WorldWideScience

Sample records for steel containment structures

  1. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1994-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (74-90 mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments. Under severe accident loading conditions, the steel containment vessel in a typical Mark-I or Mark-II plant may deform under internal pressurization such that it contacts the inner surface of a shield building wall. (Thermal expansion from increasing accident temperatures would also close the gap between the SCV and the shield building, but temperature effects are not considered in these analyses.) The amount and location of contact and the pressure at which it occurs all affect how the combined structure behaves. A preliminary finite element model has been developed to analyze a model of a typical steel containment vessel con-ling into contact with an outer structure. Both the steel containment vessel and the outer contact structure were modelled with axisymmetric shell finite elements. Of particular interest are the influence that the contact structure has on deformation and potential failure modes of the containment vessel. Furthermore, the coefficient of friction between the two structures was varied to study its effects on the behavior of the containment vessel and on the uplift loads transmitted to the contact structure. These analyses show that the material properties of an outer contact structure and the amount

  2. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1993-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (50--90mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments

  3. Steel containment buckling

    International Nuclear Information System (INIS)

    Bennett, J.G.; Fly, G.W.; Baker, W.E.

    1984-01-01

    The Steel Containment Buckling program is in its fourth phase of work directed at the evaluation of the effects of the structural failure mode of steel containments when the membrane stresses are compressive. The structural failure mode for this state of stress is instability or buckling. The program to date has investigated: (1) the effect on overall buckling capacity of the ASME area replacement method for reinforcing around circular penetrations; (2) a set of benchmark experiments on ring-stiffened shells having reinforced and framed penetrations; (3) large and small scale experiments on knuckle region buckling from internal pressure and post-buckling behavior to failure for vessel heads having torispherical geometries; and (4) buckling under time-dependent loadings (dynamic buckling). The first two investigations are complete, the knuckle buckling experimental efforts are complete with data analysis and reporting in progress, and the dynamic buckling experimental and analytical work is in progress

  4. Predictability of steel containment response near failure track 3 - structural integrity, dynamic behavior, and seismic design

    International Nuclear Information System (INIS)

    Costello, J.F.; Ludwigsen, J.S.; Luk, V.K.; Hessheimer, M.F.

    2000-01-01

    The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms

  5. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  6. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  7. Deep Defect Detection within Thick Multilayer Aircraft Structures Containing Steel Fasteners Using a Giant-Magneto Resistive (GMR) Sensor (Preprint)

    National Research Council Canada - National Science Library

    Ko, Ray T; Steffes, Gary J

    2007-01-01

    Defect detection within thick multilayer structures containing steel fasteners is a challenging task in eddy current testing due to the magnetic permeability of the fasteners and overall thickness of the structure...

  8. Specification for carbon and low alloy steel containment structures for stationary nuclear power reactors. [Now obsolescent (by Amendment No. 1)

    Energy Technology Data Exchange (ETDEWEB)

    1967-01-01

    This British Standard covers the design, construction, inspection and testing of steel reactor containment structures made of carbon and low alloy steel for temperatures not exceeding 300 deg C. Such structures are not in contact with the reactor coolant during normal operation. Pressure-relieved structures are not excluded, provided they are of a form that contains the fission products or ensures their safe disposal. Attachments such as air-locks or piping that is or may become directly connected between the interior of the containment structure and a closure, and may therefore contain radioactive material released during accidents, is considered part of the containment structure.

  9. Structural response of a nuclear power plant steel containment under H2 detonation

    International Nuclear Information System (INIS)

    Maresca, G.; Milella, P.P.; Pino, G.

    1993-01-01

    To get a better understanding of the containment wall behaviour under a detonation a simple but complete model is analysed in order to study the fluid-structure interaction during the explosion. The structure is represented by a single degree of freedom (SDOF) elastic-plastic system. This system is coupled to a monodimensional model of the containment atmosphere excited by hydrogen bursting. The atmosphere modeling allows to represent the shock propagation and the reflected wave effects. In the model a cylindrical geometry is used as reference. The obtained results are compared with data adopted in Italy to assess the structural integrity of the Alto Lazio NPP steel containment in the case of a severe accident. The limits of the model as well as the possible extensions are discussed in the paper together with a possible application in an experimental program directed to the assessment of failure criteria under severe accident conditions. (orig./HP)

  10. On cobalt effect on structural and phase transformations during tempering carbon-containing steels of Fe-Ni-Mo system

    International Nuclear Information System (INIS)

    Rakhshtadt, A.G.; Khovova, O.M.; Kan, A.V.; Perkas, M.D.; Kudryavtsev, A.N.; Rodionov, Yu.L.

    1990-01-01

    Methods of resistometry, colorimetry, X-ray diffraction chemical and electrochemical phase analyses, Moessbauer spectroscopy and field-ion mass spectrometry are used to study the nature of precipitation hardening of carbon containing Fe-Ni-Mo martensitic steels. Cobalt contribution to formation of phase composition and structural state of steels during tempering is analyzed. Realization conditions of effective combined (carbide-intermetallide) hardening of the investigated system steels are determined

  11. Steel containment buckling

    International Nuclear Information System (INIS)

    Butler, T.A.; Baker, W.E.

    1986-01-01

    Two aspects of buckling of a free-standing nuclear steel containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require a dynamic capacity reduction factor to be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are suggested

  12. Dynamic analysis of steel-concrete structure of TVO power plant containment building

    International Nuclear Information System (INIS)

    Hakala, M.; Karjunen, T.

    1996-08-01

    The report presents results from a study concerning the ability of the containment to withstand the loads caused by steams explosions which are possible during a severe accident at TVO plant (BWR). In the first phase, the suitability of the engineering mechanics code (FLAC) for modelling the dynamic response of damaging steel-concrete structures was tested by post-calculating a small scale test. As a result, a new dynamic material model taking account the fracture orientation was developed. In containment calculations both the developed and the best generally accepted material model were used. The loads against the containment were obtained from a simple model for steam explosions, which allowed the impulse of the pressure load to be fixed by tuning a few parameters. The ability of the containment to withstand the pressure pulses was analysed with loads of 5, 1 0, 20, 40, 60, and 80 kPa s impulse. As a results, the area and magnitude of permanent damage together with time histories of displacement and stress at critical points are presented. The estimations on the consequences of the observed structural damages as far as the containment leak tightness and stability are concerned and presented as conclusions. (9 refs.)

  13. Steel containment buckling

    International Nuclear Information System (INIS)

    Butler, T.A.; Baker, W.E.

