) films have attracted considerable interest as substrates for graphene. ( Dean, C. R. et al. Nat. Nanotechnol. 2010 , 5 , 722 - 6 ; Wang, H. et al. Electron Device Lett. 2011 , 32 , 1209 - 1211 ; Sanchez-Yamagishi, J. et al. Phys. Rev. Lett. 2012 , 108 , 1 - 5 .) We study the presence of organic contaminants introduced by standard lithography and substrate transfer processing on h-BN films exfoliated on silicon oxide substrates. Exposure to photoresist processing adds a large broad luminescence peak to the Raman spectrum of the h-BN flake. This signal persists through typical furnace annealing recipes (Ar/H(2)). A recipe that successfully removes organic contaminants and results in clean h-BN flakes involves treatment in Ar/O(2) at 500 °C.

  13. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    Science.gov (United States)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-01-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571

  14. A modified hexagonal photonic crystal fiber for terahertz applications

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-05-01

    We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.

  15. Importance of the hexagonal lipid phase in biological membrane organisation

    Directory of Open Access Journals (Sweden)

    Juliette eJouhet

    2013-12-01

    Full Text Available Abstract:Domains are present in every natural membrane. They are characterised by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organisation are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  16. Spin-density wave state in simple hexagonal graphite

    Science.gov (United States)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  17. Importance of the hexagonal lipid phase in biological membrane organization.

    Science.gov (United States)

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  18. Finite dipolar hexagonal columns on piled layers of triangular lattice

    International Nuclear Information System (INIS)

    Matsushita, Katsuyoshi; Sugano, Ryoko; Kuroda, Akiyoshi; Tomita, Yusuke; Takayama, Hajime

    2007-01-01

    We have investigated, by the Monte Carlo simulation, spin systems which represent moments of arrayed magnetic nanoparticles interacting with each other only by the dipole-dipole interaction. In the present paper we aim the understanding of finite size effects on the magnetic nanoparticles arrayed in hexagonal columns cut out from the close-packing structures or from those with uniaxial compression. In columns with the genuine close-packing structures, we observe a single vortex state which is also observed previously in finite two-dimensional systems. On the other hand in the system with the inter-layer distance set 1/2 times of the close-packing one, we found ground states which depend on the number of layers. The dependence is induced by a finite size effect and is related to a orientation transition in the corresponding bulk system

  19. A theoretical study on pure bending of hexagonal close-packed metal sheet

    Science.gov (United States)

    Mehrabi, Hamed; Yang, Chunhui

    2018-05-01

    Hexagonal close-packed (HCP) metals have quite different mechanical behaviours in comparison to conventional cubic metals such as steels and aluminum alloys [1, 2]. They exhibit a significant tension-compression asymmetry in initial yielding and subsequent plastic hardening. The reason for this unique behaviour can be attributed to their limited symmetric crystal structure, which leads to twining deformation [3-5]. This unique behaviour strongly influences sheet metal forming of such metals, especially for roll forming, in which the bending is dominant. Hence, it is crucial to represent constitutive relations of HCP metals for accurate estimation of bending moment-curvature behaviours. In this paper, an analytical model for asymmetric elastoplastic pure bending with an application of Cazacu-Barlat asymmetric yield function [6] is presented. This yield function considers the asymmetrical tension-compression behaviour of HCP metals by using second and third invariants of the stress deviator tensor and a specified constant, which can be expressed in terms of uniaxial yield stresses in tension and compression. As a case study, the analytical model is applied to predict the moment-curvature behaviours of AZ31B magnesium alloy sheets under uniaxial loading condition. Furthermore, the analytical model is implemented as a user-defined material through the UMAT interface in Abaqus [7, 8] for conducting pure bending simulations. The results show that the analytical model can reasonably capture the asymmetric tension-compression behaviour of the magnesium alloy. The predicted moment-curvature behaviour has good agreement with the experimental results. Furthermore, numerical results show a better accuracy by the application of the Cazacu-Barlat yield function than those using the von-Mises yield function, which are more conservative than analytical results.

  20. MOCA, Criticality of VVER Reactor Hexagonal Fuel Assemblies

    International Nuclear Information System (INIS)

    KYNCL, Jan

    1994-01-01

    1 - Description of program or function: Criticality problem in neutron transport for hexagonal fuel assembly in VVER nuclear reactor. The assembly is assumed to be either arranged in an infinite hexagonal array or placed in vacuum. The problem is solved in three- dimensional geometry, using standard energy group formalism and assuming that effective scattering cross sections are presented as Legendre polynomial expansions. The code evaluates ten different physical quantities, e.g. multiplication factor, neutron flux per energy group and spatial zone, integrated over angle and power in any zone of the assembly. 2 - Method of solution: Monte Carlo method of successive generations is applied. Computation proceeds according to an analog random process. The code is organized into three blocks: In the first block, the input data are converted to quantities for use in the Monte Carlo calculation. An initial neutron distribution is calculated, which corresponds to a fission spectrum uniform in spatial and angular variables. The main calculations are carried out in the second block (subroutine PROC2). This block is subdivided into geometrical and physical parts. Neutron tracks in individual zones and groups as well as probabilities for the formation of secondary neutrons are calculated. In the third block (subroutine PROC3), the results are evaluated statistically. Effective multiplication coefficients, the neutron flux per group and zone, and respective errors are computed. These quantities serve as a basis for the evaluation of other quantities. The results are either printed or stored for future evaluations. 3 - Restrictions on the complexity of the problem: In the PC version of the program, the maximum number of neutrons is 1000, the maximum number of energy groups is 4, and the maximum number of material compositions is 15. Angular expansion of scattering cross sections is allowed up to P10. These restrictions can easily be removed by increasing input parameters and

  1. Finite element method for neutron diffusion problems in hexagonal geometry

    International Nuclear Information System (INIS)

    Wei, T.Y.C.; Hansen, K.F.

    1975-06-01

    The use of the finite element method for solving two-dimensional static neutron diffusion problems in hexagonal reactor configurations is considered. It is investigated as a possible alternative to the low-order finite difference method. Various piecewise polynomial spaces are examined for their use in hexagonal problems. The central questions which arise in the design of these spaces are the degree of incompleteness permissible and the advantages of using a low-order space fine-mesh approach over that of a high-order space coarse-mesh one. There is also the question of the degree of smoothness required. Two schemes for the construction of spaces are described and a number of specific spaces, constructed with the questions outlined above in mind, are presented. They range from a complete non-Lagrangian, non-Hermite quadratic space to an incomplete ninth order space. Results are presented for two-dimensional problems typical of a small high temperature gas-cooled reactor. From the results it is concluded that the space used should at least include the complete linear one. Complete spaces are to be preferred to totally incomplete ones. Once function continuity is imposed any additional degree of smoothness is of secondary importance. For flux shapes typical of the small high temperature gas-cooled reactor the linear space fine-mesh alternative is to be preferred to the perturbation quadratic space coarse-mesh one and the low-order finite difference method is to be preferred over both finite element schemes

  2. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  3. Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silica opals

    Energy Technology Data Exchange (ETDEWEB)

    Yang Sanming; Coombs, N.; Ozin, G.A. [Toronto Univ., Ont. (Canada). Materials Chemistry Research Group

    2000-12-15

    Regular arrays of hexagonal mesoporous silica spheres are crucial for a number of applications, but until now control of the diameter, dispersity, and packing of the spheres has not proved possible. These authors report a new method-micromolding in inverted polymer opals-that allows the synthesis of such hexagonal mesoporous silica opals for the first time. (orig.)

  4. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  5. Scaling of graphene field-effect transistors supported on hexagonal boron nitride: radio-frequency stability as a limiting factor

    Science.gov (United States)

    Feijoo, Pedro C.; Pasadas, Francisco; Iglesias, José M.; Martín, María J.; Rengel, Raúl; Li, Changfeng; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Jiménez, David

    2017-12-01

    The quality of graphene in nanodevices has increased hugely thanks to the use of hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN together with channel length scaling can be exploited in graphene field-effect transistors (GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and defects, etc). This information is fed into a self-consistent simulator, which solves the drift-diffusion equation coupled with the two-dimensional Poisson’s equation to take full account of short channel effects. Simulated GFET characteristics were benchmarked against experimental data from our fabricated devices. Our simulations show that scalability is supposed to bring to RF performance an improvement that is, however, highly limited by instability. Despite the possibility of a lower performance, a careful choice of the bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still achievable in the THz region for channel lengths of a few hundreds of nanometers.

  6. MARKETING CHANNELS

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2014-07-01

    Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.

  7. A co-ordinate system for reactor physics calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Burte, D.P.

    1990-01-01

    A method for generating all the geometric information concerning typical reactor physics calculations for a basically hexagonal reactor core or its sector involving any of the possible symmetries is presented. The geometrically allowed symmetries for regular hexagons are discussed. The approach is based on the choice of a suitable co-ordinate system, viz. one using three coplanar (including one redundant) axes, each at 120 0 with its cyclically preceding one. A code named KEKULE' is developed for a 2-D, finite difference, one-group diffusion analysis of a hexagonal core using the approach. It can cater to a full hexagonal core as well as to any symmetric sectorial part of it. The main feature of the code is that the input concerning geometry is a bare minimum. It is hoped that the approach presented will be useful even for the calculations for hexagonal fuel assemblies. (author)

  8. Micromechanics of twinning in a TWIP steel

    International Nuclear Information System (INIS)

    Rahman, K.M.; Jones, N.G.; Dye, D.

    2015-01-01

    The deformation behaviour of a TWinning Induced Plasticity (TWIP) steel was studied at quasi-static strain rates using synchrotron X-ray diffraction. A {111} RD and {200} RD texture developed from the earliest stages of deformation, which could be reproduced using an elasto-plastic self consistent (EPSC) model. Evidence is found from multiple sources to suggest that twinning was occurring before macroscopic yielding. This included small deviations in the lattice strains, {111} intensity changes and peak width broadening all occurring below the macroscopic yield point. The accumulation of permanent deformation on sub-yield mechanical cycling of the material was found, which further supports the diffraction data. TEM revealed that fine deformation twins similar to those observed in heavily deformed samples formed during sub-yield cycling. It is concluded that twinning had occurred before macroscopic plastic deformation began, unlike the behaviour traditionally expected from hexagonal metals such as Mg

  9. Micromechanics of twinning in a TWIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, K.M., E-mail: khandaker.rahman05@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, N.G. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Dye, D. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2015-05-21

    The deformation behaviour of a TWinning Induced Plasticity (TWIP) steel was studied at quasi-static strain rates using synchrotron X-ray diffraction. A {111} RD and {200} RD texture developed from the earliest stages of deformation, which could be reproduced using an elasto-plastic self consistent (EPSC) model. Evidence is found from multiple sources to suggest that twinning was occurring before macroscopic yielding. This included small deviations in the lattice strains, {111} intensity changes and peak width broadening all occurring below the macroscopic yield point. The accumulation of permanent deformation on sub-yield mechanical cycling of the material was found, which further supports the diffraction data. TEM revealed that fine deformation twins similar to those observed in heavily deformed samples formed during sub-yield cycling. It is concluded that twinning had occurred before macroscopic plastic deformation began, unlike the behaviour traditionally expected from hexagonal metals such as Mg.

  10. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  11. Survival and failure modes: platform-switching for internal and external hexagon cemented fixed dental prostheses.

    Science.gov (United States)

    Anchieta, Rodolfo B; Machado, Lucas S; Hirata, Ronaldo; Coelho, Paulo G; Bonfante, Estevam A

    2016-10-01

    This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections. © 2016 Eur J Oral Sci.

  12. Effects of spacers on blockage of coolant channels in clad melting accidents

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, D. T.; Scale, T.; Hsieh, S. [Northwestern Univ., Evanston, IL (United States). The Technological Inst.

    1977-07-01

    The elements and configuration of these assemblies are representative of the current design for a GCFR. The fuel elements are stainless-steel clad, mixed-oxide spaced by a grid structure on 250 mm centers with a pitch of 9.5 mm, diameter, 7.2 mm, and cladding thickness, 0.5 m. Three series of experiments have been conducted to study the flow and disposition of molten cladding metal into a lower powered blanket region of the reactor following a loss of flow situation. The first two series used a simulant fuel-element bundle to simplify the experimental procedure and make visual observation possible. The 'fuel' was simulated by mullite rods 6.4 mm in diameter and 610 mm long. These were clad with a 50 Pb/50 Sn alloy tubing which was drawn onto the 'fuel'. The first series used cast spacers with webs of about 0.5-0.55 mm thickness placed 175 and 425 mm from the top end of the assembly. The second series used grid spacers fabricated of 0.25 mm alloy strips. This provided a more accurate representation of the hydraulic diameter. The bundle was encased in a hexagonal glass tube. The bundle was at 22/sup 0/C and the molten alloy was poured at a temperature of 260/sup 0/C (35/sup 0/C superheat). Motion pictures recorded the experiments and the bundle was sectioned for observation. The third set of experiments was done with a stainless steel bundle of 37 elements fabricated of mullite rods, 7.14 mm diameter. The stainless steel cladding had an O.D. of 8.41 mm. The element pitch was 11.1 mm. The grid spacers were prototypic. The experiment was conducted in an inert-gas tube furnace. The 'core fuel' cladding was melted in an induction furnace and the molten liquid flowed through the center seven element channels. X-ray pictures were taken after the tests and the bundle was sectioned for further study.

  13. Controllable synthesis of hexagonal ZnO–carbon core–shell microrods and the removal of ZnO to form hexagonal carbon microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yong, E-mail: xy91007@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); He, Wenqi; Gao, Chuang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zheng, Mingtao; Lie, Bingfu; Liu, Xiaotang [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); Liu, Yingliang, E-mail: tliuyl@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China)

    2013-06-15

    A simple and efficient approach was developed to produce regular and uniform shaped hexagonal ZnO–C core–shell micro-rods and carbon micro-tubes. A single-source raw material, zinc acetate dihydrate, has been used for the in situ generation of the hexagonal ZnO–C micro-rods in a sealed autoclave system at 500 °C for 12 h without a catalyst. The resulting products were characterized by X-ray powder diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray analysis and room-temperature photoluminescence spectroscopy (PL). The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. Impacting factors including thermolysis temperature, time and dose of the reactant on the evolution of the hexagonal shape were investigated. A possible formation diagram for the materials has been proposed and discussed based on the features of the reaction system. - Highlights: • Hexagonal ZnO–C core–shell microrods were synthesized by the lower temperature decomposition of zinc acetate. • The novel hexagonal carbon microtubes can gain by simply handling with dilute acid. • The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. • A possible formation diagram for the materials has been proposed.

  14. Glider-based computing in reaction-diffusion hexagonal cellular automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Wuensche, Andrew; De Lacy Costello, Benjamin

    2006-01-01

    A three-state hexagonal cellular automaton, discovered in [Wuensche A. Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconvention Comput, in press], presents a conceptual discrete model of a reaction-diffusion system with inhibitor and activator reagents. The automaton model of reaction-diffusion exhibits mobile localized patterns (gliders) in its space-time dynamics. We show how to implement the basic computational operations with these mobile localizations, and thus demonstrate collision-based logical universality of the hexagonal reaction-diffusion cellular automaton

  15. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate

    International Nuclear Information System (INIS)

    Jia Huiying; Zeng Jianbo; An Jing; Song Wei; Xu Weiqing; Zhao Bing

    2008-01-01

    In this paper, triangular and hexagonal silver nanoplates were prepared on the surface of quartz substrate using photoreduction of silver ions in the presence of silver seeds. The obtained silver nanoplates were characterized by atomic force microscopy and UV-vis spectroscopy. It was found that the silver seeds played an important role in the formation of triangular and hexagonal silver nanoplates. By varying the irradiation time, nanoplates with different sizes and shapes could be obtained. The growth mechanism for triangular and hexagonal nanoplates prepared on quartz substrate was discussed

  16. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, Kenan, E-mail: kyakut@atauni.edu.tr [Department of Mechanical Engineering, Faculty of Engineering, Atatürk University, 25100, Erzurum (Turkey); Yeşildal, Faruk, E-mail: fayesildal@agri.edu.tr [Department of Mechanical Engineering, Faculty of Patnos Sultan Alparslan Natural Sciences and Engineering, Ağrı İbrahim Çeçen University, 04100, Ağrı (Turkey); Karabey, Altuğ, E-mail: akarabey@yyu.edu.tr [Department of Machinery and Metal Technology, Erciş Vocational High School, Yüzüncü Yıl University, 65400, Van (Turkey); Yakut, Rıdvan, E-mail: ryakut@kafkas.edu.tr [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars (Turkey)

    2016-04-18

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L{sub 18}(2{sup 1*}3{sup 6}) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η–Re graphics.

  17. Thermal stability of simple tetragonal and hexagonal diamond germanium

    Science.gov (United States)

    Huston, L. Q.; Johnson, B. C.; Haberl, B.; Wong, S.; Williams, J. S.; Bradby, J. E.

    2017-11-01

    Exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursor materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.

  18. Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors

    International Nuclear Information System (INIS)

    Kantar, Ersin; Kocakaplan, Yusuf

    2015-01-01

    The dynamic behaviors of a mixed spin (1/2–1) hexagonal Ising nanowire (HIN) with core–shell structure in the presence of a time dependent magnetic field are investigated by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics (DEFT). According to the values of interaction parameters, temperature dependence of the dynamic magnetizations, the hysteresis loop areas and the dynamic correlations are investigated to characterize the nature (first- or second-order) of the dynamic phase transitions (DPTs). Dynamic phase diagrams, including compensation points, are also obtained. Moreover, from the thermal variations of the dynamic total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types. - Highlights: • Dynamic behaviors of mixed spin HIN system are obtained within the EFT. • The system exhibits i, p and nm fundamental phases. • The dynamic phase diagrams are presented in (h, T), (D, T), (Δ S , T) and (r, T) planes. • The dynamic phase diagrams exhibit the dynamic tricritical point (TCP). • Different dynamic compensation types are obtained

  19. Strain, stabilities and electronic properties of hexagonal BN bilayers

    Science.gov (United States)

    Fujimoto, Yoshitaka; Saito, Susumu

    Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.

  20. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system

    International Nuclear Information System (INIS)

    Weng, Chen-Hsun; Lee, Gwo-Bin; Huang, Chih-Chia; Yeh, Chen-Sheng; Lei, Huan-Yao

    2008-01-01

    A new microfluidic reaction system capable of mixing, transporting and reacting is developed for the synthesis of gold nanoparticles. It allows for a rapid and a cost-effective approach to accelerate the synthesis of gold nanoparticles. The microfluidic reaction chip is made from micro-electro-mechanical-system technologies which integrate a micro-mixer, micro-pumps, a micro-valve, micro-heaters and a micro temperature sensor on a single chip. Successful synthesis of dispersed gold nanoparticles has been demonstrated within a shorter period of time, as compared to traditional methods. It is experimentally found that precise control of the mixing/heating time for gold salts and reducing agents plays an essential role in the synthesis of gold nanoparticles. The growth process of hexagonal gold nanoparticles by a thermal aqueous approach is also systematically studied by using the same microfluidic reaction system. The development of the microfluidic reaction system could be promising for the synthesis of functional nanoparticles for future biomedical applications

  1. Magnetic structure and resonance properties of hexagonal antidot lattice

    International Nuclear Information System (INIS)

    Marchenko, A.I.; Krivoruchko, V.N.

    2012-01-01

    Static and resonance properties of ferromagnetic films with an antidot lattice (pores in the film) are studied. The description of the system is based on micromagnetic modeling and analytical solution of the Landau-Lifshitz equation. The dependences of ferromagnetic resonance spectra on the in-plane direction of applied magnetic field and on the lattice parameters are investigated. The dependences of a dynamic system response on frequency at fixed magnetic field and on field at fixed frequency, when the field changes cause the static magnetic order to change are explored. It is found that the specific peculiarities of the system dynamics leave unchange for both of these experimental conditions. Namely, for low damping the resonance spectra contain three quasi-homogeneous modes which are due to the resonance of different regions (domains) of the antidot lattice cell. It is shown the angular field dependences of each mode are characterized by a twofold symmetry and the related easy axes are mutually rotated by 60 degrees. As the result, a hexagonal symmetry of the system static and dynamic magnetic characteristics is realized. The existence in the resonance spectrum of several quasi-homogeneous modes related to different regions of the unit cell could be fundamental for working elements of magnonic devices.

  2. Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals

    Science.gov (United States)

    Lee, Jiann-Shing; Liu, Hao-Chuan; Peng, Gao-De; Tseng, Yawteng

    2017-05-01

    A facile molten-salt route was used to synthesize hexagonal Cs0.33WO3, Rb0.33WO3 and K0.30WO3 crystals. The three isostructural compounds were successfully prepared from the reaction of MxWO3 powders (M = Cs, Rb, K) in the CsCl/NaCl, RbCl/NaCl and KCl/NaCl fluxes, respectively. The structure determination and refinement, based on single-crystal X-ray diffraction data, are in agreement with previous works, possessing space group P63/mcm. The a and c parameters vary non-linearly with increasing radii of the M+ cations (rM) that is coordinated to twelve oxygen atoms. Both the volumes of unit-cell and WO6 octahedra vary linearly with rM, which become smaller from Cs0.33WO3 to K0.30WO3. The distortion of WO6 octahedra as well as isotropic displacement parameters increases from Cs0.33WO3 to K0.30WO3. The geometry of the WO6 octahedron becomes more regular with increasing rM. These structural trends arise from the effective size of the M+ cation.

  3. The COMET method in 3-D hexagonal geometry

    International Nuclear Information System (INIS)

    Connolly, K. J.; Rahnema, F.

