WorldWideScience

Sample records for steel containment structures

  1. Nitrogen-containing steels and thermomechanical treatment

    International Nuclear Information System (INIS)

    Kaputkina, L.; Prokoshkina, V.G.; Svyazhin, G.

    2004-01-01

    The strengthening of nitrogen-containing corrosion-resistant steels resulting from alloying and thermomechanical treatment have been investigated using X-ray diffraction analysis, light microscopy, hardness measurements and tensile testing. Combined data have been obtained for nitrogen interaction with alloying elements , peculiarities of deformed structure and short-range of nitrogen-containing steels of various structural classes. The higher nitrogen and total alloying element contents, the higher deformation strengthening. Prospects of use the steels with not high nitrogen content and methods of their thermomechanical strengthening are shown. High temperature thermomechanical treatment (HTMT) is very effective for obtaining high and thermally stable constructional strength of nitrogen-containing steels of all classes. The HTMT is most effective if used in a combination with dispersion hardening for aging steels or in the case of mechanically unstable austenitic steels. (author)

  2. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1994-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (74-90 mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments. Under severe accident loading conditions, the steel containment vessel in a typical Mark-I or Mark-II plant may deform under internal pressurization such that it contacts the inner surface of a shield building wall. (Thermal expansion from increasing accident temperatures would also close the gap between the SCV and the shield building, but temperature effects are not considered in these analyses.) The amount and location of contact and the pressure at which it occurs all affect how the combined structure behaves. A preliminary finite element model has been developed to analyze a model of a typical steel containment vessel con-ling into contact with an outer structure. Both the steel containment vessel and the outer contact structure were modelled with axisymmetric shell finite elements. Of particular interest are the influence that the contact structure has on deformation and potential failure modes of the containment vessel. Furthermore, the coefficient of friction between the two structures was varied to study its effects on the behavior of the containment vessel and on the uplift loads transmitted to the contact structure. These analyses show that the material properties of an outer contact structure and the amount

  3. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1993-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (50--90mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments

  4. Predictability of steel containment response near failure track 3 - structural integrity, dynamic behavior, and seismic design

    International Nuclear Information System (INIS)

    Costello, J.F.; Ludwigsen, J.S.; Luk, V.K.; Hessheimer, M.F.

    2000-01-01

    The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms

  5. Steel containment buckling

    International Nuclear Information System (INIS)

    Bennett, J.G.; Fly, G.W.; Baker, W.E.

    1984-01-01

    The Steel Containment Buckling program is in its fourth phase of work directed at the evaluation of the effects of the structural failure mode of steel containments when the membrane stresses are compressive. The structural failure mode for this state of stress is instability or buckling. The program to date has investigated: (1) the effect on overall buckling capacity of the ASME area replacement method for reinforcing around circular penetrations; (2) a set of benchmark experiments on ring-stiffened shells having reinforced and framed penetrations; (3) large and small scale experiments on knuckle region buckling from internal pressure and post-buckling behavior to failure for vessel heads having torispherical geometries; and (4) buckling under time-dependent loadings (dynamic buckling). The first two investigations are complete, the knuckle buckling experimental efforts are complete with data analysis and reporting in progress, and the dynamic buckling experimental and analytical work is in progress

  6. Tantalum-containing Z-phase in 12%Cr martensitic steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John

    2009-01-01

    Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems to be identi......Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems...

  7. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  8. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  9. Specification for carbon and low alloy steel containment structures for stationary nuclear power reactors. [Now obsolescent (by Amendment No. 1)

    Energy Technology Data Exchange (ETDEWEB)

    1967-01-01

    This British Standard covers the design, construction, inspection and testing of steel reactor containment structures made of carbon and low alloy steel for temperatures not exceeding 300 deg C. Such structures are not in contact with the reactor coolant during normal operation. Pressure-relieved structures are not excluded, provided they are of a form that contains the fission products or ensures their safe disposal. Attachments such as air-locks or piping that is or may become directly connected between the interior of the containment structure and a closure, and may therefore contain radioactive material released during accidents, is considered part of the containment structure.

  10. Reliability-based condition assessment of steel containment and liners

    International Nuclear Information System (INIS)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs

  11. Component nuclear containment structure

    International Nuclear Information System (INIS)

    Harstead, G.A.

    1979-01-01

    The invention described is intended for use primarily as a nuclear containment structure. Such structures are required to surround the nuclear steam supply system and to contain the effects of breaks in the nuclear steam supply system, or i.e. loss of coolant accidents. Nuclear containment structures are required to withstand internal pressure and temperatures which result from loss of coolant accidents, and to provide for radiation shielding during operation and during the loss of coolant accident, as well as to resist all other applied loads, such as earthquakes. The nuclear containment structure described herein is a composite nuclear containment structure, and is one which structurally combines two previous systems; namely, a steel vessel, and a lined concrete structure. The steel vessel provides strength to resist internal pressure and accommodate temperature increases, the lined concrete structure provides resistance to internal pressure by having a liner which will prevent leakage, and which is in contact with the concrete structure which provides the strength to resist the pressure

  12. On cobalt effect on structural and phase transformations during tempering carbon-containing steels of Fe-Ni-Mo system

    International Nuclear Information System (INIS)

    Rakhshtadt, A.G.; Khovova, O.M.; Kan, A.V.; Perkas, M.D.; Kudryavtsev, A.N.; Rodionov, Yu.L.

    1990-01-01

    Methods of resistometry, colorimetry, X-ray diffraction chemical and electrochemical phase analyses, Moessbauer spectroscopy and field-ion mass spectrometry are used to study the nature of precipitation hardening of carbon containing Fe-Ni-Mo martensitic steels. Cobalt contribution to formation of phase composition and structural state of steels during tempering is analyzed. Realization conditions of effective combined (carbide-intermetallide) hardening of the investigated system steels are determined

  13. Development and application of free pretreatment container steel

    Science.gov (United States)

    Yang, Y.; Liu, Y.; Han, B.; Wei, B.; Wang, S. Z.

    2017-12-01

    Due to economic and environmental advantages pre-treatment containers have good big development prospects, which can avoid shot blasting processes, and decrease the noise and dust pollution. By analyzing requirements of the container steel surface quality, target oxide scale structure of free pretreatment container steel has been determined. Trial process was carried out, and test results showed that the oxide scale achieved the desired objects, oxide scale with outer thin Fe3O4 layer and inner eutectoid α-Fe+Fe3O4. Salt spray test, second adhesion test, and modeling performance basically corroborated the container feasibility.

  14. Structural response of a nuclear power plant steel containment under H2 detonation

    International Nuclear Information System (INIS)

    Maresca, G.; Milella, P.P.; Pino, G.

    1993-01-01

    To get a better understanding of the containment wall behaviour under a detonation a simple but complete model is analysed in order to study the fluid-structure interaction during the explosion. The structure is represented by a single degree of freedom (SDOF) elastic-plastic system. This system is coupled to a monodimensional model of the containment atmosphere excited by hydrogen bursting. The atmosphere modeling allows to represent the shock propagation and the reflected wave effects. In the model a cylindrical geometry is used as reference. The obtained results are compared with data adopted in Italy to assess the structural integrity of the Alto Lazio NPP steel containment in the case of a severe accident. The limits of the model as well as the possible extensions are discussed in the paper together with a possible application in an experimental program directed to the assessment of failure criteria under severe accident conditions. (orig./HP)

  15. Deep Defect Detection within Thick Multilayer Aircraft Structures Containing Steel Fasteners Using a Giant-Magneto Resistive (GMR) Sensor (Preprint)

    National Research Council Canada - National Science Library

    Ko, Ray T; Steffes, Gary J

    2007-01-01

    Defect detection within thick multilayer structures containing steel fasteners is a challenging task in eddy current testing due to the magnetic permeability of the fasteners and overall thickness of the structure...

  16. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  17. Dynamic analysis of steel-concrete structure of TVO power plant containment building

    International Nuclear Information System (INIS)

    Hakala, M.; Karjunen, T.

    1996-08-01

    The report presents results from a study concerning the ability of the containment to withstand the loads caused by steams explosions which are possible during a severe accident at TVO plant (BWR). In the first phase, the suitability of the engineering mechanics code (FLAC) for modelling the dynamic response of damaging steel-concrete structures was tested by post-calculating a small scale test. As a result, a new dynamic material model taking account the fracture orientation was developed. In containment calculations both the developed and the best generally accepted material model were used. The loads against the containment were obtained from a simple model for steam explosions, which allowed the impulse of the pressure load to be fixed by tuning a few parameters. The ability of the containment to withstand the pressure pulses was analysed with loads of 5, 1 0, 20, 40, 60, and 80 kPa s impulse. As a results, the area and magnitude of permanent damage together with time histories of displacement and stress at critical points are presented. The estimations on the consequences of the observed structural damages as far as the containment leak tightness and stability are concerned and presented as conclusions. (9 refs.)

  18. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  19. Biaxial Loading Tests for steel containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, T. [Nuclear Power Engineering Corp., Tokyo (Japan); Wright, D.J.; Arai, S.

    1999-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  20. Biaxial Loading Tests for steel containment vessel

    International Nuclear Information System (INIS)

    Miyagawa, T.; Wright, D.J.; Arai, S.

    1999-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  1. Symbolic aesthetics in steel structural systems

    Directory of Open Access Journals (Sweden)

    Usama Abdul-Mun'em Khuraibet

    2015-02-01

    Full Text Available The aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility and accuracy in manufacture of structural elements as visual items, structural interest in the forms of spaces which have long span systems or in high buildings are different forms of expression and influence. So the research focuses on the study of those expressive patterns related with the steel construction properties, including the advantages of these systems at the level of strength and firmness, flexibility and economy as well as aesthetic and expression. Accordingly, the research problem concentrated on educational shortage in the study of the structural steel system aspects concerning constructional characteristic, expressive and aesthetic features, and how to deal with them as a language bearing the symbols and meanings which have clear structural style, because it the best ways to make those systems as communication means with users, by premise that the use of expressional symbol in steel construction increases the aesthetic value. Therefore the research aims to reveal the most structural and expressive patterns by analysis the expressional means and steel structural aesthetics.

  2. Steel containment buckling

    International Nuclear Information System (INIS)

    Butler, T.A.; Baker, W.E.

    1986-01-01

    Two aspects of buckling of a free-standing nuclear steel containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require a dynamic capacity reduction factor to be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are suggested

  3. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Science.gov (United States)

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Study of cast and thermo-mechanically strengthened chromium-nickel nitrogen-containing steel

    International Nuclear Information System (INIS)

    Prokoshkina, V.G.; Kaputkina, L.M.; Svyazhin, A.G.

    2000-01-01

    The effect of nitrogen on the structure and strength of corrosion-resistant chromium-nickel steels after thermal and thermomechanical treatment is studied. The 06Kh15N7AD and 07Kh15N7DAMB steels alloying by nitrogen was accomplished through the basic composition steels remelting in the molecular nitrogen atmosphere under the pressure of 0.1-2.5 MPa. The 02Kh15N5DAF and 05Kh15N5DAM steels ingots were obtained through melting in a plasma furnace under the nitrogen pressure of 0.4MPA. The high-temperature thermomechanical treatment (HTMT) was performed by rolling with preliminary blanks heating up to 1050 deg C and the rolling end temperature not below 950 deg C. It is shown, that the HTMT of the nitrogen-containing steels makes it possible to obtain strength characteristics by 1.5 times exceeding the properties of traditionally applicable corrosion-resistant steels, whereby sufficiently high plasticity of the nitrogen-containing steel is retained [ru

  5. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  6. Protecting against failure by brittle fracture in ferritic steel shipping containers

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Langland, R.T.

    1983-01-01

    The possible use of ferritic steels for the containment structure of shipping casks has motivated the development of criteria for assuring the integrity of these casks under both normal and hypothetical accident conditions specified in Part 71 of the Code of Federal Regulations. The US Nuclear Regulatory Commission Regulation Guide 7.6 provides design criteria for preventing ductile failure steel shipping containers. The research described in this paper deals with criteria for preventing brittle fracture of ferritic steel shipping containers. Initially guidelines were developed for ferritic steel up to four inches thick (I). This was followed by an investigation of various criteria that might be used for monolithic thick walled casks greater than four inches thick (2). Three categories of safety are identified in the design of shipping containers. Category I, the highest level of safety, is appropriate for containment systems for spent nuclear fuel and high level waste transport packaging. In Category I, containers are designed to the highest level of safety and brittle fracture is essentially not possible. Categories II and III represent levels of safety commensurate with the consequences of release of lower levels of radioactivity. In these latter categories, consideration of factors contributing to brittle fracture, good engineering practice, and careful selection of material make brittle fracture unlikely under environmental conditions encountered during shipping. This paper will deal primarily with Category I containers. The guidelines for Category II and III containers are fully described elsewhere. 5 references, 10 figures, 3 tables

  7. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  8. Bellefonte primary containment structure

    International Nuclear Information System (INIS)

    Olyniec, J.H.

    1981-01-01

    Construction of the reactor building primary containment structure at the Bellefonte Nuclear Plant involved several specialized construction techniques. This two unit plant is one of the nine nuclear units at six different sites now under construction by the Tennessee Valley Authority (TVA). The post-Tensioned, cast-in-place interior steel lined containment structure is unique within TVA. Problems during construction were identified at weekly planning meetings, and options were discussed. Close coordination between craft supervisors and on-site engineering personnel drew together ''hands-on''experience and technical background. Details of the construction techniques, problems, and solutions are presented

  9. The structure of the alphinizing coat on alloy steels

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper results of the structure of the coat alphinizing in AlSi5 silumin on alloy steels: acid-proof 1H18N9T (X6CrNiTi18-10 and high speed SW18 (HS18-0-1 were presented. The temperature of the alphinizing bath was amounts to750±5°C, and immersion time of the element τ = 180s. It was shown, that there is the different “g” coat thickness on testing steels. On the 1H18N9T steel it amounts to g = 52μm, and on the SW18 steel – g = 203μm. Regardless of a grade of testing alloy steels the coat consist of three layers with diversified phasic structure. There is different chemical composition of coat layers on testing steels. The first layer from the base consist of AlFe phase containing alloy addictions of steels: Cr and Ni (1H18N9T and W, V and Cr (SW18. On this layer crystallize the second layer of intermetallic phases. It is the phase containing the main alloy addiction of steels: AlFeCr (1H18N9T and AlFeW (SW18. The last, outside layer consist of silumin containing AlFeNi intermetallic phases on the 1H18N9T steel and AlFeW on the SW18 steel. Regardless of the grade of testing steels there is Si element in all layers of the coat. There are morphological differences in tested layers. The second layer (AlFeW phase inside the coat on the SW18 steel consist of faced crystals growing into in outside silumin layer. On the 1H18N9T steel a boundary between transient and outside layer is more uniform. Free separations of intermetallic phases inside silumin layer on the 1H18N9T steel have lamellar and on the SW18 steel – faced form.

  10. Results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.; Komine, Kuniaki; Matsumoto, Tomoyuki; Costello, J.F.

    1998-05-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed by the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed

  11. Aging of steel containments and liners in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Norris, W.E.

    1998-02-01

    Aging of the containment pressure boundary in light water reactor plants is being addressed to understand the significant factors relating occurrence of corrosion efficacy of inspection and structural capacity reduction of steel containments and liners of concrete containments. and to make recommendations on use of risk models in regulatory decisions. Current regulatory in-service inspection requirements are reviewed and a summary of containment related degradation experience is presented. Current and emerging nondestructive examination techniques and a degradation assessment methodology for characterizing and quantifying the amount of damage present are described. Quantitative tools for condition assessment of aging structures using time dependent structural reliability analysis methods are summarized. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process. Results of this research provide a means for establishing current and estimating future structural capacity margins of containments, and to address the significance of incidences of reported containment degradation

  12. Corrosion aspects of steel radioactive waste containers in cementitious materials

    International Nuclear Information System (INIS)

    Smart, Nick

    2012-01-01

    Nick Smart from Serco, UK, gave an overview of the effects of cementitious materials on the corrosion of steel during storage and disposal of various low- and intermediate-level radioactive wastes. Steel containers are often used as an overpack for the containment of radioactive wastes and are routinely stored in an open atmosphere. Since this is an aerobic and typically humid environment, the steel containers can start to corrode whilst in storage. Steel containers often come into contact with cementitious materials (e.g. grout encapsulants, backfill). An extensive account of different steel container designs and of steel corrosion mechanisms was provided. Steel corrosion rates under conditions buffered by cementitious materials have been evaluated experimentally. The main conclusion was that the cementitious environment generally facilitates the passivation of steel materials. Several general and localised corrosion mechanisms need to be considered when evaluating the performance of steel containers in cementitious environments, and environmental thresholds can be defined and used with this aim. In addition, the consequences of the generation of gaseous hydrogen by the corrosion of carbon steel under anoxic conditions must be taken into account. Discussion of the paper included: Is crevice corrosion really significant in cementitious systems? Crevice corrosion is unlikely in the cementitious backfill considered because it will tend to neutralise any acidic conditions in the crevice. What is the role of microbially-induced corrosion (MIC) in cementitious systems? Microbes are likely to be present in a disposal facility but their effect on corrosion is uncertain

  13. A study of the effects of penetration framing on steel containment buckling capacity

    International Nuclear Information System (INIS)

    Baker, W.E.; Butler, T.A.

    1987-05-01

    Polycarbonate cylinders modeling steel containment structures were tested to study the effects of different framing designs around large penetrations on the static buckling capacity of containments. Two of the four models had equipment hatch penetrations and two had personnel airlock penetrations. Both types of models were tested with axial and shear loads as framing was incrementally added. Results indicate that, for the models constructed of polycarbonate, buckling is influenced minimally with added framing. Numerical results support the experimental results. Extrapolation of the results to containment constructed under field conditions with prototypic steel materials is discussed and further testing is recommended

  14. Containment liner plate anchors and steel embedments test results

    International Nuclear Information System (INIS)

    Chang-Lo, P.L.; Johnson, T.E.; Pfeifer, B.W.

    1977-01-01

    This paper summarizes test data on shear load and deformation capabilities for liner plate line anchors and structural steel embedments in reinforced and prestressed concrete nuclear containments. Reinforced and prestressed nuclear containments designed and constructed in the United States are lined with a minimum of 0.64 cm steel plate. The liner plates are anchored by the use of either studs or structural members (line anchors) which usually run in the vertical direction. This paper will only address line anchors. Static load versus displacement test data is necessary to assure that the design is adequate for the maximum loads. The test program for the liner anchors had the following major objectives: determine load versus displacement data for a variety of anchors considering structural tees and small beams with different weld configurations, from the preceding tests, determine which anchors would lead to an economical and extremely safe design and test these anchors for cyclic loads resulting from thermal fluctuations. Various concrete embeds in the containment and other structures are subjected to loads such as pipe rupture which results in shear. Since many of the loads are transient by nature, it is necessary to know the load-displacement relationship so that the energy absorption can be determined. The test program for the embeds had the following objectives: determine load-displacement relationship for various size anchors from 6.5 cm 2 to 26 cm 2 with maximum capacities of approximately 650 kN; determine the effect of various anchor width-to-thickness ratios for the same shear area

  15. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  16. A new CANDU-600 containment structure

    International Nuclear Information System (INIS)

    Serban, V.; Bobei, M.; Gheorghiu, M.; Popescu, M.; Stanciu, M.; Dinica, D.; Alexandru, C.

    1994-01-01

    This paper is presenting a structure made of reinforced concrete with rectangular cross-section, box-divided, prefabricated and modulled on a bay 6.5 m wide and 4.5 m high, and provided with a steel liner. The building has an overall basement in which the steel liner is embedded and which is supporting the building walls. The inner structure is common to the containment as well and it is carried out for each room (generally 6.5 m by 6.5 m) having intermediar floors at the necessary elevations. The containment dimensions, on horizontal plane are 6 x 6.5 m by 5 x 6.5 m and the total height of the side walls is 30.5 m. The containment is closed in A-C direction by a prefabricated semi-cylinder which is supported by the side walls and 5 intermediate arches. The fuel transfer deck structure is common to the inner structure and the containment structure. The Calandria vault is a separate individual structure located above E1. 100. For CANDU-600 main equipment the same arrangement was maintained, some unsignificant modifications being made, for example, the access areas located in the four corners of the building as well as the location of some auxiliary systems. The paper is also including a set of 1:200 scale drawings, comments on the construction manner and the results of the building structural analysis. The suggested solution is evidencing economical benefits facilities in the operation and construction of the plant and it is specially recommended for areas with high seismic events. (author)

  17. Deflagration in stainless steel storage containers containing plutonium dioxide

    International Nuclear Information System (INIS)

    Kleinschmidt, P.D.

    1996-02-01

    Detonation of hydrogen and oxygen in stainless steel storage containers produces maximum pressures of 68.5 psia and 426.7 psia. The cylinders contain 3,000 g of PuO 2 with 0.05 wt% and 0.5 wt% water respectively. The hydrogen and oxygen are produced by the alpha decomposition of the water. Work was performed for the Savannah River Site

  18. The Structure of the Silumin Coat on Alloy Cast Steels

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2012-04-01

    Full Text Available The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T and GX39Cr13 (LH14. The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10 and Cr (GX39Cr13. The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

  19. Ductile fracture behavior of cast structure containing voids

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, Ph.; Migne, C. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Chapuliot, S. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    2001-07-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  20. Ductile fracture behavior of cast structure containing voids

    International Nuclear Information System (INIS)

    Gilles, Ph.; Migne, C.; Chapuliot, S.

    2001-01-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  1. Steel containment buckling

    International Nuclear Information System (INIS)

    Butler, T.A.; Baker, W.E.

    1987-01-01

    Two aspects of buckling of a free-standing nuclear containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require that a dynamic capacity reduction factor be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are recommended. (orig.)

  2. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  3. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  4. Neutron Damage in Steels Containing Small Amounts of Boron

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P

    1961-05-15

    Certain low alloy steels contain small amounts (0.003 to 0.007 w/o) of boron which element contributes to the development of the air hardening properties of these steels. Such steels appear attractive for reactor pressure vessel construction but the question arises whether they will, due to the (n,{alpha}) reaction in boron, be more susceptible to neutron radiation damage than other steels which do not contain boron. We have attempted to estimate the importance of damage arising through boron fission relative to that caused by fast neutrons by assuming that the two sources of damage will be proportional to the numbers of displaced atoms produced in the two processes when no annealing or re combination of defects occurs. Within the approximations used we conclude that in a neutron spectrum which may be represented by an equivalent thermal flux {phi}{sub t} and an equivalent fast flux at 1 MeV of {phi}{sub f}, then D, the ratio of damage to boron fission to that caused by fast neutrons, is D = 4.5 x 10{sup -2} {phi}{sub t}/{phi}{sub f} (for 0. 003 w/o B). For the conditions at the inside of the reactor tank to R3 this would imply D = 1.2 x 10{sup -2} , i.e. if the R3 tank were built with a steel containing 0.003 w/o B then damage due to boron fission would be only {approx} 1 % of that caused by fast neutrons. Further problems with such steels as here discussed are the probability of embrittlement due to the introduction of boron fission fragments lithium and helium and the possibility of a radiation enhanced diffusion of boron which might lead to accentuated slow strain rate embrittlement. We argue that none of these problems should arise. It is concluded that a constructional steel containing 0.003 to 0.007 w/o B should not on this account be more susceptible to radiation damage than other non boron containing steels.

  5. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S

    1980-04-28

    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  6. Special closures for steel drum shipping containers

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Otts, J.V.

    1976-01-01

    The objective of this program was to develop special lid closures for typical, steel drum, radioactive material shipping containers. Previous experience and testing had shown that the existing container was adequate to withstand the required environmental tests for certification, but that the lid and closure were just marginally effective. Specifically, the lid closure failed to consistently maintain a tight seal between the container and the lid after drop tests, thus causing the package contents to be vulnerable in the subsequent fire test. Recognizing the deficiency, the United States Energy Research and Development Administration requested the development of new closure(s) which would: (1) be as strong and resistant to a drop as the bottom of the container; (2) have minimal economic impact on the overall container cost; (3) maximize the use of existing container designs; (4) consider crush loads; and (5) result in less dependence on personnel and loading procedures. Several techniques were evaluated and found to be more effective than the standard closure mechanism. Of these, three new closure techniques were designed, fabricated, and proven to be structurally adequate to provide containment when a 454-kg drum was drop tested from 9.14-m onto an unyielding surface. The three designs were: (1) a 152-mm long lid extension or skirt welded to the standard drum lid, (2) a separate inner lid, with 152-mm long skirt and (3) C-clamps used at the container-lid interface. Based upon structural integrity, economic impact, and minimal design change, the lid extension is the recommended special closure

  7. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).

  8. Structural response of rectilinear containment to overpressurization

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1995-01-01

    Containment structures for nuclear reactors are the final barrier between released radionuclides and the public. Containment structures are constructed from steel, reinforced concrete, or prestressed concrete. US nuclear reactor containment geometries tend to be cylindrical with elliptical or hemispherical heads. The older Soviet designed reactors do not use a containment building to mitigate the effects of accidents. Instead, they employ a sealed set of rectilinear, interconnected compartments, collectively called the accident localization system (ALS), to reduce the release of radionuclides to the atmosphere during accidents. The purpose of this paper is to present a methodology that can be used to find the structural capacity of reinforced concrete structures. The method is applicable to both cylindrical and rectilinear geometries. As an illustrative example, the methodology is applied to a generic VVER-440/V213 design

  9. Multi-layer concept for containments in an integrated construction method by using steel composite building block modules

    International Nuclear Information System (INIS)

    Friedrich, F.

    1987-01-01

    Containments consisting of steel modules have been developed as an alternative design and solution to the double shell containments comprising two separate structures. The combination of different reinforcement layers of steel plates and round reinforcing bars in one cross section provides a high loadbearing capacity. The multiple utilization of the steel plates in the composite section as formwork in the construction state and as reinforcement and liner in the operation or damage/failure states, respectively, yields a number of advantages. The main effect is being achieved due to the high degree of prefabrication and completion (finishing) of the steel modules and the reduction of expenditure on the job site connected with same. (orig.)

  10. Fatigue design of steel and composite structures Eurocode 3 : design of steel structures, part 1-9 fatigue ; Eurocode 4 : design of composite steel and concrete structures

    CERN Document Server

    Nussbaumer, Alain; Davaine, Laurence

    2012-01-01

    This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

  11. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  12. Principles of building and assembly technology of containment from steel structural blocks for WWER 1000 nuclear power plant

    International Nuclear Information System (INIS)

    Eichstedt, J.; Friedrich, F.

    1983-01-01

    This technology is being developed in cooperation between the USSR and the GDR. The cylindrical part of the containment consists of prefabricated double-sided steel blocks with inner reinforcement. The steel plates in a thickness of 20 mm provide casing and secure tightness. Blocks with one steel wall are used for the construction of the cupola. The outer slabs are assembled subsequently. The methods of assembly, concreting and quality assurance are described. (Ha)

  13. Stochastic Analysis of Offshore Steel Structures An Analytical Appraisal

    CERN Document Server

    Karadeniz, Halil

    2013-01-01

    Stochastic Analysis of Offshore Steel Structures provides a clear and detailed guide to advanced analysis methods of fixed offshore steel structures using 3D beam finite elements under random wave and earthquake loadings. Advanced and up-to-date research results are coupled with modern analysis methods and essential theoretical information to consider optimal solutions to structural issues. As these methods require and use knowledge of different subject matters, a general introduction to the key areas is provided. This is followed by in-depth explanations supported by design examples, relevant calculations and supplementary material containing related computer programmers. By combining this theoretical and practical approach Stochastic Analysis of Offshore Steel Structures cover a range of key concepts in detail including: ·         The basic principles of standard 3D beam finite elements and special connections, ·         Wave loading - from hydrodynamics to the calculation of wave load...

  14. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    International Nuclear Information System (INIS)

    von Riesemann, W.A.; Parks, M.B.

    1993-01-01

    In the United States, concrete containment buildings for commercial nuclear power plants have steel liners that act as the intemal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented. This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions)

  15. Corrosion Measurements in Reinforced Fly Ash Concrete Containing Steel Fibres Using Strain Gauge Technique

    Directory of Open Access Journals (Sweden)

    V. M. Sounthararajan

    2013-01-01

    Full Text Available Corrosion of steel bars in concrete is a serious problem leading to phenomenal volume expansion and thereby leading to cover concrete spalling. It is well known that the reinforced concrete structures subjected to chloride attack during its service life cause these detrimental effects. The early detection of this damage potential can extend the service life of concrete. This study reports the comprehensive experimental studies conducted on the identification of corrosion mechanism in different types of reinforced concrete containing class-F fly ash and hooked steel fibres. Fly ash replaced concrete mixes were prepared with 25% and 50% fly ash containing steel fibres at 0.5%, 1.0%, and 1.5% by volume fraction. Corrosion process was investigated in an embedded steel bar (8 mm diameter reinforced in concrete by passing an impressed current in sodium chloride solution. Strain gauge attached to the rebars was monitored for electrical measurements using strain conditioner. Strain gauge readings observed during the corrosion process exhibited the volume changes of the reinforcement embedded inside the concrete. The corrosion potential of different steel fibre reinforced concrete mixes with fly ash addition showed higher resistance towards the corrosion initiation.

  16. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxiliary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embedded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. (Auth.)

  17. Cast-iron containers out of low radioactive steel

    International Nuclear Information System (INIS)

    Deipenau, H.; Seidler, M.

    1990-01-01

    Low-level radioactive solid waste from the decommissioning of nuclear installations, if transported and disposed of in large containers, may cause less cutting work and therefore less radiation exposure of the work-force. The use of steel waste from decommissioning for manufacturing large transport and/or disposal containers is a promising route for recycling that waste and for saving storage volume and new resources. It has been demonstrated that it is possible to cast transport and disposal containers for radioactive wastes by using carbon steel waste originating from nuclear installations. A prototype has fulfilled all conditions to reach the qualification as a type A package according to the IAEA Regulations for Safe Transport of Radioactive Material as well as the preliminary conditions of the final repository Konrad

  18. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  19. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  20. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  1. Effects of dynamic coupling between freestanding steel containment and attached piping

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Kincaid, R.H.; Short, S.A.

    1981-01-01

    This paper presents an accurate, practical method of converting uncoupled response time history results obtained from an uncoupled structure model into coupled response time histories using a post-processor routine. The method is rigorous and only requires the modal properties of the uncoupled structure model, the modal properties of the uncoupled attached equipment model, and the uncoupled time histories of the attachment points on the structure. Coupled response spectra or time histories for use as input to an uncoupled equipment model are obtained. Comparisons of coupled versus uncoupled analysis results are presented for representative piping systems attached to a typical BWR Mark III steel containment subjected to vibration from safety relief valve discharge with a fundamental frequency of 12 Hz. It is shown that the coupled response spectra at piping attachment points are reduced by a factor between 2 and 5 from the amplified uncoupled spectra at each significant piping modal frequency above 20 Hz for representative major piping systems attached to the unstiffened portion of the steel shell. Responses at lower frequencies are not generally reduced and may increase by coupling effects for the input loading and shell model studied. Peak accerations are generally significantly reduced while peak displacements may be decreased or increased. Rules are presented for estimating the coupling effects between freestanding steel shells and attached equipment. (orig./HP)

  2. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  3. Insights into the behavior of LWR steel containment buildings during severe accidents

    International Nuclear Information System (INIS)

    Clauss, D.B.; Horschel, D.S.; Blejwas, T.E.

    1987-01-01

    Investigations into the performance of steel containment subject to pressure and temperature greater than their design basis loads are discussed. The timing, mechanism, and location of a containment failure, i.e., release of radioactive materials, have an important impact on the consequences of a severe accident. We review the results of experiments on steel containment models pressurized to failure, on aged and unaged seals subjected to elevated temperature and pressure, and on electrical penetration assemblies tested for leakage. Based on the results, the important features and details of analytical methods that can be used to predict containment performance are identified. Finally, we speculate on the performance of steel containments in severe accident conditions. (orig.)

  4. Electrochemical corrosion studies of the TStE 355 fine-grained structural steel in sulfide containing brine

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Berg, H. von.

    1994-04-01

    Previous corrosion studies have shown that the unalloyed fine-grained steel TStE 355 (Material No. 1.0566) is a promising material for the manufacturing of long-lived high-level waste (HLW) containers that could act as a barrier in a rock-salt repository. Considering this fact, further electrochemical corrosion tests were performed in order to determine the influence of sulfide ions (1 -200 ppm), present as salt impurities in disposal relevant NaCl-brine (T = 55 -90 C), on the corrosion behaviour of this steel grade. For comparison, tests were carried out in the sulfide-free brine, too. (orig.) [de

  5. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  6. Corrosion of carbon steel and low-alloy steel in diluted seawater containing hydrazine under gamma-rays irradiation

    International Nuclear Information System (INIS)

    Nakano, Junichi; Yamamoto, Masahiro; Tsukada, Takashi

    2014-01-01

    Seawater was injected into reactor cores of Units 1, 2, and 3 in the Fukushima Daiichi nuclear power station as an urgent coolant. It is considered that the injected seawater causes corrosion of steels of the reactor pressure vessel and primary containment vessel. To investigate the effects of gamma-rays irradiation on weight loss in carbon steel and low-alloy steel, corrosion tests were performed in diluted seawater at 50°C under gamma-rays irradiation. Specimens were irradiated with dose rates of 4.4 kGy/h and 0.2 kGy/h. To evaluate the effects of hydrazine (N 2 H 4 ) on the reduction of oxygen and hydrogen peroxide, N 2 H 4 was added to the diluted seawater. In the diluted seawater without N 2 H 4 , weight loss in the steels irradiated with 0.2 kGy/h was similar to that in the unirradiated steels, and weight loss in the steels irradiated with 4.4 kGy/h increased to approximate 1.7 times of those in the unirradiated steels. Weight loss in the steels irradiated in the diluted seawater containing N 2 H 4 was similar to that in the diluted seawater without N 2 H 4 . When N 2 was introduced into the gas phase in the flasks during gamma-rays irradiation, weight loss in the steels decreased. (author)

  7. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  8. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    International Nuclear Information System (INIS)

    Dai, Y.

    1996-01-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature (≤380 degrees C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300 degrees C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300 degrees C to 500 degrees C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180 degrees C to 330 degrees C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited

  9. Investigation program on PWR-steel-containment behavior under accident conditions

    International Nuclear Information System (INIS)

    Krieg, R.; Eberle, F.; Goeller, B.; Gulden, W.; Kadlec, J.; Messemer, G.; Mueller, S.; Wolf, E.

    1983-10-01

    This report is a first documentation of the KfK/PNS activities and plans to investigate the behaviour of steel containments under accident conditions. The investigations will deal with a free standing spherical containment shell built for the latest type of a German pressurized water reactor. The diameter of the containment shell is 56 m. The minimum wall thickness is 38 mm. The material used is the ferritic steel 15MnNi63. According to the actual planning the program is concerned with four different problems which are beyond the common design and licensing practice: Containment behavior under quasi-static pressure increase up to containment failure. Containment behavior under high transient pressures. Containment oscillations due to earthquake loadings; consideration of shell imperfections. Containment buckling due to earthquake loadings. The investigation program consists of both theoretical and experimental activities including membrane tests allowing for very high plastic strains and oscillation tests with a thin-walled, high-accurate spherical shell. (orig.) [de

  10. Structure of three Zlatoust bulats (Damascus-steel blades)

    Science.gov (United States)

    Schastlivtsev, V. M.; Gerasimov, V. Yu.; Rodionov, D. P.

    2008-08-01

    Chemical composition, structure, and hardness of samples of three Zlatoust bulats (Damascus steels), namely, an Anosov bulat blade (1841), Obukhov bulat blade (1859), and a Shvetsov forged bulat-steel blank (crucible steel) have been investigated. The Anosov bulat possesses all signs of the classical Damascus steel; this is a hypereutectoid carbon steel with a structure formed from chains of carbides against the background of fine pearlite (troostite). A banded pattern is revealed on the surface of the blade. The Obukhov blade cannot be referred to classical Damascus steel. The pattern on the surface of the blade is absent, despite the fact that the initial steel is hypereutectoid. The structure of the blade does not correspond to the structure of classical Damascus steel; this is bainite with numerous cementite particles. The Shvetsov sample cannot be regarded as Damascus steel since it is made from a hypereutectoid steel alloyed by managanese and tungsten. The pattern on the surface of the metal is a consequence of the dendritic structure of the ingot which is developed during forging. The structure of this pattern differs from classical damascene pattern, since the latter is formed due to a specific arrangement of a variety of carbide particles against the pearlitic or some other background obtained during heat treatment.

