WorldWideScience

Sample records for steel corrosion processes

  1. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  2. Corrosion behaviour of some conventional stainless steels in electrolyzing process

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2015-12-01

    Full Text Available In this study, attempts were made to increase the amount of hydrogen generated from the water electrolysis process. Some conventional stainless steels (316; 409; 410 and 430 were used as anode and cathode in electrolysis process. Further study was carried out on the corrosion trend in all the investigated metals. It is observed that the electrode material can effect on the amount of hydrogen generate by electrolyzing process and metal composition of the stainless steels effects on the rate of corrosion.

  3. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  4. Corrosion processes on weathering steel railway bridge in Prague

    OpenAIRE

    Urban, Viktor; Křivý, Vít; Buchta, Vojtěch

    2016-01-01

    This contribution deals with experimental corrosion tests carried out on the weathering steel railway bridge in Prague. The basic specific property of the weathering steel is an ability to create in favourable environment a protective patina layer on its surface. Since 1968 weathering steel is used under the name “Atmofix” in the Czech Republic and can be used as a standard structural material without any corrosion protection. The weathering steel Atmofix is mostly used for bridge structures ...

  5. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  6. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  7. Regularities of transition of steel corrosion products into aqueous medium

    International Nuclear Information System (INIS)

    Nikitin, V.I.; Gvozd', A.M.; Karpova, T.Ya.

    1981-01-01

    Effect of different factors on a degree of steel corrosion product transition to a water medium has been studied. Ratio of a specific masm qsub(c) of the corrosion products transferring to the water and a specific masm q of all the steel corrosion products produced under the given conditions was used as a criterium characterizing a degree of corrosion product transition from steel surfaces to water. The transition degree to water at a high temperature of different kind steel corrosion products differs relatively few (qsub(c)/q=0.5-0.7) in the water containing oxygen and different salts on increasing temperature, the corrosion process is characterized with continuous decrease of a relative amount of the corrosion products transferring to the medium. On the contrary, in the deaerated water the transition degree of perlite steel corrosion products to water remains constant in a wide temperature range (100-320 deg C). Besides chromium, nickel being a part of austenitic steel composition affects positively decrease of the transition degree of the corrosion products to water as well as q and qsub(c) reduction. The most difference in corrosion characteristics and the transition degree to water is observed when affecting colant steels in the low-temperature zone of the steam generator [ru

  8. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview

    Directory of Open Access Journals (Sweden)

    Marko Chigondo

    2016-01-01

    Full Text Available Traditionally, reduction of corrosion has been managed by various methods including cathodic protection, process control, reduction of the metal impurity content, and application of surface treatment techniques, as well as incorporation of suitable alloys. However, the use of corrosion inhibitors has proven to be the easiest and cheapest method for corrosion protection and prevention in acidic media. These inhibitors slow down the corrosion rate and thus prevent monetary losses due to metallic corrosion on industrial vessels, equipment, or surfaces. Inorganic and organic inhibitors are toxic and costly and thus recent focus has been turned to develop environmentally benign methods for corrosion retardation. Many researchers have recently focused on corrosion prevention methods using green inhibitors for mild steel in acidic solutions to mimic industrial processes. This paper provides an overview of types of corrosion, corrosion process, and mainly recent work done on the application of natural plant extracts as corrosion inhibitors for mild steel.

  9. Study on corrosion of carbon steel in DEA aqueous solutions

    Science.gov (United States)

    Yang, Jun Han; Xie, Jia Lin; Zhang, Li

    2018-02-01

    Corrosion of carbon steel in the CO2 capture process using diethanolamine (DEA) aqueous solutions was investigated. The effects of the mass concentrations of DEA, solution temperature and CO2 loading on the corrosion rate of carbon steel were demonstrated. The experimental results provided comprehensive information on the appropriate concentration range of DEA aqueous solutions under which low corrosion of carbon steel can be achieved.

  10. Initiation and inhibition of pitting corrosion on reinforcing steel under natural corrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Wanees, S., E-mail: s_wanees@yahoo.com [Chemistry Department, Faculty of Science, University of Tabuk, Tabuk (Saudi Arabia); Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt); Bahgat Radwan, A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Alsharif, M.A. [Chemistry Department, Faculty of Science, University of Tabuk, Tabuk (Saudi Arabia); Abd El Haleem, S.M. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt)

    2017-04-01

    Initiation and inhibition of pitting corrosion on reinforcing steel in saturated, naturally aerated Ca(OH){sub 2} solutions, under natural corrosion conditions, are followed through measurements of corrosion current, electrochemical impedance spectroscopy and SEM investigation. Induction period for pit initiation and limiting corrosion current for pit propagation are found to depend on aggressive salt anion and cation-types, as well as, concentration. Ammonium chlorides and sulfates are more corrosive than the corresponding sodium salts. Benzotriazole and two of its derivatives are found to be good inhibitors for pitting corrosion of reinforcing steel. Adsorption of these compounds follows a Langmuir adsorption isotherm. The thermodynamic functions ΔE{sup ∗}, ΔH{sup ∗} and ΔS{sup ∗} for pitting corrosion processes in the absence and presence of inhibitor are calculated and discussed. - Highlights: • Cl{sup −} and SO{sub 4} {sup 2-} induce pitting corrosion on passive reinforcing steel. • Initiation and propagation of pitting depend on cation and anion types. • Inhibition is based on adsorption according to Langmuir isotherm.

  11. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    Science.gov (United States)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  12. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).

  13. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  14. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  15. Assessing resistance of stabilized corrosion resistant steels to intergranular corrosion

    International Nuclear Information System (INIS)

    Karas, A.; Cihal, V. Jr.; Vanek, V.; Herzan, J.; Protiva, K.; Cihal, V.

    1987-01-01

    Resistance to intergranular corrosion was determined for four types of titanium-stabilized steels from the coefficients of stabilization efficiency according to the degree the chemical composition was known. The ATA SUPER steel showed the highest resistance parameter value. The resistance of this type of steel of a specific composition, showing a relatively low value of mean nitrogen content was compared with steel of an optimized chemical composition and with low-carbon niobium stabilized, molybdenum modified steels. The comparison showed guarantees of a sufficient resistance of the steel to intergranular corrosion. The method of assessing the resistance to intergranular corrosion using the calculation of the minimum content of Cr', i.e., the effective chromium content, and the maximum effective carbon content C' giving the resistance parameter k seems to be prospective for practical use in the production of corrosion resistant steels. (author). 1 tab., 5 figs., 15 refs

  16. Corrosion in lithium-stainless steel thermal-convection systems

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1980-01-01

    The corrosion of types 304L and 316 austenitic stainless steel by flowing lithium was studied in thermal-convection loops operated at 500 to 650 0 C. Both weight and compositional changes were measured on specimens distributed throughout each loop and were combined with metallographic examinations to evaluate the corrosion processes. The corrosion rate and mass transfer characteristics did not significantly differ between the two austenitic stainless steels. Addition of 500 or 1700 wt ppM N to purified lithium did not increase the dissolution rate or change the attack mode of type 316 stainless steel. Adding 5 wt % Al to the lithium reduced the weight loss of this steel by a factor of 5 relative to a pure lithium-thermal-convection loop

  17. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    Science.gov (United States)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher

  18. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  19. Effect of Multipass Friction Stir Processing on Mechanical and Corrosion Behavior of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Gunasekaran, G.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    The microstructure, mechanical properties, and corrosion behavior of 2507 super duplex stainless steel after multipass friction stir processing (FSP) were examined. A significant refinement in grain size of both ferrite and austenite was observed in stir zone resulting in improved yield and tensile strength. Electrochemical impedance spectroscopy and anodic polarization studies in 3.5 wt.% NaCl solution showed nobler corrosion characteristics with increasing number of FSP passes. This was evident from the decrease in corrosion current density, decrease in passive current density, and increase in polarization resistance. Also, the decrease in density of defects, based on Mott-Schottky analysis, further confirms the improvement in corrosion resistance of 2507 super duplex stainless steel after multipass FSP.

  20. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  1. Initiation and developmental stages of steel corrosion in wet H2S environments

    International Nuclear Information System (INIS)

    Bai, Pengpeng; Zhao, Hui; Zheng, Shuqi; Chen, Changfeng

    2015-01-01

    Highlights: • The initiation and development stages of steel corrosion in wet H 2 S environment were investigated. • Preferential dissolution at the grain boundaries of steel allowed corrosion products to form and accumulate. • The shapes and crystal types of corrosion products at various steel layers differed. • With increasing duration time, the S 2− peak with a binding energy of 161.2 eV gradually decreased. • A model of the formation process of corrosion product films was proposed. - Abstract: The initiation and various developmental stages of steel corrosion in H 2 S environments were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Results revealed that grain boundaries corrode at the initiation stage and that corrosion products initially form on both sides of the grain boundary and then accumulate. Corrosion products grew at the interface between the steel and corrosion product layer at the developmental stage. XPS analyses showed the composition and valence states of the corrosion products, and a model of the formation process of corrosion product films was proposed

  2. Corrosion of carbon steel in contact with bentonite

    International Nuclear Information System (INIS)

    Dobrev, D.; Vokal, A.; Bruha, P.

    2010-01-01

    Document available in extended abstract form only. Carbon steel canisters were chosen in a number of disposal concepts as reference material for disposal canisters. The corrosion rates of carbon steels in water solution both in aerobic and anaerobic conditions are well known, but only scarce data are available for corrosion behaviour of carbon steels in contact with bentonite. A special apparatus, which enables to measure corrosion rate of carbon steels under conditions simulating conditions in a repository, namely in contact with bentonite under high pressure and elevated temperatures was therefore prepared to study: - Corrosion rate of carbon steels in direct contact with bentonite in comparison with corrosion rate of carbon steels in synthetic bentonite pore water. - Influence of corrosion products on bentonite. The apparatus is composed of corrosion chamber containing a carbon steel disc in direct contact with compacted bentonite. Synthetic granitic water is above compacted bentonite under high pressure (50 - 100 bar) to simulate hydrostatic pressure in a repository. The experiments can be carried out under various temperatures. Bentonites used for experiments were Na-type of bentonite Volclay KWK 80 - 20 and Ca-Mg Czech bentonite from deposit Rokle. Before adding water into corrosion system the corrosion chamber was purged by nitrogen gas. The saturation of bentonite and corrosion rate were monitored by measuring consumption of water, pressure increase caused by swelling pressure of bentonite and by generation of hydrogen. Corrosion rate was also determined after corrosion experiments from weight loss of samples. The results of experiments show that the corrosion behaviour of carbon steels in contact with bentonite is very different from corrosion of carbon steels in water simulating bentonite pore water solution. The corrosion rates of carbon steel in contact with bentonite reached after 30 days of corrosion the values approaching 40 mm/yr contrary to values

  3. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  4. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  5. Marine corrosion of mild steel at Lumut, Perak

    Science.gov (United States)

    Ting, Ong Shiou; Potty, Narayanan Sambu; Liew, Mohd. Shahir

    2012-09-01

    The corrosion rate of structural steels in the adverse marine and offshore environments affects the economic interest of offshore structures since the loss of steel may have significant impact on structural safety and performance. With more emphasis to maintain existing structures in service for longer time and hence to defer replacement costs, there is increasing interest in predicting corrosion rate at a given location for a given period of exposure once the protection coating or cathodic protection is lost. The immersion depth, salinity, steel composition and water pollution will be taken into account. Various corrosion allowances are prescribed for structural members by different standards. There are no studies to determine the appropriate corrosion allowance for steel structures in marine environment in Malaysia. The objectives of the research are to determine the nature and rate of corrosion in mm/year for steel structures in marine environment. It also tries to identify whether the corrosion rate is affected by differences in the chemical composition of the steels, and microalgae. Two sets of corrosion coupons of Type 3 Steel consisting of mild steel were fabricated and immersed in seawater using steel frames. The corrosion rate of the coupon in mm/ per year is estimated based on the material weight loss with time in service. The results are compared with recommendations of the code.

  6. Self-Powered Wireless Sensor Network for Automated Corrosion Prediction of Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Dan Su

    2018-01-01

    Full Text Available Corrosion is one of the key issues that affect the service life and hinders wide application of steel reinforcement. Moreover, corrosion is a long-term process and not visible for embedded reinforcement. Thus, this research aims at developing a self-powered smart sensor system with integrated innovative prediction module for forecasting corrosion process of embedded steel reinforcement. Vibration-based energy harvester is used to harvest energy for continuous corrosion data collection. Spatial interpolation module was developed to interpolate corrosion data at unmonitored locations. Dynamic prediction module is used to predict the long-term corrosion based on collected data. Utilizing this new sensor network, the corrosion process can be automated predicted and appropriate mitigation actions will be recommended accordingly.

  7. Effect of welding processes on corrosion resistance of UNS S31803 duplex stainless steel

    International Nuclear Information System (INIS)

    Chiu, Liu Ho; Hsieh, Wen Chin

    2003-01-01

    An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to 250 .deg. C is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as σ, γ 2 and Cr 2 N may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% FeCl 3 solution at 47.5 .deg. C for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of σ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution

  8. Corrosion of steel tanks in liquid nuclear wastes

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, Eduardo

    2005-01-01

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates ( -1 ) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author) [es

  9. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints

    International Nuclear Information System (INIS)

    Liu Liming; Xu Rongzheng

    2012-01-01

    Highlights: ► Galvanic corrosion increases the corrosion rate of the Mg-steel joint. ► Fe splashes lower the corrosion resistance of the joint greatly. ► The effect of grain refinement on the corrosion behavior of the joint is slight. ► Ni or Cu interlayer could not improve the corrosion resistance of fusion zone. ► The arc-sprayed coating could enhance the reliability of weld joint. - Abstract: The paper investigates the corrosion behavior of the lap joint of AZ31 magnesium alloy to Q235 steel with salt solution immersion testing and electrochemical testing. It is demonstrated that grain refinement resulting from the welding process has little effect on the corrosion behavior of the lap joint. However, the cathodic phases formed in the welding process and the galvanic corrosion between magnesium alloy and steel decrease the corrosion resistance of the joint greatly. Besides, neither Cu nor Ni, as filler material, could improve the corrosion resistance of the joint, but the arc-sprayed Al coating acting as a protective layer could.

  10. Evaluation of properties of low activation Mn-Cr steel. 3. Evaluation of corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo, Hokkaido (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-05-01

    JAERI and the Japan Steel Works LTD. (JSW) have developed new Mn-Cr steels as low induced activation material. Until now, chemical composition and metallurgical processes were optimized and some steels named VC-series were selected. The properties of the steels have been evaluated and reported elsewhere. In this study, corrosion resistance of VC-series was studied. Corrosion tests for stainless steels were performed to investigate a relationship between corrosion rate and chemical composition or sensitization. Furthermore, corrosion tests under actual environment for the vacuum vessel of the reinforced JT-60 were done for non-magnetic steels. As a result, almost no weight change was observed for uniform and gap corrosion tests, No crack was shown for double U-bend corrosion tests. (author)

  11. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    OpenAIRE

    M. Yadav; Debasis Behera; Usha Sharma

    2016-01-01

    The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl)-2-oleylimidazoline (AEOI) and 1-(2-oleylamidoethyl)-2-oleylimidazoline (OAEOI) as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl) and the corrosion inhibition of N80 steel in hydroch...

  12. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    International Nuclear Information System (INIS)

    Malumbela, Goitseone; Alexander, Mark; Moyo, Pilate

    2010-01-01

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  13. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  14. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Liu Liming, E-mail: liulm@dlut.edu.cn [Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Xu Rongzheng [Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Galvanic corrosion increases the corrosion rate of the Mg-steel joint. Black-Right-Pointing-Pointer Fe splashes lower the corrosion resistance of the joint greatly. Black-Right-Pointing-Pointer The effect of grain refinement on the corrosion behavior of the joint is slight. Black-Right-Pointing-Pointer Ni or Cu interlayer could not improve the corrosion resistance of fusion zone. Black-Right-Pointing-Pointer The arc-sprayed coating could enhance the reliability of weld joint. - Abstract: The paper investigates the corrosion behavior of the lap joint of AZ31 magnesium alloy to Q235 steel with salt solution immersion testing and electrochemical testing. It is demonstrated that grain refinement resulting from the welding process has little effect on the corrosion behavior of the lap joint. However, the cathodic phases formed in the welding process and the galvanic corrosion between magnesium alloy and steel decrease the corrosion resistance of the joint greatly. Besides, neither Cu nor Ni, as filler material, could improve the corrosion resistance of the joint, but the arc-sprayed Al coating acting as a protective layer could.

  15. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    Science.gov (United States)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating coating coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  16. Corrosion of carbon steel in neutral water

    International Nuclear Information System (INIS)

    Kawai, Noboru; Iwahori, Toru; Kurosawa, Tatsuo

    1983-01-01

    The initial corrosion behavior of materials used in the construction of heat exchanger and piping system of BWR nuclear power plants and thermal power plants have been examined in neutral water at 30, 50, 100, 160, 200, and 285 deg C with two concentrations of dissolved oxygen in the water. In air-saturated water, the corrosion rate of carbon steel was so higher than those in deaerated conditions and the maximum corrosion rate was observed at 200 deg C. The corrosion rate in deaerated water gradually increased with increasing the water temperature. Low alloy steel (2.25 Cr, 1Mo) exhibited good corrosion resistance compared with the corrosion of carbon steel under similar testing conditions. Oxide films grown on carbon steel in deaerated water at 50, 100, 160, 200, and 285 deg C for 48 and 240 hrs were attacked by dissolved oxygen in room temperature water respectively. However the oxide films formed higher than about 160 deg C showed more protective. The electrochemical behavior of carbon steel with oxide films was also similar to the effect of temperature on the stability of oxide films. (author)

  17. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  18. Corrosion investigations of high-alloyed steels carried out in different marine area organized by European Federation of Corrosion

    International Nuclear Information System (INIS)

    Birn, J.; Skalski, I.

    1999-01-01

    Research works arranged by EFC Working Party on Marine Corrosion are described. The research was performed in sea areas of Norway, Finland, Sweden, France, Italy, Poland and Netherlands. Subjected to test were three corrosion resistant steel grades; 316, 904 and UNS S 31524. Two corrosion tests were carried out in the years 1993 and 1994 each of min. 6 month duration. The results show that chemical composition of water at salinity level of more than 0.7% has not great effect on corrosion aggressivity in relation to corrosion resistant steels. On the other hand temperature of sea water has great influence on corrosion process. (author)

  19. High temperature (salt melt) corrosion tests with ceramic-coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, Adelheid [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Günthner, Martin; Motz, Günter [University Bayreuth, Ceramic Materials Engineering, L.-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Greißl, Oliver [EnBW Kraftwerke AG, Schelmenwasenstraße 13-15, D-70567 Stuttgart (Germany); Glatzel, Uwe, E-mail: uwe.glatzel@uni-bayreuth.de [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany)

    2015-06-01

    Thermal recycling of refuse in waste-to-energy plants reduces the problems connected to waste disposal, and is an alternative source of electric energy. However, the combustion process in waste incinerators results in a fast degradation of the steam-carrying superheater steel tubes by corrosive attack and abrasive wear. Higher firing temperatures are used to increase their efficiency but lead to higher corrosion rates. It is more economical to apply protective coatings on the superheater steel tubes than to replace the base material. In-situ tests were conducted in a waste-to-energy plant first in order to identify and quantify all involved corrosive elements. Laboratory scale experiments with salt melts were developed accordingly. The unprotected low-alloyed steel displayed substantial local corrosion. Corrosion was predominant along the grain boundaries of α-ferrite. The corrosion rate was further increased by FeCl{sub 3} and a mixture of HCL and FeCl{sub 3}. Coatings based on pre-ceramic polymers with specific filler particles were engineered to protect superheater tubes. Tests proved their suitability to protect low-alloYed steel tubes from corrosive attack under conditions typical for superheaterS in waste incinerators, rendering higher firing temperatures in waste-to-energy plants possible. - Highlights: • Corrosion wall thickness losses of 400 μm/2 weeks occurred in a waste incinerator. • Abrasion is a major problem on superheater tubes in waste incinerators. • Laboratory salt melt tests can simulate metal corrosion in waste incinerators. • Corrosion protection coatings for steel (temperature: max. 530 °C) were developed. • Higher steam temperatures are possible in WIs with the developed coatings.

  20. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Unknown

    corrosion mechanism, measurement of metal corrosion rate, corrosion ... cables, steel rigs, pipelines and other marine facilities, is ..... make high strength steel material to crack with stress ... of SBS has yet been very limited, and selection of.

  1. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  2. Corrosion of X65 Pipeline Steel Under Deposit and Effect of Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    XU Yun-ze

    2016-10-01

    Full Text Available Effect of the deposit on the electrochemical parameters of X65 pipeline steel in oxygen contained sodium chloride solution was studied by EIS and PDS methods. The galvanic corrosion behavior under deposit and effect of different concentration of corrosion inhibitor PBTCA were studied by electrical resistance (ER method combined with ZRA. The results show that the corrosion potential of X65 steel shifts negatively as SiO2 covering its surface and the corrosion rate becomes lower. When the galvanic couple specimen with deposit is electrically connected with the specimen without deposit, anodic polarization occurs on X65 steel under deposit and the galvanic current density decreases from 120μA/cm2 to 50μA/cm2 and keeps stable. As 5×10-5, 8×10-5 and 3×10-4 PBTCA were introduced into the solution, the galvanic current density reaches the highest 1300μA/cm2 and then decreases to 610μA/cm2 keeping stable around 610μA/cm2, corrosion rate of X65 steel under deposit reaches 6.11mm/a. PBTCA accelerates the corrosion of X65 steel under deposit in oxygen contained solution. Through the investigation on the surface of the specimens, serious local corrosion occurs on the X65 steel surface under deposit.

  3. Corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Preece, C.M.

    1982-10-01

    A comparative study has been made of those properties of Massiv and Standard cements which are considered to determine their ability to protect steel reinforcement from corroding. Saturated Massiv cement has a higher evaporabel water content, but a significantly finer pore structure than has saturated Standard cement. This fine structure resulted in an electrical resistivity ten times higher and chloride diffusivity ten times lower than those of Standard cement. Electrochemical measurements have shown that the passive current density of steel in Massiv mortar is higher than that of steel in Standard mortar, but the higher current should lead to a more rapid decrease in potential to a level at which neither chloride attack of hydrogen evolution will occur. Whereas steel in Standard mortar was found to be highly susceptible to crevice corrosion, no such attack has been observed in Massiv mortar. Moreover, the initiation of chloride induced corrosion and the subsequent rates of corrosion were both lower in Massiv mortar than in Standard mortar. Thus, it may be predicted that Massiv cement would provide greater protection for steel reinforcement in underground structures exposed to chloride containing ground water than would Standard cement. (author)

  4. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2016-11-01

    Full Text Available The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl-2-oleylimidazoline (AEOI and 1-(2-oleylamidoethyl-2-oleylimidazoline (OAEOI as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl and the corrosion inhibition of N80 steel in hydrochloric acid medium containing inhibitors was tested by weight loss, potentiodynamic polarization and AC impedance measurements. Influence of temperature (298–323 K on the inhibition behavior was studied. Surface studies were performed by using FTIR spectra and SEM. Both the inhibitors, AEOI and OAEOI at 150 ppm concentration show maximum efficiency 90.26% and 96.23%, respectively at 298 K in 15% HCl solution. Both the inhibitors act as mixed corrosion inhibitors. The adsorption of the corrosion inhibitors at the surface of N80 steel is the root cause of corrosion inhibition.

  5. Super-Hydrophobic Green Corrosion Inhibitor On Carbon Steel

    Science.gov (United States)

    Hassan, H.; Ismail, A.; Ahmad, S.; Soon, C. F.

    2017-06-01

    There are many examples of organic coatings used for corrosion protection. In particular, hydrophobic and super-hydrophobic coatings are shown to give good protection because of their enhanced ability to slow down transport of water and ions through the coating. The purpose of this research is to develop water repellent coating to avoid direct contact between metal and environment corrosive and mitigate corrosion attack at pipeline system. This water repellent characteristic on super-hydrophobic coating was coated by electrodeposition method. Wettability of carbon steel with super-hydrophobic coating (cerium chloride and myristic acid) and oxidized surface was investigated through contact angle and inhibitor performance test. The inhibitor performance was studied in 25% tannin acid corrosion test at 30°C and 3.5% sodium chloride (NaCl). The water contact angle test was determined by placing a 4-μL water droplet of distilled water. It shows that the wettability of contact angle super-hydrophobic with an angle of 151.60° at zero minute can be classified as super-hydrophobic characteristic. By added tannin acid as inhibitor the corrosion protection on carbon steel becomes more consistent. This reveals that the ability of the coating to withstand with the corrosion attack in the seawater at different period of immersions. The results elucidate that the weight loss increased as the time of exposure increased. However, the corrosion rates for uncoated carbon steel is high compared to coated carbon steel. As a conclusion, from both samples it can be seen that the coated carbon steel has less corrosion rated compared to uncoated carbon steel and addition of inhibitor to the seawater provides more protection to resist corrosion attack on carbon steel.

  6. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    Science.gov (United States)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  7. Plasma nitrocarburizing process - a solution to improve wear and corrosion resistance

    International Nuclear Information System (INIS)

    Joseph, Alphonsa J.; Ghanshyam, J.; Mukherjee, S.

    2015-01-01

    To prevent wear and corrosion problems in steam turbines, coatings have proved to have an advantage of isolating the component substrate from the corrosive environment with minimal changes in turbine material and design. Diffusion based coatings like plasma nitriding and plasma nitrocarburizing have been used for improving the wear and corrosion resistance of components undergoing wear during their operation. In this study plasma nitrocarburizing process was carried out on ferritic alloys like ASTM A182 Grade F22 and ATM A105 alloy steels and austenitic stainless steels like AISI 304 and AISI 316 which are used to make trim parts of control valves used for high pressure and high temperature steam lines to enhance their wear and corrosion resistance properties. The corrosion rate was measured by a potentiodynamic set up and salt spray unit in two different environments viz., tap water and 5% NaCl solutions. The Tafel plots of ferritic alloys and austenitic stainless steels show that plasma nitrocarburizing process show better corrosion resistance compared to that of the untreated steel. It was found that after plasma nitrocarburizing process the hardness of the alloy steels increased by a factor of two. The corrosion resistance of all the steels mentioned above improved in comparison to the untreated steels. This improvement can be attributed to the nitrogen and carbon incorporation in the surface of the material. This process can be also applied to components used in nuclear industries to cater to the wear and corrosion problems. (author)

  8. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  9. Corrosion aspects of steel radioactive waste containers in cementitious materials

    International Nuclear Information System (INIS)

    Smart, Nick

    2012-01-01

    Nick Smart from Serco, UK, gave an overview of the effects of cementitious materials on the corrosion of steel during storage and disposal of various low- and intermediate-level radioactive wastes. Steel containers are often used as an overpack for the containment of radioactive wastes and are routinely stored in an open atmosphere. Since this is an aerobic and typically humid environment, the steel containers can start to corrode whilst in storage. Steel containers often come into contact with cementitious materials (e.g. grout encapsulants, backfill). An extensive account of different steel container designs and of steel corrosion mechanisms was provided. Steel corrosion rates under conditions buffered by cementitious materials have been evaluated experimentally. The main conclusion was that the cementitious environment generally facilitates the passivation of steel materials. Several general and localised corrosion mechanisms need to be considered when evaluating the performance of steel containers in cementitious environments, and environmental thresholds can be defined and used with this aim. In addition, the consequences of the generation of gaseous hydrogen by the corrosion of carbon steel under anoxic conditions must be taken into account. Discussion of the paper included: Is crevice corrosion really significant in cementitious systems? Crevice corrosion is unlikely in the cementitious backfill considered because it will tend to neutralise any acidic conditions in the crevice. What is the role of microbially-induced corrosion (MIC) in cementitious systems? Microbes are likely to be present in a disposal facility but their effect on corrosion is uncertain

  10. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    Science.gov (United States)

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  11. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  12. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    International Nuclear Information System (INIS)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM

  13. Corrosion Measurements in Reinforced Fly Ash Concrete Containing Steel Fibres Using Strain Gauge Technique

    Directory of Open Access Journals (Sweden)

    V. M. Sounthararajan

    2013-01-01

    Full Text Available Corrosion of steel bars in concrete is a serious problem leading to phenomenal volume expansion and thereby leading to cover concrete spalling. It is well known that the reinforced concrete structures subjected to chloride attack during its service life cause these detrimental effects. The early detection of this damage potential can extend the service life of concrete. This study reports the comprehensive experimental studies conducted on the identification of corrosion mechanism in different types of reinforced concrete containing class-F fly ash and hooked steel fibres. Fly ash replaced concrete mixes were prepared with 25% and 50% fly ash containing steel fibres at 0.5%, 1.0%, and 1.5% by volume fraction. Corrosion process was investigated in an embedded steel bar (8 mm diameter reinforced in concrete by passing an impressed current in sodium chloride solution. Strain gauge attached to the rebars was monitored for electrical measurements using strain conditioner. Strain gauge readings observed during the corrosion process exhibited the volume changes of the reinforcement embedded inside the concrete. The corrosion potential of different steel fibre reinforced concrete mixes with fly ash addition showed higher resistance towards the corrosion initiation.

  14. Corrosion of silicon-containing austenitic stainless steels under trans-passive conditions

    International Nuclear Information System (INIS)

    Stolarz, Jacek

    1989-01-01

    This research thesis addresses austenitic stainless steels which are used in installations for the chemical treatment of nuclear fuels, and are there in contact with nitric acid solutions the oxidising character of which generally promotes metal passivity. However, if this nitric environment becomes too oxidising, these steels may face severe corrosion problems. More particularly, this thesis addresses the study of intergranular corrosion, and aims at analysing various aspects of the corrosion of these austenitic stainless steels in trans-passive conditions. The author aims at determining and distinguishing the contributions due to silicon and those related to the presence of other impurities and addition elements by comparing the behaviours of industrial grade steels and high purity alloys in rigorously controlled electrochemical conditions. Another objective is to study the influence of the intergranular structure on silicon segregation by means of an attack technique in trans-passive conditions. After a report of a bibliographical study on the addressed topics and a presentation of the studied materials and implemented experimental techniques, the author reports the study of steel behaviour with respect to generalised dissolution in trans-passive conditions, as well in the nitric environment as in a sulphuric acid solution at imposed potential. Localised intragranular corrosion phenomena are discussed. A trans-passive intragranular corrosion model is proposed, and its possibilities in the analysis of intergranular segregation analysis are discussed. Experimental results of trans-passive intergranular corrosion of stainless steels are presented and interpreted by using the McLean segregation model. The influence of steel composition and of experimental conditions is discussed, as well as the role of grain boundary structure in the corrosion process [fr

  15. A study on corrosive behavior of spring steel by shot-peening process

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2004-01-01

    In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal

  16. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    International Nuclear Information System (INIS)

    Smith, H.D.; Mackey, D.B.; Pool, K.H.; Schwenk, E.B.

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction

  17. Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

    International Nuclear Information System (INIS)

    Jo, Duhwan; Kwon, Moonjae; Kim, Jongsang

    2012-01-01

    Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances

  18. Corrosion resistance of steel fibre reinforced concrete – a literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2016-01-01

    Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of prefabricated segmental linings for bored tunnels, since it entails simplified production processes and higher quality standards. However, international standards and guidelines are not consistent regarding...... the consideration of steel fibres for the structural verification of SFRC elements exposed to corrosive environments, hampering the development of civil infrastructure built of SFRC. In particular, the long-term effect of exposure to chlorides is in focus and under discussion. This paper reviews the existing...... the existence of a critical crack width, below 0.20 mm, where corrosion of carbon-steel fibres is not critical and the structural integrity of the exposed SFRC can be ensured over the long-term. A doctoral project investigating chloride-induced corrosion of steel fibres on cracked SFRC has been initiated...

  19. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  20. The corrosion of steels by hot sodium melts

    International Nuclear Information System (INIS)

    Currie, R.

    1996-01-01

    Considerable research has been performed by AEA Technology on the corrosion of steels by hot sodium melts containing sodium hydroxide and sodium oxide. This research has principally been in support of understanding the effects of sodium-water reactions on the internals of fast reactor steam generators. The results however have relevance to sodium fires. It has been determined that the rate of corrosion of steels by melts of pure NaOH can be significantly increased by the addition of Na 2 O. In the case of a sodium-water reaction jet created by a leak of steam into sodium, the composition of the jet varies from 100% sodium through to 100% steam, with a full range of concentrations of NaOH and Na 2 O, depending on axial and radial position. The temperature in the jet also varies with position, ranging from bulk sodium temperature on one boundary to expanded steam temperature on the other boundary, with internal temperatures ranging up to 1300 deg. C, depending on the local pre-reaction mole ratio of steam to sodium. In the case of sodium-water reaction jets, it has been possible to develop a model which predicts the composition of the reaction jet and then, using the data generated on the corrosivity of sodium melts, predict the rate of corrosion of a steel target in the path of the jet. In the case of a spray sodium fire, the sodium will initially contain a concentration of NaOH and the combustion process will generate Na 2 O. If there is sufficient humidity, conversion of some of the Na 2 O to NaOH will also occur. There is therefore the potential for aggressive mixtures of NaOH and Na 2 O to exist on the surface of the sodium droplets. It is therefore possible that the rate of corrosion of steels in the path of the spray may be higher than expected on the basis of assuming that only Na and Na 2 O were present. In the case of a pool sodium fire, potentially corrosive mixtures of NaOH and Na 2 O may be formed at some locations on the surface. This could lead to

  1. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  2. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    Science.gov (United States)

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.

  3. Corrosion of Steel in Concrete, Part I – Mechanisms

    DEFF Research Database (Denmark)

    Küter, André; Møller, Per; Geiker, Mette Rica

    2006-01-01

    prematurely. Reinforcement corrosion is identified to be the foremost cause of deterioration. Steel in concrete is normally protected by a passive layer due the high alkalinity of the concrete pore solution; corrosion is initiated by neutralization through atmospheric carbon dioxide and by ingress...... of depassivation ions, especially chloride ions. The background and consequences of deterioration of reinforced concrete structures caused by steel corrosion are summarized. Selected corrosion mechanisms postulated in the literature are briefly discussed and related to observations. The key factors controlling...... initiation and propagation of corrosion of steel in concrete are outlined....

  4. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    Science.gov (United States)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  5. The influence of the cathodic process on the interpretation of electrochemical noise signals arising from pitting corrosion of stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, Helmuth Sarmiento [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)], E-mail: Helmuth.sarmiento-klapper@bam.de; Goellner, Joachim [Otto von Guericke University Magdeburg, P.O. Box 4120, Magdeburg (Germany); Heyn, Andreas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Otto von Guericke University Magdeburg, P.O. Box 4120, Magdeburg (Germany)

    2010-04-15

    The use of electrochemical noise (EN) measurements for the investigation and monitoring of corrosion has allowed many interesting advances in the corrosion science in recent years. A special advantage of EN measurements includes the possibility to detect and study the early stages of localized corrosion. Nevertheless, the understanding of the electrochemical information included in the EN signal is actually very limited. The role of the cathodic process on the EN signals remains uncertain and has not been sufficiently investigated to date. Thus, an accurate understanding of the influence of the cathodic process on the EN signal is still lacking. On the basis of different kinetics of the oxygen reduction it was established that the anodic amplitude of transients arising from pitting corrosion on stainless steel can be decreased by the corresponding electron consumption of the cathodic process. Therefore, the stronger the electron consumption, the weaker the anodic amplitude of the EN signal becomes. EN signals arising from pitting corrosion on stainless steel can be measured because the cathodic process is inhibited by the passive layer. This was confirmed by means of EN measurements under cathodic polarisation. Since the cathodic process plays a decisive role on the form of transients arising from pitting corrosion, its influence must be considered in the evaluation and interpretation of the EN signals.

  6. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  7. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  8. Corrosion of API XL 52 steel in presence of Clostridium celerecrescens

    Energy Technology Data Exchange (ETDEWEB)

    Monroy, O.A. Ramos; Ordaz, N. Ruiz; Ramirez, C. Juarez [Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala, Mexico D. F., C. P. 11340 (Mexico); Gayosso, M.J. Hernandez; Olivares, G. Zavala [Instituto Mexicano del Petroleo, Grupo Corrosion, Eje Central Lazaro Cardenas 152, Col. San Bartolo Atepehuacan, Mexico D. F., C. P. 07730 (Mexico)

    2011-09-15

    During the characterization of sediments formed in pipelines transporting hydrocarbons, the knowledge of the microbiological diversity becomes very interesting, especially when it is related to microbiologically influenced corrosion (MIC). The presence of microorganisms is considered as one of the factors that affect the corrosion processes occurring at the pipeline; therefore, their corrosiveness must be determined. In this way, the identification of new species affecting the MIC processes is still considered relevant. In this work, the effect of Clostridium celerecrescens upon the corrosion of API KL 52 steel was evaluated. This microorganism was isolated and identified from the sediments collected during the inner cleaning procedures of a gas pipeline. The polarization resistance (PR) and electrochemical impedance spectroscopy (EIS) techniques were considered to estimate the microorganism behavior during the corrosion process. The results were complemented with a metal surface analysis, using a scanning electron microscope (SEM). The resistance values induced by the presence of the microorganisms clearly indicated that C. celerecrescens has an effect on the corrosion process occurring at the API XL 52 steel surface. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Corrosion Behaviour of Nickel Plated Low Carbon Steel in Tomato Fluid

    Directory of Open Access Journals (Sweden)

    Oluleke OLUWOLE

    2010-12-01

    Full Text Available This research work investigated the corrosion resistance of nickel plated low carbon steel in tomato fluid. It simulated the effect of continuous use of the material in a tomato environment where corrosion products are left in place. Low carbon steel samples were nickel electroplated at 4V for 20, 25, 30 and 35 mins using Watts solution.The plated samples were then subjected to tomato fluid environment for for 30 days. The electrode potentials mV (SCE were measured every day. Weight loss was determined at intervals of 5 days for the duration of the exposure period. The result showed corrosion attack on the nickel- plated steel, the severity decreasing with the increasing weight of nickel coating on substrate. The result showed that thinly plated low carbon steel generally did not have any advantage over unplated steel. The pH of the tomato solution which initially was acidic was observed to progress to neutrality after 4 days and then became alkaline at the end of the thirty days test (because of corrosion product contamination of the tomatocontributing to the reduced corrosion rates in the plated samples after 10 days. Un-plated steel was found to be unsuitable for the fabrication of tomato processing machinery without some form of surface treatment - thick nickel plating is suitable as a protective coating in this environment.

  10. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    Daniel, B.

    1988-09-01

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  11. Case histories of microbiologically influenced corrosion of austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Borenstein, S.W.; Buchanan, R.A.; Dowling, N.J.E.

    1990-01-01

    Microbiologically influenced corrosion (MIC) is initiated or accelerated by microorganisms and is currently recognized as a serious problem affecting the construction and operation of many industrial facilities, including nuclear power plants. The purpose of this paper is to review how biofouling and MIC can occur and discuss current mechanistic theories. A case history of MIC attack in power plants is examined with emphasis on the role of welding and heat treatment variables using laboratory electrochemical analyses. Although MIC can occur on a variety of alloys, pitting corrosion failures of austenitic stainless steels are often associated with weldments. MIC occurs as the result of a consortium of microorganisms colonizing on the metal surface and their variety (fungi, bacteria, algae, mold, and slimes) enables them to form support systems for cross feeding to enhance survival. The metabolic processes influence corrosion behaviour of materials by destroying protective coatings, producing a localized acid environment, creating corrosive deposits, or altering anodic and cathodic reactions. On stainless steels, biofilms destroy the passive oxide film on the surface of the steels and subject them to localized forms of corrosion. Many of the MIC failures in industry result in pitting to austenitic stainless steel weldments. Pitting primarily occurs in the weld metal, heat affected zones, and adjacent to the weld in the base metal. Depending on the conditions of the concentration cell created by the biofilm, either phase of the two-phase duplex stainless steel, austenite or delta ferrite, may be selectively attacked. Theories have been proposed about the mechanism of MIC on austenitic stainless steel and and a general understanding is that some function associated with the biofilm formation directly affects the electrochemical process

  12. Corrosion behavior of carbon steel in wet Na-bentonite medium

    International Nuclear Information System (INIS)

    Yeon, Jae-Won; Ha, Young-Kyoung; Choi, In-Kyu; Chun, Kwan-Sik

    1996-01-01

    Corrosion behaviors of carbon steel in wet Na-bentonite medium were studied. Corrosion rate of carbon steel in wet bentonite was measured to be 20 μm/yr at 25 deg C using the AC impedance technique. This value is agreed with that obtained by weight loss at 40 deg C for 1 year. The effect of bicarbonate ion on the corrosion of carbon steel in wet bentonite was also evaluated. The carbon steels in wet bentonite having 0.001, 0.01, and 0.1 M concentration of bicarbonate ion gave corrosion rates of 20, 8, and 0.2 μm/yr, respectively. Corrosion potentials of specimens were also measured and compared with the AC impedance results. Both results indicated that bicarbonate ion could effectively reduce the corrosion rate of carbon steels in bentonite due to the formation of protective layer on the carbon steel. (author)

  13. CORROSION RATE OF STEELS DX51D AND S220GD IN DIFFERENT CORROSION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Alina Crina CIUBOTARIU

    2016-06-01

    Full Text Available Corrosion in the marine environment is an important issue because the costs causes by marine corrosion increased year upon year. It is necessary a correctly approach to materials selection, protection and corrosion control to reduce this burden of wasted materials, wasted energy and wasted money. Many different types of corrosion attack can be observed to structures, ships and other equipment used in sea water service. Shipping containers are exposed to various corrosive mediums like as airborne salt, industrial pollutants, rain and saltwater. Transport damage during loading onto and unloading off trucks, train beds and ships breaches the paint coating which further contributes to corrosion. The result is shortened container life and high costs for container repair or replacement. The paper intends to evaluate, by gravimetric method, the corrosion rate and corrosion penetration rate of two types of carbon steel DX51D and S220GD. Carbon steel DX51D and hot-dip galvanized steel S220GD are used in marine and industrial applications for buildings cargo vessels, container ships and oil tankers. For testing it was used different corrosive environments: 5% NaOH solution; 5% HCL solution and 0.5M NaCl solution. The samples were immersed in 400mL of testing solution for exposure period of 28 days. Periodically at 3 days, 7 days, 14 days, 21 days and 28 days was measured de mass loss and evaluate the corrosion rate and corrosion stability coefficient. The steel DX51D was stable in 5% NaOH solution for 28 days, the values of corrosion stability coefficient was 7 after 3 days and 6 after 28 days of immersion in corrosive medium. In 5% HCL solution steels DX51D and S220GD was completely corroded in 21 days with a corrosion stability coefficient equal with 9 for 7 days and 8 for 21 days of immersion in corrosive solution. It was observed a good resistance for 3 days in 0.5M NaCl solution with a corrosion stability coefficient equal with 5, but after that

  14. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  15. Corrosion behaviour of high chromium ferritic stainless steels

    International Nuclear Information System (INIS)

    Kiesheyer, H.; Lennartz, G.; Brandis, H.