    2012-01-01

    The hybrid stochastic-deterministic coarse mesh radiation transport (COMET) method developed at Georgia Tech now solves reactor core problems in 3-D hexagonal geometry. In this paper, the method is used to solve three preliminary test problems designed to challenge the method with steep flux gradients, high leakage, and strong asymmetry and heterogeneity in the core. The test problems are composed of blocks taken from a high temperature test reactor benchmark problem. As the method is still in development, these problems and their results are strictly preliminary. Results are compared to whole core Monte Carlo reference solutions in order to verify the method. Relative errors are on the order of 50 pcm in core eigenvalue, and mean relative error in pin fission density calculations is less than 1% in these difficult test cores. The method requires the one-time pre-computation of a response expansion coefficient library, which may be compiled in a comparable amount of time to a single whole core Monte Carlo calculation. After the library has been computed, COMET may solve any number of core configurations on the order of an hour, representing a significant gain in efficiency over other methods for whole core transport calculations. (authors)

  4. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    Science.gov (United States)

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Doganov, Rostislav A.; Özyilmaz, Barbaros [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore (Singapore); Koenig, Steven P.; Yeo, Yuting [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  6. Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)

    Science.gov (United States)

    Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.

    2016-09-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).

  7. Nonlinear coupling of flow harmonics: Hexagonal flow and beyond

    Science.gov (United States)

    Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves

    2018-05-01

    Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at s =2.76 TeV, we perform an application of our formalism to hexagonal flow, v6, a coefficient affected by several nonlinear contributions which are of the same order of magnitude. We obtain the first experimental measure of the coefficient χ624, which couples v6 to v2 and v4. This is achieved by putting together the information from several analyses: event-plane correlations, symmetric cumulants, and higher order moments recently analyzed by the ALICE Collaboration. The value of χ624 extracted from data is in fair agreement with hydrodynamic calculations, although with large error bars, which would be dramatically reduced by a dedicated analysis. We argue that within our formalism the nonlinear structure of a given higher order harmonic can be determined more accurately than the harmonic itself, and we emphasize potential applications to future measurements of v7 and v8.

  8. Methods of forging steel

    OpenAIRE

    Pečoler, Primož

    2014-01-01

    The following work presents processes of steel forming, challenges when forging steel, forming machines suitable for forging and which choice of machine is most suitable for forging. We can separate steel forming to free forging and drop forging. Free forging can be divided to hand forging and machine forging. The correct choice of furnaces is also very important. We must reach correct temperature in the furnace for raw steel to melt with less scalings. In diploma I mentioned some machine...

  9. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  10. Trends in steel technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants

  11. The second advanced lead lithium blanket concept using ODS steel as structural material and SiCf/SiC flow channel inserts as electrical and thermal insulators (Task PPA 2.5). Final report

    International Nuclear Information System (INIS)

    Norajitra, P.; Buehler, L.; Fischer, U.

    1999-12-01

    Preparatory work on the advanced dual coolant (A-DCL) blanket concept using SiC f /SiC flow channel inserts as electrical and thermal insulators has been carried out at the Forschungszentrum Karlsruhe in co-operation with CEA as a conceptual design proposal to the EU fusion power plant study planned to be launched in 2000 within the framework of the EU fusion programme with the main objective of specifying the characteristics of an attractive and viable commercial D-T fusion power plant. The basic principles and design characteristics of this A-DCL blanket concept are presented and its potential with regard to performance (neutron wall load, lifetime, availability) is discussed in this report. The results of this study show that the A-DCL blanket concept has a high potential for further development due to its high thermal efficiency and its simple concept solution. (orig.) [de

  12. Evolving Logistic Roles of Steel Distributors

    OpenAIRE

    Hämäläinen, Erkki

    2003-01-01

    There are several intermediaries in an industrial supply channel from the mill to the product producer (original equipment manufacturer, OEM) that may hold title or process the material, or both. Traditionally, wholesalers and importers hold inventories of different items while OEMs, component suppliers or contract manufacturers do the processing. Steel service centers (SSCs) are relative newcomers that combine the stockholding and processing activities. The tremendous growth of the intern...

  13. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.; Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized

  14. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  15. Large scale graphene/hexagonal boron nitride heterostructure for tunable plasmonics

    KAUST Repository

    Zhang, Kai; Yap, Fungling; Li, Kun; Ng, Changtai; Li, Linjun; Loh, Kianping

    2013-01-01

    Vertical integration of hexagonal boron nitride (h-BN) and graphene for the fabrication of vertical field-effect transistors or tunneling diodes has stimulated intense interest recently due to the enhanced performance offered by combining

  16. A thermo mechanical benchmark calculation of a hexagonal can in the BTI accident with INCA code

    International Nuclear Information System (INIS)

    Zucchini, A.

    1988-01-01

    The thermomechanical behaviour of an hexagonal can in a benchmark problem (simulating the conditions of a BTI accident in a fuel assembly) is examined by means of the INCA code and the results systematically compared with those of ADINA

  17. Pressure-induced structural change from hexagonal to fcc metal lattice in scandium trihydride

    International Nuclear Information System (INIS)

    Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Nakano, S.; Takemura, K.

    2007-01-01

    We synthesized scandium hydrides by hydrogenation of a scandium foil with hydrogen fluid under high pressure at ambient temperature. Scandium dihydride (ScH 2 ) and trihydride (ScH 3 ) were prepared near 4 and 5 GPa, respectively. The hydrogenation process and pressure-induced structural changes in ScH 3 were investigated by synchrotron radiation X-ray diffraction measurements up to 54.7 GPa. A structural transition from hexagonal to the fcc lattice began at 30 GPa and was completed at 46 GPa via an intermediate state similar to those reported for other hexagonal trihydrides. The intermediate state was not interpreted in terms of a coexisting state for the low-pressure hexagonal and the high-pressure fcc structures. The onset transition pressure of ScH 3 supported the previously proposed relation that the hexagonal-fcc transition pressure is inversely proportional to the ionic radius of the trihydride

  18. Tensile stress corrosion cracking of type 304 stainless steel irradiated to very high dose

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.

    2001-09-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to {approximately}50 dpa at {approximately}370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

  19. Nanostructures by Severe Plastic Deformation of Steels: Advantages and Problems

    Directory of Open Access Journals (Sweden)

    Dobatkin, S. V.

    2006-01-01

    Full Text Available The aim of this paper is to consider the features of structure evolution during severe plastic deformation (SPD of steels and its influence on mechanical properties. The investigation have been carried out mainly on low carbon steels as well as on austenitic stainless steels after SPD by torsion under high pressure (HPT and equal channel angular (ECA pressing. Structure formation dependencies on temperature deformation conditions, strain degree, chemical composition, initial state and pressure are considered. The role of phase transformations for additional grain refinement, namely, martensitic transformation, precipitation of carbide particles during SPD and heating is underlined.

  20. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    International Nuclear Information System (INIS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-01-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu_3WO_6.

  1. Electronic properties of Mn-decorated silicene on hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Gangopadhyay, S.; Jones, Burton; Schwingenschlö gl, Udo; Singh, Nirpendra

    2013-01-01

    We study silicene on hexagonal boron nitride, using first-principles calculations. Since hexagonal boron nitride is semiconducting, the interaction with silicene is weaker than for metallic substrates. It therefore is possible to open a 50 meV band gap in the silicene. We further address the effect of Mn decoration by determining the onsite Hubbard interaction parameter, which turns out to differ significantly for decoration at the top and hollow sites. The induced magnetism in the system is analyzed in detail.

  2. Electronic properties of Mn-decorated silicene on hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-12-17

    We study silicene on hexagonal boron nitride, using first-principles calculations. Since hexagonal boron nitride is semiconducting, the interaction with silicene is weaker than for metallic substrates. It therefore is possible to open a 50 meV band gap in the silicene. We further address the effect of Mn decoration by determining the onsite Hubbard interaction parameter, which turns out to differ significantly for decoration at the top and hollow sites. The induced magnetism in the system is analyzed in detail.

  3. Growth and Brilliant Photo-Emission of Crystalline Hexagonal Column of Alq3 Microwires

    OpenAIRE

    Seokho Kim; Do Hyoung Kim; Jinho Choi; Hojin Lee; Sun-Young Kim; Jung Woon Park; Dong Hyuk Park

    2018-01-01

    We report the growth and nanoscale luminescence characteristics of 8-hydroxyquinolinato aluminum (Alq3) with a crystalline hexagonal column morphology. Pristine Alq3 nanoparticles (NPs) were prepared using a conventional reprecipitation method. Crystal hexagonal columns of Alq3 were grown by using a surfactant-assisted self-assembly technique as an adjunct to the aforementioned reprecipitation method. The formation and structural properties of the crystalline and non-crystalline Alq3 NPs were...

  4. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  5. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  6. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  7. Anomalous lattice compressibility of hexagonal Eu{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, K.A.; Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in

    2017-07-01

    Monoclinic Eu{sub 2}O{sub 3} was investigated in a Mao-Bell type diamond anvil cell using angle dispersive x-ray diffraction up to a pressure of 26 GPa. Pressure induced structural phase transition from monoclinic to hexagonal phase was observed at 4.3 GPa with 2% volume collapse. Birch –Murnaghan equation of state fit to the pressure volume data yielded a bulk modulus of 159(9) GPa and 165(6) GPa for the monoclinic and hexagonal phases respectively. Equation of state fitting to the structural parameters yielded an axial compressibility of β{sub a} > β{sub c} > β{sub b} for the parent monoclinic phase, showing the least compressibility along b axis. Contrary to the available reports, an anomalous lattice compressibility behavior is observed for the high pressure hexagonal phase, characterized by pronounced hardening of a axis above 15 GPa. The observed incompressible nature of the hexagonal a axis in the pressure range 15–25 GPa is found to be compensated by doubling the compressibility along the c axis. - Highlights: • Structural phase transition in Eu{sub 2}O{sub 3} from monoclinic to hexagonal phase. • Anomalous lattice compressibility in the hexagonal phase has reported first time. • Quantitative analysis of lattice compressibility.

  8. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  9. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  10. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  11. Polypyrrole/hexagonally ordered silica nanocomposite as a novel fiber coating for solid-phase microextraction

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Abolghasemi, Mir Mahdi; Fattahpour, Peyman

    2011-01-01

    Highlights: → The polypyrrole/SBA15) nanocomposite was used as a novel coating for SPME fiber. → The proposed fiber was used for the extraction of polycyclic aromatic hydrocarbons. → The proposed SPME fiber is thermal stable, and it has a low limit of detection. → The SPME fiber was applied in polluted river water and wastewater samples. - Abstract: A highly porous fiber coated polypyrrole/hexagonally ordered silica (PPy/SBA15) materials were prepared for solid-phase microextraction (SPME). The PPy/SBA15 nanocomposite was synthesized by an in situ polymerization technique. The resulting material was characterized by the scanning electron microscopy, thermogravimetric analysis and differential thermal analysis. The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography-mass spectrometry (GC-MS). A one at-the-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, desorption time and desorption temperature. In optimum conditions (extraction temperature 70 deg. C, extraction time 20 min, ionic strength 20% (W V -1 ), stirring rate 500 rpm, desorption temperature 270 deg. C, desorption time 5 min) the repeatability for one fiber (n = 3), expressed as relative standard deviation (R.S.D. %), was between 5.0% and 9.3% for the tested compounds. The quantitation limit for the studied compounds were between 13.3 and 66.6 pg mL -1 . The life span and stability of the PPy/SBA15 fiber are good, and it can be used more than 50 times at 260 deg. C without any significant change in sorption properties. The developed method offers the advantage of being simple to use, with shorter analysis times, lower cost of equipment, thermal stability of fiber and high

  12. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  13. Channel Modeling

    Science.gov (United States)

    Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana

    For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.

  14. Channeling experiment

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.

    1990-07-01

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  15. Novel high pressure hexagonal OsB{sub 2} by mechanochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin; Graule, Moritz [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Andrew Payzant, E. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Cullen, David A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blair, Richard G. [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States)

    2014-07-01

    Hexagonal OsB{sub 2}, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB{sub 2} begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB{sub 2} crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB{sub 2} phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from −225 °C to 1050 °C. The hexagonal OsB{sub 2} powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB{sub 2} at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. - Graphical abstract: High resolution transmission electron micrograph of hexagonal OsB{sub 2} nanocrystallite with corresponding fast Fourier transform and simulated diffraction pattern. - Highlights: • Hexagonal OsB{sub 2} has been synthesized for the first time by mechanochemical method. • Hexagonal OsB{sub 2} crystallizes in P63/mmc space group (No. 194), a=2.916 Å and c=7.376 Å. • The hexagonal structure was confirmed by a transmission electron microscope. • No phase transformation was observed after being annealed at 1050 °C for 6 days. • 20 wt% of h-OsB{sub 2} was transformed to o-OsB{sub 2} after being sintered at 1500 °C for 5 min.

  16. HELIOS2: Benchmarking against experiments for hexagonal and square lattices

    International Nuclear Information System (INIS)

    Simeonov, T.

    2009-01-01

    HELIOS2, is a 2D transport theory program for fuel burnup and gamma-flux calculation. It solves the neutron and gamma transport equations in a general, two-dimensional geometry bounded by a polygon of straight lines. The applied transport solver may be chosen between: The Method of Collision Probabilities (CP) and The Method of Characteristics(MoC). The former is well known for its successful application for preparation of cross section data banks for 3D simulators for all types lattices for WWERs, PWRs, BWRs, AGRs, RBMK and CANDU reactors. The later, MoC, helps in the areas where the requirements of CP for computational power become too large of practical application. The application of HELIOS2 and The Method of Characteristics for some large from calculation point of view benchmarks is presented in this paper. The analysis combines comparisons to measured data from the Hungarian ZR-6 reactor and JAERI facility of Tank type Critical Assembly (TCA) to verify and validate HELIOS2 and MOC for WWER assembly imitators; configurations with different absorber types- ZrB 2 , B 4 C, Eu 2 O 3 and Gd 2 O 3 ; and critical configurations with stainless steel in the reflector. Core eigenvalues and reaction rates are compared. With the account for the uncertainties the results are generally excellent. Special place in this paper is given to the effect of Iron-made radial reflector. Comparisons to measurements from TIC and TCA for stainless steel and Iron reflected cores are presented. The calculated by HELIOS-2 reactivity effect is in very good agreement with the measurements. (author)

  17. HELIOS2: Benchmarking Against Experiments for Hexagonal and Square Lattices

    International Nuclear Information System (INIS)

    Simeonov, T.

    2009-01-01

    HELIOS2, is a 2D transport theory program for fuel burnup and gamma-flux calculation. It solves the neutron and gamma transport equations in a general, two-dimensional geometry bounded by a polygon of straight lines. The applied transport solver may be chosen between: The Method of Collision Probabilities and The Method of Characteristics. The former is well known for its successful application for preparation of cross section data banks for 3D simulators for all types lattices for WWER's, PWR's, BWR's, AGR's, RBMK and CANDU reactors. The later, method of characteristics, helps in the areas where the requirements of collision probability for computational power become too large of practical application. The application of HELIOS2 and The method of characteristics for some large from calculation point of view benchmarks is presented in this paper. The analysis combines comparisons to measured data from the Hungarian ZR-6 reactor and JAERI's facility of tanktype critical assembly to verify and validate HELIOS2 and method of characteristics for WWER assembly imitators; configurations with different absorber types-ZrB2, B4C, Eu2O3 and Gd2O3; and critical configurations with stainless steel in the reflector. Core eigenvalues and reaction rates are compared. With the account for the uncertainties the results are generally excellent. Special place in this paper is given to the effect of Iron-made radial reflector. Comparisons to measurements from The Temporary International Collective and tanktype critical assembly for stainless steel and Iron reflected cores are presented. The calculated by HELIOS-2 reactivity effect is in very good agreement with the measurements. (Authors)

  18. Hydrothermal synthesis and magneto-optical properties of Ni-doped ZnO hexagonal columns

    International Nuclear Information System (INIS)

    Xu, Xingyan; Cao, Chuanbao

    2015-01-01

    Single crystal Zn 1−x Ni x O (x=0, 0.02, 0.04, 0.06) hexagonal columns have been synthesized by a simple hydrothermal route. The hexagonal columns of the products are about 3 μm in diameter and about 2 μm in thickness. X-ray diffraction (XRD), Ni K-edge XANES spectra and TEM indicate that the as-prepared samples are single-crystalline wurtzite structure and no metallic Ni or other secondary phases are found in the hexagonal columns. Optical absorption and Raman results further confirm the incorporation of Ni 2+ ions in the ZnO lattice. Magnetic measurements indicate that the Zn 1−x Ni x O hexagonal columns exhibited obvious ferromagnetic characteristic at room temperature. The coercive fields (H c ) were obtained to be 135.3, 327.79 and 127.29 Oe for x=0.02, 0.04 and 0.06, respectively. The ferromagnetism was assumed to originate from the exchange interaction between free carriers (holes or electrons) from the valence band and the localized d spins on the Ni ions. - Highlights: • Single crystal Zn 1−x Ni x O (x=0, 0.02, 0.04, 0.06) hexagonal columns were synthesized by a simple hydrothermal method. • The layer-by-layer growth manner of the Zn 1−x Ni x O hexagonal columns was proposed. • Obvious room-temperature ferromagnetic characteristic of Zn 1−x Ni x O are observed and the coercivity (H c ) are 135.3,327.79 and 127.29 Oe for x=0.02, 0.04 and 0.06, respectively. • The exchange interaction between local-spin polarized electrons and conduction electrons is responsible for the room-temperature ferromagnetism in the Zn 1−x Ni x O hexagonal columns

  19. Steel: Price and Policy Issues

    National Research Council Canada - National Science Library

    Cooney, Stephen

    2006-01-01

    Steel prices remain at historically elevated levels. The rapid growth of steel production and demand in China is widely considered as a major cause of the increases in both steel prices and the prices of steelmaking inputs...

  20. Achieving Ohmic Contact for High-quality MoS2 Devices on Hexagonal Boron Nitride

    Science.gov (United States)

    Cui, Xu

    MoS2, among many other transition metal dichalcogenides (TMDCs), holds great promise for future applications in nano-electronics, opto-electronics and mechanical devices due to its ultra-thin nature, flexibility, sizable band-gap, and unique spin-valley coupled physics. However, there are two main challenges that hinder careful study of this material. Firstly, it is hard to achieve Ohmic contacts to mono-layer MoS2, particularly at low temperatures (T) and low carrier densities. Secondly, materials' low quality and impurities introduced during the fabrication significantly limit the electron mobility of mono- and few-layer MoS2 to be substantially below theoretically predicted limits, which has hampered efforts to observe its novel quantum transport behaviours. Traditional low work function metals doesn't necessary provide good electron injection to thin MoS2 due to metal oxidation, Fermi level pinning, etc. To address the first challenge, we tried multiple contact schemes and found that mono-layer hexagonal boron nitride (h-BN) and cobalt (Co) provide robust Ohmic contact. The mono-layer spacer serves two advantageous purposes: it strongly interacts with the transition metal, reducing its work function by over 1 eV; and breaks the metal-TMDCs interaction to eliminate the interfacial states that cause Fermi level pinning. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kohm.um at a carrier density of 5.3x10. 12/cm. 2. Similar to graphene, eliminating all potential sources of disorder and scattering is the key to achieving high performance in MoS2 devices. We developed a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within h-BN and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. The h-BN-encapsulation provides excellent protection from environmental factors, resulting in

  1. Study of the action of a phosphonate additive on steel scale deposit and corrosion in the hydrodynamic conditions of a channel flow cell; Etude de l'action d'un additif phosphone sur l'entartrage et sur la corrosion de l'acier dans les conditions hydrodynamiques d'une cellule a canal

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C.

    2000-10-17

    In cooling systems, an improved control of scale deposit and corrosion processes is a major challenge and an realistic evaluation tool for water treatments is of the utmost economic importance. In this study, a channel flow cell was used to allow in-situ electrochemical measurements in well defined electrolyte tube flowing conditions. An expression of the mass transfer towards the electrode was established where the diffusion-limited current is a function of Re{sup 1/3} in the laminar regime and was verified experimentally using the redox couples Fe[CN]{sub 6}{sup 4-}/ Fe[CN]{sub 6}{sup 3-} and O{sub 2}/OH{sup -}. This hydrodynamically controlled experimental device was developed to investigate scale deposit processes and to evaluate scale inhibitor efficiency using a electrochemical quartz crystal microbalance. Experiments were performed on three different waters, at various flow rates and temperatures. The efficiency of a well known phosphonate (HEDP) was tested at different concentrations and an optimum concentration could be established (0.7 mg dm{sup -3}). The effect of additive injection during the scale formation as well as the influence of flow rate on the inhibiting efficiency were evaluated. The anti-scale additive was shown to be more effective in the turbulent regime. HEDP has shown a strong effect on inhibiting crystal growth and that affected the morphology of CaCO{sub 3} crystals. The HEDP effect on protecting carbon steel against corrosion was also studied in mineral water containing Ca{sup 2+} ions. It was found that anti-corrosion effect of HEDP is enhanced by the presence of calcium in solution and that is due to the formation of an HEDP-Ca{sup 2+} complex, which adsorbs onto the metallic surface and protects it from dissolution. (author)

  2. [Measurement of plasma parameters in cluster hexagon pattern discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Shen, Zhong-Kai; Li, Xin-Chun; Liu, Liang; Lu, Ning; Shang, Jie

    2012-09-01

    The cluster hexagon pattern was obtained in a dielectric barrier discharge in air/argon for the first time. Three plasma parameters, i. e. the molecular vibrational temperature, the molecular rotational temperature and the average electron energy of individual cluster in cluster hexagon pattern discharge, were studied by changing the air content. The molecular vibrational temperature and the molecular rotational temperature were calculated using the second positive band system of nitrogen molecules (C 3IIu --> B 3IIg) and the first negative band system of nitrogen molecular ions (B 2Sigma(u)+ --> Chi2 Sigma(g)+). The relative intensities of the first negative system of nitrogen molecular ions (391. 4 nm) and nitrogen molecules emission spectrum line (337.1 nm) were analyzed for studying the variations of the electron energy. It was found that the three plasma parameters of individual cluster in cluster hexagon pattern increase with air content increasing from 16% to 24%.