  11. Ultimate limit states of steel containment vessel under earthquake loadings

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Yuhara, Tetsuo; Shimizu, Seiichi; Hayashi, Kazutoshi; Takahashi, Tadao.

    1986-01-01

    The limit state induced by buckling of cylindrical steel structures under earthquake loadings was investigated from the standpoint of energy concept. A number of the buckling test of cylindrical steel shell structures has been made, which showed that they have a stable load-displacement relation and adequate deformation capacities beyond the buckling. The authors are proposing that the energy input imparted by strong earthquakes to buckled structures and the deformation capacity in post-buckling are suitable indices for seismic resistance of the cylindrical steel shell structures because the buckling does not cause the structure immediately to collapse in the case of such repeated loading as earthquake motions. The purpose of this study is to investigate the energy input to buckled cylindrical steel structures with an increase in the intensity of earthquake motions. A series of nonlinear dynamic analyses were performed under various types of earthquake records by using a hysteresis loop, including buckling, which was derived from the buckling tests. The limit state could be defined as the state in which the deformation of and the energy input into buckled structures increase divergently when the intensity of the earthquake excitation exceeds a certain value. The results obtained in this paper are intended to be adopted to the limit state in the post-buckling region to evaluate the margin of safety against the buckling resistance of cylindrical steel structures under strong earthquake loadings. (author)

  12. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    International Nuclear Information System (INIS)

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.

    1988-03-01

    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H 2 O /plus/ Fe(sub 3)O /plus/ 4H 2 , would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs

  13. Evaluation criteria of structural steel reliability

    International Nuclear Information System (INIS)

    Zav'yalov, A.S.

    1980-01-01

    Different low-carbon and medium-carbon structural steels are investigated. It is stated that steel reliability evaluation criteria depend on the fracture mode, steel suffering from the brittle fracture under the influence of the stresses (despite their great variety) arising in articles during the production and operation. Fibrous steel fracture at the given temperature and article thickness says about its high ductility and toughness and brittle fractures are impossible. Brittle fractures take place in case of a crystalline and mixed fracture with a predominant crystalline component. Evaluation methods of article and sample steel structural strength differing greatly from real articles in a thickness (diameter) or used at temperatures higher than possible operation temperatures cannot be reliability evaluation criteria because at a great thickness (diameter) and lower operation temperatures steel fracture and its strain mode can change resulting in a sharp reliability degradation

  14. Simplified dynamic buckling assessment of steel containments

    International Nuclear Information System (INIS)

    Farrar, C.R.; Duffey, T.A.; Renick, D.H.

    1993-01-01

    A simplified, three-degree-of-freedom analytical procedure for performing a response spectrum buckling analysis of a thin containment shell is developed. Two numerical examples with R/t values which bound many existing steel containments are used to illustrate the procedure. The role of damping on incipient buckling acceleration level is evaluated for a regulatory seismic spectrum using the two numerical examples. The zero-period acceleration level that causes incipient buckling in either of the two containments increases 31% when damping is increased from 1% to 4% of critical. Comparisons with finite element results on incipient buckling levels are favorable

  15. Corrosion of radioactive waste containers, case of a container made of low allow steel

    International Nuclear Information System (INIS)

    Bataillon, C.; Musy, C.; Roy, M.

    2001-01-01

    The following topics were dealt with: radioactive waste concept ANDRA, low alloy steel (XC38) container corrosion under representative storage conditions, corrosion rate and passivation effects, micrographic investigations

  16. Optimum design of steel structures

    CERN Document Server

    Farkas, József

    2013-01-01

    This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads...

  17. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    International Nuclear Information System (INIS)

    Riesemann, W.A. von; Parks, M.B.

    1995-01-01

    In the US, concrete containment buildings for commercial nuclear power plants have steel liners that act as the internal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented.This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).An overpressurization test of a 1:6 scale reinforced concrete containment at Sandia National Laboratories resulted in a failure mechanism in the liner that was not fully anticipated. Post-test analyses and experiments have been conducted to understand the failure better. This work and the activities that followed the test are reviewed. Areas in which additional research should be conducted are given. (orig.)

  18. Heissdampfreaktor (HDR) steel-containment-vessel and floodwater-storage-tank structural-dynamics tests

    International Nuclear Information System (INIS)

    Arendts, J.G.

    1982-01-01

    Inertance (vibration) testing of two significant vessels at the Heissdampfreaktor (HDR) facility, located near Kahl, West Germany, was recently completed. Transfer functions were obtained for determination of the modal properties (frequencies, mode shapes and damping) of the vessels using two different test methods for comparative purposes. One of the vessels tested was the steel containment vessel (SCV). The SCV is approximately 180 feet high and 65 feet in diameter with a 1.2-inch wall thickness. The other vessel, called the floodwater storage tank (FWST), is a vertically standing vessel approximately 40 feet high and 10 feet in diameter with a 1/2-inch wall thickness. The FWST support skirt is square (in plan views) with its corners intersecting the ellipsoidal bottom head near the knuckle region

  19. Structure and properties of Hardox 450 steel with arc welded coatings

    Science.gov (United States)

    Ivanov, Yu. F.; Konovalov, S. V.; Kormyshev, V. E.; Gromov, V. E.; Teresov, A. D.; Semina, O. A.

    2017-12-01

    The paper reports on a study of the surface structure, phase composition, and microhardness of Hardox 450 steel with coatings deposited by arc welding of powder wires differing in chemical composition. The study shows that to a depth of 6-8 mm, the microhardness of the thus formed coatings is more than two times the microhardness of the base metal and that their higher mechanical properties are provided by martensite structure containing Nb2C and NbC carbides and Fe2B borides as eutectic lamellae with a transverse size of 30-70 nm; their volume reveals a net-like dislocation substructure with a scalar dislocation density of 1011 cm-2. The highest surface hardness is found for the steel coated with boron-containing wire material. Some ideas are suggested on possible mechanisms and temperature for the formation of Nb and B carbides during the process.

  20. Assessment of martensitic steels as structural materials in magnetic fusion devices

    International Nuclear Information System (INIS)

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600 0 C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  1. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  2. Structural dynamic response of target container against proton beam

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro

    1997-01-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  3. Structural dynamic response of target container against proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  4. Assessment of Containment Structures Against Missile Impact Threats

    Institute of Scientific and Technical Information of China (English)

    LI Q M

    2006-01-01

    In order to ensure the highest safety requirements,nuclear power plant structures (the containment structures,the fuel storages and transportation systems) should be assessed against all possible internal and external impact threats.The internal impact threats include kinetic missiles generated by the failure of high pressure vessels and pipes,the failure of high speed rotating machineries and accidental drops.The external impact threats may come from airborne missiles,aircraft impact,explosion blast and fragments.The impact effects of these threats on concrete and steel structures in a nuclear power plant are discussed.Methods and procedures for the impact assessment of nuclear power plants are introduced.Recent studies on penetration and perforation mechanics as well as progresses on dynamic properties of concrete-like materials are presented to increase the understanding of the impact effects on concrete containment structures.

  5. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel

    International Nuclear Information System (INIS)

    Schober, M.; Schnitzer, R.; Leitner, H.

    2009-01-01

    Stainless maraging steels have a Cr content higher than 12 wt% and show a excellent combination of high strength and ductility, which make them attractive for use in machinery fields and aircraft applications. The massive increase of strength during ageing treatment of maraging steels is related to a precipitation sequence of various nm-scaled intermetallic phases. The peak hardness especially in Ti-containing maraging steels can be reached after short-time ageing at temperatures around 500 o C. However, precipitation reactions in different stainless maraging steels are not fully understood, especially the evolution from clustering over growing to coarsening. In the present work a commercial maraging steel and a Ti-containing model alloy are investigated and compared to each other. The steels were isothermally heat treated at 525 o C for a range of times. Special emphasis was laid on the correlation of hardness to the formation and presence of different kinds of precipitates. The isothermal aged samples were investigated by using two advanced three-dimensional energy compensated atom probes (LEAP TM and 3DAP TM ) both in voltage mode and in laser mode. The atom probe data were correlated to standard hardness measurements. The results show that the partial substitution of Al by Ti results in a different precipitation behaviour. While the Ti-free maraging steel exhibit only one type of precipitate, the Ti-containing grade shows a change in the type of precipitates during ageing. However, this change leads to an accelerated coarsening and thus to a faster drop in hardness.

  6. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel.

    Science.gov (United States)

    Schober, M; Schnitzer, R; Leitner, H

    2009-04-01

    Stainless maraging steels have a Cr content higher than 12wt% and show a excellent combination of high strength and ductility, which make them attractive for use in machinery fields and aircraft applications. The massive increase of strength during ageing treatment of maraging steels is related to a precipitation sequence of various nm-scaled intermetallic phases. The peak hardness especially in Ti-containing maraging steels can be reached after short-time ageing at temperatures around 500 degrees C. However, precipitation reactions in different stainless maraging steels are not fully understood, especially the evolution from clustering over growing to coarsening. In the present work a commercial maraging steel and a Ti-containing model alloy are investigated and compared to each other. The steels were isothermally heat treated at 525 degrees C for a range of times. Special emphasis was laid on the correlation of hardness to the formation and presence of different kinds of precipitates. The isothermal aged samples were investigated by using two advanced three-dimensional energy compensated atom probes (LEAP and 3DAP) both in voltage mode and in laser mode. The atom probe data were correlated to standard hardness measurements. The results show that the partial substitution of Al by Ti results in a different precipitation behaviour. While the Ti-free maraging steel exhibit only one type of precipitate, the Ti-containing grade shows a change in the type of precipitates during ageing. However, this change leads to an accelerated coarsening and thus to a faster drop in hardness.

  7. Risk-informed assessment of degraded containment structures

    International Nuclear Information System (INIS)

    Spencer, B.W.; Kunsman, D.M.; Graves, H.L.

    2003-01-01

    As nuclear power plants age, a number of degradation mechanisms may begin to affect the ability of critical containment structures to prevent radiation release during a severe accident. A research program is underway to quantify the effects of various types of containment degradation in a risk-informed manner. In this paper, corrosion is assumed to occur in the liner of a reinforced concrete containment at a 'typical' U.S. pressurized water reactor nuclear power plant, and its effect is investigated. Latin hypercube sampling is used in conjunction with finite element models of a typical steel-lined reinforced concrete containment to generate overpressurization fragilities of the containment with and without corrosion. An existing probabilistic risk assessment model of the plant is then used with these fragilities to determine the increase in risk caused by the corrosion. (author)

  8. Development of cutting and welding methods for thick-walled stainless steel support and containment structures for ITER

    International Nuclear Information System (INIS)

    Jones, L.; Maisonnier, D.; Goussain, J.; Johnson, G.; Petring, D.; Wernwag, L.

    1998-01-01

    In ITER the containment and support structures are made from 316L(N)-IG (ITER Grade) stainless steel plate, 40 to 70 mm thick. The structures are divided into twenty sectors which have to be welded together in situ. The three areas of work described in this paper are, CO 2 laser welding, plasma cutting and CO 2 laser cutting. CO 2 laser welding offers significant advantages due to its high speed and low distortion and the most powerful commercial laser in Europe has been used to investigate single pass welding of thick plates, with strong welds up to 35 mm thick being achieved in one pass. For cutting, the space available on the back-side to collect debris and protect fragile components from damage is limited to 30 mm. A static, water-cooled backside protection plate proved unable to contain the debris from plasma cutting so a reciprocating backside protection system with dry ceramic heat shield demonstrated a solution. A 10 kW CO 2 laser system for nitrogen-assisted laser cutting, provided successful results at 40 mm thickness. This technique shows considerable promise as significant reductions in through power and rate of debris production are expected compared with plasma cutting and thicker cuts appear feasible. The results presented herein represent significant technical advances and will be strong candidates for the mix of methods which will have to be used for the assembly and maintenance of the ITER machine. (authors)

  9. Examination of leakage aspects through concrete - steel interfaces at and around containment penetration assemblies

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Sai, A.S.R.; Basu, P.C.

    1994-01-01

    Penetration assemblies are parts required to be provided in the containment wall/dome to permit piping, mechanical devices, equipments, electrical cables, personnel movements etc. Integrity of arrangements with respect to leak tightness at or around these penetration assemblies, is of utmost importance for achieving safe functioning of containment. Considering the feasibilities in controlling leakages along different possible paths, it has been found necessary to examine in detail the leakage possibilities at concrete - steel interfaces at and around penetration assemblies. The present paper addresses this issue with respect to the important related aspects like constructional details, testing conditions, normal operating conditions, and the accidental situation associated with containment structures. (author)

  10. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  11. PLASTIC ANALYSIS OF STEEL FRAME STRUCTURE

    Directory of Open Access Journals (Sweden)

    M. Rogac

    2013-05-01

    Full Text Available This paper presents the plastic analysis of steel frame structure loaded by gravity loads. By applying the cinematic theorem of ultimate analysis, the ultimate load for the case of elastic - ideally plastic material is calculated. The identical structure was treated in the computer program SAP2000 where the zone of material reinforcement in the plastic area was covered. Keywords: Steel frame structure, plastic analysis, ultimate gravity load, material reinforcement.

  12. Preliminary results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Matsumoto, T.; Komine, K.; Arai, S.

    1997-01-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented

  13. Impact and structural analysis of the INEL 55 gallon recycled shielded storage container

    International Nuclear Information System (INIS)

    Richins, W.D.

    1996-07-01

    The INEL Recycled Shielded Storage Containers (RSSC) are designed primarily for the transportation and storage of mixed RH-TRU solid waste using recycled, potentially contaminated lead and stainless steel construction materials. Two versions of the RSSC have been developed accommodating either 30 or 55 gallon drums. This report addresses the structural qualification of the 55 gallon version of the RSSC to DOT 7A Type A requirements. The controlling qualification test is a 4 ft drop onto a rigid surface. During and after this test, the container contents must remain within the container and shielding must not be reduced. The container is also designed to withstand stacking, internal pressure, lifting loads, tiedown failure, penetration, and a range of temperatures. Nonlinear dynamic finite element analyses were performed using a range of material properties. Loads in the major connections and strains in the stainless steel and lead were monitored as a function of time during impact analyses for three simulated drop orientations. Initial results were used to develop the final design. For the final design, the stainless steel and lead have maximum strains well below ultimate levels except at an impact corner where additional deformation is acceptable. The predicted loads in the connections indicate that some yielding will occur but the containment and shielding will remain intact. The results presented here provide assurance that the container will pass the DOT 7A Type A drop tests as well as the other structural requirements

  14. Comparison of Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony with 409L Stainless Steel for a Flue Gas Desulfurization System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Ah; Shin, Su-Bin; Kim, Jung-Gu [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-07-15

    The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H{sub 2}SO{sub 4} + 0.35 vol% HCl at 60 ℃. The inclusions in these steels ere identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction.

  15. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  16. Technical features of steel structure construction by Kawasaki Steel; Kawasaki Seitetsu no kokozo gijutsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Urata, I.; Okata, S. [Kawasaki Steel Corp., Tokyo (Japan)

    1996-03-01

    In the steel structure technology of Kawasaki Steel, the joint technique (e.g., welding) is added to them while developing or improving the products that meet the social needs as a material supplier. Moreover, the execution technique that manufactures materials or constructs them as an integrated structure, the structural analysis that conforms to the function and application of a structure, and the design technique on dynamic properties or durability such as earthquake resistance, fatigue, and corrosion resistance are synthetically expanded for engineering. In this paper, a building steel frame, non-residence building, bridge, and harbor structure as steel structure in the building and construction fields were described for each structure genre. The structural technology of a building steel frame is summarized to the products of pillar materials. An earthquake brace, using a dead soft steel, with high earthquake energy absorption capability and a damping wall were also developed. The design and execution technique of a large roof was systematized. The exchange technique of a road bridge RC floor and the technique of an unstiffened suspension bridge for pipeline were developed. A new technique was also developed for a suspension monorail track and offshore structure. 30 refs., 5 figs.

  17. Kawasaki Steel Giho, Vol. 27, No. 4, 1995. Special issue on steel structure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    ;Contents (Partial): Vertical Gust Prediction of Cable-Stayed Bridges in Yawed Wind; Design and Construction of a Super Platform Structure Made of Steel; Prefabricated Steel Deck of Battledeck Floor Type for Redecking; Aesthetic Design of Structures; and Lift-up Construction Method for Multi-layer Building.

  18. Open site tests on corrosion of carbon steel containers for radioactive waste forms

    International Nuclear Information System (INIS)

    Barinov, A.S.; Ojovan, M.I.; Ojovan, N.V.; Startceva, I.V.; Chujkova, G.N.

    1999-01-01

    Testing of waste containers under open field conditions is a component part of the research program that is being carried out at SIA Radon for more than 20 years to understand the long-term behavior of radioactive waste forms and waste packages. This paper presents the preliminary results of these ongoing studies. The authors used a typical NPP operational waste, containing 137 Cs, 134 Cs, and 60 Co as the dominant radioactive constituents. Bituminized and vitrified waste samples with 30--50 wt.% waste loading were prepared. Combined effects of climatic factors on corrosion behavior of carbon steel containers were estimated using gravimetric and chemical analyses. The observations suggest that uniform corrosion of containers prevails under open field conditions. The upper limits for the lifetime of containers were derived from calculations based on the model of atmospheric steel corrosion. Estimated lifetime values range from 300 to 600 years for carbon steel containers with the wall thickness of 2 mm containing vitrified waste, and from 450 to 500 years for containers with the wall thickness of 2.5 mm that were used for bituminized waste. However, following the most conservative method, pitting corrosion may cause container integrity failure after 60 to 90 years of exposure

  19. Effect of silicon on the structure, tribological behaviour, and mechanical properties of nitrogen-containing chromium-manganese austenitic steels

    International Nuclear Information System (INIS)

    Korshunov, L.G.; Chernenko, N.L.; Gojkhenberg, Yu.N.

    2003-01-01

    The effect of silicon in quantity of 3.5-4.5 mass. % on tribological behaviour is studied for nitrogen-bearing (0.20-0.52 mass. % of nitrogen) chromium-manganese austenitic steels (10Kh15G23S4A0.20, 10Kh16G17N3S4A0.30, 10Kh19G20NS4A0.50, 12Kh19G19NS2A0.50, 10Kh18G19A0.50, 08Kh16G8N10S4A0.18). Mechanical properties and corrosion resistance of the steels are determined. Using metallographic, x-ray diffraction and electron microscopical methods a study is made into structural transformations running in the steels considered under friction and static tension. It is shown that additional silicon alloying of nitrogen-bearing chromium-manganese austenitic steels results in an essential increase of adhesion wear resistance of the materials on retention of low friction coefficient (f=0.25-0.33). A strong silicon effect on steel tribological behaviour is related with planar slip activation and with an increase of austenite strength and heat resistance [ru

  20. Life extension of containment structures of Indian PHWRs

    International Nuclear Information System (INIS)

    Roy, Raghupati; Garg, R.P.; Verma, U.S.P.

    2006-01-01

    Containment structures prevent radioactivity release in the event of any postulated Design Basis Accident (DBA) so that the level of radiation in the external environment is within acceptable limits. Containment structures of Indian PHWRs are typically unlined prestressed concrete structures, which are required to maintain its leak tightness characteristics and strength under DBA during the life of the structure. As nuclear power plant structures age, a number of degradation mechanisms begin to affect critical containment structure. Depending on the type and severity of these degradation mechanisms, its adverse effect on the leak tightness and pressure carrying capacity can be significant. Since the containment structures of Indian PHWRs are unlined, the leak tightness characteristics are solely dependent on the concrete properties and the prestressing material. Prestressing, which is introduced to control the deformation and strength requirement, is affected due to aging. Hence, adequacy of prestressing during the life of the structure to withstand internal pressure and the related leak tightness must be ensured for life extension of prestressed concrete containment structure in view of their significant long term losses. Prevention of corrosion in prestressing steel and assessment of the same at the end of extended design life of the structure, require utmost attention in view of their catastrophic nature of failure. This paper describes the various degradation mechanisms pertaining to concrete and their effect on the leak tightness characteristics and the strength requirement. The issues related to prestressing are also discussed in detail in this paper. The requirement of periodic monitoring of the containment structure for assessing its deformation and leak tightness characteristics and development of database for life extension of containment structure is also addressed in this paper. This paper also discusses the various provisions and measures, which are

  1. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  2. Corrosion of pipe steel in CO2 containing impurities and possible solutions

    NARCIS (Netherlands)

    Zhang, X.; Zevenbergen, J.F.; Spruijt, M.P.N.; Borys, M.

    2013-01-01

    CO2 flue gases acquired from different sources contain a significant amount of impurities and water, which are corrosive to the pipeline steel. To design the pipelines for large scale of CO2 flue gas transport, the corrosion of pipeline steels has to be investigated in the realistic conditions. In

  3. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    Science.gov (United States)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  4. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    International Nuclear Information System (INIS)

    Duffo, Gustavo S.; Farina, Silvia B.; Schulz, Fatima M.; Marotta, Francesca

    2010-01-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  5. EXPERIMENTAL RESEARCH OF THE THREE-DIMENSIONAL PERFORMANCE OF COMPOSITE STEEL AND CONCRETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Zamaliev Farit Sakhapovich

    2012-12-01

    steel-concrete slabs limits their use in the construction of residential housing. This article describes the composition, geometry, reinforcement, and anchors to enable the use of concrete slabs and steel beams. The article contains photographs that illustrate the load distribution model. Methods of testing of fiber strains of concrete slabs and steel profiles, deflections of beams, shear stresses in the layers of the "steel-to-concrete" contact area that may involve slab cracking are analyzed. Dynamics of fiber deformations of concrete slabs, steel beams, and layers of the "steel-to-concrete" contact areas, deflection development patterns, initial cracking and crack development to destruction are analyzed. The author also describes the fracture behavior of the floor model. Results of experimental studies of the three-dimensional overlapping of structural elements are compared to the test data of individual composite beams. Peculiarities of the stress-strain state of composite steel and concrete slabs, graphs of strains and stresses developing in sections of middle and external steel-and-concrete beams, deflection graphs depending on the loading intensity are provided. The findings of the experimental studies of the three-dimensional performance of composite steel-and-concrete slabs are provided, as well.

  6. Ultimate Pressure Capacity of Prestressed Concrete Containment Vessels with Steel Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The ultimate pressure capacity (UPC) of the prestressed concrete containment vessel (PCCV) is very important since the PCCV are final protection to prevent the massive leakage of a radioactive contaminant caused by the severe accident of nuclear power plants (NPPs). The tensile behavior of a concrete is an important factor which influence to the UPC of PCCVs. Hence, nowadays, it is interested that the application of the steel fiber to the PCCVs since that the concrete with steel fiber shows an improved performance in the tensile behavior compared to reinforced concrete (RC). In this study, we performed the UPC analysis of PCCVs with steel fibers corresponding to the different volume ratio of fibers to verify the effectiveness of steel fibers on PCCVs

  7. Influence of isothermal thermomechanical treatment on structure and properties of structural steels

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Kaletin, A.Yu.; Schastlivthev, V.M.; Kaletina, Yu.V.

    1997-01-01

    A study is made into the structure and mechanical properties of steel 35KhGSA and 37KhN3A after isothermal hardening resulting in bainitic structure formation as well as after low-temperature thermomechanical treatment (LTTMT) combining the plastic deformation at the temperature of bainitic transformation and subsequent isothermal hardening. It is shown that LTTMT permits and essential enhancement of strength properties in steel 35KhGSA, high plasticity and impact strength being reserved. This is associated with bainitic structure refinement. In steel 37KhN3A the process of carbide formation takes place along with bainitic transformation, and LTTMT results in lesser strengthening. LTTMT is fount to not practically affect the tendency of structural steels to bainitic brittleness. This treatment promotes some shift of brittleness manifestation to lower temperatures

  8. Influence of austenitisation temperature on the structure and properties of weather resistant steels

    International Nuclear Information System (INIS)

    Prasad, S.N.; Mediratta, S.R.; Sarma, D.S.

    2003-01-01

    The influence of austenitisation temperature on the structure and properties of three experimental weather resistant steels has been studied. All these steels contain 1% Mn, 0.3% Ni, 0.47% Cr and 0.47% Cu. In addition, steel no. 1 has 0.1% C, 0.1% P, steel no. 2 has 0.1% C, 0.05% P and 0.024% Nb while steel 3 has 0.2% C, 0.054% Nb and 0.046% V. It has been found that the hardness, yield strength and tensile strength do not change significantly with austenitisation temperature over the range 900-1200 deg. C for steel no. 1 but they increase considerably when austenitised above 1000 deg. C for steels 2 and 3. Similarly, the ductility decreases with increasing temperature of austenitisation. All the steels austenitised up to 1000 deg. C exhibit sharp yield points. None of these steels shows sharp yield point after 1200 deg. C. At 1100 deg. C, however, sharp yield points were observed in steels 1 and 2. There has been a noticeable change in optical microstructure. In steels 2 and 3 the pearlite is gradually replaced by granular bainite when austenitised above 1000 deg. C. The transmission electron microscopy study reveals that the granular bainite consists of acicular ferrite and martensite/austenite constituent

  9. Composite containment for nuclear power

    International Nuclear Information System (INIS)

    Harstead, G.A.; Soeoet, O.

    1977-01-01

    Fundamentally, a nuclear reactor containment structure provides three major functions; namely, (1), to withstand loads due to pressure and temperature increase due to Design Basis Accident (DBA) (2), to withstand environmental loads such as seismic, tornado and normal loads, and (3) act as a radiation shield. Conventional design practise is to employ either a steel vessel and concrete shield building or a steel lined concrete structure. This paper deals with a new concept in which a steel liner is employed which carries much of the primary membrane loads. This type of structure is similar in some aspects to the previously described systems: a) A mat, lined with a thin plate on its top surface, is similar to concrete containment. b) A cylinder and hemispherical dome, made up of steel plate and concrete, is about 2.5 feet thick (the minimum required for radiation shielding). Although the steel plate and concrete are in contact, as in concrete containment, the steel plate in composite containment is much thicker than the liner. There are two main advantages over present practise; namely reduction of materials and therefore reduced capital cost and even more significantly a shortened construction schedule which will permit more flexibility in overall plant construction schedule and will benefit the cash flow situation. (Auth.)

  10. Nuclear power plant containment construction

    International Nuclear Information System (INIS)

    Schabert, H.P.; Danisch, R.; Strickroth, E.

    1975-01-01

    The Nuclear Power Plant Containment Construction includes the spherical steel safety enclosure for the reactor and the equipment associated with the reactor and requiring this type of enclosure. This steel enclosure is externally structurally protected against accident by a concrete construction providing a foundation for the steel enclosure and having a cylindrical wall and a hemispherical dome, these parts being dimensioned to form an annular space surrounding the spherical steel enclosure, the latter and the concrete construction heretofore being concentrically arranged with respect to each other. In the disclosed construction the two parts are arranged with their vertical axis horizontally offset from each other so that opposite to the offsetting direction of the concrete construction a relatively large space is formed in the now asymmetrical annular space in which reactor auxiliary equipment not requiring enclosure by the steel containment vessel or safety enclosure, may be located outside of the steel containment vessel and inside of the concrete construction where it is structurally protected by the latter

  11. 46 CFR 154.172 - Contiguous steel hull structure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this...

  12. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    Science.gov (United States)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  13. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxilary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embeded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. An integrated configuration which includes the interior shell, the annular structure and the subgrade is analyzed for several static and dynamic loading conditions. The analysis is done using a finite difference solution scheme for the static loading conditions. A semi-analytical three-dimensional finite element scheme combined with a Fast Fourier Transform (FFT) algorithm is used for the dynamic loading conditions. The effects of cracking of the containment structure due to pressurization in conjunction with earthquake loading are discussed. Analytical results for both the finite difference and the finite element schemes are presented and the sensitivity of the results to changes in the input parameters is studied. General recommendations are given for plant configurations where high seismic loading is a major design consideration

  14. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  15. Certain peculiarities of structural inheritance in phase recrystallization of steel

    International Nuclear Information System (INIS)

    Mukhamedov, A.A.

    1978-01-01

    The structural inheritance in phase recrystallization of previously overheated to various temperatures industrially melted 40Kh steel and of Armco-iron has been investigated. The steels have been heated to 100O, 11O0, 1200 and 1260 deg C and cooled in the air, and in some instances, hardened (quenched) in water. The physical broadening of X-ray lines points to a nonmonotonous variation of fine structure parameters as a function of the temperature and the heating time. The inheritance effect of fine structure defects affects the steel properties obtained in a final heat treatment. The structural inheritance effect has an important bearing upon the wear resistance of steel. A purpose-oriented use of the structural inheritance effect can enhance service properties of steel parts

  16. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses......Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude and variable amplitude fatigue...

  17. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  18. Steel, specially for the fabrication of welded structure working under pressure in nuclear installations

    International Nuclear Information System (INIS)

    Dolbenko, E.T.; Astafiev, A.A.; Kark, G.S.

    1981-01-01

    The present invention is in the field of metallurgy. Steels have found an increasing number of applications in mechanical constructions, and notably in the construction of materials for the production of energy and for the fabrication of welded structures operating under pressure at temperatures as high as 450 0 C. A possible application is the pressurized vessels of nuclear facilities. The steels of interest contain carbon, silicon, manganese, nickel, molybdenum, vanadium, aluminium, nitrogen, phosphorus and iron, but are characterized by the fact that they also contain arsenic, tin and calcium. The sum of the weighted percentages of nickel and manganese and the weighted percentage of phosphorous are related as follows: (Ni + Mn) . P [fr

  19. Diffusion zinc plating of structural steels

    International Nuclear Information System (INIS)

    Kazakovskaya, Tatiana; Goncharov, Ivan; Tukmakov, Victor; Shapovalov, Vyacheslav

    2004-01-01

    The report deals with the research on diffusion zinc plating of structural steels when replacing their cyanide cadmium plating. The results of the experiments in the open air, in vacuum, in the inert atmosphere, under various temperatures (300 - 500 deg.C) for different steel brands are presented. It is shown that diffusion zinc plating in argon or nitrogen atmosphere ensures obtaining the qualitative anticorrosion coating with insignificant change of mechanical properties of steels. The process is simple, reliable, ecology pure and cost-effective. (authors)

  20. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  1. Development of improved SGV480 steel plate for containment vessel in PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Norioki [Advanced Nuclear Equipment Research Inst., Tokyo (Japan); Morikage, Yasushi; Okayama, Yutaka; Higashikubo, Tomohiro

    2001-01-01

    When a nuclear containment vessel made of steel plate at PWR plants in Japan is produced, SGV480 steel plate made by annealing method according to JIS G3118 is usually used in main. And, when thickness of welding portion of the vessel is larger than 38 mm, as heat treatment after welding is regulated to carry out according to the ministerial ordinance, it is difficult in actual to carry out the heat treatment of the actual welded portions. In a leading plant, approval of welding using a special method without heat treatment less than 47.25 mm of SGV480 carbon steel plate for JIS G3118 middle and ordinary pressure vessel was carried out to supply it for actual use. And, it is required for protection of welding fracture to carry out pre-heat treatment before welding. Because of increasing plate thickness requiring for lower temperature and more seismic resistance in construction condition, in order to produce a containment vessel without heat treatment after welding, more toughness is required for using material and welded portion. Therefore, a new SGV480 steel plate was developed by using TMCP method of modern steel manufacturing technology, to establish lower carbon equivalence and finer texture with upgrading of both toughness and weldability, without heat treatment after welding and pre-heat treatment before welding, at the Shin-Nippon Steel Co, Ltd. and Kawasaki Steel, Co. Ltd., respectively. (G.K.)

  2. Methods for assessing NPP containment pressure boundary integrity

    International Nuclear Information System (INIS)

    Naus, D.J.; Ellingwood, B.R.; Graves, H.L.

    2004-01-01

    Research is being conducted to address aging of the containment pressure boundary in light-water reactor plants. Objectives of this research are to (1) understand the significant factors relating to corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and of liners of concrete containments; (2) provide the U.S. Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation. Activities include development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of candidate techniques for inspection of inaccessible regions of containment metallic pressure boundaries; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion

  3. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  4. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Park, Junhee

    2014-01-01

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs

  5. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs.

  6. Effect of Boron and Titanium Addition on the Hot Ductility of Low-Carbon Nb-Containing Steel

    Science.gov (United States)

    Liu, Wei-Jian; Li, Jing; Shi, Cheng-Bin; Huo, Xiang-Dong

    2015-12-01

    The effect of boron and titanium addition on the hot ductility of Nb-containing steel was investigated using hot tensile tests. The fracture surface and the quenched longitudinal microstructure were examined by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that both steel samples had the similar change from 1,100°C to 700°C. The hot ductility of Nb-containing steel with boron and titanium addition was higher than the steel without boron and titanium in the temperature range of 900-750°C. Because the formation of intergranular ferrite was inhibited by solute boron segregating on the grain boundary, the formation of TiN changed the distribution of Nb- and boron-containing precipitates and improved the amount of intragranular ferrite.

  7. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  8. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  9. Using an equation based on flow stress to estimate structural integrity of annealed Type 304 stainless steel plate and pipes containing surface defects

    International Nuclear Information System (INIS)

    Reuter, W.G.; Place, T.A.

    1981-01-01

    An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)

  10. Round Robin Posttest analysis of a 1/10-scale Steel Containment Vessel Model Test

    International Nuclear Information System (INIS)

    Komine, Kuniaki; Konno, Mutsuo

    1999-01-01

    NUPEC and U.S. Nuclear Regulatory Commission (USNRC) have been jointly sponsoring 'Structural Behavior Test' at Sandia National Laboratory (SNL) in Cooperative Containment Research Program'. As one of the test, a test of a mixed scaled SCV model with 1/10 in the geometry and 1/4 in the shell thickness. Round Robin analyses of a 1/10-scale Steel Containment Vessel (SCV) Model Test were carried out to obtain an adequate analytical method among seven organizations belonged to five countries in the world. As one of sponsor, Nuclear Power Engineering Corporation (NUPEC) filled the important role of a posttest analysis of SCV model. This paper describes NUPEC's analytical results in the round robin posttest analysis. (author)

  11. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    International Nuclear Information System (INIS)

    Cruz, Magnus G.H.; Viecelli, Alexandre

    2008-01-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation

  12. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Magnus G.H. [Marcopolo S.A., Unidade Ana Rech, Av. Rio Branco, 4889, Ana Rach, 95060-650 Caxias do Sul (Brazil)], E-mail: magnus@verbonet.com.br; Viecelli, Alexandre [Mechanical Engineering Department, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, 95070-560 Caxias do Sul, RS (Brazil)], E-mail: avieceli@ucs.br

    2008-07-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation.

  13. Structural Integrity Assessment of Reactor Containment Subjected to Aircraft Crash

    International Nuclear Information System (INIS)

    Kim, Junyong; Chang, Yoonsuk

    2013-01-01

    When an accident occurs at the NPP, containment building which acts as the last barrier should be assessed and analyzed structural integrity by internal loading or external loading. On many occasions that can occur in the containment internal such as LOCA(Loss Of Coolant Accident) are already reflected to design. Likewise, there are several kinds of accidents that may occur from the outside of containment such as earthquakes, hurricanes and strong wind. However, aircraft crash that at outside of containment is not reflected yet in domestic because NPP sites have been selected based on the probabilistic method. After intentional aircraft crash such as World Trade Center and Pentagon accident in US, social awareness for safety of infrastructure like NPP was raised world widely and it is time for assessment of aircraft crash in domestic. The object of this paper is assessment of reactor containment subjected to aircraft crash by FEM(Finite Element Method). In this paper, assessment of structural integrity of containment building subjected to certain aircraft crash was carried out. Verification of structure integrity of containment by intentional severe accident. Maximum stress 61.21MPa of horizontal shell crash does not penetrate containment. Research for more realistic results needed by steel reinforced concrete model

  14. Corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions

    International Nuclear Information System (INIS)

    Wu, P.C.S.; Grundy, B.R.; Miller, R.L.

    1979-01-01

    The corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions was investigated. Results showed that sodium-corroded Type 316 stainless steel (prototypic Liquid Metal Fast Breeder Reactor (LMFBR) fuel cladding) maintains its integrity after five months exposure in these solutions at 82 0 C and with chloride content up to 500 ppM. In contrast, sensitized and sodium mass transfer deposit-containing Type 304 stainless steel failed in the high chloride solution (500 ppM) within ten days at the same temperature. The failure was initiated by pitting and subsequently accelerated by intergranular attack. The results also show that high pH tends to reduce the susceptibility to failure while procedures commonly used for sodium removal have no significant effect on the water corrosion behavior of the test material. Based on the current results, it is concluded that water shortage is feasible for spent fuels in a LMFBR reprocessing plant

  15. Fire-induced collapses of steel structures

    DEFF Research Database (Denmark)

    Dondera, Alexandru; Giuliani, Luisa

    Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....