    1976-01-01

    Ferritic steels developed for seawater desalination and containing 20 to 28% chromium, up to 5% Mo and additions of nickel and copper have been tested with respect to their corrosion behaviour, in particular in chloride containing media. The materials in the sensibilized state were tested for intercrystalline corrosion susceptibility in the Strauss-, Streicher-, nitric acid hydrofluoric acid- and Huey-Tests. No intercrystalline corrosion was encountered in the case of the steels with 28% Cr and 2% Mo. The resistance to pitting was assessed on the basis of rupture potentials determined by potentiokinetic tests. The resistance of the steels with 20% Cr and 5% Mo or 28% Cr and 2% Mo is superior to that of the molybdenum containing austenitic types. Addition of nickel yields a significant increase in crevice corrosion resistance; the same applies to resistance in sulfuric acid. In boiling seawater all the materials tested are resistant to stress corrosion cracking. No sign of any type of corrosion was found on nickel containing steels after about 6,000 hours exposure to boiling 50% seawater brine even under salt deposits. (orig.) [de

  16. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  17. Corrosion characteristics of DMR-1700 steel and comparison with different steels in marine environment

    International Nuclear Information System (INIS)

    Gurrappa, I.; Malakondaiah, G.

    2005-01-01

    In the present paper, a systematic corrosion study has been carried out on DMR-1700 steel to understand the protective nature of oxide scale that forms on its surface under marine environmental conditions. Further, the studies related to oxide scales as well as pitting and crevice corrosion resistance of both stainless steels and widely used low alloy steel EN24 in marine environment have been studied for comparison purpose. The surface morphologies of corroded steels have been observed under scanning electron microscope (SEM) in order to understand the nature of corrosion. A high performance protective coating that has been developed for protection of low alloy steels DMR-1700 and EN24 against corrosion is presented after stressing the importance of surface engineering in enhancing the life of steels. Based on the studies with different techniques, DMR-1700 steel has been recommended for manufacture of components used in aerospace systems in association with appropriate protective coating for improving their efficiency

  18. Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Pusparizkita Yustina M

    2018-01-01

    Full Text Available Biodiesel come into being used as an alternative source of energy as the diminishing of petroleum reserves. This fuel is typically stored in tanks that are commonly made from carbon steel, which is easily corroded by microorganisms. Recent studies have shown that bacteria aside from SRB may also be involved in corrosion. Therefore, this research was aimed to evaluate the effect of biodiesel concentration (15%, 20% and 30% v/v mixed in diesel oil on the corrosion of carbon steel by S. marcescens that dominate biocorrosion on hydrocarbon products. In this study, the corrosion process was investigated by evaluation of biofilm morphology and composition, the rate of corrosion and the corrosion product of carbon steel which was exposed in the mixture of hydrocarbons and the presence of S. marcescens. It can be concluded that higher concentration of biodiesel in diesel oil leads to higher growth of bacteria in the biofilm and higher corrosion rate.

  19. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation)], E-mail: bechta@sbor.spb.su; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I. [Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Lopukh, D.B. [SPb State Electrotechnical University (SPbGETU), St. Petersburg (Russian Federation); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA NP GmbH, Erlangen (Germany); Piluso, P. [CEA/DEN/DSNI, Saclay (France); Miassoedov, A.; Tromm, W. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Altstadt, E. [Forschungszentrum Rossendorf (FZR), Dresden (Germany); Fichot, F. [IRSN/DPAM/SEMCA, St. Paul lez Durance (France); Kymalainen, O. [FORTUM Nuclear Services Ltd., Espoo (Finland)

    2009-06-15

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  20. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    International Nuclear Information System (INIS)

    Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2009-01-01

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  1. Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment

    Science.gov (United States)

    Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo

    2017-12-01

    Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.

  2. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  3. Water corrosion test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    As a part of feasibility study of ODS steel cladding, its water corrosion resistance was examined under water pool condition. Although addition of Cr is effective for preventing water corrosion, excessive Cr addition leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, water corrosion test was conducted for these ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) Corrosion rate of 9Cr-ODS martensitic and 12Cr-ODS ferritic steel are significantly small and no pitting was observed. Thus, these ODS steels have superior resistance for water corrosion under the condition of 60degC and pH8-12. (2) It was showed that 9Cr-ODS martensitic steel and 12Cr-ODS ferritic steel have comparable water corrosion resistance to that of PNC316 and PNC-FMS at 60degC for 1,000h under varying pH of 8, 10. Water corrosion resistance of these alloys is slightly larger than that of PNC316 and PNC-FMS at pH12 without significant difference of appearance and uneven condition. (author)

  4. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  5. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Cong Du

    2018-04-01

    Full Text Available This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  6. Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Almjashev, V.I. [Alexandrov Scientific-Research Technology Institute (NITI), Sosnovy Bor (Russian Federation); Bechta, S.V. [KTH, Stockholm (Sweden); Gusarov, V.V. [SPb State Technology University (SPbGTU), St. Petersburg (Russian Federation); Barrachin, M. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [EC-Joint Research Centre, Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, St Paul lez Durance (France)

    2014-10-15

    Highlights: • The METCOR facility simulates vessel steel corrosion in contact with corium. • Steel corrosion rates in UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} coria accelerate above 1050 K. • However corrosion rates can also be limited by melt O{sub 2} supply. • The impact of this on in-vessel retention (IVR) strategy is discussed. - Abstract: During a severe accident with core meltdown, the in-vessel molten core retention is challenged by the vessel steel ablation due to thermal and physicochemical interaction of melt with steel. In accidents with oxidizing atmosphere above the melt surface, a low melting point UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} corium pool can form. In this case ablation of the RPV steel interacting with the molten corium is a corrosion process. Experiments carried out within the International Scientific and Technology Center's (ISTC) METCOR Project have shown that the corrosion rate can vary and depends on both surface temperature of the RPV steel and oxygen potential of the melt. If the oxygen potential is low, the corrosion rate is controlled by the solid phase diffusion of Fe ions in the corrosion layer. At high oxygen potential and steel surface layer temperature of 1050 °C and higher, the corrosion rate intensifies because of corrosion layer liquefaction and liquid phase diffusion of Fe ions. The paper analyzes conditions under which corrosion intensification occurs and can impact on in-vessel melt retention (IVR)

  7. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel

    Science.gov (United States)

    Sun, Y.; Moroz, A.; Alrbaey, K.

    2014-02-01

    Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.

  8. Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Fidrusli, A.; Suryanto; Mahmood, M.

    2018-01-01

    Ginger extract as corrosion inhibitor from natural resources was studied to prevent corrosion of mild steel in acid media. Ginger rhizome was extracted to produce green corrosion inhibitor (G-1) while ginger powder bought at supermarket was also extract to form green corrosion inhibitor (G-2). Effectiveness of inhibitor in preventing corrosion process of mild steel was studied in 1.0 M of hydrochloric acid. The experiment of weight loss method and polarization technique were conducted to measure corrosion rate and inhibition efficiency of mild steel in solution containing 1.0 M of hydrochloric acid with various concentration of inhibitor at room temperature. The results showed that, the rate of corrosion dropped from 8.09 mmpy in solution containing no inhibitor to 0.72 mmpy in solution containing 150g/l inhibitor while inhibition efficiency up to 91% was obtained. The polarization curve in polarization experiments shows that the inhibition efficiency is 86% with high concentration of inhibitor. The adsorption of ginger extract on the surface of mild steel was observed by using optical microscope and the characterization analysis was done by using pH measurement method. When high concentration of green inhibitor in the acid solution is used, the pH at the surface of steel is increasing.

  9. Bridge maintenance to enhance corrosion resistance and performance of steel girder bridges

    Science.gov (United States)

    Moran Yanez, Luis M.

    The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. The benefit of regular high-pressure superstructure washing and spot painting were evaluated as effective maintenance activities to reduce the corrosion process. The effectiveness of steel girder washing was assessed by developing models of corrosion deterioration of composite steel girders and analyzing steel coupons at the laboratory under atmospheric corrosion for two alternatives: when high-pressure washing was performed and when washing was not considered. The effectiveness of spot painting was assessed by analyzing the corrosion on steel coupons, with small damages, unprotected and protected by spot painting. A parametric analysis of corroded steel girder bridges was considered. The emphasis was focused on the parametric analyses of corroded steel girder bridges under two alternatives: (a) when steel bridge girder washing is performed according to a particular frequency, and (b) when no bridge washing is performed to the girders. The reduction of structural capacity was observed for both alternatives along the structure service life, estimated at 100 years. An economic analysis, using the Life-Cycle Cost Analysis method, demonstrated that it is more cost-effective to perform steel girder washing as a scheduled maintenance activity in contrast to the no washing alternative.

  10. Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment

    Science.gov (United States)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun

    2016-11-01

    The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.

  11. Corrosion of a carbon steel in simulated liquid nuclear wastes

    International Nuclear Information System (INIS)

    Saenz Gonzalez, Eduardo

    2005-01-01

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO 3 , NaCl, NaF, NaNO 2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  12. Research on atmospheric corrosion of steel using synchrotron radiation

    International Nuclear Information System (INIS)

    Yamashita, M.; Uchida, H.; Konishi, H.; Mizuki, J.

    2004-01-01

    Correlation between local structure around Cr in the protective rust layer on weathering steel and protective performance of the rust layer is presented as an example of corrosion research using synchrotron radiation which has recently been applied in various research fields as a useful tool. In addition, in situ observation of initial process of rust formation on steel is also mentioned. It was pointed out by considering the X-ray absorption fine structure spectra that the nanostructure of the protective rust layer on weathering steel primarily comprises of small Cr-goethite crystals containing surface adsorbed and/or intergranular CrO x 3-2X complex anions. This CrO x 3-2X explains the protective performance of the rust layer originated by dense aggregation of fine crystals with cation selectivity of the Cr-goethite. It is very advantageous to employ white X-rays for in situ observation of rusting process of a carbon steel covered with electrolyte thin films because rust structure might change very quickly. This in situ observation revealed the effect of ion species on the change in rust phase during wet/dry repeating. It can be said that application of synchrotron radiation on corrosion research is so useful to understand the nanostructure of surface oxides which closely relate to corrosion behavior of metals and alloys. (author)

  13. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  14. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  15. Enamel coated steel reinforcement for improved durability and life-cycle performance of concrete structures: microstructure, corrosion, and deterioration

    Science.gov (United States)

    Tang, Fujian

    This study is aimed (a) to statistically characterize the corrosion-induced deterioration process of reinforced concrete structures (concrete cracking, steel mass loss, and rebar-concrete bond degradation), and (b) to develop and apply three types of enamel-coated steel bars for improved corrosion resistance of the structures. Commercially available pure enamel, mixed enamel with 50% calcium silicate, and double enamel with an inner layer of pure enamel and an outer layer of mixed enamel were considered as various steel coatings. Electrochemical tests were respectively conducted on steel plates, smooth bars embedded in concrete, and deformed bars with/without concrete cover in 3.5 wt.% NaCl or saturated Ca(OH)2 solution. The effects of enamel microstructure, coating thickness variation, potential damage, mortar protection, and corrosion environment on corrosion resistance of the steel members were investigated. Extensive test results indicated that corrosion-induced concrete cracking can be divided into four stages that gradually become less correlated with corrosion process over time. The coefficient of variation of crack width increases with the increasing level of corrosion. Corrosion changed the cross section area instead of mechanical properties of steel bars. The bond-slip behavior between the corroded bars and concrete depends on the corrosion level and distribution of corrosion pits. Although it can improve the chemical bond with concrete and steel, the mixed enamel coating is the least corrosion resistant. The double enamel coating provides the most consistent corrosion performance and is thus recommended to coat reinforcing steel bars for concrete structures applied in corrosive environments. Corrosion pits in enamel-coated bars are limited around damage locations.

  16. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  17. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  18. Stress corrosion of low alloy steel forgings

    International Nuclear Information System (INIS)

    Thornton, D.V.; Mould, P.B.; Patrick, E.C.

    1976-01-01

    The catastrophic failure of a steam turbine rotor disc at Hinkley Point 'A' Power station was shown to have been caused by the growth of a stress corrosion crack to critical dimensions. This failure has promoted great interest in the stress corrosion susceptibility of medium strength low alloy steel forgings in steam environments. Consequently, initiation and growth of stress corrosion cracks of typical disc steels have been investigated in steam and also in water at 95 0 C. Cracking has been shown to occur, predominantly in an intergranular manner, with growth rates of between 10 -9 and 10 -7 mm sec. -1 . It is observed that corrosion pitting and oxide penetration prior to the establishment of a stress corrosion crack in the plain samples. (author)

  19. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Science.gov (United States)

    Habeeb, Hussein Jwad; Luaibi, Hasan Mohammed; Dakhil, Rifaat Mohammed; Kadhum, Abdul Amir H.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer

    2018-03-01

    Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl) using electrochemical measurements test includes PD (Potentiodynamic), EIS (Electrochemical impedance spectroscopy), OCP (Open circuit potential) and EFM (electrochemical frequency modulation). The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases.

  20. Corrosion of an Fe-12 Cr-1 Mo VW steel in thermally-convective lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1983-01-01

    A thermal-convection loop of Fe-12 Cr-1 Mo VW steel circulated pure lithium between 500 and 350 0 C for 10,088 h. Periodic weighings of coupons at different temperatures around the loop revealed small weight losses and corrosion rates. Surface analysis showed a relatively thin corrosion layer with an underlying carbide-free zone and some depletion of chromium from the hottest specimen. While some mass transfer of chromium and nickel was detected, this mechanism did not strongly influence the weight loss process as it does with austenitic steels. Therefore, it appeared that reactions with carbon and nitrogen must be the dominant corrosion processes such that weight loss was maximized at the lowest temperature (350 0 C). Overall, the lithium-steel reactions in the temperature range of this experiment were relatively sluggish and the corrosion was not severe

  1. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    Science.gov (United States)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  2. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  3. Corrosion Inhibitor of Carbon Steel from Onion Peel Extract

    Directory of Open Access Journals (Sweden)

    Muhammad Samsudin Asep

    2018-01-01

    Full Text Available Carbon steels composed by two main elements, they are iron (Fe and carbon (C elements which widely used in industrial because of its resistance and more affordable than stainless steel, but their weakness is they have low corrosion resistance. One way to modify carbon steel is by coating them with antioxidant compounds that can delay, slow down, and prevent lipid oxidation process, which obtained from onion peel extract. Several studies on corrosion inhibitors have been performed. However, the efficiency was not reach the optimum. This study aims to examine the effect of onion peel extract concentration on the efficiency of corrosion inhibitor and characterization of the green corrosion inhibitor from onion peel extract. This research method begins by extracting onion peel to 200 ml solvent which we use aquadest and methanol and mixed with 5 grams of crushed onion peel, then let them be extracted for 60 minutes with room temperature. Once it was filtered and the solution obtained, followed by evaporating process with rotary evaporator to decrease the content of solvent. The product is ready to be used as a green corrosion inhibitor of carbon steel in 1 mol/L HCl. While the analysis used is HPLC qualitative analysis, and electroplatting process. The impedance is measured at a frequency of 100 kHz to 4 mHz with an AC current of 10mV. Inhibitor concentrations are vary between 2 ml and 4 ml of onion peel extract. Electroplatting is done within 30 minutes with 10 minutes each checking time. Furthermore, quantitative analysis was done for the analysis of corrosion rate and weight loss. Based on HPLC analysis, it is known that the extract of onion peel contains 1mg/L of quercetin, which is belong to flavonoid group as green inhibitor. While electroplatting process, aquadest solvent having average efficiency of 99,57% for 2 ml of extract, and 99,60% for 4 ml of extract. Methanol solvent having average efficiency of 99,52% for 2 ml of extract and 99

  4. Flow accelerated corrosion and erosion-corrosion of RAFM steel in liquid breeders

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Muroga, Takeo; Sagara, Akio

    2010-11-01

    Corrosion experiments for RAFM, JLF-1 steel (Fe-9Cr-2w-0.1C) in 3types of flowing liquid breeders (i.e. Li, Pb-17Li and Flinak) were performed at the same conditions, and the compatibility was compared with each other. The weight loss of the specimens in the fluids was evaluated by the corrosion model based on mass transfer. The model can be applied to different test systems with different quantity of liquid breeders and different surface area of the systems. The flow enhanced the dissolution of element of the steel in the fluids. The mechanism of an erosion-corrosion in the liquid breeders was the peeling off of the corroded steel surface by the flow. (author)

  5. Statistical evaluation of unobserved nonuniform corrosion in A216 steel

    International Nuclear Information System (INIS)

    Pulsipher, B.A.

    1988-07-01

    Tests designed to promote nonuniform corrosion have been conducted at PNL on A216 steel. In all of the tests performed to date, there have been no manifestations of significant nonuniform corrosion. Although this may suggest that nonuniform corrosion in A216 steel may not be a significant problem in the nuclear waste repository, a question arises as to whether enough tests have been conducted for a sufficient length of time to rule out nonuniform corrosion of A216 steel. In this report, a method for determining the required number of tests is examined for two of the mechanisms of nonuniform corrosion: pitting and crevice corrosion

  6. Hydrogen Sulphide Corrosion of Carbon and Stainless Steel Alloys Immersed in Mixtures of Renewable Fuel Sources and Tested Under Co-processing Conditions

    Directory of Open Access Journals (Sweden)

    Gergely András

    2016-10-01

    Full Text Available In accordance with modern regulations and directives, the use of renewable biomass materials as precursors for the production of fuels for transportation purposes is to be strictly followed. Even though, there are problems related to processing, storage and handling in wide range of subsequent uses, since there must be a limit to the ratio of biofuels mixed with mineral raw materials. As a key factor with regards to these biomass sources pose a great risk of causing multiple forms of corrosion both to metallic and non-metallic structural materials. To assess the degree of corrosion risk to a variety of engineering alloys like low-carbon and stainless steels widely used as structural metals, this work is dedicated to investigating corrosion rates of economically reasonable engineering steel alloys in mixtures of raw gas oil and renewable biomass fuel sources under typical co-processing conditions. To model a desulphurising refining process, corrosion tests were carried out with raw mineral gasoline and its mixture with used cooking oil and animal waste lard in relative quantities of 10% (g/g. Co-processing was simulated by batch-reactor laboratory experiments. Experiments were performed at temperatures between 200 and 300ºC and a pressure in the gas phase of 90 bar containing 2% (m3/m3 hydrogen sulphide. The time span of individual tests were varied between 1 and 21 days so that we can conclude about changes in the reaction rates against time exposure of and extrapolate for longer periods of exposure. Initial and integral corrosion rates were defined by a weight loss method on standard size of coupons of all sorts of steel alloys. Corrosion rates of carbon steels indicated a linear increase with temperature and little variation with composition of the biomass fuel sources. Apparent activation energies over the first 24-hour period remained moderate, varying between 35.5 and 50.3 kJ mol−1. Scales developed on carbon steels at higher

  7. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  8. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.M.

    1995-01-01

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  9. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.

    1995-01-01

    This study was undertaken to determine if chromium +6 could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium +3 to chromium +6 by nitric. acid; and the reduction of chromium +6 back to chromium +3 by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium +3 to chromium +6 was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium +6 back to chromium +3 by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the +6 oxidation state and would not exist in the +6 state in the final process waste solutions

  10. Specification for corrosion-resisting chromium and chromium-nickel steel welding rods and bare electrodes - approved 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers corrosion-resisting chromium and chromium-nickel steel welding rods for use with the atomic hydrogen and gas-tungsten-arc welding processes and bare electrodes for use with the submerged arc and gas metal-arc welding processes. These welding rods and electrodes include those alloy steels designated as corrosion- or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4% and nickel does not exceed 50%

  11. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-01-01

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al 2 O 3 , followed by a thinner layer of FeAl 3 , and then a much thicker one of Fe 2 Al 5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  12. Study of corrosion resistance properties of nitrided carbon steel using radiofrequency N{sub 2}/H{sub 2} cold plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.f [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, M. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-10-15

    C38 carbon steel have been plasma-nitrided using a radiofrequency cold plasma discharge treatment in order to investigate the influence of gas composition on corrosion behaviour of nitrided substrates. The investigated C38 steel was nitrided by a RF plasma discharge treatment using two different gas mixtures (75% N{sub 2}/25% H{sub 2} and 25% N{sub 2}/75% H{sub 2}) at different times of plasma-treatment on non-heated substrates. Electron Probe Microanalysis (EPMA) showed that the nitrided layer formed using 75% N{sub 2}/25% H{sub 2} gas mixture was thicker compared to those formed in the case of 25% N{sub 2}/75% H{sub 2} or pure N{sub 2}. The modifications of the corrosion resistance characteristics of plasma-nitrided C38 steel in 1 M HCl solution were investigated by weight loss measurements and ac impedance technique. The results obtained from these two evaluation methods were in good agreement. It was shown that the nitriding treatment in both cases (75% N{sub 2}/25% H{sub 2} and 25% N{sub 2}/75% H{sub 2}) improves the corrosion resistance of investigated carbon steel, while the better performance is obtained for the 75% N{sub 2}/25% H{sub 2} gas mixture. X-ray photoelectron spectroscopy (XPS) was carried out before and after immersion in corrosive medium in order to establish the mechanism of corrosion inhibition using N{sub 2}/H{sub 2} cold plasma nitriding process.

  13. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    Science.gov (United States)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  14. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  15. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  16. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  17. Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion

    Science.gov (United States)

    O’Brien, Caitlin; McBride, Amanda; E. Zaghi, Arash; Burke, Kelly A.; Hill, Alex

    2017-01-01

    Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance. PMID:28773132

  18. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Directory of Open Access Journals (Sweden)

    Hussein Jwad Habeeb

    2018-03-01

    Full Text Available Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl using electrochemical measurements test includes PD (Potentiodynamic, EIS (Electrochemical impedance spectroscopy, OCP (Open circuit potential and EFM (electrochemical frequency modulation. The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases. Keywords: Hydroxybenzylideneaminomethy, Potentiodynamic, Electrochemical frequency modulation, Impedance

  19. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Genel, K. [Sakarya Univ., Adapazari (Turkey). Mech. Eng. Dept.; Demirkol, M.; Guelmez, T. [Faculty of Mechanical Engineering, Istanbul Technical University, Guemuessuyu, 80191, Istanbul (Turkey)

    2000-08-31

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10{sup 7} cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  20. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    International Nuclear Information System (INIS)

    Genel, K.

    2000-01-01

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10 7 cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  1. Corrosion Protection of Steels by Conducting Polymer Coating

    Directory of Open Access Journals (Sweden)

    Toshiaki Ohtsuka

    2012-01-01

    Full Text Available The corrosion protection of steels by conducting polymer coating is reviewed. The conducting polymer such as polyaniline, polypyrrole, and polythiophen works as a strong oxidant to the steel, inducing the potential shift to the noble direction. The strongly oxidative conducting polymer facilitates the steel to be passivated. A bilayered PPy film was designed for the effective corrosion protection. It consisted of the inner layer in which phosphomolybdate ion, PMo12O3−40 (PMo, was doped and the outer layer in which dodecylsulfate ion (DoS was doped. The inner layer stabilized the passive oxide and the outer possessed anionic perm-selectivity to inhibit the aggressive anions such as chloride from penetrating through the PPy film to the substrate steel. By the bilayered PPy film, the steel was kept passive for about 200 h in 3.5% sodium chloride solution without formation of corrosion products.

  2. Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild steel corrosion in chloride solution saturated with carbon dioxide

    International Nuclear Information System (INIS)

    Jevremović, Ivana; Singer, Marc; Nešić, Srđan; Mišković-Stanković, Vesna

    2013-01-01

    Highlights: •Corrosion inhibitor talloil diethylenetriamine imidazoline effectively protects mild steel from CO 2 corrosion. •Quartz crystal microbalance measurements were used to the investigate kinetics of corrosion inhibitor adsorption. •Adsorption of talloil diethylenetriamine imidazoline can be described by Langmuir adsorption isotherm. -- Abstract: The inhibition effect of talloil diethylenetriamine imidazoline (TOFA/DETA imidazoline) on corrosion of mild steel in chloride solutions saturated with CO 2 was investigated by weight loss measurements (WL) and atomic force microscopy (AFM). Adsorption mechanism and kinetics of self-assembled (TOFA/DETA imidazoline) monolayers formation on gold were studied using the quartz crystal microbalance measurements (QCM). WL and AFM results demonstrated that TOFA/DETA imidazoline can effectively protect mild steel surface from corrosion. QCM measurements shown that the adsorption of TOFA/DETA imidazoline onto gold follows Langmuir adsorption isotherm and further investigation of the adsorption process will be carried out on a corroding metal surface

  3. Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom

    International Nuclear Information System (INIS)

    Klar, E.; Ro, D.H.; Whitman, C.I.

    1980-01-01

    Disclosed is a process for improving the corrosion resistance of a stainless steel powder or compact thereof wherein the powder is produced by atomizing a melt of metals in an oxidizing environment whereby the resulting stainless steel powder is surface-enriched in silicon oxides. The process comprises adding an effective proportion of modifier metal to the melt prior to the atomization, the modifier metal selected from the group consisting of tin, aluminum, lead, zinc, magnesium, rare earth metals and like metals capable of enrichment about the surface of the resulting atomized stainless steel powder and effective under reductive sintering conditions in the depletion of the silicon oxides about the surface; and sintering the resulting atomized powder or a compact thereof under reducing conditions, the sintered powder or compact thereof being depleted in the silicon oxides and the corrosion resistance of the powder or compact thereof being improved thereby

  4. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution

    International Nuclear Information System (INIS)

    Flores, Eugenio A.; Olivares, Octavio; Likhanova, Natalya V.; Dominguez-Aguilar, Marco A.; Nava, Noel; Guzman-Lucero, Diego; Corrales, Monica

    2011-01-01

    Highlights: → N-Alkyl-sodium phthalamates as corrosion inhibitors for industry in acidic medium. → Compounds behaved as mixed type inhibitors and followed Langmuir adsorption isotherm. → Efficiencies were proportional to aliphatic chain length and inhibitor concentration. → Iron complexes and chelates with phthalamates contributed to carbon steel protection. - Abstract: Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42-86% at 25 deg. C and 25-60% at 40 o C. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe +2 complexes and Fe +2 chelates with phthalamates prevented steel from further corrosion.

  5. Ferritic stainless steels: corrosion resistance + economy

    International Nuclear Information System (INIS)

    Remus, A.L.

    1976-01-01

    Ferritic stainless steels provide corrosion resistance at lower cost. They include Type 409, Type 439, 18SR, 20-Mo (1.6 Mo), 18-2 (2 Mo), 26-1S, E-Brite 26-1, 29 Cr-4 Mo, and 29 Cr-4 Mo-2 Ni. Their corrosion and mechanical properties are examined. Resistance to stress-corrosion cracking is an advantage compared to austenitic types

  6. Corrosion Inhibition of AISI/SAE Steel in a Marine Environment

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2009-12-01

    Full Text Available Effect of Sodium nitrite as a corrosion inhibitor of mild steel in sea water wasinvestigated, using the conventional weight loss method. Differentpercentages of sodium nitrite were used from 0% to 10% in sea water.Samples of mild steel were exposed to these corrosive media and the weightloss was calculated at intervals of 120 hours, 168 hours, 208 hours, 256 hours,304 hours and 352 hours. It was observed that corrosion rate increases withtime of exposure to the corrosive medium (inhibited or non-inhibited and thatsodium nitrite can be used to retards the corrosion rate of mild steel if theappropriate concentration is used in sea water. It was concluded that theoptimum percentage of sodium nitrate in sea water that gives the optimumcorrosion inhibition of mild steel is 4%.

  7. Corrosion of low alloy steels in natural seawater. Influence of alloying elements and bacteria

    International Nuclear Information System (INIS)

    Dajoux Malard, Emilie

    2006-01-01

    Metallic infrastructures immersed in natural seawater are exposed to important corrosion phenomena, sometimes characterised as microbiologically influenced corrosion. The presence of alloying elements in low alloy steels could present a corrosion resistance improvement of the structures. In this context, tests are performed with commercial steel grades, from 0,05 wt pc Cr to 11,5 wt pc Cr. They consist in 'on site' immersion in natural seawater on the one hand, and in laboratory tests with immersion in media enriched with marine sulphide-producing bacteria on the other hand. Gravimetric, microbiological, electrochemical measurements and corrosion product analyses are carried out and show that corrosion phenomenon is composed of several stages. A preliminary step is the reduction of the corrosion kinetics and is correlated with the presence of sessile sulphide-producing bacteria and an important formation of sulphur-containing species. This phase is shorter when the alloying element content of the steel increases. This phase is probably followed by an increase of corrosion, appearing clearly after an 8-month immersion in natural seawater for some of the grade steels. Chromium and molybdenum show at the same time a beneficial influence to generalised corrosion resistance and a toxic effect on sulphide-producing bacteria. This multidisciplinary study reflects the complexity of the interactions between bacteria and steels; sulphide-producing bacteria seem to be involved in corrosion processes in natural seawater and complementary studies would have to clarify occurring mechanisms. (author) [fr

  8. Effects of simulated inflammation on the corrosion of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Emily K.; Brooks, Richard P. [Department of Biomedical Engineering, State University of New York at Buffalo (United States); Ehrensberger, Mark T., E-mail: mte@buffalo.edu [Department of Biomedical Engineering, State University of New York at Buffalo (United States); Department of Orthopaedics, State University of New York at Buffalo (United States)

    2017-02-01

    Stainless steel alloys, including 316L, find use in orthopaedics, commonly as fracture fixation devices. Invasive procedures involved in the placement of these devices will provoke a local inflammatory response that produces hydrogen peroxide (H{sub 2}O{sub 2}) and an acidic environment surrounding the implant. This study assessed the influence of a simulated inflammatory response on the corrosion of 316L stainless steel. Samples were immersed in an electrolyte representing either normal or inflammatory physiological conditions. After 24 h of exposure, electrochemical impedance spectroscopy (EIS) and inductively coupled plasma mass spectroscopy (ICPMS) were used to evaluate differences in corrosion behavior and ion release induced by the inflammatory conditions. Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) were used to evaluate surface morphology and corrosion products formed on the sample surface. Inflammatory conditions, involving the presence of H{sub 2}O{sub 2} and an acidic pH, significantly alter the corrosion processes of 316L stainless steel, promoting aggressive and localized corrosion. It is demonstrated that particular consideration should be given to 316L stainless steel implants with crevice susceptible areas (ex. screw-head/plate interface), as those areas may have an increased probability of rapid and aggressive corrosion when exposed to inflammatory conditions. - Highlights: • The corrosion of 316L exposed to simulated inflammation is examined. • Inflammation is replicated with an acidic electrolyte containing hydrogen peroxide. • Inflammatory conditions increase 316L corrosion compared to normal conditions. • Accelerated corrosion under inflammation is likely due to crevice corrosion. • Care should be taken using 316L in devices with crevice susceptible areas.

  9. A technique for predicting steel corrosion resistance

    Science.gov (United States)

    Novikov, V. F.; Sokolov, R. A.; Neradovskiy, D. F.; Muratov, K. R.

    2018-01-01

    Research works were carried out to develop a technique with the aim to increase the lifetime of steel items used in corrosive media. The possibility to monitor corrosion parameters of steel samples is analyzed on the basis of magnetic properties obtained by means of a magnetic structuroscope DIUS-1.15M designed by the Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences (IMP UB RAS).

  10. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    Science.gov (United States)

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. General corrosion of carbon steels in high temperature water

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-04-01

    This short paper seeks to provide a summary of the main knowledge about the general corrosion of carbon steels in high temperature water. In pure water or slightly alkaline deaerated water, steels develop a protective coating of magnetite in a double layer (Potter and Mann oxide) or a single layer (Bloom oxide). The morphology of the oxide layer and the kinetics of corrosion depend on the test parameters controlling the solubility of iron. The parameters exercising the greatest influence are partial hydrogen pressure and mass transfer: hydrogen favours the solubilization of the magnetite; the entrainment of the dissolved iron prevents a redeposition of magnetite on the surface of the steel. Cubic or parabolic in static conditions, the kinetics of corrosion tends to be linear in dynamic conditions. In dynamic operation, corrosion is at least one order of magnitude lower in water with a pH of 10 than in pure water with a pH of 7. The activation energy of corrosion is 130 kJ/mol (31 kcal/mol). This results in the doubling of corrosion at around 300 deg C for a temperature increase of 15 deg C. Present in small quantities (100-200 ppb), oxygen decreases general corrosion but increases the risk of pitting corrosion - even for a low chloride content - and stress corrosion cracking or corrosion-fatigue. The steel composition has probably an influence on the kinetics of corrosion in dynamic conditions; further work would be required to clarify the effect of some residual elements. (author). 31 refs., 9 figs., 2 tabs

  12. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  13. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  14. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Nianwei [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Department of Materials Science, Fudan University, Shanghai 200433 (China); Chen, Qimeng [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Junxi, E-mail: zhangjunxi@shiep.edu.cn [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Xin; Ni, Qingzhao [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Jiang, Yiming; Li, Jin [Department of Materials Science, Fudan University, Shanghai 200433 (China)

    2017-05-01

    The corrosion of steel exposed under a direct current (DC) electric field during simulated wet-dry cycles was investigated using weight gain, electrochemical tests, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results show that the steel exposed to a DC electric field exhibits a higher corrosion rate than those exposed under no DC electric field. The higher the DC electric field intensity, the higher the corrosion rate of steel. The XRD and SEM analyses indicate that more γ-FeOOH and cracks appear in the rust formed on steel exposed to the DC electric field. The porous γ-FeOOH, formation and expansion of cracks enhance the transfer of oxygen and corrosion products, thereby accelerating corrosion of steel exposed to DC electric field. - Highlights: • Effect of DC electric field on the corrosion of steel in wet/dry cycles was studied. • DC electric field accelerates the steel corrosion in wet/dry cyclic processes. • More γ-FeOOH is generated on the surface of steel exposed under a DC electric field. • More cracks appear in the rust formed on the steel exposed under a DC electric filed.

  15. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment

    International Nuclear Information System (INIS)

    Dai, Nianwei; Chen, Qimeng; Zhang, Junxi; Zhang, Xin; Ni, Qingzhao; Jiang, Yiming; Li, Jin

    2017-01-01

    The corrosion of steel exposed under a direct current (DC) electric field during simulated wet-dry cycles was investigated using weight gain, electrochemical tests, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results show that the steel exposed to a DC electric field exhibits a higher corrosion rate than those exposed under no DC electric field. The higher the DC electric field intensity, the higher the corrosion rate of steel. The XRD and SEM analyses indicate that more γ-FeOOH and cracks appear in the rust formed on steel exposed to the DC electric field. The porous γ-FeOOH, formation and expansion of cracks enhance the transfer of oxygen and corrosion products, thereby accelerating corrosion of steel exposed to DC electric field. - Highlights: • Effect of DC electric field on the corrosion of steel in wet/dry cycles was studied. • DC electric field accelerates the steel corrosion in wet/dry cyclic processes. • More γ-FeOOH is generated on the surface of steel exposed under a DC electric field. • More cracks appear in the rust formed on the steel exposed under a DC electric filed.

  16. Multi-physics corrosion modeling for sustainability assessment of steel reinforced high performance fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Lepech, M.; Michel, Alexander; Geiker, Mette

    2016-01-01

    and widespread depassivation, are the mechanism behind experimental results of HPFRCC steel corrosion studies found in the literature. Such results provide an indication of the fundamental mechanisms by which steel reinforced HPFRCC materials may be more durable than traditional reinforced concrete and other......Using a newly developed multi-physics transport, corrosion, and cracking model, which models these phenomena as a coupled physiochemical processes, the role of HPFRCC crack control and formation in regulating steel reinforcement corrosion is investigated. This model describes transport of water...... and chemical species, the electric potential distribution in the HPFRCC, the electrochemical propagation of steel corrosion, and the role of microcracks in the HPFRCC material. Numerical results show that the reduction in anode and cathode size on the reinforcing steel surface, due to multiple crack formation...

  17. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    Science.gov (United States)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  18. Influence of heat treatment on corrosive resistance of concrete steels

    International Nuclear Information System (INIS)

    Woldan, A.; Suliga, I.; Kusinski, J.; Jazowy, R.

    1998-01-01

    The reinforcing bars are essential elements of ferro-concrete structures. During the building structure service the reinforcing bars should co-operate with surrounding concrete. Any bonding defects as well as corrosion induced strength reduction may result in construction failure. The reinforcing steel working environment is determined by concrete chemical and phase composition and surrounding environmental properties. The aggressive corrosive activity of the letter implies necessity of effective ways development to protect elements against corrosion. The effect of heat treatment, increased Si content in steel on corrosion resistance of reinforcing steel in concrete was studied in the current work. Corrosion tests and metallographic examinations proved a positive influence of hardening and Si enrichment on corrosion resistance of reinforcing bars in ferro-concrete structures. (author)

  19. Stress corrosion cracking for 316 stainless steel clips in a condensate stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awar, A.; Aldajah, S.; Harhara, A. [Department of Mechanical Engineering, United Arab Emirates University, P. O. Box 17555 Al-AIn 17555 (United Arab Emirates)

    2011-09-15

    In one of the gas processing facilities in Abu Dhabi, UAE; a case of 316L stainless steel material failure occurred in the fractionating column due to stress cracking corrosion twice in a cycle of less than 2 years. This paper studies the stress corrosion cracking behavior of the 316L stainless steel in an accelerated corrosion environment and compares it with a higher corrosion resistant nickel alloy (Inconel 625). The experimental work was designed according to ASTM G36 standard, the samples were immersed in a boiling magnesium chloride medium which provided the accelerated corrosion environment and the tested samples were shaped into U-bend specimens as they underwent both plastic and elastic stresses. The specimens were then tested to determine the time required for cracks to initiate. The results of the experimental work showed that the main mode of failure was stress corrosion cracking initiated by the proven presence of chlorides, hydrogen sulfide, and water at elevated temperatures. Inconel 625 samples placed in the controlled environment showed better corrosion resistance as it took them an average of 56 days to initiate cracks, whereas it took an average of 24 days to initiate cracks in the stainless steel 316L samples. The scanning electron microscopy (SEM) micrographs showed that the cracks in the stainless steel 316L samples were longer, wider, and deeper compared to the cracks of Inconel 625. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1991-01-01

    This is the final report of a 2 year programme aimed at (1) determining the rate of anaerobic corrosion of steel in concrete, (2) investigating the nature of the corrosion products formed on carbon steel embedded in cementitious material under anaerobic conditions and (3) evaluating the effect of hydrogen over-pressures on the rate of anaerobic corrosion. All experiments have been carried out at temperatures in the range 20-30 0 C, ie ambient conditions. 4 refs.; 19 figs.; 6 tabs

  1. From marine bio-corrosion to new bio-processes

    International Nuclear Information System (INIS)

    Bergel, A.; Dasilva, S.; Basseguy, R.; Feron, D.; Mollica, A.

    2004-01-01

    Full text of publication follows: From the middle of the last century it has been observed that the development of marine bio-films on the surface of stainless steels and different metallic materials induces the ennoblement of their free corrosion potential. A main step in deciphering the mechanisms of aerobic marine bio-corrosion has been achieved around 1976 with the demonstration that the potential ennoblement was due to the modification of the cathodic process. Since this date, the catalysis of oxygen reduction by marine bio-films has been the topic of numerous controversies, but it is now commonly agreed as a basic phenomena in aerobic corrosion. Several hypotheses have been proposed to explain the fine mechanisms of the bio-film-catalysed reduction of oxygen: intermediate formation of hydrogen peroxide, modification of the oxide layer on the stainless steel surface, involvement of manganese species and manganese oxidising bacteria, catalysis by proteins produced by the micro-organisms... Recent results may confirm the possible involvement of hemic enzymes or proteins. Whatever the mechanisms, very promising results have been obtained with the possible application of bio-film-catalysed oxygen reduction to conceive innovative biofuel cells with stainless steel electrodes. Actually, the catalysis of oxygen reduction is a key step that still drastically hinders the development of economically efficient hydrogen/oxygen fuel cells. The current technology requires high amounts of platinum or platinum-based materials to catalyze oxygen reduction on the cathode of these cells. The prohibitive cost of platinum is a main obstacle to the commercialization of low-cost fuel cells. Unpublished results recently showed that adapting the enzyme-catalysed reaction that was assumed for bio-corrosion on the cathode of hydrogen/oxygen fuel cells may lead to a significant decrease in the charge of platinum. Moreover, it was demonstrated on a laboratory-scale fuel cell pilot that

  2. Corrosion Protection Of Mild Steel In Sea Water Using Chemical Inhibitor

    Science.gov (United States)

    Araoyinbo, Alaba O.; Salleh, Mohd Arif Anuar Mohd; Zulerwan Jusof, Muhammad

    2018-03-01

    The effect of sodium nitrite as a corrosion inhibitor of mild steel in sea water (i.e ASTM standard prepared sea water and sea water obtained from a local river) was investigated, using the weight loss technique. Different amount of sodium nitrite were prepared (i.e 2 % to 10 %) in the inhibition of the mild steel corrosion in sea water exposed to irradiation condition from sunlight exposure. The cut samples of mild steel were exposed to these corrosive media and the corresponding weight loss subsequently obtained was recorded at intervals of 1 to 4 weeks. It was observed that corrosion rate increases with the time of exposure to the corrosive medium exposed to sunlight and that sodium nitrite that was used at the chemical inhibitor was able to retard the corrosion rate of mild steel if the appropriate concentration is applied. The results obtained from the weight loss analysis shows that the optimum percentage of sodium nitrate in sea water that gives the optimum corrosion inhibition of mild steel is 4 %.