  3. Density functional simulations of hexagonal Ge2Sb2Te5 at high pressure

    Science.gov (United States)

    Caravati, Sebastiano; Sosso, Gabriele C.; Bernasconi, Marco; Parrinello, Michele

    2013-03-01

    We investigated the structural transformations of the hexagonal phase of Ge2Sb2Te5 under pressure by means of ab initio molecular dynamics with a variable simulation cell. To overcome the enthalpy barriers between the different phases we used metadynamics techniques. We reproduced the hexagonal-to-bcc transformation under pressure found experimentally. The bcc phase retains a partial chemical order, as opposed to a second bcc phase we generated by pressuring the amorphous phase. This structural difference is suggested to be responsible for the memory effect uncovered experimentally, the bcc phase reverting to the amorphous or to the hexagonal phase upon decompression, depending on the type of precursor phase it originates from.

  4. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals

    International Nuclear Information System (INIS)

    Borovoi, A.; Konoshonkin, A.; Kustova, N.

    2014-01-01

    The physical-optics approximation in the problem of light scattering by large particles is so defined that it includes the classical physical optics concerning the problem of light penetration through a large aperture in an opaque screen. In the second part of the paper, the problem of light backscattering by quasi-horizontally oriented atmospheric ice crystals is considered where conformity between the physical-optics and geometric-optics approximations is discussed. The differential scattering cross section as well as the polarization elements of the Mueller matrix for quasi-horizontally oriented hexagonal ice plates has been calculated in the physical-optics approximation for the case of vertically pointing lidars. - Highlights: • The physical-optics Mueller matrix is a smoothed geometric-optics counterpart. • Backscatter by partially oriented hexagonal ice plates has been calculated. • Depolarization ratio for partially oriented hexagonal ice plates is negligible

  5. Design of a broadband hexagonal-shaped zeroth-order resonance antenna with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Sik; Kim, Kang Wook; Choi, Hyun Chul [Kyungpook National University, Daegu (Korea, Republic of)

    2014-11-15

    A broadband hexagonal-shaped metamaterials (MTMs)-based zeroth-order resonant (ZOR) antenna was designed and fabricated. The hexagonal shape of a top patch on a mushroom structure makes not only direct-current paths between the two ends of the patch but also round-current paths along the outside of the patch, thereby widening the resonance frequency of the mushroom MTM antenna. According to the shape of the hexagon patch, the presented antenna achieved impedance bandwidth of 58.6% corresponding to ultra-wideband technology. The proposed ZOR antenna was modeled by utilizing a composite right- and left-handed (CRLH) transmission line and provided 4 to 9.3 dBi of the antenna gain with reduced size as compared to conventional microstrip antennas at Ku- to K-band frequencies.

  6. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    Science.gov (United States)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  7. Thermodynamics of the hexagonal close-packed iron-nitrogen system from first-principles

    DEFF Research Database (Denmark)

    Bakkedal, Morten Bjørn

    to hexagonal systems and a numerically tractable extended equation of state is developed to describe thermody-namic equilibrium properties at finite temperature.The model is applied to ε-Fe3N specifically. Through the versatility of the model, equi-librium lattice parameters, the bulk modulus, and the thermal......First-principles thermodynamic models are developed for the hexagonal close-packed ε-Fe-N system. The system can be considered as a hexagonal close-packed host lattice of iron atoms and with the nitrogen atoms residing on a sublattice formed by the octahedral interstices. The iron host lattice...... is assumed fixed.The models are developed entirely from first-principles calculations based on fundamen-tal quantum mechanical calculation through the density functional theory approach with the atomic numbers and crystal structures as the only input parameters. A complete thermody-namic description should...

  8. The reactor vessel steels

    International Nuclear Information System (INIS)

    Bilous, W.; Hajewska, E.; Szteke, W.; Przyborska, M.; Wasiak, J.; Wieczorkowski, M.

    2005-01-01

    In the paper the fundamental steels using in the construction of pressure vessel water reactor are discussed. The properties of these steels as well as the influence of neutron irradiation on its degradation in the time of exploitation are also done. (authors)

  9. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  10. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    International Nuclear Information System (INIS)

    Dawson, J.A.; Freeman, C.L.; Harding, J.H.; Sinclair, D.C.

    2013-01-01

    Interatomic potentials recently developed for the modelling of BaTiO 3 have been used to explore the stabilisation of the hexagonal polymorph of BaTiO 3 by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti 2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni 2+ and Fe 3+ ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti 2 /O 1 cluster and (b) Ti 2 /O 2 cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions

  11. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    International Nuclear Information System (INIS)

    Han, Yu; Jiang, Xiaofeng; Wang, Dezhong

    2014-01-01

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times

  12. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu, E-mail: hanyu1203@gmail.com [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Xiaofeng [Shanghai NuStar Nuclear Power Technology Co., Ltd., No. 81 South Qinzhou Road, XuJiaHui District, Shanghai 200000 (China); Wang, Dezhong [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2014-12-15

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times.

  13. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    Science.gov (United States)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  14. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.

    2013-11-12

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

  15. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    Science.gov (United States)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  16. Simulate-HEX - The multi-group diffusion equation in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Lindahl, S. O.

    2013-01-01

    The multigroup diffusion equation is solved for the hexagonal-z geometry by dividing each hexagon into 6 triangles. In each triangle, the Fourier solution of the wave equation is approximated by 8 plane waves to describe the intra-nodal flux accurately. In the end an efficient Finite Difference like equation is obtained. The coefficients of this equation depend on the flux solution itself and they are updated once per power/void iteration. A numerical example demonstrates the high accuracy of the method. (authors)

  17. Substrate Integrated Waveguide Cross-Coupling Filter with Multilayer Hexagonal Cavity

    Directory of Open Access Journals (Sweden)

    B. Wu

    2013-01-01

    Full Text Available Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter’s design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC technology. Both theoretical and experimental results are presented.

  18. Parameter studies on the effect of pulse shape on the dynamic plastic deformation of a hexagon

    International Nuclear Information System (INIS)

    Youngdahl, C.K.

    1973-10-01

    Results of a parameter study on the dynamic plastic response of a hexagonal subassembly duct subjected to an internal pressure pulse of arbitrary shape are presented. Plastic distortion of the cross section and large-deformation geometric effects that result in redistribution of the internal forces between bending and membrane stresses in the hexagon wall are included in the analytical model. Correlation procedures are established for relating permanent plastic deformation to simple properties of the pressure pulse, for both the small- and large-deformation ranges. Characteristic response times are determined, and the dynamic load factor for large-deformation plastic response is computed

  19. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  20. Solution of two-dimensional diffusion equation for hexagonal cells by the finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1975-01-01

    A method of solution is presented for a monoenergetic diffusion equation in two-dimensional hexagonal cells by a finite Fourier transformation. Up to the present, the solution by the finite Fourier transformation has been developed for x-y, r-z and x-y-z geometries, and the flux and current at the boundary are obtained in terms of Fourier series. It is shown here that the method can be applied to hexagonal cells and the expansion of boundary values in a Legendre polynomials gives numerically a higher accuracy than is obtained by a Fourier series. (orig.) [de

  1. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.

    1994-01-01

    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  2. Hexagonally ordered nanoparticles templated using a block copolymer film through Coulombic interactions

    International Nuclear Information System (INIS)

    Lee, Wonjoo; Lee, Seung Yong; Zhang Xin; Rabin, Oded; Briber, R M

    2013-01-01

    We present a novel and simple method for forming hexagonal gold nanoparticle arrays that uses Coulombic interactions between negatively charged gold nanoparticles on positively charged vertically oriented poly(4-vinylpyridine) cylinders formed in a spin cast polystyrene-b-poly(4-vinylpyridine) block copolymer film. Exposure of the block copolymer film to dibromobutane vapor quaternizes and crosslinks the poly(4-vinylpyridine) domains which allows for the templated deposition of gold nanoparticles into a self-assembled hexagonal array through electrostatic interactions. These systems can form the basis for sensors or next generation nanoparticle based electronics. (paper)

  3. Group of Hexagonal Search Patterns for Motion Estimation and Object Tracking

    International Nuclear Information System (INIS)

    Elazm, A.A.; Mahmoud, I.I; Hashima, S.M.

    2010-01-01

    This paper presents a group of fast block matching algorithms based on the hexagon pattern search .A new predicted one point hexagon (POPHEX) algorithm is proposed and compared with other well known algorithms. The comparison of these algorithms and our proposed one is performed for both motion estimation and object tracking. Test video sequences are used to demonstrate the behavior of studied algorithms. All algorithms are implemented in MATLAB environment .Experimental results showed that the proposed algorithm posses less number of search points however its computational overhead is little increased due to prediction procedure.

  4. Acoustic phonons in the hexagonal perovskite CsNiCl3 around the Gamma-point

    DEFF Research Database (Denmark)

    Visser, D.; Monteith, A.R.; Rønnow, H.M.

    2000-01-01

    The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared with the ......The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared...

  5. The effects of Rashba spin-orbit coupling on spin-polarized transport in hexagonal graphene nano-rings and flakes

    Science.gov (United States)

    Laghaei, M.; Heidari Semiromi, E.

    2018-03-01

    Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.

  6. Tensile and stress corrosion cracking properties of type 304 stainless steel irradiated to a very high dose

    International Nuclear Information System (INIS)

    Chung, H.M.; Strain, R.V.; Shack, W.J.

    2001-01-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20-100 displacement per atom or dpa) by the end of life. Our databases and mechanistic understanding of the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high doses, i.e. is it purely mechanical failure or is it stress-corrosion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-II reactor after irradiation to ∼50 dpa at ∼370 deg. C. Slow-strain-rate tensile tests were conducted at 289 degree sign C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microscopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at a low ECP, and this susceptibility led to a poor work-hardening capability and low ductility

  7. Basic research on mechanism of BN inclusion in improving the machinability of steel

    International Nuclear Information System (INIS)

    Ya-nan, C.; Yan-ping, B.; Min, W.; Xiao-feng, C.; Lin-jing, W.; Li-hua, Z.

    2014-01-01

    Boron nitride-added eco-friendly free cutting steel has recently drawn more and more attention. But, the mechanisms explaining the role of BN inclusions improving the machinability of steels is not very clear. In this investigation, the material removal mechanism for cutting of BN inclusions in steels is explored, using a combination of theoretical analysis and a series of experiments. First, the actual shape of BN inclusions is observed and the amount and distribution of BN inclusions is quantitatively analyzed. Subsequently, the cutting performance of the steel is determined by cutting experimental tests. Moreover, the micro mechanical properties and the material removal mechanisms for cutting of BN inclusions are investigated by means of nano indentation. The results revealed that the BN inclusions are hexagonal and are uniformly distributed, their average content is 23.2 per unit area and their volume fraction is 0.51% in the steel with 74 ppm B and 180 ppm N. It is shown that BN inclusions can improve the cutting performance of steel significantly, and a model describing the material removal mechanism for cutting of BN inclusions is proposed. BN inclusions act as stress concentration source, lubrication and wrap page of hard particles. (Author)

  8. Basic research on mechanism of BN inclusion in improving the machinability of steel

    Energy Technology Data Exchange (ETDEWEB)

    Ya-nan, C.; Yan-ping, B.; Min, W.; Xiao-feng, C.; Lin-jing, W.; Li-hua, Z.

    2014-07-01

    Boron nitride-added eco-friendly free cutting steel has recently drawn more and more attention. But, the mechanisms explaining the role of BN inclusions improving the machinability of steels is not very clear. In this investigation, the material removal mechanism for cutting of BN inclusions in steels is explored, using a combination of theoretical analysis and a series of experiments. First, the actual shape of BN inclusions is observed and the amount and distribution of BN inclusions is quantitatively analyzed. Subsequently, the cutting performance of the steel is determined by cutting experimental tests. Moreover, the micro mechanical properties and the material removal mechanisms for cutting of BN inclusions are investigated by means of nano indentation. The results revealed that the BN inclusions are hexagonal and are uniformly distributed, their average content is 23.2 per unit area and their volume fraction is 0.51% in the steel with 74 ppm B and 180 ppm N. It is shown that BN inclusions can improve the cutting performance of steel significantly, and a model describing the material removal mechanism for cutting of BN inclusions is proposed. BN inclusions act as stress concentration source, lubrication and wrap page of hard particles. (Author)

  9. Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites

    International Nuclear Information System (INIS)

    Mahathanabodee, S.; Palathai, T.; Raadnui, S.; Tongsri, R.; Sombatsompop, N.

    2013-01-01

    Highlights: ► 20 vol% h-BN in stainless steel gave the lowest friction coefficient. ► Sintering temperature of 1200 °C was recommended for optimum friction coefficient. ► h-BN in stainless steel transformed to a boride liquid phase at 1250 °C. - Abstract: In this work, hexagonal boron nitride (h-BN)-embedded 316L stainless steel (SS316L/h-BN) composites were prepared using a conventional powder metallurgy process. In order to produce self-lubricating composites, various amounts of h-BN (10, 15 and 20 vol%) were incorporated. Effects of h-BN content and sintering temperature on the mechanical and tribological properties were of primary interest. The results suggested that an increase in h-BN content reduced the hardness of the composites, but that the hardness could be improved by increasing the sintering temperature. Addition of h-BN up to 20 vol% improved the friction coefficient of the composites. At a sintering temperature of 1250 °C, h-BN transformed into a boride liquid phase, which formed a eutectic during cooling and exhibited a deterioration effect on lubricating film formation of the h-BN, resulting in an increase in the friction coefficient of the composites. The specific wear rate was greatly reduced when the composites were sintered at 1200 °C. The lowest friction coefficient and specific wear rate in the composites could be found under the experimental conditions used in this work when using 20 vol% of h-BN at a sintering temperature of 1200 °C

  10. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  11. Damascus steel ledeburite class

    Science.gov (United States)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  12. Design, synthesis and photoelectrochemical properties of hexagonal metallomacrocycles based on triphenylamine: [M6(4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine)6(X)12]; [M = Fe(II), PF6- and Zn(II), BF4-].

    Science.gov (United States)

    Hwang, Seok-Ho; Moorefield, Charles N; Wang, Pingshan; Fronczek, Frank R; Courtney, Brandy H; Newkome, George R

    2006-08-07

    Synthesis of a novel bis(terpyridine) ligand, 4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine, utilizing triphenylamine, as a specific angle controller, has led to the self-assembly of a unique hexagonal metallomacrocycle family, [Fe6(2)6(PF6)12] and [Zn6(2)6(BF4)12], utilizing terpyridine-metal(II)-terpyridine connectivity. The crystal structure of the novel ligand shows that the angle between the two terpyridinyl moieties is 119.69 degrees , which enabled the formation of the hexagonal-shaped macrocycles. The crystal packing architectures of this starting ligand revealed channels induced by solvent encapsulation. Following complexation of this ligand with transition metals [Fe(II) or Zn(II)] in a one-pot reaction, the resultant structures were characterized by (1)H and (13)C NMR, UV/Vis and mass spectroscopies. The expected metal-to-ligand charge transfer (MLCT; lambda(max) = 582 nm) and emission (lambda(em) = 575 nm) characteristics were exhibited by both [Fe6(2)6(PF6)12] and[Zn6(2)6(BF4)12]. The photoelectrochemical characteristics of these hexagonal metallomacrocycles demonstrate that they can be used as sensitizers in dye-sensitized solar cells.

  13. Existence of non-abelian representations of the near hexagon Q(5,2 ...

    Indian Academy of Sciences (India)

    A near hexagon is a partial linear space of diameter 3 in which for every point x and every line l ... (iii) rx /∈ Z(R) for each x ∈ P and ψ is faithful. ..... As a consequence of the ..... [4] De Bruyn B, Near polygons (2006) (Basel: Birkhäuser Verlag).

  14. Comparative study of the interfaces of graphene and hexagonal boron nitride with silver

    DEFF Research Database (Denmark)

    Garnica, Manuela; Schwarz, Martin; Ducke, Jacob

    2016-01-01

    Silver opens up interesting perspectives in the fabrication of complex systems based on heteroepitaxial layers after the growth of a silicene layer on its (111) face has been proposed. In this work we explore different synthesis methods of hexagonal boron nitride (h-BN) and graphene sheets on sil...

  15. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M.

    2005-01-01

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported

  16. On the energy benefit of compute-and-forward on the hexagonal lattice

    NARCIS (Netherlands)

    Ren, Zhijie; Goseling, Jasper; Weber, Jos; Gastpar, Michael; Skoric, B.; Ignatenko, T.

    2014-01-01

    We study the energy benefit of applying compute-and-forward on a wireless hexagonal lattice network with multiple unicast sessions with a specific session placement. Two compute-and-forward based transmission schemes are proposed, which allow the relays to exploit both the broadcast and

  17. Structural hierarchy in flow-aligned hexagonally self-organized microphases with parallel polyelectrolytic structures

    NARCIS (Netherlands)

    Ruotsalainen, T; Torkkeli, M; Serimaa, R; Makela, T; Maki-Ontto, R; Ruokolainen, J; ten Brinke, G; Ikkala, O; Mäkelä, Tapio; Mäki-Ontto, Riikka

    2003-01-01

    We report a novel structural hierarchy where a flow-aligned hexagonal self-organized structure is combined with a polyelectrolytic self-organization on a smaller length scale and where the two structures are mutually parallel. Polystyrene-block-poly(4-vinylpyridine) (PS-block-P4VP) is selected with

  18. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    NARCIS (Netherlands)

    Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J.

    2011-01-01

    We present electronic transport measurements of single and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm(2) V-1 s(-1) at room temperature and 275 000 cm(2) V-1 s(-1) at 4.2 K. The excellent quality is supported by the early

  19. 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Planat, M.; Pracna, Petr; Levay, P.

    2012-01-01

    Roč. 8, č. 2012 (2012), 083 ISSN 1815-0659 Institutional support: RVO:61388955 Keywords : 'magic' configurations of observables * three-qubit Pauli group * split Cayley hexagon of order two Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.243, year: 2012

  20. Geometric Hyperplanes of the Near Hexagon L-3 x GQ(2,2)

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Levay, P.; Planat, M.; Pracna, Petr

    2010-01-01

    Roč. 91, č. 1 (2010), s. 93-104 ISSN 0377-9017 Institutional research plan: CEZ:AV0Z40400503 Keywords : near hexagons * geometric hyperplanes * Veldkamp spaces Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.842, year: 2010

  1. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.

    Science.gov (United States)

    Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong

    2007-08-07

    A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

  2. Studies on the magnetic after-effect of hydrogen isotopes in hexagonal crystals

    International Nuclear Information System (INIS)

    Herbst, G.

    1979-01-01

    The behaviour of hydrogen isotopes in hexagonal gadolinium, in intermetallic compounds of the RECo 5 type (RE = rare earth metal), and in cobalt alloys with small concentrations of alloyed impurity atoms was studied using the magnetic after-effect method in the temperature range between 4.2 K and 300 K. (orig./WBU) [de

  3. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    Science.gov (United States)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  4. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  5. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    Science.gov (United States)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  6. 2D of hexagonal plasmonic necklaces for enhanced second harmonic generation

    DEFF Research Database (Denmark)

    Gómez-Tornero, Alejandro; Tserkezis, Christos; Mateos, Luis

    2017-01-01

    Hexagonal plasmonic necklaces of silver nanoparticles organized in 2D superlattices on functional ferroelectric templates are fabricated in large-scale spatial regions by using a surfactant-free photo-deposition process. The plasmonic necklaces support broad radiative plasmonic resonances allowing...

  7. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry

    International Nuclear Information System (INIS)

    Schneider, D.

    2001-01-01

    The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P N approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

  8. Eigenstates of a particle in an array of hexagons with periodic boundary condition

    Directory of Open Access Journals (Sweden)

    A Nemati

    2013-10-01

    Full Text Available In this paper the problem of a particle in an array of hexagons with periodic boundary condition is solved. Using the projection operators, we categorize eigenfunctions corresponding to each of the irreducible representations of the symmetry group . Based on these results, the Dirichlet and Neumann boundary conditions are discussed.

  9. Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3

    Science.gov (United States)

    Tsirlin, Alexander

    Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.

  10. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    Science.gov (United States)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  11. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)]. E-mail: music@mch.rwth-aachen.de; Schneider, Jochen M. [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)

    2005-01-15

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported.

  12. A transmission probability method for calculation of neutron flux distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Wasastjerna, F.; Lux, I.

    1980-03-01

    A transmission probability method implemented in the program TPHEX is described. This program was developed for the calculation of neutron flux distributions in hexagonal light water reactor fuel assemblies. The accuracy appears to be superior to diffusion theory, and the computation time is shorter than that of the collision probability method. (author)

  13. Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal α-In2Se3

    KAUST Repository

    Xue, Fei; Zhang, Junwei; Hu, Weijin; Hsu, Wei-Ting; Han, Ali; Leung, Siu; Huang, Jing-Kai; Wan, Yi; Liu, Shuhai; Zhang, Junli; He, Jr-Hau; Chang, Wen-Hao; Wang, Zhong Lin; Zhang, Xixiang; Li, Lain-Jong

    2018-01-01

    to their noncentrosymmetry originating from the hexagonal stacking. Specifically, the corresponding d33 piezoelectric coefficient of α-In2Se3 increases from 0.34 pm/V (monolayer) to 5.6 pm/V (bulk) without any odd-even effect. In addition, we also demonstrate a type of α-In2

  14. Solution of 2D and 3D hexagonal geometry benchmark problems by using the finite element diffusion code DIFGEN

    International Nuclear Information System (INIS)

    Gado, J.