    1987-01-01

    Two aspects of buckling of a free-standing nuclear containment building were investigated in a combined experimental and analytical program. In the first part of the study, the response of a scale model of a containment building to dynamic base excitation is investigated. A simple harmonic signal was used for preliminary studies followed by experiments with scaled earthquake signals as the excitation source. The experiments and accompanying analyses indicate that the scale model response to earthquake-type excitations is very complex and that current analytical methods may require that a dynamic capacity reduction factor be incorporated. The second part of the study quantified the effects of framing at large penetrations on the static buckling capacity of scale model containments. Results show little effect from the framing for the scale models constructed from the polycarbonate, Lexan. However, additional studies with a model constructed of the prototypic steel material are recommended. (orig.)

  14. Nitrogen-containing steels and thermomechanical treatment

    International Nuclear Information System (INIS)

    Kaputkina, L.; Prokoshkina, V.G.; Svyazhin, G.

    2004-01-01

    The strengthening of nitrogen-containing corrosion-resistant steels resulting from alloying and thermomechanical treatment have been investigated using X-ray diffraction analysis, light microscopy, hardness measurements and tensile testing. Combined data have been obtained for nitrogen interaction with alloying elements , peculiarities of deformed structure and short-range of nitrogen-containing steels of various structural classes. The higher nitrogen and total alloying element contents, the higher deformation strengthening. Prospects of use the steels with not high nitrogen content and methods of their thermomechanical strengthening are shown. High temperature thermomechanical treatment (HTMT) is very effective for obtaining high and thermally stable constructional strength of nitrogen-containing steels of all classes. The HTMT is most effective if used in a combination with dispersion hardening for aging steels or in the case of mechanically unstable austenitic steels. (author)

  15. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  16. Heissdampfreaktor (HDR) steel-containment-vessel and floodwater-storage-tank structural-dynamics tests

    International Nuclear Information System (INIS)

    Arendts, J.G.

    1982-01-01

    Inertance (vibration) testing of two significant vessels at the Heissdampfreaktor (HDR) facility, located near Kahl, West Germany, was recently completed. Transfer functions were obtained for determination of the modal properties (frequencies, mode shapes and damping) of the vessels using two different test methods for comparative purposes. One of the vessels tested was the steel containment vessel (SCV). The SCV is approximately 180 feet high and 65 feet in diameter with a 1.2-inch wall thickness. The other vessel, called the floodwater storage tank (FWST), is a vertically standing vessel approximately 40 feet high and 10 feet in diameter with a 1/2-inch wall thickness. The FWST support skirt is square (in plan views) with its corners intersecting the ellipsoidal bottom head near the knuckle region

  17. BWR steel containment corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  18. Principles of building and assembly technology of containment from steel structural blocks for WWER 1000 nuclear power plant

    International Nuclear Information System (INIS)

    Eichstedt, J.; Friedrich, F.

    1983-01-01

    This technology is being developed in cooperation between the USSR and the GDR. The cylindrical part of the containment consists of prefabricated double-sided steel blocks with inner reinforcement. The steel plates in a thickness of 20 mm provide casing and secure tightness. Blocks with one steel wall are used for the construction of the cupola. The outer slabs are assembled subsequently. The methods of assembly, concreting and quality assurance are described. (Ha)

  19. Safety conditions of using structural steels under high temperature and pressures in hydrogen containing environment

    International Nuclear Information System (INIS)

    Asviyan, M.B.

    1984-01-01

    The method for establishing full-strength conditions was suggested on the base of results of creep-rupture test of tube samples under hydrogen pressure and according to permissible stresses in neutral medium. Applicability of the method was considered taking St3 and 12KhM steels as examples. It was shown that the use of suggested dependences and special efficiency factors enables to forecast endurance limit for the given steel grade and assigned partial hydrogen pressure without labour-intensive test conducting

  20. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  1. Component nuclear containment structure

    International Nuclear Information System (INIS)

    Harstead, G.A.

    1979-01-01

    The invention described is intended for use primarily as a nuclear containment structure. Such structures are required to surround the nuclear steam supply system and to contain the effects of breaks in the nuclear steam supply system, or i.e. loss of coolant accidents. Nuclear containment structures are required to withstand internal pressure and temperatures which result from loss of coolant accidents, and to provide for radiation shielding during operation and during the loss of coolant accident, as well as to resist all other applied loads, such as earthquakes. The nuclear containment structure described herein is a composite nuclear containment structure, and is one which structurally combines two previous systems; namely, a steel vessel, and a lined concrete structure. The steel vessel provides strength to resist internal pressure and accommodate temperature increases, the lined concrete structure provides resistance to internal pressure by having a liner which will prevent leakage, and which is in contact with the concrete structure which provides the strength to resist the pressure

  2. A weldability study of the structural steel of the Angra II reactor containment

    International Nuclear Information System (INIS)

    Santos Pinto, M. dos.

    1980-01-01

    A weldability study of the german steel WSTE-51 based on mechanical, metallographic, hardness as well as special tests such as the CTS, the Tekken, for cold cracking, and the Vinckier test for reheat cracking is presented. The welding process used was the manual metal arc with low hydrogen eletrodes. In order to broaden the scope of this study the properties of weldments fabricated by submerged arc welding with high and low heat input were analized by means of mechanical and metallographic tests. The results showed that the joints had good quality and emphasize the necessity of special care in order to avoid cold cracking as well as the use of a temperbead in order to avoid reheat cracking. The submerged arc welding study concludes that higher impact resistance in the HAZ is obtained with low heat imput. (Author) [pt

  3. Development of cutting and welding methods for thick-walled stainless steel support and containment structures for ITER

    International Nuclear Information System (INIS)

    Jones, L.; Maisonnier, D.; Goussain, J.; Johnson, G.; Petring, D.; Wernwag, L.

    1998-01-01

    In ITER the containment and support structures are made from 316L(N)-IG (ITER Grade) stainless steel plate, 40 to 70 mm thick. The structures are divided into twenty sectors which have to be welded together in situ. The three areas of work described in this paper are, CO 2 laser welding, plasma cutting and CO 2 laser cutting. CO 2 laser welding offers significant advantages due to its high speed and low distortion and the most powerful commercial laser in Europe has been used to investigate single pass welding of thick plates, with strong welds up to 35 mm thick being achieved in one pass. For cutting, the space available on the back-side to collect debris and protect fragile components from damage is limited to 30 mm. A static, water-cooled backside protection plate proved unable to contain the debris from plasma cutting so a reciprocating backside protection system with dry ceramic heat shield demonstrated a solution. A 10 kW CO 2 laser system for nitrogen-assisted laser cutting, provided successful results at 40 mm thickness. This technique shows considerable promise as significant reductions in through power and rate of debris production are expected compared with plasma cutting and thicker cuts appear feasible. The results presented herein represent significant technical advances and will be strong candidates for the mix of methods which will have to be used for the assembly and maintenance of the ITER machine. (authors)

  4. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  5. Biaxial Loading Tests for steel containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, T. [Nuclear Power Engineering Corp., Tokyo (Japan); Wright, D.J.; Arai, S.