  3. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Barbier, F.

    2001-01-01

    Corrosion of steels exposed to flowing liquid lead alloys can be affected by hydrodynamic parameters. The rotating cylinder system is of interest for the practical evaluation of the fluid velocity effect on corrosion and for the prediction of the corrosion behavior in other geometries. Models developed in aqueous medium are tested in the case of liquid metal environments. It is shown that equations established for the rotating cylinder and the pipe flow geometry can be used effectively in liquid lead alloys (Pb-17Li) assuming the corrosion process is mass transfer controlled and the diffusion coefficient of dissolved species is known. The corrosion rate of martensitic steels in Pb-17Li is shown to be independent of the geometry when plotted as a function of the mass transfer coefficient. Predictions about the corrosion of steel in liquid Pb-Bi are performed but experiments are needed to validate the results obtained by modeling

  4. Research on corrosion mechanism of suspension insulator steel foot of direct current system and measures for corrosion inhibition

    Science.gov (United States)

    Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.

  5. Simulation of Corrosion Process for Structure with the Cellular Automata Method

    Science.gov (United States)

    Chen, M. C.; Wen, Q. Q.

    2017-06-01

    In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.

  6. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  7. Holographic interferometry as electrochemical emission spectroscopy of carbon steel in seawater with low concentration of RA-41 corrosion inhibitor

    International Nuclear Information System (INIS)

    Habib, K.; Al-Muhana, K.; Habib, A.

    2009-01-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the number of the fringe evolutions during the corrosion test of carbon steel in blank seawater and with seawater with different concentrations of a corrosion inhibitor. In other words, the anodic dissolution behaviors (corrosion) of the carbon steel were determined simultaneously by holographic interferometry, an electromagnetic method, and by the electrochemical impedance (EI) spectroscopy, an electronic method. So, the abrupt rate change of the number of the fringe evolutions during corrosion test (EI) spectroscopy, of the carbon steel is called electrochemical emission spectroscopy. The corrosion process of the steel samples was carried out in blank seawater and seawater with different concentrations, 5-20 ppm, of RA-41 corrosion inhibitor using the EI spectroscopy method, at room temperature. The electrochemical emission spectra of the carbon steel in different solutions represent a detailed picture of the rate change of the anodic dissolution of the steel throughout the corrosion processes. Furthermore, the optical interferometry data of the carbon steel were compared to the data, which were obtained from the EI spectroscopy. Consequently, holographic interferometric is found very useful for monitoring the anodic dissolution behaviors of metals, in which the number of the fringe evolutions of the steel samples can be determined in situ. (Author)

  8. Study on some experimental conditions that affect corrosion of some structural steel materials using in nuclear power plant

    International Nuclear Information System (INIS)

    Hoang Nhuan; Nguyen Thi Kim Dung; Hoang Xuan Thi; Nguyen Thi Thuc Phuong; Ngo Xuan Hung; Nguyen Thanh Chung; Tran Xuan Vinh; Hoang Van Duc; Hoang Thi Tuyen; Nguyen Duc Thang

    2017-01-01

    The corrosion cracking of stainless steels is an important degradation phenomenon not only in nuclear reactors but also in the other industrial factories. In this work, experimental research of mechanical properties and electro-chemical processes to degradation of carbon steel and SS304 was carried out. Hardness values, ultimate tensile strength, yield strength, elongation values and impact energy which are typical for material mechanical properties were measured. When changing heat treatment conditions, the differences of mechanical properties were not really significant. In electro-chemical experiments, the OCP results of C45 steel and 304 Stainless Steel in Cl - environment took initial assessment of corrosion process. The corrosion process of C45 was accelerated over Cl - concentration. In the case of 304 Stainless Steel, Cl - ions did not significantly affect corrosion process, only slowed down the formation of the chromium oxide layer on the SS304 surface. In the last section, experiments were conducted to get a procedure on the determination of 10 B/ 11 B isotope ratio in water samples by isotope dilution – inductively coupled plasma mass spectrometry. (author)

  9. Resistance to pitting corrosion in ferritic and austenitic/ferritic steels

    International Nuclear Information System (INIS)

    De Bouvier, O.

    1995-01-01

    Stainless steel tubes carrying raw water are potentially vulnerable to pitting corrosion. With a view to minimizing the corrosion risk in the river-water-cooled condensers at PWR power plant, a study was conducted to determine initiation conditions and incubation durations for pitting corrosion in stagnant water. As a result, condenser tubes in Z2 CI 18 (439) or Z2 CT 18-10 (304L) steels were phased out in favour of Z2 CND 16-32 (316L) stainless steel. The same question can be yield for other applications and especially for all types of exchangers for use in electrical applications. This study sought to assess alternative methods for estimating pitting corrosion, and to check the results of these methods against the actual behaviour of studied steels. The study covered ferritic steels (439, 444, 290Mo), austenitic steel (316L) and austenitic/ferritic steels (Uranus 35N, 45N, 47N, 52N). Two approaches were adopted: laboratory tests to compare pitting corrosion risks on different materials, and tests for characterizing the behaviour of steels exposed to river water. The study begins with a laboratory tests that yield an arbitrary parameter for quantifying pitting corrosion resistance. One method involves measuring the pitting temperature in an aggressive ferric chloride solution. Other methods measure the pitting potential, either statistically (Multipit method) or deterministically (polarization curve). We then go on to discuss tests under simulated life-like conditions, involving repeated immersions in water from the Seine. (author). 9 refs., 13 figs, 9 tabs

  10. Progress in the Research of Fatigue of Weathering Steel after Corrosion

    Science.gov (United States)

    Jianyu, Liang; Jian, Yao; Youwu, Xu

    2017-12-01

    Weathering steel has a good corrosion resistance in the atmosphere, and the application of weathering steel in civil structure also reduces the cost of painting and maintenance. It is also possible for the bare weathering steel to bear the fatigue load with a rust layer. This paper summarizes the fatigue researches after corrosion of weathering steel, including the shape of specimens, failure modes of fatigue and the conclusions obtained through experimental investigations. It is also introduced the fatigue model of weathering steel after corrosion, which can be useful for the engineering application or further researches.

  11. Corrosion of austenitic steels and their components in vanadium-containing chloride melts

    Science.gov (United States)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Lisienko, D. G.

    2014-08-01

    The corrosion of austenitic 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 steels and their components (Cr, Fe, Ni, Mo) in NaCl-KCl-VCl2 melts with 5 wt % V at 750°C is studied. The rates and mechanisms of corrosion of the materials under these conditions are determined. The processes that occur during contact of the metals and steels with vanadium-containing chloride electrolytes are investigated.

  12. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  13. Atmospheric corrosion performance of different steels in early exposure in the coastal area region West Java, Indonesia

    Science.gov (United States)

    Nuraini, Lutviasari; Prifiharni, Siska; Priyotomo, Gadang; Sundjono, Gunawan, Hadi; Purawiardi, Ibrahim

    2018-05-01

    The performance of carbon steel, galvanized steel and aluminium after one month exposed in the atmospheric coastal area, which is in Limbangan and Karangsong Beach, West Java, Indonesia was evaluated. The corrosion rate was determined by weight loss method and the morphology of the steel after exposed was observed by Scanning Electron Microscopy(SEM)/Energy Dispersive X-Ray Analysis(EDX). The site was monitored to determine the chloride content in the marine atmosphere. Then, the corrosion products formed at carbon steel were characterized by X-Ray diffraction (XRD). The result showed the aggressively corrosion in Karangsong beach, indicated from the corrosion rate of carbon steel, galvanized steel and aluminium were 38.514 mpy; 4.7860 mpy and 0.5181 mpy, respectively. While in Limbangan Beach the corrosion rate of specimen carbon steel, galvanized steel and aluminium were 3.339; 0.219 and 0.166 mpy, respectively. The chloride content was found to be the main factor that influences in the atmospheric corrosion process in this area. Chloride content accumulated in Karangsong and Limbangan was 497 mg/m2.day and 117 mg/m2.day, respectively. The XRD Analysis on each carbon steel led to the characterization of a complex mixture of iron oxides phases.

  14. Steel Bar corrosion monitoring based on encapsulated piezoelectric sensors

    Science.gov (United States)

    Xu, Ying; Tang, Tianyou

    2018-05-01

    The durability of reinforced concrete has a great impact on the structural bearing capacity, while the corrosion of steel bars is the main reason for the degradation of structural durability. In this paper, a new type of encapsulated cement based piezoelectric sensor is developed and its working performance is verified. The consistency of the finite element simulation and the experimental results shows the feasibility of monitoring the corrosion of steel bars using encapsulated piezoelectric sensors. The research results show that the corrosion conditions of the steel bars can be determined by the relative amplitude of the measured signal through the encapsulated piezoelectric sensor.

  15. Corrosion Behaviour of Steels in Nigerian Food Processing ...

    African Journals Online (AJOL)

    Michael Horsfall

    quality regulatory agencies and food processing equipment fabricators. It is our desire that ... poisoning. ... corrosive effect under two special conditions; in solution with ..... Loto C.A and Atanda P.O (1998) Corrosion of Mild ... Health Paper. No.

  16. Stress corrosion cracking of duplex stainless steels in caustic solutions

    Science.gov (United States)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  17. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    International Nuclear Information System (INIS)

    Zhang Ruijin; Castel, Arnaud; Francois, Raoul

    2010-01-01

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  18. Reinforcement steel corrosion in passive state and by carbonation: Consideration of galvanic currents and interface steel - concrete defaults

    International Nuclear Information System (INIS)

    Nasser, A.

    2010-01-01

    This thesis aims to study the durability of nuclear waste deep storage structures. The work carried out is essentially an experimental study, and focuses on the corrosion of steel in the passive state with aerated or non-aerated conditions on the one hand, and the corrosion of steel in carbonated concrete during the propagation phase on the other hand. Indeed, the pore solution of concrete in contact with the metal is alkaline (pH between 12 and 13). Under these conditions, steel reinforced concrete remains passive by forming a stable and protective oxide layer (corrosion of steel in the passive state). This passive layer limits the steel corrosion rate at very low values (negligible on a short life time) but not null. For the nuclear waste storage structures due to a very long life time (up to several hundred years), this low corrosion rate can become a risk. Therefore, it is necessary to study the evolution of the oxide layer growth over time. The objectives of the thesis are to study the influence of the steel-concrete interface quality on reinforcement corrosion in passive and active state, and the possible occurrence of galvanic corrosion currents between different reinforcement steel areas. (author)

  19. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  20. On the corrosion resistance of 01Kh25 ferritic steel

    International Nuclear Information System (INIS)

    Eremeeva, R.A.; Koval', E.K.

    1989-01-01

    Effect of non-ferrous metal ions on corrosion behaviour of 01Kh25 specific low carbon steel as compared to austenitic 12Kh18N10T and 06KhN28MDT steels in boiling solutions of sulfuric and nitric acids and their mixture is studied. Compositions initating commercial ones are chosen the media. It is shown that trough corrosion resistance of 01Kh25 steel in 10% H 2 SO 4 is two order below 06KhN28MDT austenitic steel in presence of Cu 2+ ions as a result of the surface passivation corrosion resistance of ferritic steel is an order higher the austenitic ones. Ferrite steel resistance in the nitric acid and its mixture with sulfuric acid is five timesas much as in 12Kh18N10T austenitic steel

  1. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  2. Electrochemical study of corrosion inhibition of stainless steel in phosphoric medium

    Energy Technology Data Exchange (ETDEWEB)

    Hnini, K.; Chtaini, A. [Laboratoire d' Electrochimie et de Bio Corrosion, Faculte des Sciences et Techniques, Beni-Mellal (Morocco); Khouili, M.; Elbouadili, A. [Laboratoire de Chimie Organique et Analytique, Faculte des Sciences et Techniques, Beni-Mellal (Morocco)

    2004-07-01

    The corrosion of metals represents a terrible waste of both natural resources and money, the failure of some stainless steel resulting from pitting corrosion is some times considered a technological problem, consequently, much effort has been expended in attempting to understand and overcome the corrosion therefore, many stainless steel/ environment combinations have been studied. The use of heterocyclic compounds as inhibitors is one of the most practical methods for protection against corrosion in acidic media. In continuation of our work on development of macrocyclic compounds as corrosion inhibitors we report in our study the corrosion inhibiting behaviour of organic compound Methoxy-2-Allyl-4 Phenol (MAP) containing coordinating and conjugation groups, at three forms (natural, polymerized and chemically treated) on the corrosion of stainless steel in phosphoric acid. This study focused on the comparison for corrosion inhibition proprieties of these different applications using potentiodynamic polarization, electrochemical impedance spectroscopy and SEM. The specimen was evaluated to determine change in his corrosion potential and resistance polarization; These MAP products have exhibited corrosion inhibition by maintaining a high resistance polarization (low corrosion rate) in each application. These results reveal that this compound is efficient inhibitor in all forms; the most inhibition efficiency is obtained with polymerized form. To further evaluate the test data, the steel surfaces were analyzed using scanning electron microscopy, SEM observations of surface treated concrete confirmed presence of inhibitor on the steel surfaces. (authors)

  3. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    This paper is concerned with corrosion of a cooled vessel steel structure interacting with molten corium in air and neutral (nitrogen) atmospheres during an in-vessel retention scenario. The data on corrosion kinetics at different temperatures on the heated steel surface, heat flux densities and oxygen potential in the system are presented. The post-test physico-chemical and metallographic analyses of melt samples and the corium-specimen ingot have clarified certain mechanisms of steel corrosion taking place during the in-vessel melt interaction

  4. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  5. Modification of corrosion resistances of steels by rare earths ion implantation

    International Nuclear Information System (INIS)

    Hu Zhaomin; Zhang Weiguo; Liu Fengying; Shao Tongyi; Xiang Xuyang; Gao Fengqin; Li Gongpan

    1987-01-01

    Five kinds of rare earth RE elements have been implanted into steel No.45 and GCr15 bearing steel respectively. The corrosion resistances of the specimens have been examined using electrochemical dynamic potential method, in a NaAc/HAc solution for steel No.45 specimens and in a NaAc/HAc solution containing 0.1 mol/lNaCl for GCr15 bearing steel specimens. It has been found that the aqueous solution corrosion resistances of steel No.45 are obviously modified by implantation of RE element, and the pitting corrosion properties of GCr15 bearing steel are significantly improved due to heavy RE element implantation

  6. Corrosion of Steel in Concrete – Thermodynamical Aspects

    DEFF Research Database (Denmark)

    Küter, Andre; Møller, Per; Geiker, Mette Rica

    2004-01-01

    The present understanding of selected corrosion phenomena in reinforced concrete is reviewed. Special emphasis is given to chloride induced corrosion. There is a general acceptance of the basic corrosion mechanism for steel in concrete. However different anodic reactions governing the subsequent...

  7. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    International Nuclear Information System (INIS)

    Przondziono, J; Szatka, W; Walke, W; Młynarski, R

    2012-01-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  8. Kinetics of steel corrosion in water

    International Nuclear Information System (INIS)

    Vettegren', V.I.; Bashkarev, A.Ya.; Danchukov, K.G.; Morozov, G.I.

    2003-01-01

    Kinetics of corrosion damage accumulation in steels of different composition (Cr-Ni-Mo-Ti, Cr-Ni-Mn-N-V, Cr-Ni-N-Mn-Mo, Cr-Ni-Nb, Cr-Ni-Ti, Cr-Mn-Ni, Mn-Al-Nb-Si, Mn-Cr-Al-Si and Mn-Al-Si) in NaCl solution and in sea water was studied. It is shown that degree of corrosion damage relates to time according to the first order reaction expression. The values of corrosion activation energy and of parameter characterizing protection properties of corrosion film are determined [ru

  9. Corrosion of nickel and stainless steels in concentrated lithium hydroxide solutions

    International Nuclear Information System (INIS)

    Graydon, J.W.; Kirk, D.W.

    1990-06-01

    The corrosion behaviour of four alloys in 3 and 5 mol/L lithium hydroxide solutions under a hydrogen atmosphere at 95 degrees C was investigated. Corrosion of Nickel 200 and the stainless steels 316, 316L, and E-Brite 26-1 was assessed in two sets of immersion tests lasting 10 and 136 days. Corrosion rates were determined by weight loss, susceptibility to stress corrosion cracking was evaluated using U-bends, and the details of the corrosion process were studied on specimens with a mirror finish using light and electron microscopy, x-ray spectrometry and mapping, and x-ray diffraction. The long term corrosion rates were low for all alloys ( 2 , β-LiFeO 2 , and a very iron-rich β-LiFe 5 0 8 . The passivating layer on the nickel was Ni(OH) 2 . The underlying metal corroded evenly except for the 316 stainless steels. These showed a uniform intergranular corrosion with minor drop-out of smaller grains likely because of segregation of impurities to the grain boundaries. The walls of these intergranular crevices were covered with a passivating layer of chromium oxide. (8 figs., 5 tabs., 11 refs.)

  10. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    Science.gov (United States)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  11. Local corrosion of high alloy steels under biodeposits

    International Nuclear Information System (INIS)

    Korovyakova, M.D.; Nikitin, V.M.; Speshneva, N.V.

    1999-01-01

    Impact of the bacteriozenosis different structural-functional state under biodeposits on corrosion resistance of the 12Kh18N10T and Kh18N10T high-alloy steels in the natural seawater is studied. It is shown that saturation of natural micro communities by separate aerobic and facultative-anaerobic bacterial monocultures increases corrosion resistance of these steels by their overgrow with biodeposits [ru

  12. Corrosion inhibition of mild steel by Capsicum annuum fruit paste

    Directory of Open Access Journals (Sweden)

    Chandan M. Reddy

    2016-09-01

    Full Text Available The anti-corrosive property of Capsicum annuum fruit paste (CFP on mild steel was investigated. Weight loss and SEM analysis showed that the aqueous and ethanolic solutions of CFP exhibits excellent corrosion inhibition in 2 M HCl. Contact angle, surface atomic composition and FTIR studies verified the presence of an organic film on the mild steel surface. The FTIR spectra also indicated the formation of active compound-Fe complex. CFP thus shows potential as an inexpensive environment friendly corrosion inhibitor for mild steel.

  13. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, Soheil; Rashtchi, Hamed; Eslami, Abdoulmajid; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Raeissi, Keyvan; Imani, Reihane Faghih [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Materials Engineering; Ngan, Alfonso Hing Wan [The Univ. of Hong Kong (China). Dept. of Mechanical Engineering

    2017-07-15

    The corrosion resistance of austenitic stainless steels is known to be hampered by the loss of chromium available for passive surface layer formation as a result of chromium carbide precipitation at austenite grain boundaries during annealing treatments. Although high-temperature annealing can promote carbide dissolution leading to better corrosion resistance, grain coarsening also results, which would lead to poorer mechanical properties. Processing methods to achieve both good corrosion resistance and mechanical properties are thus highly desirable for austenitic stainless steels. In the present study, we show that the corrosion resistance of AISI 304L stainless steel can be improved by grain refinement into the ultrafine-grained regime. Specifically, samples with different austenite grain sizes in the range of 0.65-12 μm were studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in a 3.5 wt.% NaCl solution. All samples showed a typical passive behavior with similar corrosion potential, but the corrosion current density decreased significantly with decreasing grain size. The results show that the sample with the finest grain size had the best corrosion resistance due to a higher resistance of the passive layer to pitting attacks. This study indicates that grain refinement which improves mechanical properties can also significantly improve the corrosion resistance of AISI 304L stainless steel.

  14. Protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mindyuk, A K; Svist, E I; Savitskaya, O P; Goyan, E B; Gopanenko, A N [AN Ukrainskoj SSR, Lvov. Fiziko-Mekhanicheskij Inst.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves.

  15. Microstructure Characterization and Corrosion Resistance Behavior of New Cobalt-Free Maraging Steel Produced Through ESR Techniques

    Science.gov (United States)

    Seikh, Asiful H.; Halfa, Hossam; Baig, Muneer; Khan, Sohail M. A.

    2017-04-01

    In this study, two different grades (M23 and M29) of cobalt-free low nickel maraging steel have been produced through electroslag remelting (ESR) process. The corrosion resistance of these ESR steels was investigated in 1 M H2SO4 solution using linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS) techniques. The experiments were performed for different immersion time and solution temperature. To evaluate the corrosion resistance of the ESR steels, some significant characterization parameters from LPP and EIS curves were analyzed and compared with that of conventional C250 maraging steel. Irrespective of measurement techniques used, the results show that the corrosion resistance of the ESR steels was higher than the C250 steel. The microstructure of ESR steels was composed of uniform and well-distributed martensite accompanied with little amount of retained austenite in comparison with C250 steel.

  16. Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

    International Nuclear Information System (INIS)

    Kim, Nam In; Kim, Young Sik; Kim, Kyung Soo; Chang, Hyun Young; Park, Heung Bae; Sung, Gi Ho; Sung, Gi Ho

    2015-01-01

    The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001 - 0.075 % were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel

  17. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    Science.gov (United States)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  18. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    International Nuclear Information System (INIS)

    Duffo, Gustavo S.; Farina, Silvia B.; Schulz, Fatima M.; Marotta, Francesca

    2010-01-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  19. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  20. Electrochemical studies of novel corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2018-06-01

    Full Text Available The electrochemical performance of a novel organic corrosion inhibitor 6-(4-hydroxyphenyl-3-mercapto-7,8-dihydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine [HT3], for mild steel in 1 M hydrochloric acid is evaluated by potentiodynamic curves. The experimental results show that the investigated inhibitor [HT3], which can effectively retard the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing a protective coating for the mild steel that, can be weakened by increasing the temperature. Furthermore, the inhibition efficiency of [HT3] increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. Keywords: Corrosion, Inhibitor, Mild steel, Potentiodynamic polarization, HT3, NMR, FT-IR

  1. Investigation of electrochemical corrosion behavior in a 3.5 wt.% NaCl solution of boronized dual-phase steel

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Anaturk, Bilal

    2013-01-01

    Highlights: ► Corrosion behaviors in a 3.5% NaCl solution of boronized Dual-Phase (DP) steels were examined. ► The martensite ratio increased with an increase in the intercritical annealing temperature. ► The corrosion resistance decreased with increase of the martensite ratio. ► The boride layer increased the corrosion resistance of DP steel 2–3-fold. ► The superior properties of DP steel as well as poor corrosion properties were improved by the boriding process. - Abstract: In this study, corrosion behaviors of boronized and non-boronized dual-phase steel were investigated with Tafel extrapolation and linear polarization methods in a 3.5 wt.% NaCl solution. Microstructure analyses show that the boride layer on the dual-phase steel surface had a flat and saw smooth morphology. It was detected by X-ray diffraction (XRD) analysis that the boride layer contained FeB and Fe 2 B phases. The amount of martensite increases with an increase in the intercritical annealing temperature. Both the amount of martensite and the morphology of the phase constituents have an influence on the corrosion behavior of dual-phase steel. A higher corrosion tendency was observed with an increased amount of martensite. The corrosion resistance of boronized dual-phase steel is higher compared with that of dual-phase steel

  2. Steel fibre corrosion in cracks:durability of sprayed concrete

    OpenAIRE

    Nordström, Erik

    2000-01-01

    Steel fibre reinforced sprayed concrete is common practice for permanent linings in underground construction. Today there is a demand on "expected technical service life" of 120 years. Thin steel fibres could be expected to discontinue carrying load fast with a decrease of fibre diameter caused by corrosion, especially in cracks. The thesis contains results from inspections on existing sprayed concrete structures and a literature review on corrosion of steel fibres in cracked concrete. To stu...

  3. AC-Induced Bias Potential Effect on Corrosion of Steels

    Science.gov (United States)

    2009-02-05

    induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models  AC Simulated Corrosion testing  Stainless steel pipe and coating  Cathodic protection  Experimental Setup  Preliminary

  4. Effect of nitrogen alloying of stainless steels on their corrosion stability

    International Nuclear Information System (INIS)

    Chigal, V.; Knyazheva, V.M.; Pitter, Ya.; Babich, S.G.; Bogolyubskij, S.D.

    1986-01-01

    Results of corrosion tests and structural investigations of 03Cr18Ni10 and 03Cr18Ni10Mo3 steels without nitrogen and with nitrogen content of 0.15-0.3% are presented. Corrosion-electrochemical behaviour of Cr20Ni20 steel with ultralow carbon content (0.004-0.006%) and nitrogen content with 0-0.5% as well as Cr 2 N nitride behaviour are investigated. A conclusion is made on nitrogen and excessive nitride phase effect on corrosion stability of steel in corrosive media with different reduction-oxidation properties

  5. Corrosion of martensitic steels in flowing 17Li83Pb alloy

    International Nuclear Information System (INIS)

    Flament, T.; Fauvet, P.; Hocde, B.; Sannier, J.

    1988-01-01

    Corrosion of three martensitic steels - 1.4914, HT9 and T91 - in the presence of flowing 17Li83Pb is investigated in thermal convection loops Tulip entirely made of 1.4914 steel. Two 3000-hour tests were performed at maximal temperatures of respectively 450 and 475 0 C with a δT of 60 0 C and an alloy velocity of about 0.08 m.s -1 . In both tests, corrosion is characterized by an homogeneous dissolution of the steel without formation of a corrosion layer. Corrosion rate is constant and very temperature dependent: the sound-metal loss of 1.4914 steel is 22 μm. year -1 at 450 0 C and 40 μm.year -1 at 475 0 C. Behaviours of 1.4914 and HT9 steels are very similar whereas T91 steel is about 20% less corroded

  6. Investigating the Crevice Corrosion Behavior of Coated Stainless Steel in Seawater

    National Research Council Canada - National Science Library

    Kain, Robert

    2000-01-01

    .... austenitic stainless steel. Testing in natural seawater has demonstrated that coatings can protect susceptible stainless steel from barnacle related crevice corrosion and localized corrosion at weldments...

  7. Hydrogen Diffusion and H{sub 2}S Corrosion in Steel

    Energy Technology Data Exchange (ETDEWEB)

    Haugstveit, Bjarte Erlend

    2001-01-01

    The electrochemical permeation technique introduced by Devanathan and Stachurski has been used to measure the effective diffusivity of hydrogen in steel in a H{sub 2}S-saturated aqueous environment. The linear polarization resistance (LPR) method has been used to measure the corrosion rate. The effective diffusion coefficient of hydrogen has been found to be in the range of 1*10-12 to 7*10-11, depending on the environmental conditions. The corrosion film was identified as mackinawite, and it affected the permeation process of hydrogen. The results supported the assumption that the diffusion process can be described by a three layer model and indicated that the model could be reduced to a two layer model in the cases of iron and steel. A model aimed to describe the reaction pathway of hydrogen through the surface film and into the steel is proposed. The corrosion film influenced the corrosion rate, and it was least protective against corrosion at pH 6.5. Corrosion rates were in the range of 0.2-1 mm/year. The corrosion rate was increased significantly at pH 3.5, but the effect of the surface film was stronger and overshadowed the pH effect at the higher pH values. Increased flow velocity also lead to increased corrosion rate, but this effect was less significant compared to the effect of pH and the surface film. DEG decreased the corrosion rate. The uncertainty in the diffusion measurements was mainly due to the assumption of a constant sub-surface concentration of atomic hydrogen, which was not fulfilled. A method less dependent on constant surface conditions would probably yield better estimates of the effective diffusivity. The uncertainty in the corrosion measurements was mainly due to the uncertainty in the value of the Stern-Geary constant. The qualitative assumptions based on the results in this thesis are assumed to be valid. A test section designed for this thesis was tested and was found successful in corrosion rate measurements, but proved to be

  8. Pitting and stress corrosion cracking of stainless steel

    Science.gov (United States)

    Saithala, Janardhan R.

    An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation

  9. Residual stresses and stress corrosion effects in cast steel nuclear waste overpacks

    International Nuclear Information System (INIS)

    Attinger, R.O.; Mercier, O.; Knecht, B.; Rosselet, A.; Simpson, J.P.

    1991-01-01

    In the concepts for final disposal of high-level radioactive waste in Switzerland, one engineered barrier consists of an overpack made out of cast steel GS-40. Whenever tensile stresses are expected in the overpack, the issue of stress corrosion cracking must be expected. A low-strength steel was chosen to minimize potential problems associated with stress corrosion cracking. A series of measurements on stress corrosion cracking under the conditions as expected in the repository confirmed that the corrosion allowance of 50 mm used for the design of the reference overpack is sufficient over the 1000 years design lifetime. Tensile stresses are introduced by the welding process when the overpack is closed. For a multipass welding, the evolution of deformations, strains and stresses were determined in a finite-element calculation. Assuming an elastic-plastic material behavior without creep, the residual stresses are high; considering creep would reduce them. A series of creep tests revealed that the initial creep rate is important for cast steel already at 400deg C. (orig.)

  10. Effect of chlorides on the corrosion behaviour of mild steel

    International Nuclear Information System (INIS)

    Harada, Kazuyuki; Shimada, Minoru

    1980-01-01

    In PWR's steam generators, ''denting'' resulted from corrosion of support plate material, carbon steel is an important problem. The role of chlorides in corrosion acceleration of mild steel was studied. Corrosion tests were conducted at temperature from 100 0 C to 280 0 C in deaerated solutions of NaCl and MgCl 2 which are main content of sea water. 1) Solution of MgCl 2 was more corrosive than that of NaCl. The more increased in concentration of each chloride solution, the more corrosive in MgCl 2 soln. but the less corrosive in NaCl soln. 2) The rate of corrosion in the mixed solution of NaCl and MgCl 2 was governed by the concentration of MgCl 2 soln. The corrosion behaviour in sea water was suggested to be not controlled by NaCl but by MgCl 2 . 3) Acidification of MgCl 2 soln. could be evaluated by experiment at 100 0 C, the degree of acidification increased with increasing the concentration. However, the value of pH during corrosion was kept constant by the concentration of dissolved Fe 2+ ions. 4) The corrosion acceleration by MgCl 2 soln. was arised not only from acidification by the solution itself but from continuous supplementation of H + ions with the hydrolysis of dissolved Fe 2+ ions. This autocatalytic corrosion process not exhausting acid was characterized with the corrosion in closed system such as in crevice. In addition to acidification of MgCl 2 soln., the formation of non-protective magnetite film by Mg 2+ ion was estimated to be a reason of accelerated corrosion. (author)

  11. Corrosion behaviour of laser clad stainless steels

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Weerasinghe, V.M.; West, D.R.F.

    1993-01-01

    The present paper is focussed in the study of the properties of a clad layer of stainless steel on a mild steel. By blowing powder of the alloy into a melt pool generated by a laser of 2 KW, an homogeneous layer of 316 stainless steel can be obtained. Structure, composition and corrosion behaviour are similar to those of a stainless steel in as-received condition. (Author)

  12. Study on stainless steel electrode based on dynamic aluminum liquid corrosion mechanism.

    Science.gov (United States)

    Hou, Hua; Yang, Ruifeng

    2009-01-01

    Scanning electrion microscope (SEM) was performed for investigations on the corrosion mechanism of stainless steel electrode in dynamic melting aluminum liquid. Microstructures and composition analysis was made by electron probe analysis (EPA) combined with metallic phase analysis. It can be concluded that the corrosion process is mainly composed of physical corrosion (flowing and scouring corrosion) and chemical corrosion (forming FeAl and Fe2Al5) and the two mechanisms usually exist simultaneously. The corrosion interface thickness is about 10 μm, which is different to usual interface width of hundreds μm in the static melting Al with iron matrix.

  13. Factors and mechanisms affecting corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Dehqanian, Ch.

    1986-01-01

    Atomic power plants possess reinforced concrete structures which are exposed to sea water or sea atmosphere. Sea water or its surrounding environment contain very corrosive species which cause corrosion of metal in concrete. It should be mentioned that corrosion of steel in concrete is a complex problem that is not completely understood. Some of the factors which influence the corrosion mechanism and can be related to the pore solution composition is discussed. Chloride ion caused problems are the main source of the corrosion damage seen on the reinforced concrete structures. Corrosion rate in concrete varies and depends on the way chloride ion diffuses into concrete. In addition, the associated cations can influence diffusion of chloride into concrete. The type of portland cement and also the concrete mix design all affect the corrosion behaviour of steel in concrete

  14. Effects of Si as alloying element on corrosion resistance of weathering steel

    International Nuclear Information System (INIS)

    Mejía Gómez, J.A.; Antonissen, J.; Palacio, C.A.; De Grave, E.

    2012-01-01

    Highlights: ► Weathering steels with different concentrations of Si as alloying element were exposed to laboratory atmospheric conditions. ► The iron oxides formed as corrosion products were characterized and analyzed by XRD, TEM and Mössbauer spectroscopy. ► Silicon affects the corrosion resistance of weathering steels. ► Silicon promotes the formation of goethite as corrosion product with small particle size. - Abstract: The corrosion resistance in saline conditions of weathering steel with different concentrations of Si (1, 2 and 3 wt.%) exposed to dip dry tests (simulating wet/dry cycles of atmospheric corrosion) was studied by weight loss, X-ray diffraction, Mössbauer spectroscopy and transmission electron microscopy. The results showed that the steels exhibit better corrosion performance with increasing Si concentration. The formation of Fe-oxides such as goethite, lepidocrocite and magnetite was observed. Superparamagnetic goethite is the dominant phase in the rust developed on the Si steels, indicating that Si favors the formation of goethite with small particle size.

  15. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  16. Properties of corrosion resistance in C + Mo multi implanted steel

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Wang Xiaoyan

    2001-01-01

    The influence of multi-implantation on the corrosion resistance of H13 steel was studied using multi-sweep cyclic voltammetry. The formation conditions of phases and its effects on corrosion resistance were studied. The mechanism of improvement in corrosion resistance was discussed. The experimental results show that the increase of Mo dose can improve corrosion resistance, however the increase of C dose can enhance pitting corrosion potential. Both effects were obtained using dual-and multi-implantation. The passivation layer consists of the phases of Fe 2 Mo, FeMo, MoC, Fe 5 C 3 and Fe 7 C 3 in dual implantation surface of steel. It can improve corrosion resistance and increase pitting corrosion potential. Multi-implantation can further improve corrosion and pitting corrosion resistance compared with dual implantation

  17. Evaluation of mechanically treated cerium (IV) oxides as corrosion inhibitors for galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Deflorian, F., E-mail: flavio.deflorian@ing.unitn.it [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Fedel, M.; Rossi, S. [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Kamarchik, P. [PPG Industries, Coatings Innovation Center, 4325 Rosanna Drive, Allison Park, PA 15101 (United States)

    2011-09-30

    The use of cerium salts as corrosion inhibitors for hot dip galvanized steel has been object of a numerous studies in the last few years. The role of cerium ions as corrosion inhibitors was proved: cerium is able to block the cathodic sites of the metal, forming insoluble hydroxides and oxides on the zinc surface. This fact leads to a dramatic decrease of the cathodic current densities and, therefore, to a reduction the overall corrosion processes. On the other hand, the potential of cerium oxides as corrosion inhibitors was also proposed. However, the real effectiveness of this kind of anticorrosive pigments has not been clarified yet. In this work cerium (IV) oxides are considered as corrosion inhibitors for galvanized steel. The corrosion inhibition mechanism of mechanically treated (milled) CeO{sub 2} alone and in combination with milled SiO{sub 2} nanoparticles was investigated. For this purpose milled CeO{sub 2}, CeO{sub 2} and SiO{sub 2} milled together and milled SiO{sub 2} particles were studied as corrosion inhibitors in water solution. Therefore, the different mechanically treated particles were dispersed in 0.1 M NaCl solution to test their effectiveness as corrosion inhibitors for galvanized steel. The galvanized steel was immersed in the different solutions and the corrosion inhibition efficiency of the different particles was measured by means of electrochemical techniques. For this purpose, electrochemical impedance spectroscopy (EIS) measurements were carried out, monitoring the evolution of the corrosion processes occurring at the metal surface with the immersion time in the solution. The effect of the different pigments was also investigated by carrying out anodic and cathodic polarization measurements. The polarization curves were acquired under conditions of varied pH. The experimental measurements suggest that the mechanical treatment performed on the SiO{sub 2} and CeO{sub 2} particles promote the formation of an effective corrosion pigment

  18. Tank vent processing system having a corrosion preventive device

    International Nuclear Information System (INIS)

    Ouchi, Shoichi; Sato, Hirofumi

    1987-01-01

    Purpose: To prevent corrosion of a tank vent processing device by injecting an oxygen gas. Constitution: Oxygen gas and phosphorous at high temperature are poured into a tank vent processing device and amorphous oxide layers optimum to the prevention of external corrosion are formed to the inner surface of the device. Since the corrosion preventive device using the oxygen gas injection can be constituted as a relatively simple device, it is more economical than constituting a relatively large tank vent processing device with corrosion resistant stainless steels. (Kamimura, M.)

  19. Influence of alloying elements on the marine corrosion of low alloy steels

    International Nuclear Information System (INIS)

    Dajoux, E.; Malard, S.; Lefevre, Y.; Kervadec, D.; Gil, O.

    2005-01-01

    The study of steel marine corrosion leads to the survey of the parameters having an influence on this phenomenon. These parameters may be dependent on the seawater environment or on steel characteristics. Thus it appears that an experimental procedure could be set up in order to simulate immersion conditions in natural seawater. The system allows fifteen different steels with compositions ranging from carbon steels to stainless steels to be tested during some 14 months in natural seawater with or without microbiological activity. Electrochemical and gravimetric measurements are performed on immersed steel samples. Microbiological analyses are carried out either on the metallic surface and on the liquid medium. Possible influences of alloying elements and bacteria are studied. After a two-month immersion, first results show an influence of the chromium content on the steel corrosion resistance and on marine bacteria behaviour. They also reveal that the bio-film formed onto the carbon steel and low alloy steels surfaces tends to slow down the generalized corrosion or to increase localized corrosion depending on the steel alloying elements content. (authors)

  20. The crevice corrosion behaviour of stainless steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Hu Qian; Zhang Guoan; Qiu Yubin; Guo Xingpeng

    2011-01-01

    Highlights: → There are three stages in crevice corrosion of 13Cr stainless steel in NaCl solution. → The decrease of crevice thickness shortens the incubation period of crevice corrosion. → The incubation period of crevice corrosion prolongs as the increase of the area ratio. → Corrosion develops preferentially at crevice bottom and hydrogen reduction occurs inside the crevice. → Crevice corrosion of 13Cr stainless steel in NaCl solution follows the passive dissolution mechanism. - Abstract: The crevice corrosion behaviour of 13Cr stainless steel in NaCl solution was investigated mainly by electrochemical noise measurements, considering the influences of the crevice opening dimension (a) and the area ratio of the electrode outside the crevice to the one inside the crevice (r). Results show that the increase of r value prolongs the incubation period of crevice corrosion, but crevice corrosion develops rapidly once the crevice corrosion occurs. The crevice corrosion develops preferentially at the crevice bottom and then spreads to the whole electrode surface. Proton could reduce on the uncorroded area and hydrogen bubbles form inside the crevice.

  1. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  2. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  3. Influence of stainless steel Internals on Corrosion of tower wall materials

    Science.gov (United States)

    Chen, Bing; Ren, Ke

    2017-12-01

    In view of the galvanic corrosion of the tower wall material in the tower of a refinery atmospheric vacuum distillation unit, the electrochemical behavior of Q345R steel, stainless steel (201, 304 cold-rolled plate, 304 hot rolled plate and 316L) in 3.5%NaCl solution was studied by electrochemical method. The results show that the corrosion potential of Q345R is much lower than that of stainless steel, and the corrosion rate of Q345R is higher than that of stainless steel. As the anode is etched as the anode corrosion, the anode polarizability of stainless steel shows strong polarization ability, which is anodic polarization control, and Q345R is anode Active polarization control; Q345R / 201 galvanic pair may be the most serious corrosion, and Q345R/316L galvanic couple may be relatively slight. Therefore, in the actual production of tower equipment, material design or tower to upgrade the replacement, it are recommended to use the preferred anode and cathode potential difference with the use of materials.

  4. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    Science.gov (United States)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  5. Research on A3 steel corrosion behavior of basic magnesium sulfate cement

    Science.gov (United States)

    Xing, Sainan; Wu, Chengyou; Yu, Hongfa; Jiang, Ningshan; Zhang, Wuyu

    2017-11-01

    In this paper, Tafel polarization technique is used to study the corrosion behavior of A3 steel basic magnesium sulfate, and then analyzing the ratio of raw materials cement, nitrites rust inhibitor and wet-dry cycle of basic magnesium sulfate corrosion of reinforced influence, and the steel corrosion behavior of basic magnesium sulfate compared with magnesium oxychloride cement and Portland cement. The results show that: the higher MgO/MgSO4 mole ratio will reduce the corrosion rate of steel; Too high and too low H2O/MgSO4 mole ratio may speed up the reinforcement corrosion effect; Adding a small amount of nitrite rust and corrosion inhibitor, not only can obviously reduce the alkali type magnesium sulfate in the early hydration of cement steel bar corrosion rate, but also can significantly reduce dry-wet circulation under the action of alkali type magnesium sulfate cement corrosion of reinforcement effect. Basic magnesium sulfate cement has excellent ability to protect reinforced, its long-term corrosion of reinforcement effect and was equal to that of Portland cement. Basic magnesium sulfate corrosion of reinforced is far below the level in the MOC in the case.