    1986-02-01

    The four group, 2D and 3D hexagonal geometry HTGR benchmark problems and a 2D hexagonal geometry PWR (WWER) benchmark problem have been solved by using the finite element diffusion code DIFGEN. The hexagons (or hexagonal prisms) were subdivided into first order or second order triangles or quadrilaterals (or triangular or quadrilateral prisms). In the 2D HTGR case of the number of the inserted absorber rods was also varied (7, 6, 0 or 37 rods). The calculational results are in a good agreement with the results of other calculations. The larger systematic series of DIFGEN calculations have given a quantitative picture on the convergence properties of various finite element modellings of hexagonal grids in DIFGEN. (orig.)

  15. 7-Hexagon Multifocal Electroretinography for an Objective Functional Assessment of the Macula in 14 Seconds.

    Science.gov (United States)

    Schönbach, Etienne M; Chaikitmongkol, Voraporn; Annam, Rachel; McDonnell, Emma C; Wolfson, Yulia; Fletcher, Emily; Scholl, Hendrik P N

    2017-01-01

    We present the multifocal electroretinogram (mfERG) with a 7-hexagon array as an objective test of macular function that can be recorded in 14 s. We provide normal values and investigate its reproducibility and validity. Healthy participants underwent mfERG testing according to International Society for Clinical Electrophysiology of Vision (ISCEV) standards using the Espion Profile/D310 multifocal ERG system (Diagnosys, LLC, Lowell, MA, USA). One standard recording of a 61-hexagon array and 2 repeated recordings of a custom 7-hexagon array were obtained. A total of 13 subjects (mean age 46.9 years) were included. The median response densities were 12.5 nV/deg2 in the center and 5.2 nV/deg2 in the periphery. Intereye correlations were strong in both the center (ρCenter = 0.821; p < 0.0001) and the periphery (ρPeriphery = 0.862; p < 0.0001). Intraeye correlations were even stronger: ρCenter = 0.904 with p < 0.0001 and ρPeriphery = 0.955 with p < 0.0001. Bland-Altman plots demonstrated an acceptable retest mean difference in both the center and periphery, and narrow limits of agreement. We found strong correlations of the center (ρCenter = 0.826; p < 0.0001) and periphery (ρPeriphery = 0.848; p < 0.0001), with recordings obtained by the 61-hexagon method. The 7-hexagon mfERG provides reproducible results in agreement with results obtained according to the ISCEV standard. © 2017 S. Karger AG, Basel.

  16. Hexagonal OsB{sub 2}: Sintering, microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Institute for Problems of Materials Science, 3 Krzhizhanivskii Str., Kyiv 03142 (Ukraine); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Graule, Thomas; Kuebler, Jakob [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, CH-8600 Dubendorf (Switzerland); Mueller, Martin [Laboratory of Mechanical Metallurgy, EPFL, CH-1015 Lausanne (Switzerland); Gao, Huili [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Radovic, Miladin [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Cullen, David A. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-15

    Highlights: • ReB{sub 2}-type hexagonal OsB{sub 2} powder has been densified by spark plasma sintering. • The sintered OsB{sub 2} contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB{sub 2} sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB{sub 2}-type hexagonal OsB{sub 2} bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB{sub 2} were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB{sub 2} bulk ceramics.

  17. Magnetic ground state of the multiferroic hexagonal LuFe O3

    Science.gov (United States)

    Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.

    2018-05-01

    The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .

  18. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  19. Performance Steel Castings

    Science.gov (United States)

    2012-09-30

    system components to be built. Figure la shows the machine design . PSC-2012 Page 94 Glue Application Sheet Transfer Feed Elevator Figure la...Department of Defense such as cleats, ejection chutes , control arms, muzzle brakes, mortar components, clevises, tow bar clamps, ammo conveyor elements...Foundry and the members of Steel Founders’ Society of America. Abstract Weapon system designers and builders need advanced steel casting technology

  20. Life after Steel

    Science.gov (United States)

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  1. Microstructure in 316LN stainless steel fatigued at low temperature

    International Nuclear Information System (INIS)

    Kruml, T.; Polak, J.

    2000-01-01

    The internal structure of AISI 316LN austenitic stainless steel cyclically strained at liquid nitrogen temperature has been studied using transmission electron microscopy and electron diffraction. High amplitude cyclic straining promotes the transformation of austenite with face centred cubic (f.c.c.) structure into ε-martensite with hexagonal close packed (h.c.p.) structure and α'-martensite with distorted base centred cubic (b.c.c.) structure. Thin plates containing ε-martensite were identified in all grains. α'-martensite nucleates at the intersection of the plates in grains with two or more systems of plates and can grow in the bands. The orientation of transformed phases follows the Shoji-Nichiyama and Kurdjumov-Sachs relations. Mechanisms of low temperature cyclic straining are discussed. (orig.)

  2. TEM study of microstructure in explosive welded joints between Zircaloy-4 and stainless steel

    International Nuclear Information System (INIS)

    Zhou Hairong; Zhou Bangxin

    1996-10-01

    The microstructure of explosive welded joints between Zircaloy-4 and 18/8 stainless steel has been investigated by transmission electron microscopy (TEM). The metallurgical bonding was achieved by combining effect of diffusion and local melting when the explosive parameters were selected correctly. The molten region which consists of amorphous and crystalline with hexagonal crystal structure is hard and brittle. But the welded joints can be pulled, bent and cold rolled without cracks formed on the bonding layer, so as the molten regions are small and distributed as isolated islands. (6 refs., 6 figs., 1 tab.)

  3. The phenomenon of resilient rotary curvature of hexagon selenium nanothin crystals grate around [001] within the framework of asymmetrical theory of resiliency

    International Nuclear Information System (INIS)

    Malkov, V.B.; Agalakov, S.P.; Malkov, A.V.; Malkov, O.V.; Pushin, V.G.; Shul'gin, B.V.

    2008-01-01

    The research of resilient rotary curvature of hexagon selenium nanothin (80-100 nm) crystals grate the method of translucent electronic microscopy. In view of the fact that reasons of resilient rotary curvature of hexagon selenium nanothin crystals grate around [001] remained not found out, the analysis of models of resilient rotary curvature of hexagon selenium crystals grate is conducted.

  4. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  5. Radiotracers in Swedish Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, I.; Erwall, L. G. [Isotope Techniques Laboratory, Stockholm (Sweden); Nyquist, O. [Surahammars Bruks AB, Surahammar (Sweden)

    1967-06-15

    Recent tracer investigations in Swedish steel plants have mainly dealt with problems concerning uon-metallic inclusions, slag weight determination and - labelling of special steel qualities for identification. Suspected inclusion sources, such as furnace slag, ladle-bottom mortar and some brick materials as stopper, nozzle.and channel bricks have been labelled radioactively in different ways. The labelling technique has been studied for the different systems and a new method was developed for brick materials. This includes vacuum impregnation with an aqueous solution of the inactive tracer, reheating to 1300 Degree-Sign C and neutron-irradiation in a reactor. A sufficiently homogeneous labelling of the material was obtained in this way. The tracer used was terbium, which was added as the nitrate and then decomposed to oxide during the heating process. The oxide is strongly bound to the ceramic material. The number of radioactive inclusions was determined by.autoradiography, and related to the total number pf inclusions, obtained by visual slag-counting, to give the percentage of inclusions originating from the labelled object. Some investigations have been made using simultaneous labelling of two or more sources. It seems to be difficult, however, to measure separately more than two tracers: one short-lived (e.g. 140La) and one long-lived (e.g. {sup 160}Tb). The slag weight determinations were made using the isotope dilution technique with {sup 131}Ba and {sup 140}La as tracers. A difference in slag weight is sometimes obtained. An attempt is made to explain these deviations. The material transport through a blast furnace has been followed by using a piece of graphite, labelled with {sup 140}La{sub 2}O{sub 3}, and measuring the radiation intensity outside the furnace walls and in the tuyere. Studies have been made to determine suitable radiotracers for labelling of steel for subsequent identification. Up to three different isotopes can be used simultaneously

  6. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    Science.gov (United States)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  7. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    Science.gov (United States)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of

  8. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  9. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  10. Facile preparation of hexagonal WO{sub 3}·0.33H{sub 2}O/C nanostructures and its electrochemical properties for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiwei [Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Li, Ping, E-mail: ustbliping@126.com [Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Dong, Yuan [Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Wan, Qi [Energy Material & Technology Research Institute, General Research Institute for Nonferrous Metal, Beijing 100088 (China); Zhai, Fuqiang [Departament Física Aplicada, EETAC, Universitat Politècnica de Catalunya – Barcelona Tech, 08860 Castelldefels (Spain); Volinsky, Alex A. [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Qu, Xuanhui [Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-02-01

    Highlights: • WO{sub 3}·0.33H{sub 2}O/C was prepared by the facile synthesis & hydrothermal method. • WO{sub 3}·0.33H{sub 2}O/C electrode capacity is higher than the reported orthorhombic WO{sub 3}·0.33H{sub 2}O. • The specific structure can provide efficient channels for the fast transport of Li{sup +}. - Abstract: Nano-sized hexagonal WO{sub 3}·0.33H{sub 2}O/C is prepared by the solution combustion synthesis & hydrothermal method. This material has been used as the anode for high performance lithium-ion batteries for the first time. Carbon layer is uniformly coated on hexagonal WO{sub 3}·0.33H{sub 2}O nanoparticles. The samples are characterized by X-ray diffraction (XRD), thermal analysis (TG-DSC), Raman spectra, scanning and transmission electron microscopy (FESEM and TEM). Electrochemical properties are studied by cyclic voltammetry and galvanostatic charge/discharge cycling. Prepared WO{sub 3}·0.33H{sub 2}O/C electrode shows high and reversible capacity of 768 mAh g{sup −1} after 200 cycles at 100 mA g{sup −1}, which is higher than the reported orthorhombic WO{sub 3}·0.33H{sub 2}O. The specific structure can provide efficient channels for transporting Li{sup +} swiftly. Therefore, hexagonal WO{sub 3}·0.33H{sub 2}O/C shows a great potential as the anode material for lithium-ion batteries.

  11. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  12. Eight channel fast scalar

    Energy Technology Data Exchange (ETDEWEB)

    Waddoup, W D; Stubbs, R J [Durham Univ. (UK)

    1977-11-01

    An eight channel 64-bit scaler has been constructed with a static CMOS memory. Scaling frequencies are independently variable, at each channel, as are the number of bits/channel. The scaler, when used in conjunction with a multichannel charge to time converter results in a very flexible, gated multichannel ADC.

  13. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  14. Clean steels for fusion

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels

  15. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  16. Fracture toughness of irradiated stainless steel alloys

    International Nuclear Information System (INIS)

    Mills, W.J.

    1986-01-01

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 427 0 C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m 2 ; the weld exhibited a saturation level of 11 kJ/m 2 . Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  17. Remarkably enhanced photoluminescence of hexagonal GdPO4·nH2O:Eu with decreasing size

    International Nuclear Information System (INIS)

    Lu Shaozhe; Zhang Jiahua; Zhang Jishen; Zhao Haifeng; Luo Yongshi; Ren Xinguang

    2010-01-01

    The hexagonal rhabdophane-type GdPO 4 hydrate (GdPO 4 ·nH 2 O) was synthesized via a simple hydrothermal process. The size and morphology of the products can be tunable by adjusting the pH of reaction systems through the addition of aqueous NaOH. The nanorods with a width of 50-100 nm and a length of about 1 μm were obtained in the absence of NaOH (pH = 2), while a significant reduction of size (width: ∼ 10 nm, length: ∼ 50 nm) was observed for the product synthesized in the presence of NaOH (pH = 10). Surprisingly, the small-sized product exhibits a remarkably enhanced photoluminescence quantum yield and long excited state lifetime in comparison with those of the large-sized product. This abnormal luminescence phenomenon is discussed and explained. The EDS and XPS measurements revealed the presence of Na + in the small-sized samples. These Na + cations were probably bonded to the surface O 2- dangling bonds, which thus reduces the number of surface defects that usually serve as the nonradiative energy transfer center channels. A considerable reduction of surface defect centers results in the increase of the emission efficiency and excited state lifetime in a small-sized sample. Obviously, the controlled synthesis of rare-earth-doped nanoparticles with a small size, but with relatively strong luminescence, is significant for their applications in the areas of technologies including optoelectronics, sensing and bioimaging.

  18. Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances

    Science.gov (United States)

    Liu, Hui; Gao, Nan; Liao, Meiyong; Fang, Xiaosheng

    2015-01-01

    Ultraviolet (UV) photodetectors are important tools in the fields of optical imaging, environmental monitoring, and air and water sterilization, as well as flame sensing and early rocket plume detection. Herein, hexagonal-like Nb2O5 nanoplates are synthesized using a facile solvothermal method. UV photodetectors based on single Nb2O5 nanoplates are constructed and the optoelectronic properties have been probed. The photodetectors show remarkable sensitivity with a high external quantum efficiency (EQE) of 9617%, and adequate wavelength selectivity with respect to UV-A light. In addition, the photodetectors exhibit robust stability and strong dependence of photocurrent on light intensity. Also, a low-cost drop-casting method is used to fabricate photodetectors based on Nb2O5 nanoplate film, which exhibit singular thermal stability. Moreover, the hexagonal-like Nb2O5 nanoplates show significantly better photocatalytic performances in decomposing Methylene-blue and Rhdamine B dyes than commercial Nb2O5.

  19. First-principles calculations on double-walled inorganic nanotubes with hexagonal chiralities

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F; Evarestov, Robert A; Bandura, Andrei V; Losev, Maxim V

    2011-01-01

    The two sets of commensurate double-walled boron nitride and titania hexagonally-structured nanotubes (DW BN and TiO 2 NTs) possessing either armchair- or zigzag-type chiralities have been considered, i.e., (n 1 ,n 1 )-(n 2 ,n 2 ) or (n 1 ,0)-(n 2 ,0), respectively. For symmetry analysis of these nanotubes, the line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry have been applied. To analyze the structural and electronic properties of hexagonal DW NTs, a series of large-scale ab initio DFT-LCAO calculations have been performed using the hybrid Hartree-Fock/Kohn-Sham exchange-correlation functional PBE0 (as implemented in CRYSTAL-09 code). To establish the optimal inter-shell distances within DW NTs corresponding to the minima of calculated total energy, the chiral indices n 1 and n 2 of the constituent single-walled (SW) nanotubes have been successively varied.

  20. Microstructure and Pinning Properties of Hexagonal Disc Shaped Single Crystalline MgB2

    Energy Technology Data Exchange (ETDEWEB)

    Patel, J. R.

    2003-04-30

    We synthesized hexagonal-disc-shaped MgB{sub 2} single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB{sub 2}. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB{sub 2} phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  1. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.; Villa S, G.; Rosales D, J. [Tecnologico de Estudios Superiores de Jocotitlan, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico); Vigueras S, E.; Hernandez L, S. [Universidad Autonoma del Estado de Mexico, Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Acuna, P. [Universidad Autonoma del Estado de Mexico, Programa de Doctorado en Ciencia de Materiales, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Argueta V, A.; Colin B, N., E-mail: lorr810813@gmail.com [Tecnologico de Estudios Superiores de Jocotitlan, Programa de Ingenieria Mecatronica, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico)

    2017-11-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  2. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  3. Local structure theory: calculation on hexagonal arrays, and interaction of rule and lattice

    International Nuclear Information System (INIS)

    Gutowitz, H.A.; Victor, J.D.

    1989-01-01

    Local structure theory calculations are applied to the study of cellular automata on the two-dimensional hexagonal lattice. A particular hexagonal lattice rule denoted (3422) is considered in detail. This rule has many features in common with Conway's Life. The local structure theory captures many of the statistical properties of this rule; this supports hypotheses raised by a study of Life itself. As in Life, the state of a cell under (3422) depends only on the state of the cell itself and the sum of states in its neighborhood at the previous time step. This property implies that evolution rules which operate in the same way can be studied on different lattices. The differences between the behavior of these rules on different lattices are dramatic. The mean field theory cannot reflect these differences. However, a generalization of the mean field theory, the local structure theory, does account for the rule-lattice interaction

  4. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films

    International Nuclear Information System (INIS)

    Kim, D J; Gruverman, A; Connell, J G; Seo, S S A

    2016-01-01

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO 3 and Pb(Zr,Ti)O 3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO 3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO 3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. (paper)

  5. Magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal revisited

    Energy Technology Data Exchange (ETDEWEB)

    Balli, M., E-mail: Mohamed.balli@Usherbrooke.ca [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Roberge, B.; Vermette, J.; Jandl, S. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Fournier, P. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (Canada); Gospodinov, M.M. [Institute of Solid State Physics, Bulgarian Academy of Science, Sofia 1184 (Bulgaria)

    2015-12-01

    Magnetic and magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal have been revisited. It was found that the magnetocaloric effect shown by HoMnO{sub 3} strongly depends on the crystal orientation in respect to the applied magnetic field. Consequently, a large thermal effect can be induced by spinning the single crystal HoMnO{sub 3} around the a (or b) axis in a constant magnetic field instead of the conventional magnetization–demagnetization process. Under 7 T, the maximum rotating entropy change was evaluated to be about 8 J/kg K. The associated adiabatic temperature change reaches a value of about 5 K. These values are comparable to those of the other oxides exhibiting a large rotating magnetocaloric effect. The presence of both conventional and rotating thermal effects makes the hexagonal HoMnO{sub 3} more interesting from a practical point of view.

  6. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride

    Science.gov (United States)

    Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B.

    2018-01-01

    We combine electron energy-loss spectroscopy and first-principles calculations based on density-functional theory (DFT) to identify the lowest indirect exciton state in the in-plane charge response of hexagonal boron nitride (h-BN) single crystals. This remarkably sharp mode forms a narrow pocket with a dispersion bandwidth of ˜100 meV and, as we argue based on a comparison to our DFT calculations, is predominantly polarized along the Γ K direction of the hexagonal Brillouin zone. Our data support the recent report by Cassabois et al. [Nat. Photonics 10, 262 (2016), 10.1038/nphoton.2015.277] who indirectly inferred the existence of this mode from the photoluminescence signal, thereby establishing h-BN as an indirect semiconductor.

  7. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  8. Stress-strain relationship and XRD line broadening in [0001] textured hexagonal polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi

    2011-01-01

    Stress analysis with X-ray diffraction (XRD) for hexagonal polycrystalline materials in the Laue classes 6/mmm and 6/m has been studied on the basis of the crystal symmetry of the constituent crystallites which was proposed by R. Yokoyama and J. Harada ['Re-evaluation of formulae for X-ray stress analysis in polycrystalline specimens with fibre texture', Journal of Applied Crystallography, Vol.42, pp.185-191 (2009)]. The relationship between the stress and strain observable by XRD in a hexagonal polycrystalline material with [0001] fibre texture was formulated in terms of the elastic compliance defined for its single crystal. As a result, it was shown that the average strains obtained in the crystallites for both symmetries of 6/mmm and 6/m are different from each other under the triaxial or biaxial stress field. Then, it turned out that the line width of XRD changes depending on the measurement direction. (author)

  9. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    Science.gov (United States)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  10. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    Science.gov (United States)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  11. RTk/SN Solutions of the Two-Dimensional Multigroup Transport Equations in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Valle, Edmundo del; Mund, Ernest H.

    2004-01-01

    This paper describes an extension to the hexagonal geometry of some weakly discontinuous nodal finite element schemes developed by Hennart and del Valle for the two-dimensional discrete ordinates transport equation in quadrangular geometry. The extension is carried out in a way similar to the extension to the hexagonal geometry of nodal element schemes for the diffusion equation using a composite mapping technique suggested by Hennart, Mund, and del Valle. The combination of the weakly discontinuous nodal transport scheme and the composite mapping is new and is detailed in the main section of the paper. The algorithm efficiency is shown numerically through some benchmark calculations on classical problems widely referred to in the literature

  12. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  13. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications.

    Science.gov (United States)

    Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang

    2018-04-03

    The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.

  14. High-order discrete ordinate transport in hexagonal geometry: A new capability in ERANOS

    International Nuclear Information System (INIS)

    Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J.M.

    2010-01-01

    This paper presents the implementation of an arbitrary order discontinuous Galerkin scheme within the framework of a discrete ordinate solver of the neutron transport equation for nuclear reactor calculations. More precisely, it deals with non-conforming spatial meshes for the 2 D and 3 D modeling of core geometries based on hexagonal assemblies. This work aims at improving the capabilities of the ERANOS code system dedicated to fast reactor analysis and design. Both the angular quadrature and spatial scheme peculiarities for hexagonal geometries are presented. A particular focus is set on the spatial non-conforming mesh and variable order capabilities of this scheme in anticipation to the development of spatial adaptiveness algorithms. These features are illustrated on a 3 D numerical benchmark with comparison to a Monte Carlo reference and a 2 D benchmark that shows the potential of this scheme for both h-and p-adaptation.

  15. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    Science.gov (United States)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  16. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    International Nuclear Information System (INIS)

    Lopez, R.; Villa S, G.; Rosales D, J.; Vigueras S, E.; Hernandez L, S.; Acuna, P.; Argueta V, A.; Colin B, N.