    1999-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  6. Biaxial Loading Tests for steel containment vessel

    International Nuclear Information System (INIS)

    Miyagawa, T.; Wright, D.J.; Arai, S.

    1999-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  7. Bellefonte primary containment structure

    International Nuclear Information System (INIS)

    Olyniec, J.H.

    1981-01-01

    Construction of the reactor building primary containment structure at the Bellefonte Nuclear Plant involved several specialized construction techniques. This two unit plant is one of the nine nuclear units at six different sites now under construction by the Tennessee Valley Authority (TVA). The post-Tensioned, cast-in-place interior steel lined containment structure is unique within TVA. Problems during construction were identified at weekly planning meetings, and options were discussed. Close coordination between craft supervisors and on-site engineering personnel drew together ''hands-on''experience and technical background. Details of the construction techniques, problems, and solutions are presented

  8. Electrochemical corrosion studies of the TStE 355 fine-grained structural steel in sulfide containing brine

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Berg, H. von.

    1994-04-01

    Previous corrosion studies have shown that the unalloyed fine-grained steel TStE 355 (Material No. 1.0566) is a promising material for the manufacturing of long-lived high-level waste (HLW) containers that could act as a barrier in a rock-salt repository. Considering this fact, further electrochemical corrosion tests were performed in order to determine the influence of sulfide ions (1 -200 ppm), present as salt impurities in disposal relevant NaCl-brine (T = 55 -90 C), on the corrosion behaviour of this steel grade. For comparison, tests were carried out in the sulfide-free brine, too. (orig.) [de

  9. Effect of silicon on the structure, tribological behaviour, and mechanical properties of nitrogen-containing chromium-manganese austenitic steels

    International Nuclear Information System (INIS)

    Korshunov, L.G.; Chernenko, N.L.; Gojkhenberg, Yu.N.

    2003-01-01

    The effect of silicon in quantity of 3.5-4.5 mass. % on tribological behaviour is studied for nitrogen-bearing (0.20-0.52 mass. % of nitrogen) chromium-manganese austenitic steels (10Kh15G23S4A0.20, 10Kh16G17N3S4A0.30, 10Kh19G20NS4A0.50, 12Kh19G19NS2A0.50, 10Kh18G19A0.50, 08Kh16G8N10S4A0.18). Mechanical properties and corrosion resistance of the steels are determined. Using metallographic, x-ray diffraction and electron microscopical methods a study is made into structural transformations running in the steels considered under friction and static tension. It is shown that additional silicon alloying of nitrogen-bearing chromium-manganese austenitic steels results in an essential increase of adhesion wear resistance of the materials on retention of low friction coefficient (f=0.25-0.33). A strong silicon effect on steel tribological behaviour is related with planar slip activation and with an increase of austenite strength and heat resistance [ru

  10. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  11. Results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.; Komine, Kuniaki; Matsumoto, Tomoyuki; Costello, J.F.

    1998-05-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed by the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed

  12. Special closures for steel drum shipping containers

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Otts, J.V.

    1976-01-01

    The objective of this program was to develop special lid closures for typical, steel drum, radioactive material shipping containers. Previous experience and testing had shown that the existing container was adequate to withstand the required environmental tests for certification, but that the lid and closure were just marginally effective. Specifically, the lid closure failed to consistently maintain a tight seal between the container and the lid after drop tests, thus causing the package contents to be vulnerable in the subsequent fire test. Recognizing the deficiency, the United States Energy Research and Development Administration requested the development of new closure(s) which would: (1) be as strong and resistant to a drop as the bottom of the container; (2) have minimal economic impact on the overall container cost; (3) maximize the use of existing container designs; (4) consider crush loads; and (5) result in less dependence on personnel and loading procedures. Several techniques were evaluated and found to be more effective than the standard closure mechanism. Of these, three new closure techniques were designed, fabricated, and proven to be structurally adequate to provide containment when a 454-kg drum was drop tested from 9.14-m onto an unyielding surface. The three designs were: (1) a 152-mm long lid extension or skirt welded to the standard drum lid, (2) a separate inner lid, with 152-mm long skirt and (3) C-clamps used at the container-lid interface. Based upon structural integrity, economic impact, and minimal design change, the lid extension is the recommended special closure

  13. Development and application of free pretreatment container steel

    Science.gov (United States)

    Yang, Y.; Liu, Y.; Han, B.; Wei, B.; Wang, S. Z.

    2017-12-01

    Due to economic and environmental advantages pre-treatment containers have good big development prospects, which can avoid shot blasting processes, and decrease the noise and dust pollution. By analyzing requirements of the container steel surface quality, target oxide scale structure of free pretreatment container steel has been determined. Trial process was carried out, and test results showed that the oxide scale achieved the desired objects, oxide scale with outer thin Fe3O4 layer and inner eutectoid α-Fe+Fe3O4. Salt spray test, second adhesion test, and modeling performance basically corroborated the container feasibility.

  14. Using an equation based on flow stress to estimate structural integrity of annealed Type 304 stainless steel plate and pipes containing surface defects

    International Nuclear Information System (INIS)

    Reuter, W.G.; Place, T.A.

    1981-01-01

    An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)

  15. Deflagration in stainless steel storage containers containing plutonium dioxide

    International Nuclear Information System (INIS)

    Kleinschmidt, P.D.

    1996-02-01

    Detonation of hydrogen and oxygen in stainless steel storage containers produces maximum pressures of 68.5 psia and 426.7 psia. The cylinders contain 3,000 g of PuO 2 with 0.05 wt% and 0.5 wt% water respectively. The hydrogen and oxygen are produced by the alpha decomposition of the water. Work was performed for the Savannah River Site

  16. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S

    1980-04-28

    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  17. Reliability-based condition assessment of steel containment and liners

    International Nuclear Information System (INIS)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs

  18. Symbolic aesthetics in steel structural systems

    Directory of Open Access Journals (Sweden)

    Usama Abdul-Mun'em Khuraibet

    2015-02-01

    Full Text Available The aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility and accuracy in manufacture of structural elements as visual items, structural interest in the forms of spaces which have long span systems or in high buildings are different forms of expression and influence. So the research focuses on the study of those expressive patterns related with the steel construction properties, including the advantages of these systems at the level of strength and firmness, flexibility and economy as well as aesthetic and expression. Accordingly, the research problem concentrated on educational shortage in the study of the structural steel system aspects concerning constructional characteristic, expressive and aesthetic features, and how to deal with them as a language bearing the symbols and meanings which have clear structural style, because it the best ways to make those systems as communication means with users, by premise that the use of expressional symbol in steel construction increases the aesthetic value. Therefore the research aims to reveal the most structural and expressive patterns by analysis the expressional means and steel structural aesthetics.