  6. Microbially influenced corrosion of stainless steels in nuclear power plants

    International Nuclear Information System (INIS)

    Sinha, U.P.; Wolfram, J.H.; Rogers, R.D.

    1990-01-01

    This paper reviews the components, causative agents, corrosion sites, and potential failure modes of stainless steel components susceptible to microbially influenced corrosion (MIC). The stainless steel components susceptible to MIC are located in the reactor coolant, emergency, and reactor auxiliary systems, and in many plants, in the feedwater train and condenser. The authors assessed the areas of most high occurrence of corrosion and found the sites most susceptible to MIC to the heat-affected zones in the weldments of sensitized stainless steel. Pitting is the predominant MIC corrosion mechanisms, caused by sulfur reducing bacteria (SRB). Also discussed is the current status of the diagnostic, preventive, and mitigation techniques, including use of improved water chemistry, alternate materials, and improved thermomechanical treatments. 37 refs., 3 figs

  7. A study on corrosion resistance of dissimilar welds between Monel 400 and 316L austenitic stainless steel

    Science.gov (United States)

    Mani, Cherish; Karthikeyan, R.; Vincent, S.

    2018-04-01

    An attempt has been made to study the corrosion resistance of bi-metal weld joints of Monel 400 tube to stainless steel 316 tube by GTAW process. The present research paper contributes to the ongoing research work on the use of Monel400 and 316L austenitic stainless steel in industrial environments. Potentiodynamic method is used to investigate the corrosion behavior of Monel 400 and 316L austenitic stainless steel welded joints. The analysis has been performed on the base metal, heat affected zone and weld zone after post weld heat treatment. Optical microscopy was also performed to correlate the results. The heat affected zone of Monel 400 alloy seems to have the lowest corrosion resistance whereas 316L stainless steel base metal has the highest corrosion resistance.

  8. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions

    International Nuclear Information System (INIS)

    Refaey, S.A.M.; Taha, F.; El-Malak, A.M. Abd

    2005-01-01

    The effect of carbonate anion on the pitting corrosion and inhibition behavior of stainless steel samples (304L SS and 316L SS) has been studied using potentiodynamic and scanning electron microscope (SEM) techniques. The effect of concentration of CO 3 2- ions, pH, potential scanning rate and the composition of stainless steel are discussed. Additions of Cl - and Br - ions into the carbonate solution increase the anodic dissolution of stainless steel and decrease its pitting corrosion resistance. The effect of CO 3 2- anion on the inhibition of chloride and bromide pitting corrosion of the two stainless steel types has been studied also. Pitting corrosion decrease with the increasing of sodium carbonate concentration, i.e. increases the resistance of stainless steels towards the chloride and bromide pitting corrosion. This inhibition effect argued to formation of [Fe,Cr]CO 3 film caused by preferential adsorption of the CO 3 2- ion, leading to instantaneous repair of weak sites for pit nucleation

  9. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  10. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes

    International Nuclear Information System (INIS)

    Lin Bin; Hu Ronggang; Ye Chenqing; Li Yan; Lin Changjian

    2010-01-01

    Scanning electrochemical probes of corrosion potential and chloride ions were developed for the in situ monitoring of localized corrosion processes of reinforcing steel in NaCl-containing solution. The results indicated that the chloride ions (Cl - ) preferentially adsorbed and accumulated at the imperfect/defective sites, resulting in initiation and propagation of pitting corrosion on the reinforcing steel surface. An electron microprobe analyzer (EMPA) was used to examine the corrosion morphology and elemental distribution at the corroded location to investigate the origins of the preferential Cl - adsorption and pitting corrosion. By combining the in situ and ex situ images, we concluded that manganese sulfide inclusions in reinforcing steel are the most susceptible defects to pitting corrosion in chloride-containing solution.

  11. Kinetic mechanism of steel corrosion in clay soils by impedance measurements

    International Nuclear Information System (INIS)

    Arpaia, M.; Pernice, P.; Costantini, A.

    1990-01-01

    The corrosion of steel in clay soil at m.c. 15% has been studied for a long exposure time by electrochemical methods. A.c. impedance measurements results show that at a short exposure time the corrosion process is controlled by the diffusion of H + coupled with a rate determining homogeneous reaction, whereas at a long exposure time the process is controlled by pure diffusion. We have hypothesized that the rate determining homogeneous reaction might be the clay particles cations exchange. (orig.)

  12. The corrosion performance of microcrystalline titanium-modified 316 stainless steel

    International Nuclear Information System (INIS)

    Saito, N.; Searson, P.C.; Latanision, R.M.

    1986-01-01

    The corrosion performance of rapidly solidified (RS), consolidated RS and conventionally processed titanium-modified nuclear grade 316 stainless steel was studied. As-solidified RS foils exhibited general corrosion behavior identical to that of the conventionally processed alloy, but inferior pitting resistance, due to the presence of dendritic microsegregation. The consolidated RS alloy exhibited inferior general and pitting corrosion performance due to the detrimental effect of the prior foil boundary formed during the consolidation process. The results of immersion tests in 6% FeC1 3 .6H 2 O solution showed that pit initiation occured primarily at the prior foil boundaries in the consolidated RS alloy. Studies of sensitization were inconclusive due to preferential attack on prior foil boundaries in the consolidated RS specimens which made the determination of the degree of sensitization difficult. (author)

  13. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Griess, J.C.; Naus, D.J.

    The purpose of this investigation was to determine the corrosion behavior of a high strength steel (ASTM A416-74 grade 270), typical of those used as tensioning tendons in prestressed concrete pressure vessels, in several corrosive environments and to demonstrate the protection afforded by coating the steel with either of two commercial petroleum-base greases or Portland Cement grout. In addition, the few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors are reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection but small flaws in the grease coatings were detrimental; flaws or cracks less than 1 mm wide in the grout were without effect

  14. Corrosion of steel drums containing immobilized ion exchange-resins and incineration ashes

    International Nuclear Information System (INIS)

    Marotta, F.; Schulz Rodriguez, F.M.; Farina, Silvia B.; Duffo, Gustavo S.

    2009-01-01

    The Argentine Atomic Energy Commission (CNEA) is responsible for developing the management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. The intermediate radioactive waste consists mostly in spent ionic exchange resins and filters from the nuclear power plants, research reactors and radioisotopes production facilities. The spent resins, as well as the incineration ashes, have to be immobilized before being stored to improve leach resistance of waste matrix and to maintain mechanical stability for safety requirements. Generally, cementation processes have been used as immobilization techniques for economical reasons as well as for being a simple operation. The immobilized resins and incineration ashes are thus contained in steel drums that, in turn, can undergo corrosion depending on the ionic content of the matrix. This work is a part of a systematic study of the corrosion susceptibility of steel drums in contact with immobilized cemented exchange-resins with different types and contents of aggressive species and incineration ashes. To this purpose, a special type of specimen was manufactured to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix are being monitored along time. The aggressive species studied were chloride ions (the main ionic species present in nature) and sulphate ions (produced during the radiolysis process of the cationic exchange-resins after cementation). Preliminary results show the strong effect of chloride on the corrosion susceptibility of the steel. Monitoring will continue for

  15. Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States); Prairie, M.R.; Chavez, J.M. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    Corrosion behavior of two stainless steels and carbon steel in mixtures of NaNO{sub 3} and KNO{sub 3} was evaluated to determine if impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for 7000 hours with Types 304 and 316 stainless steels at 570C and A36 carbon steel at 316C in seven mixtures of NaNO{sub 3} and KNO{sub 3} containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO{sub 3}, KNO{sub 3}, and Ca(NO{sub 3}){sub 2}. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products.

  16. Corrosion behavior of 321 stainless steel in low-acidity uranium nitrate solution

    International Nuclear Information System (INIS)

    Liao Junsheng; Sun Ying; Zhang Wanglin; Ding Ping; Yang Jiangrong; Wu Lunqiang

    2003-01-01

    Weighing and electrochemical methods have been used to investigate the high-temperature uniform corrosion and electrochemical corrosion behavior of lCr18Ni9Ti (321) stainless steel in uranium nitrate solution at different concentrations and pH values. The uniform corrosion results showed that the corrosion rate of 321 stainless steel was less than 0.04 g/m 2 .h, and the visible change of surface smoothness was not observed through 960 h. It was perfect corrosion-resisting in obtained conditions. The electro-chemical corrosion behavior study has been performed to investigate 321 stainless steel in uranium nitrate solutions of the dissolved and saturated oxygen. The corrosion potential and corrosion current density were obtained. Auger photoelectron spectroscopy for measurement of uranium in specimen was used to indicate that uranium is in corrosion product. The corrosion film was measured by Ar ion gun sputter, and the thickness is 10-15 nm. (authors)

  17. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Guo, Xianglong, E-mail: guoxianglong@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Shen, Zhao [Department of Materials Science, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Zhang, Lefu, E-mail: lfzhang@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer. - Highlights: • We evaluated the corrosion resistance of three different Cr content ODS steels at 650 °C in supercritical water. • Corrosion behavior of ODS steels is rarely reported and ODS steel may be promising material for generation IV reactors. • We found total opposite phenomenon compared to Lee's work before. Our result may be more reasonable.

  18. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method

    International Nuclear Information System (INIS)

    Liu, Zaijian; Wang, Wei; Wang, Jia; Peng, Xin; Wang, Yanhua; Zhang, Penghui; Wang, Haijie; Gao, Congjie

    2014-01-01

    Corrosion behavior of carbon steel under seawater film with various thickness was investigated by the wire beam electrode (WBE) method. It was found that the corrosion rate of carbon steel increased significantly under thin seawater film than it was immersed in seawater. The current variation under seawater film indicated that the thickness of diffusion layer of oxygen was about 500 μm, and the maximal current appeared around 40 μm, at which corrosion rate transited from cathodic control to anodic control. The results suggest that WBE method is helpful to study the corrosion process under thin electrolyte film

  19. Corrosion behaviour of Fe-Mn-Si based shape memory steels trained by cold rolling

    International Nuclear Information System (INIS)

    Soederberg, O.; Liu, X.W.; Ullakko, K.; Lindroos, V.K.

    1999-01-01

    Fe-Mn-Si based high nitrogen steels have been studied in recent years for potential industrial applications. These steels show good shape memory properties, high strength and excellent ductility. In the present study, the effects of training history on the corrosion properties of Fe-Mn-Si-Cr-Ni based high nitrogen steels were investigated. The corrosion behaviour of shape memory alloys was analyzed by implementing anodic polarisation measurements and immersion tests. The shape memory steels in annealed, deformed and recovered conditions were studied to examine the training effect on their corrosion behaviour. The features of the anodic polarisation curves indicated a general corrosion type of these steels. The experimental results showed that Cr and Mn had a marked influence on the corrosion behaviour of the steels, followed by Ni, N and V. It was also apparent that the deformation during the shape memory training by cold rolling decreased the corrosion stability, and the recovery heating reduced further their corrosion resistance. However, further studies are needed in order to better understand the corrosion behaviour of the investigated alloys. (orig.)

  20. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  1. Morphology of the ash corrosion products on the P92 steel

    International Nuclear Information System (INIS)

    Hernas, A.; Imosa, M.

    2004-01-01

    The P92 steel, owing to its high mechanical strength at an elevated temperature, is one of the new steel types intended for the components of modern boilers in the power engineering industry. Currently, attempts are being undertaken to use the P92 steel for the components of boiler units in municipal waste incineration plants. Therefore, it is important that an analysis be made of the P92 steel resistance to the high-temperature chlorine - sulfur corrosion impact, the latter being the main factor which limits durability of boilers in waste incineration plants. The present article presents the investigation of P92 steel corrosion resistance under the conditions of high-temperature chlorine- sulfur corrosion in an atmosphere of flue gas with ashes. The analyses were conducted by means of laboratory tests in an atmosphere containing sulfur and chlorine compounds. The morphology of corrosion products was determined by scanning microscopy and X-ray analysis methods. (author)

  2. Chromium steel corrosion rates and mechanisms in aqueous nickel chloride at 300C

    International Nuclear Information System (INIS)

    Forrest, J.E.; Broomfield, J.P.; Mitra, P.K.

    1985-01-01

    Rapid corrosion of PWR steam generator carbon steel support structures and consequential denting of steam generator tubes led to investigation of alternative support designs and materials. In recent designs of steam generators the carbon steel drilled hole tube support plate has been replaced by one of quatrefoil or trefoil shape to minimize the contact area. These plates are now made of more corrosion resistant chromium steel (approx. 12%Cr) to ensure that they are less vulnerable to attack in the event of adverse boiler water chemistry. This study was initiated to examine the corrosion behavior of a range of chromium steels in the acid chloride environments characteristic of tube/support plate crevices under adverse boiler water conditions. Objectives of the study were to: 1) determine the relative susceptibility of candidate tube support plate steels to acid chloride corrosion; 2) investigate the corrosion product morphology and its relationship to the corrosion mechanism; 3) determine the effect of environment aggressiveness on 12%Cr (A405) steel corrosion rates and mechanisms; and 4) investigate the effect of restraint stress/environment on denting potential of A405. Experimental method and results are discussed

  3. Neutrophilic Iron-Oxidizing Zetaproteobacteria and Mild Steel Corrosion in Nearshore Marine Environments

    Science.gov (United States)

    2011-02-16

    sample harvested at 14 days, and 316L stainless steel controls did not show evidence of corrosion product formation at any of the time points. A...direct or indirect enzymatic reduction or oxidation of corrosion products, formation of biofilms that create corrosive microen- vironments, or...sampler prior to deployment. Cold-finish 1018 mild steel coupons and 3161. stainless steel control coupons (13 by 15 by 3 mm) were polished with a

  4. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    Hosking, N.C.; Stroem, M.A.; Shipway, P.H.; Rudd, C.D.

    2007-01-01

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn 5 Cl 2 (OH) 8 . H 2 O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH) 2 ) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH) 2 , which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  5. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: II. Swamp Sludges

    Directory of Open Access Journals (Sweden)

    Henki Ashadi

    2010-10-01

    Full Text Available A polluted environment will influence the building age. The objective of this research was to find out the influence of corrosive chemicals within the sludge swamp area with the corrosion rate of steel concrete. Corrosion in steel concrete usually occur in acid area which contain of SO42-, Cl- and NO3-. The research treatment used by emerging ST 37 andST 60 within 60 days in 'polluted' sludge swamp area. Three variation of 'polluted' swamp sludge were made by increasing the concentration a corrosive unsure up to 1X, 5X and 10X. The corrosion rate measured by using an Immersion Method. The result of Immersion test showed that sulphate had a greatest influence to corrosion rate of ST 37 and ST 60 and followed by chloride and nitrate. Corrosion rate value for ST 37 was 17.58 mpy and for ST 60 was 12.47 mpy.

  6. Corrosion behaviour of dissimilar welds between martensitic stainless steel and carbon steel from secondary circuit of candu npp

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2015-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. It is not unusual to find that, although the base metal or alloy is resistant to corrosion in a particular environment, the welded counterpart is not resistant. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. Our experiments were performed in chloride environmental on two types of samples: non-welded (420 martensitic steel and 52.2k carbon steel) and dissimilar welds (dissimilar metal welds: joints beetween 420 martensitic steel and 52.2k carbon steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and metallography microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and carbon steel in solutions containing chloride ions. We have been evaluated the corrosion rates of samples (welded and non-welded) by electrochemically. (authors)

  7. The corrosion and protection of less carbon containing steel in subsoil

    International Nuclear Information System (INIS)

    Kazimov, A. M; Mamedyarova, I. F; Selimkhanova, G. G; Bskhishova, D. A; Ibragimova, S. G.

    2007-01-01

    Full text: The protection and corrosion resistance of steel in subsoil waters of Baku subway were investigated. Kinetic curves were drawn. The results obtained from the experiment coincide with calculated results. There have been revealed and proposed hudron and fuel oil mixture protecting steel from corrosion in subsoil waters (97.8%) for the internal surface of steel pipes

  8. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo

    2005-01-01

    in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates......Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... of film formation in sulfide solutions was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data resulting in unreliable corrosion rates measured by electrochemical techniques. The effect is strongly increased if biofilm...

  9. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  10. The role of molybdenum in corrosion resistance of stainless steel

    International Nuclear Information System (INIS)

    Abdul Razak bin Daud

    1989-01-01

    The effect of Mo on corrosion properties of stainless steels in 1M MgCl 2 solution was studied using an electrochemical polarization method. Procedure for the preparation of electrochemically polarized samples for surface analysis is described. The samples surface were analyzed using X-ray Photoelectron Spectroscopy (XPS). The stainless steel which has high Mo content has a better resistance to corrosion in Cl containing media. Cr and Mo are enriched in the surface of Mo-bearing stainless steels which have undergone high anodic-metal dissolution. Mo may exist as MoO 2 which is responsible in slowing down the rate of corrosion attack. (author)

  11. Marine atmospheric corrosion of carbon steels

    Directory of Open Access Journals (Sweden)

    Morcillo, Manuel

    2015-06-01

    Full Text Available Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a environmental conditions necessary for akaganeite formation; (b characterisation of akaganeite in the corrosion products formed; (c corrosion mechanisms of carbon steel in marine atmospheres; (d exfoliation of rust layers formed in highly aggressive marine atmospheres; (e long-term corrosion rate prediction; and (f behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camariñas, Galicia in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM/energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Mössbauer spectroscopy and SEM/μRaman spectroscopy.La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a condiciones ambientales necesarias para la formación de akaganeíta, (b caracterización de la akaganeíta en los productos de corrosión formados, (c mecanismos de corrosión del acero al carbono en atmósferas marinas, (d exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e predicción de la velocidad de corrosión a largo plazo, y (f comportamiento de aceros patinables. La

  12. Inhibitive action of some plant extracts on the corrosion of steel in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)]. E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Sidahmed, I.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); El-Zayady, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Saadawy, M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2006-09-15

    The effect of extracts of Chamomile (Chamaemelum mixtum L.), Halfabar (Cymbopogon proximus), Black cumin (Nigella sativa L.), and Kidney bean (Phaseolus vulgaris L.) plants on the corrosion of steel in aqueous 1 M sulphuric acid were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. EIS measurements showed that the dissolution process of steel occurs under activation control. Potentiodynamic polarization curves indicated that the plant extracts behave as mixed-type inhibitors. The corrosion rates of steel and the inhibition efficiencies of the extracts were calculated. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of steel in sulphuric acid media. Inhibition was found to increase with increasing concentration of the plant extract up to a critical concentration. The inhibitive actions of plant extracts are discussed on the basis of adsorption of stable complex at the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins, and the kinetic-thermodynamic model, were tested to clarify the nature of adsorption.

  13. Investigation of intergranular corrosion resistance of Cr16Ni25NMo6 steel

    International Nuclear Information System (INIS)

    Kamenev, Yu.B.; Nazarov, A.A.; Kuusk, L.V.; Majdeburova, T.F.

    1990-01-01

    The effect of 08Kh16N25AM6 steel susceptibility to intergranular corrosion on its intergranular cracking resistance in high-temperature water is investigated. In addition, the performed tests point to the susceptibility of sensibilized Kh16N25AM6 steel to intergranular corrosion in media simulating an agressive environment of power generation equipment; the latter requires a strict control over the resistance of weld joints of the above steel to intergranular corrosion. It is shown that Kh16N25AM6 type steel in sensibilized state is susceptible to intercrystalline corrosion cracking in high-temperature water which correlates with its susceptibility to intergranular corrosion established by AM GOST 6032-84 and potentiodynamic reactivation methods

  14. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  15. Corrosion behaviour of carbon steel in the Tournemire clay

    International Nuclear Information System (INIS)

    Foct, F.; Dridi, W.; Cabrera, J.; Savoye, S.

    2004-01-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  16. The electrochemical corrosion of maraging steel in various media

    International Nuclear Information System (INIS)

    Iqbal, A.; Hussain, S.W.; Qamar, I.; Salam, I.

    1993-01-01

    Electrochemical corrosion behavior of maraging steel in various media has been studied using electrode kinetic measurements. The media used included IN H/sub 2/SO/sub 4/, IN HCl and artificial sea water, all at room temperature. The steel used was 350 grade of maraging steel and its corrosion behavior was studied in annealed as well as aged condition. In addition to the general behavior observed using potentiodynamic polarization, the corrosion rates were also evaluated using our own method known as Z TCorr . This method has been proved to be robust and accurate as compared to any other known method. The surfaces of corroded specimens were examined in an scanning electron microscope. The pitting observed in samples corroded by sea water was found to be associated with the inclusion present in the steel. Passive behavior was noted in IN H/sub 2/SO/sub 4/ but not IN HCl or artificial sea water. (author)

  17. Electrochemical and weight-loss study of carbon steel corrosion

    International Nuclear Information System (INIS)

    Thomas, V.J.; Olive, R.P.

    2007-01-01

    The Point Lepreau Generating Station (PLGS) will undergo an 18 month refurbishment project beginning in April, 2008. During this time, most of the carbon steel piping in the primary loop will be drained of water and dried. However, some water will remain during the shutdown due to the lack of drains in some lower points in the piping system. As a result, it is necessary to examine the effect of corrosion during the refurbishment. This study examined the effect of several variables on the corrosion rate of clean carbon steel. Specifically, the effect of oxygen in the system and the presence of chloride ions were evaluated. Corrosion rates were determined using both a weight-loss technique and electrochemical methods. The experiment was conducted at room temperature. The corrosion products from the experiment were analyzed using a Raman microscope. The results of the weight-loss measurements show that the corrosion rate of polished carbon steel is independent of both the presence of oxygen and chloride ions. The electrochemical method failed to yield meaningful results due to the lack of clearly interpretable data and the inherent subjectivity in the analysis. Lepidocricite was found to be the main corrosion product using the Raman microscope. (author)

  18. Sucrose fatty esters from underutilized seed oil of Terminalia catappa as potential steel corrosion inhibitor in acidic medium

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2016-12-01

    Full Text Available Corrosion of metals is a common problem which requires definite attention. In response to this, the oil was extracted from the seed of Terminalia catappa and used to synthesize sucrose fatty esters via simple reaction mechanism which was considered eco-friendly and sustainable. The corrosion inhibition capacity of sucrose fatty esters for mild steel in 1 M HCl was studied using the weight loss method. It was shown that sucrose fatty ester inhibited corrosion process of mild steel and obeyed Langmuir isotherm. Corrosion rate and inhibition efficiency of sucrose fatty esters were found to reduce with increase of immersion time. The study presented sucrose fatty ester as a promising inhibitor of mild steel corrosion in acidic medium.

  19. On the protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    International Nuclear Information System (INIS)

    Mindyuk, A.K.; Svist, E.I.; Savitskaya, O.P.; Goyan, E.B.; Gopanenko, A.N.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves

  20. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    Science.gov (United States)

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Microbial Corrosion and Cracking in Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1998-01-01

    The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies and for recommendati......The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies...... will be based on results from the entire 3 year period, but only selected experimental data primarily from the latest experiments will be presented in detail here.Microbial corrosion of carbon steel under influence of sulphate-reducing bacteria (SRB) is characterised by the formation of both biofilm...... and corrosion products (ferrous sulphides) on the metal surface. Experiments have been conducted on carbon steel exposed in near neutral (pH 6 to 8.5) saline hydrogen sulphide environment (0 to 100 mg/l total dissolved sulphide) for a period of 14 days. Furthermore coupons have been exposed in a bioreactor...

  2. In-Plant Corrosion Study of Steels in Distillery Effluent Treatment Plant

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A. K.

    2015-05-01

    The present study deals with corrosion and performance of steels observed in an effluent treatment plant (ETP) of a distillery. For this purpose, the metal coupons were exposed in primary (untreated effluent) and secondary tank (anaerobic treatment effluent) of the ETP. The extent of attack has been correlated with the composition of the effluent with the help of laboratory immersion and electrochemical tests. Untreated distillery effluent found to be more corrosive than the anaerobic-treated effluents and is assigned due to chloride, phosphate, calcium, nitrate, and nitrite ions, which enhances corrosivity at acidic pH. Mild steel showed highest uniform and localized corrosion followed by stainless steels 304L and 316L and lowest in case of duplex 2205.

  3. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium ... the formation of a complex precipitate of protective film, which ... silicon carbide abrasive papers of 80, 120, 220, 800 and 1000 grit ...... ions in sulphuric acid on the corrosion behaviour of stainless steel,.

  4. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments

  5. Corrosion of vessel steel during its interaction with molten corium

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation)]. E-mail: bechta@sbor.spb.su; Khabensky, V.B. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Vitol, S.A. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Krushinov, E.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Granovsky, V.S. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Lopukh, D.B. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Gusarov, V.V. [Institute of Silicate Chemistry of Russian Academy of Science (ISC of RAS), Odoevsky str., b. 24/2, 199155 St. Petersburg (Russian Federation); Martinov, A.P. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Martinov, V.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Fieg, G. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Tromm, W. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Bottomley, D. [Europaeische Kommission, General Direktion GFS, Institut fuer Transurane (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tuomisto, H. [Fortum Engineering Ltd. 00048 FORTUM, Rajatorpantie 8, Vantaa (Finland)

    2006-07-15

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments.

  6. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    Science.gov (United States)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  7. Oxide induced corrosion on the welded stainless steels SS 2352 and 2353

    International Nuclear Information System (INIS)

    Stroem, S.; Li Huiqin.

    1991-01-01

    The pitting corrosion properties have been investigated in welded and unwelded condition by polarization tests in sodium chloride solutions. The two steels were TIG welded without adding welding material and as shielding on the bottom side argon gas containing 2, 26 or 99 ppm oxygen was used. In some tests low breakthrough potentials were received, without discovering any pitting corrosion in the specimen surfaces. The unwelded SS 2352 steel had a critical (lowest) pitting temperature (CPT) of 5 degrees C in the more concentrated solution. For the same steel with weld pitting corrosion was obtained at 5 degrees C, which was the lowest temperature for the tests. Thus the CPT value was lower than 5 degrees C, but by looking at the pitting corrosion potentials the following conclusion could be drawn: Welding with higher oxygen content in the shielding gas implied lower pitting corrosion resistance. For the SS 2353 steel the CPT values were 25 and 27.5 degrees C for material without weld, in contact with the more concentrated and the more dilute solution respectively. Welded material was all through more sensitive to pitting corrosion, and the CPT values were 15-17.5, 15 and 5-10 degrees C for welded areas which had been gas shielded with argon containing 2, 26 and 99 ppm oxygen respectively. The result thus showed that welding with shielding gas containing maximum about 30 ppm oxygen does not substantially affect the pitting corrosion properties. Post treatment of the welding areas increased the pitting corrosion resistance. Acid pickling implied the highest pitting corrosion resistance with 15 degrees C as CPT value for the 2353 steel in the more concentrated solution. Steel brushing implied an obvious increase to the pitting corrosion resistance compared to untreated weld areas and the same statement could be done for sand blasted surfaces. (10 refs., 16 tabs., 11 figs.)

  8. Corrosion Inhibition and Adsorption Characteristics of Tarivid on Mild Steel in H2SO4

    Directory of Open Access Journals (Sweden)

    N. O. Eddy

    2010-01-01

    Full Text Available The corrosion inhibition and adsorption characteristics of (+/--9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (Tarivid on the corrosion of mild steel has been studied using thermometric and gasometric methods. The study reveals that tarivid inhibits the corrosion of mild steel in H2SO4. The values of inhibition efficiency of tarivid were found to increase as its concentration increased but decreased with increase in temperature. Activation energies of the inhibited corrosion of mild steel ranged from 39.05 to 50.61 kJ/mol. Values of enthalpy change and free energy of adsorption were negative which indicated exothermic and spontaneous adsorption process. Physical adsorption mechanism is proposed from the obtained kinetic and thermodynamic parameters. Langmuir adsorption isotherm model is obeyed from the fit of the experimental data.

  9. Effect of Thermal Shock During Legionella Bacteria Removal on the Corrosion Properties of Zinc-Coated Steel Pipes

    Science.gov (United States)

    Orlikowski, Juliusz; Ryl, Jacek; Jazdzewska, Agata; Krakowiak, Stefan

    2016-07-01

    The purpose of this investigation was to conduct the failure analysis of a water-supply system made from zinc-coated steel. The observed corrosion process had an intense and complex character. The brownish deposits and perforations were present after 2-3 years of exploitation. The electrochemical study based on the Tafel polarization, corrosion potential monitoring, and electrochemical impedance spectroscopy together with microscopic analysis via SEM and EDX were performed in order to identify the cause of such intense corrosion. The performed measurements allowed us to determine that thermal shock was the source of polarity-reversal phenomenon. This process had begun the corrosion of steel which later led to the formation of deposits and perforations in the pipes. The work includes appropriate action in order to efficiently identify the described corrosion threat.

  10. To the corrosion of austenitic steels in sodium loops

    International Nuclear Information System (INIS)

    Schad, M.

    1978-03-01

    This report describes the comparison between experimental corrosion and calculated corrosion effects on austenitic steels exposed to liquid sodium. As basis for the calculations served a diffusion model. The comparison showed that the model is able to predict the corrosion effects. In addition the model was used to calculate the corrosion effect along an actual fuel rod. (orig.) [de

  11. Characterization of corrosion products formed on steels in the first months of atmospheric exposure

    OpenAIRE

    Antunes Renato Altobelli; Costa Isolda; Faria Dalva Lúcia Araújo de

    2003-01-01

    The corrosion products of carbon steel and weathering steel exposed to three different types of atmospheres, at times ranging from one to three months, have been identified. The steels were exposed in an industrial site, an urban site (São Paulo City, Brazil), and a humid site. The effect of the steel type on the corrosion products formed in the early stages of atmospheric corrosion has been evaluated. The corrosion products formed at the various exposure locations were characterized by Raman...

  12. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Ishii, Masaomi [Department of Nuclear Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Muroga, Takeo [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 502-5292 (Japan)

    2015-10-15

    Graphical abstract: Corrosion of RAFM steel, JLF-1, in liquid Sn–20Li was caused by the formation of Fe-Sn alloyed layer. - Highlights: • The corrosion tests were performed for the reduced activation ferritic martensitic steel JLF-1 and the austenitic steel SUS316 in liquid Ga, Sn and Sn-20Li at 873 K up to 750 h. • The weight loss of the specimens exposed to liquid Ga, Sn and Sn-20Li was evaluated. • The corrosion of the steels in liquid Ga was caused by the alloying reaction between Ga and Fe on the steel surface. • The corrosion of the steels in liquid Sn was caused by the alloying reaction between Sn and Fe on the steel surface. • The corrosion of the steels in liquid Sn-20Li was caused by the formation of the Fe-Sn alloyed layer and the diffusion of Sn and Li into the steel matrix. - Abstract: The compatibility of steels in liquid gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li) was investigated by means of static corrosion tests. The corrosion tests were performed for reduced activation ferritic martensitic steel JLF-1 (JOYO-HEAT, Fe–9Cr–2W–0.1C) and austenitic steel SUS316 (Fe–18Cr–12Ni–2Mo). The test temperature was 873 K, and the exposure time was 250 and 750 h. The corrosion of these steels in liquid Ga, Sn and Sn–20Li alloy was commonly caused by the formation of a reaction layer and the dissolution of the steel elements into the melts. The reaction layer formed in liquid Ga was identified as Fe{sub 3}Ga from the results of metallurgical analysis and the phase diagram. The growth rate of the reaction layer on the JLF-1 steel showed a parabolic rate law, and this trend indicated that the corrosion could be controlled by the diffusion process through the layer. The reaction layer formed in liquid Sn and Sn–20Li was identified as FeSn. The growth rate had a linear function with exposure time. The corrosion in Sn and Sn–20Li could be controlled by the interface reaction on the layer. The growth rate of the layer formed

  13. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Ishii, Masaomi; Muroga, Takeo

    2015-01-01

    Graphical abstract: Corrosion of RAFM steel, JLF-1, in liquid Sn–20Li was caused by the formation of Fe-Sn alloyed layer. - Highlights: • The corrosion tests were performed for the reduced activation ferritic martensitic steel JLF-1 and the austenitic steel SUS316 in liquid Ga, Sn and Sn-20Li at 873 K up to 750 h. • The weight loss of the specimens exposed to liquid Ga, Sn and Sn-20Li was evaluated. • The corrosion of the steels in liquid Ga was caused by the alloying reaction between Ga and Fe on the steel surface. • The corrosion of the steels in liquid Sn was caused by the alloying reaction between Sn and Fe on the steel surface. • The corrosion of the steels in liquid Sn-20Li was caused by the formation of the Fe-Sn alloyed layer and the diffusion of Sn and Li into the steel matrix. - Abstract: The compatibility of steels in liquid gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li) was investigated by means of static corrosion tests. The corrosion tests were performed for reduced activation ferritic martensitic steel JLF-1 (JOYO-HEAT, Fe–9Cr–2W–0.1C) and austenitic steel SUS316 (Fe–18Cr–12Ni–2Mo). The test temperature was 873 K, and the exposure time was 250 and 750 h. The corrosion of these steels in liquid Ga, Sn and Sn–20Li alloy was commonly caused by the formation of a reaction layer and the dissolution of the steel elements into the melts. The reaction layer formed in liquid Ga was identified as Fe 3 Ga from the results of metallurgical analysis and the phase diagram. The growth rate of the reaction layer on the JLF-1 steel showed a parabolic rate law, and this trend indicated that the corrosion could be controlled by the diffusion process through the layer. The reaction layer formed in liquid Sn and Sn–20Li was identified as FeSn. The growth rate had a linear function with exposure time. The corrosion in Sn and Sn–20Li could be controlled by the interface reaction on the layer. The growth rate of the layer formed in

  14. Properties, weldability and corrosion behavior of supermartensitic stainless steels for on- and offshore applications

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Ojo, Olatunji Oladimeji [Kocaeli Univ. (Turkey). Welding Research, Education and Training Center

    2016-08-01

    Stimulated material-environment interactions inside and around flowlines of deep or ultra deep wells during oil and gas exploration, and fabrication economy of pipelines have been the major challenges facing the oil and gas industries. Presumably, an extensive focus on high integrity, performance and material economy of flowlines have realistically made supermartensitic stainless steels (SMSS) efficient and effective material choices for fabricating onshore and offshore pipelines. Supermartensitic stainless steels exhibit high strength, good low temperature toughness, sufficient corrosion resistance in sweet and mildly sour environments, and good quality weldability with both conventional welding processes and modern welding methods such as laser beam welding, electron beam welding and hybrid welding approaches. In terms of economy, supermartensitic stainless steels are cheaper and they are major replacements for more expensive duplex stainless steels required for tubing applications in the oil and gas industry. However, weld areas of SMSS pipes are exposed to sulphide stress cracking (SSC), so intergranular stress corrosion cracking (IGSCC) or stress corrosion cracking can occur. In order to circumvent this risk of cracking, a post-weld heat treatment (PWHT) for 5 minutes at about 650 C is recommended. This paper provides detailed literature perusal on supermartensitic stainless steels, their weldability and corrosion behaviors. It also highlights a major research area that has not been thoroughly expounded in literature; fatigue loading behaviors of welded SMSS under different corrosive environments have not been thoroughly detailed in literature.

  15. Properties, weldability and corrosion behavior of supermartensitic stainless steels for on- and offshore applications

    International Nuclear Information System (INIS)

    Taban, Emel; Kaluc, Erdinc; Ojo, Olatunji Oladimeji

    2016-01-01

    Stimulated material-environment interactions inside and around flowlines of deep or ultra deep wells during oil and gas exploration, and fabrication economy of pipelines have been the major challenges facing the oil and gas industries. Presumably, an extensive focus on high integrity, performance and material economy of flowlines have realistically made supermartensitic stainless steels (SMSS) efficient and effective material choices for fabricating onshore and offshore pipelines. Supermartensitic stainless steels exhibit high strength, good low temperature toughness, sufficient corrosion resistance in sweet and mildly sour environments, and good quality weldability with both conventional welding processes and modern welding methods such as laser beam welding, electron beam welding and hybrid welding approaches. In terms of economy, supermartensitic stainless steels are cheaper and they are major replacements for more expensive duplex stainless steels required for tubing applications in the oil and gas industry. However, weld areas of SMSS pipes are exposed to sulphide stress cracking (SSC), so intergranular stress corrosion cracking (IGSCC) or stress corrosion cracking can occur. In order to circumvent this risk of cracking, a post-weld heat treatment (PWHT) for 5 minutes at about 650 C is recommended. This paper provides detailed literature perusal on supermartensitic stainless steels, their weldability and corrosion behaviors. It also highlights a major research area that has not been thoroughly expounded in literature; fatigue loading behaviors of welded SMSS under different corrosive environments have not been thoroughly detailed in literature.

  16. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    Science.gov (United States)

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  17. Composition and corrosion properties of high-temperature oxide films on steel type 18-10

    International Nuclear Information System (INIS)

    Vakulenko, B.F.; Morozov, O.N.; Chernysheva, M.V.

    1985-01-01

    The composition and propeties of oxide films, formed in the process of tube production of steel type 18-10, as well as the behaviour of the steels coated with oxide films under operating conditions of NPP heat-exchange equipment at the 20-300 deg C temperatures are determined. It is found, that the films have a good adhesion to the steel surface and repeat the metal structure without interfering with, the surface defect determination. Introduction of the NaNO 2 corrosion inhibitor decreases the film destruction rate to the level of the base metal corrosion. It is found acceptable to use tubes of steel 18-10 coated with dense oxide films in the heat-exchange and water supply systems of NPP

  18. A wireless embedded passive sensor for monitoring the corrosion potential of reinforcing steel

    International Nuclear Information System (INIS)

    Bhadra, Sharmistha; Thomson, Douglas J; Bridges, Greg E

    2013-01-01

    Corrosion of reinforcing steel, which results in premature deterioration of reinforced concrete structures, is a worldwide problem. Most corrosion sensing techniques require some type of wired connection between the sensor and monitoring electronics. This causes significant problems in their installation and long-term use. In this paper we describe a new type of passive embeddable wireless sensor that is based on an LC coil resonator where the resonant frequency is changed by the corrosion potential of the reinforcing steel. The resonant frequency can be monitored remotely by an interrogator coil inductively coupled to the sensor coil. The sensor unit comprises an inductive coil connected in parallel with a voltage dependent capacitor (varactor) and a pair of corrosion electrodes consisting of a reinforcing steel sensing electrode and a stainless steel reference electrode. Change of potential difference between the electrodes due to variation of the corrosion potential of the reinforcing steel changes the capacitance of the varactor and shifts the resonant frequency of the sensor. A time-domain gating method was used for the interrogation of the inductively coupled corrosion sensor. Results of an accelerated corrosion test using the sensor indicate that the corrosion potential can be monitored with a resolution of less than 10 mV. The sensor is simple in design and requires no power source, making it an inexpensive option for long-term remote monitoring of the corrosion state of reinforcing steel. (paper)

  19. Corrosion of Galvanized Steel Under Different Soil Moisture Contents

    OpenAIRE

    Pereira,Roseana Florentino da Costa; Oliveira,Edkarlla Sousa Dantas de; Lima,Maria Alice Gomes de Andrade; Brasil,Simone Louise Delarue Cezar

    2015-01-01

    Galvanized steel has been widely applied in different applications and the industry significantly increased its production in recent years. Some galvanized structures can be completely or partially buried, such as transmission tower footings. The corrosion of these metallic structures is related to the soil chemical and physicochemical properties, which define the aggressiveness of the environment. To assess the effect of the soil moisture on galvanized steel corrosion, a comparative study wa...

  20. Study on tea leaves extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Hamdan, A. B.; Suryanto; Haider, F. I.

    2018-01-01

    Corrosion inhibitor from extraction of plant has been considered as the most preferable and most chosen technique to prevent corrosion of metal in acidic medium because of the environmental friendly factor. In this study, black tea leaves extraction was tested as corrosion inhibitor for mild steel in 0.1M of hydrochloric acid (HCl) with the absence and presence of corrosion inhibitor. The efficiency and effectiveness of black tea as corrosion inhibitor was tested by using corrosion weight loss measurement experiment was carried out with varies parameters which with different concentration of black tea extract solution. The extraction of black tea solution was done by using aqueous solvent method. The FT-IR result shows that black tea extract containing compounds such as catechin, caffeine and tannins that act as anti-corrosive reagents and responsible to enhance the effectiveness of black tea extract as corrosion inhibitor by forming the hydrophobic thin film through absorption process. As a result of weight loss measurement, it shows that loss in weight of mild steel reduces as the concentration of inhibitor increases. The surface analysis was done on the mild steel samples by using SEM.

  1. A new steel with good low-temperature sulfuric acid dew point corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.Q.; Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Key Laboratory of Corrosion and Protection (Ministry of Education), Beijing (China); Sun, F.L. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Lv, S.J. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Equipment and Power Department, Shijiazhuang Refine and Chemical Company Limited, SINOPEC, Shijiazhuang (China)

    2012-07-15

    In this work, new steels (1, 2, and 3) were developed for low-temperature sulfuric acid dew point corrosion. The mass loss rate, macro- and micro-morphologies and compositions of corrosion products of new steels in 10, 30, and 50% H{sub 2}SO{sub 4} solutions at its corresponding dew points were investigated by immersion test, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results indicated that mass loss rate of all the tested steels first strongly increased and then decreased as H{sub 2}SO{sub 4} concentration increased, which reached maximum at 30%. Corrosion resistance of 2 steel is the best among all specimens due to its fine and homogeneous morphologies of corrosion products. The electrochemical corrosion properties of new steels in 10 and 30% H{sub 2}SO{sub 4} solutions at its corresponding dew points were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that corrosion resistance of 2 steel is the best among all the experimental samples due to its lowest corrosion current density and highest charge transfer resistance, which is consistent with the results obtained from immersion tests. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effect of nanograin-boundary networks generation on corrosion of carburized martensitic stainless steel.