    2017-01-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  17. Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Tuteja, Mohit; Kesaria, Manoj; Waghmare, U. V.; Shivaprasad, S. M. [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064 (India)

    2012-09-24

    We present here the spontaneous formation of catalyst-free, self-aligned crystalline (wurtzite) nanorods on Si(111) surfaces modified by surface nitridation. Nanorods grown by molecular beam epitaxy on bare Si(111) and non-stoichiometric silicon nitride interface are found to be single crystalline but disoriented. Those grown on single crystalline Si{sub 3}N{sub 4} intermediate layer are highly dense c-oriented hexagonal shaped nanorods. The morphology and the self-assembly of the nanorods shows an ordered epitaxial hexagonal superstructure, suggesting that they are nucleated at screw dislocations at the interface and grow spirally in the c-direction. The aligned nanorod assembly shows high-quality structural and optical emission properties.

  18. Experimental study of bolted connections using light gauge channel sections and packing plates at the joints

    Science.gov (United States)

    Kulkarni, Ravindra B.; Vaghe, Vishal M.

    2014-12-01

    Cold-formed structural members are being used more widely in routine structural design as the world steel industry moves from the production of hot-rolled section and plate to coil and strip, often with galvanized and/or painted coatings. Steel in this form is more easily delivered from the steel mill to the manufacturing plant where it is usually cold-rolled into open and closed section members. In the present experimental study, the use of packing plate at the joints in cold-formed channel sections may increase the load carrying capacity and also reduce the buckling of unconnected cold form channel steel plate at joints. The present study focuses on examining the experimental investigation to use mild steel as a packing plate with cold-formed channel sections by bolted connection at the joints and the connection subjected to axial tension. Series of tests are carried out with increase in the thickness of packing plate and results are observed and analyzed. Total Twelve experimental tests have been carried out on cold-formed channel tension members fastened with single as well as three numbers of bolts at the connection and from the observations the strength of the joint is increased by increasing the various thicknesses of packing plates and also the buckling of unconnected leg of channel specimen is reduced. It is analyzed by plotting the entire load versus elongation path, so that the behavior of the connection is examined.

  19. Development of an Efficient Steel Beam Section for Modular Construction Based on Six-Sigma

    Directory of Open Access Journals (Sweden)

    Tae-Hyu Ha

    2016-01-01

    Full Text Available This study presents a systematic approach for the development of an efficient steel beam section for modular construction based on Six-Sigma. Although the Six-Sigma is frequently implemented in manufacturing and other service industries, it is a relatively new concept in the area of building design and construction. As a first step in this approach, market studies and surveys are conducted to obtain the opinions of potential customers. Then the opinions of customers are converted into quality characteristics for the steel beam using the quality function deployment methodology. A steel hollow flanged channel is chosen as the main modular beam shape, and the design concept is derived and developed by applying the Pugh matrix methodology. A pilot test was performed to validate the effectiveness of the developed beam section. The results indicated that the developed channel beam section showed excellent performance and retained high accuracy in fabrication, thus resulting in a significant reduction of steel consumption.

  20. Uniform hexagonal graphene flakes and films grown on liquid copper surface

    OpenAIRE

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-01-01

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm2), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films ...

  1. The high temperature orthorhombic ⇄ hexagonal phase transformation of FeMnP

    Science.gov (United States)

    Chenevier, B.; Soubeyroux, J. L.; Bacmann, M.; Fruchart, D.; Fruchart, R.

    1987-10-01

    The compound FeMnP has the hexagonal Fe 2P structure above 1473K. The metal atoms are disordered. The disorder rate decreases with temperature and at 1413K a transition Hex → Orth. takes place. The low temperature phase is of Co 2P type. A simple transition model is proposed based on the displacement of phosphorus chains along the shortest axis of the structure. The thermal evolution of the orthorhombic cell parameters evidences the strong anisotropy of the bondings.

  2. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Won [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ko, Do-Kyeong [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Yu, Nan Ei, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kitamura, Kenji [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ro, Jung Hoon, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Department of Biomedical Engineering, School of Medicine, Pusan National University, Busan 602-739 (Korea, Republic of)

    2015-03-09

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic “asymmetric in-out domain wall motion” observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (E{sub c}) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1E{sub c} is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15E{sub c} is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  3. Comparison of square and hexagonal fuel lattices for high conversion PWRs

    International Nuclear Information System (INIS)

    Kotlyar, D.; Shwageraus, E.

    2011-01-01

    This paper reports on an investigation into fuel design choices of a PWR operating in a self sustainable Th- 233 U fuel cycle. Achieving such self-sustainable with respect to fissile material fuel cycle would practically eliminate concerns over nuclear fuel supply hundreds of years into the future. Moreover, utilization of light water reactor technology and its associated vast experience would allow faster deployment of such fuel cycle without immediate need for development of fast reactor technology, which tends to be more complex and costly. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. Furthermore, hexagonal lattice may allow more uniform leakage of neutrons from fissile to fertile regions and therefore more uniform neutron captures in thorium blanket. The calculations were carried out with Monte-Carlo based BGCore system, which includes neutronic, fuel depletion and thermo-hydraulic modules. The results were compared to those obtained from Serpent Monte-Carlo code and deterministic fuel assembly transport code BOXER. One of the major design challenges associated with the square seed-blanket concept is high power peaking due to the high concentration of fissile material in the seed region. In order to explore feasibility of the studied designs, the calculations were extended to include 3D fuel assembly analysis with thermal-hydraulic feedback. The coupled neutronic - thermal-hydraulic calculations were performed with BGCore code system. The analysis showed that both hexagonal and square seed-blanket fuel assembly designs have a potential of achieving net breeding. While no major neutronic advantages were observed for either fuel

  4. Quasi-hexagonal vortex-pinning lattice using anodized aluminum oxide nanotemplates

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, M.; Michotte, S.

    2009-01-01

    The bottom barrier layer of well-ordered nanoporous alumina membranes reveals a previously unexploited nanostructured template surface consisting of a triangular lattice of hemispherical nanoscale bumps. Quasi-hexagonal vortex-pinning lattice arrays are created in superconducting Nb films deposited...... onto this template (see image). Matching effects are preserved at higher magnetic fields and lower temperatures when compared to holes on the top face....

  5. Alignment of paired molecules of C60 within a hexagonal platform networked through hydrogen-bonds.

    Science.gov (United States)

    Hisaki, Ichiro; Nakagawa, Shoichi; Sato, Hiroyasu; Tohnai, Norimitsu

    2016-07-28

    We demonstrate, for the first time, that a hydrogen-bonded low-density organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C60, which is the smallest example of a finite-numbered cluster of C60. The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives.

  6. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics.

    Science.gov (United States)

    Yu, Ying; Dou, Xiu-Ming; Wei, Bin; Zha, Guo-Wei; Shang, Xiang-Jun; Wang, Li; Su, Dan; Xu, Jian-Xing; Wang, Hai-Yan; Ni, Hai-Qiao; Sun, Bao-Quan; Ji, Yuan; Han, Xiao-Dong; Niu, Zhi-Chuan

    2014-05-01

    Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparison of rod-ejection transient calculations in hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Knight, M.P.; Brohan, P.; Finnemann, H.; Huesken, J.

    1995-01-01

    This paper proposes a set of 3-dimensional benchmark rod ejection problems for a VVER reactor, based on the well-known NEACRP PWR rod-ejection problems defined by Siemens/KWU. Predictions for these benchmarks derived using three hexagonal-z nodal transient codes, the PANTHER code of Nuclear Electric, the HEXTIME code of Siemens/KWU, and the DYN3D code of FZ-Rossendorf are presented and compared

  8. High optical transmittance of aluminum ultrathin film with hexagonal nanohole arrays as transparent electrode

    KAUST Repository

    Du, Qing Guo; Yue, Weisheng; Wang, Zhihong; Lau, Wah Tung; Ren, Hengjiang; Li, Er-Ping

    2016-01-01

    We fabricate samples of aluminum ultrathin films with hexagonal nanohole arrays and characterize the transmission performance. High optical transmittance larger than 60% over a broad wavelength range from 430 nm to 750 nm is attained experimentally. The Fano-type resonance of the excited surface plasmon plaritons and the directly transmitted light attribute to both of the broadband transmission enhancement and the transmission suppression dips. © 2016 Optical Society of America.

  9. The response-matrix based AFEN method for the hexagonal geometry

    International Nuclear Information System (INIS)

    Noh, Jae Man; Kim, Keung Koo; Zee, Sung Quun; Joo, Hyung Kook; Cho, Byng Oh; Jeong, Hyung Guk; Cho, Jin Young

    1998-03-01

    The analytic function expansion nodal (AFEN) method, developed to overcome the limitations caused by the transverse integration, has been successfully to predict the neutron behavior in the hexagonal core as well as rectangular core. In the hexagonal node, the transverse leakage resulted from the transverse integration has some singular terms such as delta-function and step-functions near the node center line. In most nodal methods using the transverse integration, the accuracy of nodal method is degraded because the transverse leakage is approximated as a smooth function across the node center line by ignoring singular terms. However, the AFEN method in which there is no transverse leakage term in deriving nodal coupling equations keeps good accuracy for hexagonal node. In this study, the AFEN method which shows excellent accuracy in the hexagonal core analyses is reformulated as a response matrix form. This form of the AFEN method can be implemented easily to nodal codes based on the response matrix method. Therefore, the Coarse Mesh Rebalance (CMR) acceleration technique which is one of main advantages of the response matrix method can be utilized for the AFEN method. The response matrix based AFEN method has been successfully implemented into the MASTER code and its accuracy and computational efficiency were examined by analyzing the two- and three- dimensional benchmark problem of VVER-440. Based on the results, it can be concluded that the newly formulated AFEN method predicts accurately the assembly powers (within 0.2% average error) as well as the effective multiplication factor (within 0.2% average error) as well as the effective multiplication factor (within 20 pcm error). In addition, the CMR acceleration technique is quite efficient in reducing the computation time of the AFEN method by 8 to 10 times. (author). 22 refs., 1 tab., 4 figs

  10. On the tensor reduction of one-loop pentagons and hexagons

    International Nuclear Information System (INIS)

    Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.; Bielefeld Univ.; Gluza, J.; Kajda, K.

    2008-07-01

    We perform analytical reductions of one-loop tensor integrals with 5 and 6 legs to scalar master integrals. They are based on the use of recurrence relations connecting integrals in different space-time dimensions. The reductions are expressed in a compact form in terms of signed minors, and have been implemented in a mathematica package called hexagon.m. We present several numerical examples. (orig.)

  11. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O{sub 3} multiferroic materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeuvrey, L., E-mail: laurent.jeuvrey@univ-rennes1.fr [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Pena, O. [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Moure, A.; Moure, C. [Electroceramics Department, Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain)

    2012-03-15

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO{sub 3} material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn{sub 1-x}Cu{sub x}O{sub 3}; x<0.15) and self-doping at the A-site (Y{sub 1+y}MnO{sub 3}; y<0.10) successfully maintained the hexagonal structure. Self-doping was limited to y(Y)=2 at% and confirmed that excess yttrium avoids formation of ferromagnetic manganese oxide impurities but creates vacancies at the Mn site. Chemical substitution at the B-site inhibits the geometrical frustration of the Mn{sup 3+} two-dimensional lattice. The magnetic transition at T{sub N} decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn{sup 3+}-Mn{sup 4+} interactions created by the substitution of Mn{sup 3+} by Cu{sup 2+}, are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn{sup 3+}-Mn{sup 4+} pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: Black-Right-Pointing-Pointer Hexagonal-type solid solutions of Y(Mn,Cu)O{sub 3} synthesized by Pechini process. Black-Right-Pointing-Pointer Chemical substitution at B site inhibits geometrical magnetic frustration. Black-Right-Pointing-Pointer Magnetic transition decreases with Cu-doping. Black-Right-Pointing-Pointer Local ferromagnetic Mn-Mn interactions coexist with the frustrated state.

  12. High optical transmittance of aluminum ultrathin film with hexagonal nanohole arrays as transparent electrode

    KAUST Repository

    Du, Qing Guo

    2016-02-24

    We fabricate samples of aluminum ultrathin films with hexagonal nanohole arrays and characterize the transmission performance. High optical transmittance larger than 60% over a broad wavelength range from 430 nm to 750 nm is attained experimentally. The Fano-type resonance of the excited surface plasmon plaritons and the directly transmitted light attribute to both of the broadband transmission enhancement and the transmission suppression dips. © 2016 Optical Society of America.

  13. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  14. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  15. Thermochemistry of selected trivalent lanthanide and americium compounds: orthorhombic and hexagonal hydroxycarbonates

    International Nuclear Information System (INIS)

    Rorif, F.; Fuger, J.; Desreux, J.F.

    2005-01-01

    The molar enthalpies of dissolution of a number of well-characterized hexagonal hydroxycarbonates Ln(OH)CO 3 (hex) (Ln = La, Nd, Sm, Eu) in 6.00 mol dm -3 HCl were measured at 298.15K. A new sealed solution micro-calorimeter was developed for this purpose. It was made of an 18-carat gold alloy in order to improve the performances of a calorimeter previously built in our laboratory. The following standard molar enthalpies of formation, Δ f H m [Ln(OH)CO 3 , hex], in kJ mol -1 , were calculated: -(1627.8±1.6), -(1614.8±1.9), -(1613.4±1.6), and -(1523.0±3.0), for the La, Nd, Sm, and Eu compounds, respectively. These results allowed an extrapolation to Δ f H m [Eu(OH)CO 3 .0.5H 2 O, orth] = -(1653.4±3.6) kJ mol -1 and to Δ f H m [Am(OH)CO 3 , hex] = -(1552.5±3.3) kJ mol -1 . Using auxiliary data and estimated entropies, the solubility products of the hexagonal hydroxycarbonates were calculated. They are compared here with values deduced from solubility and calorimetric measurements for the corresponding orthorhombic hydroxycarbonates. Our approach generally leads to values similar to those deduced from solubility studies. The orthorhombic form is found to be metastable with respect to the hexagonal form. (orig.)

  16. Desain Antena Hexagonal Patch Array Berbasis Sistem Transfer Daya Wireless pada Frekuensi 2,4 GHz

    Directory of Open Access Journals (Sweden)

    Herma Nugroho R. A. K.

    2016-06-01

    Full Text Available Pada penelitian ini telah didesain antena hexagonal patch array yang dapat digunakan sebagai perangkat catu daya wireless. Antena hexagonal patch array ini didesain untuk menangkap gelombang radio (RF pada frekuensi 2,4 GHz yang dapat diaplikasikan sebagai antena pada Wireless Local Area Network (WLAN. Desain antena dilakukan menggunakan software CST Microwave studio, kemudian dilakukan pabrikasi dan pengukuran secara riil. Parameter pengujian antena hexagonal patch array meliputi return loss, Voltage Standing Wave Ratio (VSWR, gain, bandwidth, dan daya. Metode yang digunakan adalah pemodelan transmission line dan corporate feed line untuk pengaturan perubahan jarak antar patch antena. Perubahan variabel juga diteliti pengaruhnya terhadap parameter antena khususnya daya terima antena yang kemudian ditransmisikan ke rangkaian power harvester. Nilai parameter antena hasil simulasi menunjukkan nilai return loss adalah -33,38 dB, VSWR sebesar 1,041, gain sebesar 8,81 dBi, bandwidth adalah 0,084 GHz, daya sebesar 0,499 W (-3 dBm. Sedangkan parameter hasil pengukuran dari antena yang telah dipabrikasi adalah nilai return loss sebesar -33,21 dB, VSWR sebesar 1,048, gain sebesar 5 dBi, bandwidth adalah 0,145 GHz, daya sebesar -33 dBm.

  17. Facile synthesis and characterization of hexagonal NbSe2 nanoplates

    International Nuclear Information System (INIS)

    Zhang, Xianghua; Zhang, Du; Tang, Hua; Ji, Xiaorui; Zhang, Yi; Tang, Guogang; Li, Changsheng

    2014-01-01

    Graphical abstract: - Highlights: • Uniform hexagonal NbSe 2 nanoplates were prepared by a simple solid state reaction. • The possible formation mechanism of the NbSe 2 nanoplates was discussed. • The formation of NbSe 2 nanoplates undergoes a series of phase transition. - Abstract: The NbSe 2 nanoplates with hexagonal morphology have been successfully prepared by a facile, environmentally friendly reaction in closed reactor at moderate temperature. The thermal (750 °C) solid-state reaction between the ball-milled mixture of micro-sized Nb and Se yielded a high yield of NbSe 2 nanoplates. The as-prepared products were characterized by XRD, EDS, and SEM. The results showed that the as-prepared products were hexagonal phase NbSe 2 nanoplates with uniform sizes and the formation of NbSe 2 nanoplates underwent a series of phase transition. On the basis of experimental results obtained at different temperatures, a reasonable reaction process and a formation mechanism were proposed. Moreover, the ball milling time played a crucial role in acquiring the homogeneous distribution nanoplates

  18. A rational repeating template method for synthesis of 2D hexagonally ordered mesoporous precious metals.

    Science.gov (United States)

    Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2011-03-01

    A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    International Nuclear Information System (INIS)

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-01-01

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF 4 to hexagonal NaYF 4 and to hexagonal Y(OH) 2.02 F 0.98 owing to ion exchange. - Highlights: • Novel Y(OH) 2.02 F 0.98 nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH) 2.02 F 0.98 . The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation

  20. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  1. Crystallographic Orientation Determination of Hexagonal Structure Crystals by Laser Ultrasonic Technique

    International Nuclear Information System (INIS)

    Li, W; Coulson, J; Marrow, P; Smith, R J; Clark, M; Sharples, S D; Lainé, S J

    2016-01-01

    Spatially resolved acoustic spectroscopy (SRAS) is a laser ultrasonic technique that shows qualitative contrast between grains of different orientation, illustrating the sensitivity of acoustic waves to the material structure. The technique has been improved significantly on determining the full orientation of multigrain cubic metals, by comparing the measured surface acoustic wave (SAW) velocity to a pre-calculated model. In this paper we demonstrate the ability of this technique to determine the orientation of hexagonal structure crystals, such as magnesium and titanium based alloys. Because of the isotropy of the SAW velocity on the basal plane (0001) of hexagonal crystals, the slowness surface is shown as a circle. As the plane moves from (0001) towards (112-bar0) or towards (101-bar0), the slowness surface gradually turns into an oval. These acoustic properties increase the difficulty in orientation determination. The orientation results of a grade 1 commercially pure titanium by SRAS is presented, with comparison with electron backscattered diffraction (EBSD) results. Due to the nature of SAWs on hexagonal structure crystals, only the results of Euler angles 1 and 2 are discussed. The error between SRAS and EBSD is also investigated. (paper)

  2. Neutron noise calculations in a hexagonal geometry and comparison with analytical solutions

    International Nuclear Information System (INIS)

    Tran, H. N.; Demaziere, C.

    2012-01-01

    This paper presents the development of a neutronic and kinetic solver for hexagonal geometries. The tool is developed based on the diffusion theory with multi-energy groups and multi-groups of delayed neutron precursors allowing the solutions of forward and adjoint problems of static and dynamic states, and is applicable to both thermal and fast systems with hexagonal geometries. In the dynamic problems, the small stationary fluctuations of macroscopic cross sections are considered as noise sources, and then the induced first order noise is calculated fully in the frequency domain. Numerical algorithms for solving the static and noise equations are implemented with a spatial discretization based on finite differences and a power iterative solution. A coarse mesh finite difference method has been adopted for speeding up the convergence. Since no other numerical tool could calculate frequency-dependent noise in hexagonal geometry, validation calculations have been performed and benchmarked to analytical solutions based on a 2-D homogeneous system with two-energy groups and one-group of delayed neutron precursor, in which point-like perturbations of thermal absorption cross section at central and non-central positions are considered as noise sources. (authors)

  3. Synthesis of Phase Pure Hexagonal YFeO3 Perovskite as Efficient Visible Light Active Photocatalyst

    Directory of Open Access Journals (Sweden)

    Mohammed Ismael

    2017-11-01

    Full Text Available Hexagonal perovskite YFeO3 was synthesized by a complex-assisted sol-gel technique allowing crystallization at calcination temperatures below 700 °C. As determined by diffuse reflectance spectroscopy (DRS and Tauc plots, the hexagonal YFeO3 exhibits a lower optical band gap (1.81 eV than the orthorhombic structure (about 2.1 eV or even higher being typically obtained at elevated temperatures (>700 °C, and thus enables higher visible light photocatalysis activity. Structure and morphology of the synthesized YFeO3 perovskites were analyzed by powder X-ray diffraction (XRD and nitrogen adsorption, proving that significantly smaller crystallite sizes and higher surface areas are obtained for YFeO3 with a hexagonal phase. The photocatalytic activity of the different YFeO3 phases was deduced via the degradation of the model pollutants methyl orange and 4-chlorophenol. Experiments under illumination with light of different wavelengths, in the presence of different trapping elements, as well as photoelectrochemical tests allow conclusions regarding band positions of YFeO3 and the photocatalytic degradation mechanism. X-ray photoelectron spectroscopy indicates that a very thin layer of Y2O3 might support the photocatalysis by improving the separation of photogenerated charge carriers.