  19. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  20. Simplified dynamic buckling assessment of steel containments

    International Nuclear Information System (INIS)

    Farrar, C.R.; Duffey, T.A.; Renick, D.H.

    1993-01-01

    A simplified, three-degree-of-freedom analytical procedure for performing a response spectrum buckling analysis of a thin containment shell is developed. Two numerical examples with R/t values which bound many existing steel containments are used to illustrate the procedure. The role of damping on incipient buckling acceleration level is evaluated for a regulatory seismic spectrum using the two numerical examples. The zero-period acceleration level that causes incipient buckling in either of the two containments increases 31% when damping is increased from 1% to 4% of critical. Comparisons with finite element results on incipient buckling levels are favorable

  1. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  2. Aging of steel containments and liners in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Norris, W.E.

    1998-02-01

    Aging of the containment pressure boundary in light water reactor plants is being addressed to understand the significant factors relating occurrence of corrosion efficacy of inspection and structural capacity reduction of steel containments and liners of concrete containments. and to make recommendations on use of risk models in regulatory decisions. Current regulatory in-service inspection requirements are reviewed and a summary of containment related degradation experience is presented. Current and emerging nondestructive examination techniques and a degradation assessment methodology for characterizing and quantifying the amount of damage present are described. Quantitative tools for condition assessment of aging structures using time dependent structural reliability analysis methods are summarized. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process. Results of this research provide a means for establishing current and estimating future structural capacity margins of containments, and to address the significance of incidences of reported containment degradation

  3. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  4. Optimum design of steel structures

    CERN Document Server

    Farkas, József

    2013-01-01

    This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads...

  5. Tantalum-containing Z-phase in 12%Cr martensitic steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John

    2009-01-01

    Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems to be identi......Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems...

  6. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  7. Corrosion aspects of steel radioactive waste containers in cementitious materials

    International Nuclear Information System (INIS)

    Smart, Nick

    2012-01-01

    Nick Smart from Serco, UK, gave an overview of the effects of cementitious materials on the corrosion of steel during storage and disposal of various low- and intermediate-level radioactive wastes. Steel containers are often used as an overpack for the containment of radioactive wastes and are routinely stored in an open atmosphere. Since this is an aerobic and typically humid environment, the steel containers can start to corrode whilst in storage. Steel containers often come into contact with cementitious materials (e.g. grout encapsulants, backfill). An extensive account of different steel container designs and of steel corrosion mechanisms was provided. Steel corrosion rates under conditions buffered by cementitious materials have been evaluated experimentally. The main conclusion was that the cementitious environment generally facilitates the passivation of steel materials. Several general and localised corrosion mechanisms need to be considered when evaluating the performance of steel containers in cementitious environments, and environmental thresholds can be defined and used with this aim. In addition, the consequences of the generation of gaseous hydrogen by the corrosion of carbon steel under anoxic conditions must be taken into account. Discussion of the paper included: Is crevice corrosion really significant in cementitious systems? Crevice corrosion is unlikely in the cementitious backfill considered because it will tend to neutralise any acidic conditions in the crevice. What is the role of microbially-induced corrosion (MIC) in cementitious systems? Microbes are likely to be present in a disposal facility but their effect on corrosion is uncertain

  8. Failure internal pressure of spherical steel containments

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1985-01-01

    An application of the British CEGB's R6 Failure Assessment Approach to the determination of failure internal pressure of nuclear power plant spherical steel containments is presented. The presence of hypothetical cracks both in the base metal and in the welding material of the containment, with geometrical idealizations according to the ASME Boiler and Pressure Vessel Code (Section XI), was taken into account in order to analyze the sensitivity of the failure assessment with the values of the material fracture properties. Calculations of the elastoplastic collapse load have been performed by means of the Finite Element System SAMCEF. The clean axisymmetric shell (neglecting the influence of nozzles and minor irregularities) and two major penetrations (personnel and emergency locks) have been taken separately into account. Large-strain elastoplastic behaviour of the material was considered in the Code, using lower bounds of true stress-true strain relations obtained by testing a collection of tensile specimens. Assuming the presence of cracks in non-perturbed regions, the reserve factor for test pressure and the failure internal pressure have been determined as a function of the flaw depth. (orig.)

  9. Reactor container structure

    International Nuclear Information System (INIS)

    Sato, Yoshimi; Fukuda, Yoshio.

    1993-01-01

    A main container of an FBR type reactor using liquid sodium as coolants is attached to a roof slug. The main container contains, as coolants, lower temperature sodium, and high temperature sodium above a reactor core and a partitioning plate. The main container has a structure comprising only longitudinal welded joints in parallel with axial direction in the vicinity of the liquid surface of high temperature sodium where a temperature gradient is steep and great thermal stresses are caused without disposing lateral welded joints in perpendicular to axial direction. Only the longitudinal welded joints having a great fatigue strength are thus disposed in the vicinity of the liquid surface of the high temperature sodium where axial thermal stresses are caused. This can improve reliability of strength at the welded portions of the main container against repeating thermal stresses caused in vicinity of the liquid surface of the main container from a view point of welding method. (I.N.)

  10. Reliability analysis of steel-containment strength

    International Nuclear Information System (INIS)

    Greimann, L.G.; Fanous, F.; Wold-Tinsae, A.; Ketalaar, D.; Lin, T.; Bluhm, D.

    1982-06-01

    A best estimate and uncertainty assessment of the resistance of the St. Lucie, Cherokee, Perry, WPPSS and Browns Ferry containment vessels was performed. The Monte Carlo simulation technique and second moment approach were compared as a means of calculating the probability distribution of the containment resistance. A uniform static internal pressure was used and strain ductility was taken as the failure criterion. Approximate methods were developed and calibrated with finite element analysis. Both approximate and finite element analyses were performed on the axisymmetric containment structure. An uncertainty assessment of the containment strength was then performed by the second moment reliability method. Based upon the approximate methods, the cumulative distribution for the resistance of each of the five containments (shell modes only) is presented

  11. Testing of a steel containment vessel model

    International Nuclear Information System (INIS)

    Luk, V.K.; Hessheimer, M.F.; Matsumoto, T.; Komine, K.; Costello, J.F.