  16. Feasibility studies on design of steel containment for AHWR subjected to normal and seismic loads

    International Nuclear Information System (INIS)

    Verma, Rajeev; Reddy, G.R.; Vaze, K.K.; Kumar, Ajay

    2011-01-01

    Reactor Containments in nuclear power plants are the final leak tight harriers preventing release of radioactive material during the accident to the environment. It should provide containment against fission product release, passive containment cooling and should be economical. In the world various configurations have been adopted depending on the accident pressures, temperatures, leak rate requirements and radius of exclusion zones. economy, speed of construction etc. Some of the containments arc of Reinforced Cement Concrete (RCC), Prestressed Cement Concrete (PCC), RCC with the liner, PCC with the liner and Steel. The design concepts and the choice of containment depend on the country practices. The main objective of this paper is to design, analyze and characterize the effectiveness of steel containment for AHWR and compare it with other type of containments. The paper discusses the literature regarding various types of existing containments in the world. In depth study of design practice for cylinder and various types of heads have been discussed. Also discusses the finite element modeling of the containment, analysis for normal and accidental loads and the design qualification as per the ASME and IS-800 codes. In the conclusion the advantage of steel containment is highlighted with the small discussion on the newer trends of construction. (author)

  17. Seismic damage sensing of bridge structures with TRIP reinforcement steel bars

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki

    2001-07-01

    Intelligent reinforced concrete structures with transformation-induced-plasticity (TRIP) steel rebars that have self-diagnosis function are proposed. TRIP steel is special steel with Fe-Cr based formulation. It undergoes a permanent change in crystal structure in proportion to peak strain. This changes from non-magnetic to magnetic steel. By using the TRIP steel rebars, the seismic damage level of reinforced concrete structures can be easily recognized by measuring the residual magnetic level of the TRIP rebars, that is directly related to the peak strain during a seismic event. This information will be most helpful for repairing the damaged structures. In this paper, the feasibility of the proposed intelligent reinforced concrete structure for seismic damage sensing is experimentally studied. The relation among the damage level, peak strain of rebars, and residual magnetic level of rebars of reinforced concrete beams implemented with TRIP steel bars was experimentally studied. As the result of this study, this intelligent structure can diagnose accumulated strain/damage anticipated during seismic event.

  18. Commissioning of the steel containment and its related components of the Loviisa II. nuclear power plant

    International Nuclear Information System (INIS)

    Tuominen, J.; Pietikaeinen, L.; Kutramoinen, H.

    1982-01-01

    The outer concrete wall of the containment building serves as a protective system for the components in side. It contains the hermetically sealed steel pressure vessel for retaining the release of radioactive contamination in an accident situation. During a loss-of-coolant accident the pressure is reduced in two steps. The various testing procedures of the containment locks, their main-tenance and repair, the pressure and tightness tests of the steel containment and the preliminary operational tests of the other components of the containment system has been presented. (R.P.)

  19. Stresses and strains in the steel containment resulting from transient pressure and temperature loading during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gruner, P.; Kuntze, W.M.; Jansky, J.

    1985-01-01

    Posttest calculations of stresses and strains in the steel containment of the German research reactor HDR were performed for a simulated LOCA. The results of the theoretical investigations are presented and compared to experimental findings. The pressure and temperature loading of the shell was determined with the thermodynamic code COFLOW on the basis of a multi-compartment model. Using a three-dimensional finite element model the temporal behaviour of the containment was calculated employing the structural mechanics code ASKA. Global bending deformations and local negative straining of the steel shell is discussed. Theoretical and experimental results agree in most cases rather well. Reasons for deviations will be discussed. The specific behaviour of strains found in the vicinity of locally heated areas will be explained by means of analytical considerations. (orig.)

  20. Multicriteria Analysis of Assembling Buildings from Steel Frame Structures

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.

  1. The processing of boron-containing stainless steels for the nuclear industry

    International Nuclear Information System (INIS)

    Harrison, A.H.; King, K.J.; Wilkinson, J.

    1991-01-01

    Stainless steels containing boron additions of up to 2 wt% are used in the nuclear power and fuel reprocessing industries during storage and transportation of spent nuclear fuel elements. The metallurgical characteristics of these steels are described, with particular reference to the manufacture, chemical homogeneity, mechanical properties and weldability of plate products. Results are presented of tests performed on welded fabrications to demonstrate their resistance to impact loading. A neutron absorption meter for simple and rapid measurement of product boron content is described. (author)

  2. The Promotion of Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steels by Adding Nickel

    Directory of Open Access Journals (Sweden)

    Wu Ming-Wei

    2015-01-01

    Full Text Available Boron is a feasible alloying element for liquid phase sintering (LPS of powder metallurgy (PM steels. This study investigated the effect of nickel (Ni, which is widely used in PM steels, on the liquid phase sintering of boron-containing PM steels. The results showed that the addition of 1.8wt% Ni does not apparently modify the LPS mechanism of boron-containing PM steels. However, adding 1.8wt% Ni slightly improves the LPS densification from 0.60 g/cm3 to 0.65 g/cm3, though the green density is reduced. Thermodynamic simulation demonstrated that the presence of Ni lowers the temperature region of liquid formation, resulting in enhanced LPS densification. Moreover, original graphite powders remains in the steels sintered at 1200 ºC. These graphite powders mostly dissolve into the base iron powder when the sintering temperature is increased from 1200 ºC to 1250 ºC.

  3. Eccentric H2 detonation in a nuclear power plant steel containment

    International Nuclear Information System (INIS)

    Maresca, G.; Pino, G.

    1992-01-01

    At present, studies are in progress at ENEA-DISP to assess the performance of a steel containment under hydrogen detonation. Although considered unprobable to occur, this event is studied as a load on the safe side challenging the containment. A complete model to simulate the shock wave behavior and the fluid-structure interaction between the containment atmosphere and the containment wall has been set up at ENEA-DISP and a monodimensional axisymmetric case already studied. In the present paper the two-dimensional extension of the numerical model has been used. A plane slice of the wall and of the atmosphere filling the containment is considered. A cylindrical detonation wave is supposed to start from a source located eccentrically with respect to the containment axis. Because of the exploratory nature of the numerical model, a period of only 20 msec has been considered, although 100 msec should be considered as a minimum in a large metal containment to exclude further growing of plastic strains produced by consecutive reflections. At variance with the axisymmetric case bending stresses are developed now. The use of the model in order to assess a strain failure criterion to be applied at the dynamic portion of the H 2 detonation load is considered. In the paper the influence of different initial values of the relevant parameters (pressure, temperature, hydrogen concentration and source location) is examined in order to assess a range of equivalent conditions

  4. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  5. Strength analyses of containment steel liner at the plasticity instability

    International Nuclear Information System (INIS)

    Klyashchitskij, V.I.; Golyakov, V.I.; Kostylev, V.I.; Margolin, B.Z.

    2003-01-01

    The steel liner of NPP containment plays the important role of a leak-tight contour preventing the possible releases of radioactive substances beyond the boundaries of the reactor building. However, so far in many cases an assessment of strain-stress state of the liner having initial imperfections of the shape was made with approximate methods. A new methodology for the analysis of the liner at the plasticity instability was developed at Atomenergoproekt institute in cooperation with specialists from other agencies. The methodology is based on code 'Termit'. Assessment of the critical strain was made taking into account possible presence of one or two defects: construction undercut or crack-like defect in a weld. On the base of the real structure analyses under any combinations of quasi-static loads the algorithm was developed for the computation of the liner. (author)

  6. Corrosion of silicon-containing austenitic stainless steels under trans-passive conditions

    International Nuclear Information System (INIS)

    Stolarz, Jacek

    1989-01-01

    This research thesis addresses austenitic stainless steels which are used in installations for the chemical treatment of nuclear fuels, and are there in contact with nitric acid solutions the oxidising character of which generally promotes metal passivity. However, if this nitric environment becomes too oxidising, these steels may face severe corrosion problems. More particularly, this thesis addresses the study of intergranular corrosion, and aims at analysing various aspects of the corrosion of these austenitic stainless steels in trans-passive conditions. The author aims at determining and distinguishing the contributions due to silicon and those related to the presence of other impurities and addition elements by comparing the behaviours of industrial grade steels and high purity alloys in rigorously controlled electrochemical conditions. Another objective is to study the influence of the intergranular structure on silicon segregation by means of an attack technique in trans-passive conditions. After a report of a bibliographical study on the addressed topics and a presentation of the studied materials and implemented experimental techniques, the author reports the study of steel behaviour with respect to generalised dissolution in trans-passive conditions, as well in the nitric environment as in a sulphuric acid solution at imposed potential. Localised intragranular corrosion phenomena are discussed. A trans-passive intragranular corrosion model is proposed, and its possibilities in the analysis of intergranular segregation analysis are discussed. Experimental results of trans-passive intergranular corrosion of stainless steels are presented and interpreted by using the McLean segregation model. The influence of steel composition and of experimental conditions is discussed, as well as the role of grain boundary structure in the corrosion process [fr

  7. Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure

    International Nuclear Information System (INIS)

    Skidmore, E.

    2016-01-01

    Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhanced by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.

  8. Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhanced by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.

  9. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    Science.gov (United States)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  10. Round Robin Posttest analysis of a 1/10-scale Steel Containment Vessel Model Test

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Kuniaki [Nuclear Power Engineering Corp., Tokyo (Japan); Konno, Mutsuo

    1999-07-01

    NUPEC and U.S. Nuclear Regulatory Commission (USNRC) have been jointly sponsoring 'Structural Behavior Test' at Sandia National Laboratory (SNL) in Cooperative Containment Research Program'. As one of the test, a test of a mixed scaled SCV model with 1/10 in the geometry and 1/4 in the shell thickness. Round Robin analyses of a 1/10-scale Steel Containment Vessel (SCV) Model Test were carried out to obtain an adequate analytical method among seven organizations belonged to five countries in the world. As one of sponsor, Nuclear Power Engineering Corporation (NUPEC) filled the important role of a posttest analysis of SCV model. This paper describes NUPEC's analytical results in the round robin posttest analysis. (author)

  11. Strain-based failure criteria for steel containments

    International Nuclear Information System (INIS)

    Fanous, F.; Greimann, L.F.

    1989-01-01

    The Containment Integrity Division of the Sandia National Laboratories (Sandia) has been conducting a program to evaluate the performance of containment buildings with internal pressure. Sandia has suggested that in the absence of leakage past penetrations, containment buildings will fail by rupturing after large plastic strains are developed up to ultimate strain of the material. This paper represents a portion of work conducted at Ames Laboratory for Sandia, the objective of which was to identify fabrication details that may affect the performance of a containment building. Construction drawings for nine steel containment buildings were surveyed, and several significant strain concentration regions were identified by using recommendations from Sandia and Section NE-3217 of the ASME Boiler and Pressure Vessel Code. These following regions were identified as: eccentricities in stiffener patterns around penetrations, eccentricities in containment shell middle surface, flat plate covers used on spare penetrations, containment base connection details, and containment heads. Examples of each of these regions were analyzed by the finite-element method, by simplified equations or both. In the case of middle surface eccentricities, the strains were found to be self-limiting. Even though flat plates have primary strains, they are typically designed so as not to control. Bolts in the base connection have primary strains and may control. The circumferential compressive strains introduced at the knuckle during buckling of the containment head grow as the pressure increases, but are somewhat restricted by the meridional tension. Finally, three analysis techniques and their associated failure criteria for the analysis of containment strength are introduced. (orig.)

  12. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    OpenAIRE

    Na Yang; Fan Bai

    2017-01-01

    Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and e...

  13. Structural inheritance in cast 30KhGNM-type steel

    International Nuclear Information System (INIS)

    Sadovskij, V.D.; Bershtejn, L.I.; Mel'nikova, A.A.; Polyakova, A.M.; Schastlivtsev, V.M.

    1980-01-01

    Structural inheritance in the cast 30KhGNM-type steel depending on the heating rate and the temperature of preliminary tempering is investigated. When eating the cast steel with a beinite structure at the rate of 1-150 deg/min, the restoration of austenite grain and the following recrystallization due to the phase cold work, are observed. Slow heating from room temperature or preliminary tempering hinder grain restoration during heating. A non-monotonous effect of tempering temperature on the structural inheritance is established which can be connected with the kinetics of decomposition of residual austenite in steel

  14. Steel skin - SMC laminate structures for lightweight automotive manufacturing

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo

    2017-09-01

    In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.

  15. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-03-01

    Full Text Available Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and evaluation of light steel structures caused by strong winds, which include connection failure, fatigue failure, purlin buckling, and primary frame component instability problems. Moreover, this review will mention some applications of structure damage assessment methods in this area, such as vulnerability analysis and performance-based theory, etc.

  16. Optimization methodology for large scale fin geometry on the steel containment of a Public Acceptable Simple SMR (PASS)

    International Nuclear Information System (INIS)

    Kim, Do Yun; NO, Hee Cheon; Kim, Ho Sik

    2015-01-01

    Highlights: • Optimization methodology for fin geometry on the steel containment is established. • Optimum spacing is 7 cm in PASS containment. • Optimum thickness is 0.9–1.8 cm when a fin height is 10–25 cm. • Optimal fin geometry is determined in given fin height by overall effectiveness correlation. • 13% of material volume and 43% of containment volume are reduced by using fins. - Abstracts: Heat removal capability through a steel containment is important in accident situations to preserve the integrity of a nuclear power plant which adopts a steel containment concept. A heat transfer rate will be enhanced by using fins on the external surface of the steel containment. The fins, however, cause to increase flow resistance and to deteriorate the heat transfer rate at the same time. Therefore, this study investigates an optimization methodology of large scale fin geometry for a vertical base where a natural convection flow regime is turbulent. Rectangular plate fins adopted in the steel containment of a Public Acceptable Simple SMR (PASS) is used as a reference. The heat transfer rate through the fins is obtained from CFD tools. In order to optimize fin geometry, an overall effectiveness concept is introduced as a fin performance parameter. The optimizing procedure is starting from finding optimum spacing. Then, optimum thickness is calculated and finally optimal fin geometry is suggested. Scale analysis is conducted to show the existence of an optimum spacing which turns out to be 7 cm in case of PASS. Optimum thickness is obtained by the overall effectiveness correlation, which is derived from a total heat transfer coefficient correlation. The total heat transfer coefficient correlation of a vertical fin array is suggested considering both of natural convection and radiation. However, the optimum thickness is changed as a fin height varies. Therefore, optimal fin geometry is obtained as a function of a fin height. With the assumption that the heat

  17. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1992-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both nominal use and accident conditions to serve the dual-role of shielding and containment, the use of other structure materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describesa two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature. The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracmm resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as win be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term ''structural credit'' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.)

  18. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    Directory of Open Access Journals (Sweden)

    R. K. Singh Raman

    2014-12-01

    Full Text Available This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC in a nitrite-containing chloride solution. Slow strain rate testing (SSRT in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution.

  19. Analysis of a Mark II containment structure for hydrodynamic loads in suppression pool

    International Nuclear Information System (INIS)

    Bedrosian, B.

    1978-01-01

    During pressure-relief modes of BWR plant operation forcing signals are introduced into the suppression pool at discrete locations: exit nozzles of SRV discharge pipes (quenchers or ramsheads). These forcing signals are transmitted through the water of the suppression pool and, after reaching the pool boundaries, act as loadings on the containment structure wetted perimeter. The response of the containment structure is influenced by the presence of water as it interacts with the structure during application of the load. An adequate analysis must account for fluid-structure interaction (FSI) effects. This paper presents an exact formulation for solving the problem. FSI effects may become significant for a given geometry if the time history of loading and the dynamic properties of the coupled fluid-structure system satisfy a defined (system related) relationship. Results of analyses and parametric/sensitivity studies performed for the steel containment structure of an 1100 Mwe BWR nuclear plant of Mark II configuration are presented. (Author)

  20. Advanced Containment System

    Science.gov (United States)

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  1. Nuclear containment steel liner corrosion workshop : final summary and recommendation report.

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Bryan A. (Erler Engineering Ltd., Chicago, IL); Weyers, Richard E. (Virginia Tech University, Blacksburg, VA); Sagues, Alberto (University of South Florida, Tampa, FL); Petti, Jason P.; Berke, Neal Steven (Tourney Consulting Group, LLC, Kalamazoo, MI); Naus, Dan J. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2011-07-01

    This report documents the proceedings of an expert panel workshop conducted to evaluate the mechanisms of corrosion for the steel liner in nuclear containment buildings. The U.S. Nuclear Regulatory Commission (NRC) sponsored this work which was conducted by Sandia National Laboratories. A workshop was conducted at the NRC Headquarters in Rockville, Maryland on September 2 and 3, 2010. Due to the safety function performed by the liner, the expert panel was assembled in order to address the full range of issues that may contribute to liner corrosion. This report is focused on corrosion that initiates from the outer surface of the liner, the surface that is in contact with the concrete containment building wall. Liner corrosion initiating on the outer diameter (OD) surface has been identified at several nuclear power plants, always associated with foreign material left embedded in the concrete. The potential contributing factors to liner corrosion were broken into five areas for discussion during the workshop. Those include nuclear power plant design and operation, corrosion of steel in contact with concrete, concrete aging and degradation, concrete/steel non-destructive examination (NDE), and concrete repair and corrosion mitigation. This report also includes the expert panel member's recommendations for future research.

  2. Possibilities for using higher-tensile, water quenched and tempered AlSiMn fine-grained structural steel for reactor containments

    International Nuclear Information System (INIS)

    Wallner, F.

    1976-01-01

    On water quenching and tempering of weldable AlSiMn structural steels, particularly the grain refining process is made use of, i.e. that measure with the poorest influence on the weldability of steel. Precipitation hardening due to water quenching is, on subsequent tempering, set off to a large extent by means of precipitation resp. coagulation of iron carbides. Minimum yield points up to 580 N/mm 2 and, simultaneously, good viscosity can be obtained by means of water quenching from austeritic temperature and tempering between 550 0 C and 650 0 C, depending on tempering temperatures and sheet thickness. In the paper at hand, results are given, obtained from tests and experience with the steel Aldur 50/65 (the first figure indicates minimum yield points, the second one minimum tensile strength on sheet thickness up to 30 mm). These results are assumed to be essential, also in connection with the construction and working conditions of nuclear power plants. (orig./RW) [de

  3. Generic Inspection Planning for Steel Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, Michael H.

    2002-01-01

    This paper presents a simplified and practically applicable approach for risk based inspection planning of fatigue sensitive structural details in steel structures. The basic idea is that the fatigue sensitive details are categorized according to their Fatigue Design Factor (FDF) and SN curve. When...

  4. Corrosion of austenitic steels and their components in vanadium-containing chloride melts

    Science.gov (United States)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Lisienko, D. G.

    2014-08-01

    The corrosion of austenitic 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 steels and their components (Cr, Fe, Ni, Mo) in NaCl-KCl-VCl2 melts with 5 wt % V at 750°C is studied. The rates and mechanisms of corrosion of the materials under these conditions are determined. The processes that occur during contact of the metals and steels with vanadium-containing chloride electrolytes are investigated.

  5. Relationships of quenching stresses to structural transformations in steel

    International Nuclear Information System (INIS)

    Loshkarev, V.E.

    1985-01-01

    Technique for accountancy of the effect of stresses on structural transformations in steel when solving problems of thermoplasticity is suggested. It is revealed on the basis of the conducted calculations that accountancy of interrelation of stressed and structural states of 20Kh2MF steel essentially affects forecasting of results of quenching

  6. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  7. Corrosion protection and antifouling properties of varnish-coated steel containing natural additive

    Directory of Open Access Journals (Sweden)

    Abd-El-Nabey Besheir Ahmed A.

    2017-01-01

    Full Text Available The corrosion protection and antifouling properties of varnish-coated steel panels containing different amounts of cannabis extracts were investigated using electrochemical impedance spectroscopy (EIS, salt spray and immersion tests in 0.5 M NaCl solution and subjected to a field test in seawater. Analysis of the experimental data showed that the presence of cannabis extract resisted the deterioration (peeling off tendency of the varnish-coated steel panels exposed to aggressive environments. Visual inspection showed that the cannabis extract also provided good antifouling properties.

  8. Applicability of JIS SPV 50 steel to primary containment vessels of nuclear power stations

    International Nuclear Information System (INIS)

    Iida, K.; Ishikawa, K.; Satoh, M.; Soya, I.

    1980-01-01

    The fracture toughness of JIS SPV 50 steel and its weldment has been examined in order to verify the applicability of these materials to primary containment vessels of nuclear power stations. Test results were evaluated using elastic plastic fracture mechanics through the COD and the J integral concepts for non ductile fracture initiation characteristics. Linear fracture mechanics was employed for propagation arrest characteristics. Results showed that the materials tested here have a sufficient fracture toughness to prevent nonductile fracture and that this steel is a suitable material for use in construction of primary containment vessels of nuclear power stations. (author)

  9. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1993-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both normal use and accident conditions to serve the dual-role of shielding and containment, the use of other structural materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describes a two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature (Eckelmeyer, 1991). The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracture resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as will be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term 'structural credit' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.) (J.P.N.)

  10. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  11. Thermal stresses at nozzles of nuclear steel containments under LOCA-conditions

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Bergmann, A.N.

    1986-01-01

    During a loss of coolant accident (LOCA) of a PWR-nuclear power plant, a considerable heating of the containment atmosphere is expected to occur. Transient thermal stresses will appear at the containment as a consequence of a non-uniform rise of its temperature. Applying computer codes based on the finite element method, dimensionless general thermal stresses at nozzles of spherical steel containment have been calculated, varying the principal geometrical parameters and the Biot number for the containment internal surface. Atmosphere temperature and Biot number are assumed constant after the accident. Several plots of the maximum principal stresses are provided, which constitute general results applicable to stress analysis of any particular containment of this kind. (orig.)

  12. Mixed structures in continuously cooled low-carbon automotive steels

    International Nuclear Information System (INIS)

    Khalid, F.A.; Edmonds, D.V.

    1993-01-01

    Mixed microstructures have been studied in low- carbon microalloyed steels suitable for automotive applications, after continuous cooling from the hot-rolled condition. Microstructural features such as polygonal ferrite, bainitic and acicular ferrite and microphase constituent are identified using transmission electron microscopy. The influence of these mixed structures on the tensile strength, impact toughness and fracture behaviour is examined. It is found that improvements in impact toughness as compared with microalloyed medium- carbon ferrite/pearlite steels can be achieved from these predominantly acicular structures developed by controlling alloy composition and continuous cooling of these lower carbon steels. (orig.)

  13. An assessment of the risk of embrittlement of a steel container by hydrogen picked up on the ocean bed

    International Nuclear Information System (INIS)

    Hardie, D.

    1985-09-01

    A realistic assessment of the likelihood of embrittlement of a plain carbon steel container for nuclear waste has been made by estimating the hydrogen levels that might be expected to develop in the steel as a consequence of the slow corrosion of the container and the possible effect that such a hydrogen concentration would have on its mechanical behaviour. By consideration of various possible models for the generation of hydrogen and its subsequent uptake into the steel or dissemination in the environment, it is concluded that the most pessimistic assessment of the concentration of hydrogen that could build up in the container walls during 1000 years burial would not significantly affect the resistance to failure of even relatively high strength steels. (author)

  14. Piping systems, containment pre-stressing and steel ventilation chimney

    International Nuclear Information System (INIS)

    Stuessi, U.

    1996-01-01

    Units 5 and 6 of NPP Kozloduy have been designed initially for seismic levels which are considered too low today. In the frame of an IAEA Coordinated Research Programme, a Swiss team has been commissioned by Natsionalna Elektricheska Kompania, Sofia, to analyse the relevant piping system, the containment prestressing and the steel ventilation chimney and to recommend upgrade measures for adequate seismic capacity where applicable. Seismic input had been specified by and agreed upon earlier by IAEA experts. The necessary investigations have been performed in 1995 and discussed with internationally recognized experts. The main results may be summarized as follows: Upgrades are necessary at different piping sy ports (additional snubbers or viscous dampers). These fixes can be done easily at low cost. The containment prestressing tendons are adequately designed for the specified load combinations. However, unfavourable construction features endanger the reliability. It is therefore strongly recommended to replace the tendons stepwise and to upgrade the existing monitoring system. Finally, the steel ventilation chimney may not withstand a seismic event, however the containment and diesel generator building will not be destroyed at possible impact by the chimney. On the other hand the roof of the main building has to be reinforced partially. It is recommended to continue the project for 1996 and 1997 to implement the upgrade measures mentioned above, to analyse the remaining piping systems and to consolidate all results obtained by different research groups of the IAEA programme with respect to piping systems including components and tanks

  15. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests......Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude...

  16. Final Report Inspection of Aged/Degraded Containments Program.

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Ellingwood, B R [Georgia Institute of Technology; Oland, C Barry [ORNL

    2005-09-01

    The Inspection of Aged/Degraded Containments Program had primary objectives of (1) understanding the significant factors relating corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and liners of reinforced concrete containments; (2) providing the United States Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments, and concrete containments as limited by liner integrity; (3) providing recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation; and (4) providing technical assistance to the USNRC (as requested) related to concrete technology. Primary program accomplishments have included development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of high-frequency acoustic imaging, magnetostrictive sensor, electromagnetic acoustic transducer, and multimode guided plate wave technologies for inspection of inaccessible regions of containment metallic pressure boundaries; development of a continuum damage mechanics-based approach for structural deterioration; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion. In addition, data and information assembled under this program has been transferred to the technical community through review meetings and briefings, national and international conference participation, technical committee involvement, and publications of reports and journal articles. Appendix A provides a listing of program reports, papers, and publications; and Appendix B contains a listing of

  17. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  18. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Hyung Kui [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  19. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Hyung Kui

    2015-01-01

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level

  20. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  1. Quantitative Analysis on Carbide Precipitation in V-Ti Microalloyed TRIP Steel Containing Aluminum

    Directory of Open Access Journals (Sweden)

    Fu Shiyu

    2016-01-01

    Full Text Available Introducing fine precipitates is an important way to enhance the properties of transformation-induced plasticity (TRIP steels. In present work, two V-Ti microalloyed TRIP steels containing aluminum with different content were compared. The average size, size distribution and numbers of vanadium-titanium carbides in samples cold rolled, quenched after being held at 800°C and quenched after intercritical annealing at 800°C and being held at bainitic isothermal transformation temperature of 400°C were investigated by using the technique of carbon extraction replica, twin jet chemical polishing thinning and transmission electron microscopy. The carbides were identified to be (Ti,VC precipitates in steel A and VC in steel B respectively, precipitated mainly from ferrites grains. The average equivalent radius was 3~6nm. Comparison of the experimental results in A and B steel revealed low carbon diffusion rate caused by aluminum inhibited the coarsening of vanadium-titanium carbides. The experimental results also showed that VC carbides dissolution occurred during the intercritical annealing at 800°C.

  2. Applicability of JIS SPV 50 steel to primary containment vessel of nuclear power station

    International Nuclear Information System (INIS)

    Iida, Kunihiro; Ishikawa, Koji; Sakai, Keiichi; Onozuka, Masakazu; Sato, Makoto.

    1979-01-01

    The space within reactor containment vessels must be expanded in order to improve the reliability of nuclear power plants, accordingly the adoption of large reactor containment vessels is investigated. SGV 42 and 49 steels in JIS G 3118 have been used for containment vessels so far, but stress relief annealing is required when the thickness exceeds 38 mm. The time has come when the use of thicker conventional plates without stress relieving or the use of high strength steel must be examined in detail. In this study, the tests of confirming material properties were carried out on SPV 50 in JIS G 3115, Steels for pressure vessels, aiming at the method of fabrication without stress relieving. The highest and lowest temperatures in use were set at 171 deg and -8 deg C, respectively. The chemical composition and the mechanical properties of the plates tested, the method of welding, the results of tensile test on the parent metal and the welds, the required lowest preheating temperature, the fracture toughness at low temperature and the brittle fracture causing test are reported. The parent metal and the welded joints of SPV 50 have the properties suitable to reactor containment vessels, namely the sufficient fracture toughness to guarantee the prevention of unstable fracture when the method of welding without stress relieving is adopted. (Kako, I.)

  3. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... these investigations. A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula.Furthermore, in general longer fatigue lives were obtained for the test...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  4. A three-dimensional rupture analysis of steel liners anchored to concrete pressure and containment vessels

    International Nuclear Information System (INIS)

    Bangash, Y.

    1987-01-01

    Steel liners or plates are anchored to concrete pressure and containment vessels for nuclear and offshore facilities. Due to extreme loading conditions a liner may buckle due to the pull-out or shearing of anchors from the base metal and concrete. Under certain conditions attributed to loadings, liner metal deterioration and cracking of concrete behind the liner, the liner may fail by rupture. This paper presents a three-dimensional analysis of steel-concrete elements, using finite elements analysis in which a provision is made for liner instability, anchor strength and stiffness, concrete cracking and finally liner rupture. The analysis is tested first on an octagonal slab with and without an anchored steel liner. It is then extended to concrete pressure and containment vessels. The analytical results obtained are compared well with those available from the experimental tests and other sources. (author)

  5. Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash.

    Science.gov (United States)

    Zhang, Peng; Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang

    2014-01-01

    This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P(V)-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P(V)-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%.

  6. A study on martensitic structure in Fe-4Cr-0.4C steel

    International Nuclear Information System (INIS)

    Won, S.B.

    1980-01-01

    Morphology, dependence of prior austenite grain size and packet size upon austenitizing temperature, distribution of lath width, and habit plane of martensitic structure in Fe-4Cr-0.4C steel has been studied by optical microscopy and transmission electron microscopy. The results obtained are as follows. 1) Optical microstructures of martensitic Fe-4Cr-0.4C steel consist of lath martensite and lens martensite. Also the four types of morphology are observed by electron microscopy. The most common morphologies are a regular paralleled martensite and an irregular dovetailed lath martensite, while the remainder of microstructures consists mainly of groups of internally twinned martensite and autotempered laths. 2) Prior austenite grain size and packet size increased with austenizing temperature, and also the numbers of lath contained in a prior austenite grain or a packet are increased with austenizing temperature. 3) The mean width of lath in Fe-4Cr-0.4C steel is about 0.23μm and most of lath widths are below 0.5μm. 4) Martensite habit plane of Fe-4Cr-0.4C steel is nearly [110]α'. (author)

  7. Conceptual design for Japan Sodium-Cooled Fast Reactor. (4) Developmental study of steel plate reinforced concrete containment vessel for JSFR

    International Nuclear Information System (INIS)

    Hosoya, Takusaburo; Negishi, Kazuo; Satoh, Kenichiro; Somaki, Takahiro; Matsuo, Ippei; Shimizu, Katsusuke

    2009-01-01

    An innovative containment vessel, namely Steel plate reinforced Concrete Containment Vessel (SCCV) is developed for Japan Sodium-Cooled Fast Reactor (JSFR). Reducing plant construction cost is one of the most important issues for commercialization of fast reactors. This study investigated construction issues including the building structure and the construction method as well as design issues in terms of the applicability of SCCV to fast reactors. An experimental study including loading and/or heating tests has been carried out to investigate the fundamental structural features, which would be provided to develop methodology to evaluate the feasibility of SCCV under the severe conditions. In this paper, the test plan is described as well as the first test results. (author)

  8. Nitrogen-containing superlow-carbon austenitic steel 02Kh25N22AM2

    Science.gov (United States)

    Fe'ldgandler, É. G.; Svistunova, T. V.; Savkina, L. Ya.; Lapshina, O. B.

    1996-02-01

    At present the equipment for manufacturing carbamide mineral fertilizers is produced from domestic steel 03Kh17N14M3 having "carbamide quality." Imported equipment also used in the industry is produced from steel of the 25-22-2 (Cr -Ni-Mo) type shipped by various firms, namely, 2RE69 (Sandvik, Sweden), 254SFER (Avesta, Sweden), 2522LCN (VDM, Germany), DM 1.4466 (Germany), and X2CrNiMo 25-22-2 (Dalmine, Italy). The imported steels are used because in some units steel 03Khl7Nl4M3 does not provide the requisite corrosion resistance in an intensified process of carbamide manufacturing. We currently possess domestic high-alloyed steel for producing new and repairing imported equipment operating under the severe conditions of carbamide synthesis. The present paper concerns the structure, mechanical properties, and corrosion resistance of industrially produced steel 02Kh25N22AM2 (ChS-108) and the recommended range of its application.

  9. Resistance to fracture of carbon weldable structural steel with ferrite-pearlite and widmanstaetten structure

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Guzovskaya, M.A.

    1977-01-01

    Consideration is given to mechanical properties of St3 steel with varying ferritic-peartilic and widmanstaetten structures typical of a weld seam and adjacent zones. It has been found that mechanical properties determined at static tension are sensitive to structure variation in the limits under study. A considerable difference has been detected during impact tests CT 50 , asub(p)). The highest resistance to breakage is observed for the steel with a fine-grain ferritic-pearlitic structure (T 50 =-10 deg C, asub(p)=4.3 kgxm/cm 2 ). The enlargement of such a structure enhances transition temperature (T 50 =+20 deg C) and reduces resistance to crack development (asub(p)2.4 kgxm/cm 2 ). The appearance of widmanstaetten zones in the fine-grain structure leads also to a higher T 50 , up to +10 deg C, and at a completely widmanstaetten structure T 50 =+25 deg C. An especially unfavorable effect on the resistance of steel to breakage is produced by structure nonuniformity, i.e. accumulation of loop-like pearlitic and ferritic zones

  10. Low Temperature Gaseous Nitriding of a Stainless Steel Containing Strong Nitride Formers

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low temperature thermochemical surface hardening of the precipitation hardening austenitic stainless steel A286 in solution treated state was investigated. A286 contains, besides high amounts of Cr, also substantial amounts of strong nitride formers as Ti, Al and V. It is shown that simultaneous...

  11. Properties of 40N3M powder structural steel

    International Nuclear Information System (INIS)

    Moskvina, T.P.; Gulyaev, A.P.; Gulyaev, I.A.; Byakov, S.V.; Melent'ev, I.V.; Morgun, G.N.

    1984-01-01

    Effect of the fabrication technique of compact slabs made of the 40N3M powder structural steel on mechanical properties with determination of a cold brittleness threshold was studied. It is established that after a thermal treatment at a density close to 100% a powder steel is sufficiently close to steel, rolled of an ingot, but is second in reference to steel in its ductility and impact strength. Properties of powder steel obtained by the method of dynamic hot forming (DHF) and hot extrusion are practically equal, but the first method has definite advantages as it allows to obtain details with a definitive form. The above investigation permits to recommend an application of the 40N3M powder steel fabricated by the DHF methods. The optimum thermal treatment course is: quenching+high annealing

  12. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    . In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two...... recent research reports, Refs. 15 and 16, from these investigations.A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  13. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    Serna, M.M.; Galego, E.; Rossi, J.L.

    2005-01-01

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  14. Dynamic testing of MFTF containment-vessel structural system

    International Nuclear Information System (INIS)

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-01-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters

  15. Evaluation of calculational and material models for concrete containment structures

    International Nuclear Information System (INIS)

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.

    1984-01-01

    A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)

  16. Influence of titanium on the tempering structure of austenitic steels

    International Nuclear Information System (INIS)

    Ghuezaiel, M.J.

    1985-10-01

    The microstructure of titanium-stabilized and initially deformed (approximately 20%) austenitic stainless steels used in structures of fast neutrons reactors has been studied after one hour duration annealings (500 0 C) by X-ray diffraction, optical microscopy, microhardness and transmission electron microscopy. The studied alloys were either of industrial type CND 17-13 (0.23 to 0.45 wt% Ti) or pure steels (18% Cr, 14% Ni, 0 or 0.3 wt% Ti). During tempering, the pure steels presented some restauration before recristallization. In the industrial steels, only recristallization occurred, and this only in the most deformed steel. Precipitation does not occur in the titanium-free pure steel. In industrial steels, many intermetallic phases are formed when recristallization starts [fr

  17. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage

    International Nuclear Information System (INIS)

    Fournier, B.

    2007-09-01

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  18. Interface Analyses Between a Case-Hardened Ingot Casting Steel and Carbon-Containing and Carbon-Free Refractories

    Science.gov (United States)

    Fruhstorfer, Jens; Dudczig, Steffen; Rudolph, Martin; Schmidt, Gert; Brachhold, Nora; Schöttler, Leandro; Rafaja, David; Aneziris, Christos G.