  4. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    Science.gov (United States)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  5. Fabrication Improvement of Cold Forging Hexagonal Nuts by Computational Analysis and Experiment Verification

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2015-01-01

    Full Text Available Cold forging has played a critical role in fasteners and has been applied to the automobile industry, construction industry, aerospace industry, and living products so that cold forging presents the opportunities for manufacturing more products. By using computer simulation, this study attempts to analyze the process of creating machine parts, such as hexagonal nuts. The DEFORM-3D forming software is applied to analyze the process at various stages in the computer simulation, and the compression test is also used for the flow stress equation in order to compare the differences between the experimental results and the equation that is built into the computer simulation software. At the same time, the metallography and hardness of experiments are utilized to understand the cold forging characteristics of hexagonal nuts. The research results would benefit machinery businesses to realize the forging load and forming conditions at various stages before the fastener formation. In addition to planning proper die design and production, the quality of the produced hexagonal nuts would be more stable to promote industrial competitiveness.

  6. Face recognition via sparse representation of SIFT feature on hexagonal-sampling image

    Science.gov (United States)

    Zhang, Daming; Zhang, Xueyong; Li, Lu; Liu, Huayong

    2018-04-01

    This paper investigates a face recognition approach based on Scale Invariant Feature Transform (SIFT) feature and sparse representation. The approach takes advantage of SIFT which is local feature other than holistic feature in classical Sparse Representation based Classification (SRC) algorithm and possesses strong robustness to expression, pose and illumination variations. Since hexagonal image has more inherit merits than square image to make recognition process more efficient, we extract SIFT keypoint in hexagonal-sampling image. Instead of matching SIFT feature, firstly the sparse representation of each SIFT keypoint is given according the constructed dictionary; secondly these sparse vectors are quantized according dictionary; finally each face image is represented by a histogram and these so-called Bag-of-Words vectors are classified by SVM. Due to use of local feature, the proposed method achieves better result even when the number of training sample is small. In the experiments, the proposed method gave higher face recognition rather than other methods in ORL and Yale B face databases; also, the effectiveness of the hexagonal-sampling in the proposed method is verified.

  7. Estimating Regional Mass Balance of Himalayan Glaciers Using Hexagon Imagery: An Automated Approach

    Science.gov (United States)

    Maurer, J. M.; Rupper, S.

    2013-12-01

    Currently there is much uncertainty regarding the present and future state of Himalayan glaciers, which supply meltwater for river systems vital to more than 1.4 billion people living throughout Asia. Previous assessments of regional glacier mass balance in the Himalayas using various remote sensing and field-based methods give inconsistent results, and most assessments are over relatively short (e.g., single decade) timescales. This study aims to quantify multi-decadal changes in volume and extent of Himalayan glaciers through efficient use of the large database of declassified 1970-80s era Hexagon stereo imagery. Automation of the DEM extraction process provides an effective workflow for many images to be processed and glacier elevation changes quantified with minimal user input. The tedious procedure of manual ground control point selection necessary for block-bundle adjustment (as ephemeral data is not available for the declassified images) is automated using the Maximally Stable Extremal Regions algorithm, which matches image elements between raw Hexagon images and georeferenced Landsat 15 meter panchromatic images. Additional automated Hexagon DEM processing, co-registration, and bias correction allow for direct comparison with modern ASTER and SRTM elevation data, thus quantifying glacier elevation and area changes over several decades across largely inaccessible mountainous regions. As consistent methodology is used for all glaciers, results will likely reveal significant spatial and temporal patterns in regional ice mass balance. Ultimately, these findings could have important implications for future water resource management in light of environmental change.

  8. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O3 multiferroic materials

    International Nuclear Information System (INIS)

    Jeuvrey, L.; Peña, O.; Moure, A.; Moure, C.

    2012-01-01

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO 3 material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn 1−x Cu x O 3 ; x 1+y MnO 3 ; y 3+ two-dimensional lattice. The magnetic transition at T N decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn 3+ –Mn 4+ interactions created by the substitution of Mn 3+ by Cu 2+ , are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn 3+ –Mn 4+ pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: ► Hexagonal-type solid solutions of Y(Mn,Cu)O 3 synthesized by Pechini process. ► Chemical substitution at B site inhibits geometrical magnetic frustration. ► Magnetic transition decreases with Cu-doping. ► Local ferromagnetic Mn–Mn interactions coexist with the frustrated state.

  9. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  10. National steel tries wheeling

    International Nuclear Information System (INIS)

    Dudak, J.R.

    1992-01-01

    In 1989, National Steel felt the need to take the next step to make its Detroit-based division, Great Lakes Steel, more competitive in the world flat-rolled steel market. In 1988, Great Lakes Steel started flowing natural gas through the first fully litigated bypass (Competitive Sourcing Option) of a local distribution company. In 1989, the second connection with the new supply route for gas transportation, Panhandle Eastern had started flowing and the LDC, Michigan Consolidated Gas Co. (MichCon) had pulled out their piping previously serving the plants. Since we had been able to structure a fully reliable supply route, storage and balancing program for gas in the face of such strong opposition by the LDC, the author felt it was time to attack the next singularly sourced major commodity, electricity. Electricity, at this major integrated steel plant, represented approximately 7% of plant cost yearly. Yet being monopolized, Great Lakes Division (GLD) could not multiple source this commodity like it does with its other 93% of costs, except for labor (25% of the 93%). Multiple sourcing is done to bring competitive pressure to suppliers and to diversify supplies and protect plant operation in the event of failure by one supplier. This paper describes National Steel's strategy to reduce the cost of power, at the minimum of capital costs, the most expedient way possible, that does not sacrifice any major long-term potential cost improvements. The results show that competitively priced power is available across the mid-west, at prices well below many state regulated electric utilities, for at least 5 to 15 years, but with major obstacles in obtaining transmission access

  11. Volatilization from PCA steel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Smolik, G.R.; McCarthy, K.A.; Petti, D.A.

    1996-08-01

    The mobilizations of key components from Primary Candidate Alloy (PCA) steel alloy have been measured with laboratory-scale experiments. The experiments indicate most of the mobilization from PCA steel is due to oxide formation and spalling but that the spalled particles are large enough to settle rapidly. Based on the experiments, models for the volatization of iron, manganese, and cobalt from PCA steel in steam and molybdenum from PCA steel in air have been derived.

  12. Fatigue damage of steel components

    DEFF Research Database (Denmark)

    Fæster, Søren; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials......Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials...

  13. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  14. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    Johansen, A.; Johnson, E.; Sarholt-Kristensen, L.; Steenstrup, S.; Hayashi, N.; Sakamoto, I.

    1989-01-01

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  15. Effects of preparation relief and flow channels on seating full coverage castings during cementation.

    Science.gov (United States)

    Webb, E L; Murray, H V; Holland, G A; Taylor, D F

    1983-06-01

    Machined steel dies were used to study the effects of three die modifications on seating full coverage castings during cementation. The die modifications consisted of occlusal channels, occlusal surface relief, and axial channels. Fourteen specimens having one or more forms of die modification were compared with two control specimens having no die modifications. Statistical analysis of the data revealed that the addition of four axial channels to the simulated preparation on the steel die produced a significant reduction in the mean marginal discrepancy during cementation. Occlusal modifications alone failed to produce significant reductions in marginal discrepancies when compared with the control specimens. Occlusal modifications in conjunction with axial channels failed to produce further significant reductions in marginal discrepancies when compared with those reductions observed in specimens having only axial channels.

  16. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  17. Joining uranium to steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1976-05-01

    A method has been devised which will allow the joining of uranium to steel by fusion welding through the use of an intermediate material. Uranium-0.5 titanium was joined to AISI 304L stainless steel by using a vanadium insert. Also, a method is now available for selecting possible filler metals when two entirely dissimilar metals need to be joined. This method allows a quantitative ranking to be made of the possible filler metals and thus the most likely candidate can be selected

  18. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  19. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla.

    Science.gov (United States)

    Schmitt, Melanie; Potthast, Andreas; Sosnovik, David E; Polimeni, Jonathan R; Wiggins, Graham C; Triantafyllou, Christina; Wald, Lawrence L

    2008-06-01

    A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension. Copyright (c) 2008 Wiley-Liss, Inc.

  20. Nitrogen-alloyed martensitic steels

    International Nuclear Information System (INIS)

    Berns, H.

    1988-01-01

    A report is presented on initial results with pressure-nitrided martensitic steels. In heat-resistant steels, thermal stability and toughness are raised by nitrogen. In cold work steel, there is a more favourable corrosion behaviour. (orig./MM) [de

  1. Irradiation Creep and Swelling of Russian Ferritic-Martensitic Steels Irradiated to Very High Exposures in the BN-350 Fast Reactor at 305-335 degrees C

    International Nuclear Information System (INIS)

    Konobeev, Yury V.; Dvoriashin, Alexander M.; Porollo, S.I.; Shulepin, S.V.; Budylkin, N.I.; Mironova, Elena G.; Garner, Francis A.

    2003-01-01

    Russian ferritic/martensitic (F/M) steels EP-450, EP-852 and EP-823 were irradiated in the BN-350 fast reactor in the form of gas-pressurized creep tubes. The first steel is used in Russia for hexagonal wrappers in fast reactors. The other steels were developed for compatibility with Pb-Bi coolants and serve to enhance our understanding of the general behavior of this class of steels. In an earlier paper we published data on irradiation creep of EP-450 and EP-823 at temperatures between 390 and 520C, with dpa levels ranging from 20 to 60 dpa. In the current paper new data on the irradiation creep and swelling of EP-450 and EP-852 at temperatures between 305 and 335C and doses ranging from 61 to 89 dpa are presented. Where comparisons are possible, it appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures <420C, but may be camouflaged somewhat by precipitation-related densification. These irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels.

  2. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Dimoulas, A. [National Center for Scientific Research “Demokritos,” 15310 Athens (Greece); Grazianetti, C.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, I-20126, Milano (Italy); Chiappe, D.; Molle, A. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy)

    2013-12-16

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  3. Tracking algorithms for multi-hexagonal assemblies (2D and 3D)

    International Nuclear Information System (INIS)

    Prabha, Hem; Marleau, Guy; Hébert, Alain

    2014-01-01

    Highlights: • We present the method of computations of 2D and 3D fluxes in hexagonal assemblies. • Computation of fluxes requires computation of track lengths. • Equations are developed (in 2D and 3D) and are implemented in a program HX7. • The program HX7 is implemented in the NXT module of the code DRAGON. • The tracks are plotted and fluxes are compared with the EXCELT module of DRAGON. - Abstract: Background: There has been a continuous effort to design new reactors and study these reactors under different conditions. Some of these reactors have fuel pins arranged in hexagonal pitch. To study these reactors, development of computational methods and computer codes is required. For this purpose, we have developed algorithms to track two dimensional and three dimensional cluster geometries. These algorithms have been implemented in a subprogram HX7, that is implemented in the code DRAGON (Version 3.06F) to compute neutron flux distributions in these systems. Methods: Computation of the neutron flux distribution requires solution of neutron transport equation. While solving this equation, by using Carlvik’s method of collision probabilities, computation of tracks in the hexagonal geometries is required. In this paper we present equations that we have developed for the computation of tracks in two dimensional (2D) and three dimensional (3D) multi-hexagonal assemblies (with two rotational orientations). These equations have been implemented in a subprogram HX7, to compute tracks in seven hexagonal assemblies. The subprogram HX7 has been implemented in the NXT module of the DRAGON code, where tracks in the pins are computed. Results: The results of our algorithms NXT(+HX7) have been compared with the results obtained by the EXCELT module of DRAGON (Version 3.06F). Conclusions: We find that all the fluxes in 2D and fluxes in the outer pin (3D) are converging to their 3rd decimal places, in both the modules EXCELT and NXT(+HX7). For other regions 3D fluxes

  4. Non-linear triangle-based polynomial expansion nodal method for hexagonal core analysis

    International Nuclear Information System (INIS)

    Cho, Jin Young; Cho, Byung Oh; Joo, Han Gyu; Zee, Sung Qunn; Park, Sang Yong

    2000-09-01

    This report is for the implementation of triangle-based polynomial expansion nodal (TPEN) method to MASTER code in conjunction with the coarse mesh finite difference(CMFD) framework for hexagonal core design and analysis. The TPEN method is a variation of the higher order polynomial expansion nodal (HOPEN) method that solves the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with the HOPEN method, only two-dimensional intranodal expansion is considered in the TPEN method for a triangular domain. The axial dependence of the intranodal flux is incorporated separately here and it is determined by the nodal expansion method (NEM) for a hexagonal node. For the consistency of node geometry of the MASTER code which is based on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 triangular nodes directly with Gauss elimination scheme. To solve the CMFD linear system efficiently, stabilized bi-conjugate gradient(BiCG) algorithm and Wielandt eigenvalue shift method are adopted. And for the construction of the efficient preconditioner of BiCG algorithm, the incomplete LU(ILU) factorization scheme which has been widely used in two-dimensional problems is used. To apply the ILU factorization scheme to three-dimensional problem, a symmetric Gauss-Seidel Factorization scheme is used. In order to examine the accuracy of the TPEN solution, several eigenvalue benchmark problems and two transient problems, i.e., a realistic VVER1000 and VVER440 rod ejection benchmark problems, were solved and compared with respective references. The results of eigenvalue benchmark problems indicate that non-linear TPEN method is very accurate showing less than 15 pcm of eigenvalue errors and 1% of maximum power errors, and fast enough to solve the three-dimensional VVER-440 problem within 5 seconds on 733MHz PENTIUM-III. In the case of the transient problems, the non-linear TPEN method also shows good results within a few minute of

  5. Mass attenuation coefficients, effective atomic and electron numbers of stainless steel and carbon steels with different energies

    International Nuclear Information System (INIS)

    Mohd Fakarudin Abdul Rahman; Mohd Iqbal Saripan; Nor Paiza Mohamad Hasan; Ismail Mustapha

    2011-01-01

    The total mass attenuation coefficients (μ/ ρ) of stainless steel (SS316L) and carbon steel (A516) that are widely used as petrochemical plant components, such as distillation column, heat exchanger, boiler and storage tank were measured at 662, 1073 and 1332 keV of photon energies. Measurements of radiation intensity for various thicknesses of steel were made by using transmission method. The γ-ray intensity were counted by using a Gamma spectrometer that contains a Hyper-pure Germanium (HPGe) detector connected with Multi Channel Analyzer (MCA). The effective numbers of atomic (Z eff ) and electron (N eff ) obtained experimentally were compared by those obtained through theoretical calculation. Both experimental and calculated values of Z eff and N eff were in good agreement. (author)

  6. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  7. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    Science.gov (United States)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-01

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  8. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  9. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  10. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  11. Guns, Germs and Steel

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 1. Guns, Germs and Steel - A Short History of Everybody for the Last 13,000 years. Suri Venkatachalam. Book Review Volume 6 Issue 1 January 2001 pp 84-88. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Underwater welding of steel

    International Nuclear Information System (INIS)

    Ibarra, S.; Olson, D.L.

    1992-01-01

    A fundamental basis to understand the behavior of wet underwater welding of steel is introduced. Both the pyrometallurgical and physical metallurgy concepts are discussed. Modifications of welding consumables and practice are suggested. This chapter promotes further contributions of meatllurgical research to improve and promote wet underwater welding. (orig.)

  13. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  14. On choice of tempered steels

    International Nuclear Information System (INIS)

    Govorov, A.A.; Pan'shin, I.F.; Rakhmanov, V.I.

    1978-01-01

    For the purpose of developing a graphical method for choosing structural steels, a change in the propagation work of a crack and in the critical temperature of brittleness of 40, 40Kh, 40KhN, and 40KhNM steels, was examined depending on the hardness after hardening and tempering. A diagram enabling to choose the grade of steel for making an article of known dimensions according to the preset values of its mechanical properties has been plotted. The developed selection scheme takes into account the hardenability of steels and the influence of the hardness after thermal treatment on the cold-shortness of steel

  15. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  16. Challenges in Special Steel Making

    Science.gov (United States)

    Balachandran, G.

    2018-02-01

    Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.

  17. Investigations of the diverse corrosion products on steel in a hydrogen sulfide environment

    International Nuclear Information System (INIS)

    Bai, Pengpeng; Zheng, Shuqi; Zhao, Hui; Ding, Yu; Wu, Jian; Chen, Changfeng

    2014-01-01

    Highlights: • Diverse corrosion products on steel are investigated in H 2 S environment. • The sequence of the main corrosion products is mackinawite + cubic FeS → troilite. • The large single beam-shaped troilite has a growth pattern along the c axis. • The flower-like troilite develops from beam- or hexagonal wire-shaped grains. • The corresponding crystal structure and morphology of the products are provided. - Abstract: The corrosion products of carbon steel in aqueous H 2 S environment are investigated. The products, which include mackinawite, cubic FeS, troilite, and pyrite, are characterized through their shapes, chemical compositions and crystal structures. Mackinawite appears with a flake shape. Cubic FeS has a perfect/truncated octahedral shape, and pyrite is framboid-shaped. Flower-shaped troilite is developed from beam- or hexagonal wire-shaped grains by electrostatic interactions along a certain lattice plane. The large single beam-shaped troilite has a growth pattern along the c axis. The corresponding crystal structure and micro-morphology of the corrosion products are provided, and the three-dimensional models of them are generated

  18. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  19. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  20. Axial ion channeling patterns from ultra-thin silicon membranes

    International Nuclear Information System (INIS)

    Motapothula, M.; Dang, Z.Y.; Venkatesan, T.; Breese, M.B.H.; Rana, M.A.; Osman, A.

    2012-01-01

    We present channeling patterns produced by MeV protons transmitted through 55 nm thick [0 0 1] silicon membranes showing the early evolution of the axially channeled beam angular distribution for small tilts away from the [0 0 1], [0 1 1] and [1 1 1] axes. Instead of a ring-like “doughnut” distribution previously observed at small tilts to major axes in thicker membranes, geometric shapes such as squares and hexagons are observed along different axes in ultra-thin membranes. The different shapes arise because of the highly non-equilibrium transverse momentum distribution of the channeled beam during its initial propagation in the crystal and the reduced multiple scattering which allows the fine angular structure to be resolved. We describe a simple geometric construction of the intersecting planar channels at an axis to gain insight into the origin of the geometric shapes observed in such patterns and how they evolve into the ‘doughnut’ distributions in thicker crystals.

  1. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    .... Chemical compositions, heat treatments, and some properties and uses are presented for structural steels, tool steels, stainless and heat-resisting steels, precipitation-hardenable stainless steels...

  2. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  3. Calcium Channel Blockers

    Science.gov (United States)

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  4. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  5. A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Song, M.; Sun, C.; Fan, Z.; Chen, Y.; Zhu, R.; Yu, K.Y.; Hartwig, K.T.; Wang, H.; Zhang, X.

    2016-01-01

    Ferritic/martensitic (F/M) steels with high strength and excellent ductility are important candidate materials for the life extension of the current nuclear reactors and the design of next generation nuclear reactors. Recent studies show that equal channel angular extrusion (ECAE) was able to improve mechanical strength of ferritic T91 steels moderately. Here, we examine several strategies to further enhance the mechanical strength of T91 while maintaining its ductility. Certain thermo-mechanical treatment (TMT) processes enabled by combinations of ECAE, water quench, and tempering may lead to “ductile martensite” with exceptionally high strength in T91 steel. The evolution of microstructures and mechanical properties of T91 steel were investigated in detail, and transition carbides were identified in water quenched T91 steel. This study provides guidelines for tailoring the microstructure and mechanical properties of T91 steel via ECAE enabled TMT for an improved combination of strength and ductility.

  6. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further

  7. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  8. Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals

    International Nuclear Information System (INIS)

    Cokelaer, T.

    2007-01-01

    Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Pade resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO)

  9. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Science.gov (United States)

    Díaz, Jairo A; Jaramillo, Natalia A; Murillo, Mauricio F

    2007-12-12

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must

  10. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  11. Synthesis of hexagonal boron nitride with the presence of representative metals

    Energy Technology Data Exchange (ETDEWEB)

    Budak, Erhan, E-mail: erhan@ibu.edu.t [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey); Bozkurt, Cetin [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey)

    2010-11-15

    Hexagonal boron nitride (h-BN) samples were prepared using the modified O'Connor method with KNO{sub 3} and Ca(NO{sub 3}){sub 2} at different temperatures (1050, 1250, and 1450 deg. C). The samples were characterized by FTIR, XRD, and SEM techniques. Usage of representative metals exhibited a positive effect on the crystallization of h-BN and they caused the formation of nano-scale products at relatively low temperature. XRD results indicated that there was an increase in interlayer spacing due to the d-{pi} interaction. The calculated lattice constants were very close to the reported value for h-BN.