    1997-01-01

    A mixed-scale containment vessel model, with 1:10 in containment geometry and 1:4 in shell thickness, was fabricated to represent an improved, boiling water reactor (BWR) Mark II containment vessel. A contact structure, installed over the model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. This paper describes the pretest preparations and the conduct of the high pressure test of the model performed on December 11-12, 1996. 4 refs., 2 figs

  12. Possibilities for using higher-tensile, water quenched and tempered AlSiMn fine-grained structural steel for reactor containments

    International Nuclear Information System (INIS)

    Wallner, F.

    1976-01-01

    On water quenching and tempering of weldable AlSiMn structural steels, particularly the grain refining process is made use of, i.e. that measure with the poorest influence on the weldability of steel. Precipitation hardening due to water quenching is, on subsequent tempering, set off to a large extent by means of precipitation resp. coagulation of iron carbides. Minimum yield points up to 580 N/mm 2 and, simultaneously, good viscosity can be obtained by means of water quenching from austeritic temperature and tempering between 550 0 C and 650 0 C, depending on tempering temperatures and sheet thickness. In the paper at hand, results are given, obtained from tests and experience with the steel Aldur 50/65 (the first figure indicates minimum yield points, the second one minimum tensile strength on sheet thickness up to 30 mm). These results are assumed to be essential, also in connection with the construction and working conditions of nuclear power plants. (orig./RW) [de

  13. Corrosion of radioactive waste containers, case of a container made of low allow steel

    International Nuclear Information System (INIS)

    Bataillon, C.; Musy, C.; Roy, M.

    2001-01-01

    The following topics were dealt with: radioactive waste concept ANDRA, low alloy steel (XC38) container corrosion under representative storage conditions, corrosion rate and passivation effects, micrographic investigations

  14. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  15. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).

  16. Containment liner plate anchors and steel embedments test results

    International Nuclear Information System (INIS)

    Chang-Lo, P.L.; Johnson, T.E.; Pfeifer, B.W.

    1977-01-01

    This paper summarizes test data on shear load and deformation capabilities for liner plate line anchors and structural steel embedments in reinforced and prestressed concrete nuclear containments. Reinforced and prestressed nuclear containments designed and constructed in the United States are lined with a minimum of 0.64 cm steel plate. The liner plates are anchored by the use of either studs or structural members (line anchors) which usually run in the vertical direction. This paper will only address line anchors. Static load versus displacement test data is necessary to assure that the design is adequate for the maximum loads. The test program for the liner anchors had the following major objectives: determine load versus displacement data for a variety of anchors considering structural tees and small beams with different weld configurations, from the preceding tests, determine which anchors would lead to an economical and extremely safe design and test these anchors for cyclic loads resulting from thermal fluctuations. Various concrete embeds in the containment and other structures are subjected to loads such as pipe rupture which results in shear. Since many of the loads are transient by nature, it is necessary to know the load-displacement relationship so that the energy absorption can be determined. The test program for the embeds had the following objectives: determine load-displacement relationship for various size anchors from 6.5 cm 2 to 26 cm 2 with maximum capacities of approximately 650 kN; determine the effect of various anchor width-to-thickness ratios for the same shear area

  17. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  18. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Science.gov (United States)

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. ITER containment structures

    International Nuclear Information System (INIS)

    Sadakov, S.; Fauser, F.; Nelson, B.

    1991-01-01

    This document describes the results and recommendations of the Containment Structures Design Unit (CSDU) on the containment structures for ITER, made in the context of the Conceptual Design Phase. The document describes the following subsystems: (1) the primary vacuum vessel (VV), (2) the attaching locks (AL) of the invessel components, (3) the plasma passive and active stabilizers, (4) the cryostat vessel, and (5) the machine gravity supports. Although for most components reference designs were selected, for some of these alternative design options were described, because unresolved problems necessitate further research and development. Conclusions and future needs are summarized for each of the above subsystems: (1) a reference VV design was selected, while most critical VV future needs are the feasibility studies of manufacturing, assembly, and the repair/disassembly/reassembly by remote handling. Alternative, thin-wall options appear attractive and should be studied further during the Engineering Design Activities; (2) no reference design solution was selected for the AL system, as AL design requirements are extremely difficult and internally contradictory, while there is no existing tokamak precedent, but instead, five different approaches will be further researched early in the Engineering Design Phase; (3) significant progress is reported on passive loops, for which the ''twin-loops'' concept is ready to be advanced into the Engineering Design Phase, and on active coils, where a new coil positioning prevents interference with the blanket removal paths, and the current joints are located in a secondary vacuum or in the atmosphere of the reactor hall, repairable by remote handling; (4) a full metallic welded cryostat design with increased toroidal resistance was chosen, but with a design based on concrete with a thin inner metallic liner as a back-up in case detailed nuclear shielding requirements would force the cryostat to act as biological shield; (5) out

  20. Structural response of rectilinear containment to overpressurization

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1995-01-01

    Containment structures for nuclear reactors are the final barrier between released radionuclides and the public. Containment structures are constructed from steel, reinforced concrete, or prestressed concrete. US nuclear reactor containment geometries tend to be cylindrical with elliptical or hemispherical heads. The older Soviet designed reactors do not use a containment building to mitigate the effects of accidents. Instead, they employ a sealed set of rectilinear, interconnected compartments, collectively called the accident localization system (ALS), to reduce the release of radionuclides to the atmosphere during accidents. The purpose of this paper is to present a methodology that can be used to find the structural capacity of reinforced concrete structures. The method is applicable to both cylindrical and rectilinear geometries. As an illustrative example, the methodology is applied to a generic VVER-440/V213 design

  1. Strength analyses of containment steel liner at the plasticity instability

    International Nuclear Information System (INIS)

    Klyashchitskij, V.I.; Golyakov, V.I.; Kostylev, V.I.; Margolin, B.Z.

    2003-01-01

    The steel liner of NPP containment plays the important role of a leak-tight contour preventing the possible releases of radioactive substances beyond the boundaries of the reactor building. However, so far in many cases an assessment of strain-stress state of the liner having initial imperfections of the shape was made with approximate methods. A new methodology for the analysis of the liner at the plasticity instability was developed at Atomenergoproekt institute in cooperation with specialists from other agencies. The methodology is based on code 'Termit'. Assessment of the critical strain was made taking into account possible presence of one or two defects: construction undercut or crack-like defect in a weld. On the base of the real structure analyses under any combinations of quasi-static loads the algorithm was developed for the computation of the liner. (author)

  2. Ultimate limit states of steel containment vessel under earthquake loadings

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Yuhara, Tetsuo; Shimizu, Seiichi; Hayashi, Kazutoshi; Takahashi, Tadao.