    2018-06-01

    Corrosion tests of carbon-free and carbon-containing refractories were performed. The carbon-free crucibles corroded, whereas the carbon-containing crucibles were negligibly attacked. On them, inclusions were attached. This study investigates melt oxygen contents, interface properties, and steel compositions with their non-metallic inclusions in order to explore the inclusion formation and deposition mechanisms. The carbon-free crucibles were based on alumina, mullite, and zirconia- and titania-doped alumina (AZT). The carbon-containing (-C) ones were alumina-C and AZT-C. Furthermore, nanoscaled carbon and alumina additives (-n) were applied in an AZT-C-n material. In the crucibles, the case-hardened steel 17CrNiMo7-6 was remelted at 1580 °C. It was observed that the melt and steel oxygen contents were higher for the tests in the carbon-free crucibles. Into these crucibles, the deoxidizing alloying elements Mn and Si diffused. Reducing contents of deoxidizing elements resulted in higher steel oxygen levels and less inclusions, mainly of the inclusion group SiO2-core-MnS-shell (2.5 to 8 μ m). These developed from smaller SiO2 nuclei. The inclusion amount in the steel was highest after remelting in AZT-C-n for 30 minutes but decreased strongly with increasing remelting time (60 minutes) due to inclusions' deposition on the refractory surface. The Ti from the AZT and the nanoadditives supported inclusion growth and deposition. Other inclusion groups were alumina and calcium aluminate inclusions. Their contents were high after remelting in carbon- or AZT-containing crucibles but generally decreased during remelting. On the AZT-C-n crucible, a dense layer formed from vitreous compositions including Al, Ca, Mg, Si, and Ti. To summarize, for reducing forming inclusion amounts, mullite is recommended as refractory material. For capturing formed inclusions, AZT-C-n showed a high potential.

  19. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1982-01-01

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  20. Machinability of structural steels with calcium addition

    International Nuclear Information System (INIS)

    Pytel, S.; Zadecki, M.

    2003-01-01

    The machinability of the plain carbon and low alloy structural steels with carbon content of 0.1-0.6% is briefly discussed in the first part of the paper. In the experimental part a dependence between the addition of calcium and some changes in sulphide and oxide inclusions morphology is presented. The Volvo test for measurement of machinability index B i has been applied. Using the multiple regression methods two relationships between machinability index B i and stereological parameters of non-metallic inclusions as well as hardness of the steels have been calculated. The authors have reached the conclusion that owing to the changes in inclusion chemical composition and geometry as result of calcium addition the machinability index of the steel can be higher. (author)

  1. Parametric study for the fire safety design of steel structures

    DEFF Research Database (Denmark)

    Aiuti, Riccardo; Giuliani, Luisa

    2013-01-01

    the considered time of fire exposure. A deeper knowledge on the failure mode of steel structure is however important in order to ensure the safety of the people and properties outside the building. Aim of this paper is to analyze the behaviour of single elements, sub-assemblies and frames exposed to fire...... or hindered thermal expansion induced on the element by the rest of the structure. Nevertheless, restrained thermal expansion is known to significantly affect the behaviour of steel structures in fire, and the compliance with a prescribed resistance class doesn’t ensure the integrity of the building after...... and find out the basic collapse mechanisms of structural elements in fire conditions, considering the rest of the construction with appropriate constraints. The analysis is carried out taking into account material and geometrical nonlinearities as well as the degradation of steel properties at high...

  2. Optimum tungsten content in high strength 9 to 12% chromium containing creep resistant steels

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Muraki, T.; Mimura, H.

    2000-01-01

    Tungsten containing ferritic creep resistant steels are the candidate materials for ultra-super-critical fossil power plant because of their high creep rupture strength. But the strengthening mechanisms by tungsten addition have not yet been completely studied. In this report, creep rupture time and creep strain rate measurement decided the optimum tungsten content in 9 to 12% chromium ferritic steels. The precipitation behavior of Laves phase and the precise discussion of creep strain rate analyses explain the contribution of Laves phase at the lath boundary and the contribution of tungsten in solid solution. P92 contains the optimum amount of tungsten and chromium, 1.8 mass% and 9 mass% respectively judging from the creep rupture strength point of view. (orig.)

  3. Comprehensive benefits analysis of steel structure modular residence based on the entropy evaluation

    Science.gov (United States)

    Zhang, Xiaoxiao; Wang, Li; Jiang, Pengming

    2017-04-01

    Steel structure modular residence is the outstanding residential industrialization. It has many advantages, such as the low whole cost, high resource recovery, a high degree of industrialization. This paper compares the comprehensive benefits of steel structural in modular buildings with prefabricated reinforced concrete residential from economic benefits, environmental benefits, social benefits and technical benefits by the method of entropy evaluation. Finally, it is concluded that the comprehensive benefits of steel structural in modular buildings is better than that of prefabricated reinforced concrete residential. The conclusion of this study will provide certain reference significance to the development of steel structural in modular buildings in China.

  4. Corrosion of steel drums containing simulated radioactive waste of low and intermediate level

    International Nuclear Information System (INIS)

    Farina, S.B.; Schulz Rodríguez, F.; Duffó, G.S.

    2013-01-01

    Ion-exchange resins are frequently used during the operation of nuclear power plants and constitute radioactive waste of low and intermediate level. For the final disposal inside the repository the resins are immobilized by cementation and placed inside steel drums. The eventful contamination of the resins with aggressive species may cause corrosion problems to the drums. In order to assess the incidence of this phenomenon and to estimate the lifespan of the steel drums, in the present work, the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different aggressive species was studied. The aggressive species studied were chloride ions (main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The corrosion rate of the steel was monitored over a time period of 900 days and a chemical and morphological analysis of the corrosion products formed on the steel in each condition was performed. When applying the results obtained in the present work to estimate the corrosion depth of the drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Low and Intermediate Level Radioactive Waste facility in Argentina), it was found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (author)

  5. Anti-carburizing Coating for Resin Sand Casting of Low Carbon Steel Based on Composite Silicate Powder Containing Zirconium

    Directory of Open Access Journals (Sweden)

    Zhan Chunyi

    2018-01-01

    Full Text Available This paper studied the structure and properties of anticarburizing coating based on composite silicate powder containing zirconium by X-ray diffraction analyzer, thermal expansion tester, digital microscope and other equipment. It is introduced that the application example of the coating in the resin-sand casting of ZG1Cr18Ni9Ti stainless steel impeller. The anti-carburizing effect of the coating on the surface layer of the cast is studied by using direct reading spectrometer and spectrum analyzer. The change of the micro-structure of the coating after casting and cooling is observed by scanning electron microscope. The analysis of anti-carburizing mechanism of the coating is presented. The results indicate that the coating possesses excellent suspension property, brush ability, permeability, levelling property and crackresistance. The coating exhibits high strength and low gas evolution. Most of the coating could be automatically stripped off flakily when the casting was shaken out. The casting possesses excellent surface finish and antimetal penetration effect. The carburizing layer thickness of the stainless steel impeller casting with respect to allowable upper limit of carbon content is about 1mm and maximum carburizing rate is 23.6%. The anticarburizing effect of casting surface is greatly improved than that of zircon powder coating whose maximum carburizing rate is 67.9% and the carburizing layer thickness with respect to allowable upper limit of carbon content is greater than 2mm. The composite silicate powder containing zirconium coating substantially reduces the zircon powder which is expensive and radioactive and mainly dependent on imports. The coating can be used instead of pure zircon powder coating to effectively prevent metal-penetration and carburizing of resin-sand-casting surface of low carbon steel, significantly improve the foundry production environment and reduce the production costs.

  6. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  7. Universal method for opnimal design main structural assemblies of steel structures stationary conveyor with hanging ribbon

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2015-10-01

    Full Text Available The technique and the detailed algorithm for optimal design of steel structures hospitaltion of the conveyor with hang-ing ribbon. Developed a universal objective function together with the system-limited-subject to limits of main components of steel structures of stationary conveyor with hanging ribbon.

  8. Study on comparison of special moment frame steel structure (SMF) and base isolation special moment frame steel structure (BI-SMF) in Indonesia

    Science.gov (United States)

    Setiawan, Jody; Nakazawa, Shoji

    2017-10-01

    This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.

  9. Development of ferritic steels for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs.

  10. Development of ferritic steels for fusion reactor applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs

  11. Effect of niobium and titanium addition on the hot ductility of boron containing steel

    International Nuclear Information System (INIS)

    Cho, Kyung Chul; Mun, Dong Jun; Koo, Yang Mo; Lee, Jae Sang

    2011-01-01

    Research highlights: → Addition of only Nb without Ti has little influence in the hot ductility of B steel. → Hot ductility loss of B-Nb steel is due to grain boundary precipitation of BN. → Adding a small amount of Ti improve the hot ductility of B-Nb steel. → In B-Nb-Ti steel, hot ductility improvement is related to presence of TiN particle. → Presence of TiN particles makes the BN precipitates' distribution more homogeneous. - Abstract: Hot ductility of boron containing steel (B steel) with adding Nb (0.03 wt.%) (B-Nb steel) and B-Nb steel with adding Ti (0.0079 wt.%) (B-Nb-Ti steel) was quantified using hot tensile tests. The specimens were solution-treated at 1350 deg. C and cooled at 20 deg. C s -1 to tensile test temperature (T) in the range of 750 ≤ T ≤ 1050 deg. C. After that, they were strained to failure at a strain rate of 2.5 x 10 -3 s -1 . For the B-Nb steel, severe hot ductility loss was observed at 850 ≤ T ≤ 950 deg. C, which covered the low temperature in which austenite (γ) single-phase exists, and the high temperature at which γ and ferrite (α) coexist. Ductility loss in the B-Nb steel was caused by the presence of a network of BN precipitates, rather than by Nb(C, N) precipitates at the γ grain boundaries. In contrast, hot ductility of the B-Nb-Ti steel was remarkably improved at 850 ≤ T ≤ 950 deg. C. In the B-Nb-Ti steel, BN precipitates preferentially on TiN particles, resulting in increased BN precipitation in the γ grain interior and a decrease in the network of BN precipitates at the γ grain boundaries. These changes reduce strain localization at the γ grain boundaries and therefore increase the hot ductility of the steel.

  12. Eddy-Current Testing of Welded Stainless Steel Storage Containers to Verify Integrity and Identity

    International Nuclear Information System (INIS)

    Tolk, Keith M.; Stoker, Gerald C.

    1999-01-01

    An eddy-current scanning system is being developed to allow the International Atomic Energy Agency (IAEA) to verify the integrity of nuclear material storage containers. Such a system is necessary to detect attempts to remove material from the containers in facilities where continuous surveillance of the containers is not practical. Initial tests have shown that the eddy-current system is also capable of verifying the identity of each container using the electromagnetic signature of its welds. The DOE-3013 containers proposed for use in some US facilities are made of an austenitic stainless steel alloy, which is nonmagnetic in its normal condition. When the material is cold worked by forming or by local stresses experienced in welding, it loses its austenitic grain structure and its magnetic permeability increases. This change in magnetic permeability can be measured using an eddy-current probe specifically designed for this purpose. Initial tests have shown that variations of magnetic permeability and material conductivity in and around welds can be detected, and form a pattern unique to the container. The changes in conductivity that are present around a mechanically inserted plug can also be detected. Further development of the system is currently underway to adapt the system to verifying the integrity and identity of sealable, tamper-indicating enclosures designed to prevent unauthorized access to measurement equipment used to verify international agreements

  13. Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review

    Directory of Open Access Journals (Sweden)

    Mehmet Polat Saka

    2013-01-01

    Full Text Available The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.

  14. Failure internal pressure of spherical steel containments

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1985-01-01

    An application of the British CEGB's R6 Failure Assessment Approach to the determination of failure internal pressure of nuclear power plant spherical steel containments is presented. The presence of hypothetical cracks both in the base metal and in the welding material of the containment, with geometrical idealizations according to the ASME Boiler and Pressure Vessel Code (Section XI), was taken into account in order to analyze the sensitivity of the failure assessment with the values of the material fracture properties. Calculations of the elastoplastic collapse load have been performed by means of the Finite Element System SAMCEF. The clean axisymmetric shell (neglecting the influence of nozzles and minor irregularities) and two major penetrations (personnel and emergency locks) have been taken separately into account. Large-strain elastoplastic behaviour of the material was considered in the Code, using lower bounds of true stress-true strain relations obtained by testing a collection of tensile specimens. Assuming the presence of cracks in non-perturbed regions, the reserve factor for test pressure and the failure internal pressure have been determined as a function of the flaw depth. (orig.)

  15. Seismic damage identification for steel structures using distributed fiber optics.

    Science.gov (United States)

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  16. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  17. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  18. Formation of Outburst Structure in Hot Dip Galvannealed Coatings on IF Steels

    Directory of Open Access Journals (Sweden)

    Kollárová, M.

    2007-01-01

    Full Text Available Outburst structure in two industrially produced hot dip galvanized interstitial free steel sheets for automotive industry after additional annealing has been examined. Ti IF steel was found to form weak outburst structure in the early stage of annealing, followed by frontal growth of Fe-Zn phases during further heating. The high reactivity of this steel was confirmed by rapid G-phase formation. Under the same conditions, Ti-Nb-P IF steel exhibited frontal growth of Fe-Zn compounds without G-phase formation due to relatively high phosphorous content, which is known as inhibitor of Fe-Zn reaction, but simultaneously significant occurrence of undesired outburst structures was recorded. It was assumed that the phosphorous content was insufficient and/or ferrite grain was very fine.

  19. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-03-23

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.

  20. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-01-01

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members. PMID:28773347

  1. Corrosion of Pipeline and Wellbore Steel by Liquid CO2 Containing Trace Amounts of Water and SO2

    Science.gov (United States)

    McGrail, P.; Schaef, H. T.; Owen, A. T.

    2009-12-01

    Carbon dioxide capture and storage in deep saline formations is currently considered the most attractive option to reduce greenhouse gas emissions with continued use of fossil fuels for energy production. Transporting captured CO2 and injection into suitable formations for storage will necessarily involve pipeline systems and wellbores constructed of carbon steels. Industry standards currently require nearly complete dehydration of liquid CO2 to reduce corrosion in the pipeline transport system. However, it may be possible to establish a corrosion threshold based on H2O content in the CO2 that could allow for minor amounts of H2O to remain in the liquid CO2 and thereby eliminate a costly dehydration step. Similarly, trace amounts of sulfur and nitrogen compounds common in flue gas streams are currently removed through expensive desulfurization and catalytic reduction processes. Provided these contaminants could be safely and permanently transported and stored in the geologic reservoir, retrofits of existing fossil-fuel plants could address comprehensive emissions reductions, including CO2 at perhaps nearly the same capital and operating cost. Because CO2-SO2 mixtures have never been commercially transported or injected, both experimental and theoretical work is needed to understand corrosion mechanisms of various steels in these gas mixtures containing varying amounts of water. Experiments were conducted with common tool steel (AISI-01) and pipeline steel (X65) immersed in liquid CO2 at room temperature containing ~1% SO2 and varying amounts of H2O (0 to 2500 ppmw). A threshold concentration of H2O in the liquid CO2-SO2 mixture was established based on the absence of visible surface corrosion. For example, experiments exposing steel to liquid CO2-SO2 containing ~300 ppmw H2O showed a delay in onset of visible corrosion products and minimal surface corrosion was visible after five days of testing. However increasing the water content to 760 ppmw produced extensive

  2. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Cochrane, D.J.

    1998-01-01

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  3. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from...

  4. Safety conditions of using structural steels under high temperature and pressures in hydrogen containing environment

    International Nuclear Information System (INIS)

    Asviyan, M.B.

    1984-01-01

    The method for establishing full-strength conditions was suggested on the base of results of creep-rupture test of tube samples under hydrogen pressure and according to permissible stresses in neutral medium. Applicability of the method was considered taking St3 and 12KhM steels as examples. It was shown that the use of suggested dependences and special efficiency factors enables to forecast endurance limit for the given steel grade and assigned partial hydrogen pressure without labour-intensive test conducting

  5. Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration

    Science.gov (United States)

    Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian

    2018-01-01

    In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.

  6. Corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Preece, C.M.

    1982-10-01

    A comparative study has been made of those properties of Massiv and Standard cements which are considered to determine their ability to protect steel reinforcement from corroding. Saturated Massiv cement has a higher evaporabel water content, but a significantly finer pore structure than has saturated Standard cement. This fine structure resulted in an electrical resistivity ten times higher and chloride diffusivity ten times lower than those of Standard cement. Electrochemical measurements have shown that the passive current density of steel in Massiv mortar is higher than that of steel in Standard mortar, but the higher current should lead to a more rapid decrease in potential to a level at which neither chloride attack of hydrogen evolution will occur. Whereas steel in Standard mortar was found to be highly susceptible to crevice corrosion, no such attack has been observed in Massiv mortar. Moreover, the initiation of chloride induced corrosion and the subsequent rates of corrosion were both lower in Massiv mortar than in Standard mortar. Thus, it may be predicted that Massiv cement would provide greater protection for steel reinforcement in underground structures exposed to chloride containing ground water than would Standard cement. (author)

  7. Automated nuclear material recovery and decontamination of large steel dynamic experiment containers

    International Nuclear Information System (INIS)

    Dennison, D.K.; Gallant, D.A.; Nelson, D.C.; Stovall, L.A.; Wedman, D.E.

    1999-01-01

    A key mission of the Los Alamos National Laboratory (LANL) is to reduce the global nuclear danger through stockpile stewardship efforts that ensure the safety and reliability of nuclear weapons. In support of this mission LANL performs dynamic experiments on special nuclear materials (SNM) within large steel containers. Once these experiments are complete, these containers must be processed to recover residual SNM and to decontaminate the containers to below low level waste (LLW) disposal limits which are much less restrictive for disposal purposes than transuranic (TRU) waste limits. The purpose of this paper is to describe automation efforts being developed by LANL for improving the efficiency, increasing worker safety, and reducing worker exposure during the material cleanout and recovery activities performed on these containers

  8. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    Science.gov (United States)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  9. Design of joints in steel and composite structures Eurocode 3 : design of steel structures : part 1-8 : design of joints, Eurocode 4 : design of composite steel and concrete structures : part 1-1 : general rules and rules for buildings

    CERN Document Server

    Jaspart, Jean-Pierre

    2016-01-01

    This book details the basic concepts and the design rules included in Eurocode 3 Design of steel structures Part 1-8 Design of joints. Joints in composite construction are also addressed through references to Eurocode 4 Design of composite steel and concrete structures Part 1-1 General rules and rules for buildings. Attention has to be duly paid to the joints when designing a steel or composite structure, in terms of the global safety of the construction, and also in terms of the overall cost, including fabrication, transportation and erection. Therefore, in this book, the design of the joints themselves is widely detailed, and aspects of selection of joint configuration and integration of the joints into the analysis and the design process of the whole construction are also fully covered. Connections using mechanical fasteners, welded connections, simple joints, moment-resisting joints and lattice girder joints are considered. Various joint configurations are treated, including beam-to-column, beam-to-beam, ...

  10. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    International Nuclear Information System (INIS)

    Koone, Neil; Condren, Brian

    2003-01-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and 'build' a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented

  11. Steel-concrete bond model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Mang, Chetra

    2015-01-01

    Reinforced concrete structure behavior can be extremely complex in the case of exceeding the cracking threshold. The composite characteristics of reinforced concrete structure should be finely presented especially in the distribution stress zone between steel-concrete at their interface. In order to compute the industrial structures, a perfect relation hypothesis between steel and concrete is supposed in which the complex phenomenon of the two-material relation is not taken into account. On the other hand, this perfect relation is unable to predict the significant disorders, the repartition, and the distribution of the cracks, which is directly linked to the steel. In literature, several numerical methods are proposed in order to finely study the concrete-steel bond behavior, but these methods give many difficulties in computing complex structures in 3D. With the results obtained in the thesis framework of Torre-Casanova (2012), the new concrete-steel bond model has been developed to improve performances (iteration numbers and computational time) and the representation (cyclic behavior) of the initial one. The new model has been verified with analytical solution of steel-concrete tie and validated with the experimental results. The new model is equally tested with the structural scale to compute the shear wall behavior in the French national project (CEOS.fr) under monotonic load. Because of the numerical difficulty in post-processing the crack opening in the complex crack formation, a new crack opening method is also developed. This method consists of using the discontinuity of relative displacement to detect the crack position or using the slip sign change between concrete-steel. The simulation-experiment comparison gives validation of not only the new concrete-steel bond model but also the new crack post-processing method. Finally, the cyclic behavior of the bond law with the non-reduced envelope is adopted and integrated in the new bond model in order to take

  12. Open Circuit Potential Study of Stainless Steel in Environment Containing Marine Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The corrosion potential of AISI 304 stainless steel coupons influenced by sulphate-reducing bacteria (SRB) has been studied. Pure colony of SRB was isolated from the Malaysia Marine and Heavy Engineering, Pasir Gudang, Johor. Open circuit potential measurements were carried out in variable types of culturing solutions with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated. Results showed that the corrosion potential, E oc increased in the presence of SRBs (in pure and mixed culture) compared to that of control. EDS analysis showed the strong peak of sulphur in coupon containing SRB cultures compared to the control. ESEM data showed that the high density cell of SRBs were associated with corroding sections of surface steel comparing with non-corroding sections for coupons immersed in VMNI medium containing SRBs. (author)

  13. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  14. Thermo-mechanical behaviour during encapsulation of glass in a steel vessel

    International Nuclear Information System (INIS)

    Nakhodchi, S.; Smith, D.J.; Thomas, B.G.

    2016-01-01

    Quantitative numerical simulations and qualitative evaluations are conducted to elucidate thermo-mechanical behaviour during pouring and solidification of molten glass into a stainless-steel cylindrical container. Residual stress and structural integrity in this casting/vitrification process is important because it can be used for long-term storage of high-level nuclear wastes. The predicted temperature and stress distributions in the glass and container agree well with previous measurements of the temperature histories and residual stresses. Three different thermal-stress models are developed using the finite-element method and compared. Two simple slice models were developed based on the generalized plane strain assumption as well as a detailed two-dimensional axi-symmetric model that adds elements according to the stages of pouring glass into the stainless steel container. The results reveal that mechanical interaction between the glass and the wall of the stainless steel container generates residual tensile stresses that approach the yield strength of the steel. Together, these results reveal important insights into the mechanism of stress generation in the process, the structural integrity of the product, and accuracy of the modelling-tool predictions. - Highlights: • Source of residual stresses in glass and stainless steel containers (canisters) is discussed. • Final residual stresses in both glass and container is quantified. • Simple models presented for simulation of complicated casting process. • Comparison between detailed and simple FE modeling.

  15. Study on the hydrogen embrittlement and corrosion of stainless steels used as NI/MHX battery containers

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, H.J.; Chan, S.L.I. [National Taiwan University, Taipei (China); Chen, S.Y. [Chung Shan Institute of Science and Technology, Lung-Tan (China)

    1998-07-01

    Stainless steels are used as the containers for Nickel-metal hydride (Ni/MHx) batteries. In this work stainless steel 304, 304L, 316, 316L, 17-4PH and 430 were selected to study their relative susceptibility to hydrogen embrittlement and alkaline corrosion under battery environments. Comparisons were made by immersion test under different hydrogen pressure over the electrolyte, U-bend tests and slow strain rate tensile test with cathodic H{sub 2} charging. The results showed that high strength 17-4PH suffered severe corrosion after long time immersion in the electrolyte solution and were sensitive to hydrogen embrittlement after hydrogen charging. Ferritic 430 performed better than 17-4PH during immersion test but lost its ductility after hydrogen charging. All the austenitic steels (304, 304L, 316, 316L) were found to be suitable as the materials for Ni/MHx battery container, and the present tests can not discriminate their relative resistance to the corrosion and hydrogen embrittlement in the electrolyte. 5 refs.

  16. Changes in mechanical properties and structure of electrolytic plasma treated X 12 CrNi 18 10 Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanbekov, Sherzod; Baklanov, Viktor; Karakozov, Batyrzhan [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan). Inst. of Atomic Energy Branch; Skakov, Mazhyn [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan)

    2017-05-01

    The paper addresses findings regarding the influence of electrolytic plasma treatment on the mechanical properties as well as structural and phase states of X 12 CrNi 18 10 Ti steel. Electrolytic plasma treatment is based on carburizing of stainless steel heated in electrolytes. Treatment of steel samples has been performed as follows: the samples were heated up to a temperature between 850 and 950 C and then they were cured for 7 minutes in an electrolyte of an aqueous solution containing 10 % glycerol (C{sub 3}H{sub 8}O{sub 3}) and 15 % sodium carbonate (Na{sub 2}CO{sub 3}). It is found that, after plasma electrolytic treatment, the surface of X 12 CrNi 18 10 Ti steel had a modified structure and high hardness. Increasing wear resistance of X 12 CrNi 18 10 Ti steel has been observed after carburizing and the coefficient of friction has been reduced. X-ray analysis showed that retained austenite γ-Fe is a main phase, and there are some diffraction lines of orthorhombic Fe{sub 3}C phase as well as Fe{sub 3}O{sub 4} cubic phase. It has been determined, that, after plasma electrolytic treatment, a carbide phase in the modified surface layer, irrespective of the location in the steel structure has the chemical composition Fe{sub 3}C. High concentration of carbon atoms in a solid solution based on γ- and α-iron, a large dislocation density, presence of particles of carbide phase and retained austenite layers have been found.

  17. Electrochemical Performance of Low-Carbon Steel in Alkaline Model Solutions Containing Hybrid Aggregates

    NARCIS (Netherlands)

    Koleva, D.A.; Hu, J.; De Wit, J.H.W.; Boshkov, N.; Radeva, T.; Milkova, V.; Van Breugel, K.

    2010-01-01

    This work reports on the electrochemical performance of low-carbon steel electrodes in model alkaline solutions in the presence of 4.9.10-4 g/l hybrid aggregates i.e. cement extract, containing PDADMAC (poly (diallyl, dimethyl ammonium chloride) / PAA (Poly (acrylic acid)/ PDADMAC over a CaO core.

  18. Reliability analysis of steel-containment strength

    International Nuclear Information System (INIS)

    Greimann, L.G.; Fanous, F.; Wold-Tinsae, A.; Ketalaar, D.; Lin, T.; Bluhm, D.

    1982-06-01

    A best estimate and uncertainty assessment of the resistance of the St. Lucie, Cherokee, Perry, WPPSS and Browns Ferry containment vessels was performed. The Monte Carlo simulation technique and second moment approach were compared as a means of calculating the probability distribution of the containment resistance. A uniform static internal pressure was used and strain ductility was taken as the failure criterion. Approximate methods were developed and calibrated with finite element analysis. Both approximate and finite element analyses were performed on the axisymmetric containment structure. An uncertainty assessment of the containment strength was then performed by the second moment reliability method. Based upon the approximate methods, the cumulative distribution for the resistance of each of the five containments (shell modes only) is presented

  19. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  20. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  1. Some aspects of the reliability-based design of reactor containment structures

    International Nuclear Information System (INIS)

    Schueller, G.I.

    1975-01-01

    It is generally recognized that the load which a structure is likely to experience during its design life as well as its resistance are to be represented by random variables. A rational design procedure for reactor containment structures can therefore only be carried out within a probabilistic framework. Internal load conditions caused by system failure such as loss-of-coolant accident, pressure loads etc., and external load conditions caused for instance by impact due to aircraft crashes, external pressure waves and natural hazards such as earthquakes, floods, hurricanes are described by extreme value distributions of the Fisher-Tippett types. Statistical and physical arguments are given to support their application. The occurrence of these rare events with respect to time is modeled by a Poisson process. The yield strength of the containment structure for both steel (liner) and reinforced concrete shells is also modeled by extreme value distributions (of the smallest values). The failure criterion considered here is that of collapse determined by plastic yieldline formation. A failure mechanism as considered here describes a particular regime of plastic line formation. The probability of failure of a structure under a single load application of load types likely to occur during the design life of the structure is to be determined by integrating over all possible mechanisms. Finally Freudenthal's reliability function is utilized to combine the information derived above so that a containment design for given design lifes and reliabilities is possible. (orig.) [de

  2. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    International Nuclear Information System (INIS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-01-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels

  3. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    International Nuclear Information System (INIS)

    Grounes, M.

    1967-07-01

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10 18 n/cm 2 (> 1 MeV) and 4 x 10 19 n/cm 2 (thermal) and also 9.0 x 10 18 n/cm 2 (> 1 MeV) and 6 x 10 19 n/cm 2 (thermal). Material from three laboratory melts, in which the boron consisted of 10 B, 11 B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the 10 B-alloyed material was changed more and the 11 B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the 10 B containing material compared to 5 kg/mm in the 11 B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the 10 B-alloyed material, 40 deg C in the 11 B-alloyed material and 80 deg C in the material containing natural boron

  4. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Solehudin, Agus, E-mail: asolehudin@upi.edu [Department of Mechanical Engineering Education, Indonesia University of Education (UPI), Bandung, West Java (Indonesia); Nurdin, Isdiriayani [Department of Chemical Engineering, Bandung Institute of Technology, Bandung, West Java (Indonesia)

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  5. Crack monitoring method for an FRP-strengthened steel structure based on an antenna sensor

    NARCIS (Netherlands)

    Liu, Z.; Chen, Kai; Li, Z.; Jiang, X.

    2017-01-01

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it

  6. Structural transformations in austenitic stainless steel induced by deuterium implantation: irradiation at 100 K.

    Science.gov (United States)

    Morozov, Oleksandr; Zhurba, Volodymyr; Neklyudov, Ivan; Mats, Oleksandr; Rud, Aleksandr; Chernyak, Nikolay; Progolaieva, Viktoria

    2015-01-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic stainless steel 18Cr10NiTi preimplanted at 100 K with deuterium ions in the dose range from 3 × 10(15) to 5 × 10(18) D/cm(2). The kinetics of structural transformation development in the implantation steel layer was traced from deuterium thermodesorption spectra as a function of implanted deuterium concentration. At saturation of austenitic stainless steel 18Cr10NiTi with deuterium by means of ion implantation, structural-phase changes take place, depending on the dose of implanted deuterium. The maximum attainable concentration of deuterium in steel is C = 1 (at.D/at.met. = 1/1). The increase in the implanted dose of deuterium is accompanied by the increase in the retained deuterium content, and as soon as the deuterium concentration attains C ≈ 0.5 the process of shear martensitic structural transformation in steel takes place. It includes the formation of bands, body-centered cubic (bcc) crystal structure, and the ferromagnetic phase. Upon reaching the deuterium concentration C > 0.5, the presence of these molecules causes shear martensitic structural transformations in the steel, which include the formation of characteristic bands, bcc crystal structure, and the ferromagnetic phase. At C ≥ 0.5, two hydride phases are formed in the steel, the decay temperatures of which are 240 and 275 K. The hydride phases are formed in the bcc structure resulting from the martensitic structural transformation in steel.

  7. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes

    International Nuclear Information System (INIS)

    Lin Bin; Hu Ronggang; Ye Chenqing; Li Yan; Lin Changjian

    2010-01-01

    Scanning electrochemical probes of corrosion potential and chloride ions were developed for the in situ monitoring of localized corrosion processes of reinforcing steel in NaCl-containing solution. The results indicated that the chloride ions (Cl - ) preferentially adsorbed and accumulated at the imperfect/defective sites, resulting in initiation and propagation of pitting corrosion on the reinforcing steel surface. An electron microprobe analyzer (EMPA) was used to examine the corrosion morphology and elemental distribution at the corroded location to investigate the origins of the preferential Cl - adsorption and pitting corrosion. By combining the in situ and ex situ images, we concluded that manganese sulfide inclusions in reinforcing steel are the most susceptible defects to pitting corrosion in chloride-containing solution.

  8. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.

    Science.gov (United States)

    Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli

    2017-10-20

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  9. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor

    Directory of Open Access Journals (Sweden)

    Zhiping Liu

    2017-10-01

    Full Text Available Fiber-reinforced polymer (FRP has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP. FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  10. Relationship between surface structure of silicon containing steel and adhesion of hot dip galvanized coating; Si gan'yu koban no hyomen kozo to yoyu aen mekki micchakuseino kankei

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Y.; Hashimoto, S.; Ishibashi, Y. [Kokan Keisoku K.K., Kawasaki (Japan); Inagaki, J. [NKK Corp., Tokyo (Japan); Fukuda, Y. [Shuibuoka University, Shizuoka (Japan)

    2000-06-01

    The surface of the annealed steel and the exfoliated interface of the coating for the hot dip galvanized Si containing steel sheets was characterized by using SEM (Scanning Electron Microscope), AES (Auger Electron Spectroscopy) and TEM (Transmission Electron Microscopy). The adhesion of the coatings have depended on the Si content of the steel. It have been found that MnSiO{sub 3} particles are formed at the surface of the annealed steels having high Si content and that two types of grain having different distribution of the oxide exist in the steels. Large oxide particles have been formed in one type of grain and small particles are formed in the other type of grain. The different type of Fe-Zn alloy are formed on two types of grains. It have been observed that the oxide particles exist at the interface of exfoliated coatings after the adhesion test for the steels with high Si content. The distribution of the oxide particles observed at the bottom of the exfoliated coating is quite similar to that of the surface oxide of the annealed steel. From these results, the exfoliation of the coating has initiated at the oxide particles of the steel surface that has been not reduced during the hot dip galvanizing. (author)

  11. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; Busby, J.T. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States); Gussev, M.N., E-mail: gussevmn@ornl.gov [Nuclear Fuel & Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6136 (United States); Maziasz, P.J.; Hoelzer, D.T.; Rowcliffe, A.F.; Vitek, J.M. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States)

    2017-01-15

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14–0.36%) and Mn (2–5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  12. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.

  13. Inspection of Nuclear Power Plant Containment Structures

    Energy Technology Data Exchange (ETDEWEB)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  14. Simulation of Structural Transformations in Heating of Alloy Steel

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-07-01

    Amathematical model for computer simulation of structural transformations in an alloy steel under the conditions of the thermal cycle of multipass welding is presented. The austenitic transformation under the heating and the processes of decomposition of bainite and martensite under repeated heating are considered. Amethod for determining the necessary temperature-time parameters of the model from the chemical composition of the steel is described. Published data are processed and the results used to derive regression models of the temperature ranges and parameters of transformation kinetics of alloy steels. The method developed is used in computer simulation of the process of multipass welding of pipes by the finite-element method.

  15. Some special problems of steel reinforcement in nuclear structural engineering

    International Nuclear Information System (INIS)

    Bazant, B.; Smejkal, P.; Vetchy, J.

    1986-01-01

    A comparison is made of the mechanical and design characteristics of reinforcing steels for reinforced concrete structures of classes A-0 to A-IV under Czechoslovak State Standard CSN 73 1201 and Soviet standard SNiP II-21-75. Tests were performed to study changes in the values of the yield point, breaking strength, the tensile strength limit and the module of elasticity in selected Czechoslovak steels. The comparison showed that the steels behave in the same manner at high temperatures as Soviet steels of corresponding strength characteristics. Dynamic design strength of Czechoslovak materials also corresponds to values given in the Soviet standard. The technology and evaluation of welded joints equal for both Czechoslovak and Soviet steels. The manufacture was started of tempered wires with a high strength limit for prestressed wire reinforcement. All tests and comparisons showed that Czechoslovak reinforcing steels meet Soviet prescriptions, in some instances Czechoslovak standards are even more strict. (J.B.)

  16. Recent Niobium Developments for High Strength Steel Energy Applications

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  17. A method of installing a reactor container

    International Nuclear Information System (INIS)

    Hayashi, Kenji; Murakawa, Hisao.

    1975-01-01

    Object: To achieve exact installation of a reactor container at a site. Structure: A pole is set upright at the center of a cylindrical base portion, a plurality of beams are disposed around the pole in a radial fashion to form a cone, a plurality of steel plates are mounted successively around the cone through a ring, and the steel plates are welded to each other to assemble and install a reactor container at the same time. (Kamimura, M.)

  18. Use of stainless steel as structural materials in reactor cores

    International Nuclear Information System (INIS)

    Teodoro, C.A.

    1990-01-01

    Austenitic stainless steels are used as structural materials in reactor cores, due to their good mechanical properties at working temperatures and high generalized corrosion resistance in aqueous medium. The objective of this paper is to compare several 300 series austenitic stainless steels related to mechanical properties, localized corrosion resistance (SCC and intergranular) and content of delta ferrite. (author)

  19. Structure, mechanical and corrosion properties of powdered stainless steel Kh13

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Napara-Volgina, S.G.; Orlova, L.N.; Apininskaya, L.M.