  12. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    Science.gov (United States)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  13. Computation of 3D neutron fluxes in one pin hexagonal cell

    International Nuclear Information System (INIS)

    Prabha, Hem; Marleau, Guy

    2013-01-01

    Highlights: ► Computations of 3D neutron fluxes in one pin hexagonal cell is performed by Carlvik’s method of collision probability. ► Carlvik’s method requires computation of track lengths in the geometry. ► Equations are developed to compute tracks, in 2D and 3D, in hexagons and are implemented in a program HX7. ► The program HX7 is implemented in NXT module of the code DRAGON, where tracks in pins are computed. ► The tracks are plotted and fluxes are compared with the EXCELT module of the code DRAGON. - Abstract: In this paper we are presenting the method of computation of three dimensional (3D) neutron fluxes in one pin hexagonal cell. Carlvik’s collision probability method of solving neutron transport equation for computing fluxes has been used here. This method can consider exact geometrical details of the given geometry. While using this method, track length computations are required to be done. We have described here the method of computing tracks in one 3D hexagon. A program HX7 has been developed for this purpose. This program has been implemented in the NXT module of the code DRAGON, where tracks in the pins are computed. For computing tracks in 3D, first we use the tracks computed in the two dimensions (2D) and then we project them in the third dimension. We have developed equations for this purpose. In both the regions, fuel pin as well as in the moderator surrounding the pin the fluxes are assumed to be uniform. A uniform source is assumed in the moderator region. Reflecting boundary conditions are applied on all the sides as well as on the top and bottom surfaces. One group 2D and 3D fluxes are compared with the respective results obtained by the EXCELT module of DRAGON. To check the computations, tracks are plotted and errors in the computations are obtained. It is observed by using both the modules EXCELT and NXT that the fluxes in the pins converge faster and in the moderator region fluxes converge very slowly

  14. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  15. Spin Seebeck effect in Y-type hexagonal ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Hirschner, Jan; Maryško, Miroslav; Hejtmánek, Jiří; Uhrecký, Róbert; Soroka, Miroslav; Buršík, Josef; Anadón, P.; Aguirre, M.H.; Knížek, Karel

    2017-01-01

    Roč. 96, č. 6 (2017), s. 1-8, č. článku 064428. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : hexagonal ferrites * spin Seebeck effect * thin films * magnetization * ferrimagnetic ferrites Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Inorganic and nuclear chemistry (UACH-T) Impact factor: 3.836, year: 2016

  16. High Order Finite Element Method for the Lambda modes problem on hexagonal geometry

    International Nuclear Information System (INIS)

    Gonzalez-Pintor, S.; Ginestar, D.; Verdu, G.

    2009-01-01

    A High Order Finite Element Method to approximate the Lambda modes problem for reactors with hexagonal geometry has been developed. This method is based on the expansion of the neutron flux in terms of the modified Dubiner's polynomials on a triangular mesh. This mesh is fixed and the accuracy of the method is improved increasing the degree of the polynomial expansions without the necessity of remeshing. The performance of method has been tested obtaining the dominant Lambda modes of different 2D reactor benchmark problems.

  17. Glycerol oxidehydration into acrolein and acrylic acid over W/V/Nb bronzes with hexagonal structure

    Energy Technology Data Exchange (ETDEWEB)

    Basile, F.; Cavani, F.; Chieregato, A. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; CIRI Energia e Ambiente, Bologna (Italy); Concepcion, P.; Lopez Nieto, J.M.; Soriano, M.D. [Univ. Politecnica de Valencia (Spain). Inst. de Tecnologia Quimica; Liosi, G.; Trevisanut, C. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali

    2012-07-01

    This paper deals with an investigation of hexagonal W-V-Nb-O and W-V-Mo-O bronzes as catalysts for the one-pot oxidehydration of glycerol into acrylic acid. In a previous work, we reported a study on a bi-component bronze W-V-O that allowed us to obtain a 25% acrylic acid selectivity; in the current work, the incorporation of either Nb or Mo in a tri-component bronze structure allowed us to tune the acid and redox properties of the catalyst, so as to study their influence on the overall reaction scheme. (orig.)

  18. Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet–graphene oxide composites

    International Nuclear Information System (INIS)

    Liu, Mengdi; Xu, Jing; Cheng, Bei; Ho, Wingkei; Yu, Jiaguo

    2015-01-01

    Graphical abstract: - Highlights: • Mg(OH) 2 hexagonal nanosheets with various mass of GO were prepared. • Mg(OH) 2 –GO composite showed enhanced adsorption capacity to congo red. • Zeta potential was used to explain preparation and adsorption mechanism. - Abstract: A series of Mg(OH) 2 hexagonal nanosheet–graphene oxide (GO) composites were synthesized through a simple hydrothermal method using magnesium nitrate and GO as precursors, sodium nitrate and sodium oxalate as additives, and sodium hydroxide and ammonia as precipitants. The as-prepared samples were characterized by X-ray diffraction, nitrogen adsorption–desorption isotherms, Raman spectroscopy, zeta potential analysis, and scanning electron microscopy (SEM). The adsorption affinity of the as-prepared samples toward congo red (CR) in water was analyzed and investigated. Results indicated that GO addition influenced the thickness, morphology, and adsorption performance of Mg(OH) 2 hexagonal nanosheets. As GO concentration increased, the thickness decreased. Especially at high GO concentration (1 wt%), Mg(OH) 2 hexagonal nanosheets changed into aggregated flower-like spheres. Addition of small amounts of GO also increased the adsorption capacity of Mg(OH) 2 . The equilibrium adsorption data of CR on the composite were further investigated by Langmuir and Freundlich models, indicating that the Langmuir model was much more suitable for the experimental data. The sample prepared with 0.5 wt% GO showed the highest adsorption capacity with 118 mg g −1 . The experimental data were then fitted using pseudo-second order kinetics, suggesting that pseudo-second order kinetics could well describe the adsorption of CR on composites. Adsorption thermodynamics analysis showed that the adsorption activation energy was 29.2 kJ mol −1 , suggesting that the adsorption of CR onto the samples was physical adsorption. Adsorption between the samples and CR was mainly due to the strong electrostatic attraction

  19. Synthesis and adsorption performance of Mg(OH){sub 2} hexagonal nanosheet–graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mengdi; Xu, Jing; Cheng, Bei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-03-30

    Graphical abstract: - Highlights: • Mg(OH){sub 2} hexagonal nanosheets with various mass of GO were prepared. • Mg(OH){sub 2}–GO composite showed enhanced adsorption capacity to congo red. • Zeta potential was used to explain preparation and adsorption mechanism. - Abstract: A series of Mg(OH){sub 2} hexagonal nanosheet–graphene oxide (GO) composites were synthesized through a simple hydrothermal method using magnesium nitrate and GO as precursors, sodium nitrate and sodium oxalate as additives, and sodium hydroxide and ammonia as precipitants. The as-prepared samples were characterized by X-ray diffraction, nitrogen adsorption–desorption isotherms, Raman spectroscopy, zeta potential analysis, and scanning electron microscopy (SEM). The adsorption affinity of the as-prepared samples toward congo red (CR) in water was analyzed and investigated. Results indicated that GO addition influenced the thickness, morphology, and adsorption performance of Mg(OH){sub 2} hexagonal nanosheets. As GO concentration increased, the thickness decreased. Especially at high GO concentration (1 wt%), Mg(OH){sub 2} hexagonal nanosheets changed into aggregated flower-like spheres. Addition of small amounts of GO also increased the adsorption capacity of Mg(OH){sub 2}. The equilibrium adsorption data of CR on the composite were further investigated by Langmuir and Freundlich models, indicating that the Langmuir model was much more suitable for the experimental data. The sample prepared with 0.5 wt% GO showed the highest adsorption capacity with 118 mg g{sup −1}. The experimental data were then fitted using pseudo-second order kinetics, suggesting that pseudo-second order kinetics could well describe the adsorption of CR on composites. Adsorption thermodynamics analysis showed that the adsorption activation energy was 29.2 kJ mol{sup −1}, suggesting that the adsorption of CR onto the samples was physical adsorption. Adsorption between the samples and CR was mainly due to the

  20. Growth of InAs Wurtzite Nanocrosses from Hexagonal and Cubic Basis

    DEFF Research Database (Denmark)

    Krizek, Filip; Kanne, Thomas; Razmadze, Davydas

    2017-01-01

    . Two methods use conventional wurtzite nanowire arrays as a 6-fold hexagonal basis for growing single crystal wurtzite nanocrosses. A third method uses the 2-fold cubic symmetry of (100) substrates to form well-defined coherent inclusions of zinc blende in the center of the nanocrosses. We show......Epitaxially connected nanowires allow for the design of electron transport experiments and applications beyond the standard two terminal device geometries. In this Letter, we present growth methods of three distinct types of wurtzite structured InAs nanocrosses via the vapor-liquid-solid mechanism...

  1. Omni channel fashion shopping

    NARCIS (Netherlands)

    Kemperman, A.D.A.M.; van Delft, L.; Borgers, A.W.J.; Pantano, E.

    2015-01-01

    This chapter gives insight into consumers' online and offline fashion shopping behavior, consumers' omni-channel usage during the shopping process, and consumer fashion shopper segments. Based on a literature review, omni-channel shopping behavior during the shopping process was operationalized.

  2. Steel for nuclear applications

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.

    1978-01-01

    A steel contains, in percent by weight, the following constituents: carbon from 0.13 to 0.18, silicon from 0.17 to 0.37, manganese from 0.30 to 0.60, chromium from 1.7 to 2.4, nickel from 1.0 to 1.5, molybdenum from 0.5 to 0.7, vanadium from 0.05 to 0.12, aluminium from 0.01 to 0.035, nitrogen from 0.05 to 0.012, copper from 0.11 to 0.20, arsenic from 0.0035 to 0.0055, iron and impurities, the balance. This steel is preferable for use in the manufacture of nuclear reactors. 1 table

  3. Advances in stainless steels

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Saibaba, Saroja; Sivaprasad, P.V.; Shankar, P.

    2010-01-01

    This book covers a broad spectrum of topics spanning the entire life cycle of stainless steel-from alloy design and characterization to engineering design, fabrication, mechanical properties, corrosion, quality assurance of components, in-service performance assessment, life prediction and finally failure analysis of materials and components. The contents provide useful feedback for further developments aimed at effective utilization of this class of materials. The book comprises articles that bring out contemporary developments in stainless steels and is thematically classified into the following sections. 1. Component design, modelling and structural integrity, 2. Manufacturing technology, 3. Property evaluation, 4. Alloy development and applications, 5. NDE methods, 6. Corrosion and surface modification. The book commences with articles on component design and structural integrity, thus opening up the areas of challenge for researchers and academia. The articles in the book relevant to INIS are indexed separately

  4. Steel containment buckling

    International Nuclear Information System (INIS)

    Bennett, J.G.; Fly, G.W.; Baker, W.E.

    1984-01-01

    The Steel Containment Buckling program is in its fourth phase of work directed at the evaluation of the effects of the structural failure mode of steel containments when the membrane stresses are compressive. The structural failure mode for this state of stress is instability or buckling. The program to date has investigated: (1) the effect on overall buckling capacity of the ASME area replacement method for reinforcing around circular penetrations; (2) a set of benchmark experiments on ring-stiffened shells having reinforced and framed penetrations; (3) large and small scale experiments on knuckle region buckling from internal pressure and post-buckling behavior to failure for vessel heads having torispherical geometries; and (4) buckling under time-dependent loadings (dynamic buckling). The first two investigations are complete, the knuckle buckling experimental efforts are complete with data analysis and reporting in progress, and the dynamic buckling experimental and analytical work is in progress

  5. Steel containment buckling

    International Nuclear Information System (INIS)

    Butler, T.A.; Baker, W.E.

    1986-01-01

    Two aspects of buckling of a free-standing nuclear steel containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require a dynamic capacity reduction factor to be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are suggested

  6. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  7. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  8. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  9. CHANNEL ESTIMATION TECHNIQUE

    DEFF Research Database (Denmark)

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  10. Reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-01-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use

  11. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  12. Steele Richardson Olszewski syndrome

    Directory of Open Access Journals (Sweden)

    Vijayashree S Gokhale

    2013-01-01

    Full Text Available Parkinson′s disease and its plus syndromes are an important cause of morbidity in the geriatric age group. Its plus syndromes show a myriad of clinical features characterized by progressive symptoms. Here we present a 65-year-old woman with progressive "Parkinsonian-like features," i.e., mask-like face, slowness of all movements and tendency to fall, and difficulty in eye movements, leading to the diagnosis of Steele Richardson Olszewski Syndrome or progressive supranuclear palsy.

  13. Steels and welding nuclear

    International Nuclear Information System (INIS)

    Sessa, M.; Milella, P.P.

    1987-01-01

    This ENEA Data-Base regards mechanical properties, chemical composition and heat treatments of nuclear pressure vessel materials: type A533-B, A302-B, A508 steel plates and forgings, submerged arc welds and HAZ before and after nuclear irradiation. Irradiation experiments were generally performed in high flux material test reactors. Data were collected from international available literature about water nuclear reactors pressure vessel materials embrittlement

  14. Contaminated Mexican steel incident

    International Nuclear Information System (INIS)

    1985-01-01

    This report documents the circumstances contributing to the inadvertent melting of cobalt 60 (Co-60) contaminated scrap metal in two Mexican steel foundries and the subsequent distribution of contaminated steel products into the United States. The report addresses mainly those actions taken by US Federal and state agencies to protect the US population from radiation risks associated with the incident. Mexico had much more serious radiation exposure and contamination problems to manage. The United States Government maintained a standing offer to provide technical and medical assistance to the Mexican Government. The report covers the tracing of the source to its origin, response actions to recover radioactive steel in the United States, and return of the contaminated materials to Mexico. The incident resulted in significant radiation exposures within Mexico, but no known significant exposure within the United States. Response to the incident required the combined efforts of the Nuclear Regulatory Commission (NRC), Department of Energy, Department of Transportation, Department of State, and US Customs Service (Department of Treasury) personnel at the Federal level and representatives of all 50 State Radiation Control Programs and, in some instances, local and county government personnel. The response also required a diplomatic interface with the Mexican Government and cooperation of numerous commercial establishments and members of the general public. The report describes the factual information associated with the event and may serve as information for subsequent recommendations and actions by the NRC. 8 figures

  15. Behaviour of steel-concrete composite beams using bolts as shear connectors

    Science.gov (United States)

    Tran, Minh-Tung; Nguyen Van Do, Vuong; Nguyen, Tuan-Anh

    2018-04-01

    The paper presents an experimental program on the application of bolts as shear connectors for steel-composite beams. Four steel- concrete composite beams and a reference steel beam were made and tested. The aim of the testing program is to examine which forms of the steel bolts can be used effectively for steel-composite beams. The four types of the bolts include: Type 1 the bolt with the nut at the end; Type 2 the bolt bending at 900 hook; Type 3 the bolt without the nut at the end and Type 4 the bolt with the nut at the end but connected with the steel beam by hand welding in other to be connected with the steel beam by bolt connection as in the first three types. The test results showed that beside the traditional shear connectors like shear studs, angle type, channel type, bolts can be used effectively as the shear connectors in steel-composite beams and the application of bolts in Types 1 and 2 in the composite beams gave the better performance for the tested beam.

  16. Eu3+-doped Y2O3 hexagonal prisms: Shape-controlled synthesis and tailored luminescence properties

    International Nuclear Information System (INIS)

    Yang, Errui; Li, Guangshe; Fu, Chaochao; Zheng, Jing; Huang, Xinsong; Xu, Wen; Li, Liping

    2015-01-01

    In this work, Eu 3+ doped Y 2 O 3 hexagonal prisms were synthesized by a novel two-phase approach, which involves water at the bottom as aqueous phase and oleylamine in the above as oil phase. With this unique reaction system, precursors of hexagonal prisms Y 4 O(OH) 9 (NO 3 ) were first obtained by simply varying the volume ratio of water to oleylamine. Time-dependent experiments were systematically performed to reveal the growth mechanism of the precursor. After subsequent heat treatment, these precursors transformed to Y 2 O 3 hexagonal prisms with controlled diameters and aspect ratios varying from 4 to 19. Such a transformation is preceded via a topotactic process, as indicated by TG-DTA and mass spectra. Eventually, all Eu 3+ doped Y 2 O 3 hexagonal prisms were found to exhibit an intensive red emission at 611 nm, which corresponds to 5 D 0 → 7 F 2 transition of Eu 3+ . With varying the aspect ratio of hexagonal prisms and increasing Eu 3+ concentration in Y 2 O 3 , an optimum external quantum efficiency was achieved. - Graphical abstract: In this work, Eu 3+ doped Y 2 O 3 hexagonal prisms with controlled aspect ratio from 4.4 to 19.3 were synthesized by transformation of the precursor Y 4 O(OH) 9 (NO 3 ) hexagonal prisms from a novel two-phase reaction system. The growth mechanism of the precursor has been systematically investigated, and a topotactic phase transformation from precursors to cubic Y 2 O 3 is for the first time put forward. By the size controlling and aspect ratio adjusting, the luminescence emission intensity as well as external quantum efficiency of Eu 3+ doped Y 2 O 3 hexagonal prisms is further tailored to show an optimum. - Highlights: • Eu 3+ doped Y 2 O 3 hexagonal prisms were synthesized by a novel two-phase approach. • Inheriting mechanism of prisms morphology from Y 4 O(OH) 9 (NO 3 ) to Y 2 O 3 was discussed. • Aspect ratio of prisms was tailored by the volume ratio of water to oleylamine. • Luminescence properties were

  17. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  18. Hydrogen effects in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1983-01-01

    The effects of hydrogen on stainless steels have been reviewed and are summarized in this paper. Discussion covers hydrogen solution and transport in stainless steels as well as the effects of hydrogen on deformation and fracture under various loading conditions. Damage is caused also by helium that arises from decay of the hydrogen isotope tritium. Austenitic, ferritic, martensite, and precipitation-hardenable stainless steels are included in the discussion. 200 references

  19. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  20. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Lyutov, Dimitar L.; Genkov, Kaloyan V.; Zyapkov, Anton D.; Tsutsumanova, Gichka G.; Tzonev, Atanas N. [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria); Lyutov, Lyudmil G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1, J. Bouchier Blvd, Sofia (Bulgaria); Russev, Stoyan C., E-mail: scr@phys.uni-sofia.bg [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria)

    2014-01-15

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents.

  1. DFT study of the hexagonal high-entropy alloy fission product system

    Energy Technology Data Exchange (ETDEWEB)

    King, D.J.M., E-mail: daniel.miks@live.com [School of Electrical Engineering, University of New South Wales, Kensington, 2052, NSW (Australia); Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Burr, P.A.; Obbard, E.G. [School of Electrical Engineering, University of New South Wales, Kensington, 2052, NSW (Australia); Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Middleburgh, S.C. [Westinghouse Electric Sweden AB, SE-721 63, Västerås (Sweden); Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ (United Kingdom); KTH Royal Institute of Technology, Reactor Physics, 106 91 Stockholm (Sweden)

    2017-05-15

    The metallic phase fission product containing Mo-Pd-Rh-Ru-Tc can be described as a hexagonal high-entropy alloy (HEA) and is thus investigated using atomic scale simulation techniques relevant to HEAs. Contrary to previous assumptions, the removal of Tc from the system to form the Mo-Pd-Rh-Ru analog is predicted to reduce the stability of the solid solution to the point that σ-Mo{sub 5}Ru{sub 3} may precipitate out at typical fuel operating temperatures. The drive for segregation is attributed to the increased stability of the solid solution with the ejection of Mo and Ru. When Tc is included in the system, a single phase hexagonal solid solution is expected to form for a wider range of compositions. Furthermore, when cooled below 700 °C, this single phase solid solution is predicted to transition to a partially ordered structure. Future studies using the Tc-absent analogue will need to take these structural and chemical deliberations into consideration.

  2. First-principles calculations on double-walled inorganic nanotubes with hexagonal chiralities

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, Yuri F [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga (Latvia); Evarestov, Robert A; Bandura, Andrei V; Losev, Maxim V, E-mail: quantzh@latnet.lv [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Ave., 198504, Petrodvorets (Russian Federation)

    2011-06-23

    The two sets of commensurate double-walled boron nitride and titania hexagonally-structured nanotubes (DW BN and TiO{sub 2} NTs) possessing either armchair- or zigzag-type chiralities have been considered, i.e., (n{sub 1},n{sub 1})-(n{sub 2},n{sub 2}) or (n{sub 1},0)-(n{sub 2},0), respectively. For symmetry analysis of these nanotubes, the line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry have been applied. To analyze the structural and electronic properties of hexagonal DW NTs, a series of large-scale ab initio DFT-LCAO calculations have been performed using the hybrid Hartree-Fock/Kohn-Sham exchange-correlation functional PBE0 (as implemented in CRYSTAL-09 code). To establish the optimal inter-shell distances within DW NTs corresponding to the minima of calculated total energy, the chiral indices n{sub 1} and n{sub 2} of the constituent single-walled (SW) nanotubes have been successively varied.

  3. Raman studies of hexagonal MoO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.C.; Zhang, Z.M.; Dai, R.C.; Zhang, J.W.; Ding, Z.J. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, L. [Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Z.P. [The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    The transition-metal oxide MoO{sub 3} is an important semiconductor and has various technological applications in catalysts, electrochromic and photochromic devices, gas sensors, and battery electrodes. In this study, the hexagonal MoO{sub 3} prepared by a hydrothermal method is in morphology of microrod with diameter of 0.8-1.2 {mu}m and length of 2.0-4.3 {mu}m. Its structural stability was investigated by an in situ Raman scattering method in a diamond anvil cell up to 28.7 GPa at room temperature. The new Raman peak around 1000 cm{sup -1} implies that a phase transition from hexagonal to amorphous starts at 5.6 GPa, and the evolution of the Raman spectra indicates that the structural transition is completed at about 13.2 GPa. After releasing pressure to ambient condition, the Raman spectrum pattern of the high pressure phase was retained, revealing that the phase transition is irreversible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Hexagonal pencil-like CdS nanorods: Facile synthesis and enhanced visible light photocatalytic performance

    Science.gov (United States)

    An, Liang; Wang, Guanghui; Zhao, Lei; Zhou, Yong; Gao, Fang; Cheng, Yang

    2015-07-01

    In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.