    Science.gov (United States)

    Boonruang, Chatdanai; Thong-On, Atcharawadi; Kidkhunthod, Pinit

    2018-02-02

    Martensitic stainless steel parts used in carbonaceous atmosphere at high temperature are subject to corrosion which results in a large amount of lost energy and high repair and maintenance costs. This work therefore proposes a model for surface development and corrosion mechanism as a solution to reduce corrosion costs. The morphology, phase, and corrosion behavior of steel are investigated using GIXRD, XANES, and EIS. The results show formation of nanograin-boundary networks in the protective layer of martensitic stainless steel. This Cr 2 O 3 -Cr 7 C 3 nanograin mixture on the FeCr 2 O 4 layer causes ion transport which is the main reason for the corrosion reaction during carburizing of the steel. The results reveal the rate determining steps in the corrosion mechanism during carburizing of steel. These steps are the diffusion of uncharged active gases in the stagnant-gas layer over the steel surface followed by the conversion of C into C 4- and O into O 2- at the gas-oxide interface simultaneously with the migration of Cr 3+ from the metal-oxide interface to the gas-oxide interface. It is proposed that previous research on Al 2 O 3 coatings may be the solution to producing effective coatings that overcome the corrosion challenges discussed in this work.

  3. corrosion response of low carbon steel in tropical road mud

    African Journals Online (AJOL)

    Dr Obe

    Corrosion Mitigation efforts using readily available anti- corrosion coatings to protect low carbon steel test coupons against the ... The following protective coating devices were effective: ..... 2 West, J.M (1986): Basic Corrosion and Oxidation,.

  4. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  5. Mechanism and degree of chemical elements effect on atmosphere corrosion resistance of steels

    International Nuclear Information System (INIS)

    Vu Din' Vuj

    1991-01-01

    It follows from the proposed regression equations that falourable effect of chemical elements on steel resistance to atmospheric corrosion is determined by their ability to increase interatom bond stability in iron crystal lattice and form corrosion products with high protection properties. Element positive influence on steel corrosion resistance decreases in the following order: S, P, Si, Mn, Cu, Cr, Ni, C in semiurban tropical atmosphere and S, Mn, Sr, Cu, Ni, Cr in coastal atmosphere. In the latter case C increases corrosion in a greater degree as compared to P. Small ammounts of Mo decrease steel resistance in semiurban atmosphere and almost do not influence it in the coastal one. Possible mechanisms of individual element influence on steel corrosion resistance are considered

  6. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Jianbo Sun

    2016-03-01

    Full Text Available The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels.

  7. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Science.gov (United States)

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  8. Corrosion critique of the 2 1/4 Cr--1 Mo steel for LMFBR steam generation system applications

    International Nuclear Information System (INIS)

    Zima, G.E.

    1977-07-01

    The unstabilized ferritic steel of nominal composition, 2 1 / 4 Cr-1Mo, has been proposed for critical structural assignments in LMFBR powerplants, specifically: the tubing, tubesheet and shell of the evaporator and superheater components. The interest in this steel has been based on a presumably favorable general corrosion property spectrum, acceptable mechanical properties and fabricability, and certain economies associated with the low alloy content. This report is an attempt at a general corrosion assessment for the 2 1 / 4 Cr-1Mo steel and an identification of corrosion problem areas potential to this steel from the sodium and water/steam systems of the proposed working environment. There is a considerable area of uncertainty in the sodium-side response of 2 1 / 4 Cr-1Mo steel, centered in the loss and redisposition of carbon during long-term exposure to sodium of various impurity backgrounds. It is submitted that present evidence relating to the water/steam-side corrosion behavior of the 2 1 / 4 Cr-1Mo steel, under nominal and conceivable perturbed environmental conditions, constitutes the principal concern for the proposed LMFBR powerplant applications of this steel. It is suggested that this unfavorable corrosion aspect represents an inherent limitation of the low alloy content of this steel, probably largely independent of melting and processing recourses, and it is a sufficient basis to question the incentive for a continuation of the collateral studies of this steel for the proposed LMFBR steam generation system assignments

  9. Marine Atmospheric Corrosion of Carbon Steel: A Review.

    Science.gov (United States)

    Alcántara, Jenifer; Fuente, Daniel de la; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-04-13

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter's great importance to human society. About half of the world's population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl - -rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors' opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary.

  10. Marine Atmospheric Corrosion of Carbon Steel: A Review

    Science.gov (United States)

    Alcántara, Jenifer; de la Fuente, Daniel; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-01-01

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter’s great importance to human society. About half of the world’s population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl−-rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors’ opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary. PMID:28772766

  11. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2015-02-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  12. Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm

    Science.gov (United States)

    Balan, A. V.; Shivasankaran, N.; Magibalan, S.

    2018-04-01

    Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.

  13. Electrochemical corrosion behaviors of the X90 linepipe steel in NS4 solution

    Directory of Open Access Journals (Sweden)

    Jinheng Luo

    2016-10-01

    Full Text Available Oil and gas line pipes are laid underground and run through different areas in the laying process, so they will be subjected to different degrees of corrosion and even crack, leading to enormous casualties and economic losses. In order to guarantee the safe operation of line pipes, therefore, it is significant to investigate the electrochemical corrosion behaviors of pipe steel in a simulated soil environment. In this paper, the electrochemical corrosion behaviors of the base metals and welding materials of API 5L X90 steel longitudinally submerged arc welding pipes in near-neutral simulated soil solution (NS4 were studied by means of the electrochemical impedance spectroscopy (EIS and the potentiodynamic polarization testing technology. It is shown that the typical characteristic of anodic dissolution is presented but with no passivation phenomenon when X90 linepipe steel is put in NS4 solution. The base material is thermodynamically more stable than the seam weld material. The base material and seam weld samples were polarized under −850 mV polarization potential for different durations. It is demonstrated that with the proceeding of polarization, the polarization resistance and the corrosion resistance increase while the corrosion current density decreases. And the corrosion resistance of base material is better than that of seam weld material.

  14. Influence of local microplastic strains on stress corrosion of 08Kh18N10T steel

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Efimov, A.A.; Sherman, Ya.I.; Fedorova, T.I.

    1987-01-01

    Study on specific features of microhomogeneous strain in the process of plastic strain development and their role in stress corrosion of 08Kh18N10T steel sheet specimens subject to preliminary strain by 1, 3, 6, 16 and 23% and subsequent tests of stress corrosion in magnesium chloride solution at 150 deg C 140 MPa has been carried out. Analysis of test results has shown that microplastic strain is distributed over a specimen nonuniformly and is accompanied with the slip bands formation which are sources of corrosion crack origination and development. 08Kh18N10T steel manifests the highest trend to stress corrosion under 1% microplastic strain

  15. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  16. Studies of the corrosion and cracking behavior of steels in high temperature water by electrochemical techniques

    International Nuclear Information System (INIS)

    Cheng, Y.F.; Bullerwell, J.; Steward, F.R.

    2003-01-01

    Electrochemical methods were used to study the corrosion and cracking behavior of five Fe-Cr alloy steels and 304L stainless steel in high temperature water. A layer of magnetite film forms on the metal surface, which decreases the corrosion rate in high temperature water. Passivity can be achieved on A-106 B carbon steel with a small content of chromium, which cannot be passivated at room temperature. The formation rate and the stability of the passive film (magnetite film) increased with increasing Cr-content in the steels. A mechanistic model was developed to simulate the corrosion and cracking processes of steels in high temperature water. The crack growth rate on steels was calculated from the maximum current of the repassivation current curves according to the slip-oxidation model. The highest crack growth rate was found for 304L stainless steel in high temperature water. Of the four Fe-Cr alloys, the crack growth rate was lower on 0.236% Cr- and 0.33% Cr-steels than on 0.406% Cr-steel and 2.5% Cr-1% Mo steel. The crack growth rate on 0.33% Cr-steel was the smallest over the tested potential range. A higher temperature of the electrolyte led to a higher rate of electrochemical dissolution of steel and a higher susceptibility of steel to cracking, as shown by the positive increase of the electrochemical potential. An increase in Cr-content in the steel is predicted to reduce the corrosion rate of steel at high temperatures. However, this increase in Cr-content is predicted not to reduce the susceptibility of steel to cracking at high temperatures. (author)

  17. Studies of corrosion resistance of Japanese steels in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Ono, Hiroshi; Kitano, Teruaki; Ono, Mikinori

    2003-01-01

    Liquid lead-bismuth has attractive characteristics as a coolant in future fast reactors and Accelerator Driven Sub-critical Systems (ADS) applications. The corrosion behavior of structural materials in lead-bismuth eutectic is one of key problems in developing nuclear power plants and installations using lead-bismuth coolant. Our experiences with heat exchangers using liquid lead-bismuth and the results of corrosion tests of Japanese steels are reported in this paper. A series of corrosion tests was carried out in collaboration with the Institute of Physics and Power Engineering (IPPE). Test specimens of various Japanese steels were exposed in a non-isothermal forced circulation loop. The influence of maximum temperature and oxygen content in lead bismuth were chosen for study as the primary causes of corrosion in Japanese steels. After the corrosion tests, corrosion behavior was analyzed by visual inspection, measurement of weight loss and metallurgical examination of the microstructure of the corroded zone. The corrosion mechanism in liquid lead bismuth is discussed on the basis of the metallurgical examination of the corroded zone. (author)

  18. Corrosion behavior of carbon steel for overpack in groundwater containing bicarbonate ions

    International Nuclear Information System (INIS)

    Nishimura, Toshiyasu; Dong, Junpha

    2009-01-01

    Carbon steel is considered in Japan the candidate material for overpacks in high-level radioactive waste disposal. Effects of bicarbonate solutions on the corrosion behavior and corrosion products of carbon steel were investigated by electrochemical measurements, FT-IR and XRD analyses. The anodic polarization measurements showed that bicarbonate ions (HCO 3 - ) accelerated the anodic dissolution and the outer layer film formation of carbon steel in the case of high concentrations, on the other hand, it inhibited these processes in the case of low concentrations. The FT-IR and XRD analyses of the anodized film showed that siderite (FeCO 3 ) was formed in 0.5 to 1.0 mol/L bicarbonate solution, and Fe 2 (OH) 2 CO 3 in 0.1 to 0.2 mol/L bicarbonate solution, while Fe 6 (OH) 12 CO 3 was formed in 0.02 to 0.05 mol/L bicarbonate solutions. The stability of these corrosion products was able to be explained by using the actual potential-pH diagrams for the Fe-H 2 O-CO 2 system. (author)

  19. Inhibition of salt precipitation, corrosion and corrosion fatigue of steel in neutral environments

    International Nuclear Information System (INIS)

    Mikhajlovskij, V.Ya.; Slobodyan, Z.V.; Soprunyuk, N.G.; Ivanov, A.M.

    1983-01-01

    Processes of salt precipitation, corrosion under dynamic and static conditions, are studied as well as corrosion fatigue of 20 and 40Kh steels in neutral aqueous media without and with the addition of compounds of several classes. The solution of calcium bicarbonate with the initial concentration [Ca(HCO 3 ) 2 ]=1.3 g/l and 3% NaCl solution in distilled water are used for investigation. The effectiveness index of salt precipitation inhibitor is determined by the change in the rate of calcium bicarbonate transformation into carbonate. The combination of results obtained permits to make the conclusion that tripolyphosphate and pyrophosphoric acid are rather perspective inhibitors of complex effect with low protective concentrations

  20. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo

    2007-01-01

    if the biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system......Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process...... of film formation in sulfide solutins was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data, resulting in unreliable corrosion rates measured using electrochemical techniques. The effect is strongly increased...

  1. Corrosion Resistance and Pitting Behaviour of Low-Carbon High-Mn Steels in Chloride Solution

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available Corrosion resistance of the X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 type austenitic steels, after hot deformation as well as after cold rolling, were evaluated in 3.5% NaCl solution using potentiodynamic polarization tests. A type of nonmetallic inclusions and their pitting corrosion behaviour were investigated. Additionally, the effect of cold deformation on the corrosion resistance of high-Mn steels was studied. The SEM micrographs revealed that corrosion damage formed in both investigated steels is characterized by various shapes and an irregular distribution at the metallic matrix, independently on the steel state (thermomechanically treated or cold worked. Corrosion pits are generated both in grain interiors, grain boundaries and along the deformation bands. Moreover, corrosion damage is stronger in cold deformed steels in comparison to the thermomechanically treated specimens. EDS analysis revealed that corrosion pits preferentially nucleated on MnS and AlN inclusions or complex oxysulphides. The morphology of corrosion damage in 3.5% NaCl supports the data registered in potentiodynamic tests.

  2. Microbial corrosion of steel in Toarcian argillite: potential influence of bio-films

    International Nuclear Information System (INIS)

    Urios, L.; Desneux, J.; Magot, M.; Perez, A.; Mercier, F.; Dillmann, P.; Wittebroodt, C.; Dauzeres, A.; Marsal, F.

    2012-01-01

    selected microbial strains, including sulfate-reducing bacteria, iron-reducing bacteria and s trains able to form bio-films, are inoculated. The dismantling of cells every 3 months allows us to characterize the influence of the experimental conditions and to establish the chronology of the involved processes, particularly the colonization of steel surface by bacteria. Observations are made using Scanning Electron Microscopy and X-Ray Diffraction to reveal changes at the steel surface. Molecular determination of the composition of the microbial diversity is used to determine which species are responsible for corrosion of the steel coupons. Analyses of incoming and outgoing water chemistry provide indications about microbial metabolisms occurring in the cell. Monitoring over time informs on the kinetics of events on population variations and correlations can be established between the structure of the biological component in the system and the impact on interactions with the steel. A first set of cells will be dismantled by September 2012. Results obtained from the characterization campaign will be presented and discussed. (authors)

  3. Effect of free Cr content on corrosion behavior of 3Cr steels in a CO2 environment

    Science.gov (United States)

    Li, Wei; Xu, Lining; Qiao, Lijie; Li, Jinxu

    2017-12-01

    The corrosion behavior of 3Cr steels with three microstructures (martensite, bainite, combined ferrite and pearlite) in simulated oil field formation water with a CO2 partial pressure of 0.8 MPa was investigated. The relationships between Cr concentrations in corrosion scales and corrosion rates were studied. The precipitated phases that contained Cr were observed in steels of different microstructures, and free Cr content levels were compared. The results showed that steel with the martensite microstructure had the highest free Cr content, and thus had the highest corrosion resistance. The free Cr content of bainite steel was lower than that of martensite steel, and the corrosion rate of bainite steel was higher than that of martensite steel. Because large masses of Cr were combined in ferrite and pearlite steel, the corrosion rates of ferrite and pearlite steel were the highest. Free Cr content in steel affects its corrosion behavior greatly.

  4. The maraging steel corrosion properties with hardening of different kinds after double aging

    Directory of Open Access Journals (Sweden)

    L. V. Tarasenko

    2014-01-01

    Full Text Available The paper proposes to use high-strength corrosion-resistant maraging steels, which were developed for aircraft industry instead of carbon steel with coating to improve operation properties of the forcemeasuring resilient member in electronic strain-gauge balance.It examines the possibility to apply the martensitic-aging steels of Fe-Cr-Ni-Mo-Ti (ЭП678 and Fe-Cr-Ni-Mo-Cu-Nb (ЭП817 alloying systems. It was shown, that a traditional heat strain-hardening treatment including hardening and overageing of this steels provides combination of durability viscosity and corrosion- resistance, but at the same time it increases nonelastic effects and lowers the limit of elasticity because of reversing austenite formation. In this connection, it was proposed to use hardening with double aging i.e. main and low-temperature aging with no austenite formation as heat strainhardening treatment of steels for force-measuring resilient member. The goal of this work was to study the influence of double aging on the structure and properties of ЭП678 (06Х14Н6Д2МБТ and ЭП817 (03Х111Н10М2Т steels.The modes of double aging for ЭП817 steel were conformed to 4500С + 400 0С and 475 0С+ 400 0С, for ЭП678 steel – 530 0С + 500 0С. The structure and properties of hardened steels after main and double aging were compared.Metallographic analysis of samples after electrolytic etching was conducted with Leitz Metallovert microscope while the CamScan 4DV raster electronic microscope was used for Microroentgen-spectral analysis. The quantity of austenite was controlled with computerized setting DRON-4, the hardness was measured with ТК-2М instrument, corrosion-resistance was estimated with polarized curves, which were taken using a П-5848 potentiostat.The conducted research has shown, that double aging causes the additional hardening of steels due to disintegration of martensite and formation of dispersed Cu – corpuscles in ЭП817 steel and of Ni3Ti

  5. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  6. Irradiation Assisted Stress Corrosion Cracking of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) of austenitic stainless steels in oxygenated high temperature water was studied. The IASCC failure has been considered as a degradation phenomenon potential not only in the present light water reactors but rather common in systems where the materials are exposed simultaneously to radiation and water environments. In this study, effects of the material and environmental factors on the IASCC of austenitic stainless steels were investigated in order to understand the underlying mechanism. The following three types of materials were examined: a series of model alloys irradiated at normal water-cooled research reactors (JRR-3M and JMTR), the material irradiated at a spectrally tailored mixed-spectrum research reactor (ORR), and the material sampled from a duct tube of a fuel assembly used in the experimental LMFBR (JOYO). Post-irradiation stress corrosion cracking tests in a high-temperature water, electrochemical corrosion tests, etc., were performed at hot laboratories. Based on the results obtained, analyses were made on the effects of alloying/impurity elements, irradiation/testing temperatures and material processing, (i.e., post-irradiation annealing and cold working) on the cracking behavior. On the basis of the analyses, possible remedies against IASCC in the core internals were discussed from viewpoints of complex combined effects among materials, environment and processing factors. (author). 156 refs.

  7. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: I. Swamp Water

    Directory of Open Access Journals (Sweden)

    Sulistyoweni Widanarko

    2010-10-01

    Full Text Available Most of infrastructures using steel concrete to reinforce the strength of concrete. Steel concrete is so vulnerable to chemical compounds that can cause corrosion. It can happen due to the presence of chemical compounds in acid environment in low pH level. These chemical compounds are SO42-, Cl-, NO3-. There are many swamp area in Indonesia. The acid contents and the concentration of ion sulphate, chlorides, and nitrate are higher in the swamp water than in the ground water .The objective of this research was to find out the influence of corrosive chemicals in the swamp water to the steel concrete corrosion rate. There were two treatment used: (1 emerging ST 37 and ST 60 within 60 days in the 'polluted' swamp water, (2 moving the ST 37 up and down periodically in the ' polluted' swamp water. Three variation of 'polluted' swamp water were made by increasing the concentration of corrosive chemical up to 1X, 5X and 10X respectively. The corrosion rate was measured by using an Immersion Method. The result of Immersion test showed that chloride had the greatest influence to corrosion rate of ST 37 and ST 60 and followed by sulphate and Nitrate. Corrosion rate value for ST 37 is 24.29 mpy and for ST 60 is 22.76 mpy. By moving the sample up and down, the corrosion rate of ST 37 increase up to 37.59 mpy, and chloride still having the greatest influence, followed by sulphate and nitrate.

  8. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations

    Science.gov (United States)

    Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru

    2008-02-01

    Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.

  9. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes normally are used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium-nickel steels in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  10. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0% and nickel does not exceed 50.0%

  11. Cathodic corrosion protection of steel pipes; Kathodischer Korrosionsschutz von Rohrleitungsstaehlen

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Markus [SGK Schweizerische Gesellschaft fuer Korrosionsschutz, Zuerich (Switzerland); Schoeneich, Hanns-Georg [Open Grid Europe, Essen (Germany)

    2011-07-01

    The cathodic corrosion protection has been proven excellently in the practical use for buried steel pipelines. This is evidenced statistically by a significantly less frequency of loss compared to non-cathodically protected pipelines. Based on thermodynamic considerations, the authors of the contribution under consideration describe the operation of the cathodic corrosion protection and regular adjustment of the electrochemical potential at the interface steel / soil in practical use. Subsequently, the corrosion scenarios are discussed that may occur when an incorrect setting of the potential results from an operation over several decades. This incorrect setting also can be caused by the failure of individual components of the corrosion protection.

  12. Application of potential relaxation transient measurements to corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Benjamin, S.E.; Skyes, J.M.

    1993-01-01

    Corrosion of steel in concrete is an electrochemical process that involves the process occurring at the interface and also in the bulk diffusion of species. This paper present studies on corrosion of Swedish Iron in concrete utilizing potential relaxation transients. This rapid new D.C. technique (developed at Oxford University, U.K.) analyzes the decay in terms of different resistor (R) - capacitor(c) combinations, thus identifying the individual processes as their time constants(tau). The resistance of the concrete is also separated. The merits and demerits of the technique are discussed. (author)

  13. Corrosion of carbon steel under waste disposal conditions

    International Nuclear Information System (INIS)

    Marsh, G.

    1990-01-01

    The corrosion of carbon steel has been studied in the United Kingdom under granitic groundwater conditions, with pH between 5 and 10 and possibly substantial amounts of Cl - , SO 4 2- and HCO 3 - /CO 3 2- . Corrosion modes considered include uniform corrosion under both aerobic and anaerobic conditions; passive corrosion; localized attack in the form of pitting or crevice corrosion; and environmentally assisted cracking - hydrogen embrittlement or stress corrosion cracking. Studies of these processes are being carried out in order to predict the metal thicknesses required to give container lifetimes of 500 to 1000 years. A simple uniform corrosion model predicts a corrosion rate of around 13.4 μm/a at 20C, rising to 69 μm/a at 50C and 208 μm/a at 90C. A radiation dose of 10 5 rad/h and a G-value of 2.8 for the production of oxidizing species would account for an increase in corrosion rate of 7 μm/a. This model overestimates slightly the results actually achieved for experimental samples exposed for two years, the difference being due to a protective film formed on the samples. These corrosion rates predict that the container must be 227 mm thick to withstand uniform corrosion; however, they predict very high levels of hydrogen production. Conditions will be favourable for localized or pitting corrosion for about 125 years, leading to a maximum penetration of 160 mm. Since the exposure environment cannot be predicted precisely, one cannot state that stress corrosion cracking is impossible. Thus the container must be stress relieved. Other corrosion mechanisms such as microbial corrosion and hydrogen embrittlement are not considered significant

  14. Unexpected corrosion of stainless steel in low chloride waters – microbial aspects

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Carpén, Leena; Møller, Per

    2009-01-01

    conditions or periods of low water consumption have occurred prior to the failure. Typically the corrosion attacks appear within 2-3 years in weld nuggets, heat affected zones or in crevices like e.g. press fitting pipe connections. The failure mode is pitting and crevice corrosion leading to leaks and rust......Abstract Stainless steels EN 1.4301 and 1.4401/1.4404 are normally considered corrosion resistant in low chloride natural waters like drinking water. However, a number of corrosion failures have been observed in e.g. fire extinguisher systems and drinking water installations, where stagnant...... stains on the outside of the installation. Corrosion may occur in water qualities with rather low chloride contents and fairly low conductivity, which would usually not be considered especially corrosive towards stainless steel. One key parameter is the ennoblement documented on stainless steel...

  15. Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel

    Science.gov (United States)

    Yang, Se-fei; Wen, Ying; Yi, Pan; Xiao, Kui; Dong, Chao-fang

    2017-11-01

    The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency (IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl3 solution.

  16. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    OpenAIRE

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The rev...

  17. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  18. Stress corrosion cracking properties of 15-5PH steel

    Science.gov (United States)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  19. Tannin bark Melalauca cajuputi powell (gelam) as green corrosion inhibitor of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Talib, Nur Atiqah Abu; Zakaria, Sarani; Hua, Chia Chin; Othman, Norinsan Kamil [School of Applied Physic, Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2014-09-03

    Tannin was extracted from gelam bark and used to produce corrosion inhibitor for mild steel. Tannin was extracted from gelam bark using 70% aqueous acetone for 6 hour. Tannin powder was characterization using fourier transform infrared spectroscopy to analyse chemical component in tannin and Scanning electron microscope (SEM) for tannin physical structure. The tannin effect on the corrosion inhibition of mild steel has been investigated in 1Mol HCl solution for 6 hour followed ASTM. The weight loss method were applied to study the mild steel corrosion behavior in the present and absend of different concentration of tannin (250, 300, 350)ppm. Tannin act good inhibitor as corrosion inhibitor for mild steel in acid medium. Surface morphology of carbon steel with and without inhibitor was investigated by scanning electron microscopy.

  20. Localized corrosion of carbon steel in a CO{sub 2}-saturated oilfield formation water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Cheng, Y.F., E-mail: fcheng@ucalgary.c [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2011-01-01

    In this work, corrosion and localized corrosion behavior of X65 pipeline steel were studied in a simulated, CO{sub 2}-saturated oilfield formation water by various electrochemical measurement techniques, including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves, galvanic current and localized EIS (LEIS). The morphology and composition of the formed corrosion scale were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. A conceptual model was developed to illustrate the occurrence of localized corrosion of the steel under scale. Both galvanic current and LEIS measurements showed that a galvanic effect existed between the bare steel and the scale-covered region. The scale-covered region served as cathode and the bare steel site as the anode. The big cathode vs. small anode geometry accelerated the local corrosion reaction. At an elevated temperature, a compact, crystalline scale was formed on the steel surface, enhancing the galvanic effect. Moreover, the stability of the scale was increased with time, and localized corrosion of the steel under scale experienced mechanistic changes with time.

  1. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.

    Science.gov (United States)

    Fathi, M H; Salehi, M; Saatchi, A; Mortazavi, V; Moosavi, S B

    2003-05-01

    The most common metals and alloys used in dentistry may be exposed to a process of corrosion in vivo that make them cytotoxic. The biocompatibility of dental alloys is primarily related to their corrosion behavior. The aim of this work was to evaluate the corrosion behavior and thus the biocompatibility of the uncoated and coated stainless steels and compare the effect of type of coatings on corrosion behavior. Three types of coatings, hydroxyapatite (HA), titanium (Ti), and a double-layer HA/Ti on AISI 316L stainless steel were made. HA coating was produced using plasma-spraying technique and Ti coating was made using physical vapor deposition process. In order to perform a novel double-layer composite coating, a top layer of HA was plasma-sprayed over a physical vapor deposited Ti layer on AISI 316L stainless steel. Structural characterization techniques including XRD, SEM and EDX were used to investigate the microstructure, morphology and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Double-layer HA/Ti coating on AISI 316L SS had a positive effect on improvement of corrosion behavior. The decrease in corrosion current densities was significant for these coated specimens and was much lower than the values obtained for uncoated and single HA coated specimens. Ti coating on AISI 316L SS also has a beneficial effect on corrosion behavior. The results were compared with the results of corrosion behavior of HA coated commercially pure titanium (cpTi) and uncoated cpTi. These results demonstrated that the double-layer HA/Ti coated 316L SS can be used as an endodontic implant and two goals including improvement of corrosion resistance and bone osteointegration can be obtained simultaneously.

  2. Prevention of Crevice Corrosion of STS 304 Stainless Steel by a Mg-alloy Galvanic Anode

    International Nuclear Information System (INIS)

    Lim, U. J.; Yun, B. D.; Kim, J. J.

    2006-01-01

    Prevention of crevice corrosion was studied for STS 304 stainless steel using a Mg-alloy galvanic anode in solutions with various specific resistivity. The crevice corrosion and corrosion protection characteristics of the steel was investigated by the electrochemical polarization and galvanic corrosion tests. Experimental results show that the crevice corrosion of STS 304 stainless steel does not occur in solutions of high specific resistivity, but it occurs in solutions of low specific resistivity like in solutions with resistivities of 30, 60 and 115 Ω · m. With decreasing specific resistivity of the solution, the electrode potential of STS 304 stainless steel in the crevice is lowered. The potential of STS 304 stainless steel in the crevice after coupling is cathodically polarized more by decreasing specific resistivity indicating that the crevice corrosion of STS 304 stainless steel is prevented by the Mg-alloy galvanic anode

  3. Nanostructure and Properties of Corrosion Resistance in C+Ti Multi-Ion-Implanted Steel

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 刘安东; 张旭; 王晓妍

    2003-01-01

    The corrosion and pitting corrosion resistance of C+ Ti dual and C+Ti+C ternary implanted H13 steel were studied by using a multi-sweep cyclic voltammetry and a scanning electron microscope. The effects of phase formation on corrosion and pitting corrosion resistance were explored. The x-ray diffraction analysis shows that the nanometer-sized precipitate phases consist of compounds of Fe2 Ti, TiC, Fe2C and Fe3 C in dual implanted layer and even in ternary implanted layer. The passivation layer consists of these nanometer phases. It has been found that the corrosion and pitting corrosion resistance of dual and ternary implanted H13 steel are improved extremely. The corrosion resistance of ternary implanted layer is better than that of dual implantations and is enhanced with the increasing ion dose. When the ion dose of Ti is 6 × 1017/cm2 in the ternary implantation sample, the anodic peak current density is 95 times less than that of the H13 steel. The pitting corrosion potential of dual and ternary implantation samples is in the range from 55mV to 160mV which is much higher than that of the H13 steel. The phases against the corrosion and pitting corrosion are nanometer silkiness phases.

  4. Intergranular corrosion of 13Cr and 17Cr martensitic stainless steels in accelerated corrosive solution and high-temperature, high-purity water

    International Nuclear Information System (INIS)

    Ozaki, Toshinori; Ishikawa, Yuichi

    1988-01-01

    Intergranular corrosion behavior of 13Cr and 17Cr martensitic stainless steels was studied by electrochemical and immersing corrosion tests. Effects of the mEtallurgical and environmental conditions on the intergranular corrosion of various tempered steels were examined by the following tests and discussed. (a) Anodic polarization measurement and electrolytical etching test in 0.5 kmol/m 3 H 2 SO 4 solution at 293 K. (b) Immersion corrosion test in 0.88 kmol/m 3 HNO 3 solution at 293 K. (c) Long-time immersion test for specimens with a crevice in a high purity water at 473 K∼561 K. It was found from the anodic polarization curves in 0.5 kmol/m 3 H 2 SO 4 solution-at 293 K that the steels tempered at 773∼873 K had susceptibility to intergranular corrosion in the potential region indicating a second current maximum (around-0.1 V. vs. SCE). But the steel became passive in the more noble potential region than the second current peak potential, while in the less noble potential region general corrosion occurred independent of its microstructure. The intergranular corrosion occurred due to the localized dissolution along the pre-austenitic grain boundary and the martensitic lath boundary. It could be explained by the same dissolution model of the chromium depleted zone as proposed for the intergranular corrosion of austenitic and ferritic stainless steels. The intergranular corrosion occurred entirely at the free surface in 0.88 kmol/m 3 HNO 3 solution, while in the high temperature and high purity water only the entrance of the crevice corroded. It was also suggested that this intergranular corrosion might serve as the initiation site for stress corrosion cracking of the martensitic stainless steel. (author)

  5. Influence of femtosecond laser marking on the corrosion resistance of stainless steels

    International Nuclear Information System (INIS)

    Valette, S.; Steyer, P.; Richard, L.; Forest, B.; Donnet, C.; Audouard, E.

    2006-01-01

    Marking is of prime importance in the field of biomaterials to allow the identification of surgical tools as well as prostheses. Nowadays, marking is often achieved by means of laser beam, which may modify the characteristics of the treated surfaces. The use of laser devices delivering nanosecond pulses is known to induce dramatic corrosion degradations during sterilization or decontamination processes of the biomaterials. The aim of the present study is to investigate the ability of femtosecond (pulse duration in the 10 -15 s range) laser treatments to avoid preferential corrosion processes of the marked areas, in order to extend the durability and the reliability of biomaterials. Experiments have been performed on martensitic Z30C13 and austenitic 316L stainless steels. Electrochemical measurements (cyclic polarization curves) were carried out to determine the passive state of samples before and after engraving, their corrosion rate and their susceptibility to localized corrosion. Further protracted immersion tests were also carried out to evaluate the natural long-term degradation of engraved parts. The electrochemical behavior is then explained on the basis of surface characterizations. Femtosecond laser marking is shown to provide an electrochemical ennoblement. Moreover, the chemical composition is not affected so that the passive character of both stainless steels is maintained, even improved if we consider the susceptibility to localized corrosion

  6. Phase analysis of corrosion products of carbon steel in sea water

    International Nuclear Information System (INIS)

    Garcia R, J.; Yee M, H.; Maldonado M, H.; Nunez, L.; Reguera, E.

    1998-01-01

    Nowadays carbon steel continues being the most widely used metallic material in marine and coastal buildings. The economic losses, due to corrosion processes, of those countries with important industrial and social activities in coastal regions are highly significant. In this sense the evaluation of the corrosion process of carbon steel and other materials in seawater or in coastal zones is a primary task for protection methods or to predict the hfe of an specific installation. In this communication we present the phases analysis, using XRD and Moessbauer techniques, of corrosion products of a carbon steel (CT3, equivalent to AISI C1020) exposed in two natural corrosion stations in the Caribbean sea (Cuba). The exposition time run from days to 36 months and the evaluated rust are characteristic of samples totally immersed in seawater, from the splash zone and form coastal zones at different distance from the shoreline. Quantitative phase analysis shown presence of magnetite (Fe 3 O 4 ), maghemite (y-Fe 2 O 3 ), akaganeite (B-FeOOH), lepidocrocite (y-FeOOH) and goethite (a-FeOOH) as iron bearing phases, and CaCO 3 (Calcite and aragonite), these last ones mainly in the immersed samples. Quantitative phase analysis by XRD was implemented as a linear combination of the patterns characteristic of all the detected phases and an appropriate model for the background. The quantitative results were used in kinetic models to understand the phase transformation between the iron oxides and oxy hydroxides in the studied conditions. The XRD qualitative and quantitative results were corroborated by Moessbauer spectroscopy in the temperature range of 20 to 300 K. (Author)

  7. Corrosion behaviour of dissimilar welds between ferritic-martensitic stainless steel and austenitic stainless steel from secondary circuit of CANDU NPP

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2016-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. The principal criteria for selecting a stainless steel usually is resistance to corrosion, and white most consideration is given to the corrosion resistance of the base metal, additional consideration should be given to the weld metal and to the base metal immediately adjacent to the weld zone. Our experiments were performed in chloride environmental on two types of samples: non-welded (410 or W 1.4006 ferritic-martensitic steel and 304L or W 1.4307 austenitic stainless steel) and dissimilar welds (dissimilar metal welds: joints between 410 ferritic-martensitic and 304L austenitic stainless steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and optic microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and ferritic-martensitic steel in solutions containing chloride ions. It was evaluated the corrosion rates of samples (welded and non-welded) by electrochemical methods. (authors)

  8. The effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, T.; Wada, R.; Nishimoto, H.; Fujiwara, K.; Taniguchi, N.; Honda, A.

    1999-10-01

    As a part of evaluation of corrosion life of carbon steel overpack, the experimental studies have been performed on the effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite using iron bacteria (IB) as a representative oxidizing bacteria and sulphur reducing bacteria (SRB) as a representative reducing bacteria. The results of the experimental studies showed that; The activity of SRB was low in compacted bentonite in spite of applying suitable condition for the action of bacteria such as temperature and nutritious solution. Although the corrosion behavior of carbon steel was affected by the existence of bacteria in simple solution, the corrosion rates of carbon steel in compacted bentonite were several μ m/year -10 μ m/year irrespective of coexistence of bacteria and that the corrosion behavior was not affected by the existence of bacteria. According to these results, it was concluded that the bacteria would not affect the corrosion behavior of carbon steel overpack under repository condition. (author)

  9. Influence of alloying elements on the corrosion properties of shape memory stainless steels

    International Nuclear Information System (INIS)

    Della Rovere, C.A.; Alano, J.H.; Silva, R.; Nascente, P.A.P.; Otubo, J.; Kuri, S.E.

    2012-01-01

    Highlights: ► The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape-memory stainless steels (SMSSs) were compared with those of a type 304 (SS 304) austenitic stainless steel. ► A considerably high Si content (about 40 at%) is present in the anodic passive films formed on SMSSs in 0.5 M H 2 SO 4 solution. ► The high protectiveness of the anodic passive film formed on SMSSs in 0.5 M H 2 SO 4 solution results from a protective film consisting of a (Fe, Cr)–mixed silicate. ► The SMSSs exhibited higher corrosion resistance than SS 304 in highly oxidizing environments. ► The SMSSs showed poor corrosion resistance in 3.5% NaCl solution compared to that of SS 304. - Abstract: The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape memory stainless steels were studied based on X-ray photoelectron spectroscopy (XPS) analyses, immersion and polarization tests. The test results were compared with those of a type 304 austenitic stainless steel. The XPS analyses indicated substantial Si content in the anodic passive films formed on shape memory stainless steels in sulfuric acid solution and that the high protectiveness of these films results from a protective film consisting of a (iron, chromium)–mixed silicate. The corrosion rate of the shape memory stainless steels in boiling nitric acid solution was lower than that of austenitic stainless steel. The high silicon content was found to play an important role in the corrosion behavior of these shape memory alloys in highly oxidizing environments. Due to their high manganese content, the shape memory stainless steels showed poor corrosion behavior in 3.5% sodium chloride solution when compared with austenitic stainless steel.

  10. Microbiologically influenced corrosion of stainless steel in a nuclear waste facility

    International Nuclear Information System (INIS)

    Jenkins, C.F.; Doman, D.L.

    1992-01-01

    Corrosion in stainless steel cooling water piping in a nuclear waste processing facility occurred during an extended system lay-up. The failure characteristics indicated microbiologically influenced corrosion (MIC). The corrosion occurred at welds as pinhole penetrations in the surfaces, which opened into large subsurface void formations. Corrosive attack started in the heat-affected zones of the assembly welds, usually adjacent to fusion lines. Stepwise grinding, polishing, and etching in the affected areas revealed that voids generally grew in the wrought material as uniform, general corrosion. Tunneling (wormholing) erosion was also present. Selective attack occurred within the two-phase weld filler zone. The result was a void wall that was rough and porous-appearing, a consequence of preferential attack on the austenite. The three-dimensional spongy surface was studied optically and with the scanning electron microscope

  11. Corrosivity Index Copper and Steel at Two Locations in Villahermosa, Tabasco

    Directory of Open Access Journals (Sweden)

    Tejero-Rivas María Candelaria

    2015-03-01

    Full Text Available This paper presents a study of the atmospheric corrosion of copper and carbon steel made ​​in two environments Villahermosa, Tabasco for six months. The test site of the industrial zone started Villahermosa Institute of Technology (ITVH and rural-urban site at the Technological University of Tabasco (UTTAB. Aluminum in combination with a screw carbon steel provided the index marine corrosivity (MA, the brass screw gives the index of industrial corrosivity (IA; wire method of screw according to ASTM G116-93 was used and the plastic screw nylon gives the rate of rural-urban corrosivity (RUA. The determination of air pollutants (sulfur dioxide and chlorides, was with the methods of wet candle and sulfation plates according to ISO 9225. Morphology studies were performed on the corrosion products formed on the specimens screw, using scanning electron microscopy coupled with energy dispersive. The corrosion products that formed on the surface of copper and carbon steel, having a bulb-shaped morphology characteristic of the addition of soluble salts, particularly sulphates and chlorides, were identified in the two stations.

  12. Is cell viability always directly related to corrosion resistance of stainless steels?

    International Nuclear Information System (INIS)

    Salahinejad, E.; Ghaffari, M.; Vashaee, D.; Tayebi, L.

    2016-01-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn–Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn–Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. - Highlights: • Cell viability vs. corrosion resistance for medical-grade stainless steels • The stainless steel samples were prepared by powder metallurgy. • Unpenetrated additive played a critical role in the correlation.

  13. Is cell viability always directly related to corrosion resistance of stainless steels?

    Energy Technology Data Exchange (ETDEWEB)

    Salahinejad, E., E-mail: salahinejad@kntu.ac.ir [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Vashaee, D. [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Tayebi, L. [Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201 (United States); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom)

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn–Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn–Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. - Highlights: • Cell viability vs. corrosion resistance for medical-grade stainless steels • The stainless steel samples were prepared by powder metallurgy. • Unpenetrated additive played a critical role in the correlation.

  14. Comparison of Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony with 409L Stainless Steel for a Flue Gas Desulfurization System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Ah; Shin, Su-Bin; Kim, Jung-Gu [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-07-15

    The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H{sub 2}SO{sub 4} + 0.35 vol% HCl at 60 ℃. The inclusions in these steels ere identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction.

  15. Image-based corrosion recognition for ship steel structures

    Science.gov (United States)

    Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng

    2018-03-01

    Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.

  16. The corrosion behaviour of carbon steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-01-01

    The production of hydrogen can cause problems in a repository for low- and intermediate-level waste. Since gas production is mainly due to the corrosion of carbon steel, it is important to have as reliable data as possible on the corrosion rate of steel in anaerobic cement. A review of the literature shows that the corrosion current densities lie in the range 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 .a). Corrosion rates of this order of magnitude are technically irrelevant, with the result that there is very little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. Given the current situation, it would appear somewhat risky to accept the lower value for hydrogen production as proven. Proposals are made for experiments which would reduce this element of uncertainty. (author) 10 figs., 35 refs

  17. Corrosion of mild steel, copper and brass in crude oil / seawater mixture

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi, S.; Sawant, S.S.; Wagh, A.B.