    1982-01-01

    Structure, mechanical and corrosion properties are studied for compact powdered stainless steel, Grade Kh13, produced from prealloyed powder and a mixture of chromium and iron powders by hot vacuum pressing (HVP) following four schemes: HVP of unsintered billets; HVP of presintered billets; HVP of unsintered billets followed by diffusion annealing; HVP of sintered billets followed by diffusion annealing. Analysis of the structure, mechanical and corrosion properties of Kh13 steel produced according to the four schemes confirmed that production of this steel by the HVP method without presintering of porous billets and diffusion annealing of compact stampings is possible only when prealloyed powder of particular composition is used as a starting material

  20. Nuclear reactors sited deep underground in steel containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bourque, Robert [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Although nuclear power plants are certainly very safe, they are not perceived as safe by the general populace. Also, there are concerns about overland transport of spent fuel rods and other irradiated components. It is hereby proposed that the nuclear components of nuclear power plants be placed in deep underground steel vessels with secondary coolant fed from them to turbines at or near the surface. All irradiated components, including spent fuel, would remain in the chamber indefinitely. This general concept was suggested by the late Edward Teller, generated some activity 20-25 years ago and appears to be recently reviving in interest. Previous work dealt with issues of geologic stability of underground, possibly reinforced, caverns. This paper presents another approach that makes siting independent of geology by placing the reactor components in a robust steel vessel capable of resisting full overburden pressure as well as pressures resulting from accident scenarios. Structural analysis of the two vessel concepts and approximate estimated costs are presented. This work clears the way for the extensive discussions required to evaluate the advantages of this concept. (author)

  1. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  2. Hot ductility and fracture mechanisms of a structural steel

    International Nuclear Information System (INIS)

    Calvo, J.; Cabrera, J. M.; Prado, J. M.

    2006-01-01

    The hot ductility of a structural steel produced from scrap recycling has been studied to determine the origin of the transverse cracks in the corners that appeared in some billets. Samples extracted both from a billet with transverse cracks and from a billet with no external damage were tested. To evaluate the influence of residual elements and inclusions, the steel was compared to another one impurity free. Reduction in area of the samples tensile tested to the fracture was taken as a measure of the hot ductility. The tests were carried out at temperatures ranging from 1000 degree centigree to 650 degree centigree and at a strain rate of 1.10-3 s-1. The fracture surfaces of the tested samples were observed by scanning electron microscopy in order to determine the embrittling mechanisms that could be acting. The steel with residuals and impurities exhibited lower ductility values for a wider temperature range than the clean steel. The embrittling mechanisms also changed as compared to the impurity free steel. (Author)

  3. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  4. Total cross-sections assessment of neutron reaction with stainless steel SUS-310 contained in various nuclear data files

    International Nuclear Information System (INIS)

    Suwoto

    2002-01-01

    The integral testing of neutron cross-sections for Stainless Steel SUS-310 contained in various nuclear data files have been performed. The shielding benchmark calculations for Stainless Steel SUS-310 has been analysed through ORNL-Broomstick Experiment calculation which performed by MAERKER, R.E. at ORNL - USA ( 1) . Assessment with JENDL-3.1, JENDL-3.2, ENDF/B-IV, ENDF/B-VI nuclear data files and data from GEEL have also been carried out. The overall calculation results SUS-310 show in a good agreement with the experimental data, although, underestimate results appear below 3 MeV for all nuclear data files. These underestimation tendencies clearly caused by presented of iron nuclide which more than half in Stainless Steel compound. The total neutron cross-sections of iron nuclide contained in various nuclear data files relatively lower on that energy ranges

  5. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M

    1967-07-15

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 4 x 10{sup 19} n/cm{sup 2} (thermal) and also 9.0 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 6 x 10{sup 19} n/cm{sup 2} (thermal). Material from three laboratory melts, in which the boron consisted of {sup 10}B, {sup 11}B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the {sup 10}B-alloyed material was changed more and the {sup 11}B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the {sup 10}B containing material compared to 5 kg/mm in the {sup 11}B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the {sup 10}B-alloyed material, 40 deg C in the {sup 11}B-alloyed material and 80 deg C in the material containing natural boron.

  6. Influence of quantity of non-martensite products of transformation on resistance to fracture of improving structural steel

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Golovanenko, Yu.S.; Zikeev, V.N.

    1978-01-01

    18KhNMFA, low-carbon, alloyed steel and 42KhMFA medium-carbon, alloyed steel have been examined. For the purpose of obtaining different structures in hardening the steel, different cooling rates, different temperatures and isothermal holding times are applied. The following has been shown: on tempering to the same hardness (HV 300), the presence of non-martensite structures in hardened state does not practically influence the standard mechanical properties of steel (sigmasub(B), sigmasub(0.2), delta, PSI). The resistance of steel to the brittle failure is enhanced by the uniform, fine-disperse distribution of the carbide phase in the structure of lower bainite (up to 80 % bainite in martensite for 42KhMF steel to be improved), as well as strongly fragmented packages of rack martensite-bainite (up to 50 % lower bainite in martensite of 18KhNMFA steel). The formation of the upper bainite in the structure of the hardened steels 18KhNMFA and 42KhMF results on tempering in the formation of coarse, non-uniform, branched carbide inclusions, and this, in its turn, leads to raising the cold-shortness threshold and to lowering the amount of work as required for propagation of a crack. The presence of ferritic-pearlitic structures in the structural steels hardened to martensite and bainite results in reducing the resistance of steel to the brittle failure; the presence of every 10 % ferritic-pearlitic component in martensite of the structural steels 18KhNMFA and 42KhMFA to be thermally improved, raises T 50 by 8 deg and 20 deg C, respectively

  7. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Sherar, B.W.A. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Power, I.M. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Keech, P.G.; Mitlin, S. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Southam, G. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.c [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2011-03-15

    Research highlights: Compares inorganic sulfide and sulfate reducing bacteria (SRB) on steel corrosion. Mackinawite was the dominant iron sulfide phase. SRBs can form nanowires, presumably grown to acquire energy. - Abstract: This article compares the electrochemical effects induced by inorganic sulfide and sulfate reducing bacteria on the corrosion of carbon steel - a subject of concern for pipelines. Biological microcosms, containing varying concentrations of bioorganic content, were studied to investigate changes to the morphology of biofilms and corrosion product deposits. Raman analysis indicated mackinawite (FeS{sub 1-x}) was the dominant iron sulfide phase grown both abiotically and biotically. A fascinating feature of biological media, void of an organic electron donor, was the formation of putative nanowires that may be grown to acquire energy from carbon steel by promoting the measured cathodic reaction.

  8. Assessment of thermo-mechanical behavior in CLAM steel first wall structures

    International Nuclear Information System (INIS)

    Liu Fubin; Yao Man

    2012-01-01

    Highlights: ► China Low Activation Martensitic steel (CLAM) as FW the structural material. ► The thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating. ► The temperature dependence of the material physical properties of CLAM is summarized. - Abstract: The temperature and strain distributions of the mockup with distinct structural material (SS316L or China Low Activation Martensitic steel (CLAM)) in two-dimensional model were calculated and analyzed, based on a high heat flux (HHF) test recently reported with heat flux of 3.2 MW/m 2 . The calculated temperature and strain results in the first wall (FW), in which SS316L is as the structural material, showed good agreement with HHF test. By substituting CLAM steel for SS316L the contrast analysis indicates that the thermo-mechanical property for CLAM steel is better than that of SS316 at the same condition. Furthermore, the thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating.

  9. Assessment of thermo-mechanical behavior in CLAM steel first wall structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fubin, E-mail: liufubin_1216@126.com [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning (China); Yao Man, E-mail: yaoman@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer China Low Activation Martensitic steel (CLAM) as FW the structural material. Black-Right-Pointing-Pointer The thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating. Black-Right-Pointing-Pointer The temperature dependence of the material physical properties of CLAM is summarized. - Abstract: The temperature and strain distributions of the mockup with distinct structural material (SS316L or China Low Activation Martensitic steel (CLAM)) in two-dimensional model were calculated and analyzed, based on a high heat flux (HHF) test recently reported with heat flux of 3.2 MW/m{sup 2}. The calculated temperature and strain results in the first wall (FW), in which SS316L is as the structural material, showed good agreement with HHF test. By substituting CLAM steel for SS316L the contrast analysis indicates that the thermo-mechanical property for CLAM steel is better than that of SS316 at the same condition. Furthermore, the thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating.

  10. Development of Zr-containing advanced reduced-activation alloy (ARAA) as structural material for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Y.B., E-mail: borobang@gmail.com [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kang, S.H. [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, D.W. [Nuclear Fusion Engineering Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Jeong, Y.H. [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Żywczak, A. [AGH University of Science and Technology, Academic Centre of Materials and Nanotechnology, Kraków (Poland); Rhee, C.K. [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • Creep and impact resistances of reduced activation ferritic–martensitic steel are enhanced by the addition of Zr. • A 5 ton scale heat of Zr containing RAFM steel, ARAA, has been produced for material property evaluation. • The physical, thermal, magnetic and mechanical properties of ARAA are quite similar to those of Eurofer 97. - Abstract: Korea has developed an advanced reduced-activation alloy (ARAA) as a structural material for helium-cooled ceramic reflector test blanket module (HCCR-TBM) applications. The present paper describes the history of alloy development and the properties of ARAA, which has been produced at a 5 t scale using vacuum induction melting and electro-slag re-melting methods. ARAA is a 9Cr–1.2W based ferritic–martensitic steel with 0.01 wt.% Zr. The mechanical properties, thermal properties and physical and magnetic properties of ARAA show similar temperature dependencies to those observed for Eurofer 97. However, ARAA exhibits a much longer creep–rupture time than conventional RAFM steel, which suggests a positive effect on Zr addition. The enhanced creep strength of ARAA by the addition of Zr is attributed to the reduced temperature-dependence of the yield strength.

  11. Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures

    International Nuclear Information System (INIS)

    Li, Peifeng

    2015-01-01

    The emerging selective laser melting (SLM) technology makes possible the manufacturing of metallic microlattice structures with better tailorability of properties. This work investigated the constitutive formulation of the parent material and the failure mechanism in the SLM stainless steel microlattice structure. The constitutive behaviour of SLM stainless steel was quantitatively formulated using the Johnson–Cook hardening model. A finite element model incorporating the constitutive formula was developed and experimentally validated to predict the localised stress evolution in an SLM stainless steel microlattice structure subjected to uniaxial compression. The predicted stresses were then linked to the fracture process in the SLM steel observed by scanning electron microscope. It was found that the tensile and compressive stress state is localised in the strut members of the microlattice, and determines the macroscopic cracking mode. The tensile opening and shear cracking dominate the tension and compression zones, respectively. However, the microscopic examination on the fracture surfaces reveals the formation of substantial slip bands in both the tension and compression zones, implying that the ductile fracture in the SLM stainless steel is transgranular

  12. Aqueous stress corrosion of candidate austenitic steels for ITER structural applications

    International Nuclear Information System (INIS)

    Soppet, W.K.; French, D.M.; Kassner, T.F.

    1993-01-01

    Susceptibility of crevice-weldment specimens of Types 316L and 316NG stainless steel (SS) to SCC was investigated in slow-strain-rate-tensile (SSRT) tests in water that simulates important parameters anticipated in first-wall/blanket systems. The SSRT tests were performed in oxygenated water containing 0.06-10 ppm chloride at temperatures of 95 to 225 degrees C to establish the effects of water purity and temperature on SC resistance. These steels, including weldments, exhibit good resistance to SCC under crevice conditions at temperatures of 150 degrees C in oxygenated water containing 0.1-10 ppm chloride. Most specimens fractured in the base metal, and several others fractured in the heat-affected zone (HAZ) of the weld, but none failed in the weld metal

  13. Helium-induced weld degradation of HT-9 steel

    International Nuclear Information System (INIS)

    Wang, Chin-An; Chin, B.A.; Lin, Hua T.; Grossbeck, M.L.

    1992-01-01

    Helium-bearing Sandvik HT-9 ferritic steel was tested for weldability to simulate the welding of structural components of a fusion reactor after irradiation. Helium was introduced into HT-9 steel to 0.3 and 1 atomic parts per million (appm) by tritium doping and decay. Autogenous single pass full penetration welds were produced using the gas tungsten arc (GTA) welding process under laterally constrained conditions. Macroscopic examination showed no sign of any weld defect in HT-9 steel containing 0.3 appm helium. However, intergranular micro cracks were observed in the HAZ of HT-9 steel containing 1 appm helium. The microcracking was attributed to helium bubble growth at grain boundaries under the influence of high stresses and temperatures that were present during welding. Mechanical test results showed that both yield strength (YS) and ultimate tensile strength (UTS) decreased with increasing temperature, while the total elongation increased with increasing temperature for all control and helium-bearing HT-9 steels

  14. Development of ferritic steels for reduced activation: the US program

    International Nuclear Information System (INIS)

    Klueh, R.L.; Gelles, D.S.; Lechtenberg, T.A.

    1986-01-01

    The Cr-Mo ferritic (martensitic) steels are candidates for the structural components of fusion reactors. Irradiation of such steels in a fusion environment produces long-lived radioactive isotopes, which lead to difficult radioactive waste disposal problems once the structure is removed from service. Such problems could be reduced by using steels that contain only elements that produce radioactive isotopes that decay to low levels in a reasonable time (tens of years instead of hundreds or thousands of years). The US Department of Energy has a program to develop steels to meet the criteria for shallow land burial as opposed to deep geologic storage. A review of the alloy development programs indicates that ferritic steels that meet these criteria can be developed

  15. Niobium Application, Metallurgy and Global Trends in Pressure Vessel Steels

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for a variety of pressure vessel applications. Through the application of these Nb-bearing steels in demanding applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the pressure vessel design and performance. The Nb-microalloy alloy designs also result in reduced operational production cost at the steel operation, thereby embracing the value-added attribute Nb provides to both the producer and the end user throughout the supply chain. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are considering improved designs which offer improved manufacturability, lower overall cost and better life cycle performance.

  16. Effects of Nitrogen Content on the HAZ Softening of Ti-Containing High Strength Steels Manufactured by Accelerated Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kook-soo; Jung, Ho-shin; Park, Chan [Pukyong National University, Busan (Korea, Republic of)

    2017-03-15

    The effects of nitrogen content on the HAZ softening of Ti-containing high strength steels manufactured by accelerating cooling were investigated and interpreted in terms of the microstructures in the softening zone. Regardless of their content, all of the steels investigated showed a softened zone 9-10 mm wide. The minimum hardness in the zone, however, was different, with lower hardness in the higher nitrogen content steel. Microstructural observations of the steel showed that the amount of soft ferrite was increased in the zone with an increase of nitrogen content of the steel, suggesting that microstructural evolution in the HAZ is influenced by the nitrogen content. Measurements of TiN particles showed that the degree of particles coarsening in the HAZ was lower in the higher nitrogen content steel. Therefore, it is believed that finer TiN particles in the HAZ inhibit austenite grain growth more effectively, and lead to an accelerated ferrite transformation in higher nitrogen content steel, resulting in a higher amount of soft ferrite microstructure in the softened zone.

  17. Steel fibre corrosion in cracks:durability of sprayed concrete

    OpenAIRE

    Nordström, Erik

    2000-01-01

    Steel fibre reinforced sprayed concrete is common practice for permanent linings in underground construction. Today there is a demand on "expected technical service life" of 120 years. Thin steel fibres could be expected to discontinue carrying load fast with a decrease of fibre diameter caused by corrosion, especially in cracks. The thesis contains results from inspections on existing sprayed concrete structures and a literature review on corrosion of steel fibres in cracked concrete. To stu...

  18. Corrosion behavior of austenitic stainless steel containing Ti

    International Nuclear Information System (INIS)

    Cha, Sueng Ok; Choe, Han Cheol; Kim, Kwan Hyu

    1998-01-01

    Corrosion behavior of austenitic stainless steel containing Ti has been studied by using electrochemical techniques. The samples containing Ti from 0.1 to 1.0 wt% were solutionized at 1050 .deg. C for 1hr and then sensitized at 650 .deg. C for 5hr under argon atmosphere. Microstructure and phase analysis of the samples after heat treatment and corrosion tests were carried out by using XRD. TEM, SEM and optical microscope. The amount of δ-ferrite and TiC precipitates in matrix increased as the Ti content increased. In the sensitized samples, Cr 23 C 6 precipitates were observed at γ/δ interface. Degree Of Sensitization(DOS) was lower than 1.0 in all of the solutionized samples and the sensitized samples of Ti content above 0.4% wt% whereas the sensitized samples of Ti content lower than 0.4 wt% showed DOS higher than 1.0. Intergranular attack appeared mainly at grain boundaries in the sensitized sample containing 0.1 wt% Ti and at the γ/δ interface of the higher Ti content. In the latter, however, the attack was not so severe. Pitting potential(E pit ) and repassivation potential(E rep ) of the solutionized and sensitized samples were increased with increasing Ti content. The number and size of the pits decreased with increasing Ti content in the sensitized samples. The pits nucleated at Cr 23 C 6 site and the γ/δ interface

  19. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  20. Phosphorus effect on fracture properties of structural steels

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Guseva, I.A.

    1985-01-01

    Phosphorus content is studied for its effect on fracture peculiarities and fracture toughness. It is supposed that the phosphorus effect on ductile fractures is associated with phosphorus segregation on the ferrite-carbide interfaces. An increase of the phosphorus content in heat-treated 10KhSND steel from 0.020 up to 0.043 wt.% results in a decrease of the pore size and asub(p) value. Close linear correlation is established between critical temperature of embrittlement T 50 and √ asub(p) or √ KC values for a number of structural steels with different phosphorus content

  1. Blast resistance behaviour of steel frame structures

    NARCIS (Netherlands)

    Varas, J.M.; Soetens, F.

    2010-01-01

    The effect of a blast explosion on a typical steel frame building is investigated by means of computer simulations. The simulations help to identify possible hot spots that may lead to local or global failure. The blast energy is transferred to the structure by means of the façade. In particular

  2. Formation of local nanocrystalline structure in a boron steel induced by electropulsing

    International Nuclear Information System (INIS)

    Ma, Bingdong; Zhao, Yuguang; Ma, Jun; Guo, Haichao; Yang, Qing

    2013-01-01

    Highlights: ► The local NC structures in the uniform size of ∼15 nm were obtained by electropulsing. ► The NC structures were made up of γ-Fe without any other phases coexisting. ► The reduction in nucleation barrier of the γ-Fe helped form the local γ-Fe NC structure. ► The steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties. - Abstract: Nanocrystalline γ-Fe was obtained locally in a cold-rolled boron steel as a result of transient high-energy electropulsing. The nano-grains of γ-Fe were uniformly about 15 nm in size. No phases other than γ-Fe have been found in the nanocrystalline structure. It is believed that the pulse current enhances the nucleation rate of γ-Fe phase during the phase transformation from α-Fe to γ-Fe, resulting in the formation of local nanostructure. Moreover, in this study the steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties.

  3. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    International Nuclear Information System (INIS)

    Farina, S.; Schulz Rodriguez, F.; Duffo, G.

    2013-01-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina), it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (authors)

  4. Steels for nuclear power. I

    International Nuclear Information System (INIS)

    Bohusova, O.; Brumovsky, M.; Cukr, B.; Hatle, Z.; Protiva, K.; Stefec, R.; Urban, A.; Zidek, M.

    1976-01-01

    The principles are listed of nuclear reactor operation and the reactors are classified by neutron energy, fuel and moderator designs, purpose and type of moderator. The trend and the development of light-water reactor applications are described. The fundamental operating parameters of the WWER type reactors are indicated. The effect is discussed of neutron radiation on reactor structural materials. The characteristics are described of steel corrosion due to the contact of the steel with steam or sodium in the primary coolant circuit. The reasons for stress corrosion are given and the effects of radiation on corrosion are listed. The requirements and criteria are given for the choice of low-alloy steel for the manufacture of pressure vessels, volume compensators, steam generators, cooling conduits and containment. A survey is given of most frequently used steels for pressure vessels and of the mechanical and structural properties thereof. The basic requirements for the properties of steel used in the primary coolant circuit are as follows: sufficient strength in operating temperature, toughness, good weldability, resistance to corrosion and low brittleness following neutron irradiation. The materials are listed used for the components of light-water and breeder reactors. The production of corrosion-resistant steels is discussed with a view to raw materials, technology, steel-making processes, melting processes, induction furnace steel-making, and to selected special problems of the chemical composition of steels. The effects are mainly discussed of lead, bismuth and tin as well as of some other elements on hot working of high-alloy steels and on their structure. The problems of corrosion-resistant steel welding and of pressure vessel cladding are summed up. Also discussed is the question of the concept and safeguards of the safety of nuclear installation operation and a list is presented of most commonly used nondestructive materials testing methods. The current

  5. Critical review of the equipment hatch of a large dry steel containment. The DEFENDER IMPROVEMENT

    International Nuclear Information System (INIS)

    Mantega, F.; Penno, E.; Vanini, P.

    1994-01-01

    Performances of the Containment System under Severe Accident conditions depend on a number of different features and components. The equipment hatch may be considered a critical component because it is a potential main contributor to the total Containment leak rate during a Severe accident and a potential (depending on the design) direct leak path between the containment atmosphere and the environment. The analytical study performed to anticipate the response of the equipment hatch of a large dry steel containment under Severe Accident condition has pointed out some questions of concern. The possible leak tightness failure mechanism are related to: the gaskets elastic characteristics degradation due to thermal and radiological aging; the deformation of the hatch sleeve induced by the containment wall; and the differential expansion between gasket material and steel. Beside, the equipment hatch may be considered a single barrier and although it is equipped with two gaskets, it is not difficult to demonstrate that a backup function cannot be assigned to the external gasket. For these reason it seems to be necessary to realize a wider application of the 'Defence in Depth' criteria in the design of this component. The DEFENDER (DEFENce in Depth Equipment hatch Requalification) might be a solution to increase the margin of safety of the equipment hatch under the Severe Accident condition. (author)

  6. Application of the S690QL class steels in responsible welded structures

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2013-12-01

    Full Text Available In this paper are considered the most important properties of a special class of high strength steels S690QL, which can be classified into the group of special low alloyed steels. The high strength steels belong into a group of high quality steels. They possess exceptional mechanical properties, especially tensile strength and toughness. Those favorable properties are being achieved by application of special procedures of thermo-mechanical processing and simultaneous alloying with adequate elements. The advantages that the S690QL steels have with respect to other steels are being presented here. However, possibilities for application of those steels in responsible welded structures are limited due to their only relatively good weldability.  The special procedures for improving it are discussed here, primarily preheating, controlled heat input during welding and additional heat treatment of the welded joint.

  7. Effect of heat treatment and plastic deformation on the structure and the mechanical properties of nitrogen-bearing 04N9Kh2A steel

    Science.gov (United States)

    Blinov, V. M.; Bannykh, O. A.; Lukin, E. I.; Kostina, M. V.; Blinov, E. V.

    2014-11-01

    The effect of the conditions of heat treatment and plastic deformation on the structure and the mechanical properties of low-carbon martensitic nickel steel (9 wt % Ni) with an overequilibrium nitrogen content is studied. The limiting strain to failure of 04N9Kh2A steel is found to be 40% at a rolling temperature of 20°C and 80% at a rolling temperature of 900°C. Significant strengthening of the steel (σ0.2 = 1089 MPa) is obtained after rolling at a reduction of 40% at 20°C. The start and final temperatures of the α → γ transformation on heating and those of the γ → α transformation on cooling are determined by dilatometry. The specific features of the formation of the steel structure have been revealed as functions of the annealing and tempering temperatures. Electron-microscopic studies show that, after quenching from 850°C and tempering at 600°C for 1 h, the structure contains packet martensite with thin interlayers of retained austenite between martensite crystals. The strength of the nitrogen-bearing 04N9Kh2A steel after quenching from 850 and 900°C, cooling in water, and subsequent tempering at 500°C for 1 h is significantly higher than that of carboncontaining 0H9 steel used in cryogenic engineering.

  8. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: miao2@illinois.edu [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Cui, Bai [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Chen, Wei-Ying [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Miller, Michael K.; Powers, Kathy A. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); McCreary, Virginia; Gross, David [Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Robertson, Ian M. [Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WA 53706 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.

  9. Analytical capability for predicting structural response of NPP concrete containments to severe loads

    International Nuclear Information System (INIS)

    Planas, J.; Guinea, G.; Trbojevic, V.M.; Marti, J.; Martinez, F.; Cortes, P.

    1989-12-01

    A survey has been conducted on the state-of-the-art of analytical techniques for predicting the structural response of concrete containment buildings under severe accident conditions. The validity of inelastic analysis is often limited by the inadequacy of the material models adopted. This is specially true in the case of materials which undergo localization phenomena in the course of the deformation process. Because of this, the Joint Research Centre at Ispra has given a high priority to the review of existing constitutive models for concrete. Such models must be able to describe concrete behaviour with and without steel reinforcement across the complete stress range, from initial elastic behaviour to and beyond the point of failure. For reinforced and prestressed concrete, segregated models (where concrete and steel are independently simulated) are preferred. A review of existing constitutive models for mass concrete has been conducted. The review focused on necessary features for describing the near-peak and post-peak stages of deformation. Special attention was dedicated to the localization of strains in tension and the post-peak softening behaviour. Existing models for representing the concrete steel bond were also reviewed. These models are still relatively simplistic and incorporate seldom a number of effects of considerable importance: sustained, dynamic and cyclic loading, environmental effects, etc. Finally, the computational procedures currently available for modelling problems involving the ultimate capacity of concrete containments have also been reviewed. This includes methodologies for modelling amongst other mass concrete, cracking procedures, bond behaviour, in existing computer codes

  10. Modal Based Fatigue Monitoring of Steel Structures

    DEFF Research Database (Denmark)

    Graugaard-Jensen, J.; Brincker, Rune; Hjelm, H. P.

    2005-01-01

    In this paper it is shown how the accumulated fatigue in steel structures can be estimated with high accuracy by continuously measuring the accelerations in a few points of the structure. First step is to obtain a good estimate of the mode shapes by performing a natural input modal analysis. The so...... by applying the mode shapes of the calibrated Finite Element model and strains are obtained using the shape functions for the actual elements. The technique has been applied on a model frame structure in the laboratory and on a wind loaded lattice pylon structure. In both cases the estimated stresses has been...

  11. Engineering of Nanoscale Antifouling and Hydrophobic Surfaces on Naval Structural Steel HY-80 by Anodizing

    Science.gov (United States)

    2015-06-01

    stainless steel by anodization. The oxide structures produced under these conditions granted the material significant visible light photo catalytic...metallurgically classified as quenched and tempered martensitic steels . They have a martensitic microstructure resulting from the 9 combination of...producing a martensitic structure is carbon. The as-quenched steel manifests high strength and hardness but also is brittle and susceptible to hydrogen

  12. Investigation of R-Factor for steel moment frame combined with cold-formed steel structures under different load patterns using pushover analysis

    Directory of Open Access Journals (Sweden)

    Siavash Sadeghi

    2017-08-01

    Full Text Available The use of Lightweight Steel Frames (LSF has grown considerably in recent years all over the world due to its unique advantages such as being cost-effective and light-weight, easy and quick installment. Another application is to use them in order to increase the number of new floors on the existing buildings. But since the behavior of the combined structure is not clear, there is no possibility of increasing new floors with Lightweight Steel Frames. Therefore, through selecting and modeling three buildings of three, five and seven floors with steel moment frames in SAP2000 software and adding one or two new floors using Lightweight Steel Frames (LSF and conducting a non-linear static analysis with three different lateral load pattern, we dealt with the seismic behavior and determined the behavior coefficient of each of the combined structures. The results indicated that the use of cold-formed structures in order to add story do not have a significant impact on R-factor. In addition, R-factor depends on the type of the side loading pattern.

  13. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  14. The heat treatment effect on the structural changes and properties of high-nitrogen chromium steels

    International Nuclear Information System (INIS)

    Blinov, V.M.; Elistratov, A.A.; Kolesnikov, A.G.; Rakhshtadt, A.G.; Plokhikh, A.I.; Morozova, E.I.; Kostina, M.V.

    2000-01-01

    The structural transformations in the steels with 0.4-1.3 %N and 15-24 %Cr content, originating by thermal treatment, are studied. The dependences of the phase composition of the high-chromium steels (18 %Cr) on the nitrogen content are established. The ratio of the unchanged austenite increases and the martensite quantity decreases correspondingly with growth of the nitrogen concentration from 0.4 up to 1.2 %. The effect of strengthening the steels with the initial martensite structure as well as austenite and martensite steels is observed in the process of steels tempering due to the hardening on the account of the martensite dispersion hardening [ru

  15. Structure and properties of powder metallurgy constructional steel of different densities

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Moskvina, T.P.

    1986-01-01

    A specific feature of powder metallurgy steels is porosity, the degree of which depends upon the method of their production. This article establishes the influence of a small amount of porosity on the mechanical properties of powder metallurgy constructional steel. The structure of heat-treated cast and powder metallurgy steels with different porosities are shown. The results of mechanical tests of the experimental steels with different porosities are shown. With an increase in porosity the nonmetallic inclusion rating of the powder metallurgy constructional steel increases, primarily as the result of the increase in the coarse particles, which is caused by the lower degree of plastic deformation in pressing. With an increase in porosity the mechanical properties of the powder metallurgy steel become poorer: the hardness and strength properties with a porosity of more than 3-5%, the plasticity with more than 1-2%, and the toughness even with a porosity of 1%

  16. Use of fracture mechanics for estimation of cold resistance of structural steels

    International Nuclear Information System (INIS)

    Vikulin, A.V.; Solntsev, Yu.P.

    1988-01-01

    Structural steel cold resistance diagrams are developed and constructed in the form of testing temperature dependences on critical length of crack in endless plate. The diagrams allow one to determine critical temperature using steel samples without conducting complex and labour-consuming testings

  17. Approach for evaluating the general and localized corrosion of carbon-steel containers for nuclear waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sharland, S.M.; Tasker, P.W.

    1987-01-01

    The paper considers the long term corrosion of carbon-steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localized or passive corrosion behavior depending on the exact composition and redox potential of the groundwater contacting the containers; localized corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localized corrosion is only possible when the environment is sufficiently oxidizing to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species with oxidizing potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localized and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible localized attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient. 20 references, 5 figures

  18. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  19. Microstructure and toughness of structural steels

    International Nuclear Information System (INIS)

    Chipperfield, C.G.; Knott, J.F.

    1975-01-01

    The effects of notch acuity, inclusion content, and strength level on the toughness of a variety of ductile steels have been investigated in fully plastic single edge notched bend testpieces. Results for specimens containing fatigue precracks and sharp notches indicate that accurate predictions of a material's resistance to the initiation of fibrous fracture ahead of a fatigue crack may be inferred from tests on notched testpieces and from a knowledge of the microstructure of the material; an experimental procedure has been proposed whereby this may be achieved for quality control and material evaluation purposes. The spacing of optically visible inclusions is found essentially to define both the unit of ductile crack extension and, for low-strength steels, the limiting lateral dimensions of the high-strain field ahead of the crack tip. As a consequence, the notch-tip ductility is found to be invariant with the changes in notch acuity for sharp stress concentrators. The effect of increasing the purity and/or strength level is to alter the mechanism of fibrous fracture from one involving void growth and coalescence to one of predominantly shear character. (author)

  20. Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels

    International Nuclear Information System (INIS)

    Chakraborti, P.C.; Mitra, M.K.

    2007-01-01

    Duplex ferrite-martensite (DFM) steels containing 38-80% martensite of varying morphologies were developed by batch intercritical annealing of a commercial variety vanadium bearing 0.2% C-Mn steel at different temperatures. Microstructures before intercritical annealing were found to control the morphological distribution of the phase constituents of the developed DFM steels. Tensile test results revealed best strength-ductility combination for finely distributed lamellar ferrite-martensite phase aggregate containing ∼60% martensite developed from a prior martensitic structure. Taking consideration of the modified law of mechanical mixture the experimental tensile strength data of the developed DFM steels has been formulated with some success and very good estimation for tensile strengths of pure ferrite and low carbon martensite has been made from tensile strength data of DFM steels

  1. Testing of a steel containment vessel model

    International Nuclear Information System (INIS)

    Luk, V.K.; Hessheimer, M.F.; Matsumoto, T.; Komine, K.; Costello, J.F.

    1997-01-01

    A mixed-scale containment vessel model, with 1:10 in containment geometry and 1:4 in shell thickness, was fabricated to represent an improved, boiling water reactor (BWR) Mark II containment vessel. A contact structure, installed over the model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. This paper describes the pretest preparations and the conduct of the high pressure test of the model performed on December 11-12, 1996. 4 refs., 2 figs

  2. Advanced metallic structural materials and a new role for microalloyed steels

    International Nuclear Information System (INIS)

    Korchynsky, M.

    2004-01-01

    The recent worldwide surge of steel consumption, mainly of low-strength carbon grades, has created raw-materials shortages and price increases. These supply-demand strains could be relaxed by satisfying engineering needs with less steel. However, materials used for such a substitution must combine high weight reducing potential with low cost. Microalloyed (MA) steels are cost-effective substitutes, since their high strength is the result of grain refinement and precipitation hardening. These two strengthening mechanisms are developed by the interaction of micro-additives: niobium or vanadium with the deformation occurring during hot rolling followed by cooling. The physical metallurgy of these phenomena is discussed in the paper. The optimum alloy design of MA steels combines superior properties with lowest processing cost. In many applications, the versatility and adaptability of vanadium steels provides an economic advantage. The monetary value of weight production is sufficient to increase the profitability of steel makers and to lower the material cost to steel users. This 'win-win' situation is financed by the elimination of efforts spent in producing inefficient steel, yielding an increase in wealth formation. The gain acceptance of substitution by the consumer, a long-term strategic plan is needed to be implemented by the beneficiaries - both steel producers and steel users. The successful substitution is of importance to the national economy, resources and energy conservation, and the environment. Since microalloyed steels, used as a replacement for carbon steels, offer low cost weight savings, they deserve to be classified as advanced structural materials. (author)

  3. Dramix® Steel fibres in residential foundation slabs in Czech Republic: design approach

    Science.gov (United States)

    Pouillon, S.

    2017-09-01

    Steel fibres are used more and more in structural concrete elements, like residential foundation slabs. The development of high performant steel fibres (e.g. Dramix® 4D and 5D), the evolution in standardization and the demand coming from construction companies and investors are pushing this trend. Engineers are using the yield line method to design steel fibre concrete structures in an easy and economical way, especially if the structure has a regular load layout mainly containing wall loads and point loads. The load configuration, soil characteristics and material characteristics determine the final solution.

  4. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  5. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Saba, Kazuhisa.

    1979-01-01

    Purpose: To improve the earthquake resistance as well as reduce the size of a container for a nuclear reactor with no adverse effects on the decrease of impact shock to the container and shortening of construction step. Constitution: Reinforcing profile steel materials are welded longitudinally and transversely to the inner surface of a container, and inner steel plates are secured to the above profile steel materials while keeping a gap between the materials and the container. Reactor shielding wall planted to the base concrete of the container is mounted to the pressure vessel, and main steam pipeways secured by the transverse beams and led to the outside of container is connected. This can improve the rigidity earthquake strength and the safetiness against the increase in the inside pressure upon failures of the container. (Yoshino, Y.)

  6. Strength Properties of Foamed Concrete Containing Crushed Steel Slag as Partial Replacement of Sand with Specific Gradation

    Directory of Open Access Journals (Sweden)

    Tiong Hock Yong

    2017-01-01

    Full Text Available Lightweight construction material, notably foamed concrete, had become more favourable to reduce building weight and cost, accelerate construction process, and ease handling of precast segment. Simultaneously, rapid development had result in price rising of conventional material and environmental issue due to abundant wastes, for instance steel slag. As a consequence, feasibility of steel slag to be incorporated in lightweight foamed concrete for both structural and nonstructural purpose is worth to be investigated. This paper is aimed to evaluate the effects of crushed steel slag, as partial replacement of sand with specific gradation, on performance of lightweight foamed concrete (LFC with density of 1600 kg/m3 to 1700 kg/m3 in terms of compressive and tensile strengths. Different steel slag based LFCs were developed by replacing 0, 25, 50, 75 and 100% of steel slag for sand. Different water to cement ratios (w/c and dosages of super-plasticizer (sp were adopted to confirm certain workability, strength properties was then studied for ages of 7 and 28 days. The laboratory results showed that lightweight foamed concrete with incorporation of crushed steel slag has decreased strength; however it still achieves structural strength of 17 MPa when replacement level is less than 25% at density of 1600 kg/m3 to 1700 kg/m3.