  5. Impact vibration analysis of group of hexagonal bars immersed in liquid

    International Nuclear Information System (INIS)

    Horiuchi, Toshihiko

    1994-01-01

    A simulation method was studied to calculate the vibration response during seismic excitation of a group of hexagonal bars installed in a restraint immersed in liquid. In this study, the influence of fluid force on structural motion was modeled using an added mass matrix. The added mass matrix was then transferred into the space composed of the eigen modes of hexagonal bars without the added mass and introduced into eigenvalue analysis of the whole bar group structure. By means of this method, the computational time of the added mass matrix calculation and the eigenvalue analysis can be reduced. It was shown that the proposed method yielded almost the same eigenvalues as the conventional method in the physical space. Using the proposed method, added mass models to be used in the impact vibration analysis were investigated. Comparing the calculated results by the proposed method with those using a concentrated added mass, which is a simplified model, showed that the concentrated added mass can be used for a rough response calculation, although the precise calculation requires the added mass matrix. (author)

  6. Thermodynamic and elastic properties of hexagonal ZnO under high temperature

    International Nuclear Information System (INIS)

    Wang, Feng; Wu, Jinghe; Xia, Chuanhui; Hu, Chenghua; Hu, Chunlian; Zhou, Ping; Shi, Lingna; Ji, Yanling; Zheng, Zhou; Liu, Xiankun

    2014-01-01

    Highlights: • A new method is applied to predict crystal constants of hexagonal crystal under high temperature. • Elastic properties of ZnO under high temperature are obtained exactly. • Thermodynamic properties of ZnO under high temperature are attained too. - Abstract: Studies on thermodynamic and elastic properties of hexagonal ZnO (wurtzite structure) under high temperature have not been reported usually from no matter experimental or theoretic methods. In this work, we study these properties by ab-initio together with quasi-harmonic Debye model. The value of C v tends to the Petit and Dulong limit at high temperature under any pressure, 49.73 J/mol K. And C v is greatly limited by pressure at intermediate temperatures. Nevertheless, the limit effect on C v caused by pressure is not obvious under low as well as very high temperature. The thermal expansions along a or c axis are almost same under temperature, which increase with temperature like a parabola. C 11 , C 33 , C 12 and C 13 decrease with temperature a little, which means that mechanics properties are weakened respectively

  7. Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Schimpf, C.; Motylenko, M.; Rafaja, D.

    2013-01-01

    A routine for simultaneous quantification of turbostratic disorder, amount of puckering and the dislocation and stacking fault density in hexagonal materials was proposed and tested on boron nitride powder samples that were synthesised using different methods. The routine allows the individual microstructure defects to be recognised according to their effect on the anisotropy of the X-ray diffraction line broadening. For quantification of the microstructure defects, the total line broadening is regarded as a linear combination of the contributions from the particular defects. The total line broadening is obtained from the line profile fitting. As testing material, graphitic boron nitride (h-BN) was employed in the form of hot-isostatically pressed h-BN, pyrolytic h-BN or a h-BN, which was chemically vapour deposited at a low temperature. The kind of the dominant microstructure defects determined from the broadening of the X-ray diffraction lines was verified by high resolution transmission electron microscopy. Their amount was attempted to be verified by alternative methods. - Highlights: • Reliable method for quantification of microstructure defects in BN was suggested. • The method is based on the analysis of anisotropic XRD line broadening. • This XRD line broadening is unique and characteristic of the respective defect. • Thus, the quantification of coexistent microstructure defects is possible. • The method was tested on hexagonal BN, which was produced by different techniques

  8. Discrete breathers in a two-dimensional hexagonal Fermi Pasta Ulam lattice

    Science.gov (United States)

    Butt, Imran A.; Wattis, Jonathan A. D.

    2007-02-01

    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrödinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher order analysis yielding a generalized NLS, which includes known stabilizing terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximized for stationary breathers and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt and Wattis 2006 J. Phys. A: Math. Gen. 39 4955), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalized NLS equation.

  9. Growth and Brilliant Photo-Emission of Crystalline Hexagonal Column of Alq3 Microwires

    Directory of Open Access Journals (Sweden)

    Seokho Kim

    2018-03-01

    Full Text Available We report the growth and nanoscale luminescence characteristics of 8-hydroxyquinolinato aluminum (Alq3 with a crystalline hexagonal column morphology. Pristine Alq3 nanoparticles (NPs were prepared using a conventional reprecipitation method. Crystal hexagonal columns of Alq3 were grown by using a surfactant-assisted self-assembly technique as an adjunct to the aforementioned reprecipitation method. The formation and structural properties of the crystalline and non-crystalline Alq3 NPs were analyzed with scanning electron microscopy and X-ray diffraction. The nanoscale photoluminescence (PL characteristics and the luminescence color of the Alq3 single NPs and their crystal microwires (MWs were evaluated from color charge-coupled device images acquired using a high-resolution laser confocal microscope. In comparison with the Alq3 NPs, the crystalline MWs exhibited a very bright and sharp emission. This enhanced and sharp emission from the crystalline Alq3 single MWs originated from effective π-π stacking of the Alq3 molecules due to strong interactions in the crystalline structure.

  10. On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Refson, K.; Sposito, G.

    2009-06-01

    Photoreductive dissolution of layer type Mn(IV) oxides (birnessite) under sunlight illumination to form soluble Mn(II) has been observed in both field and laboratory settings, leading to a consensus that this process is a key driver of the biogeochemical cycling of Mn in the euphotic zones of marine and freshwater ecosystems. However, the underlying mechanisms for the process remain unknown, although they have been linked to the semiconducting characteristics of hexagonal birnessite, the ubiquitous Mn(IV) oxide produced mainly by bacterial oxidation of soluble Mn(II). One of the universal properties of this biogenic mineral is the presence of Mn(IV) vacancies, long-identified as strong adsorption sites for metal cations. In this paper, the possible role of Mn vacancies in photoreductive dissolution is investigated theoretically using quantum mechanical calculations based on spin-polarized density functional theory (DFT). Our DFT study demonstrates unequivocally that Mn vacancies significantly reduce the band-gap energy for hexagonal birnessite relative to a hypothetical vacancy-free MnO{sub 2} and thus would increase the concentration of photo-induced electrons available for Mn(IV) reduction upon illumination of the mineral by sunlight. Calculations of the charge distribution in the presence of vacancies, although not fully conclusive, show a clear separation of photo-induced electrons and holes, implying a slow recombination of these charge-carriers that facilitates the two-electron reduction of Mn(IV) to Mn(II).

  11. Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface

    Science.gov (United States)

    Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.

  12. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  13. Rapid growth of ZnO hexagonal prism crystals by direct microwave heating

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenqi; ZHOU Jian; LIU Guizhen; REN Zhiguo

    2008-01-01

    ZnO hexagonal prism crystals were synthesized from ZnO powders by microwave heating in a short time (within 20 min) without any metal catalyst or transport agent.Zinc oxide raw materials were made by evaporating from the high-temperature zone in an enclosure atmosphere and crystals were grown on the self-source substrate.The inherent asymmetry in microwave heating provides the temperature gradient for crystal growth.Substrate and temperature distribution in the oven show significant effects on the growth of the ZnO crystal.The morphologies demonstrate that these samples are pure hexagonal prism crystals with maximum 80 μm in diameter and 600 μm in length,which possess a well faceted end and side surface.X-ray diffraction (XRD) reveals that these samples are pure crystals.The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature,indicating potential applications for short-wave light-emitting photonic devices.

  14. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

    Science.gov (United States)

    Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.

    2018-03-01

    We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

  15. Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases.

    Science.gov (United States)

    Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H

    2015-12-07

    This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.

  16. The influence of metal Mg on micro-morphology and crystallinity of spherical hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2015-08-15

    Highlights: • The action mechanism of Mg to the synthesis of spherical BN was explored. • The influence of Mg content on the crystallinity of h-BN powders was studied. • Even if not added any template, the spherical h-BN could be prepared. - Abstract: This search used the boric acid and borax as a source of boron, urea as a nitrogen source, Mg as metal catalyst, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 750 °C. The effect of Mg content on the crystallinity and micro-morphology of hexagonal boron nitride powders was studied, and the Mg action mechanism was explored. Without the added surfactant, the graphitization index (GI) was 6.87, and the diameter of the spherical h-BN was bigger. When the added Mg were 0.1 g, 0.3 g, 0.5 g and 0.7 g, the (GI) decreased to 6.04, 5.67, 4.62 and 4.84, respectively. When the Mg content was higher (0.9 g), GI value increased rapidly, and the crystallinity became bad. When the Mg content was 0.5 g, the dispersion of h-BN powders was at its optimum and refinement apparently, and the crystallinity at its highest.

  17. Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics

    International Nuclear Information System (INIS)

    Vazquez, M.; Pirota, K.; Torrejon, J.; Navas, D.; Hernandez-Velez, M.

    2005-01-01

    Densely packed arrays of magnetic nanowires with hexagonal symmetry have been prepared by electrodeposition filling of the nanopores in alumina membranes previously formed by self-assembling induced by anodization. The influence of geometrical characteristics of arrays of Ni nanowires on their hysteresis loops have been studied. These characteristics are controlled by suitable choosing of preparation parameters: nanowires diameter ranges between 18 and 80 nm for lattice parameter of hexagonal symmetry of 65 and 105 nm, while length of nanowires is taken between 500 and 2000 nm. Additionally, the temperature dependence of coercivity when applying the field parallel to the nanowires or in-plane of the membrane has been measured. All these results allows us to conclude that magnetic behaviour is determined by the balance between different energy contributions, namely, the shape anisotropy of individual nanowires, the magnetostatic interaction among nanowires (confirmed to play a decisive role), and seemingly the magnetoelastic anisotropy induced in the nanowires by the alumina matrix through temperature changes as a consequence of their different thermal expansion coefficients

  18. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    Science.gov (United States)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  19. Formation, properties, and ion irradiation effects of hexagonal structure MoN thin films

    International Nuclear Information System (INIS)

    Christen, D.K.; Sekula, S.T.; Ellis, J.T.; Lewis, J.D.; Williams, J.M.

    1986-09-01

    Thin films (100-120 nm) of hexagonal structures MoN have been fabricated by reaction of Mo films in an NH 3 atmosphere. The as-formed films possessed superconducting transition temperatures T/sub c/ ≅ 13 0 K, with resistance ratios r = R(296K)/R(T/sub c/) in the range 5 to 10, low-temperature normal state resistivities rho 0 = 4 to 10 μΩ-cm, and extrapolated upper critical fields H/sub c2/(0) = 4.0 to 5.0 T. Thin film x-ray diffraction patterns revealed no visible second phase, with measured lattice parameters close to literature values. The effects of lattice disorder on the superconducting and electronic properties were investigated by irradiation with nitrogen ions of energy 45 and 340 keV, resulting in a nearly uniform damage profile without the introduction of any new chemical species. The results indicate that ordered hexagonal MoN shows some of the unusual properties characteristic of moderate-to-high T/sub c/ transition metal compounds, but is relatively insensitive to degradation of the superconducting properties by lattice disorder. For ion fluences PHI up to 2 x 10 16 N-ions/cm 2 , T/sub c/ is found to decrease monotonically and saturate at 9.5 0 K, almost 3/4 the initial value, while H/sub c2/(0) undergoes a gradual increase to 11T

  20. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    Science.gov (United States)

    Meshram, M. R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P. S.

    2004-05-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δTi 0.5δMn 0.1Fe (11.87-δ)O 19] and [Ba(MnTi) δFe (12-2δ)O 19] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc.

  1. Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers

    Science.gov (United States)

    Zhai, Xuechao; Jin, Guojun

    2013-09-01

    Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.

  2. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    International Nuclear Information System (INIS)

    Meshram, M.R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P.S.

    2004-01-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δ Ti 0.5δ Mn 0.1 Fe (11.87-δ) O 19 ] and [Ba(MnTi) δ Fe (12-2δ) O 19 ] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc

  3. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.

    Science.gov (United States)

    Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar

    2016-01-20

    The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. CLUPH: a Fortran program of collision probabilities for hexagonal lattice and its application to VHTR

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Gotoh, Yorio

    1981-02-01

    A new collision probability routine CLUPH was added to the computer program set LAMP-B to analyse the hexagonal VHTR fuel and control blocks where in addition to the annular array of fuel pin rods the asymmetric insertions of burnable poison rods and control rods are characteristic. The perfect reflective boundary condition is no more realistic to consider the arrangement of asymmetric hexagonal blocks. The periodic and the rotational arrangement of blocks are surveyed to consider the interference effect between the burnable poison rods. In addition the effects of coated particle fuel in fuel rod, and of B 4 C grain in burnable poison rod, are investigated. The average cross sections of control rod block were derived from the calculation of a super cell which consists of the control rod block and of the surrounding six fuel blocks. The care was taken to the control rod block located at the core-reflector boundary by replacing a sector of surrounding material in supper cell by reflector material. The two dimensional diffusion calculations of simplified cores of Mk-III were performed to obtain the reactivity worths of control rods, for illustration. (author)

  5. Thermal transport characterization of hexagonal boron nitride nanoribbons using molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2017-10-01

    Full Text Available Due to similar atomic bonding and electronic structure to graphene, hexagonal boron nitride (h-BN has broad application prospects such as the design of next generation energy efficient nano-electronic devices. Practical design and efficient performance of these devices based on h-BN nanostructures would require proper thermal characterization of h-BN nanostructures. Hence, in this study we have performed equilibrium molecular dynamics (EMD simulation using an optimized Tersoff-type interatomic potential to model the thermal transport of nanometer sized zigzag hexagonal boron nitride nanoribbons (h-BNNRs. We have investigated the thermal conductivity of h-BNNRs as a function of temperature, length and width. Thermal conductivity of h-BNNRs shows strong temperature dependence. With increasing width, thermal conductivity increases while an opposite pattern is observed with the increase in length. Our study on h-BNNRs shows considerably lower thermal conductivity compared to GNRs. To elucidate these aspects, we have calculated phonon density of states for both h-BNNRs and GNRs. Moreover, using EMD we have explored the impact of different vacancies, namely, point vacancy, edge vacancy and bi-vacancy on the thermal conductivity of h-BNNRs. With varying percentages of vacancies, significant reduction in thermal conductivity is observed and it is found that, edge and point vacancies are comparatively more destructive than bi-vacancies. Such study would contribute further into the growing interest for accurate thermal transport characterization of low dimensional nanostructures.

  6. Recovery of hexagonal Si-IV nanowires from extreme GPa pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Bennett E. [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Zhou, Xuezhe; Roder, Paden B. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Abramson, Evan H. [Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195 (United States); Pauzauskie, Peter J., E-mail: peterpz@uw.edu [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-05-14

    We use Raman spectroscopy in tandem with transmission electron microscopy and density functional theory simulations to show that extreme (GPa) pressure converts the phase of silicon nanowires from cubic (Si-I) to hexagonal (Si-IV) while preserving the nanowire's cylindrical morphology. In situ Raman scattering of the longitudinal transverse optical (LTO) mode demonstrates the high-pressure Si-I to Si-II phase transition near 9 GPa. Raman signal of the LTO phonon shows a decrease in intensity in the range of 9–14 GPa. Then, at 17 GPa, it is no longer detectable, indicating a second phase change (Si-II to Si-V) in the 14–17 GPa range. Recovery of exotic phases in individual silicon nanowires from diamond anvil cell experiments reaching 17 GPa is also shown. Raman measurements indicate Si-IV as the dominant phase in pressurized nanowires after decompression. Transmission electron microscopy and electron diffraction confirm crystalline Si-IV domains in individual nanowires. Computational electromagnetic simulations suggest that heating from the Raman laser probe is negligible and that near-hydrostatic pressure is the primary driving force for the formation of hexagonal silicon nanowires.

  7. The physic properties of Bi-Zn codoped Y-type hexagonal ferrite

    International Nuclear Information System (INIS)

    Bai Yang; Zhou Ji; Gui Zhilun; L, Longtu; Qiao Lijie

    2008-01-01

    The magnetic and dielectric properties of Bi-Zn codoped Y-type hexagonal ferrite was investigated. The samples with composition of Ba 2-x Bi x Zn 0.8+x Co 0.8 Cu 0.4 Fe 12-x O 22 (x = 0-0.4) were prepared by the solid-state reaction method. Phase formation was characterized by X-ray diffraction. The microstructure was observed via scanning electron microscopy. The magnetic and dielectric properties were measured using an impedance analyzer. Direct current (dc) electrical resistivity was measured using a pA meter/dc voltage source. Minor Bi doping (x = 0.05-0.25) will not destroy the phase formation of Y-type hexagonal ferrite, but lower the phase formation temperature distinctly. Bi substitution can also promote the sintering process. The Bi-containing samples (x > 0.05) can be sintered well under 900 deg. C without any other addition. The sintering temperature is about 200 deg. C lower than that of the Bi-free sample. The Bi-Zn codoped samples exhibit excellent magnetic and dielectric properties in hyper frequency. These materials are suitable for multi-layer chip-inductive components

  8. Coherifying quantum channels

    Science.gov (United States)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  9. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  10. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  11. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  12. Channel follower leakage restrictor

    International Nuclear Information System (INIS)

    Williamson, H.E.; Smith, B.A.

    1977-01-01

    An improved means is provided to control coolant leakage between the flow channel and the lower tie plate of a nuclear fuel assembly. The means includes an opening in the lower tie plate and a movable element adjacent thereto. The coolant pressure within the tie plate biases the movable means toward the inner surface of the surrounding flow channel to compensate for any movement of the flow channel away from the lower tie plate to thereby control the leakage of coolant flow from the fuel assemblies to the spaces among the fuel assemblies of the core. 9 figures

  13. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  14. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    International Nuclear Information System (INIS)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M.

    1989-01-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a 0 -2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a 0 -2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a 0 -2H domain and the domain wall. (orig.)

  15. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M. (Tohoku Univ., Sendai (Japan). Inst. for Materials Research)

    1989-06-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a{sub 0}-2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a{sub 0}-2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a{sub 0}-2H domain and the domain wall. (orig.).

  16. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  17. Apparatus of irradiation of steel test pieces in the Marcoule pile G 1

    International Nuclear Information System (INIS)

    Marinot, R.; Wallet, Ph.

    1960-01-01

    Test pieces of steel were irradiated in the reactor G1 at Marcoule, in convectors replacing fuel elements, and in vertical channels in furnace-heated containers. The apparatus designed for this irradiation is described: containers, converter-rods, suspension fixtures and clamps, temperature measurement devices, lead castles and unloading set-ups. (author) [fr

  18. ICP-AES determination of trace elements in carbon steel

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Rajeswari, B.; Kadam, R.M.; Babu, Y.; Godbole, S.V.

    2010-01-01

    Full text: Carbon steel, a combination of the elements iron and carbon, can be classified into four types as mild, medium, high and very high depending on the carbon content which varies from 0.05% to 2.1%. Carbon steel of different types finds application in medical devices, razor blades, cutlery and spring. In the nuclear industry, it is used in feeder pipes in the reactor. A strict quality control measure is required to monitor the trace elements, which have deleterious effects on the mechanical properties of the carbon steel. Thus, it becomes imperative to check the purity of carbon steel as a quality control measure before it is used in feeder pipes in the reactor. Several methods have been reported in literature for trace elemental determination in high purity iron. Some of these include neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is widely recognized as a sensitive technique for the determination of trace elements in various matrices, its major advantages being good accuracy and precision, high sensitivity, multi-element capability, large linear dynamic range and relative freedom from matrix effects. The present study mainly deals with the direct determination of trace elements in carbon steel using ICP-AES. An axially viewing ICP spectrometer having a polychromator with 35 fixed analytical channels and limited sequential facility to select any analytical line within 2.2 nm of a polychromator line was used in these studies. Iron, which forms one of the main constituents of carbon steel, has a multi electronic configuration with line rich emission spectrum and, therefore, tends to interfere in the determination of trace impurities in carbon steel matrix. Spectral interference in ICP-AES can be seriously detrimental to the accuracy and reliability of trace element determinations, particularly when they are performed in the presence of high

  19. Steels for nuclear power. I

    International Nuclear Information System (INIS)

    Bohusova, O.; Brumovsky, M.; Cukr, B.; Hatle, Z.; Protiva, K.; Stefec, R.; Urban, A.; Zidek, M.

    1976-01-01

    The principles are listed of nuclear reactor operation and the reactors are classified by neutron energy, fuel and moderator designs, purpose and type of moderator. The trend and the development of light-water reactor applications are described. The fundamental operating parameters of the WWER type reactors are indicated. The effect is discussed of neutron radiation on reactor structural materials. The characteristics are described of steel corrosion due to the contact of the steel with steam or sodium in the primary coolant circuit. The reasons for stress corrosion are given and the effects of radiation on corrosion are listed. The requirements and criteria are given for the choice of low-alloy steel for the manufacture of pressure vessels, volume compensators, steam generators, cooling conduits and containment. A survey is given of most frequently used steels for pressure vessels and of the mechanical and structural properties thereof. The basic requirements for the properties of steel used in the primary coolant circuit are as follows: sufficient strength in operating temperature, toughness, good weldability, resistance to corrosion and low brittleness following neutron irradiation. The materials are listed used for the components of light-water and breeder reactors. The production of corrosion-resistant steels is discussed with a view to raw materials, technology, steel-making processes, melting processes, induction furnace steel-making, and to selected special problems of the chemical composition of steels. The effects are mainly discussed of lead, bismuth and tin as well as of some other elements on hot working of high-alloy steels and on their structure. The problems of corrosion-resistant steel welding and of pressure vessel cladding are summed up. Also discussed is the question of the concept and safeguards of the safety of nuclear installation operation and a list is presented of most commonly used nondestructive materials testing methods. The current

  20. Many channel spectrum unfolding

    International Nuclear Information System (INIS)

    Najzer, M.; Glumac, B.; Pauko, M.

    1980-01-01

    The principle of the ITER unfolding code as used for the many channel spectrum unfolding is described. Its unfolding ability is tested on seven typical neutron spectra. The effect of the initial spectrum approximation upon the solution is discussed