    Mild steel, copper and brass coupons were introduced in natural seawater containing varying amount of crude oil. Mild steel showed higher rate of corrosion in seawater containing oil and lower corrosion rate in natural as well as artificial seawater...

  18. Corrosion of construction steel in pore simulated solution

    International Nuclear Information System (INIS)

    Valdes, Matias; Vasquez, Marcela

    2004-01-01

    The corrosion of steel for reinforcing reinforced cement structures is a common problem particularly in structures that are exposed to a marine environment. Loosened masonry originating by the diametrical stress that iron oxides place on the cement is not unusual. These situations involve risk to people and goods and make it necessary to repair the structure to prolong its useful service life. Some preliminary results are presented from the reproduction of the corrosive process with the use of a solution that simulates the chemical surroundings in the concrete pores. These results will help to evaluate the incidence of contaminants (CO 2 , chloride ions), inhibitors and coatings, among others, in the following stages by conveniently adjusting the solution's composition. The composition of the chosen solution is: 0.01 mol NaOH - 0.002 mol/l Ca(OH) 2 . The effect was evaluated of a passive film generated on the surface of the steel of the reinforcements at 100 mV for 14 minutes and for 12 hours. This potential corresponds to the passive region, as determined by recording tests with cyclic volt amperometry and in accordance with the Pourbaix diagram for steel. The corrosion current was defined by recording the resistance to polarization using different electrochemical methods: potential sweep, potentiostatic jump and sweep electrochemical impedance. The results show that neither of the two times selected are enough to generate the metal's passive state and that the potential of 100 mV used to generate the passive film may be too low to produce a compact and long lasting layer, considering that the passive zone interval comes to 700 mV, according to the volt amperometry readings (CW)

  19. The Evaluation of Crevice Corrosion of Inconel-600 and 304 Stainless Steel in Reductive Decontamination Solutions

    International Nuclear Information System (INIS)

    Jung, Junyoung; Park, Sangyoon; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon; Park, Sojin

    2014-01-01

    In this sturdy, we investigated the characteristics of corrosion to Inconel-600 and type 304 stainless steel which are mainly used for the steam generator and primary system of PWR reactor respectively. We conducted the corrosion test for the HYBRID (HYdrazine Based metal Ion Reductive decontamination) which was developed in KAERI, Citrox and Oxalic acid solutions used in reductive decontamination of the inner surface of PWR. Since Citrox and oxalic acid solution were well-known conventional decontamination solutions, it is meaningful to compare the corrosion result of HYBRID with those solutions to confirm the corrosion compatibility. In order to obtain visible results in a limited time, we conducted the crevice corrosion tests under harsh condition. According to the results of crevice corrosion tests, we can conclude that metals such as type 304 stainless steel and Inconel-600 in HYBRID are very stable against crevice corrosion. On the other hand, those metals in Citrox and oxalic acid solutions were very susceptible to the crevice corrosion. Especially when using the oxalic acid solution, severe corrosion was observed not only Inconel-600 but also 304 stainless steel. The degree of corrosion can be expressed as; HYBRID << Citrox < OA. Conclusively, our results support that the HYBRID is more stable to the corrosion of structural materials in primary system than other Citrox and oxalic acid solutions. This finding will appoint the HYBRID solution as a candidate to solve the corrosion problem which is often issued by existing chemical decontamination processes

  20. An X-ray diffraction study of corrosion products from low carbon steel

    International Nuclear Information System (INIS)

    Morales, A. L.

    2003-01-01

    It was found in earlier work a decrease in the corrosion rate from low carbon steel when it was subjected to the action of a combined pollutant concentration (SO 4 ''2-=10''-4 M+Cl=1.5x 10''-3 M). It was also found that large magnetic content of the rust was related to higher corrosion rates. In the present study corrosion products are further analyzed by means of X-ray diffraction to account for composition changes during the corrosion process. it is found that lepidocrocite and goethite are the dominant components for the short-term corrosion in all batches considered while for log-term corrosion lepidocrite and goethite dominates if the corrosion rates is low and magnetite dominates if the corrosion rate is high. The mechanism for decreasing the corrosion rate is related to the inhibition of magnetite production at this particular concentration. (Author) 15 refs

  1. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    Directory of Open Access Journals (Sweden)

    Kowalski Dariusz

    2017-09-01

    Full Text Available Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  2. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    Science.gov (United States)

    Kowalski, Dariusz; Grzyl, Beata; Kristowski, Adam

    2017-09-01

    Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  3. Study of API 5L X70 steel corrosion processes when in contact with some Brazilian soils

    International Nuclear Information System (INIS)

    Jesus, Sergio Luis de

    2007-01-01

    Pipelines, fuel storage tanks and other metallic structures are in permanent contact and exposed to different types of soils, of horizons or layers, or of soil aggressiveness. This interaction may cause expressive damages to the environment and to the planned work. Contamination may occur due to leakage of stored products, splitting during transportation, accidents caused by pipelines without extensive maintenance. The result of these accidents could be, among others, some financial losses. In order to recognize the dynamic interactions between metallic surfaces and the environment it is crucial to have preventive actions and to develop better-applied materials. API steel 5L X70 has been used in structures of low and high pressure with high mechanical strength and corrosion and, even so, it is susceptible to etching corrosion since it is in contact with different environments from mangrove regions to industrial environments. The present case evaluated the role of 5L X70 API steel in contact with different soil horizons representative of the Brazilian soil. This investigation correlated chemical species with solute ions in soil solution, secondary and primary phase minerals besides physical and chemical characteristics as pH, electric conductivity, total dissolved solids, among others, to the results of corrosion resistance and ways of corrosion. The evaluation was carried out using x-ray diffractometry, scanning electron microscopy, total reflection x-ray fluorescence, fuel injection flow besides texture and gravimetric analyses to soil characterization and mineralogy, identification of corrosion products, soil solution analyses, evaluation of tested materials and classification of ways and types of corrosion. This was an attempt to integrate the data to a better understanding of the process involving reagents and products. The results showed that different soil horizons such as different types of analyzed soils produce specific etching in metallic structures

  4. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere

    Science.gov (United States)

    Li, Dong-liang; Fu, Gui-qin; Zhu, Miao-yong; Li, Qing; Yin, Cheng-xiang

    2018-03-01

    The corrosion resistance of weathering bridge steels containing conventional contents of Ni (0.20wt%, 0.42wt%, 1.50wt%) and a higher content of Ni (3.55wt%) in a simulated hot and humid coastal-industrial atmosphere was investigated by corrosion depth loss, scanning electron microscopy-energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. The results showed that, with increasing Ni content, the mechanical properties of the bridge steel were markedly improved, the welding parameters were satisfactory at room temperature, and the corrosion resistance was enhanced. When the Ni content was low (≤0.42wt%), the crystallization process of the corrosion products was substantially promoted, enhancing the stability of the rust layer. When the Ni content was higher ( 3.55wt%), the corrosion reaction of the steel quickly reached a balance, because the initial rapid corrosion induced the formation of a protective rust layer in the early stage. Simultaneously, NiO and NiFe2O2 were generated in large quantities; they not only formed a stable, compact, and continuous oxide protective layer, but also strongly inhibited the transformation process of the corrosion products. This inhibition reduced the structural changes in the rust layer, thereby enhancing the protection. However, when the Ni content ranged from 0.42wt% to 1.50wt%, the corrosion resistance of the bridge steel increased only slightly.

  5. On superplasticity of corrosion resistant ferritic-austenitic chromium-nickel steels

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Sukhanov, V E

    1988-01-01

    The deformability of corrosion resistant chromium-nickel ferritic austenitic steel type O8Kh22N6T under tension, upsetting and torsion in the 600-1200 deg C temperature range is studied. For the deformation rate of the order of 10/sup -3/ s/sup -1/ the effect of superelasticity reveals itself at 850 deg C in the process of ferrite dynamic polymerization, in the 925-950 deg C range, at initial stages of dynamic recrystallization - the dynamic polygonization controlled by chromium carbide dissolving in steel and maximum at 1050 deg C in the process of development of austenite dynamic recrystallization with grain refinement with F/A ratio equalling 1. After upsetting in the elasticity mode at 1050 deg C the impact strength of the above steel is maximum.

  6. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Wagh, A.B.

    The corrosion of mild steel immersed at various depths (0-100 m) from three stations of the Arabian Sea was investigated. The corrosion of mild steel decreased with increasing immersion depth. Significant positive relationships were observed between...

  7. Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2017-02-01

    Corrosion inhibition was studied using electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM and weight loss measurements. The influence of inhibitor concentration, solution temperature, and immersion time on the corrosion resistance of low alloy steel (LAS has been investigated. Trp proved to be a very good inhibitor for low alloy steel acid corrosion. EFM measurements showed that Trp is a mixed type inhibitor. Trp behaved better in 0.6 M HCl than in 0.6 M HSO3NH2. Moreover, it was found that the inhibition efficiency increased with increasing inhibitor concentration, while a decrease was detected with the rise of temperature and immersion time. The associated activation energy (Ea has been determined. The values of Ea indicate that the type of adsorption of Trp on the steel surface in both acids belongs to physical adsorption. The adsorption process was tested using Temkin adsorption isotherm.

  8. Supercritical water corrosion of high Cr steels and Ni-base alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Han, Chang Hee; Hwang, Seong Sik

    2004-01-01

    High Cr steels (9 to 12% Cr) have been widely used for high temperature high pressure components in fossil power plants. Recently the concept of SCWR (supercritical water-cooled reactor) has aroused a keen interest as one of the next generation (Generation IV) reactors. Consequently Ni-base (or high Ni) alloys as well as high Cr steels that have already many experiences in the field are among the potential candidate alloys for the cladding or reactor internals. Tentative inlet and outlet temperatures of the anticipated SCWR are 280 and 510 .deg. C respectively. Among many candidate alloys there are austenitic stainless steels, Ni base alloys, ODS alloys as well as high Cr steels. In this study the corrosion behavior of the high Cr steels and Ni base (or high Ni) alloys in the supercritical water were investigated. The corrosion behavior of the unirradiated base metals could be used in the near future as a guideline for the out-of-pile or in-pile corrosion evaluation tests

  9. Stainless steel corrosion in conditions simulating WWER-1000 primary coolant. Corrosion behaviour in mixed core

    International Nuclear Information System (INIS)

    Krasnorutskij, V.S.; Petel'guzov, I.A.; Gritsina, V.M.; Zuek, V.A.; Tret'yakov, M.V.; Rud', R.A.; Svichkar', N.V.; Slabospitskaya, E.A.; Ishchenko, N.I.

    2011-01-01

    Research into corrosion kinetics of austenitic stainless steels (06Cr18Ni10Ti, 08Cr18Ni10Ti, 12Cr18Ni10Ti) in medium which corresponds to composition and parameters of WWER-1000 primary coolant with different pH values in autoclave out-pile conditions during 14000 hours is given. Surface of oxide films on stainless steels is investigated. Visual inspection of Westinghouse and TVEL fuel was carried out after 4 cycles in WWER-1000 primary water chemistry conditions at South Ukraine NPP. Westinghouse and TVEL fuel cladding materials possess high corrosion resistance. Blushing of weldments was observed. No visual corrosion defects or deposits were observed on fuel rods.

  10. High temperature chlorosilane corrosion of iron and AISI 316L stainless steel

    Science.gov (United States)

    Aller, Joshua Loren

    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This

  11. Influence of delta ferrite on corrosion susceptibility of AISI 304 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Lawrence O. Osoba

    2016-12-01

    Full Text Available In the current study, the influence of delta (δ ferrite on the corrosion susceptibility of AISI 304 austenitic stainless steel was evaluated in 1Molar concentration of sulphuric acid (H2SO4 and 1Molar concentration of sodium chloride (NaCl. The study was performed at ambient temperature using electrochemical technique—Tafel plots to evaluate the corrosive tendencies of the austenitic stainless steel sample. The as-received (stainless steel specimen and 60% cold-worked (stainless steel specimens were isothermally annealed at 1,100°C for 2 h and 1 h, respectively, and quenched in water. The results obtained show that the heat-treated specimen and the 60% cold-worked plus heat-treated specimen exhibited higher corrosion susceptibility than the as-received specimen, which invariably contained the highest fraction of δ ferrite particles. The finding shows that the presence of δ ferrite, in which chromium (Cr, the main corrosion inhibitor segregates, does not degrade and or reduces the resistance to aqueous corrosion of the austenitic stainless steel material.

  12. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    International Nuclear Information System (INIS)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young

    2005-01-01

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  13. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  14. Corrosion of stainless steels in lead-bismuth eutectic up to 600 °C

    Science.gov (United States)

    Soler, L.; Martín, F. J.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    An experimental program has been carried out to understand the differences in the corrosion behaviour between different stainless steels: the austenitic steels 304L and 316L, the martensitic steels F82Hmod, T91 and EM10, and the low alloy steel P22. The influence of oxygen level in Pb-Bi, temperature and exposure time is studied. At 600 °C, the martensitic steels and the P22 steel exhibit thick oxide scales that grow with time, following a linear law for the wet environment and a parabolic law for the dry one. The austenitic stainless steels show a better corrosion behaviour, especially AISI 304L. Under reducing conditions, the steels exhibit dissolution, more severe for the austenitic stainless steels. At 450 °C, all the materials show an acceptable behaviour provided a sufficient oxygen level in the Pb-Bi. At reducing conditions, the martensitic steels and the P22 steel have a good corrosion resistance, while the austenitic steels exhibit already dissolution at the longer exposures.

  15. Corrosion of stainless steels in lead-bismuth eutectic up to 600 deg. C

    International Nuclear Information System (INIS)

    Soler, L.; Martin, F.J.; Hernandez, F.; Gomez-Briceno, D.

    2004-01-01

    An experimental program has been carried out to understand the differences in the corrosion behaviour between different stainless steels: the austenitic steels 304L and 316L, the martensitic steels F82Hmod, T91 and EM10, and the low alloy steel P22. The influence of oxygen level in Pb-Bi, temperature and exposure time is studied. At 600 deg. C, the martensitic steels and the P22 steel exhibit thick oxide scales that grow with time, following a linear law for the wet environment and a parabolic law for the dry one. The austenitic stainless steels show a better corrosion behaviour, especially AISI 304L. Under reducing conditions, the steels exhibit dissolution, more severe for the austenitic stainless steels. At 450 deg. C, all the materials show an acceptable behaviour provided a sufficient oxygen level in the Pb-Bi. At reducing conditions, the martensitic steels and the P22 steel have a good corrosion resistance, while the austenitic steels exhibit already dissolution at the longer exposures

  16. Effect of temperature on corrosion of steels in high purity water

    International Nuclear Information System (INIS)

    Honda, Takashi; Kashimura, Eiji; Ohashi, Kenya; Furutani, Yasumasa; Ohsumi, Katsumi; Aizawa, Motohiro; Matsubayashi, Hideo.

    1987-01-01

    Effect of temperature on corrosion behavior of steels was evaluated in the range of 150 - 300 deg C in high purity water containing about 200 ppb oxygen. The exposure tests were carried out in actual and simulated reactor water of BWR plants. Through X-ray diffractometry, SIMS, XPS and chemical analyses, it was clarified that the chemical composition and morphology of oxide films formed on austenitic stainless steel changed above about 250 deg C. Chromium dissolved easily through corrosion above this temperature, and the oxide films primarily consisted of spinel type oxides containing high concentration of nickel. Further, as the protectivety of oxide films increased with temperature, the corrosion rate had a peak around 250 deg C after a long exposure period. A major phase of oxide films on carbon steel was magnetite in the whole temperature range. However, as the oxide films formed at high temperatures had very compact structures, the effect of temperature on the corrosion rate was similar to that observed on stainless steel. (author)

  17. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Seabed sediment (SBS) is a special soil that is covered by seawater. With the developments in marine oil exploitation and engineering, more and more steel structures have been buried in SBS. SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this ...

  18. Corrosion of steel drums containing simulated radioactive waste of low and intermediate level

    International Nuclear Information System (INIS)

    Farina, S.B.; Schulz Rodríguez, F.; Duffó, G.S.

    2013-01-01

    Ion-exchange resins are frequently used during the operation of nuclear power plants and constitute radioactive waste of low and intermediate level. For the final disposal inside the repository the resins are immobilized by cementation and placed inside steel drums. The eventful contamination of the resins with aggressive species may cause corrosion problems to the drums. In order to assess the incidence of this phenomenon and to estimate the lifespan of the steel drums, in the present work, the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different aggressive species was studied. The aggressive species studied were chloride ions (main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The corrosion rate of the steel was monitored over a time period of 900 days and a chemical and morphological analysis of the corrosion products formed on the steel in each condition was performed. When applying the results obtained in the present work to estimate the corrosion depth of the drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Low and Intermediate Level Radioactive Waste facility in Argentina), it was found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (author)

  19. Corrosion of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M C.M. [Instituto Nacional de Tecnologia, Rio de Janeiro (Brazil)

    1977-01-01

    Types of corrosion observed in a heat exchanger pipe and on a support of still of molasses fermented wort, both in austenitic stainless steel, are focused. Not only are the causes which might have had any kind of influence on them examined, but also the measures adopted in order to avoid and lessen its occurence.

  20. Effects of nitrogen on corrosion of stainless steels in a liquid sodium environment

    International Nuclear Information System (INIS)

    Suzuki, Tadashi; Mutoh, Isao

    1990-01-01

    The corrosion of ferritic stainless steels using sodium at 650degC in a maximum isothermal region contained in a non-isothermal sodium loop constructed of a Type 316 stainless steel has been examined. Also, previous results on corrosion of austenitic stainless steels in sodium at 700degC in the same loop have been reproduced. The selective dissolution and absorption of nickel, the selective dissolution of chromium, and the resultant increase in iron in the surface of stainless steels in the loop mainly determine the corrosion loss of the stainless steel specimens. The austenitic steels hardly decarburize, but denitride. The ferritic steels decarburize and denitride and the denitriding is more remarkable than the decarburizing. The vanadium and niobium, carbide and nitride formers, in the ferritic steels inhibit the decarburizing to some extent, but barely inhibit the denitriding. The nitrogen in the steels rapidly diffuses to the grain boundaries, and rapidly dissolves into sodium, which will lower surface energy of the steels to enhance the dissolution of other elements. The dissolved N in sodium would then be transported to the free surface of the sodium adjacent to the argon cover gas of sodium and easily be released into the cover gas. This mechanism would cause the rapid dissolution of nitrogen into sodium and the enhancement of the corrosion rate of the steels containing nitrogen. (orig.)

  1. Influences of spray parameters on the structure and corrosion resistance of stainless steel layers coated on carbon steel by plasma spray treatment

    International Nuclear Information System (INIS)

    Yeom, Kyong An; Lee, Sang Dong; Kwon, Hyuk Sang; Shur, Dong Soo; Kim, Joung Soo

    1996-01-01

    Stainless steel powders were sprayed on the grit-blasted SM45C carbon steel substrates using a plasma spray method. The influences of the spray parameters on the structure and corrosion resistance of the layers coated on the carbon steel were investigated. Corrosion behavior of the layers were analyzed by the anodic polarization tests in deaerated 0.1 M NaCl + 0.01 M NaOH solution at 80 deg C. The surface roughness and porosity were observed to decrease with decreasing the particle size. The surface hardness of the coating was always higher than that of the matrix, SM45C, implying that the higher resistance of the coating to erosion-corrosion than that of matrix, and increased as the spray power and the spray distance increase. Stainless steel coats showed more corrosion resistance than the carbon steel did, due to their passivity. The corrosion resistance of the coats, however, were inferior to that of the bulk stainless steels due to the inherent defects formed in the coats. The defects such as rough surface and pores provided the occluded sites favorable for the initiation of localized corrosion, resulting in the conclusion that finer the powder is, higher the corrosion resistance is. And the Cr oxides formation resulting in Cr depletion around the oxides reduced the corrosion resistance of the coats. (author)

  2. Long-term atmospheric corrosion of mild steel

    International Nuclear Information System (INIS)

    Fuente, D. de la; Diaz, I.; Simancas, J.; Chico, B.; Morcillo, M.

    2011-01-01

    Research highlights: → Atmospheric corrosion rate stabilises after the first 4-6 years of exposure. → Great compaction of the rust layers in rural and urban atmospheres. → Corrosion (in rural and urban) deviates from common behaviour of bilogarithmic law. → Typical structures of lepidocrocite, goethite and akaganeite are identified. → Formation of hematite (industrial atmosphere) and ferrihydrite (marine atmosphere). - Abstract: A great deal of information is available on the atmospheric corrosion of mild steel in the short, mid and even long term, but studies of the structure and morphology of corrosion layers are less abundant and generally deal with those formed in just a few years. The present study assesses the structure and morphology of corrosion product layers formed on mild steel after 13 years of exposure in five Spanish atmospheres of different types: rural, urban, industrial and marine (mild and severe). The corrosion layers have been characterised by X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Long-term corrosion is seen to be more severe in the industrial and marine atmospheres, and less so in the rural and urban atmospheres. In all cases the corrosion rate is seen to decrease with exposure time, stabilising after the first 4-6 years of exposure. The most relevant aspects to be noted are (a) the great compaction of the rust layers formed in the rural and urban atmospheres, (b) the formation of hematite and ferrihydrite phases (not commonly found) in the industrial and marine atmospheres, respectively and (c) identification of the typical morphological structures of lepidocrocite (sandy crystals and flowery plates), goethite (cotton balls structures) and akaganeite (cotton balls structures and cigar-shaped crystals).

  3. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  4. Electrodeposition of zinc-doped silane films for corrosion protection of mild steels

    International Nuclear Information System (INIS)

    Wu Liankui; Hu Jiming; Zhang Jianqing

    2012-01-01

    Highlights: ► Metallic zinc is doped into organosilane films by one-step electrodeposition. ► The composite films exhibit the improved corrosion resistance of mild steels. ► Zinc-doping provides additional cathodic protection to the mild steels. - Abstract: Organosilane/zinc composite films are prepared by one-step electrodeposition onto cold-rolled steels for corrosion protection. Electrochemical impedance spectroscopy measurement, bulk solution immersion and wet heat tests all show that the composite films have improved corrosion performance. X-ray photoelectron spectroscopy measurement suggests the successful encapsulation of metallic zinc. The embedding of metallic zinc results in negative shift in open-circuit potential of the film-covered electrodes. Such cathodic protection effect given by the metallic zinc provides the improved corrosion resistance of the composite films.

  5. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    Science.gov (United States)

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  6. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys

    Science.gov (United States)

    Ashida, Yugo; Daigo, Yuzo; Sugahara, Katsuo

    2017-08-01

    Commercial metals and alloys like carbon steels, stainless steels, and nickel-based super alloys frequently encounter the problem of environmentally assisted cracking (EAC) and resulting failure in engineering components. This article aims to provide a perspective on three critical industrial applications having EAC issues: (1) corrosion and cracking of carbon steels in automotive applications, (2) EAC of iron- and nickel-based alloys in salt production and processing, and (3) EAC of iron- and nickel-based alloys in supercritical water. The review focuses on current industrial-level understanding with respect to corrosion fatigue, hydrogen-assisted cracking, or stress corrosion cracking, as well as the dominant factors affecting crack initiation and propagation. Furthermore, some ongoing industrial studies and directions of future research are also discussed.

  7. Rhenium Uptake as Analogue 96Tc by Steel Corrosion Products

    International Nuclear Information System (INIS)

    K.M. Krupka; C.F. Brown; H. Todd Schaef; S. M. Heald; M. M. Valenta; B. W. Arey

    2006-01-01

    Static batch experiments were used to examine the sorption of dissolved perrhenate [Re(VII)], as a surrogate for pertechnetate [Tc(VII)], on corrosion products of A-516 carbon steel coupons contacted with synthetic groundwater or dilute water. After 109 days of contact time, the concentration of dissolved Re(VII) in the synthetic groundwater matrix decreased by approximately 26%; the dilute water matrix experienced a 99% decrease in dissolved Re(VII) over the same time period. Bulk x-ray diffraction (XRD) results for the corroded steel coupons showed that the corrosion products consisted primarily of maghemite, lepidocrocite, and goethite. Analyses of the coupons by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) indicated that Re was present with the morphologically complex assemblages of Fe oxide/hydroxide corrosion products for samples spiked with the highest dissolved Re(VII) concentration (1.0 mmol/L) used for these experiments. Analyses of corroded steel coupons contacted with solutions containing 1.0 mmol/L Re(VII) by synchrotron-based methods confirmed the presence of Re sorbed with the corrosion product on the steel coupons. Analyses showed that the Re sorbed on these corroded coupons was in the +7 oxidation state, suggesting that the Re(VII) uptake mechanism did not involve reduction of Re to a lower oxidation state, such as +4. The results of our studies using Re(VII) as an analogue for 99 Tc(VII) suggest that 99 Tc(VII) would also be sorbed with steel corrosion products and that the inventory of 99 Tc(VII) released from breached waste packages would be lower than what is now conservatively estimated

  8. Nuclear containment steel liner corrosion workshop : final summary and recommendation report.

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Bryan A. (Erler Engineering Ltd., Chicago, IL); Weyers, Richard E. (Virginia Tech University, Blacksburg, VA); Sagues, Alberto (University of South Florida, Tampa, FL); Petti, Jason P.; Berke, Neal Steven (Tourney Consulting Group, LLC, Kalamazoo, MI); Naus, Dan J. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2011-07-01

    This report documents the proceedings of an expert panel workshop conducted to evaluate the mechanisms of corrosion for the steel liner in nuclear containment buildings. The U.S. Nuclear Regulatory Commission (NRC) sponsored this work which was conducted by Sandia National Laboratories. A workshop was conducted at the NRC Headquarters in Rockville, Maryland on September 2 and 3, 2010. Due to the safety function performed by the liner, the expert panel was assembled in order to address the full range of issues that may contribute to liner corrosion. This report is focused on corrosion that initiates from the outer surface of the liner, the surface that is in contact with the concrete containment building wall. Liner corrosion initiating on the outer diameter (OD) surface has been identified at several nuclear power plants, always associated with foreign material left embedded in the concrete. The potential contributing factors to liner corrosion were broken into five areas for discussion during the workshop. Those include nuclear power plant design and operation, corrosion of steel in contact with concrete, concrete aging and degradation, concrete/steel non-destructive examination (NDE), and concrete repair and corrosion mitigation. This report also includes the expert panel member's recommendations for future research.

  9. Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere

    International Nuclear Information System (INIS)

    Hao Long; Zhang Sixun; Dong Junhua; Ke Wei

    2012-01-01

    Highlights: ► The evolution of rust on MnCuP weathering steel submitted to a simulated coastal atmosphere has been investigated. ► The corrosion evolution of MnCuP weathering steel can be divided into two stages with distinct rust properties. ► A protective rust layer with higher amounts of α-FeOOH and lower Fe 3 O 4 forms as the corrosion proceeds. ► The rust initially enhances and then stabilizes the cathodic process, but the anodic process tends to be inhibited. - Abstract: The evolution of rust on MnCuP weathering steel submitted to a simulated coastal atmosphere was investigated by corrosion weight gain, scanning electron microscopy, X-ray diffraction, and electrochemical methods. The results indicate that the higher corrosion rate during the first stage than that during the second stage is related closely to the rust composition and electrochemical properties. The corrosion rate evolution is caused by the formation of a protective rust layer with a higher relative amount of α-FeOOH. The rust initially enhances and then stabilizes the cathodic process, but the anodic process tends to be inhibited by the protective rust layer.

  10. Corrosion of type 304L stainless steel in boiling dilute neptunium nitrate solution

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Kiuchi, Kiyoshi

    2003-01-01

    Corrosion of type 304L stainless steel in nitric acid solution containing neptunium was studied under immersion and heat-transfer condition. Corrosion rates of stainless steel were obtained by the weight loss measurement and the quantitative analysis of metallic ions dissolved in solution. The surface morphology was observed by scanning electron microscopy. The corrosion acceleration mechanism was investigated by polarization measurement and spectrophotometry. The corrosion rate in boiling 9M nitric acid was accelerated by addition of neptunium. The corrosion of stainless steel was promoted under heat-transfer condition compared to immersion condition. In polarization measurements, the cathodic current was increased by addition of neptunium. Spectrophotometric measurements showed the oxidization of neptunium in boiling nitric acid. It was suggested that the accelerated corrosion in nitric acid solution containing neptunium was caused by re-oxidation of neptunium. (author)

  11. Influence of microstructure on the microbial corrosion behaviour of stainless steels

    International Nuclear Information System (INIS)

    Moreno, D. A.; Ibars, J. R.; Ranninger, C.

    2000-01-01

    Several stainless steels (Type UNS S30300, S30400, S30403; S31600, S31603 and S42000) with different microstructural characteristics have been used to study the influence of heat treatments on microbiologically influenced corrosion (MIC). Bio corrosion and accelerated electrochemical testing was performed in various microbiological media. Two species of sulphate-reducing bacteria (SRB) have been used in order to ascertain the influence of microstructure. The morphology of corrosion pits produced in both chloride and chloride plus sulphide-SRB metabolites, was inspected by optical and scanning electron microscopy (SEM) complemented with energy-dispersive X-ray (EDX) analysis. Results have shown different behaviours regarding corrosion resistance in each case studied. Sensitized austenitic stainless steels were more affected by the presence of aggressive anions and pitting potential (Ep) values were more cathodic than those of as-received state. A corrosion enhancement is produced by the synergistic action of biogenic sulphides and chloride anions. Pitting corrosion in martensitic stainless steel Type UNS S42000 was found in biocorrosion test. The pitting morphology is correlated to the chemical composition, the microstructure and the electrolyte. (Author) 36 refs

  12. Spectroscopic study of the final protective corrosion product on weathering steel

    International Nuclear Information System (INIS)

    Yamashita, M.; Misawa, T.

    1998-01-01

    Recent progress in understanding the structure and properties of final protective rust layer on weathering steel and its application for structural steels is shown based on the data obtained mainly by spectroscopic characterization. The main constituent of the weathering steel rust layer is changed with exposure period from γ- FeOOH (less than a few years) via, amorphous substance (several years), to α-FeOOH goethite phase (decades). The corrosion rate of the weathering steel decreased with this phase transformation. The final protective rust layer possesses the structure of α- (Fe 1 - X p Cr x)O OH, Cr substitute goethite; the crystal size decreases with its Cr-content. It is shown that the Cr content in the Cr-substituted goethite increases gradiently with reaching the rust/steel interface. This increase in the Cr content and resultant aggregation of fine crystals lead a densely packed Cr-substituted goethite rust layers which provides higher protective ability for atmospheric corrosives. It is found that the Cr-substituted goethite possesses the cation selective ability at the vicinity of the rust/steel interface where the Cr content can be estimated approximately 5-10 mass %. Thus, the final protective rust layer of the Cr-substituted goethite impedes the penetration of aggressive corrosive anions such as Cl - and SO 4 2- , besides the physically prevention effect of its densely aggregated structure for corrosive penetration. It is found that Cr 2 (SO 4 ) 3 is effective for obtaining the final protective rust layer in a short period. SO 4 2 accelerates rust formation and Cr 3- substitutes goethite crystal lattice point at the initial stage of corrosion; resultantly the rust layer formed suppresses dissolution of the steel even in the severe environment. (Author)

  13. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    Science.gov (United States)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  14. Localized corrosion of high alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Morach, R.; Schmuki, P.; Boehni, H.

    1992-01-01

    The susceptibility of several high alloyed stainless steels against localized corrosion was investigated by traditional potentiostatic and -kinetic methods and the current transient technique. Different test cells, proposed in literature, were evaluated for use in testing of plate materials. The AVESTA-cell showed to be not useful for potentiokinetic current density potential curves, but useable for pitting experiments. After pickling and prepassivation epoxy embedded materials proved to be resistant to crevice corrosion at the metal-resin interface. The electrode in form of a wire was the most reliable crevice free cell design. The grinding of the samples in the pretreatment procedure was found to have a large effect on the pitting corrosion behaviour. Using different paper types with varying grit, a drop in pitting potential for rougher surfaces and an increase in metastable pitting activity was found. Increasing surface roughness led also to changes in the electronic structure of the passive film reflected by a lower bandgap energy. High alloyed stainless steels showed no breakdown potential within the examined potential range. Compared to 18/8 type stainless steels significantly less transients were found. The number of transients decreases with increasing molybdenum and chromium content

  15. Corrosion behaviour of the welded steel 1.4313/CA6-NM

    OpenAIRE

    Lovíšek, Martin; Liptáková, Tatiana; Pešlová, Františka

    2014-01-01

    The stainless steel 1.4313/CA6-NM (EN X3CrNiMo13-4) is used for turbine production. The weld joints are therefore very sensitive localities from mechanical and corrosion point of view. The subject of the work is corrosion studying of the steel welded by TIG method with consequent heat treatment. Corrosion resistance of the weld joints and base material are evaluated through potentiodynamic polarization test measured on the surface after heat treatment and on the surface cleaned by grinding an...

  16. Improved corrosion resistance of cast carbon steel in sulphur oxides by Alonizing

    International Nuclear Information System (INIS)

    Holtzer, M.; Dzioba, Z.

    1992-01-01

    The results of studies on the Alonizing of cast steel and of testing the corrosion resistance of this cast steel in an atmosphere containing 5 to 6% SO 2 + 50% SO 3 at 853 K are described and compared with the results obtained with unalonized cast carbon steel and high-alloy 23Cr-8Ni-2Mo cast steel. The duration of the corrosion tests was 336 hours. The aluminium diffusion layer on cast carbon steel was obtained by holding the specimens in a mixture containing 99% of powered Fe-Al and 1% of NH 4 Cl at 1323 ± 20 K. The holding time was 10 and 20 hours, respectively. The aluminium layer formed on the cast carbon steel was examined by optical microscopy and an X-ray microanalysis. After Alonizing for 10 h the layer had reached a thickness of 950 μm, and contained up to 35% Al. In a mixture of sulphur oxides corrosion rate of the alonized cast carbon steel was by about 600 times lower than of the unalonized cast carbon steel, and by about 50 times lower than that of the 23Cr-8Ni-2Mo cast steel. (orig.) [de

  17. Corrosion Behavior of Heat Affected Zone of AISI 321 stainless steel

    International Nuclear Information System (INIS)

    Ahn, Yong Sik; Park, Hwa Soon; Kim, Yeong Hwan; Won, Tae Yeon; Lee, Sang Lae

    1994-01-01

    Intergranular corrosion behavior of heat affected zone(HAZ) has been investigated for Ti-stabilized austenitic stainless steel AISI 321. It was observed that grain boundaries at HAZ of the steel with Ti/C ratio of 6.2 were corroded significantly after sensitization heat treatment. The increase of the Ti/C ratio up to 9.6 results in the evident decrease of intergranular corrosion. Weld simulation and intergranular corrosion test in 65% HNO 3 was performed. Influence of various thermal cycles on the intergranular corrosion was investigated. These results are discussed in terms of the behavior of TiC and Cr 23 C 6 precipitates

  18. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  19. The effect of magnetite on corrosion of stainless steel (SUS309S) in deaerated synthetic sea water

    International Nuclear Information System (INIS)

    Taniguchi, N.; Honda, A.

    1999-10-01

    The assessment of lifetime of carbon steel overpack needs to clear the effects of corrosion products on the corrosion rate of carbon steel. It is reported that the corrosion of carbon steel was accelerated under the presence of magnetite as simulated corrosion products. Therefore, it is important to clear the mechanism of the acceleration of corrosion under the presence of magnetite. If carbon steel overpack will not be able to avoid the acceleration of corrosion under repository condition, some countermeasures have to be taken. One of the countermeasures against the effect of magnetite is considered to be the addition of alloying elements to a steel. The immersion test of stainless steel (SUS309S) as the extreme case of alloying was conducted under the presence of magnetite on the metal surface in synthetic sea water. As the result of this test, the corrosion of stainless steel (SUS309S) was not accelerated by the presence of magnetite. Therefore, it is expected that the susceptibility to the effect of magnetite is able to be reduced by addition of alloying elements to a steel. (author)

  20. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  1. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Science.gov (United States)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  2. Influence of chloride ion concentration on the corrosion behavior of Al-bearing TRIP steels

    Energy Technology Data Exchange (ETDEWEB)

    El-Taib Heakal, F., E-mail: fakihaheakal@yahoo.com [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt); Tantawy, N.S. [Chemistry Department, Girl' s College for Arts, Science and Education, Ain Shams University, Cairo (Egypt); Shehta, O.S. [Physical Chemistry Department, National Research Centre, Dokki, Giza (Egypt)

    2011-10-17

    Highlights: {yields} Systematic increase of chloride concentration has a critical influence on TRIP steel corrosion. {yields} TRIP microalloyed with Nb and Cr showed lower corrosion rate and smaller threshold Cl{sup -} value. {yields} Increasing Al content by 220 times in the TRIP deteriorates its corrosion behavior. {yields} Impedance results and surface examinations confirmed the obtained results. - Abstract: The effect of a systematic increase of chloride ion concentration on the electrochemical corrosion behavior of two types of Al-bearing TRIP steels (T{sub 1} and T{sub 2}) was studied in aqueous NaCl solutions. Several electrochemical techniques were used comprising open circuit potential measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Chloride concentration has a critical influence on the corrosion rate of the two tested steel samples. For both steels the corrosion rate first increased with increasing chloride content up to a certain critical concentration (CC), and then decreased in solution with chloride level higher than the threshold value. TRIP steel T{sub 1} microalloyed with Nb and Cr as compared to steel T{sub 2} not containing these two elements, exhibited lower corrosion rate and smaller CC value, indicating better corrosion resistance to chloride attack, albeit the Al content in T{sub 2} is 220 times higher than that in T{sub 1}. This is because Nb alloyed with TRIP steel likely enhances the formation on the surface of a stable rust layer enriched with other passivating elements Al, Cu, Cr and Ni, which has higher corrosion resistance and hence improve greatly the passive performance of the TRIP sample. The ac impedance data are in good agreement with the OCP and dc polarization measurements. Surface examinations via scanning electron microscope confirmed well the obtained results.

  3. Influence of chloride ion concentration on the corrosion behavior of Al-bearing TRIP steels

    International Nuclear Information System (INIS)

    El-Taib Heakal, F.; Tantawy, N.S.; Shehta, O.S.

    2011-01-01

    Highlights: → Systematic increase of chloride concentration has a critical influence on TRIP steel corrosion. → TRIP microalloyed with Nb and Cr showed lower corrosion rate and smaller threshold Cl - value. → Increasing Al content by 220 times in the TRIP deteriorates its corrosion behavior. → Impedance results and surface examinations confirmed the obtained results. - Abstract: The effect of a systematic increase of chloride ion concentration on the electrochemical corrosion behavior of two types of Al-bearing TRIP steels (T 1 and T 2 ) was studied in aqueous NaCl solutions. Several electrochemical techniques were used comprising open circuit potential measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Chloride concentration has a critical influence on the corrosion rate of the two tested steel samples. For both steels the corrosion rate first increased with increasing chloride content up to a certain critical concentration (CC), and then decreased in solution with chloride level higher than the threshold value. TRIP steel T 1 microalloyed with Nb and Cr as compared to steel T 2 not containing these two elements, exhibited lower corrosion rate and smaller CC value, indicating better corrosion resistance to chloride attack, albeit the Al content in T 2 is 220 times higher than that in T 1 . This is because Nb alloyed with TRIP steel likely enhances the formation on the surface of a stable rust layer enriched with other passivating elements Al, Cu, Cr and Ni, which has higher corrosion resistance and hence improve greatly the passive performance of the TRIP sample. The ac impedance data are in good agreement with the OCP and dc polarization measurements. Surface examinations via scanning electron microscope confirmed well the obtained results.

  4. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  5. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  6. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  7. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment

    International Nuclear Information System (INIS)

    Ma Yuantai; Li Ying; Wang Fuhui

    2008-01-01

    The atmospheric corrosion performance of carbon steel exposed in Wanning area, which located in the south part of China with tropic marine environment characters, was studied at different exposure periods (up to 2 years). To investigate the effect of β-FeOOH on the corrosion behavior of carbon steel in high chloride ion environment, rust layer was analyzed by using infrared spectroscopy, scanning electron microscope, X-ray diffraction, and the rusted steel was measured by electrochemical impedance spectroscopy method. The weight loss test indicated that the corrosion rate of carbon steel sharply increased during 6 months' exposure and gradually reduced after longer exposure. The results of rust analysis revealed that the underlying corrosion performance of the carbon steel was dependent on the inherent properties of the rust layers formed under different conditions such as composition and structure. Among all the iron oxide, β-FeOOH exerted significant influence. The presence of a monolayer of the rust as well as β-FeOOH accelerated the corrosion process during the initial exposure stage. EIS data implied that β-FeOOH in the inner layer was gradually consumed and transformed to γ-Fe 2 O 3 in the wet-dry cycle, which was beneficial to protect the substrate and reduced the corrosion rate

  8. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  9. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  10. Treatment Tank Corrosion Studies For The Enhanced Chemical Cleaning Process

    International Nuclear Information System (INIS)

    Wiersma, B.

    2011-01-01

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  11. Chemical processes of galvanized steel corrosion in the post-LOCA phase of a PWR and the prevention of sump screen clogging

    International Nuclear Information System (INIS)

    Hoffmann, W.; Kryk, H.