  7. Application of concrete filled steel bearing wall to inner concrete structure fro PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Tanaka, Mamoru; Inoue, Kunio; Fukihara, Masaaki; Akiyama, Hiroshi.

    1992-01-01

    'Concrete filled steel bearing wall', applied to the inner concrete structure for PWR nuclear power plant, was developed for rationalization of construction procedure at site. It was concluded through preliminary studies that this new type of wall, where concrete is placed between steel plates, is best suited for the strength members of the above structure, due to the high strength and ductility of surface steel plates and the confinement effect of filled concrete. To verify the behavior from the elastic range to the inelastic range, the ultimate strength and the failure mechanism, and to clarify experimentally the structural integrity of the inner concrete structure, which was composed of a concrete filled steel bearing wall, against seismic lateral loads, horizontal loading tests using a 1/10th scale model of the inner concrete structure for PWR nuclear power plant were conducted. As a result of the tests, the inner concrete structure composed of a concrete filled steel bearing wall appeared to have a larger load carrying capacity and a higher ductility as compared with that composed of a reinforced concrete wall. (author)

  8. Computer-aided load monitoring system for nuclear power plant steel framing structures

    International Nuclear Information System (INIS)

    Skaczylo, A.T.; Fung, S-J; Hooks, R.W.

    1984-01-01

    The design of nuclear power plant steel framing structures is a long and involved process. It is often complicated by numerous changes in design loads as a result of additions, deletions and modifications of HVAC hangers, cable tray hangers, electric conduit hangers, and small bore and large bore mechanical component supports. Manual tracking of load changes of thousands of supports and their impact to the structural steel design adequacy is very time-consuming and is susceptible to errors. This paper presents a computer-aided load monitoring system using the latest technology of data base management and interactive computer software. By linking the data base to analysis and investigation computer programs, the engineer has a very powerful tool to monitor not only the load revisions but also their impact on the steel structural floor framing members and connections. Links to reporting programs allow quick information retrieval in the form of comprehensive reports. Drawing programs extract data from the data base to draw hanger load system drawings on a computer-aided drafting system. These capabilities allow engineers to minimize modifications by strategically locating new hangers or rearranging auxiliary steel configuration

  9. Microstructure-property relationship in microalloyed high-strength steel welds

    International Nuclear Information System (INIS)

    Zhang, Lei

    2017-01-01

    was joined by using the same filler material. The fused weld metal was influenced by the high dilution of microalloyed elements in the base metal, this was significantly pronounced during the modified spray arc welding technique. As a result, the Nb-containing steel exhibited sufficient amounts of alloy pick-up to transition the microstructure in the weld metal from acicular ferrite to bainite as cooling rate was increased, leading to reduced toughness. This was not observed with the other two steels. A second focus was made on the microstructure Evolution and toughness properties of the coarse and fine grained HAZ as welding parameters changed. In order to characterise the microstructure and austenite grain growth behaviour, physical simulations were conducted. The microalloy precipitates were found to be a dominant factor restricting the austenite grain coarsening. The extent of Austenite coarsening in the HAZ is closely related to the type and volume fraction of each microalloy precipitate. Among the three steels, the Ti-containing HAZ exhibited the smallest extent of grain growth due to the sufficient amount of stable Ti-rich precipitates. Microalloy Addition also markedly influenced the subsequent phase transformation in the HAZ. The formation of intragranular acicular ferrite was promoted by Ti-rich precipitate, acting as favourable nucleation sites of ferrite. This structure enhanced the HAZ toughness owing to fine, high-angle boundaries of ferrite plates. The synergistic effect of Nb and Mo elements was beneficial to improve the HAZ toughness at fast cooling rates by promoting fine lower bainite formation. At high heat input, large upper bainite was formed which caused reduced toughness. The final set of experimental work was concentrated on understanding the HAZ softening mechanisms that influenced variations in the tensile properties of the welded joints. The tensile failure in the softened HAZ or base material depended on the welding parameters and the type

  10. Microstructure-property relationship in microalloyed high-strength steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei

    2017-04-01

    was joined by using the same filler material. The fused weld metal was influenced by the high dilution of microalloyed elements in the base metal, this was significantly pronounced during the modified spray arc welding technique. As a result, the Nb-containing steel exhibited sufficient amounts of alloy pick-up to transition the microstructure in the weld metal from acicular ferrite to bainite as cooling rate was increased, leading to reduced toughness. This was not observed with the other two steels. A second focus was made on the microstructure Evolution and toughness properties of the coarse and fine grained HAZ as welding parameters changed. In order to characterise the microstructure and austenite grain growth behaviour, physical simulations were conducted. The microalloy precipitates were found to be a dominant factor restricting the austenite grain coarsening. The extent of Austenite coarsening in the HAZ is closely related to the type and volume fraction of each microalloy precipitate. Among the three steels, the Ti-containing HAZ exhibited the smallest extent of grain growth due to the sufficient amount of stable Ti-rich precipitates. Microalloy Addition also markedly influenced the subsequent phase transformation in the HAZ. The formation of intragranular acicular ferrite was promoted by Ti-rich precipitate, acting as favourable nucleation sites of ferrite. This structure enhanced the HAZ toughness owing to fine, high-angle boundaries of ferrite plates. The synergistic effect of Nb and Mo elements was beneficial to improve the HAZ toughness at fast cooling rates by promoting fine lower bainite formation. At high heat input, large upper bainite was formed which caused reduced toughness. The final set of experimental work was concentrated on understanding the HAZ softening mechanisms that influenced variations in the tensile properties of the welded joints. The tensile failure in the softened HAZ or base material depended on the welding parameters and the type

  11. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  12. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  13. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  14. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  15. Alfinated coating structure on HS6-5-2 (SW7M high speed steel

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2010-10-01

    Full Text Available The paper presents the results of immersion alfinated coating structure in AlSi5 silumin on HS6-5-2 (SW7M high speed steel. Alfinating bath temperature was 750 ± 5 ° C, time of sample immersion was τ = 180s. Thickness of obtained coating under specified conditions was g = 150μm. Manufactured coating consists of three layers of different construction phase. The first layer from the substrate „g1`” constructed with a AlFe phase consist of alloy additives constituents of HS6-5-2 (SW7M steel: W, Mo, V, Cr and Si. On it crystallizes the second layer „g1``” of AlFeWMoCr intermetallic phases also containing Si and small amount of V. Last, the outer layer „g2” of the coating is composed with silumin including AlFeWMoCrVSi intermetallic phases. Within all layers of the coating occurs carbides. Penetration of carbides to individual coating layers is mainly due to steel surface partial melting and crystallizing layers „g1`” and „g1``” by alfinating liquid and shifting into her of carbides as well as partial carbides rejection by crystallization front of intermetallic phases occurs in coating.

  16. Advancement and testing of analysis techniques for the determination of the structural dynamic behavior of containment structures. Final report; Weiterentwicklung und Erprobung von Analysemethoden zur Bestimmung des strukturdynamischen Verhaltens von Containmentstukturen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Juergen; Bahr, Ludwig; Arndt, Jens; Heckoetter, Christian; Grebner, Hans

    2014-11-15

    Within the framework of project RS1197, analysis methods have been further developed and tested for the determination of the structural dynamic loading and the maximum load-bearing capacity of containment structures with a focus on the quantification of safety margins against failures due to loads resulting from selected internal and external hazards. The analyses comprised a model containment structure of prestressed reinforced concrete under internal pressure loading until reaching failure pressure, an outer containment structure made of reinforced concrete under local impact loads that may occur during a targeted aircraft crash, and a steel containment under local peak loads from internal pressure and temperature loads due to core melt scenarios with a local hydrogen combustion. GRS participated in the international ''Standard Problem Exercise 3'' on the issue ''Performance of Containment Vessel under Severe Accident Conditions''. Together with the cooperation partners, aspects of the global containment behaviour were considered based on the example of the Sandia 1:4 model containment of prestressed concrete, which was loaded by rising internal pressure until failure. Complex analysis models were developed, calculating the behaviour of the prestressing tendons under consideration of the frictional contact with the cladding tubes. Compared with corresponding measurement values, the analysis results show that the stresses near the tensioning device and the deformation of the inner surface can be realistically modelled as a function of the internal pressure. In the experiment, global structural failure of the containment model was caused by tendon rupture at about 3.64 times the design pressure. With the developed analysis models of a generic structure of an outer reinforced concrete containment, simulations were carried out for various aircraft crash scenarios as contact problems with explicit impactor simulation. For this

  17. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  18. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  19. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  20. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  1. Reactor container

    International Nuclear Information System (INIS)

    Naruse, Yoshihiro.

    1990-01-01

    The thickness of steel shell plates in a reactor container embedded in sand cussions is monitored to recognize the corrosion of the steel shell plates. That is, the reactor pressure vessel is contained in a reactor container shell and the sand cussions are disposed on the lower outside of the reactor container shell to elastically support the shell. A pit is disposed at a position opposing to the sand cussions for measuring the thickness of the reactor container shell plates. The pit is usually closed by a closing member. In the reactor container thus constituted, the closing member can be removed upon periodical inspection to measure the thickness of the shell plates. Accordingly, the corrosion of the steel shell plates can be recognized by the change of the plate thickness. (I.S.)

  2. TiC reinforced cast Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  3. TiC-reinforced cast Cr steels

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Schrems, K. K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5-4.5Ti, and 1-1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  4. Corrosion failure of a BWR embedded reactor containment liner

    International Nuclear Information System (INIS)

    Wegemar, B.

    2006-01-01

    Following sixteen fuel cycles, leakage through a BWR embedded reactor containment liner (carbon steel) was discovered. Leakage was located at a penetration for electrical conductors as a result of penetrating corrosion attack. During construction, porous cement structures and air pockets/cavities were formed due to erroneous injection of grout. Corrosion attacks on the CS steel liner were located at the relatively small, active surfaces in contact with the porous cement structure. The corrosion mechanism was supposed to be anodic dissolution of the steel liner in areas with insufficient passivation. The penetrations were restored according to original design requirements. (author)

  5. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    The purpose of project is the long-term accumulation of knowledge related to the status of existing structures in order to facilitate answers to questions that may arise in the future. We have visited all the power stations in Sweden and in conjunction with these visits we have gone through all the relevant documents relating to the constructional concrete. An assessment of the structural integrity, related to the question of cracking and hence seepage, has been conducted. Currently, the work has only been done on a random sampling basis as in many cases important information is still missing. Generally, it can be said that the relevant constructions are, from a structural integrity point-of-view, correctly designed and detailed and have very high safety margins for the load cases which constitute the functional demands placed upon the installation. Each containment structure (vessel) appears to have been designed and built using the best available knowledge at the time of construction. It may be of interest to note that when these structures were built there was a very high level of competence and experience of how to design, detail, and construct large concrete structures. The cement used for the majority of these large concrete structures forming nuclear power stations, namely a slowly hardening cement (LH cement), had very good properties, perhaps even better than those available today. Later structures were built with other cements and concrete mixes, although this has been partly compensated for by a choice of a higher nominal quality. The environment is favourable regarding potential degradation of the concrete, the reinforcement steel and the steel liner. Questions remain regarding the uncertainties of the methods used for continuous inspection of the cement injected prestressing steel. This is even the case for possibly insufficient injection around grouting mounting parts for manholes and other openings. Assessment of prestressing losses may also require

  6. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  7. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  8. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  9. Effect of steel structure and defects on reliability of parts of impact mechanisms

    Science.gov (United States)

    Popelyukh, AI; Repin, AA; Alekseev, SE

    2018-03-01

    The paper discusses selection of materials suitable for manufacturing critical parts of impact mechanisms. It is shown that in order to extend life of parts exposed to high dynamic loading, it is expedient to use medium- and high-carbon alloy-treated steels featuring low impurity with nonmetallic inclusions and high hardening characteristics. Application of thermally untreated parts is undesirable as steel having ferrite–pearlite structure possesses low fatigue strength. Aimed to ensure high reliability of parts with a hardness of 42–55 HRC, steel should be reinforced by thermal treatement with the formation of multicomponent martensite–bainite structure. High-quality production should include defectoscopy and incoming material control.

  10. Containment integrity of SEP plants under combined loads

    International Nuclear Information System (INIS)

    Lo, T.; Nelson, T.A.; Chen, P.Y.; Persinko, D.; Grimes, C.

    1984-06-01

    Because the containment structure is the last barrier against the release of radioactivity, an assessment was undertaken to identify the design weaknesses and estimate the margins of safety for the SEP containments under the postulated, combined loading conditions of a safe shutdown earthquake (SSE) and a design basis accident (DBA). The design basis accident is either a loss-of-coolant accident (LOCA) or a main steam line break (MSLB). The containment designs analyzed consisted of three inverted light-bulb shaped drywells used in boiling water reactor (BWR) systems, and three steel-lined concrete containments and a spherical steel shell used in pressurized water reactor (PWR) systems. These designs cover a majority of the containment types used in domestic operating plants. The results indicate that five of the seven designs are adequate even under current design standards. For the remaining two designs, the possible design weaknesses identified were buckling of the spherical steel shell and over-stress in both the radial and tangential directions in one of the concrete containments near its base

  11. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Sasaki, Yusuke; Saito, Takamitsu; Sun, Yang-Kook; Yashiro, Hitoshi

    2009-01-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF 6 salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li + resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li + where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li + , substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF 6 , especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF 6 salt.

  12. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  13. Progress in thermomechanical control of steel plates and their commercialization

    Science.gov (United States)

    Nishioka, Kiyoshi; Ichikawa, Kazutoshi

    2012-01-01

    The water-cooled thermomechanical control process (TMCP) is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates. PMID:27877477

  14. Progress in thermomechanical control of steel plates and their commercialization

    Directory of Open Access Journals (Sweden)

    Kiyoshi Nishioka and Kazutoshi Ichikawa

    2012-01-01

    Full Text Available The water-cooled thermomechanical control process (TMCP is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates.

  15. Description of the containment for a stationary pressurized water reactor

    International Nuclear Information System (INIS)

    Hermani, S.

    1986-01-01

    The function of the containment is to prevent the inadvertent release of radioactive fission products from the reactor coolant system to the atmosphere and to provide biological shielding during both normal and accident operation. Basically three different containment concepts 1) the dry containment, 2) the subatmospheric containment, and 3) the ice condenser containment, have been developed, based on how the accident energy release from the reactor coolant system is controlled. The containment structure can be either 1) reinforced concrets with inside liner, 2) prestressed concrete with inside, or 3) full steel cylinder or steel sphere with separate concrete shield. The size of the containment is largely dictated by the required net free volume, that satisfies the energy release criteria due to the design basic accident. The design and construction methods applied to this structure guarantee that the containment will carry out its safety function. This was proven by the Three Mile Island accident. (author)

  16. Evaluation of Fire Resistance for H-Section Columns Made of Rolled Steels for General Structures and for Welded Structures by Analytic Method

    International Nuclear Information System (INIS)

    Kwon, In-Kyu

    2014-01-01

    Fire resistance is an important factor in sustaining the structural stability of steel framed buildings on fire. However, evaluation of the fire resistance of steel columns has been conducted using rolled steels for general structures, SS 400. Recently, rolled steels for welded structures, such as SM 400 and SM 490, have been used frequently because they have better performance of welding than the SS 400. However, there has been doubt about how much fire resistance SM 400 and SM 490 have. To evaluate by calculation the fire resistance of an H-section column made of SS 400 its mechanical and thermal properties were derived and suggested respectively in the form of regressive equations and the analysis was done based on heat transfer and thermal stress analysis. In this study, the results of the evaluation of H-section columns made of SS 400 with loaded fire tests turned out to be conservative. As a result, a new guideline is required to get the exact fire resistance of another structural steel.

  17. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  18. Waste container and method for containing waste

    International Nuclear Information System (INIS)

    Ono, Akira; Matsushita, Mitsuhiro; Doi, Makoto; Nakatani, Seiichi.

    1990-01-01

    In a waste container, water-proof membranes and rare earth element layers are formed on the inner surface of a steel plate concrete container in which steel plates are embedded. Further, rear earth element detectors are disposed each from the inner side of the steel plate concrete container by way of a pressure pipe to the outer side of the container. As a method for actually containing wastes, when a plurality of vessels in which wastes are fixed are collectively enhoused to the waste container, cussioning materials are attached to the inner surface of the container and wastes fixing containers are stacked successively in a plurality of rows in a bag made of elastic materials. Subsequently, fixing materials are filled and tightly sealed in the waste container. When the waste container thus constituted is buried underground, even if it should be deformed to cause intrusion of rain water to the inside of the container, the rare earth elements in the container dissolved in the rain water can be detected by the detectors, the containers are exchanged before the rain water intruding to the inner side is leached to the surrounding ground, to previously prevent the leakage of radioactive nuclides. (K.M.)

  19. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  20. Ultimate capacity and influenced factors analysis of nuclear RC containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Song Chenning; Hou Gangling; Zhou Guoliang

    2014-01-01

    Ultimate compressive bearing capacity, influenced factors and its rules of nuclear RC containment are key problems of safety assessment, accident treatment and structure design, etc. Ultimate compressive bearing capacity of nuclear RC containment is shown by concrete damaged plasticity model and steel double liner model of ABAQUS. The study shows that the concrete of nuclear RC containment cylinder wall becomes plastic when the internal pressure is up to 0.87 MPa, the maximum tensile strain of steel liner exceeds 3000 × 10 6 and nuclear RC containment reaches ultimate status when the internal pressure is up to 1.02 MPa. The result shows that nuclear RC containment is in elastic condition under the design internal pressure and the bearing capacity meets requirement. Prestress and steel liner play key parts in the ultimate internal pressure and failure mode of nuclear RC containment. The study results have value for the analysis of ultimate compressive bearing capacity, structure design and safety assessment. (authors)

  1. Feasibility study of the IE-SASW method for nondestructive evaluation of containment building structures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.S. E-mail: dskim@kaist.ac.kr; Kim, H.W. E-mail: hwk@kaist.ac.kr; Seo, W.S.; Choi, K.C.; Woo, S.K

    2003-02-01

    The IE-SASW method, a combination of impact-echo (IE) acoustics with spectral analysis of surface waves (SASW), is proposed as a newly developed nondestructive testing method in concrete structures. This feasibility study examines the IE technique and uses elastic P-wave velocity data as measured from the SASW method on concrete members in nuclear power plant containment structures. It was shown that both the thickness of the concrete specimens used in this study and the depth of the introduced defects (i.e. voids) could be identified by the IE-SASW method. In contrast, the reinforced steel bar itself could not be identified by the IE-SASW method. Additionally, GPR (ground penetrating radar) techniques were used to examine the same specimens in order to establish some level of performance and reliability to compare with the performance of the IE-SASW method. The GPR method provides an objective and reliable image corresponding to the reinforced steel bars. The experimental studies show that it is more feasible to use the IE-SASW method rather than GPR to detect voids that were positioned beneath the steel reinforcing bars in the concrete specimens.

  2. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1990-01-01

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium

  3. Corrosion of steel drums containing immobilized ion exchange-resins and incineration ashes

    International Nuclear Information System (INIS)

    Marotta, F.; Schulz Rodriguez, F.M.; Farina, Silvia B.; Duffo, Gustavo S.

    2009-01-01

    The Argentine Atomic Energy Commission (CNEA) is responsible for developing the management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. The intermediate radioactive waste consists mostly in spent ionic exchange resins and filters from the nuclear power plants, research reactors and radioisotopes production facilities. The spent resins, as well as the incineration ashes, have to be immobilized before being stored to improve leach resistance of waste matrix and to maintain mechanical stability for safety requirements. Generally, cementation processes have been used as immobilization techniques for economical reasons as well as for being a simple operation. The immobilized resins and incineration ashes are thus contained in steel drums that, in turn, can undergo corrosion depending on the ionic content of the matrix. This work is a part of a systematic study of the corrosion susceptibility of steel drums in contact with immobilized cemented exchange-resins with different types and contents of aggressive species and incineration ashes. To this purpose, a special type of specimen was manufactured to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix are being monitored along time. The aggressive species studied were chloride ions (the main ionic species present in nature) and sulphate ions (produced during the radiolysis process of the cationic exchange-resins after cementation). Preliminary results show the strong effect of chloride on the corrosion susceptibility of the steel. Monitoring will continue for

  4. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  5. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  6. Corrosion produced failures in valves made of micro-melted stainless steel. Valve disk

    International Nuclear Information System (INIS)

    Abuin, G.; Alanis, I.; Berardo, L.

    1991-01-01

    Cast stainless steels show different metallographic structure than equivalent laminated steels where the former presents good resistance in media containing chlorides. In the present work, an analysis is made of the causes for the fracture of an AISI 316 micro-melted stainless steel disk for a valve in a cleaning agents feeding circuit in a food processing plant. (Author) [es

  7. A quality approach to maintain the properties of S235 JR structural carbon steel in Lebanon

    International Nuclear Information System (INIS)

    Sidawi, J.A.; Al Khatib, H.

    2004-01-01

    Full text.S235JR carbon steel is one of the most popular steels used in Lebanon. It is imported by steel dealers and is widely used by all fabricators and manufacturers of steels for many structural purposes and applications. This kind of steel has good ductile properties as well as excellent weldability. It is still known by its previous designation St 37-2 or E 24-2. S235JR is produced in many shapes and thicknesses such as steel plates, sheets, angles and different other geometric shapes. Standard chemical and mechanical tests were conducted and reported on S235JR hot-rolled structural low-carbon mild steel specimens collected from Lebanese steel market. The main objective of this work is to assure the compliance of these properties with those set by the steel manufacturer. The above mentioned tests were performed at the laboratories of the Industrial Research Institute (IR) in Lebanon to assure the quality and credibility of the results. related European and American standards were presented as references and compared with the achieved results. Discussion was presented to show the similarities and differences between S235JR steel samples and standard requirements. Some of the reasons for such differences were discussed. Sufficient data was furnished through this work for the public and mainly for the Lebanese Standard Organization LIBNOR to easily adopt and implement the EN 10025:1993 European standard that can be applied in Lebanon concerning the most commonly used hot rolled low carbon structural steel. A follow up concerning adopting and implementing EN 10025:1993 will be briefed

  8. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Hennion, A.

    1999-03-01

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  9. Application of the boron autoradiography in structural steels

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de

    1984-01-01

    The development of boron containing steels requires a knowledge of the microstructural state of that element, determined by the competition between precipitation and solution.An example of the use of the autoradiographic method for obtaining boron distribution images is described and showed. The technique is based on an α emitting nuclear reaction, which leaves a latent track in cellulose. This detector material is revealed by chemical etching and observed by optical and electron transmission microscopy. (Author) [pt

  10. Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

    International Nuclear Information System (INIS)

    Xinhua, Chen; Junhua, Dong; Enhou, Han; Wei, Ke

    2008-01-01

    The atmospheric corrosion performance of Al-alloying Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at 30 .deg. C and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% NaHSO 3 (pH∼4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage: and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of Fe 3 O 4 and α-FeOOH. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as FeAl 2 O 4 , (Fe, Si) 2 (Fe, Al)O 4 ). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere

  11. An approach for evaluating the general and localised corrosion of carbon steel containers for nuclear waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sharland, S.M.; Tasker, P.W.

    1987-06-01

    The paper considers the long term corrosion of carbon steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localised or passive corrosion behaviour depending on the exact composition and redox potential of the groundwater contacting the containers; localised corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localised corrosion is only possible when the environment is sufficiently oxidising to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species which oxidising potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localised and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient. (orig.)

  12. Detection of Interfacial Debonding in a Rubber-Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers.

    Science.gov (United States)

    Feng, Qian; Kong, Qingzhao; Jiang, Jian; Liang, Yabin; Song, Gangbing

    2017-09-01

    Rubber-steel-layered structures are used in many engineering applications. Laminated rubber-steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber-steel-layered structures. Interfacial debonding in rubber-steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber-steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel-rubber debonding. When the rubber-steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber-steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber-steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber-steel debonding failure in real time. The active sensing

  13. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  14. Dynamic response analysis of a 24-story damped steel structure

    Science.gov (United States)

    Feng, Demin; Miyama, Takafumi

    2017-10-01

    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  15. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Seabed sediment (SBS) is a special soil that is covered by seawater. With the developments in marine oil exploitation and engineering, more and more steel structures have been buried in SBS. SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this ...

  16. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    International Nuclear Information System (INIS)

    Prajitno, Djoko Hadi; Syarif, Dani Gustaman

    2014-01-01

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO 2 . The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe 2 O 3 . Minor element such as Cr 2 O 3 is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO 2 appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate

  17. Electrochemical corrosion studies on a selected carbon steel for application in nuclear waste disposal containers: Influence of chemical species in brines on corrosion

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Smailos, E.

    1994-04-01

    In previous corrosion studies, carbon steels were identified as promising materials for the manufacture of long-lived high-level waste containers that could act as an engineered barrier in a rock-salt repository. In this paper, the influence of chemical species, potentially present in salt brines, on the electrochemical corrosion behavior of the preselected fine-grained steel TStE 355 was studied. The steel was examined at 90 C in a disposal relevant NaCl-rich brine containing various species (Br - , I - , Cu 2+ , Mn 2+ , S 2- , B(OH )4 - and Fe 3+ ) at concentrations between 10 -5 M/I and 10 -1 M/I. (orig.) [de

  18. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  19. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  20. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  1. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  2. Utilization of structural steel in buildings.

    Science.gov (United States)

    Moynihan, Muiris C; Allwood, Julian M

    2014-08-08

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is 'rationalization'-providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in 'embodied' carbon emissions.

  3. Aging of the containment pressure boundary in light-water reactor plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1997-01-01

    Research is being conducted by the Oak Ridge National Laboratory to address aging of the containment pressure boundary in light-water reactor plants. The objectives of this work are to (1) identify the significant factors related to occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containments and liners of concrete containments, and to make recommendations on use of risk models in regulatory decisions; (2) provide NRC reviewers a means of establishing current structural capacity margins for steel containments, and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by NRC reviewers in assessing the seriousness of reported incidences of containment degradation. In meeting these objectives research is being conducted in two primary task areas - pressure boundary condition assessment and root-cause resolution practices, and reliability-based condition assessments. Under the first task area a degradation assessment methodology was developed for use in characterizing the in-service condition of metal and concrete containment pressure boundary components and quantifying the amount of damage that is present. An assessment of available destructive and nondestructive techniques for examining steel containments and liners is ongoing. Under the second task area quantitative structural reliability analysis methods are being developed for application to degraded metallic pressure boundaries to provide assurances that they will be able to withstand future extreme loads during the desired service period with a level of reliability that is sufficient for public safety. To date, mathematical models that describe time-dependent changes in steel due to aggressive environmental factors have been identified, and statistical data supporting their use in time-dependent reliability analysis have been summarized

  4. Effect of zirconium on the structure and phase composition of steel 03Kh8SYu

    International Nuclear Information System (INIS)

    Tarzhumanova, V.A.; Ryabchenkov, A.V.; Shatunova, A.V.; Yoganova, S.A.

    1986-01-01

    Previously, the authors determined the optimum zirconium content providing retention of a fine-grained structure for steel 03Kh8SYu during high-temperature heating. It was suggested that this was caused by separation in the steel of intermetallic phase Fe 3 Zr. This paper presents results of further studies in this direction. X-ray analysis results for the anodic residues of the steels are presented. It can be seen that in steel without zirconium, carbides of the type M 23 C 6 and M 7 C 3 and aluminum nitride are present. On adding 0.05% Zr, zirconium nitride forms in addition to the existing aluminum nitride and carbides of the type M 7 C 3 . The authors also investigated the effect of zirconium on the tendency of the steel toward grain growth at higher temperature; they studied the structure of steel 03Kh8SYu with 0.61% Zr after soaking specimens for 100 h at 950-1100 C. Results are presented

  5. The structural integrity of high level waste containers for deep disposal

    International Nuclear Information System (INIS)

    Keer, T.J.; Martindale, N.J.; Haijtink, B.

    1990-01-01

    Most countries with a nuclear power program are developing plans to dispose of high level waste in deep geological repositories. These facilities are typically in the range 500-1000m below ground. Although long term safety analyses mainly rely on the isolation function of the geological barrier, for the medium term (between 500 and 1000 years) a barrier such as a container (overpack) may play an important role. This paper addresses the mechanical/structural behavior of these structures under extreme geological pressures. The work described in the paper was conducted within the COMPAS project (Container Mechanical Performance Assessment) funded by the Commission of the European Communities and the United Kingdom Department of the Environment. The work was aimed at predicting the modes of failure and failure pressures which characterize the heavy, thick walled mild steel containers which might be considered for the disposal of vitrified waste. The work involved a considerable amount of analytical work, using 3-D non-linear finite element techniques, coupled with a large parallel program of experimental work. The experimental work consisted of a number of scale model tests in which the response of the containers was examined under external pressures as high as 120MPa. Extensive strain-gauge instrumentation was used to record the behavior of the models as they were driven to collapse. A number of comparative computer calculations were carried out by organizations from various European countries. Correlations were established between experimental and analytical data and guidelines regarding the choice of suitable software were established. The work concluded with a full 3-D simulation of the behavior of a container under long-term disposal conditions. In this analysis, non-linearities due to geological effects and material/geometry effects in the container were properly accounted for. 6 refs., 9 figs., 4 tabs

  6. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  7. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    International Nuclear Information System (INIS)

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  8. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  9. Concrete containment tests: Phase 2, Structural elements with liner plates: Interim report

    International Nuclear Information System (INIS)

    Hanson, N.W.; Roller, J.J.; Schultz, D.M.; Julien, J.T.; Weinmann, T.L.

    1987-08-01

    The tests described in this report are part of Phase 2 of the Electric Power Research Institute (EPRI) program. The overall objective of the EPRI program is to provide a test-verified analytical method of estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The Phase 2 testing included seven large-scale specimens representing structural elements from reinforced and prestressed concrete reactor containment buildings. Six of the seven test specimens were square wall elements. Of these six specimens, four were used for biaxial tension tests to determine strength, deformation, and leak-rate characteristics of full-scale wall elements representing prestressed concrete containment design. The remaining two square wall elements were used for thermal buckling tests to determine whether buckling of the steel liner plate would occur between anchorages when subjected to a sudden extreme temperature differential. The last of the seven test specimens for Phase 2 represented the region where the wall and the basemat intersect in a prestressed concrete containment building. A multi-directional loading scheme was used to produce high bending moments and shear in the wall/basemat junction region. The objective of this test was to determine if there is potential for liner plate tearing in the junction region. Results presented include observed behavior and extensive measurements of deformations and strains as a function of applied load. The data are being used to confirm analytical models for predicting strength and deformation of containment structures in a separate parallel analytical investigation sponsored by EPRI

  10. Problem statement for optimal design of steel structures

    Directory of Open Access Journals (Sweden)

    Ginzburg Aleksandr Vital'evich

    2014-07-01

    task it can be offered to use informational technologies and opportunities of automated systems. For this purpose it is necessary to develop the automated system of steel designs, allowing to consider some criteria of optimality and a wide range of the restrictions for steel structural designs. This will allow to accelerate projection process, to reduce labor input of a designer and essentially increase the quality of design solutions for steel designs.

  11. Development of rational design technique for frame steel structure combining seismic resistance and economic performance

    International Nuclear Information System (INIS)

    Kato, Motoki; Morishita, Kunihiro; Shimono, Masaki; Chuman, Yasuharu; Okafuji, Takashi; Monaka, Toshiaki

    2015-01-01

    Anti-seismic designs have been applied to plant support steel frames for years. Today, a rational structure that further improves seismic resistance and ensures economic performance is required in response to an increase of seismic load on the assumption of predicted future massive earthquakes. For satisfying this requirement, a steel frame design method that combines a steel frame weight minimizing method, which enables economic design through simultaneous minimization of multiple steel frame materials, and a seismic response control design technology that improves seismic resistance has been established. Its application in the design of real structures has been promoted. This paper gives an overview of this design technology and presents design examples to which this design technology is applied. (author)

  12. Response of cast austenitic stainless steel to low temperature plasma carburizing.

    OpenAIRE

    Sun, Yong

    2008-01-01

    The response of a cast 316 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. The cast steel has a dendritic structure with a mix of austenite, ferrite and carbide phases. The results show that such a complex structure responds well to the carburizing process, and the inter-dendrite regions containing ferrite and carbides can be transformed to expanded austenite to form a continuous and uniform layer supersat...

  13. Structural characterization and magnetic properties of steels subjected to fatigue

    International Nuclear Information System (INIS)

    Lo, C.C.H.; Tang, F.; Biner, S.B.; Jiles, D.C.

    2000-01-01

    Studies have been made on the effects of residual stress and microstructure on the variations of magnetic properties of steels during fatigue. Strain-controlled fatigue tests have been conducted on 0.2wt% C steel samples which were (1) cold-worked (2) cold-worked and annealed at 500 deg. C to relieve residual stress, and (3) annealed at 905 deg. C to produce a ferrite/pearlite structure. The changes of surface microstructure were studied by SEM replica technique. The dislocation structures of samples fatigued for different numbers of cycle were studied by TEM. In the initial stage of fatigue coercivity was found to behave differently for samples which have different residual stress levels. In the intermediate stage the magnetic hysteresis parameters became stable as the dislocation cell structure developed in the samples. In the final stage the magnetic parameters decreased dramatically. The decrease rate is related to the propagation rate of fatigue cracks observed in the SEM study, which was found to be dependent on the sample microstructure. The present results indicate that the magnetic inspection technique is able to differentiate the residual stress effects from the fatigue damage induced by cyclic loading, and therefore it is possible to detect the onset of fatigue failure in steel components via measurements of the changes in magnetic properties.--This work was sponsored by the National Science Foundation, under grant number CMS-9532056

  14. Phase change predictions for liquid fuel in contact with steel structure using the heat conduction equation

    Energy Technology Data Exchange (ETDEWEB)

    Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO{sub 2} brought into contact with solid steel using up-to-date materials properties. The solutions predict criteria for fuel crust formation and steel melting and provide a simple algorithm to determine the interface temperature when one or both of the materials is undergoing phase change. The predicted steel melting criterion is compared with available experimental results. (author)

  15. Phase change predictions for liquid fuel in contact with steel structure using the heat conduction equation

    International Nuclear Information System (INIS)

    Brear, D.J.

    1998-01-01

    When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO 2 brought into contact with solid steel using up-to-date materials properties. The solutions predict criteria for fuel crust formation and steel melting and provide a simple algorithm to determine the interface temperature when one or both of the materials is undergoing phase change. The predicted steel melting criterion is compared with available experimental results. (author)

  16. Laboratory Study on Prevention of CaO-Containing ASTM "D-Type" Inclusions in Al-Deoxidized Low-Oxygen Steel Melts During Basic Slag Refining

    Science.gov (United States)

    Jiang, Min; Wang, Xin-Hua; Yang, Die; Lei, Shao-Long; Wang, Kun-Peng

    2015-12-01

    Present work was attempted to explore the possibility of preventing CaO-containing inclusions in Al-deoxidized low-oxygen special steel during basic slag refining, which were known as ASTM D-type inclusions. Based on the analysis on formation thermodynamics of CaO-containing inclusions, a series of laboratory experiments were designed and carried out in a vacuum induction furnace. During the experiments, slag/steel reaction equilibrium was intentionally suppressed with the aim to decrease the CaO contents in inclusions, which is different from ordinary concept that slag/steel reaction should be promoted for better control of inclusions. The obtained results showed that high cleanliness of steel was obtained in all the steel melts, with total oxygen contents varied between 0.0003 and 0.0010 pct. Simultaneously, formation of CaO-containing inclusions was successfully prohibited, and all the formed oxide inclusions were MgO-Al2O3 or/and Al2O3 in very small sizes of about 1 to 3 μm. And 90 pct to nearly 98 pct of them were wrapped by relative thicker MnS outer surface layers to produce dual-phased "(MgO-Al2O3) + MnS" or "Al2O3 + MnS" complex inclusions. Because of much better ductility of MnS, certain deformability of these complex inclusions can be expected which is helpful to improve fatigue resistance property of steel. Only very limited number of singular MnS inclusions were with sizes larger than 13 μm, which were formed during solidification because of. In the end, formation of oxide inclusions in steel was qualitatively evaluated and discussed.

  17. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  18. Corrosion evaluation of metallic HLW/spent fuel disposal containers - review

    International Nuclear Information System (INIS)

    Kursten, B.; Smailos, E.; Azkarate, I.; Werme, L.; Smart, N.R.; Marx, G.; Cunado, M.A.; Santarini, G.