    1986-01-01

    The limit state induced by buckling of cylindrical steel structures under earthquake loadings was investigated from the standpoint of energy concept. A number of the buckling test of cylindrical steel shell structures has been made, which showed that they have a stable load-displacement relation and adequate deformation capacities beyond the buckling. The authors are proposing that the energy input imparted by strong earthquakes to buckled structures and the deformation capacity in post-buckling are suitable indices for seismic resistance of the cylindrical steel shell structures because the buckling does not cause the structure immediately to collapse in the case of such repeated loading as earthquake motions. The purpose of this study is to investigate the energy input to buckled cylindrical steel structures with an increase in the intensity of earthquake motions. A series of nonlinear dynamic analyses were performed under various types of earthquake records by using a hysteresis loop, including buckling, which was derived from the buckling tests. The limit state could be defined as the state in which the deformation of and the energy input into buckled structures increase divergently when the intensity of the earthquake excitation exceeds a certain value. The results obtained in this paper are intended to be adopted to the limit state in the post-buckling region to evaluate the margin of safety against the buckling resistance of cylindrical steel structures under strong earthquake loadings. (author)

  3. Containment structure optimization

    International Nuclear Information System (INIS)

    Putman, S.; Walser, A.

    1979-01-01

    The major design features investigated are: dome shape, the prestress level provided to counteract accident pressure, the effect of diameter variation, and the design pressure used to size the containment. The optimum dome shape and optimum prestress level are used to investigate the effect of variations in diameter and design pressure on containment cost. The containment internal diameter is fixed at 150 feet for investigation of dome shape, prestress level and design prestress. A hemispherical dome containment with a prestress level of 1.25 P/sub a/ is recommended regardless of design pressure selected. A design pressure of 60 psi is recommended. No significant cost penalty is associated with diameter variation in the range of 145 to 155 feet

  4. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  5. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  6. The structure of the alphinizing coat on alloy steels

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper results of the structure of the coat alphinizing in AlSi5 silumin on alloy steels: acid-proof 1H18N9T (X6CrNiTi18-10 and high speed SW18 (HS18-0-1 were presented. The temperature of the alphinizing bath was amounts to750±5°C, and immersion time of the element τ = 180s. It was shown, that there is the different “g” coat thickness on testing steels. On the 1H18N9T steel it amounts to g = 52μm, and on the SW18 steel – g = 203μm. Regardless of a grade of testing alloy steels the coat consist of three layers with diversified phasic structure. There is different chemical composition of coat layers on testing steels. The first layer from the base consist of AlFe phase containing alloy addictions of steels: Cr and Ni (1H18N9T and W, V and Cr (SW18. On this layer crystallize the second layer of intermetallic phases. It is the phase containing the main alloy addiction of steels: AlFeCr (1H18N9T and AlFeW (SW18. The last, outside layer consist of silumin containing AlFeNi intermetallic phases on the 1H18N9T steel and AlFeW on the SW18 steel. Regardless of the grade of testing steels there is Si element in all layers of the coat. There are morphological differences in tested layers. The second layer (AlFeW phase inside the coat on the SW18 steel consist of faced crystals growing into in outside silumin layer. On the 1H18N9T steel a boundary between transient and outside layer is more uniform. Free separations of intermetallic phases inside silumin layer on the 1H18N9T steel have lamellar and on the SW18 steel – faced form.

  7. Evaluation criteria of structural steel reliability

    International Nuclear Information System (INIS)

    Zav'yalov, A.S.

    1980-01-01

    Different low-carbon and medium-carbon structural steels are investigated. It is stated that steel reliability evaluation criteria depend on the fracture mode, steel suffering from the brittle fracture under the influence of the stresses (despite their great variety) arising in articles during the production and operation. Fibrous steel fracture at the given temperature and article thickness says about its high ductility and toughness and brittle fractures are impossible. Brittle fractures take place in case of a crystalline and mixed fracture with a predominant crystalline component. Evaluation methods of article and sample steel structural strength differing greatly from real articles in a thickness (diameter) or used at temperatures higher than possible operation temperatures cannot be reliability evaluation criteria because at a great thickness (diameter) and lower operation temperatures steel fracture and its strain mode can change resulting in a sharp reliability degradation

  8. A study of the effects of penetration framing on steel containment buckling capacity

    International Nuclear Information System (INIS)

    Baker, W.E.; Butler, T.A.

    1987-05-01

    Polycarbonate cylinders modeling steel containment structures were tested to study the effects of different framing designs around large penetrations on the static buckling capacity of containments. Two of the four models had equipment hatch penetrations and two had personnel airlock penetrations. Both types of models were tested with axial and shear loads as framing was incrementally added. Results indicate that, for the models constructed of polycarbonate, buckling is influenced minimally with added framing. Numerical results support the experimental results. Extrapolation of the results to containment constructed under field conditions with prototypic steel materials is discussed and further testing is recommended

  9. Containment structure tendon investigation

    International Nuclear Information System (INIS)

    Fulton, J.F.; Murray, K.H.

    1983-01-01

    The paper describes an investigation into the possible causes of lower-than-predicted tendon forces which were measured during past tendon surveillances for a concrete containment. The containment is post tensioned by vertical tendons which are anchored into a rock foundation. The tendons were originally stressed in 1969, and lift-off tests were performed on six occasions subsequent to this date over a period of 11 years. The tendon forces measured in these tests were generally lower than predicted, and by 1979 the prestress level in the containment was only marginally above the design requirement. The tendons were retensioned in 1980, and by this time an investigation into the possible causes was underway. Potential causes investigated include the rock anchors and surrounding rock, elastomeric pad creep, wire stresses, thermal effects, stressing equipment and lift-off procedures, and wire stress relaxation. The investigation activities included stress relaxation testing of wires pulled from actual tendons. The stress relaxation test program included wire specimens at several different temperature and initial stress levels and the effect of a varying temperature history on the stress relaxation property of the wires. For purpose of future force predictions of the retensioned tendons, the test program included tests to determine the effect on stress relaxation due to restressing the wires after they had relaxed for 1000 hours and 10,000 hours. (orig./GL)