    2012-09-01

    from those of the formation and deposition of corrosion products. Changes of the chemical composition of the circulating media were determined by chemical analysis (ICP-MS) of samples taken at defined times, and general parameters such as conductivity and pH were measured. Galvanized samples and fiber beds were examined after each experiment by means of photographic methods, light-microscopy and different kinds of chemical analysis. The chemical analyses of the depositions on fiber beds showed that the clogging is predominantly caused by the corrosion products of iron and lower amounts of zinc compounds. Thus, the corrosion of galvanized steel in boric acid is explained by a mechanism starting at the surface with fast Zn dissolution but without solid corrosion product formation. The Zn corrosion is mainly influenced by pH and concentration of zinc ions in the coolant. Since boric acid/borate acts as a buffer system, the pH value increases faster at the beginning and reaches up to 6.8 in case of sufficient Zn amount (dissolution of compact zinc or large zinc surface). A local (flow induced) corrosion occurs if a fast liquid flow strikes the top face of a horizontal galvanized coupon (small sample area). Precondition for this process is a sufficiently low pH of solution in connection with a high hydrodynamic impact of the liquid flow on the corroding surface. For a limited period, the risk of strainer clogging due to formation of corrosion products of galvanized steel may be reduced by an additional amount of submerged Zn or changing the coolant chemistry by alkaline additions. These two possibilities were investigated by test series using galvanized steel coupons. The addition of borax seems to be the most effective method to reduce the corrosion rate and the risk of sump screen clogging. The results were validated with galvanized gratings in a further test series since the flow conditions of a liquid jet on flat coupons significantly differ from those on gratings

  12. Effect of temperature and heat fluxes on the corrosion's damage nature for mild and stainless steels in neutral chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzhina, S.A. [Voronezh State University, University Sq.1, 394006 Voronezh (Russian Federation); Malygin, A.V. [JSC Voronezhsynthezkauchuk, Leninsky Av. 2, 394014 Voronezh (Russian Federation); Vigdorovitch, V.V. [Derzhavin State University, International St. 33, 392622 Tambov (Russian Federation)

    2004-07-01

    The detail research of the corrosion-electrochemical behavior of two types steels - mild steel (0.1%C) and stainless steel 12FeCr18Ni10Ti in series chloride solutions under elevated temperature and heat flux on interface has been carried out in the present work using the special plant and the complex electrochemical and microscopic methods. The comparative data has shown that the temperature increase is stimulating as the active alloy's corrosion (mild steel), so the passive alloy's corrosion (12FeCr18Ni10Ti).However at the last case the temperature effect is being higher because the thermal de-passivation of the stainless steel which undergoes pit corrosion under t > 50 deg C. The heat-transfer role in the studied systems is ambiguous. The corrosion rate of heat-transferring electrode from mild steel exceeds the thermo-equilibrium with solution electrode's corrosion rate because of intensification of the oxygen reduction cathodic process. The opposite effect has been established for steel 12FeCr18Ni10Ti where the oxygen flux's strengthening from cold solution to the heated surface transfers the alloy to the most stable passive state and increases its resistance to general and local corrosion. The experimental results demonstrates that the thermal condition's influence on the nature and corrosion intensity of the investigated steels is being commensurable by effect's degree with their composition and showing strictly individually. (authors)

  13. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    International Nuclear Information System (INIS)

    Calderón, J.A.; Vásquez, F.A.; Carreño, J.A.

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm"−"2. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  14. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, J.A., E-mail: andres.calderon@udea.edu.co [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Vásquez, F.A. [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Carreño, J.A. [Laboratório de H2S, CO2 e Corrosividade, Instituto Nacional De Tecnologia (INT), Av. Venezuela, 82 – Térreo, Anexo 01, Sala 101A, Saúde, Rio de Janeiro, RJ (Brazil)

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm{sup −2}. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  15. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Mohammed H. Othman Ahmed

    2018-03-01

    Full Text Available The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-ylphenol, for mild steel in 1 M hydrochloric acid (HCl has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms. Keywords: Corrosion, Inhibitor, Mild steel, EIS spectroscopy

  16. Preliminary study on the corrosion behavior of carbon steel in Horonobe groundwater environment

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kogawa, Noritaka; Maeda, Kazuto

    2006-08-01

    It is necessary to understand the corrosion behavior of candidate overpack materials to plan the in-situ engineered barrier test at underground laboratory constructing at Horonobe and to design the overpacks suitable to Horonobe environment. The preliminary corrosion tests of carbon steel which is a candidate material for overpacks were carried out using artificial groundwater and actual groundwater sampled at Horonobe. As the results of anodic polarization experiments, the anodic polarization curves of carbon steel in buffer material were active dissolution type, and the corrosion type of carbon steel in Horonobe groundwater environment was expected to be general corrosion. The results of immersion test under air equilibrium condition showed that the degrees of corrosion localization were not exceeded the data obtained in previous studies. The trend of corrosion rates in buffer material under anaerobic condition were similar to the data obtained in previous studies. Based on the experimental results, it was confirmed that the corrosion assessment model and assumed corrosion rate in second progress report (H12 report) can be applied to the assessment for Horonobe groundwater condition. (author)

  17. Spectral Analysis of CO2 Corrosion Product Scales on 13Cr Tubing Steel

    International Nuclear Information System (INIS)

    Guan-fa, Lin; Zhen-quan, Bai; Yao-rong, Feng; Xun-yuan, Xu

    2008-01-01

    CO 2 corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated CO 2 corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of FeCO 3 , and the inner layer is composed of compact fine FeCO 3 crystals and amorphous Cr(OH) 3 . Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in CO 2 corrosion environment

  18. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  19. Mechanical Performance versus Corrosion Damage Indicators for Corroded Steel Reinforcing Bars

    Directory of Open Access Journals (Sweden)

    Silvia Caprili

    2015-01-01

    Full Text Available The experimental results of a testing campaign including tensile and low-cycle fatigue tests on different reinforcing steel bar types in the as-delivered and corroded condition are presented. Experimental data were statistically analyzed adopting ANOVA technique; Performance Indicators (PIs, describing the mechanical performance characteristics of reinforcements, and Corrosion Damage Indicators (CDIs, describing the detrimental effects of corrosion phenomena, were determined and correlated in order to evaluate the influence of corrosion on the behaviour of reinforcing steels, providing useful information for designers in addition to what is presented in current standards.

  20. Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M.; Pokorny, P.; Stoulil, J. [University of Chemistry and Technology, Prague (Czech Republic)

    2017-04-15

    Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

  1. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    Science.gov (United States)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  2. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Abidin Kamal Ariff Zainal

    2014-07-01

    Full Text Available Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagation behavior. The results indicate that the microstructure and phase composition as well as corrosion resistance were influenced by nitriding temperatures.

  3. Corrosion of pipe steel in CO2 containing impurities and possible solutions

    NARCIS (Netherlands)

    Zhang, X.; Zevenbergen, J.F.; Spruijt, M.P.N.; Borys, M.

    2013-01-01

    CO2 flue gases acquired from different sources contain a significant amount of impurities and water, which are corrosive to the pipeline steel. To design the pipelines for large scale of CO2 flue gas transport, the corrosion of pipeline steels has to be investigated in the realistic conditions. In

  4. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Nina; Kosec, Tadeja, E-mail: tadeja.kosec@zag.si; Legat, Andraž

    2016-12-01

    The aim of the present work was to characterize the efficiency of a corrosion inhibitor on steel in a simulated concrete pore solution. Laboratory measurements were performed at various chloride and inhibitor concentrations in order to simulate different applications of the inhibitor when used for the protection or rehabilitation of steel reinforcement in concrete. Two electrochemical techniques, i.e. potentiodynamic polarization scans and electrochemical impedance spectroscopy, were used for this study. The exposed surfaces of the steel specimens were subsequently investigated by Raman spectroscopy and scanning electron microscopy. It was found that the inhibitor can efficiently retard the corrosion of steel in a simulated concrete pore solution at concentrations of the inhibitor >2.0% and of chlorides <0.3% at a pH 10.5. On the other hand, when these conditions are not fulfilled, localized corrosion was observed. The results of the Raman and SEM/EDS analysis showed various morphologies of corrosion products and different types of corrosion attack depending on the pH of the pore solution, and the applied concentrations of the chlorides and the inhibitor. - Highlights: • Electrochemical studies performed at various Cl{sup −} and inhibitor concentrations. • Exposed steel surfaces investigated by Raman spectroscopy and SEM. • Cl{sup −}/inhibitor ratio is important parameter for the inhibitor's efficiency. • The corrosion can re-occur if the concentration of the inhibitor is reduced. • Different corrosion behaviour and oxides in the presence of inhibitor and/or Cl{sup −}.

  5. The Corrosion of High Performance Steel in Adverse Environments

    International Nuclear Information System (INIS)

    Cook, Desmond C.

    2005-01-01

    The corrosion products that have formed on weathering steel bridges exposed to different weather conditions in the United States have been evaluated. They have been analyzed by spectroscopic techniques to determine the relationship between protective and non-protective rust coatings, and their relationship to the exposure conditions. Bridges constructed recently using High Performance Steel, as well as older bridges built with Type A588B weathering steel, were evaluated for corrosion performance of the rust coatings. In locations where the steel is subjected to regular wet-dry cycling, where the surface is wet for less than about 20% of the time, a protective patina starts to form after a few months exposure, and continues to an adherent, impervious coating after a decade. The protective patina is characterized by the formation of only goethite and lepidocrocite. The goethite makes up about 80% of the rust, and itself consists of a nanophase component, 40%, or infrequent drying cycles (regions close to waterways, fog or having high humidity), the weathering steel forms a rust coating that consists of a large amount of maghemite, and goethite that contains very little of the nanophase component. The rust coating ex-foliates from the steel and is not protective. Under exposure conditions in which chlorides are deposited onto the weathering steel surface (marine or de-icing salt locations), the protective patina also does not form. Instead, the rust coating consists of a large fraction of akaganeite that forms at the expense of the lepidocrocite and nanophase goethite. The bridges exposed to high chloride concentrations, 1.5 wt%, and therefore having no protective patina, have corrosion rates measured to be 6 times larger than expected for weathering steel with the protective patina

  6. Influence of cold worked layer on susceptibility to stress corrosion of duplex stainless steel

    International Nuclear Information System (INIS)

    Labanowski, J.; Ossowska, A.; Cwiek, J.

    2001-01-01

    Stress corrosion cracking resistance of cold worked layers on duplex stainless steel was investigated. The surface layers were performed through burnishing treatment. Corrosion tests were performed with the use of Slow Strain Rate Test technique in boiling 35% MgCl 2 solution. It has been shown that burnishing treatment increases corrosion resistance of steel. The factor that improves stress corrosion cracking resistance is crack incubation time. (author)

  7. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lambrinou, Konstantina, E-mail: klambrin@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Charalampopoulou, Evangelia [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van der Donck, Tom [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Delville, Rémi [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Schryvers, Dominique [University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2017-07-15

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10{sup −8} mass%) static liquid lead-bismuth eutectic (LBE) for 253–3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack. - Highlights: •Dissolution corrosion was more severe in cold-deformed than solution-annealed 316L steels. •LBE penetration occurred along preferential paths in the steel microstructure. •The maximum dissolution rate was inversely proportionate to the depth of dissolution.

  8. Corrosion under stress of AISI 304 steel in thiocyanate solutions

    International Nuclear Information System (INIS)

    Perillo, P.M.; Duffo, G.S.

    1989-01-01

    Corrosion susceptibility under stress of AISI 304 steel sensitized in a sodium thiocyanate solution has been studied and results were compared with those obtained with solutions of thiosulfate and tetrathionate. Sensitized steel type 304 is highly susceptible to corrosion when under intergranular stress (IGSCC) in thiocyanate solutions but the aggressiveness of this anion is less than that of the other sulphur anions studied (thiosulfate and tetrathionate). This work has been partly carried out in the Chemistry Department. (Author) [es

  9. On the use of triazines as inhibitors of steel corrosion

    International Nuclear Information System (INIS)

    Sizaya, O.I.; Andrushko, A.P.

    2004-01-01

    A possibility of using substandard pesticides as a raw materials for synthesis of a set of triazines and also using them as a inhibitors of acidic corrosion of steel 20, as well as additions to epoxy powder coatings is considered. It is shown that triazines studied are inhibitors of acidic corrosion of steel 20. 2,4-di(ethylamino)-6-phenylhydrazono-1,3,5-triazine (In 4) has a maximum inhibiting effect among the studied compounds [ru

  10. Corrosion behavior of a superduplex stainless steel in chloride aqueous solution

    Science.gov (United States)

    Dabalà, Manuele; Calliari, Irene; Variola, Alessandra

    2004-04-01

    Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.

  11. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?

    Science.gov (United States)

    Serhan, Hassan; Slivka, Michael; Albert, Todd; Kwak, S Daniel

    2004-01-01

    Surgeons are hesitant to mix components made of differing metal classes for fear of galvanic corrosion complications. However, in vitro studies have failed to show a significant potential for galvanic corrosion between titanium and stainless steel, the two primary metallic alloys used for spinal implants. Galvanic corrosion resulting from metal mixing has not been described in the literature for spinal implant systems. To determine whether galvanic potential significantly affects in vitro corrosion of titanium and stainless steel spinal implant components during cyclical compression bending. Bilateral spinal implant constructs consisting of pedicle screws, slotted connectors, 6.35-mm diameter rods and a transverse rod connector assembled in polyethylene test blocks were tested in vitro. Two constructs had stainless steel rods with mixed stainless steel (SS-SS) and titanium (SS-Ti) components, and two constructs had titanium rods with mixed stainless steel (Ti-SS) and titanium (Ti-Ti) components. Each construct was immersed in phosphate-buffered saline (pH 7.4) at 37 C and tested in cyclic compression bending using a sinusoidal load-controlling function with a peak load of 300 N and a frequency of 5 Hz until a level of 5 million cycles was reached. The samples were then removed and analyzed visually for evidence of corrosion. In addition, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to evaluate the extent of corrosion at the interconnections. None of the constructs failed during testing. Gross observation of the implant components after disassembly revealed that no corrosion had occurred on the surface of the implants that had not been in contact with another component. The Ti-Ti interfaces showed some minor signs of corrosion only detectable using SEM and EDS. The greatest amount of corrosion occurred at the SS-SS interfaces and was qualitatively less at the SS-Ti and Ti-SS interfaces. The results from this study indicate

  12. Inorganic coatings on stainless steel for protection against crevice corrosion

    International Nuclear Information System (INIS)

    Henrikson, Sture

    1989-12-01

    In order to create protection against crevice corrosion stainless steel test specimens of type 316 steel with various inorganic coatings applied on crevice surfaces were tested for 3-50 months at 25 and 30 degree C in natural seawater containing 0.2-1.5 ppm free chlorine. Various metallic coatings, Ni base alloys with Cr and Mo, Ni with W, pure Ag and pure Mo, as well as ceramic coatings - Cr 2 O 3 , TiO 2 and Al 2 O 3 - were studied. All the coatings tested, except pure Molybdenum applied by plasma spraying in a max 0.1 mm thick layer were found to promote crevice corrosion of the stainless steel. A significant reduction of the crevice corrosion susceptibility was obtained with Molybdenum. The result is considered promising enough to justify full scale tests in seawater on flange joints of pipes, valves or pumps. (author)

  13. Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review

    Science.gov (United States)

    Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad

    2015-04-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.

  14. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar

    International Nuclear Information System (INIS)

    Tang, Fujian; Chen, Genda; Brow, Richard K.

    2016-01-01

    The chloride-induced corrosion mechanisms of uncoated, pure enamel (PE)-coated, mixed enamel (ME)-coated, double enamel (DE)-coated, and fusion bonded epoxy (FBE)-coated deformed steel bars embedded in mortar cylinders are investigated in 3.5 wt.% NaCl solution and compared through electrochemical tests and visual inspection. Corrosion initiated after 29 or 61 days of tests in all uncoated and enamel-coated steel bars, and after 244 days of tests in some FBE-coated steel bars. In active stage, DE- and FBE-coated steel bars are subjected to the highest and lowest corrosion rates, respectively. The uncoated and ME-coated steel bars revealed relatively uniform corrosion while the PE-, DE-, and FBE-coated steel bars experienced pitting corrosion around damaged coating areas. Due to the combined effect of ion diffusion and capillary suction, wet–dry cyclic immersion caused more severe corrosion than continuous immersion. Both exposure conditions affected the corrosion rate more significantly than the water–cement ratio in mortar design.

  15. Corrosion performance tests for reinforcing steel in concrete : test procedures.

    Science.gov (United States)

    2009-09-01

    The existing test method to assess the corrosion performance of reinforcing steel embedded in concrete, mainly : ASTM G109, is labor intensive, time consuming, slow to provide comparative results, and often expensive. : However, corrosion of reinforc...

  16. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    Science.gov (United States)

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  17. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  18. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    International Nuclear Information System (INIS)

    Subramanian, Ananth Kumar; Arumugam, Sankar; Mallaiya, Kumaravel; Subramaniam, Rameshkumar

    2013-01-01

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H 2 SO 4 was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H 2 SO 4 medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface

  19. Inhibition of Bio corrosion of steel coupon by sulphate reducing ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Inhibition of Bio corrosion of steel coupon by sulphate reducing bacteria and Iron oxidizing bacteria using .... Ethanol for 24 h. The extract was ... with distilled water to get a zero reading from the meter before .... Ethanol extract of musa species peels as a green corrosion ... Eco friendly extract of banana peel as corrosion ...

  20. Immunological parameters of dental alloy corrosion; A study of gingival inflammation after placement of stainless steel crown

    Directory of Open Access Journals (Sweden)

    Ratna Indriyanti

    2008-11-01

    Full Text Available The dental alloy is widely used in many fields of dentistry as a restoration material, orthodontic, prosthodontic, oral surgery and endodontic treatments. Naturally, most of the metallic materials without exception to stainless steel alloy will experience a process of corrosion in a form of electrochemical reaction to achieve thermodynamic equilibrium. The corrosion process in the oral cavity is due to the reaction of metal with saliva as an oral cavity electrolyte fluid. SSC has preformed restoration material conform with dental anatomy, manufactured from stainless steel alloy which is formable and adaptable to the teeth. Stainless Steel Crown generally made of austenitic stainless steel 18/8 of AISI 304 group contain chrome 18% and Nickel 8%, can be used as a restoration for teeth with excessive caries, crown fracture, email hypoplasia, or restoration after endodontic treatment. The toxic effect of Ni+2 released due to corrosion process may cause an inflammation of the gingiva and periodontal tissue. Laboratorically this condition indicated by the expression of pro-inflammation cytokines as immunological parameters such as IL-6, IL-8, TNF and IL-1β whose main role is to initiate and enhance any inflammation responses. The presence of pro-inflammation cytokines can be detected as soon as 1 hour after placement of SSC by examination of gingival crevicular fluid (GCF by ELISA technique. The magnitude of the toxic effect depends on corrosion rate and ions release which is influenced by metal chemical composition, environment temperature and pH, metal wear due to abrasion and friction, soldering if any, and elongation of the metal. Conclusion: The release of Ni+2 during corrosion process after placement of SSC cause gingival inflammation which is indicated by the change of the immunological parameters.

  1. Intergranular attack observed in radiation-enhanced corrosion of mild steel

    International Nuclear Information System (INIS)

    Reda, R.J.; Kelly, J.L.; Harna, S.L.A.

    1988-01-01

    Experiments were conducted to determine the effects of gamma radiation on the corrosion of AISI 1018 mild steel in deaerated brine solutions of various sodium, magnesium, and chloride ion concentrations. Immersed metal specimens were irradiated at an exposure rate of 3 x 10/sup 5/ R/h (0.3 MR/h) for up to 1250 h at a temperature of --25 C. The corrosion rates of the irradiated specimens were found to be roughly a factor of 10 greater than the rates for the non-irradiated specimens. The radiation-enhanced corrosion rate was also found to have increased with the chloride concentration. Electron micrographs revealed that the surface morphology of the specimens exposed to irradiated brines differed greatly from the non-irradiated specimens. The non-irradiated specimens had undergone uniform corrosion, while the irradiated specimens exhibited intergranular corrosion (IGC), a phenomenon not yet observed in mild steel. An explanation for this observation is offered in terms of the relative rates of formation and recombination of radiolytic species

  2. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions - Part 1: Long term corrosion behaviour

    International Nuclear Information System (INIS)

    Sherar, B.W.A.; Keech, P.G.; Shoesmith, D.W.

    2011-01-01

    Highlights: → Anaerobic-aerobic cycling on pipeline steel forms two distinct surface morphologies. → Seventy-five percentage of the surface was covered by a black, compact layer ∼4.5 μm thick. → A tubercle, ∼3 to 4 mm in cross section, covered the remaining 25% of surface. → The tubercle cross section showed a single large pit ∼275 μm deep. - Abstract: The influence of anaerobic-aerobic cycling on pipeline steel corrosion was investigated in near-neutral carbonate/sulphate/chloride solution (pH 9) over 238 days. The corrosion rate increased and decreased as exposure conditions were switched between redox conditions. Two distinct corrosion morphologies were observed. The majority of the surface corroded uniformly to produce a black magnetite/maghemite layer approximately 4.5 μm thick. The remaining surface was covered with an orange tubercle, approximately 3-4 mm in cross section. Analysis of the tubercle cross section revealed a single large pit approximately 275 μm deep. Repeated anaerobic-aerobic cycling localized the corrosion process within this tubercle-covered pit.

  3. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH 2 ) -1/2 dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs

  4. Corrosion performance tests for reinforcing steel in concrete : technical report.

    Science.gov (United States)

    2009-10-01

    The existing test method used to assess the corrosion performance of reinforcing steel embedded in : concrete, mainly ASTM G 109, is labor intensive, time consuming, slow to provide comparative results, : and can be expensive. However, with corrosion...

  5. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    Science.gov (United States)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  6. Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions

    Science.gov (United States)

    Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji

    2017-10-01

    Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.

  7. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    Science.gov (United States)

    Farina, S.; Schulz Rodriguez, F.; Duffó, G.

    2013-07-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.

  8. Microbiologically influenced corrosion of carbon steel in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Mihalache, M.; Laurentiu, P.

    2016-01-01

    Sulphate-reducing bacteria (SRB) are the most important organisms in microbiologically induced corrosion. In this context, the paper presents an assessment (by experimental tests) of the behaviour of carbon steel samples (SA106gr.B) in SRB media. Some of samples were immersed in microbial environment in order microbiological analysis of their surface and another part was used to perform accelerated electrochemical tests to determine electrochemical parameters for the system carbon steel / microbial medium (corrosion rate, the polarization resistance of the surface, susceptibility to pitting corrosion). The surfaces of the tested samples were analyzed using the optical and electronic microscope, and emphasized the role of bacteria in the development of biofilms under which appeared characteristics of corrosion attack. The correlation of all results confirmed that SRB accelerated the localized corrosion of the surfaces of SA 106gr.B carbon steel. (authors)

  9. Corrosion of path A PCA and 12 Cr-1 MoVW steel in thermally convective lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Exposure of path A PCA alloys to thermally convective lithium for 6700 h at 600 and 570 0 C resulted in corrosion reactions that were similar to what is observed for other austenitic alloys exposed under similar conditions. It corroded more rapidly than type 316 stainless steel, and the presence of nitride stringers in PCA did not affect the measured weight losses. Consideration of the weight change and surface analysis data for 12 Cr-1 MoVW steel exposed to thermally convective lithium between 500 and 350 0 C for 10,088 h revealed that reactions with carbon and nitrogen were probably the principal corrosion processes for this alloy in this temperature range. Corrosion was not severe

  10. Carbon-14 speciation during anoxic corrosion of activated steel in a repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Cvetkovic, B.Z.; Kunz, D. [Paul Scherrer Institute, Villigen (Switzerland). Lab. for Waste Management; Salazar, G.; Szidat, S. [Bern Univ. (Switzerland). Dept. of Chemistry and Biochemistry and Oeschger Centre for Climate Change Research

    2018-01-15

    Radioactive waste contains significant amounts of {sup 14}C which has been identified a key radionuclide in safety assessments. In Switzerland, the {sup 14}C inventory of a cement-based repository for low- and intermediate-level radioactive waste (L/ILW) is mainly associated with activated steel (∝85 %). {sup 14}C is produced by {sup 14}N activation in steel parts exposed to thermal neutron flux in light water reactors. Release of {sup 14}C occurs in the near field of a deep geological repository due to anoxic corrosion of activated steel. Although the {sup 14}C inventory of the L/ILW repository and the sources of {sup 14}C are well known, the formation of {sup 14}C species during steel corrosion is only poorly understood. The aim of the present study was to identify and quantify the {sup 14}C-bearing carbon species formed during the anoxic corrosion of iron and steel and further to determine the {sup 14}C speciation in a corrosion experiment with activated steel. All experiments were conducted in conditions similar to those anticipated in the near field of a cement-based repository.

  11. Study of the Corrosion Resistance of Austenitic Stainless Steels during Conversion of Waste to Biofuel

    Science.gov (United States)

    Cabrini, Marina; Lorenzi, Sergio; Pastore, Tommaso; Pellegrini, Simone; Burattini, Mauro; Miglio, Roberta

    2017-01-01

    The paper deals with the corrosion behavior of stainless steels as candidate materials for biofuel production plants by liquefaction process of the sorted organic fraction of municipal solid waste. Corrosion tests were carried out on AISI 316L and AISI 304L stainless steels at 250 °C in a batch reactor during conversion of raw material to bio-oil (biofuel precursor), by exposing specimens either to water/oil phase or humid gas phase. General corrosion rate was measured by weight loss tests. The susceptibility to stress corrosion cracking was evaluated by means of U-bend specimens and slow stress rate tests at 10−6 or 10−5 s−1 strain rate. After tests, scanning electron microscope analysis was carried out to detect cracks and localized attacks. The results are discussed in relation with exposure conditions. They show very low corrosion rates strictly dependent upon time and temperature. No stress corrosion cracking was observed on U-bend specimens, under constant loading. Small cracks confined in the necking cone of specimens prove that stress corrosion cracking only occurred during slow strain rate tests at stresses exceeding the yield strength. PMID:28772682

  12. Steel corrosion in tributyl phosphate in the presence of water and ethyl mercaptan

    International Nuclear Information System (INIS)

    Pischik, L.M.; Tsinman, A.I.

    1979-01-01

    Studied is the corrosion of steels St3, 15Kh5M, 08Kh13, 10Kh14G14N4T, 08Kh18G8N2T, 10Kh17N13M2T in TBP, in mixtures of TBP with ethyl mercaptan (EM) and two-phase systems TBP-water and TBP-water-EM at 50-150 deg. In pure TBP St3 corrosion rate is low even at 150 deg. In the presence of water St 3 strongly corrodes at above 50 deg temperature in organic and water layers and also in gas phase. The steel-08Kh18G8N2T at 90 deg in acid TBP is passive and its corrosion rate is lower than 0.01 mm/year. In identical conditions the resistance of stainless steels increases together with chromium content but in TBP with acid number 100 and above at 150 deg all tested steels including steel-10Kh17N13M2T are slightly resistant. Thus, even in absence of corrosion active additions of EM the mixture of TBP-water at higher temperature is agressive in relation not only to carbon steel but also to stainless steels

  13. Effect of coating mild steel with CNTs on its mechanical properties and corrosion behaviour in acidic medium

    Science.gov (United States)

    Abdulmalik Abdulrahaman, Mahmud; Kamaldeeen Abubakre, Oladiran; Ambali Abdulkareem, Saka; Oladejo Tijani, Jimoh; Aliyu, Ahmed; Afolabi, Ayo Samuel

    2017-03-01

    The study investigated the mechanical properties and corrosion behaviour of mild steel coated with carbon nanotubes at different coating conditions. Multi-walled carbon nanotubes (MWCNTs) were synthesized via the conventional chemical vapour deposition reaction using bimetallic Fe-Ni catalyst supported on kaolin, with acetylene gas as a carbon source. The HRSEM/HRTEM analysis of the purified carbon materials revealed significant reduction in the diameters of the purified MWCNT bundles from 50 nm to 2 nm and was attributed to the ultrasonication assisted dispersion with surfactant (gum arabic) employed in purification process. The network of the dispersed MWCNTs was coated onto the surfaces of mild steel samples, and as the coating temperature and holding time increased, the coating thickness reduced. The mechanical properties (tensile strength, yield strength, hardness value) of the coated steel samples increased with increase in coating temperature and holding time. Comparing the different coating conditions, coated mild steels at the temperature of 950 °C for 90 min holding time exhibited high hardness, yield strength and tensile strength values compared to others. The corrosion current and corrosion rate of the coated mild steel samples decreased with increase in holding time and coating temperature. The lowest corrosion rate was observed on sample coated at 950 °C for 90 min.

  14. Methodology for corrosion evaluation in HAZ of 11%-Cr ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Carmem C. F.; Rodrigues, Samul F. [Dept. of Mechanic and MaterialsFederal Institute of Education, Science and Technology of Maranhao, Sao Luis (Brazil); De Morais, Vinicius M.; Vilarinho, Louriel O. [Dept. of Mechanic Engineering, Federal University of Uberlandia, Uberlandia (Brazil)

    2016-08-15

    A novel methodology is proposed for corrosion-wear measurement in the Heat affected zone (HAZ) of 11%-Cr ferritic stainless steel. Weld beads with different stress-concentration were manufactured by using MIG/MAG process. After, the welded sample is extracted from the plate, the beads were bended and external stress was applied. Finally, they were inserted in ferric-chloride solution. Corrosive wear were assessed by means of optical microscopy in the HAZ by using polymeric resin mask and comparing profiles before and after inserting the sample into the solution. The results demonstrate the feasibility of the proposed methodology for assessing corrosive wear in the HAZ.

  15. Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars

    Directory of Open Access Journals (Sweden)

    Marina C. Vasco

    2017-10-01

    Full Text Available In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance

  16. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment.

    Science.gov (United States)

    Wan, Hongxia; Song, Dongdong; Zhang, Dawei; Du, Cuiwei; Xu, Dake; Liu, Zhiyong; Ding, De; Li, Xiaogang

    2018-06-01

    The corrosion of X80 pipeline steel in the presence of Bacillus cereus (B. cereus) was studied through electrochemical and surface analyses and live/dead staining. Scanning electron microscopy and live/dead straining results showed that a number of B. cereus adhered to the X80 steel. Electrochemical impedance spectroscopy showed that B. cereus could accelerate the corrosion of X80 steel. In addition, surface morphology observations indicated that B. cereus could accelerate pitting corrosion in X80 steel. The depth of the largest pits due to B. cereus was approximately 11.23μm. Many pits were found on the U-shaped bents and cracks formed under stress after 60days of immersion in the presence of B. cereus. These indicate that pitting corrosion can be accelerated by B. cereus. X-ray photoelectron spectroscopy results revealed that NH 4 + existed on the surface of X80 steel. B. cereus is a type of nitrate-reducing bacteria and hence the corrosion mechanism of B. cereus may involve nitrate reduction on the X80 steel. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Pitting Corrosion of the Resistance Welding Joints of Stainless Steel Ventilation Grille Operated in Swimming Pool Environment

    Directory of Open Access Journals (Sweden)

    Mirosław Szala

    2018-01-01

    Full Text Available This work focuses on the pitting corrosion of ventilation grilles operated in swimming pool environments. The ventilation grille was made by resistance welding of stainless steel rods. Based on the macroscopic and microscopic examinations, the mechanism of the pitting corrosion was confirmed. Chemical composition microanalysis of sediments as well as base metal using scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS method was carried out. The weldments did not meet the operating conditions of the swimming pool environment. The wear due to the pitting corrosion was identified in heat affected zones of stainless steel weldment and was more severe than the corrosion of base metal. The low quality finish of the joints and influence of the welding process on the weld metal microstructure lead to accelerated deposition of corrosion effecting elements such as chlorine.

  18. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ananth Kumar; Arumugam, Sankar [Kandaswami Kandar' s College, Namakkal (India); Mallaiya, Kumaravel; Subramaniam, Rameshkumar [PSG College of Technology Peelamedu, Coimbatore (India)

    2013-12-15

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H{sub 2}SO{sub 4} was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H{sub 2}SO{sub 4} medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface.

  19. Corrosion of steel tendons in concrete pressure vessels: review of recent literature and experimental investigations

    International Nuclear Information System (INIS)

    Griess, J.C.

    1978-01-01

    The fundamentals of localized corrosion are briefly discussed, and the literature concerning corrosion of carbon steel in aqueous environments, in particular the stress-corrosion cracking of carbon steels, is reviewed. The behavior of high strength steels in specific environments, including concrete and organic substances, is also summarized. The available information indicates that the corrosion of steels in correctly formulated concrete is minimal. Even appreciable concentrations of chloride, sulfate, sulfide, and nitrate salts can be tolerated in the concrete or grout without detrimental effects. Adherence to established standards in the preparation and application of grouts in tendon-bearing conduits should guarantee very long tendon lifetimes. Little is reported about the behavior of tendons in proprietary organic greases or waxes, but very good corrosion resistance is expected if the organic material remains intact. Stress-corrosion cracking tests performed with AISI 1080 steel tendon wires, using the constant-strain-rate method, produced results expected from data in the literature. Cracking was observed only in neutral or acid solutions containing hydrogen sulfide, in ammonium nitrate solutions, and possibly in a dilute solution of sodium bisulfite. General corrosion tests in water and in dilute solutions of sodium nitrate, chloride, or sulfate showed that oxygen was an important factor; corrosion was substantially greater when oxygen had free access to the solution than when access to oxygen was restricted. In the tests with oxygen the heaviest attack on the steel tendons was at the waterline of the solution

  20. Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970

    International Nuclear Information System (INIS)

    Terada, Maysa; Saiki, Mitiko; Costa, Isolda; Padilha, Angelo Fernando

    2006-01-01

    The precipitation behaviour of the DIN 1.4970 steel and its effect on the intergranular corrosion resistance were studied. Time-temperature-precipitation diagrams for the secondary phases (Ti, Mo)C (Cr, Fe, Mo, Ni) 23 C 6 and (Cr, Fe) 2 B are presented and representative samples have been selected for corrosion studies. The susceptibility to intergranular corrosion of the samples was evaluated using the double loop electrochemical potentiokinetic reactivation technique. The results showed that the solution-annealed samples and those aged at 1173 K did not present susceptibility to intergranular corrosion, whereas aging treatment from 873 to 1073 K resulted in small susceptibility to intergranular attack that decreased with aging temperature. The preferential formation of (Ti, Mo)C at higher aging temperatures comparatively to M 23 C 6 , retained the chromium in solid solution preventing steel sensitization and, consequently, intergranular corrosion

  1. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... allows for extensive use as the material of construction in petro- leum industries .... steel specimens was investigated after mass-loss analysis ..... Ogbuliec, Inhibition of pseudo-anaerobic corrosion of oil pipeline steel in ...

  2. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    Science.gov (United States)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  3. Corrosion resistance of stainless steel pipes in soil

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, L.; Camitz, G. [Swerea KIMAB AB, Box 55970, SE-102 16 Stockholm (Sweden); Peultier, J.; Jacques, S.; Baudu, V.; Barrau, F.; Chareyre, B. [Industeel and ArcelorMittal R and D, 56 rue Clemenceau, BP19, FR-71201 le Creusot, Cedex (France); Bergquist, A. [Outokumpu Stainless AB, P.O. Box 74, SE-774 22 Avesta (Sweden); Pourbaix, A.; Carpentiers, P. [Belgian Centre for Corrosion Study, Avenue des Petits-Champs 4A, BE 1410 Waterloo (Belgium)

    2011-04-15

    To be able to give safe recommendations concerning the choice of suitable stainless steel grades for pipelines to be buried in various soil environments, a large research programme, including field exposures of test specimens buried in soil in Sweden and in France, has been performed. Resistance against external corrosion of austenitic, super austenitic, lean duplex, duplex and super duplex steel grades in soil has been investigated by laboratory tests and field exposures. The grades included have been screened according to their critical pitting-corrosion temperature and according to their time-to-re-passivation after the passive layer has been destroyed locally by scratching. The field exposures programme, being the core of the investigation, uses large specimens: 2 m pipes and plates, of different grades. The exposure has been performed to reveal effects of aeration cells, deposits or confined areas, welds and burial depth. Additionally, investigations of the tendency of stainless steel to corrode under the influence of alternating current (AC) have been performed, both in the laboratory and in the field. Recommendations for use of stainless steels under different soil conditions are given based on experimental results and on operating experiences of existing stainless steel pipelines in soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Wire-Arc-Sprayed Aluminum Protects Steel Against Corrosion

    Science.gov (United States)

    Zimmerman, Frank R.; Poorman, Richard; Sanders, Heather L.; Mckechnie, Timothy N.; Bonds, James W., Jr.; Daniel, Ronald L., Jr.

    1995-01-01

    Aluminum coatings wire-arc sprayed onto steel substrates found effective in protecting substrates against corrosion. Coatings also satisfy stringent requirements for adhesion and flexibility, both at room temperature and at temperatures as low as liquid hydrogen. Developed as alternatives to corrosion-inhibiting primers and paints required by law to be phased out because they contain and emit such toxic substances as chromium and volatile organic compounds.

  5. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ...] Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation of... ``ITC'') that revocation of the antidumping duty (``AD'') orders on corrosion-resistant carbon steel... (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat Products From...

  6. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique

    International Nuclear Information System (INIS)

    Dong Zehua; Shi Wei; Ruan Hongmei; Zhang Guoan

    2011-01-01

    Highlights: → Highly conductive SRB-biofilm can shield the potential differences of mild steel. → Potential maps fail to indicate the localised corrosion of steel under SRB-biofilm. → Galvanic current maps can detect the location of localised corrosion under biofilm. → SRB-biofilm is super-capacitive due to the conductive sulphide micropores. - Abstract: Heterogeneous corrosion of mild steel under sulphate reducing bacteria (SRB)-biofilm was characterised by wire beam electrode (WBE) technique and electrochemical impedance spectrum. The potential/current distributions of the WBE under SRB-biofilm showed that the potential maps could not indicate the localised corrosion of steels beneath biofilm due to the fact that all wire electrodes were short-circuited by the highly conductive sulphide precipitates embedded in SRB-biofilm. Instead, the galvanic current maps may give a good indication. The characteristic of super-capacitance (0.21 F/cm 2 ) of SRB-biofilm was attributed to the huge specific surface area of conductive pore walls inside biofilm.

  7. Corrosion of type 316 stainless steel in molten LiF-LiCl-LiBr

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Keiser, J.R.

    1981-01-01

    The properties of LiF-LiCl-LiBr salt make it attractive as a solvent for extracting tritium from a fusion reactor lithium blanket. Consequently, the corrosion of type 316 stainless steel by flowing (about 15 mm/s) LiF-LiCl-LiBr at a maximum temperature of 535 0 C was studied to determine whether compatibility with the structural material would be limiting in such a system. The corrosion rate was found to be low ( 0 C (approximately that of type 316 stainless steel exposed to lithium flowing at a similar velocity). At the proposed operating temperature (less than or equal to approx. 535 0 C), however, it appears that type 316 stainless steel has acceptable compatibility with the tritium-processing salt LiF-LiCl-LiBr for use with a lithium blanket

  8. The effect of thermal treatment on corrosion properties of 0Kh15N16M3B stainless steel tested in the N2O4 boiling medium

    International Nuclear Information System (INIS)

    Kamenev, A.Ya.; Kopets, Z.V.; Mel'nikova, N.N.; Dergaj, A.M.; Fedyushin, E.E.

    1985-01-01

    The experimental data on the effect of thermal treatment on corrosion properties of stainless steel 00Kh16n15m3b tested in the N 2 O 4 boiling medium at 8.0 MPa and 433 K are presented. The electron microscope data on steel microstructure after different heat treatments and phase composition of oxide films emerging at corrosion test are given. It is shown, that the rise of the heat treatment temperature from 823 up to 1023 K increases total corrosion of 00Kh16n15m3b steel under given test conditions and practically does't affect intercrystalline corrosion. Developed oxide layers are of deposited nature and doesn't affect markedly the rate of progress of the corrosive processes. Taking into account high chromium volatility in vacuum one can assume that at the initial stages of the coolant effect, the process of depletion of steel surface by chromium durng heat treatment affects markedly steel corrosion stability

  9. In situ Raman identification of corrosion products on galvanized steel sheets

    International Nuclear Information System (INIS)

    Bernard, M.C.; Hugot le Goff, A.; Massinon, D.; Phillips, N.; Thierry, D.

    1992-01-01

    In situ Raman spectroscopy was used to identify corrosion products on zinc immersed in chloride solutions. In aerated 0,03 M NaCl solution, zinc carbonate was identified as the main corrosion product. Even with higher chloride concentrations, for which zinc hydroxychloride was also detected, the carbon dioxide concentration is likely to be the rate controlling factor of the corrosion process. In a confinement experiment, Raman analysis revealed that the upper face of the sample was covered with zinc carbonate, whereas hydroxychlorides were identified on the confined face. This result confirmed the hypothesis of a differential aeration mechanism responsible for the formation of zinc hydroxychloride. This is in good agreement with Raman spectroscopy results obtained in the case of painted galvanized steel

  10. FP corrosion dependence on carbon and chromium content in Fe-Cr steel

    International Nuclear Information System (INIS)

    Sasaki, Koei; Tanigaki, Takanori; Fukumoto, Ken-ichi; Uno, Masayoshi

    2015-01-01

    In an attempt to investigate Cs or Cs-Te corrosion dependence on chromium or carbon content in Fe-Cr steel, cesium and Cs-Te corrosion test were performed to three specimens, Fe-9Cr-0C, Fe-9Cr-0.14C and Fe-13Cr-0.14C, for 100 hours at 973K in simulated high burn-up fuel pin environment. Cesium corrosion depth has no dependence on chromium or carbon content in Fe-Cr steel. Cs-Te corrosion was appeared in only Fe-13Cr-0.14C which has chromium carbides ranged along grain boundary. Appearance of the Cs-Te corrosion was determined by distribution or arrangement of chromium carbides which depends on chromium and carbon content. (author)

  11. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado 10400, La Habana (Cuba); Caleyo, F. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)], E-mail: fcaleyo@gmail.com; Rivas, D.; Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2010-03-15

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  12. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    International Nuclear Information System (INIS)

    Valor, A.; Caleyo, F.; Rivas, D.; Hallen, J.M.