    2004-01-01

    Over the years a lot of investigations have been performed to choose suitable container materials and to characterize their long-term corrosion behaviour in contact with their potential disposal environments, i.e. salt, clay, and granite. Carbon steels, stainless steels, nickel-based alloys, titanium-based alloys, and copper have been widely investigated as potential container materials depending on the studied host rock formation. The results obtained in salt environments indicate that the passively corroding Ti99.8-Pd is the primary choice for the thin-walled corrosion-resistant concept, since its general corrosion rate is negligible and it is highly resistant to localized corrosion and stress corrosion cracking (SCC) in salt brines. The TStE 355 carbon steel is the first candidate for the corrosion-allowance concept because it is resistant to pitting corrosion and SCC and its general corrosion rates are sufficiently low to provide corrosion allowance acceptable for thick-walled containers. Stainless steels, Ni-based alloys, and Ti-based alloys are the most important candidate container materials in clay for the thin-walled concept, while carbon steel is considered the main choice for the thick-walled corrosion-allowance concept. Studies performed in granite seem to indicate that copper containers provide an excellent corrosion barrier with an estimated lifetime exceeding 100,000 years. The TStE 355 carbon steel is also a valid option for a thick-walled container concept in granite. In this paper, some relevant corrosion data of carbon steel and stainless steel in cementitious environments are given in addition because large amounts of concrete will be used as structural materials in most of the envisaged repository design concepts. This paper also provides recommendations for future studies. (authors)

  19. Damascus steel ledeburite class

    Science.gov (United States)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  20. Review of Differences of Steel related Properties between Proposals of European Structural Codes

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    Differences of Steel related Properties between fire chapters of the Proposals of European Structural Codes are indicated for the same physical properties, the right properties are found and it is proposed to use these properties in all codes.......Differences of Steel related Properties between fire chapters of the Proposals of European Structural Codes are indicated for the same physical properties, the right properties are found and it is proposed to use these properties in all codes....

  1. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  2. Moessbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment

    International Nuclear Information System (INIS)

    Kamimura, Takayuki; Nasu, Saburo; Tazaki, Takashi; Kuzushita, Kaori; Morimoto, Shotaro

    2002-01-01

    The rusts formed on mild steel (15-year exposure) and weathering steel (32-year exposure) exposed to an industrial environment have been characterized by means of X-ray diffraction technique and 57 Fe Moessbauer spectroscopy. By using an X-ray diffraction method, it is suggested that the rusts formed on both steels consist of the crystalline α-FeOOH, γ-FeOOH and an X-ray amorphous phase, which gives no peak to X-ray diffraction pattern. The amount of the X-ray amorphous phase exceeds 50% of the total amount of the rust. The 57 Fe Moessbauer spectra observed at 10K indicate that the rust contains only α-FeOOH, γ-FeOOH and Fe 3-δ O 4 (γ-Fe 2 O 3 ) for mild steel, and only α-FeOOH and γ-FeOOH for weathering steel. The X-ray amorphous substance in the rust payer formed on mild steel possesses the structures of mainly α-FeOOH showing superparamagnetism owing to its small particle size, and Fe 3-δ O 4 (γ-Fe 2 O 3 ). They are contained both in the inner rust layer and in the outer rust layer. The X-ray amorphous phase in the rust layer formed on weathering steel is mainly α-FeOOH. (author)

  3. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    Science.gov (United States)

    2016-10-12

    Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 2. O. Grong, Metallurgical Modelling of Welding , 2ed., Materials Modelling...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6394--16-9690 Validation of Temperature Histories for Structural Steel Welds Using...PAGES 17. LIMITATION OF ABSTRACT Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges S.G. Lambrakos

  4. Analysis of features of stainless steels in dissimilar welded joints in chloride inducted corrosion

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Stainless steels of femtic-austenitic microstructure that means the duplex Cr-Ni-Mo steels, in comparison with austenitic steel includes less expensive nickel and has much better mechanical properties with good formability and corrosion resistance, even in environments containing chloride ions. Similar share of high chromium ferrite and austenite, which is characterized by high ductility, determines that the duplex steels have good crack resistance at temperatures up to approximately -40°C. The steels containing approximately 22% Cr, 5% Ni, 3% Mo and 0.2% N crystallizes as a solid solution δ, partially transforming from the temperature of about 1200°C to 850°C into the phase α. The stable structure of considered steels, at temperatures above 850°C, is ferrite, and at lower temperatures the mixture of phase γ+α +σ. The two-phase structure α+γ the duplex steel obtains after hyperquenching at the temperature of stability of the mixture of α+γ phases, and the share of the phases depends on the hyper quenching attributes. Hyperquenching in water, with a temperature close to 1200°C, ensures the instance in the microstructure of the steel a large share of ferrite and a small share of the high chromium austenite. This causes the increase of strength properties and reducing the plasticity of the steel and its resistance ability to cracking and corrosion. Slower cooling from the mentioned temperature, for example in the air, enables the partial transformation of the a phase into the γ one (α → γ) and increasing the share of austenite in the steel structure. It leads to improvement of plasticity properties. In the paper are presented the results of investigations of heteronymous welded joints of duplex steel and austenitic one. The results include the relation between the chemical composition of steels and their weldability.

  5. Study on performance of waterborne anticorrosive coatings on steel rebars

    Science.gov (United States)

    Ramaswamy, S. N.; Varalakshmi, R.; Selvaraj, R.

    2017-12-01

    Durability of reinforced cement concrete structures is mainly affected by corrosion of steel reinforcements. In order to protect the reinforcing bars from corrosion and to enhance the lifetime of reinforced cement concrete structural members, anticorrosive treatment to steel is of prime importance. Conventional coatings are solvent based. In this study, water based Latex was used to formulate anticorrosive coating. Latex is applied to steel specimen substrates such as plates and rods and their mechanical properties such as flexibility, abrasion, bendability, adhesive strength, impact resistance, etc. were studied. It was inferred that coating containing latex, micro silica, zinc phosphate, ferric oxide, aluminum oxide, titanium oxide and silica fume was found to possess more corrosion resistance under marine exposure conditions.

  6. Realization methodology for optimal design of steel structures conveyors with hanging belt

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2016-03-01

    Full Text Available Presents the results of optimum design of metal structures of the fixed conveyor with hanging belt. The analysis results optimum design of steel structures of stationary conveyor with hanging belt.

  7. Application and validation of the notch master curve in medium and high strength structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Sergio; Garcia, Tiberio [Universidad de Cantabria, Santander (Spain); Madrazo, Virginia [PCTCAN, Santander (Spain)

    2015-10-15

    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches.

  8. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Science.gov (United States)

    Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina

    2018-03-01

    There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  9. Surface characteristics of the galvannealed coating in Interstitial-free high strengthen steels containing Si and Mn

    International Nuclear Information System (INIS)

    Jeon, Sun Ho; Chin, Kwang Geun; Kim, Dai Ryong

    2008-01-01

    Surface-void defects observed on the Galvannealed (GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer

  10. Surface characteristics of the galvannealed coating in Interstitial-free high strengthen steels containing Si and Mn

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sun Ho; Chin, Kwang Geun [Pohang Iron and Steel Co. Technical Research Laboratories, Gwangyang (Korea, Republic of); Kim, Dai Ryong [Kyungpook National University, Daegu (Korea, Republic of)

    2008-02-15

    Surface-void defects observed on the Galvannealed (GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

  11. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  12. Modal Identification of A Tested Steel Frame using Linear ARX Model Structure

    Directory of Open Access Journals (Sweden)

    Yavuz Kaya

    2009-07-01

    Full Text Available This study contains the identification of modal dynamic properties of a 3-story large-scale steel test frame structure through shaking table measurements. Shaking table test is carried out to estimate the modal properties of the test frame such as natural frequencies, damping ratios and mode shapes. Among many different model structures, ARX (Auto Recursive Exogenous model structure is used for modal identification of the frame structure system. The unknown parameters in the obtained ARX model structure are estimated by Least-Square method by minimizing the AIC criteria with the help of a program coded in advanced computing software MATLAB®. The adopted model structure is then tested out in time domain to verify the validity of the model with the selected model parameters. Then the modal characteristics of test frame and the story stiffness are estimated using the white noise shakings. An attempt is done to determine the change of modal characteristics and the story stiffness of test frame according to the velocity, which the test frame structure experienced during the shaking schedule and also during the input shaking of El Centro 1940 NS. Results shows that there is an increase in damping ratio and a decrease in both story stiffness and natural frequency for all modes when the damage forms at cementitious device and the test frame structure itself during the shaking schedule.

  13. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia)

    2014-03-24

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  14. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  15. The parameters controlling the strength of soil-steel structures

    International Nuclear Information System (INIS)

    Barkhordari, M. A.; Abdel-Sayed, G.

    2001-01-01

    The present paper examines the ultimate load carrying capacity of soil-steel structures taking into consideration the sequence of the developments of plastic hinges, their location, and their sustained plastic moment. Non-linear analysis has been conducted using a micro-computer program in which a structural model is applied with the soil replaced by normal and tangential springs acting at the nodal points of a polygon representing the conduit wall. A comparative study has been conducted for the parameters which affect the load carrying capacity of soil-steel structure, leading to the following conclusions: (1) the load carrying capacity of the composite structure is significantly affected by the shear stiffness (or friction) of the surrounding soil; (2) the conduit span may be used when calculating the buckling load rather than the local radius of the conduit wall; (3) circular arches with sector angle of less than 180 d eg have higher load carrying capacity than equivalent re-entrant arches, i.e. arches with sector angle of more than 180 d eg; (4) the buckling load of the conduit is slightly affected by the rigidity of the lower zone of the conduit wall; (5) eccentric application of the load has practically little effect on its load carrying capacity

  16. Special closure for radioactive shipping container

    International Nuclear Information System (INIS)

    Otts, J.V.

    1976-03-01

    The objective of this program was to develop a special lid closure for radioactive material shipping containers, typically steel drums. Three closure techniques were designed, fabricated, and proven to be structurally adequate to protect 1000 lb when dropped 30 ft. The three designs were (1) a 6-in. lid extension (skirt), (2) a 6-in. inner lid, and (3) c-clamps used at the container/lid interface. Based upon structural integrity, economic impact, and minimal design change, the 6-in. lid extension is recommended

  17. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  18. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  19. Corrosion behaviors and contact resistances of the low-carbon steel bipolar plate with a chromized coating containing carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China); Wu, Min-Sheng [Department of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China)

    2009-08-15

    This work improved the surface performance of low-carbon steel AISI 1020 by a reforming pack chromization process at low temperature (700 C) and investigated the possibility that the modified steels are used as metal bipolar plates (BPP) of PEMFCs. The steel surface was activated by electrical discharge machining (EDM) with different currents before the chromizing procedure. Experimental results indicate that a dense and homogenous Cr-rich layer is formed on the EDM carbon steels by pack chromization. The chromized coating pretreated with electrical discharge currents of 2 A has the lowest corrosion current density, 5.78 x 10{sup -8} Acm{sup -2}, evaluated by potentiodynamic polarization in a 0.5 M H{sub 2}SO{sub 4} solution and the smallest interfacial contact resistance (ICR), 11.8 m{omega}-cm{sup 2}, at 140 N/cm{sup 2}. The carbon steel with a coating containing carbides and nitrides is promising for application as metal BPPs, and this report presents the first research in producing BPPs with carbon steels. (author)

  20. Conversion electron Moessbauer study of low carbon steel polarized in aqueous sulfate solution containing sulfite in low concentration

    International Nuclear Information System (INIS)

    Vertes, Cs.; Lakatos-Varsanyi, M.; Vertes, A.; Kuzmann, E.; Meisel, W.; Guetlich, P.

    1992-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5 M Na 2 SO 4 +0.001 M NaHSO 3 at pH=3.5 and 6.5. The found major components at pH=3.5 were: γ-FeOOH and Fe 3 C, and also FeSO 4 .H 2 O could be identified on the surface of the low carbon steel as a minor component. At pH=6.5, the passive film contained only amorphous iron(III)-oxide or oxyhydroxide. (orig.)

  1. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    In modern structural steel frame design, the modelling of joints between beams and columns are based on very simple assumptions. The joints are most often assumed to behave as a perfect hinge or as a rigid joint. This means that in the overall static analysis relative rotations and changes...

  2. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel

    International Nuclear Information System (INIS)

    Mordyuk, B.N.; Prokopenko, G.I.; Vasylyev, M.A.; Iefimov, M.O.

    2007-01-01

    A nanocrystalline surface layer was produced on an AISI-321 stainless steel by severe plastic deformation via ultrasonic peening (UP). The microstructural evolution of the surface layer was characterized by means of X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). The volume fraction of strain-induced α-martensite as a function of the effective strain (e-bar) was evaluated quantitatively using XRD and magnetic measurements. Considering the e-bar magnitudes and the TEM data obtained, it is concluded that a grain refinement of austenitic structure passes ahead of the α-martensite formation, particularly in the top surface layer. The nanocrystalline austenitic grain structure (mean grain size∼15nm) was observed at e-bar=0.45, while the startup of the strain-induced martensitic transformation was revealed at the strain extent of 0.62. The nanostructured surface layer formed after straining to e-bar=0.8 already contains mainly the martensite nanograins characterized by an average size of about 10nm. Grain size increased gradually up to 60nm within the layer containing both austenite and martensite phases at a depth of about 30μm from the treated surface. Both the microhardness behavior of the stainless steel surface and its corrosion performance in 3.5% NaCl solution can be enhanced by the UP. They are shown to be in correlation with: (i) the grain refinement process and (ii) the increase in the volume fraction of strain-induced α-martensite

  3. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Directory of Open Access Journals (Sweden)

    Bagautdinov Ruslan

    2018-01-01

    Full Text Available There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  4. Low alloy steel versus ADI – differences and similarities

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2009-01-01

    Full Text Available The results of comparison between the microstructure of selected bainitic low alloy steel and austempered ductile iron ADI are presented. The aim of the comparison was to find out differences and similarities existing in these iron carbon commercial alloys. In this paper our own results on ADI structure and literature data were used. It follows from discussion presented here that both microstructure and properties of ADI are very close that which are observed in low alloy carbon steel. Moreover, we suggest that there is no so doubt to treat ADI mechanical properties as steel containing nodular inclusions of graphite.

  5. Reactor container structure

    International Nuclear Information System (INIS)

    Sato, Yoshimi; Fukuda, Yoshio.

    1993-01-01

    A main container of an FBR type reactor using liquid sodium as coolants is attached to a roof slug. The main container contains, as coolants, lower temperature sodium, and high temperature sodium above a reactor core and a partitioning plate. The main container has a structure comprising only longitudinal welded joints in parallel with axial direction in the vicinity of the liquid surface of high temperature sodium where a temperature gradient is steep and great thermal stresses are caused without disposing lateral welded joints in perpendicular to axial direction. Only the longitudinal welded joints having a great fatigue strength are thus disposed in the vicinity of the liquid surface of the high temperature sodium where axial thermal stresses are caused. This can improve reliability of strength at the welded portions of the main container against repeating thermal stresses caused in vicinity of the liquid surface of the main container from a view point of welding method. (I.N.)

  6. Austin: austenitic steel irradiation E 145-02 Irradiation Report

    International Nuclear Information System (INIS)

    Genet, F.; Konrad, J.

    1987-01-01

    Safety measures for nuclear reactors require that the energy which might be liberated in a reactor core during an accident should be contained within the reactor pressure vessel, even after very long irradiation periods. Hence the need to know the mechanical properties at high deformation velocity of structure materials that have received irradiation damage due to their utilization. The stainless steels used in the structures of reactors undergo damage by both thermal and fast neutrons, causing important changes in the mechanical properties of these materials. Various austenitic steels available as structural materials were irradiated or are under irradiation in various reactors in order to study the evolution of the mechanical properties at high deformation velocity as a function of the irradiation damage rate. The experiment called AUSTIN (AUstenitic STeel IrradiatioN) 02 was performed by the JRC Petten Establishment on behalf of Ispra in support of the reactor safety programme

  7. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Malard, B.; Remy, B.; Scott, C.; Deschamps, A.; Chêne, J.; Dieudonné, T.; Mathon, M.H.

    2012-01-01

    Highlights: ► SANS was used to study the interaction between H and a Fe–Mn–C steel containing V. ► No interaction between H and V in solid solution has been detected. ► A reversible interaction between H and structural defects has been measured. ► 5 ppm wt. of H can be trapped in the VC nanoprecipitates. - Abstract: The trapping of hydrogen by VC precipitates and structural defects in high strength Fe–Mn–C steel was studied by small angle neutron scattering. No interaction between H and V in solid solution has been detected but a significant interaction between H and structural defects introduced by plastic deformation has been measured. This last effect was reversible upon outgassing of the H. Moreover a significant interaction between H and VC precipitates has been measured; 5 ppm wt. of H could be trapped in the precipitates. This is consistent with the homogeneous trapping of H within the precipitates rather than at the precipitate/matrix interface.

  8. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  9. Electrochemical corrosion studies on a selected carbon steel for application in nuclear waste disposal containers: Influence of radiolytic products on corrosion in brines

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Smailos, E.

    1994-07-01

    In previous corrosion studies, carbon steels were identified as promising materials for the manufacturing of long-lived high-level waste containers that could act as a radionuclide barrier in a rock-salt repository. In the present work, the influence of some important oxidizing radiolytic products generated in gamma irradiated brines on the electrochemical corrosion behaviour of the preselected fine-grained steel TStE 355 was studied. The steel was examined by potentiodynamic and potentiostatic polarization methods at 90 C in a disposal relevant NaCl-rich brine containing radiolytic products such as H 2 O 2 , ClO - , ClO 3 - and ClO 4 - at concentrations between 10 -4 and 10 -2 M/l. The significance of the radiolytic products to steel corrosion depends on their concentration at the metal-brine interface, which in turn, depends on many factors such as the dose rate, the amount of water present in the disposal area, the escape of gases (e.g. H 2 )

  10. Effect of nitrate on corrosion of austenitic stainless steel in boiling nitric acid solution containing chromium ions

    International Nuclear Information System (INIS)

    Hasegawa, Satoshi; Kim, Seong-Yun; Ebina, Tetsunari; Ito, Tatsuya; Nagano, Nobumichi; Hitomi, Keitaro; Ishii, Keizo; Tokuda, Haruaki

    2016-01-01

    The oxidation behavior of chromium and the corrosion behavior of austenitic stainless steel in boiling nitric acid solution containing highly concentrated nitrates were investigated using UV-visible spectroscopic measurements, Raman spectral measurements, immersion tests, and potentiodynamic polarization measurements. The oxidation rate measurement of chromium from Cr(III) to Cr(VI) was performed by 1 M boiling nitric acid solution containing each highly concentrated nitrates: Al(NO_3)_3, Nd(NO_3)_3, Ca(NO_3)_2, Mg(NO_3)_2, and NaNO_3 as a simulant of uranium nitrate in uranium concentrator in reprocessing plants. As a result, the rate of chromium oxidation was different depending on the added nitrates even at the same nitric acid concentration. In addition, the oxidation rate of chromium was increased with increasing the calculated partial pressure of nitric acid in consideration of the hydration of cation of nitrates. Furthermore, the corrosion rate of type 310 stainless steel was accelerated by the solution having a high chromium oxidation rate containing nitrates. These results indicated that the acceleration of the corrosion rate in the solutions depending on the oxidation rate of chromium, and the rate is affected by the salt-effect of nitrates. (author)

  11. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers.

  12. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi

    2014-01-01

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers

  13. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  14. Buckling of steel containment shells. Task 1b. Buckling of Washington Public Power Supply Systems' plant No. 2 containment vessel. Final report, 25 August 1980-30 September 1982

    International Nuclear Information System (INIS)

    Meller, E.; Bushnell, D.

    1982-12-01

    Static buckling analyses of the steel containment vessel of the Washington Public Power Supply Systems' (WPPSS) plant No. 2 were conducted with use of several computer programs developed at the Lockheed Missiles and Space Company (LMSC). These analyses were conducted as part of Task 1, Evaluation of Two Steel Containment Designs. The report is divided into two main sections. The first gives results from analyses of the containment as if it were axisymmetric (computerized models with use of BOSOR4, BOSOR5, and PANDA), and the second gives results from a STAGSC-1 model in which the largest penetration is included. Good agreement is obtained from analyses with BOSOR5 and STAGSC-1 for a case in which both of these computer programs were applied to the same configuration and loading. It is important to include nonlinear material behavior (plasticity) in the computerized models for collapse. Predictions of collapse from STAGSC-1 indicate that the largest penetration of the WPPSS-2 containment vessel is reinforced such that there is no decrease in load carrying capability below that indicated from models in which this penetration is neglected

  15. Structural changes in complex steels with 12 % Cr during welding thermal cycle

    International Nuclear Information System (INIS)

    Ul'yanova, N.V.; Kurnosova, N.D.

    1981-01-01

    The structural changes in the heat affected zones of welded steam tubes of the 12Kh11V2MF and 18Kh12VMBFR steels, are investigated. A short-time heating of thin samples up to 1300-900 deg C with the aim of imitating the thermal welding cycle permits to determine temperatures of specific region formation in heat affeced zones of 12% Cr steels. The difference in the amounts and structure of σ-ferrite and γ-phase in these regions is established. A ''tongue'' nature of γ-phase grain growth is found in the temperature range of 1150-1100 deg C, while at 1300-1250 deg C σ-ferrite growth with the formation of saw-shape boundaries is observed. It is shown that tensile properties of imitated heat affected zone of 12Kh12VMBFP steel increase with heating temperature with the insignificant plasticity decrease. Impact strength on longitudinal samples decreases but remains higher than that determined by specifications [ru

  16. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  17. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1996-01-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  18. Not a mystery. Inner containment of the pressurized water reactor (EPR trademark type)

    Energy Technology Data Exchange (ETDEWEB)

    Ostermann, Dirk; Wienand, Burkhard; Krumb, Christian [AREVA NP GmbH (Germany)

    2012-11-01

    The containment of the advanced pressurized water reactor EPR trademark type is developed on the basis of the French nuclear power plant operational experience and consists of - The reinforced outer containment structure, designed to withstand external hazards (e.g. APC), - The pre-stressed inner containment structure, designed to bear the loads resulting from internal hazards (LOCA), - The steel liner, designed to provide leak tightness resulting from internal hazards. The main advantage of the pre-stressed inner containment design is that the structure remains in linear-elastic behavior during the whole life-time. Even in case of postulated design accidents (LOCA) concrete tensile strains are strongly limited. Due to pre-stressing the concrete structure remains practically free of cracks. Due to pre-stressing the leak tightness ensuring steel liner, embedded into the inner concrete shell, is exposed to more favorable compression loads. In addition to detailed calculations several test programs have been performed to verify and confirm the predicted behavior in normal operation and in accident condition. (orig.)

  19. RESEARCH OF SYNERGETIC RELIABILITY OF PEARLITE-REDUCED STRUCTURAL STEEL 09G2FB

    Directory of Open Access Journals (Sweden)

    Gustov Yuriy Ivanovich

    2012-10-01

    Full Text Available The primary objective of the research is the synergetic reliability of perlite-reduced structural steel 09G2FB exposed to various thermal and mechanical treatments. In the aftermath of the above exposure, the steel in question has proved to assume a set of strength-related and plastic mechanical properties (σσδ and ψ.

  20. Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    In this work, the influence of dry sliding between a steel counterpart ball and polytetrafluoroethylene (PTFE) plate sample on the transformation of PTFE molecular structure is investigated. With X-ray diffraction, differential scanning calorimetry, Fourier transform infrared (FT-IR) spectroscopy

  1. Study about the structural behavior of WStE-36N steel

    International Nuclear Information System (INIS)

    Santos Pinto, M. dos; Trindade, M.B.

    1985-01-01

    The influence of a stress relaxation heat treatment in welding done by submerged-arc-welding is studied. This influence was studied in a structural steel, WStE-36N, niobium alloy, made in Brazil, through Charpy V test, hardness measurements, micro-structural aspects and X-ray diffraction. (E.G.) [pt

  2. Heat treatment effect on structure and properties of 16GNMA steel

    International Nuclear Information System (INIS)

    Balakhovskaya, M.B.; Nadtsyna, L.V.; Efimov, A.M.; Guseva, N.V.

    1984-01-01

    The effect of heating for hot deformation test and of subsequent tempering on the structure, strength and ductility properties of the 16 GNMA sttel used for fabricating pressure vessels has been investigated. It has been found that in the 850-1200 deg C temperature range abrupt umps in the grain growth at 1050 and 1200 deg C occur. In case of tempering in the 500-630 deg C range the yield strength increases while the ultimate resistance to fracture decreases. At 700 deg C the ductility and toughness drop while the fracture becomes totally crystalline. The 16 GNMA steel structure following normalizing and tempering presents a mixture of ferrite and granular bainite. Steel aging at the operation temperature (450 deg C) leads to its strengthening without embrittlement

  3. The corrosion and protection of less carbon containing steel in subsoil

    International Nuclear Information System (INIS)

    Kazimov, A. M; Mamedyarova, I. F; Selimkhanova, G. G; Bskhishova, D. A; Ibragimova, S. G.

    2007-01-01

    Full text: The protection and corrosion resistance of steel in subsoil waters of Baku subway were investigated. Kinetic curves were drawn. The results obtained from the experiment coincide with calculated results. There have been revealed and proposed hudron and fuel oil mixture protecting steel from corrosion in subsoil waters (97.8%) for the internal surface of steel pipes

  4. Stainless steel waste containers: an assessment of the probability of stress corrosion cracking

    International Nuclear Information System (INIS)

    Wanklyn, J.N.; Naish, C.C.

    1991-06-01

    The paper summarises information obtained from the literature and discussions held with corrosion experts from universities and industry, relevant to the possibility that stainless steel radioactive waste containers containing low level and intermediate level radioactive waste (LLW and ILW) could, when buried in concrete, suffer one or more of the forms of stress corrosion cracking (SCC). Stress corrosion cracking is caused by the simultaneous and synergistic action of a corrosive environment and stress. The initiation and propagation of SCC depend on a number of factors being present, namely a certain level of stress, an environment which will cause cracking and a susceptible metal or alloy. Generally the susceptibility of a metal or alloy to SCC increases as its strength level increases. The susceptibility in a specific environment will depend on: solution concentration, pH, temperature, and electrochemical potential of the metal/alloy. It is concluded that alkaline stress corrosion cracking is unlikely to occur under even the worst case conditions, that chloride stress corrosion cracking is a distinct possibility at the higher end of the temperature range (25-80 o C) and that stress corrosion related to sensitization of the steel will not be a problem for the majority of container material which is less than 5 mm in cross section. Thicker section material could become sensitized leading to a local problem in these areas. Contact with metals that are electrochemically more negative in corrosion potential is likely to reduce the incidence of SCC, at least locally. Measurement of repassivation potentials and rest potentials in solutions of relevant composition would provide a firmer prediction of the extent to which a high pH could reduce the likelihood of SCC caused by chlorides. (author)

  5. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  6. Study on the Effect of Secondary Banded Structure on the Fatigue Property of Non-Quenched and Tempered Micro Alloyed Steel

    Science.gov (United States)

    Yajie, Cheng; Qingliang, Liao; Yue, Zhang

    Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.

  7. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  8. Nano structure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    International Nuclear Information System (INIS)

    Zhang, K.M.; Zou, J.X.; Zou, J.X.; Grosdidier, T.; Zou, J.X.; Grosdidier, T.; Grosdidier, T.

    2013-01-01

    The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels

  9. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  10. Structural properties and out-of-plane stability of roller bent steel arches

    NARCIS (Netherlands)

    Spoorenberg, R.C.

    2011-01-01

    In contemporary architecture the use of steel arches has seen a significant increase. They are applied in buildings and large span bridges, combining structural design with architectural merits. For arches lacking lateral support (or freestanding arches) the out-of-plane structural stability

  11. Microstructure and Properties of a New Cr - Mn Steel without Boron Additions for Use in Hot Stamping

    Science.gov (United States)

    Zhou, H.; Zhu, G.; Li, Q.; Chen, Q.

    2015-09-01

    Anew hot-stamping steel that is alloyed with chromium and manganese and does not contain boron additions has been developed. The effect of reheating temperature and cooling rates on the mechanical properties and structure of the steel is determined. Atreatment regime that increases the ductility of the steel without a noticeable decrease in its strength is proposed.

  12. Image-based corrosion recognition for ship steel structures

    Science.gov (United States)

    Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng

    2018-03-01

    Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.

  13. Conceptual study on the containment design aiming at 'no evacuation'

    International Nuclear Information System (INIS)

    Andou, Kouji; Takii, Taichi; Kikuyama, Tomohiko; Taminami, Tatsuya

    2003-01-01

    The next generation reactors represented in ABWR-II should enhance not only economics but also safety. Especially, the ideal target of 'No Evacuation', that is, no FP (Fission Product) release in severe accidents should be required. This paper provides the conceptual design achieving 'No Evacuation' by using only the passive systems, that are, the passive containment cooling system (PCCS), the large amount of water inside containment, outside pool by utilizing gap between containment and surrounding building, and the natural heat removal from the containment surface to atmosphere. Furthermore, it is also easy to adopt the countermeasure for airplane crash by using a dome shelter and the dispersed layout as an option. At the same time, the amount of the construction material of this concept is competitive comparing with that of the conventional BWR because it is easy to use the steel structure or the steel plate reinforced concrete structure over a wide area. (author)

  14. Experimental investigation of asphalt mixture containing Linz-Donawitz steel slag

    Directory of Open Access Journals (Sweden)

    Jens Groenniger

    2017-08-01

    Full Text Available Standard asphalt mixtures for road infrastructures consist of natural aggregate and bitumen. A number of research efforts have successfully investigated the possibility of replacing the conventional aggregate skeleton with industrial by-products such as slag originating from steel production process. However, little is known on the effect of steel slag on the mixtures performance properties such as resistance to low-temperature cracking and to permanent deformation, stiffness and fatigue. This paper presents a comprehensive investigation on the fundamental performance properties of different types of asphalt mixtures prepared with 100% LD slag aggregate and a conventional asphalt mixture containing natural Gabbro aggregate. Sophisticated testing methods were used to evaluate the key performance parameters for the set of asphalt mixtures investigated. In this study, low temperature cracking was addressed through thermal stress restrained specimen tests. Penetration tests and cyclic compression tests were used to evaluate the response of asphalt binder and asphalt mixture to permanent deformation due repeated loading, respectively. The cyclic indirect tensile test was selected for investigating both stiffness properties and fatigue resistance. For this purpose the complex stiffness modulus was measured to quantify material stiffness under different temperature and loading conditions providing information on the visco-elasto-plastic material behavior. Fatigue tests were used to determine the progressive and localized material damage caused by cyclic loading. The experimental results indicate that asphalt mixtures prepared with LD slag are suitable for asphalt pavement construction and that in most cases they perform better than conventional asphalt mixtures prepared with Gabbro aggregate.

  15. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  16. Formation of the self-assembled structures by the ultrasonic cavitation erosion-corrosion effect on carbon steel

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-11-01

    Full Text Available The cavitation erosion-corrosion effect on the metal surface always forms irregular oxide structures. In this study, we reported the formation of regular self-assembled structures of amorphous nanoparticles around the cavitation erosion pits on carbon steel upon the ultrasonic cavitation in methylene blue solution. Each self-assembled structure was composed of linearly aligned nanoparticles of about 100 nm. The formation of self-assembled structures might be due to the combined effect of corrosion, specific sonochemical reaction in methylene blue solution, and the magnetic domain structures on the carbon steel.

  17. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    International Nuclear Information System (INIS)

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-01-01

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: ► FSW produced sound welds between st37 low carbon steel and 304 stainless steel. ► The SZ of the st37 steel contained some products of allotropic transformation. ► The material in the SZ of the 304 steel showed features of dynamic recrystallization. ► The finer microstructure in the SZ increased the hardness and tensile strength.

  18. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple

  19. Vacuum Plasma Spraying W-coated Reduced Activation Structural Steels for Fusion Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Tungsten (W) and its alloys are considered as candidate materials for plasma facing materials of the first wall and diverter components in fusion reactor systems because of high sputtering resistance and low tritium retention in a fusion environment. Therefore, it is considered that the joining between W and reduced activation structural steels, and its evaluation, are critical issues for the development of fusion reactors. However, the joining between these materials is a very challenging process because of significant differences in their physical properties, particularly the mismatch of coefficients of thermal expansion (CTE). For instance, the CTE of pure W is known to be about 4.3Χ10{sup -6}K{sup -1}; however, that of martensitic steels reaches over three times, about 12-14Χ10{sup -6}K{sup -1} at room temperature even up to 373K. Nevertheless, several joining techniques have been developed for joining between W and structural steels, such as a vapor deposition method, brazing and diffusion bonding. Meanwhile, vacuum plasma spraying (VPS) is supposed to be one of the prospective methods to fabricate a sufficient W layer on the steel substrates because of the coating of a large area with a relatively high fabricating rate. In this study, the VPS method of W powders on reduced activation steels was employed, and its microstructure and hardness distribution were investigated. ODS ferritic steels and F82H steel were coated by VPS-W, and the microstructure and hardness distribution were investigated. A microstructure analysis revealed that pure W was successfully coated on steel substrates by the VPS process without an intermediate layer, in spite of a mismatch of the CTE between dissimilar materials. After neutron irradiation, irradiation hardening significantly occurred in the VPSW. However, the hardening of VPS-W was lesser than that of bulk W irradiated HFIR at 773K. Substrate materials, ODS ferritic steels, and F82H steel, did not show irradiation hardening

  20. Crevice Corrosion Behavior of 45 Molybdenum-Containing Stainless Steels in Seawater.

    Science.gov (United States)

    1981-12-01

    Armco, Avesta Jernverks, Cabot, Carpenter Technology, Crucible, Eastern, Firth-Brown, Huntington, Jessup, Langley Alloys, and Uddeholm. 16...Department of Energy, Report ANL/OTEC-BCM-022. 7. Wallen, B., and M. Liljas, " Avesta 254 SMO - A New, High Molybdenum Stainless Steel," presented at NKM8...1977).; 11. Wallen, B., " Avesta 254 SMO - A Stainless Steel for Seawater Service," presented at the Advanced Stainless Steels for Turbine Condensors

  1. Modeling of the structural response to fire of a high-rise steel building

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2011-01-01

    Observations from the tests and the real fire investigations have consistently shown that the performance of a whole steel-framed building in fire is very different from the performance of its individual members (Usmani et al, 2000). In this context, it is of interest to investigate the failures...... problems due to the triggering of local mechanism should be overcome to this purpose. In this paper, a steel structure has been considered as case study and the response of the structural system to fire and fire effects has been investigated with the avail of a finite element commercial code. These kinds...

  2. In situ testing of titanium and mild steel nuclear waste containers at the WIPP site

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1990-01-01

    An overview of the Waste Isolation Pilot Plant (WIPP) in situ tests on the corrosion of titanium and mild steel for high level waste containers is presented. The tests at Sandia have moved out of the laboratory into a test underground facility in order to evaluate the performance of the waste package material. The tests are being performed under both near-reference and accelerated salt repository conditions. Some containers are filled with high level waste glass (non-radioactive); others contain electric heaters. Backfill material is either bentonite/sand or crushed salt. In other tests metals and glasses are exposed directly to brine. The tests are designed to study the corrosion and metallurgy of the canister and overpack materials; the feasibility and performance of backfill materials; and near-field effects such as brine migration

  3. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  4. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    Science.gov (United States)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  5. The CANDU 3 containment structure

    International Nuclear Information System (INIS)

    1994-01-01

    The design of the CANDU 3 nuclear power plant is being developed by AECL CANDU's Saskatchewan office. There are 24 CANDU nuclear power units operating in Canada and abroad and eight units are under construction is Romania and South Korea. The design of the CANDU 3 plant has evolved on the basis of the proven CANDU design. The experiences gained during construction, commissioning and operation of the existing CANDU plants are considered in the design. Many technological enhancements have been implemented in the design processes in all areas. The object has been to develop an improved reactor design that is suitable for the current and the future markets worldwide. Throughout the design phase of CANDU 3, emphasis has been placed in reducing the cost and construction schedule of the plant. This has been achieved by implementing design improvements and using new construction techniques. Appropriate changes and improvements to the design to suit new requirements are also adopted. In CANDU plants, the containment structure acts as an ultimate barrier against the leakage of radioactive substances during normal operations and postulated accident conditions. The concept of the structural design of the containment structure has been examined in considerable detail. This has resulted in development of a new conceptual design for the containment structure for CANDU 3. This paper deals with this new design of the containment structure

  6. Alloying effect on martensite transformation in stainless steels

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Shlyamnev, A.P.; Sorokina, N.A.