  10. Neutron Damage in Steels Containing Small Amounts of Boron

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P

    1961-05-15

    Certain low alloy steels contain small amounts (0.003 to 0.007 w/o) of boron which element contributes to the development of the air hardening properties of these steels. Such steels appear attractive for reactor pressure vessel construction but the question arises whether they will, due to the (n,{alpha}) reaction in boron, be more susceptible to neutron radiation damage than other steels which do not contain boron. We have attempted to estimate the importance of damage arising through boron fission relative to that caused by fast neutrons by assuming that the two sources of damage will be proportional to the numbers of displaced atoms produced in the two processes when no annealing or re combination of defects occurs. Within the approximations used we conclude that in a neutron spectrum which may be represented by an equivalent thermal flux {phi}{sub t} and an equivalent fast flux at 1 MeV of {phi}{sub f}, then D, the ratio of damage to boron fission to that caused by fast neutrons, is D = 4.5 x 10{sup -2} {phi}{sub t}/{phi}{sub f} (for 0. 003 w/o B). For the conditions at the inside of the reactor tank to R3 this would imply D = 1.2 x 10{sup -2} , i.e. if the R3 tank were built with a steel containing 0.003 w/o B then damage due to boron fission would be only {approx} 1 % of that caused by fast neutrons. Further problems with such steels as here discussed are the probability of embrittlement due to the introduction of boron fission fragments lithium and helium and the possibility of a radiation enhanced diffusion of boron which might lead to accentuated slow strain rate embrittlement. We argue that none of these problems should arise. It is concluded that a constructional steel containing 0.003 to 0.007 w/o B should not on this account be more susceptible to radiation damage than other non boron containing steels.

  11. PLASTIC ANALYSIS OF STEEL FRAME STRUCTURE

    Directory of Open Access Journals (Sweden)

    M. Rogac

    2013-05-01

    Full Text Available This paper presents the plastic analysis of steel frame structure loaded by gravity loads. By applying the cinematic theorem of ultimate analysis, the ultimate load for the case of elastic - ideally plastic material is calculated. The identical structure was treated in the computer program SAP2000 where the zone of material reinforcement in the plastic area was covered. Keywords: Steel frame structure, plastic analysis, ultimate gravity load, material reinforcement.

  12. Study of cast and thermo-mechanically strengthened chromium-nickel nitrogen-containing steel

    International Nuclear Information System (INIS)

    Prokoshkina, V.G.; Kaputkina, L.M.; Svyazhin, A.G.

    2000-01-01

    The effect of nitrogen on the structure and strength of corrosion-resistant chromium-nickel steels after thermal and thermomechanical treatment is studied. The 06Kh15N7AD and 07Kh15N7DAMB steels alloying by nitrogen was accomplished through the basic composition steels remelting in the molecular nitrogen atmosphere under the pressure of 0.1-2.5 MPa. The 02Kh15N5DAF and 05Kh15N5DAM steels ingots were obtained through melting in a plasma furnace under the nitrogen pressure of 0.4MPA. The high-temperature thermomechanical treatment (HTMT) was performed by rolling with preliminary blanks heating up to 1050 deg C and the rolling end temperature not below 950 deg C. It is shown, that the HTMT of the nitrogen-containing steels makes it possible to obtain strength characteristics by 1.5 times exceeding the properties of traditionally applicable corrosion-resistant steels, whereby sufficiently high plasticity of the nitrogen-containing steel is retained [ru

  13. Cast-iron containers out of low radioactive steel

    International Nuclear Information System (INIS)

    Deipenau, H.; Seidler, M.

    1990-01-01

    Low-level radioactive solid waste from the decommissioning of nuclear installations, if transported and disposed of in large containers, may cause less cutting work and therefore less radiation exposure of the work-force. The use of steel waste from decommissioning for manufacturing large transport and/or disposal containers is a promising route for recycling that waste and for saving storage volume and new resources. It has been demonstrated that it is possible to cast transport and disposal containers for radioactive wastes by using carbon steel waste originating from nuclear installations. A prototype has fulfilled all conditions to reach the qualification as a type A package according to the IAEA Regulations for Safe Transport of Radioactive Material as well as the preliminary conditions of the final repository Konrad

  14. A new CANDU-600 containment structure

    International Nuclear Information System (INIS)

    Serban, V.; Bobei, M.; Gheorghiu, M.; Popescu, M.; Stanciu, M.; Dinica, D.; Alexandru, C.

    1994-01-01

    This paper is presenting a structure made of reinforced concrete with rectangular cross-section, box-divided, prefabricated and modulled on a bay 6.5 m wide and 4.5 m high, and provided with a steel liner. The building has an overall basement in which the steel liner is embedded and which is supporting the building walls. The inner structure is common to the containment as well and it is carried out for each room (generally 6.5 m by 6.5 m) having intermediar floors at the necessary elevations. The containment dimensions, on horizontal plane are 6 x 6.5 m by 5 x 6.5 m and the total height of the side walls is 30.5 m. The containment is closed in A-C direction by a prefabricated semi-cylinder which is supported by the side walls and 5 intermediate arches. The fuel transfer deck structure is common to the inner structure and the containment structure. The Calandria vault is a separate individual structure located above E1. 100. For CANDU-600 main equipment the same arrangement was maintained, some unsignificant modifications being made, for example, the access areas located in the four corners of the building as well as the location of some auxiliary systems. The paper is also including a set of 1:200 scale drawings, comments on the construction manner and the results of the building structural analysis. The suggested solution is evidencing economical benefits facilities in the operation and construction of the plant and it is specially recommended for areas with high seismic events. (author)

  15. Protecting against failure by brittle fracture in ferritic steel shipping containers

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Langland, R.T.

    1983-01-01

    The possible use of ferritic steels for the containment structure of shipping casks has motivated the development of criteria for assuring the integrity of these casks under both normal and hypothetical accident conditions specified in Part 71 of the Code of Federal Regulations. The US Nuclear Regulatory Commission Regulation Guide 7.6 provides design criteria for preventing ductile failure steel shipping containers. The research described in this paper deals with criteria for preventing brittle fracture of ferritic steel shipping containers. Initially guidelines were developed for ferritic steel up to four inches thick (I). This was followed by an investigation of various criteria that might be used for monolithic thick walled casks greater than four inches thick (2). Three categories of safety are identified in the design of shipping containers. Category I, the highest level of safety, is appropriate for containment systems for spent nuclear fuel and high level waste transport packaging. In Category I, containers are designed to the highest level of safety and brittle fracture is essentially not possible. Categories II and III represent levels of safety commensurate with the consequences of release of lower levels of radioactivity. In these latter categories, consideration of factors contributing to brittle fracture, good engineering practice, and careful selection of material make brittle fracture unlikely under environmental conditions encountered during shipping. This paper will deal primarily with Category I containers. The guidelines for Category II and III containers are fully described elsewhere. 5 references, 10 figures, 3 tables

  16. Relationship between surface structure of silicon containing steel and adhesion of hot dip galvanized coating; Si gan'yu koban no hyomen kozo to yoyu aen mekki micchakuseino kankei