    2010-01-01

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  13. Evaluation of the protection behaviour of reinforcement steel against corrosion induced by chlorides in reinforced mortar specimens

    International Nuclear Information System (INIS)

    Crivelaro, Marcos

    2002-01-01

    In this work various treatments for protecting reinforcing steels against corrosion induced by chlorides have been evaluated. Additives to mortars and surface treatments given to reinforcing steels were evaluated as corrosion protection measures. In the preliminary tests the corrosion resistance of a CA 50 steel treated by immersion in nearly 50 different solutions, was determined. The solutions were prepared with tannins (from various sources) and/or benzotriazole, and during immersion, a surface film formed on the steel. The corrosion resistance of the coated steels was evaluated in a saturated Ca(OH) 2 solution with 5% (wt) NaCl. Preliminary tests were also carried out with mortars reinforced with uncoated steel to which tannin or lignin was added. Two organic coatings, a monocomponent and a bicomponent type, formulated specially for this investigation, with both tannin and benzotriazole, were also tested in the preliminary tests to select the coating with better corrosion protection property. The bicomponent type (epoxy coating) showed better performance than the monocomponent type coating, and the former was therefore chosen to investigate the corrosion performance on CA 50 steel inside mortar specimens. From the preliminary tests, two solutions with tannin from two sources, Black Wattle (Acacia mearnsii) and Brazilian tea (Ilex paraguariensis St. Hill), to which benzotriazole and phosphoric acid were added, were chosen. Mortar specimens reinforced with CA50 steel treated by immersion in these two solutions were prepared. Also, epoxy coated CA50 steel was tested as reinforcement inside mortar specimens. Mortars reinforced with uncoated CA50 steel were also prepared and corrosion tested for comparison. The effect of tannin and lignin as separate additives to the mortar on the corrosion resistance of uncoated steel was also studied. The reinforced mortar specimens were tested with various cycles of immersion for 2 days in 3.5% (wt) NaCl followed by with air

  14. Fluvoxamine-based corrosion inhibitors for J55 steel in aggressive oil and gas well treatment fluids

    Directory of Open Access Journals (Sweden)

    E.B. Ituen

    2017-09-01

    Full Text Available Fluvoxamine (FLU, a non-toxic compound was investigated as an alternative anti-corrosive additive for inhibition of J55 steel corrosion in acidic oil well treatment fluids. The aggressive fluid was simulated using 15% and 1 M HCl. Corrosion of the steel was monitored by Electrochemical Impedance Spectroscopy (EIS, Potentiodynamic Polarization (PDP, Linear Polarization Resistance (LPR, Electrochemical Frequency Modulation (EFM and Weight Loss (WL techniques. UV–Vis spectroscopy provided evidence of formation of a complex surface film due to adsorption of FLU on the J55 steel surface. The adsorption process was both physical and chemical in mechanism as best approximated by the Langmuir adsorption isotherm. The adsorption was also spontaneous and exothermic in the direction of increase in entropy of the bulk phase. Maximum inhibition efficiency was obtained with 1.0 μM FLU and decreased from 91.5% to 78.0% when concentration of HCl was increased from 1 M to 15% at 30 °C. Effectiveness of FLU declined with an increase in temperature and improved with an increase in concentration of FLU. Blending of FLU with some intensifiers improved the efficiency from 68% and 40% to 88% and 72% in 1 M and 15% HCl respectively at 90 °C. EIS measurement reveals that the corrosion process was controlled by charge transfer process. PDP measurements showed that FLU acts as a mixed type inhibitor. Inhibition efficiency values obtained from the different techniques were comparable. SEM micrographs of J55 steel surface indicate good surface protection of FLU. Theoretical calculations were performed using Material Studio Acceryls 7.0 to relate electronic properties of FLU with its structure.

  15. Carbon steel corrosion prevention during chemical cleaning of steam generator secondary side components

    International Nuclear Information System (INIS)

    Fulger, M.; Lucan, D.; Velciu, L.

    2009-01-01

    During operation of a nuclear power plant, many contaminants, such as solid particles or dissolved species are formed in the secondary circuit, go into steam generator and deposit as scales on heat transfer tubing, support plate or as sludge on tube sheet. By accumulation of these impurities, heat transfer is reduced and the integrity of the steam generator tubing is influenced. Chemical cleaning is a qualified, efficient measure to improve steam generator corrosion performance. The corrosion mechanism can be counteracted by the chemical cleaning of the deposits on the tube sheet and the scales on the heat transfer tubing. The major component of the scales is magnetite, which can be dissolved using an organic chelating agent (ethylenediaminetetraacetic acid, EDTA) in combination with a complexing agent such as citric acid in an alkaline reducing environment. As the secondary side of SG is a conglomerate of alloys it is necessary to choose an optimal chemical cleaning solution for an efficient cleaning properties and at the same time with capability of corrosion prevention of carbon steel components during the process. The paper presents laboratory tests initiated to confirm the ability of this process to clean the SG components. The experiments followed two paths: - first, carbon steel samples have been autoclavized in specific secondary circuit solutions of steam generator to simulate the deposits constituted during operation of this equipment; - secondly, autoclavized samples have been cleaned with a solvent composed of EDTA citric acid, hydrazine of pH = 5 and temperature of 85 deg. C. Before chemical cleaning, the oxide films were characterized by surface analysis techniques including optical microscopy, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Applied to dissolve corrosion products formed in a steam generator, the solvents based on chelating agents are aggressive toward carbon steels and corrosion inhibitors are

  16. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and : corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the pro...

  17. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang [KAIST, Daejon (Korea, Republic of)

    2015-12-15

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys.

  18. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    International Nuclear Information System (INIS)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang

    2015-01-01

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys

  19. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    International Nuclear Information System (INIS)

    Farina, S.; Schulz Rodriguez, F.; Duffo, G.

    2013-01-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina), it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (authors)

  20. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  1. Alternatives to reduce corrosion of carbon steel storage drums

    International Nuclear Information System (INIS)

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end

  2. Velocities and mechanisms of AISI 304 steel corrosion in heated acid solutions

    International Nuclear Information System (INIS)

    Silva, B.M.; Guedes, C.D.

    1984-01-01

    The corrosion resistance of stainless steel on H 2 SO 4 at temperature higher than 60 0 C is studied. The weight loss technique and the analysis of the different components in solution are used. A proposition is made about the reason for the loss of resistance to corrosion of the stainless steel at this high temperature. (C.L.B.) [pt

  3. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    Science.gov (United States)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-04-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111||ND-oriented grains, while WE showed a more random distribution of 111||ND-, 011||ND-, and 001||ND-oriented grains with a lower intensity.

  4. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    Science.gov (United States)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-06-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111|| ND-oriented grains, while WE showed a more random distribution of 111|| ND-, 011|| ND-, and 001|| ND-oriented grains with a lower intensity.

  5. Nano structure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    International Nuclear Information System (INIS)

    Zhang, K.M.; Zou, J.X.; Zou, J.X.; Grosdidier, T.; Zou, J.X.; Grosdidier, T.; Grosdidier, T.

    2013-01-01

    The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels

  6. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO3-HF

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; McLaughlin, B.D.

    1980-04-01

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO 3 -HF for dissolution, the best alloy for service at 130 0 C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 130 0 C, Inconel 671 is best. At 95 0 C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr 4+ and Th 4+ ; Al 3+ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO 3 -HF used occasionally for flushing and in solutions of HNO 3 and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures

  7. Zinc Addition Effects on General Corrosion of Austenitic Stainless Steels in PWR Primary Conditions

    International Nuclear Information System (INIS)

    Qiao Peipeng; Zhang Lefu; Liu Ruiqin; Jiang Suqing; Zhu Fawen

    2010-01-01

    Zinc addition effects on general corrosion of austenitic stainless steel 316 and 304 were investigated in simulated PWR primary coolant without zinc or with 50 ppb zinc addition at 315 degree C for 500 h. The results show that with the addition of zinc, the corrosion rate of austenitic stainless steel is effectively reduced, the surface oxide film is thinner, the morphology and chemical composition of surface oxide scales are evidently different from those without zinc. There are needle-like corrosion products on the surface of stainless steel 304. (authors)

  8. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongying [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Yang, Haijie [Modern Engineering Training Center, Anyang Institute of Technology, Anyang 455002 (China); Wang, Man [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Giron-Palomares, Benjamin [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Lefu [School of Nuclear Science and Engineering, Shanghai Jiaotong University, No 800 Dongchuan Road, Shanghai (China); Zhang, Guangming, E-mail: ustbzgm@163.com [School of Automobile & Transportation, Qingdao Technological University, Qingdao 266520 (China)

    2017-02-15

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  9. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    International Nuclear Information System (INIS)

    Sun, Hongying; Yang, Haijie; Wang, Man; Giron-Palomares, Benjamin; Zhou, Zhangjian; Zhang, Lefu; Zhang, Guangming

    2017-01-01

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe 2 O 3 and Fe 3 O 4 ) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  10. Stress Corrosion Cracking of Type 304 Stainless Steel

    National Research Council Canada - National Science Library

    Louthan, M

    1964-01-01

    Stress corrosion cracking of type 304 stainless steel exposed in dilute chloride solutions is being investigated at the Savannah River Laboratory in attempts to develop a fundamental understanding of the phenomenon...

  11. Summary of INCO corrosion tests in power plant flue gas scrubbing processes

    International Nuclear Information System (INIS)

    Hoxie, E.C.; Tuffnell, G.W.

    1976-01-01

    Corrosion tests in a number of flue-gas desulfurization units have shown that carbon steel, low alloy steels, and Type 304L stainless steel are inadequate in the wet portions of the scrubbers. Type 316L stainless steel is sometimes subject to localized corrosive attack in scrubber environments with certain combinations of pH and chloride content. A corollary is that corrosion of Type 316L stainless steel might be controlled by control of scrubbing media pH and chloride content. Although an attempt was made to correlate the pitting and crevice corrosion obtained on the Type 316 stainless steel test samples with chloride and pH measurements, relatively wide scatter in the data indicated only a modest correlation. This is attributed to variations in local conditions, especially beneath deposits, that differ from the liquor samples obtained for analysis, to processing upsets, to temperature differences, and to some extent to inaccuracies in measurement of pH and chloride levels. The data do show, however, that molybdenum as an alloying element in stainless steels and high nickel alloys was very beneficial in conferring resistance to localized attack in scrubber environments. High nickel alloys containing appreciable amounts of molybdenum such as Hastelloy alloy C-276 and Inconel alloy 625 can be used for critical components. Chloride stress corrosion cracking (SCC) of austenitic stainless steels has generally not been a problem in FGD scrubbers, apparently because operating temperatures are comparatively low. An exception is reheater tubing where some failures have occurred because of elevated temperatures in conjunction with condensate that forms during shut-down periods or carryover of chloride laden mist from the scrubber. This problem can be overcome by proper alloy selection or maintaining dry conditions

  12. Water vapor effects on the corrosion of steel

    International Nuclear Information System (INIS)

    Estill, J.C.; Gdowski, G.E.

    1995-01-01

    Critical relative humidity for AISI 1020 carbon steel is 75-85% RH at 65 C. Aggressive electrochemical corrosion occurs above 85% RH, while dry oxidation occurs below 75% RH. The reddish-brown product is probably Fe2O3 or its hydrate; the black oxide layer, Fe3O4. The face surfaces had little or no corrosion, while the mill-machined edges were corroded with nonuniform reddish-brown areas

  13. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    Science.gov (United States)

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  14. Electrochemical testing of passivity state and corrosion resistance of supermartensitic stainless steels

    Directory of Open Access Journals (Sweden)

    S. Lasek

    2010-01-01

    Full Text Available On low interstitial - supermartensitic stainless steels (X1CrNiMo 12-5-1, X2CrNiMo 13-6-2, X1CrNiMo 12-6-2 the electrochemical potentiodynamic polarization tests were carried out and the passive state stability and localized corrosion resistance were compared and evaluated. The effect of quenching and tempering as well as the changes in microstructure on polarisation curves and corrosion properties at room temperature were established. Small differences in chemical composition of steels were also registered on their corrosion parameters changes and resistance.

  15. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides

    Science.gov (United States)

    Corrosion is one of the most serious and challenging problems faced worldwide by industry. This research investigates the inhibition of corrosive behavior of SAE1010 steel by bacterial exopolysaccharides. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion inhibition of diffe...

  16. Stainless Steel Corrosion Studies Final Report: FY17 End of-Year

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Milenski, Helen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Destiny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-08

    Two materials are being considered in applications requiring their contact against stainless steel surfaces. These materials include the solvent methyl ethyl ketone (MEK), and the polymer neoprene (polychloroprene). There is concern that contact of these materials with stainless steel substrates may lead to corrosion. To address these concerns we have undertaken corrosion studies under conditions expected to be more aggressive than in intended applications. These conditions include elevated temperature and humidity, and submersion and suspension in solvent vapors, in an attempt to accelerate any potential deleterious interactions. Corrosion rates below 0.1 mpy have historically been deemed INSIGNIFICANT from a WR Production standpoint; corresponding guidelines for non-production applications are lacking.

  17. Mechanical behavior of precipitation hardenable steels exposed to highly corrosive environment

    Science.gov (United States)

    Rosa, Ferdinand

    1994-01-01

    Unexpected occurrences of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15 - 5 PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a 3.5 percent NaCl aqueous solution. The material selected for the study was 15 - 5 PH steel in the H 900 condition. The Slow Strain Rate technique was used to test the metallic specimens.

  18. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Science.gov (United States)

    Ahmed, Mohammed H. Othman; Al-Amiery, Ahmed A.; Al-Majedy, Yasmin K.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Gaaz, Tayser Sumer

    2018-03-01

    The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-yl)phenol), for mild steel in 1 M hydrochloric acid (HCl) has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms.

  19. Determination of the Optimum Conditions in Evaluation of Kiwi Juice as Green Corrosion Inhibitor of Steel in Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Khalid Hamid Rasheed

    2018-08-01

    Full Text Available The corrosion protection of low carbon steel in 2.5 M HCl solution by kiwi juice was studied at different temperatures and immersion times by weight loss technique. To study the determination of the optimum conditions from statistical design in evaluation of a corrosion inhibitor, three variables, were considered as the most dominant variables. These variables are: temperature, inhibitor concentration (extracted kiwi juice and immersion time at static conditions. These three variables are manipulated through the experimental work using central composite rotatable Box – Wilson Experimental Design (BWED where second order polynomial model was proposed to correlate the studied variables with the corrosion rate of low carbon steel alloy to estimate the coefficients by nonlinear regression analysis method based on Rosenbrock and Quasi-Newton estimation method in as few experiments as possible to determinate of the optimum conditions of the proposed polynomial adopted via STATISTICA software. The parametric study on corrosion inhibition process using response surface methodology (RSM is presented in this paper. The study shows that the immersion time and temperature of corroding medium had shown negative dependence of great significance in increase the corrosion rate while the other studied variable (i.e. inhibitor concentration had shown large positive dependence in reduce the corrosion rate of low carbon steel alloy. Optimum conditions for achieving the minimum corrosion rate are obtained from optimizing the above correlation and are found as follow: 42.86 °C temperature of corroding medium, 29.29 cm3/L inhibitor concentration and 2.65 h immersion time. In these circumstances, the value of inhibition efficiency obtained was 96.09 %. It could be concluded that Box-Wilson experimental design was adequately applicable in the optimization of process variables and that kiwi juice sufficiently inhibited the corrosion for low carbon steel at the

  20. Corrosion Behavior of Low-C Medium-Mn Steel in Simulated Marine Immersion and Splash Zone Environment

    Science.gov (United States)

    Zhang, Dazheng; Gao, Xiuhua; Su, Guanqiao; Du, Linxiu; Liu, Zhenguang; Hu, Jun

    2017-05-01

    The corrosion behavior of low-C medium-Mn steel in simulated marine immersion and splash zone environment was studied by static immersion corrosion experiment and wet-dry cyclic corrosion experiment, respectively. Corrosion rate, corrosion products, surface morphology, cross-sectional morphology, elemental distribution, potentiodynamic polarization curves and electrochemical impedance spectra were used to elucidate the corrosion behavior of low-C medium-Mn steel. The results show that corrosion rate in immersion zone is much less than that in splash zone owing to its relatively mild environment. Manganese compounds are detected in the corrosion products and only appeared in splash zone environment, which can deteriorate the protective effect of rust layer. With the extension of exposure time, corrosion products are gradually transformed into dense and thick corrosion rust from the loose and porous one in these two environments. But in splash zone environment, alloying elements of Mn appear significant enrichment in the rust layer, which decrease the corrosion resistance of the steel.

  1. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    OpenAIRE

    Abidin Kamal Ariff Zainal; Ismail Elya Atikah; Zainuddin Azman; Hussain Patthi

    2014-01-01

    Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagat...

  2. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  3. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  4. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel

    International Nuclear Information System (INIS)

    Mudali, U. Kamachi.; Ananda Rao, B.M.; Shanmugam, K.; Natarajan, R.; Raj, Baldev

    2003-01-01

    To link titanium and zirconium metal based (Ti, Zr-2, Ti-5%Ta, Ti-5%Ta-1.8Nb) dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution to other nuclear fuel reprocessing plant components made of AISI type 304L stainless steel (SS), high integrity and corrosion resistant dissimilar joints between them are necessary. Fusion welding processes produce secondary precipitates which dissolve in nitric acid, and hence solid-state processes are proposed. In this work, various dissimilar joining processes available for producing titanium-304L SS joints with adequate strength, ductility and corrosion resistance for this critical application are highlighted. Developmental efforts made at IGCAR, Kalpakkam are outlined. The possible methods and the microstructural-metallurgical properties of the joints along with corrosion results obtained with three phase (liquid, vapour, condensate) corrosion testing are discussed. Based on the results, dissimilar joint produced by the explosive joining process was adopted for plant application

  5. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp

    International Nuclear Information System (INIS)

    Cetin, Demet; Aksu, Mehmet Levent

    2009-01-01

    The objective of this study was to determine the effect of sulfate-reducing Desulfotomaculum sp. bacteria isolated from a crude oil field on the corrosion of low-alloy steel. The corrosion rate and mechanism were determined with the use of Tafel slopes, mass loss method and electrochemical impedance spectroscopy (EIS). The formation of the biofilm and the corrosion products on the steel surface was determined with scanning electron microscopy (SEM) micrographs and energy dispersive X-ray spectra (EDS) analysis. It was observed from the Tafel plots that the corrosion potential exhibited a cathodic shift that verifies an increase in the corrosion rates. The semicircles tended to open at lower frequencies in the Nyquist plots which indicates the rupture of the protective film. The corrosion current density reached its maximum value at the 14th hour after the inoculation and decreased afterwards. This was attributed to the accumulation of corrosion products on the surface.

  6. Development of Alloy Coating Process of Steel Pipe for Seawater service

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong Man; Kwon, Taeg Kyu; Lee, Sang Hyeog [Daewoo Shipbuilding and Marine Engineering Co., Ltd., Okpo (Korea)

    2001-02-01

    The new alloy coating process was developed to apply steel pipe for seawater service. This process consists of Zn-Al hot-dip coating treatment immediately following after normal galvanizing treatment. The alloy coating process formed double layer after surface treatment, and the surface layer was similar to that of Galfan steel and the intermetallic layer was also similar to that of aluminized steel. The alloy coating layer protect steel pipe galvanically and provide steel pipe with high resistance to general corrosion of seawater. This new alloy coated steel pipe had also good weldability and adhesion strength of paints compared to galvanized steel. 5 refs., 14 figs.

  7. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

    Science.gov (United States)

    Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong

    2017-09-01

    Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

  8. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  9. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  10. Oxidation and stress corrosion cracking of stainless steels in SCWRs

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castro, L.; Blazquez, F.

    2008-01-01

    SCWRs are high-temperature, high-pressure, water-cooled reactors that operate above the thermodynamic critical point of water (374 deg C, 22.1 MPa). The SCWR offers many advantages compared to state-of- the-art LWRs including the use of a single phase coolant with high enthalpy, the elimination of components such as steam generators and steam separators and dryers, a low coolant mass inventory resulting in smaller components, and a much higher efficiency ∼ 44% vs. 33% in current LWRs). In these systems high pressure (25 MPa) coolant enters the vessel at 280 deg C which is heated to about 500 deg C and delivered to a power conversion cycle. Supercritical water (SCW) exhibits properties significantly different from those of liquid water below the critical point. Supercritical water acting essentially as a non-polar dense gas with solvation properties approaching those of a low-polarity organic. In this conditions, can dissolve gases like oxygen to complete miscibility. Depending upon what species are present and how much oxygen is present in the solution can becomes a very aggressive oxidising environment. Most of the data on corrosion in supercritical water are from fossil plant or oxidation waste disposal systems. However there is very limited data on corrosion in low conductivity de-aerated SCW and less on stress corrosion cracking behaviour under operating conditions foreseen for SCWR. Candidate materials for structural components are materials for high temperatures and include ferritic-martensitic alloys; oxide dispersion strengthened (ODS) ferritic/martensitic steels and strengthened steels by precipitation and for lower temperatures the austenitic stainless steels, such as 304 and 316, used in the LWR. Low swelling austenitic steels are also of high interest for areas with high dpa and high temperature. A review of the available information on corrosion and stress corrosion behaviour of different types of stainless steels in supercritical water at high

  11. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Directory of Open Access Journals (Sweden)

    Abdul Amir H. Kadhum

    2014-06-01

    Full Text Available A new coumarin derivative, N,N′-((2E,2′E-2,2′-(1,4-phenylenebis (methanylylidenebis(hydrazinecarbonothioylbis(2-oxo-2H-chromene-3-carboxamide PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear  magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR. The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.

  12. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Science.gov (United States)

    Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.

    2014-01-01

    A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680

  13. Corrosion Resistance of Some Stainless Steels in Chloride Solutions

    Directory of Open Access Journals (Sweden)

    Kasprzyk D.

    2017-06-01

    Full Text Available The present work compares corrosion behaviour of four types of S30403, S31603, S32615 austenitic and S32404 austenitic-ferritic stainless steels in chloride solutions (1%, 3% NaCl and in Ringer solution, at 37°C temperature. Corrosion resistance was determined by potentiodynamic polarization measurements and a thirty day immersion test conducted in Ringer solution. The immersion test was performed in term of biomedical application. These alloy were spontaneously passivated in all electrolytes, wherein S30403, S31603 and S32404 undergo pitting corrosion. Only S32615 containing 5.5% Si shows resistance to pitting corrosion.

  14. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  15. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  16. Corrosion Behavior and Oxide Film Formation of T91 Steel under Different Water Chemistry Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. Q.; Shi, C.; Li, J.; Gao, L. X. [Shanghai University of Electric Power, Shanghai (China); Lee, K. Y. [Dalian University of Technology, Dalian (China)

    2017-02-15

    The corrosion behavior of a ferritic/martensitic steel T91 exposed to an aqueous solution containing chloride and sulfate ions is investigated depending on the stimulated all-volatile treatment (AVT) and under oxygenated treatment (OT) conditions. The corrosion of T91 steel under OT condition is severe, while the corrosion under AVT condition is not. The co-existence of chloride and sulfate ions has antagonistic effect on the corrosion of T91 steel in both AVT and OT conditions. Unlike to corrosion resistance in the aqueous solution, OT pretreatment provides T91 steel lower oxidation-resistance than VAT pretreatment. From scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis, the lower corrosion resistance in the aqueous solution by VAT conditions possibly is due to the formation of pits. In addition, the lower oxidation resistance of T91 steel pretreated by OT conditions is explained as follows: the cracks formed during the immersion under OT conditions accelerated peeling-off rate of the oxide film.

  17. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Science.gov (United States)

    2010-09-14

    ... Products covered by this order are certain corrosion-resistant carbon steel flat products from Korea. These... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE...

  18. Silicon coating treatment to improve high temperature corrosion resistance of 9%Cr steels

    International Nuclear Information System (INIS)

    Hill, M.P.

    1989-01-01

    A silicon coating process is described which confers good protection on 9%Cr steels and alloys in CO 2 based atmospheres at high temperatures and pressures. The coatings are formed by decomposition of silane at temperatures above 720 K. Protective layers are typically up to 1 μm thick. The optimum coating conditions are discussed. The chemical state of the coatings has been investigated by X-ray photoelectron spectroscopy and has demonstrated the importance of avoiding silicon oxide formation during processing. Corrosion testing has been carried out for extended periods, up to 20 000 h, at temperatures between 753 and 853 K, in a simulated advanced gas cooled reactor gas at 4 MPa pressure. Benefit factors of up to 60 times have been measured for 9%Cr steels. Even higher values have been measured for 9Cr-Fe binary alloy on which a 1 μm coating was sufficient to eliminate significant oxidation over 19 000 h except at the specimen edges. The mechanism of protection is discussed. It is suggested that a silicon surface coating for protecting steels from high temperature corrosion has some advantages over adding silicon to the bulk metal. (author)

  19. Fracture-tough, corrosion-resistant bearing steels

    Science.gov (United States)

    Olson, Gregory B.

    1990-01-01

    The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during

  20. The effect of sulphide and moisture content on steel corrosion during transport of fine wet coal

    International Nuclear Information System (INIS)

    Waanders, F. B.; Vorster, S. W.

    2013-01-01

    In the present investigation the influence of compaction pressure (stress) on the corrosivity of wet coal was investigated. Two coal samples, one high in sulphur content (3 %) and the other low in sulphur content (0.6 %) were used to determine the influence of compaction stress on the corrosion rates of steel samples in contact with compacted coal. It was found that the pressure exerted on finely divided wet coal is an important factor in determining its water content and corrosivity towards mild steel. Corrosion of the steel was typically in the form of pitting and the sulphur content of the coal was an important factor in determining the corrosivity of the coal. The corrosion rate of the high sulphur content coal was higher than that of the low sulphur coal. Mössbauer spectroscopy showed that a FeS species developed on the steel surface.

  1. Influence of inclusions on the local corrosion in steels

    International Nuclear Information System (INIS)

    Grall, L.; Mahieu, C.

    1978-01-01

    A synthesis of the work relating to the influence of inclusions on the pitting corrosion of steels, shows that pitting mainly occurs preferentially at precipitate levels, particularly sulfur precipitates. However oxidized inclusions can also cause this condition which is found on austenitic steels as well as on slightly alloyed or non alloyed steels. The method of refining as well as the morphology of inclusions can also play a part in this [fr

  2. Influence of Changes in Water-to-Cement Ratio, Alkalinity, Concrete Fluidity, Voids, and Type of Reinforcing Steel on the Corrosion Potential of Steel in Concrete.

    Science.gov (United States)

    2014-04-01

    "Research on steel corrosion has demonstrated that the concentrations of chloride and hydroxide ion at the concrete/steel : interface influence the susceptibility of the steel to corrosive attack. This study used electrochemical means and changes in ...

  3. Influence of Freeze-Thaw Damage on the Steel Corrosion and Bond-Slip Behavior in the Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Fangzhi Zhu

    2016-01-01

    Full Text Available This paper mainly studies the behavior of steel corrosion in various reinforced concrete under freeze-thaw environment. The influence of thickness of concrete cover is also discussed. Additionally, the bond-slip behavior of the reinforced concrete after suffering the freeze-thaw damage and steel corrosion has also be presented. The results show that the freeze-thaw damage aggravates the steel corrosion in concrete, and the results become more obvious in the concrete after suffering serious freeze-thaw damage. Compared with the ordinary concrete, both air entrained concrete and waterproofing concrete possess better resistance to steel corrosion under the same freeze-thaw environment. Moreover, increasing the thicknesses of concrete cover is also an effective method of improving the resistance to steel corrosion. The bond-slip behavior of reinforced concrete with corroded steel decreases with the increase of freeze-thaw damage, especially for the concrete that suffered high freeze-thaw cycles. Moreover, there exists a good correlation between the parameters of bond-slip and freeze-thaw cycles. The steel corrosion and bond-slip behavior of reinforced concrete should be considered serious under freeze-thaw cycles environment, which significantly impact the durability and safety of concrete structure.

  4. Corrosion Behavior of Steels in Supercritical CO2 for Power Cycle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Repukaiti, Richard [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Teeter, Lucas [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Ziomek-Moroz, Margaret [National Energy Technology Lab. (NETL), Albany, OR (United States); Dogan, Omer [National Energy Technology Lab. (NETL), Albany, OR (United States); Tucker, Julie [Oregon State Univ., Corvallis, OR (United States)

    2017-07-07

    In order to understand issues with corrosion of heat exchanger materials in direct supercritical carbon dioxide (sCO2) power cycles, a series of autoclave exposure experiments and electrochemical experiments have been conducted. Corrosion behaviors of 347H stainless steel and P91 martensitic-ferrtic steel in sCO2 environment have been compared. In autoclave exposure tests performed at 50°C- 245°C and 80 bar. Mass change measurements, surface characterization, and corrosion product analysis have been conducted to understand the corrosion behavior of steels in sCO2 containing H2O and O2. Electrochemical tests performed at room temperature and 50°C, a simulation environment of water condensation phase with dissolved CO2 was prepared to evaluate the corrosion resistance of materials. From both types of experiments, generally 347H showed higher corrosion resistance than P91.

  5. Carbon-steel corrosion in multiphase slug flow and CO2

    International Nuclear Information System (INIS)

    Villarreal, J.; Laverde, D.; Fuentes, C.

    2006-01-01

    Hydrocarbon multiphase flow may exhibit various geometric configurations or flow patterns. One of these flow patterns is known as multiphase slug flow. If CO 2 is present in hydrocarbons, the steel pipelines can be corroded as this process is probably enhanced by slug flow turbulence. A hydrodynamic circuit was built to study the CO 2 corrosion rates under different slug flow conditions. The experimental results show how the corrosion rate of a carbon-steel electrode varies according to the flow turbulence. The higher slug frequency used in this study was 80 slugs/min. Experimental results for pressure drop and slug length are in agreement with the Dukler and Hubbard [A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975) 337-347] multiphase flow model. Furthermore, the experimental slug frequencies are well correlated by the Shell and Gregory [Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow. Int. J. Multiphase Flow 4 (1978) 33-39] equations in horizontal pipes

  6. Pitting corrosion and crevice corrosion of an advanced chromium-based stainless steel

    International Nuclear Information System (INIS)

    Kohler, M.

    1999-01-01

    Alloy 33 is a (wt. %) 33 Cr-32Fe-31Ni-1.6Mo-0.6CU-0.4N austenitic stainless steel combining high yield strength of min. 380 N/mm 2 (55 KSI) with high resistance to local corrosion and superior resistance to stress corrosion cracking. Ranking the material according to its PRE (pitting resistance equivalent) value, the new alloy fits in between the advanced 6% Mo superaustenitics and the nickel-base Alloy 625 but due to the balanced chemical composition the alloy shows a lot less sensitivity to segregation in the base material as well as in welded structures. It is recommended to weld the material with matching filler. The critical pitting temperature of such joints in the 10% FeCl 3 · 6H 2 O solution is reduced by only 10 C in comparison to the base material. Corrosion tests in artificial seawater (20 g/l Cl - ) with additions of chloride up to 37 g/l as well as in a NaCl-CaCl 2 , solution with 62 g/l Cl - --revealed that the critical pitting temperature does not differentiate from the 6% Mo austenitic steel Alloy 926. With respect to crevice corrosion the depassivation pH value has been determined in 1 M NaCl solution according to Crolet and again there was no difference between Alloy 33 and Alloy 926. SCC tests performed on Alloy 33 in the solution annealed condition as well as after heavy cold work up to R PO,2 ∼ 1,100--1,200 N/mm 2 (160--174 KSI) indicate the high resistance to stress corrosion cracking in hot sodium chloride solutions

  7. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    Science.gov (United States)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  8. Corrosion Protection of Carbon Steel Using Poly aniline Composite with Inorganic Pigments

    International Nuclear Information System (INIS)

    Al-Dulaimi, A.A.; Shahrir Hashim; Khan, M.I.

    2011-01-01

    Two inorganic pigments (TiO 2 and SiO 2 ) were used to prepare composites with poly aniline (PANI) by situ polymerization method. PANI and PANI composites with SiO 2 and TiO 2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO 2 and PANI-TiO 2 ) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO 2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments. (author)

  9. Baphia nitida Leaves Extract as a Green Corrosion Inhibitor for the Corrosion of Mild Steel in Acidic Media

    Directory of Open Access Journals (Sweden)

    V. O. Njoku

    2014-01-01

    Full Text Available The inhibiting effect of Baphia nitida (BN leaves extract on the corrosion of mild steel in 1 M H2SO4 and 2 M HCl was studied at different temperatures using gasometric and weight loss techniques. The results showed that the leaves extract is a good inhibitor for mild steel corrosion in both acid media and better performances were obtained in 2 M HCl solutions. Inhibition efficiency was found to increase with increasing inhibitor concentration and decreasing temperature. The addition of halides to the extract enhanced the inhibition efficiency due to synergistic effect which improved adsorption of cationic species present in the extract and was in the order KCl < KBr < KI suggesting possible role of radii of the halide ions. Thermodynamic parameters determined showed that the adsorption of BN on the metal surface is an exothermic and spontaneous process and that the adsorption was via a physisorption mechanism.

  10. New understanding of the effect of hydrostatic pressure on the corrosion of Ni–Cr–Mo–V high strength steel

    International Nuclear Information System (INIS)

    Yang, Yange; Zhang, Tao; Shao, Yawei; Meng, Guozhe; Wang, Fuhui

    2013-01-01

    Highlights: •Stress distributions of pits under different hydrostatic pressures are simulated. •Corrosion model of Ni–Cr–Mo–V steel under hydrostatic pressure is established. •A novel understanding of the effect of hydrostatic pressure is proposed. -- Abstract: Corrosion of Ni–Cr–Mo–V high strength steel at different hydrostatic pressures is investigated by scanning electron microscopy (SEM) and finite element analysis (FEA). The results indicate that corrosion pits of Ni–Cr–Mo–V high strength steel originate from inclusions in the steel and high hydrostatic pressures accelerate pit growth rate parallel to steel and the coalescence rate of neighbouring pits, which lead to the fast formation of uniform corrosion. Corrosion of Ni–Cr–Mo–V high strength steel under high hydrostatic pressure is the interaction result between electrochemical corrosion and elastic stress

  11. Corrosion of Ferritic-Martensitic steels in high temperature water: A literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2001-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steel in high temperature water as reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, environmentally assisted cracking (EAC) including stress corrosion cracking (SCC), corrosion fatigue and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS). Are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. (Author)

  12. Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Jenkins, Peter E. [Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Ren Zhiyong, E-mail: zhiyong.ren@ucdenver.edu [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Characterized the unique corrosion behaviour of carbon steel in the biodiesel/seawater environment. Black-Right-Pointing-Pointer Illustrated the in situ anode and cathode distribution using a wire beam electrode approach. Black-Right-Pointing-Pointer Elucidated the corrosion mechanisms based on ion transfer and oxygen concentration gradient. - Abstract: The electrochemical corrosion of carbon steel exposed to a mixture of biodiesel and 3.5% NaCl solution simulated seawater was characterized using wire beam electrode (WBE) technique. Both optical images and in situ potential and current measurements showed that all the anodes and most cathodes formed in the water phase, but the cathodes were mainly located along the water/biodiesel interface. Due to oxygen concentration gradient and cross-phase ion transfer, low corrosion currents were also detected in biodiesel phase. Further anode reaction was partially blocked by iron rust, but the alkali residual in biodiesel may interact with corrosion and deteriorate biodiesel quality.

  13. Electrochemical Study of Welded AISI 304 and 904L Stainless Steel in Seawater in View of Corrosion

    Directory of Open Access Journals (Sweden)

    Richárd Székely

    2010-10-01

    Full Text Available This is a comparative study of the corrosion behaviour of welds in AISI 304 and AISI 904L stainless steels carried out in seawater model solution in the temperature range 5-35°C and the standard of corrosion testing of welds was followed. The corrosion rate and corrosion attack characteristics were determined for welds of the examined steels with several type of treatment. The aim of this work was to compare the steels based on their resistance against the corrosion in terms of pitting potential (Epit and repassivation potential (Erepass. Seawater is an electrochemically aggressive medium, which can initiate localised corrosion in welded stainless steels. Different electrochemical and testing methods were used, including cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy (EIS, pH measuring and penetration tests.

  14. Corrosion resistance of steel fibre reinforced concrete - A literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2017-01-01

    Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of civil infrastructure. However, there are inconsistencies among international standards and guidelines regarding the consideration of carbon-steel fibres for the structural verification of SFRC exposed...... of the mechanisms governing the corrosion of carbon-steel fibres in cracks and its effects on the fracture behaviour of SFRC are not fully understood....

  15. EIS study on corrosion and scale processes and their inhibition in cooling system media

    International Nuclear Information System (INIS)

    Marin-Cruz, J.; Cabrera-Sierra, R.; Pech-Canul, M.A.; Gonzalez, I.

    2006-01-01

    A study of the carbon steel/cooling water interface was carried out using electrochemical impedance spectroscopy (EIS). EIS spectra reveal that a layer of corrosion and scale products forms naturally and evolves with the immersion time modifying the carbon steel/cooling water interface and giving rise to corrosion and scale processes. In addition, the nature of the layer formed on the metal was found to depend on the inhibitor used. It was established that the corrosion inhibitor (hydroxyphosphonoacetic acid (HPA)) chelates with Ca(II) ion generating a layer with resistive properties that provides good protection against corrosion. In contrast, the scale inhibitor (1-hydroxy-ethane-1,1-diphosphonic acid (HEDP)) is incorporated into the calcium carbonate crystals at the surface, modifying the structure and diminishing scale formation in the surface; this additive additionally inhibited corrosion. These observations were supported by scanning electronic microscopy (SEM) and corroborate previous studies performed by other techniques on HPA and HEDP. Finally, a synergistic effect was observed between these inhibitors that provides good protection to steel against corrosion and scaling in cooling media

  16. EIS study on corrosion and scale processes and their inhibition in cooling system media

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Cruz, J. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico) and Instituto Mexicano del Petroleo, Coordinacion de Ingenieria Molecular, Competencia de Quimica Aplicada, Eje Central Lazaro Cardenas No. 152, CP 07730, DF (Mexico)]. E-mail: jmarin@imp.mx; Cabrera-Sierra, R. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico); Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE-IPN), Departamento de Metalurgia, UPALM Zacatenco AP 75-874, CP 07338, DF (Mexico); Pech-Canul, M.A. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios, Avanzados del IPN, AP 73 Cordemex, CP 97310, Merida, Yucatan (Mexico); Gonzalez, I. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico)]. E-mail: igm@xanum.uam.mx

    2006-01-20

    A study of the carbon steel/cooling water interface was carried out using electrochemical impedance spectroscopy (EIS). EIS spectra reveal that a layer of corrosion and scale products forms naturally and evolves with the immersion time modifying the carbon steel/cooling water interface and giving rise to corrosion and scale processes. In addition, the nature of the layer formed on the metal was found to depend on the inhibitor used. It was established that the corrosion inhibitor (hydroxyphosphonoacetic acid (HPA)) chelates with Ca(II) ion generating a layer with resistive properties that provides good protection against corrosion. In contrast, the scale inhibitor (1-hydroxy-ethane-1,1-diphosphonic acid (HEDP)) is incorporated into the calcium carbonate crystals at the surface, modifying the structure and diminishing scale formation in the surface; this additive additionally inhibited corrosion. These observations were supported by scanning electronic microscopy (SEM) and corroborate previous studies performed by other techniques on HPA and HEDP. Finally, a synergistic effect was observed between these inhibitors that provides good protection to steel against corrosion and scaling in cooling media.

  17. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

    Directory of Open Access Journals (Sweden)

    Robert Bertram Miller

    Full Text Available Microbially induced corrosion (MIC is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly, ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.

  18. Nanostructure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    Directory of Open Access Journals (Sweden)

    K. M. Zhang

    2013-01-01

    Full Text Available The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nanostructure formations of steels by using a low energy high pulsed electron beam (LEHCPEB treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels.

  19. Influence of C, N and Ti concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Munoz, J.A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain)

    2004-07-01

    The influence of Ti, C, and N concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel has been studied. A kinetic study of the corrosion process has been carried out using gravimetric tests according to ASTM A-262 practices B and C (Streicher and Huey, respectively). The TTS diagrams were drawn as a function of alloying elements concentration (C, N and Ti). Materials characterization under several test conditions was carried out using Scanning Electron Microscopy (SEM) analysing microstructural characteristics and the attack microstructure. The chemical resistance of these steels to intergranular test was function of N, C and Ti concentration. High Ti and N concentration favoured the precipitation of TiN during the material manufacture process. N forms TiN very stable, causing the removal of Ti from the matrix and, indirectly, favouring the Cr{sub 23}C{sub 6} precipitation during the sensitization process and increasing the corrosion rate. In order to inhibit the intergranular corrosion in these materials the N and Ti concentrations must be optimised. (authors)

  20. Influence of C, N and Ti concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Munoz, J.A.

    2004-01-01

    The influence of Ti, C, and N concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel has been studied. A kinetic study of the corrosion process has been carried out using gravimetric tests according to ASTM A-262 practices B and C (Streicher and Huey, respectively). The TTS diagrams were drawn as a function of alloying elements concentration (C, N and Ti). Materials characterization under several test conditions was carried out using Scanning Electron Microscopy (SEM) analysing microstructural characteristics and the attack microstructure. The chemical resistance of these steels to intergranular test was function of N, C and Ti concentration. High Ti and N concentration favoured the precipitation of TiN during the material manufacture process. N forms TiN very stable, causing the removal of Ti from the matrix and, indirectly, favouring the Cr 23 C 6 precipitation during the sensitization process and increasing the corrosion rate. In order to inhibit the intergranular corrosion in these materials the N and Ti concentrations must be optimised. (authors)