    1975-01-01

    The effect of cobalt, nickel, molybdenum on the martensite transformation kinetics in stainless steels containing 9 to 13% Cr has been studied. Cobalt in Fe-Cr base alloys decreases the temperature of the Msub(in) and Msub(fin) points without a considerable decrease of the martensite phase amount after the transformation. Nickel reduces the martensite transformation temperature range, the nickel effect being enhanced in the presence of cobalt, which is characterized by a change of the linear dependence Msub(in)=f(%Ni) for a quadratic one. Molybdenum decreases the temperature of the Msub(in) and Msub(fin) points intensively, thus, substantially increasing the residual austenite amount. In the steels investigated Ni and Co decrease, whereas Mo increases, to some extent, the temperature of the reverse a-γ-transformation. The reduction of chromium content from 13 to 9% stimulates the martensite transformation initiation, that is why, in alloys containing 9% Cr, the increase in the contents of Ni, Co., Mo with the martensite structure maintained is possible. A further alloying of steel containing 13% Cr with these elements is rather limited due to the inhibition of the martensite transformation

  7. Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures

    Science.gov (United States)

    2010-02-01

    Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry

  8. Effects of niobium addition on the structure and properties of medium and high carbon steels. v. 1,2

    International Nuclear Information System (INIS)

    Mei, P.R.

    1983-01-01

    An evaluation about the use of niobium in medium and high carbon steels, with ferritic-pearlitic structure, through the understanding of niobium actuaction mechanism in the structure, and consequently in the mechanical properties of those steels is done. (E.G.) [pt

  9. Mark III Containment vessel/annulus concrete design

    International Nuclear Information System (INIS)

    Chang, P.S.; Moussa, M.M.

    1981-01-01

    Recently, engineers have been considering the significant dynamic impact of safety/relief valve (S/RV) discharge loads on the containment structures, safety equipment, and piping systems in BWR type reactors. For a plant in the construction stage, extensive modifications will be made to qualify these new loads. The lower portion of the containment vessel serves as a suppression pool pressure boundary and is designed to sustain the effects of postulated loss of coolant accidents, seismic occurrences, S/RV discharge loads, and other effects. Extremely high spectral peak accelerations of the free-standing steel containment vessel can be obtained during the air dearing process of the S/RV discharge. Parametric studies indicated that a substantial reduction in response can be obtained by increasing the stiffness of the steel containment vessel in the lover area. A concrete backing configuration in the suppression pool area of Mark III Containment is proposed in this paper. A composite action is assumed between the steel containment vessel shell and the concrete section. The system is physically separated from the shield building. This approach warrants an early erection of the shield building and a late installation of piping systems in the containment vessel suppression pool area. Finite element analyses are performed by using ASHSD2 and EASE2 computer codes. The results of the analyses have shown the proposed stress criteria are satisfied. The approach pressented is justified to be a workable system for a new plant design. (orig./HP)

  10. Microstructure of a high boron 9-12% chromium steel

    Energy Technology Data Exchange (ETDEWEB)

    Andren, H.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2008-07-01

    Additions of small amounts of boron (10-100 ppm) to 9-12% chromium steels are often made since they have been found to be beneficial for the creep strength up to and above 600 C. The effect of boron is to restrict the coarsening of M{sub 23}C{sub 6} precipitates during service. It was found that increasing the boron content from 9 to 40 ppm gave a decrease in coarsening constant at 600 C by a factor of 2. The present understanding of boron solution, non-equilibrium grain boundary segregation, incorporation into M{sub 23}C{sub 6}, and diffusion is reviewed in the paper. A very high boron addition (300 ppm) was made in the trial TAF steel already in the 1950'ies. The microstructure of a similar trial steel, FT3B, has been studied detail. In this steel large Mo, Cr, Fe and V containing metal borides are formed rather than the expected BN, with the crystal structure M{sub 2}B{sub 2}. Nitrogen is therefore still available for the formation of VN. Due to tempering at a low temperature (690 C) to a high strength (830 MPa), this steel contained a dense distribution of very small VN precipitates, 5-15 nm in size. A similar VN distribution is probably the cause of the still unsurpassed creep strength of the TAF steel. (orig.)

  11. Nuclear power plant containment metallic pressure boundary materials and plans for collecting and presenting their properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1995-04-01

    A program is being conducted at the Oak Ridge National Laboratory (ORNL to assist the Nuclear Regulatory Commission (NRC)) in their assessment of the effects of degradation (primarily corrosion) on the structural capacity and leaktight integrity of metal containments and steel liners of reinforced concrete structures in nuclear power plants. One of the program objectives is to characterize and quantify manifestations of corrosion on the properties of steels used to construct containment pressure boundary components. This report describes a plan for use in collecting and presenting data and information on ferrous alloys permitted for use in construction of pressure retaining components in concrete and metal containments. Discussions about various degradation mechanisms that could potentially affect the mechanical properties of these materials are also included. Conclusions and recommendations presented in this report will be used to guide the collection of data and information that will be used to prepare a material properties data base for containment steels

  12. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    Science.gov (United States)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  13. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2015-07-01

    Full Text Available Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  14. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.

    Science.gov (United States)

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-07-30

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  15. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    International Nuclear Information System (INIS)

    Xu, Yun-bo; Hu, Zhi-ping; Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing; Ma, De-gang; Misra, R.D.K.

    2017-01-01

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  16. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-bo [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Hu, Zhi-ping, E-mail: huzhiping900401@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Ma, De-gang [Tangshan Iron and Steel Company, Tangshan 063000, People' s Republic China (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2017-03-14

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  17. Hybrid structure in civil engineering construction. Composite types of steel and concrete; Doboku bun`ya ni okeru fukugo kozo. Kozai to concrete no ittai keishiki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [JR Railway Technical Research Inst. Tokyo (Japan)

    1995-03-30

    In connection with hybrid structures in civil engineering construction, classification and application of composite types of steel and concrete are discussed. H steel embedded beam is a composite beam in which the H shape steel of the main beam is connected to rolled or welded H shape steel using cross beams. Composite structure columns are grouped into the composite column and the steel pipe concrete column. SRC piers are often adopted from the viewpoints of constraints for execution of works and vibration proof. Steel and concrete hybrid structure is a kind of structural system in which various kinds of materials such as steel, RC, or PC members are connected. The cable stayed bridge utilizes characteristics of steel and concrete effectively. For the piers of municipal expressway viaducts, there are executed cases of mixed structures which have RC, SRC columns for T shape piers and S structure for the bridges. SRC structure and composite columns are adopted often for structures of subway stations. 7 refs., 7 figs.

  18. Mechanical behaviour of Zn-Fe alloy coated mild steel

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Agathocleous, P.E.; Giannakopoulos, K.I.

    2009-01-01

    Zinc alloy coatings containing various amounts of Fe were deposited by electrodeposition technique on a mild steel substrate. The concentration of Fe in the produced alloy coatings ranged from 0 to 14 wt.%, whereas the thickness of the coatings was about 50 μm. Structural and metallurgical characterization of the produced coatings was performed with the aid of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. This study aims in investigating the mechanical behaviour of Zn-Fe coated mild steel specimens, as no research investigation concerning the tensile behaviour of Zn alloy coated ferrous alloys has been reported in the past. The experimental results indicated that the ultimate tensile strength of the Zn-Fe coated mild steel was lower than the bare mild steel. In addition, the ductility of the Zn-Fe coated mild steel was found to decrease significantly with increasing Fe content in the coating.

  19. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2014-01-01

    Full Text Available Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  20. Optimization of the A-TIG welding for stainless steels

    Science.gov (United States)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  1. Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel

    International Nuclear Information System (INIS)

    Deva, Anjana; Jha, B.K.; Mishra, N.S.

    2011-01-01

    Highlights: → Unique feature of low strain hardening exponent (n) with high total elongation has been discussed in industrially produced low carbon boron containing steel. → n has been correlated with the micro structural changes occurring during deformation of steel. → This feature of low n and high % elongation has potential for higher cold reducibility. → The work is being reported for the first time on industrially produced low carbon boron containing steel. - Abstract: The beneficial effect of boron on mechanical properties of low carbon Al-killed steel has been reported in recent past. However, the effect of boron on strain hardening exponent (n) and ductility has not been fully understood. This aspect has been discussed in present work. The results of mill trials with reference to n and ductility with boron added steel are compared to those for commercial grade. The lowering of 'n' with increased total elongation in boron bearing steel has been related to the microstructural evolution as a result of boron addition.

  2. Characterization of 316L Steel Cellular Dodecahedron Structures Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2016-10-01

    Full Text Available The compression behavior of different 316L steel cellular dodecahedron structures with different density values were studied. The 316L steel structures produced using the selective laser melting process has four different geometries: single unit cells with and without the addition of base plates beneath and on top, and sandwich structures with multiple unit cells with different unit cell sizes. The relation between the relative compressive strength and the relative density was compared using different Gibson-Ashby models and with other published reports. The different aspects of the deformation and the mechanical properties were evaluated and the deformation at distinct loading levels was recorded. Finite element method (FEM simulations were carried out with the defined structures and the mechanical testing results were compared. The calculated theory, simulation estimation, and the observed experimental results are in good agreement.

  3. Rust Layer Formed on Low Carbon Weathering Steels with Different Mn, Ni Contents in Environment Containing Chloride Ions

    Directory of Open Access Journals (Sweden)

    Gui-qin FU

    2016-11-01

    Full Text Available The rusting evolution of low carbon weathering steels with different Mn, Ni contents under a simulated environment containing chloride ions has been investigated to clarify the correlation between Mn, Ni and the rust formed on steels. The results show that Mn contents have little impact on corrosion kinetics of experimental steels. Content increase of Ni both enhances the anti-corrosion performance of steel substrate and the rust. Increasing Ni content is beneficial to forming compact rust. Semi-quantitative XRD phase analysis shows that the quantity ratio of α/γ*(α-FeOOH/(γ-FeOOH+Fe3O4 decreases as Mn content increases but it increases as Ni content increases. Ni enhances rust layer stability but Mn content exceeding 1.06 wt.% is disadvantageous for rust layer stability. The content increase of Mn does not significantly alter the parameters of the polarization curve. However, as Ni contents increases, Ecorr has shifted to the positive along with decreased icorr values indicating smaller corrosion rate especially as Ni content increases from 0.42 wt.% to 1.50 wt.%.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12844

  4. Constructive fire protection of steel corrugated beams of buildings and other structures

    Directory of Open Access Journals (Sweden)

    Ilyin Nikolay

    2017-01-01

    Full Text Available The research introduces a methodology of establishing indicators of fire safety of a building in relation to a guaranteed duration of steel fire-proof corrugated beams resistance in conditions of standard fire tests. Indicators of fire safety are also established in the assessment of design limits of steel fire-proof corrugated beams during design process, construction or maintenance of the building as well as in reducing economic costs when testing steel structures for fire resisting property. The suggested methodology introduces the system of actions aimed to design constructive fire protection of steel corrugated beams of buildings. Technological effect is achieved by conducting firing tests of steel construction by non-destructive methods; the evaluation of fire resistance of fire-proof elements of corrugated beams (corrugated web, upper and lower shelves is identified by the least fire-proof element of a welded I-beam. In this methodology fire resistance duration of the constituent elements of a welded I-beam with account of its fire protection ability is described with an analytic function taken as variables. These variables are intensity strength of stresses and the degree of fire protection of a compound element.

  5. A weldability study of the structural steel of the Angra II reactor containment

    International Nuclear Information System (INIS)

    Santos Pinto, M. dos.

    1980-01-01

    A weldability study of the german steel WSTE-51 based on mechanical, metallographic, hardness as well as special tests such as the CTS, the Tekken, for cold cracking, and the Vinckier test for reheat cracking is presented. The welding process used was the manual metal arc with low hydrogen eletrodes. In order to broaden the scope of this study the properties of weldments fabricated by submerged arc welding with high and low heat input were analized by means of mechanical and metallographic tests. The results showed that the joints had good quality and emphasize the necessity of special care in order to avoid cold cracking as well as the use of a temperbead in order to avoid reheat cracking. The submerged arc welding study concludes that higher impact resistance in the HAZ is obtained with low heat imput. (Author) [pt

  6. Finite Element Analysis of Doorframe Structure of Single Oblique Pole Type in Container Crane

    Science.gov (United States)

    Cheng, X. F.; Wu, F. Q.; Tang, G.; Hu, X.

    2017-07-01

    Compared with the composite type, the single oblique pole type has more advantages, such as simple structure, thrift steel and high safe overhead clearance. The finite element model of the single oblique pole type is established in nodes by ANSYS, and more details are considered when the model is simplified, such as the section of Girder and Boom, torque in Girder and Boom occurred by Machinery house and Trolley, density according to the way of simplification etc. The stress and deformation of ten observation points are compared and analyzed, when the trolley is in nine dangerous positions. Based on the result of analysis, six dangerous points are selected to provide reference for the detection and evaluation of container crane.

  7. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  8. Microstructural evolution and response to double-loop reactivation testing of heat-treated PH 13-8 Mo martensitic stainless steel

    International Nuclear Information System (INIS)

    Cieslak, W.R.; Cieslak, M.J.; Hills, C.R.

    1987-01-01

    Compared to the austenitic stainless steels, relatively few studies have been reported of the intergranular corrosion suceptibility of martensitic stainless steels, particularly those containing 0.05 corresponds to a ditch structure in ASTM A 262-A (oxalic acid)

  9. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  10. Effect of the isothermal transformation temperature on the fine structure of steel-12Kh1MF

    International Nuclear Information System (INIS)

    Mints, I.I.; Berezina, T.G.; Lanskaya, K.A.

    1976-01-01

    For detailed analysis of bainite and pearlite in steel 12Kh1MF, homogeneous structures were obtained by isothermal annealing at 350, 450, 500, and 650 0 for 1 h. Isothermal transformation of austenite leads to the formation of bainite at 350-500 0 and pearlite at 650 0 . The austenitizing temperature was 980 0 for both types of samples, with holding for 20 min. For comparison, the plates were quenched from 980 0 and 1050 0 in ice-cold brine. The investigation was conducted with use of light and electron microscopes and x-ray analysis. The long-term strength was also determined. Isothermal treatment of steel 12Kh1MF at 350-500 0 C leads to the formation of a structure consisting of upper and lower bainite. At 500 0 the structure consists primarily of upper bainite, and at 350 0 of lower bainite. With tempering of the steel with a structure of upper and lower bainite at 730 0 for 3 h the dislocations undergo redistribution of the polygonization type within ferrite needles, with development of a cellular substructure. The acicular structure of the matrix is retained in this case. The density and evenness of the distribution of carbides is higher in upper bainite than in lower bainite. Steel 12Kh1MF with a structure of upper bainite is more susceptible to recrystallization as compared with a structure of lower bainite, which is responsible for the higher heat resistance of the latter

  11. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    Science.gov (United States)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  12. Creep-rupture tests on chromium-containing conventional and ODS steels in oxygen-controlled Pb and air at 650 °C

    International Nuclear Information System (INIS)

    Yurechko, Mariya; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2014-01-01

    Highlights: • Generally superior creep performance of ODS steels with 12–14% Cr is indicated. • Strength of 9Cr-ODS at 650°C approaches conventional 9Cr steels at decreasing load. • ODS steels show brittle primary and ductile residual fracture. • Apparent link between secondary creep rate and fracture mode of ODS steels. • Clear impact of liquid Pb at low load, corresponding to long time-to-rupture. - Abstract: Conventional martensitic steels with 9 mass% chromium (Cr), namely T91 and P92, and ODS steels with 9, 12 and 14 mass% Cr, respectively, were subjected to creep-rupture tests in stagnant oxygen-controlled lead (Pb) at 650 °C and c o = 10 −6 mass% dissolved oxygen. The 9Cr conventional steels were tested in the liquid metal at static engineering stress in the range from 75 to 200 MPa. 12 and 14Cr ODS were tested at 190–400 MPa, and 9Cr ODS at 75–300 MPa. Reference tests in stagnant air were carried out in the same stress ranges. The ODS steels with 12 or 14 mass% Cr, mainly tested in oxygen containing Pb, clearly exhibit a change in the stress-dependence of secondary creep rate and appearance of fracture surface at 330–400 MPa. No such change has been observed for 9Cr ODS so far. The conventional martensitic steel P92 shows a significant drop in creep strength accompanied by reduced necking and a change from ductile to brittle fracture when tested in Pb at 75 MPa (time-to-rupture t R = 13,090 h)

  13. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  14. Effect of heat treatment and irradiation temperature on mechanical properties and structure of reduced-activation Cr-W-V steels of bainitic, martensitic, and martensitic-ferritic classes

    International Nuclear Information System (INIS)

    Gorynin, I.V.; Rybin, V.V.; Kursevich, I.P.; Lapin, A.N.; Nesterova, E.V.; Klepikov, E.Yu.

    2000-01-01

    Effects of molybdenum replacement by tungsten in steels of the bainitic, martensitic, and martensitic-ferritic classes containing 2.5%, 8% and 11% Cr, respectively, were investigated. The phase composition and structure of the bainitic steels were varied by changing the cooling rates from the austenitization temperature (from values typical for normalization up to V=3.3 x 10 -2 deg. C/s) and then tempering. The steels were irradiated to a fluence of 4x10 23 n/m 2 (≥0.5 MeV) at 270 deg. C and to fluences of 1.3x10 23 and 1.2x10 24 n/m 2 (≥0.5 MeV) at 70 deg. C. The 2.5Cr-1.4WV and 8Cr-1.5WV steels have shown lower values of the shifts in ductile-brittle transition temperature (DBTT) under irradiation in comparison with corresponding Cr-Mo steels. Radiation embrittlement at elevated irradiation temperature was lowest in bainitic 2.5Cr-1.4WV steel and martensitic-ferritic 11Cr-1.5WV steel. The positive effect of molybdenum replacement by tungsten at irradiation temperature ∼300 deg. C is reversed at T irr =70 deg. C

  15. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  16. Prestressed and reinforced concrete containments. Analysis - design - construction

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1975-01-01

    Nuclear reactors performing in the German Federal Republic to date were supplied with steel containments. The first reinforced concrete and prestressed concrete containments, respectively, are going to be used for the nuclear power plants Kalkar and Gundremmingen (KRB II) as well as for the HTR plant. Because of their function and nature of loading these structures, similarly to the prestressed concrete reactor pressure vessels, belong to the special structures of civil engineering. Yet, they are substantially different from the prestressed concrete reactor pressure vessels. The problems connected with analysis, design, and construction of these structures are new as well. (orig.) [de

  17. The low-temperature aging embrittlement in a 2205 duplex stainless steel

    International Nuclear Information System (INIS)

    Weng, K.L.; Chen, H.R.; Yang, J.R.

    2004-01-01

    The effect of isothermal treatment (at temperatures ranging between 400 and 500 deg. C) on the embrittlement of a 2205 duplex stainless steel (with 45 ferrite-55 austenite, vol.%) has been investigated. The impact toughness and hardness of the aged specimens were measured, while the corresponding fractography was studied. The results show that the steel is susceptible to severe embrittlement when exposed at 475 deg. C; this aging embrittlement is analogous with that of the ferritic stainless steels, which is ascribed to the degenerated ferrite phase. High-resolution transmission electron microscopy reveals that an isotropic spinodal decomposition occurred during aging at 475 deg. C in the steel studied; the original δ-ferrite decomposed into a nanometer-scaled modulated structure with a complex interconnected network, which contained an iron-rich BCC phase (α) and a chromium-enriched BCC phase (α'). It is suggested that the locking of dislocations in the modulated structure leads to the severe embrittlement

  18. Effect of notch and alloying on steel properties during extension

    International Nuclear Information System (INIS)

    Vinokur, B.B.; Pilyushenko, U.L.; Kasatkin, O.G.

    1985-01-01

    A study was made on change of strength and plastic characteristics during extension of notched steel samples of 15 compositions containing often-used alloying elements in various amounts and combinations. The notch causes increase of strength and decrease of plastic properties of structural steels during extension. The most pronounced change of properties takes place for the notched sample with expansion angle close to 180 deg. Reduction of notch expansion angle below 150 deg causes slower decrease of the rate of property change. Nickel alloying and vanadium, titanium microalloying assist the improvement of steel plasticity despite the increase of strength properties. Introduction of these elements in steel compensate partially for the negative notch effect. Alloying by silicon, molybdenum and tungsten results in steel strengthening and chromium alloying causes some loss of strength. Manse, chromium, silicon, molybdenum and tungsten cause decrease of plasticity, which intensifies the negative notch effect. When determining concentration ranges of carbon and alloying elements within the limits of quality composition it is necessary to consider both technology and possibility of sufficient change of properties especially in the case of stress concentrator presence in structures

  19. Evaluating response modification factor (R for some types of steel structure

    Directory of Open Access Journals (Sweden)

    Doralba Valencia Restrepo

    2008-01-01

    Full Text Available Response modification factor (R, tabulated in the Colombian Design Code as NSR-98, is used in this paper for eva-luating internal member forces produced by design earthquake action on steel structures and the inconsistencies pre-sent when designing structures when 1% drift limits must be complied with. The article presents the design of 45 frames corresponding to the seismic resistance system of 5 buildings: 15 special moment frames (SMF, 15 special concentrically-braced frames (CBF and 15 eccentrically-braced frames (EBF. External loads and their combination were used in estimating internal loads and rigidity demands (1% drift were evaluated in line with NSR-98 requi-rements. Member strength requirements were evaluated by using the AISC-2005 seismic provisions for steel structu-red buildings. Modal pushover analysis was used for evaluating the response modification factor for the 45 given frames at different structural performance levels. It was found that this factor was not constant for any of the three structural systems (SMF, CBF and EBF suggested by NSR-98 and that the values of the response modification factor found in the present investigation were smaller than those tabulated in this design code governing everyday structural design. This would lead to significant errors being made in evaluating design forces, not only in the structures but in the support elements (base-plates, foundations, shear walls and any structures attached to buildings constructed in line with the seismic resistance system.

  20. Boron Steel: An Alternative for Costlier Nickel and Molybdenum Alloyed Steel for Transmission Gears

    Directory of Open Access Journals (Sweden)

    A. Verma

    2010-06-01

    Full Text Available Case Carburized (CC low carbon steels containing Ni, Cr and Mo alloying elements are widely used for transmission gears in automobile, as it possesses desired mechanical properties. In order to cut cost and save scarce materials like Ni and Mo for strategic applications, steel alloyed with Boron has been developed, which gives properties comparable to Ni-Cr-Mo alloyed steel. In the process of steel development, care was taken to ensure precipitation of boron which results in precipitation hardening. The characterization of the developed boron steel had exhibited properties comparable to Ni-Cr-Mo alloyed steel and superior to conventional boron steel.

  1. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  2. Structural sensitivity of cyclic crack resistance of rotor steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Kozak, L.Yu.

    1984-01-01

    Comparative evaluation of cyclic crack resistance of hardened rotor set steel 35KhN3MFA in different cstructural states during tesis in agea geseous hydrogen, in the air and in vacuum, has been mde made. It is shown, that structural sensitivity of near-threshold crack resistance of the studied rotor steel in gaseous hydrogen is to a high extent determined by the closing and morphology of fatigue crack. The decrease in crack closing (CC) observed during tests in hydrogen in low-strenght and crack branching in high-strength steels results in the fact, that in contrast to well-known notions on a higher sensitivity to hydrogen embrittlement of high-strenght alloys the negative effect of hydrogen on the near-threshold cyclic crack resistance is manifested only in steel in low-strenght state. The considered regularities in crack growth in low-alloyed steel under the effect of gaseous hydrogen are just only for high-frequency loading. In all probability in the case of fatigue crack growth (GCG) at low frequencies of loading not only the medium activity, but also the role o, closing and crack geometty in the kinetics of fatigue fracture, the clarifying of which requires further studieds, will change

  3. Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working

    International Nuclear Information System (INIS)

    Lauprecht, W.; Imgrund, H.; Coldren, P.

    1975-01-01

    A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm 2 the transition temperature T 50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm 2 . As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm 2 . On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm 2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm 2 . Because of low carbon content, this steel is characterized by good

  4. Alloying effect on the structure and properties of austenitic heat-resistant steels

    International Nuclear Information System (INIS)

    Levitin, V.V.; Grabovskij, V.Ya.; Korostelev, V.F.; Ryvkin, Yu.A.

    1978-01-01

    Investigated have been mechanical properties at test temperatures of 20-95O deg C, wear resistance, softening at thermomechanical cycling and microstructure of cast austenitic chromium-nickel steels (13%Cr + 35%Ni), produced by electroslag remelting with variations in Ti, Mo, Nb and W contents. Regression equations for relationship of the investigated characteristics to alloying element content have been obtained. Titanium, molybdenum and niobium increasing hardness and strength limit at room and high temperatures promote a decrease in ductility. Tungsten increases strength properties, wear resistance and thermal stability of the steels without negative effect on the impact strength. The impact strength decrease with an increase in alloying is due to brittle precipitations along the boundaries of as-cast grains, containing Ti, Mo, Nb and Si

  5. Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C-Mn steels

    International Nuclear Information System (INIS)

    Hossein Nedjad, S.; Zahedi Moghaddam, Y.; Mamdouh Vazirabadi, A.; Shirazi, H.; Nili Ahmadabadi, M.

    2011-01-01

    Research highlights: → Bainite showed weak property improvement after rolling and annealing. → Additions of titanium and titanium oxide stimulated acicular ferrite. → Acicular ferrite obtained by nanoparticles exhibited very high strength. → Rolling and annealing of acicular ferrite gave substantial property improvement. - Abstract: The propensity of bainite and acicular ferrite structures of experimental C-Mn steels for enhanced grain refinement by combining phase transformation and plastic deformation has been investigated. Formation of acicular ferrite structures were stimulated with a small amount of titanium and titanium oxide nanoparticles added into the molten steels of high Mn concentrations. Isothermal transformations into the bainite and acicular ferrite structures were performed for 1.8 ks at 823 K after preliminary austenitization for 1.8 ks at 1523 K. Cold rolling for 50% thickness reduction was conducted on the isothermally transformed structures. Subsequent annealing of the deformed structures was conducted for 3.6 ks at 773, 873 and 973 K. Optical microscopy, scanning electron microscopy and tensile test were used for characterization of the studied steels. Cold rolling and annealing of the transformed structures at 873 K resulted in strengthening at the expense of ductility where an initial stage of recrystallization is realized. Acicular ferrite obtained by the addition of titanium into the molten steel exhibited the remarkable improvement of tensile properties. Discontinuous recrystallization of the deformed structures at 973 K leads to the formation of fine grains wherein acicular structures represented more enhanced grain refinement than bainite.

  6. Refinement of grain structure in 20 MnNiMo (SA508C) steel

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Zou Min

    1997-04-01

    The size of prior austenite grains and bainitic colonies of 20 MnNiMo (SA508C) steel (a reactor pressure vessel steel) after normal heat treatment is measured and its controlling factors are discussed. Results show that low aluminium content can induce serious mixed structure with fine and coarse grains in prior austenite. Fast cooling rate can promote refinement of bainitic colonies. Further refinement of grains can be obtained by inter-critical quenching. (5 figs., 1 tab.)

  7. ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE

    OpenAIRE

    Cuenca Asensio, Estefanía

    2013-01-01

    Cuenca Asensio, E. (2012). ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/18326. Palancia

  8. Experimental assessment of an RFID-based crack sensor for steel structures

    Science.gov (United States)

    E Martínez-Castro, R.; Jang, S.; Nicholas, J.; Bansal, R.

    2017-08-01

    The use of welded steel cover plates had been a common design practice to increase beam section capacity in regions of high moment for decades. Many steel girder bridges with cover plates are still in service. Steel girder bridges are subject to cyclic loading, which can initiate crack formation at the toe of the weld and reduce beam capacity. Thus, timely detection of fatigue cracks is of utmost importance in steel girder bridge monitoring. To date, crack monitoring methods using in-house radio frequency identification (RFID)-based sensors have been developed to complement visual inspection and provide quantitative information of damage level. Offering similar properties at a reduced cost, commercial ultra-high frequency (UHF) passive RFID tags have been identified as a more financially viable option for pervasive crack monitoring using a dense array of sensors. This paper presents a study on damage sensitivity of low-cost commercial UHF RFID tags for crack detection and monitoring on metallic structures. Using backscatter power as a parameter for damage identification, a crack sensing system has been developed for single and multiple tag configurations for increased sensing pervasiveness. The effect on backscatter power of the existence and stage of crack propagation has been successfully characterized. For further automation of crack detection, a damage index based on the variation of backscatter power has also been established. The tested commercial RFID-based crack sensor contributes to the usage of this technology on steel girder bridges.

  9. Evaluation of high-pressure containment buildings for LMFBR's

    International Nuclear Information System (INIS)

    Armstrong, G.R.

    1981-01-01

    A study was conducted on the use of High Pressure LMFBR Containment Buildings for 1000 MW(e) LMFBRs. Two principal aspects were investigated: accident consequence mitigation and cost. Two types of hypothetical accidents were analyzed to establish consequence mitigation: melt-through and energetic expulsion. Three Containment Building (CB) design pressures were investigated: 69 kPa (10 psig), 207 kPa (30 psig), and 414 kPa (60 psig). Four types of design structures were analyzed to establish cost: steel, steel with confinement building, reinforced concrete, and prestressed/post-tensioned concrete. Results show that: it is within reason that a high pressure containment for a 1000 MW(e) reactor can be fabricated that will retain its integrity during postulated severe hypothetical accidents, if available measures are taken to reduce or prevent hydrogen production and the cost differential between basic high (414 kPa) and low (69 kPa) pressure containments is $10 x 10 6 or less

  10. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels

    Science.gov (United States)

    Tomita, Yoshiyuki

    1990-09-01

    Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.

  11. Effect of temperature on corrosion of steels in high purity water

    International Nuclear Information System (INIS)

    Honda, Takashi; Kashimura, Eiji; Ohashi, Kenya; Furutani, Yasumasa; Ohsumi, Katsumi; Aizawa, Motohiro; Matsubayashi, Hideo.

    1987-01-01

    Effect of temperature on corrosion behavior of steels was evaluated in the range of 150 - 300 deg C in high purity water containing about 200 ppb oxygen. The exposure tests were carried out in actual and simulated reactor water of BWR plants. Through X-ray diffractometry, SIMS, XPS and chemical analyses, it was clarified that the chemical composition and morphology of oxide films formed on austenitic stainless steel changed above about 250 deg C. Chromium dissolved easily through corrosion above this temperature, and the oxide films primarily consisted of spinel type oxides containing high concentration of nickel. Further, as the protectivety of oxide films increased with temperature, the corrosion rate had a peak around 250 deg C after a long exposure period. A major phase of oxide films on carbon steel was magnetite in the whole temperature range. However, as the oxide films formed at high temperatures had very compact structures, the effect of temperature on the corrosion rate was similar to that observed on stainless steel. (author)

  12. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    International Nuclear Information System (INIS)

    Huet, Bruno; L'Hostis, Valerie; Le Bescop, Patrick; Idrissi, Hassane

    2004-01-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  13. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Bruno [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France)]|[Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France); L' Hostis, Valerie; Le Bescop, Patrick [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France); Idrissi, Hassane [Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France)

    2004-07-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  14. Radiation swelling of steels with lath martensite-austenic structure

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Pavlov, V.A.; Alyab'ev, V.M.; Lapin, S.S.; Ermishkin, V.A.; Antonova, O.V.

    1987-01-01

    Influence of electron radiation in the column of the JEM-1000 electron microscope on radiation swelling of austenite as austenitic fields and thin plates surrounded by α-martensite crystals is investigated. Formation of lath structure of alternating dispersive plates of martensite and invert austenite formed as a result of partial inverse martensite transformation α→γ is shown to restrain radiation swelling and formation of vacancy voids in stainless steels

  15. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  16. Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria

    Science.gov (United States)

    Antony, P. J.; Singh Raman, R. K.; Kumar, Pradeep; Raman, R.

    2008-11-01

    Influence of changes in microstructure caused due to welding on microbiologically influenced corrosion of a duplex stainless steel was studied by exposing the weldment and parent metal to chloride medium containing sulfate-reducing bacteria (SRB). Identically prepared coupons (same area and surface finish) exposed to sterile medium were used as the control. Etching-type attack was observed in the presence of SRB, which was predominant in the heat-affected zone (HAZ) of the weldment. The anodic polarization studies indicated an increase in current density for coupon exposed to SRB-containing medium as compared to that obtained for coupon exposed to sterile medium. The scanning electron microscopy (SEM) observations after anodic polarization revealed that the attack was preferentially in the ferrite phase of HAZ of the weldment, whereas it was restricted to the austenite phase of the parent metal.

  17. Seismic damage assessment of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Cho, HoHyun; Koh, Hyun-Moo; Hyun, Chang-Hun; Kim, Moon-Soo; Shin, Hyun Mock

    2003-01-01

    This paper presents a procedure for assessing seismic damage of concrete containment structures using the nonlinear time-history numerical analysis. For this purpose, two kinds of damage index are introduced at finite element and structural levels. Nonlinear finite element analysis for the containment structure applies PSC shell elements using a layered approach leading to damage indices at finite element and structural levels, which are then used to assess the seismic damage of the containment structure. As an example of such seismic damage assessment, seismic damages of the containment structure of Wolsong I nuclear power plant in Korea are evaluated against 30 artificial earthquakes generated with a wide range of PGA according to US NRC regulatory guide 1.60. Structural responses and corresponding damage index according to the level of PGA and nonlinearity are investigated. It is also shown that the containment structure behaves elastically for earthquakes corresponding to or lower than DBE. (author)

  18. Overpressurization performance of containment structures

    International Nuclear Information System (INIS)

    Barr, P.; Bleackley, M.; Harrop, L.P.; Hargreaves, J.; Jowett, J.; Phillips, D.W.

    1987-01-01

    The containment building of a PWR is the outermost engineered barrier between the reactor and the environment. The most important element of such a containment system is the pressure boundary structure and its associated seals and penetrations. This containment structure is designed deterministically to withstand a number of loads and load combinations of which the dominant one is generally the internal pressure due to the double-ended guillotine break in one of the primary circuit loops. Typically, the design basis large LOCA produces a peak pressure increase in the region of 0.3 MPa in some 10 seconds and with a duration of up to a few tens of seconds. The assessment of overpressure performance of the containment structure is a key component of the PWR safety case, and is usually carried out by estimating a static factor of safety to some failure limit state. These estimates can be made using simple force-balance calculations or complicated finite element calculations, and both approaches have merit. In this paper we examine these approaches and discuss their value in estimating failure pressures and failure modes for a variety of internal pressurization transients. This discussion covers both general design and risk considerations and is illustrated by numerical examples taken from previous and on-going analysis

  19. Process for testing noise emission from containers or pipelines made of steel, particularly for nuclear reactor plants

    International Nuclear Information System (INIS)

    Votava, E.; Stipsits, G.; Sommer, R.

    1982-01-01

    In a process for noise emission testing of steel containers or pipelines, particularly for testing primary circuit components of nuclear reactor plants, measuring sensors and/or associated electronic amplifiers are used, which are tuned for receiving the frequency band of the sound emission spectrum above a limiting frequency f G , but are limited or non-resonant for frequency bands less than f G . (orig./HP) [de

  20. Experimental Study on Welded Headed Studs Used In Steel Plate-Concrete Composite Structures Compared with Contactless Method of Measuring Displacement

    Science.gov (United States)

    Kisała, Dawid; Tekieli, Marcin

    2017-10-01

    Steel plate-concrete composite structures are a new innovative design concept in which a thin steel plate is attached to the reinforced concrete beam by means of welded headed studs. The comparison between experimental studies and theoretical analysis of this type of structures shows that their behaviour is dependent on the load-slip relationship of the shear connectors used to ensure sufficient bond between the concrete and steel parts of the structure. The aim of this paper is to describe an experimental study on headed studs used in steel plate-concrete composite structures. Push-out tests were carried out to investigate the behaviour of shear connectors. The test specimens were prepared according to standard push-out tests, however, instead of I-beam, a steel plate 16 mm thick was used to better reflect the conditions in the real structure. The test specimens were produced in two batches using concrete with significantly different compressive strength. The experimental study was carried out on twelve specimens. Besides the traditional measurements based on LVDT sensors, optical measurements based on the digital image correlation method (DIC) and pattern tracking methods were used. DIC is a full-field contactless optical method for measuring displacements in experimental testing, based on the correlation of the digital images taken during test execution. With respect to conventional methods, optical measurements offer a wider scope of results and can give more information about the material or construction behaviour during the test. The ultimate load capacity and load-slip curves obtained from the experiments were compared with the values calculated based on Eurocodes, American and Chinese design specifications. It was observed that the use of the relationships developed for the traditional steel-concrete composite structures is justified in the case of ultimate load capacity of shear connectors in steel plate-concrete composite structures.