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Y.; Hashimoto, S.; Ishibashi, Y. [Kokan Keisoku K.K., Kawasaki (Japan); Inagaki, J. [NKK Corp., Tokyo (Japan); Fukuda, Y. [Shuibuoka University, Shizuoka (Japan)

    2000-06-01

    The surface of the annealed steel and the exfoliated interface of the coating for the hot dip galvanized Si containing steel sheets was characterized by using SEM (Scanning Electron Microscope), AES (Auger Electron Spectroscopy) and TEM (Transmission Electron Microscopy). The adhesion of the coatings have depended on the Si content of the steel. It have been found that MnSiO{sub 3} particles are formed at the surface of the annealed steels having high Si content and that two types of grain having different distribution of the oxide exist in the steels. Large oxide particles have been formed in one type of grain and small particles are formed in the other type of grain. The different type of Fe-Zn alloy are formed on two types of grains. It have been observed that the oxide particles exist at the interface of exfoliated coatings after the adhesion test for the steels with high Si content. The distribution of the oxide particles observed at the bottom of the exfoliated coating is quite similar to that of the surface oxide of the annealed steel. From these results, the exfoliation of the coating has initiated at the oxide particles of the steel surface that has been not reduced during the hot dip galvanizing. (author)

  17. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  18. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  19. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  20. Diffusion zinc plating of structural steels

    International Nuclear Information System (INIS)

    Kazakovskaya, Tatiana; Goncharov, Ivan; Tukmakov, Victor; Shapovalov, Vyacheslav

    2004-01-01

    The report deals with the research on diffusion zinc plating of structural steels when replacing their cyanide cadmium plating. The results of the experiments in the open air, in vacuum, in the inert atmosphere, under various temperatures (300 - 500 deg.C) for different steel brands are presented. It is shown that diffusion zinc plating in argon or nitrogen atmosphere ensures obtaining the qualitative anticorrosion coating with insignificant change of mechanical properties of steels. The process is simple, reliable, ecology pure and cost-effective. (authors)

  1. Preliminary results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Matsumoto, T.; Komine, K.; Arai, S.

    1997-01-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented

  2. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  3. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  4. The Structure of the Silumin Coat on Alloy Cast Steels

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2012-04-01

    Full Text Available The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T and GX39Cr13 (LH14. The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10 and Cr (GX39Cr13. The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

  5. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses......Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude and variable amplitude fatigue...

  6. Fire-induced collapses of steel structures

    DEFF Research Database (Denmark)

    Dondera, Alexandru; Giuliani, Luisa

    Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....

  7. Fatigue design of steel and composite structures Eurocode 3 : design of steel structures, part 1-9 fatigue ; Eurocode 4 : design of composite steel and concrete structures

    CERN Document Server

    Nussbaumer, Alain; Davaine, Laurence

    2012-01-01

    This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

  8. Generic Inspection Planning for Steel Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, Michael H.

    2002-01-01

    This paper presents a simplified and practically applicable approach for risk based inspection planning of fatigue sensitive structural details in steel structures. The basic idea is that the fatigue sensitive details are categorized according to their Fatigue Design Factor (FDF) and SN curve. When...

  9. Piping systems, containment pre-stressing and steel ventilation chimney

    International Nuclear Information System (INIS)

    Stuessi, U.

    1996-01-01

    Units 5 and 6 of NPP Kozloduy have been designed initially for seismic levels which are considered too low today. In the frame of an IAEA Coordinated Research Programme, a Swiss team has been commissioned by Natsionalna Elektricheska Kompania, Sofia, to analyse the relevant piping system, the containment prestressing and the steel ventilation chimney and to recommend upgrade measures for adequate seismic capacity where applicable. Seismic input had been specified by and agreed upon earlier by IAEA experts. The necessary investigations have been performed in 1995 and discussed with internationally recognized experts. The main results may be summarized as follows: Upgrades are necessary at different piping sy ports (additional snubbers or viscous dampers). These fixes can be done easily at low cost. The containment prestressing tendons are adequately designed for the specified load combinations. However, unfavourable construction features endanger the reliability. It is therefore strongly recommended to replace the tendons stepwise and to upgrade the existing monitoring system. Finally, the steel ventilation chimney may not withstand a seismic event, however the containment and diesel generator building will not be destroyed at possible impact by the chimney. On the other hand the roof of the main building has to be reinforced partially. It is recommended to continue the project for 1996 and 1997 to implement the upgrade measures mentioned above, to analyse the remaining piping systems and to consolidate all results obtained by different research groups of the IAEA programme with respect to piping systems including components and tanks

  10. Corrosion Measurements in Reinforced Fly Ash Concrete Containing Steel Fibres Using Strain Gauge Technique

    Directory of Open Access Journals (Sweden)

    V. M. Sounthararajan

    2013-01-01

    Full Text Available Corrosion of steel bars in concrete is a serious problem leading to phenomenal volume expansion and thereby leading to cover concrete spalling. It is well known that the reinforced concrete structures subjected to chloride attack during its service life cause these detrimental effects. The early detection of this damage potential can extend the service life of concrete. This study reports the comprehensive experimental studies conducted on the identification of corrosion mechanism in different types of reinforced concrete containing class-F fly ash and hooked steel fibres. Fly ash replaced concrete mixes were prepared with 25% and 50% fly ash containing steel fibres at 0.5%, 1.0%, and 1.5% by volume fraction. Corrosion process was investigated in an embedded steel bar (8 mm diameter reinforced in concrete by passing an impressed current in sodium chloride solution. Strain gauge attached to the rebars was monitored for electrical measurements using strain conditioner. Strain gauge readings observed during the corrosion process exhibited the volume changes of the reinforcement embedded inside the concrete. The corrosion potential of different steel fibre reinforced concrete mixes with fly ash addition showed higher resistance towards the corrosion initiation.

  11. The CANDU 3 containment structure

    International Nuclear Information System (INIS)

    1994-01-01

    The design of the CANDU 3 nuclear power plant is being developed by AECL CANDU's Saskatchewan office. There are 24 CANDU nuclear power units operating in Canada and abroad and eight units are under construction is Romania and South Korea. The design of the CANDU 3 plant has evolved on the basis of the proven CANDU design. The experiences gained during construction, commissioning and operation of the existing CANDU plants are considered in the design. Many technological enhancements have been implemented in the design processes in all areas. The object has been to develop an improved reactor design that is suitable for the current and the future markets worldwide. Throughout the design phase of CANDU 3, emphasis has been placed in reducing the cost and construction schedule of the plant. This has been achieved by implementing design improvements and using new construction techniques. Appropriate changes and improvements to the design to suit new requirements are also adopted. In CANDU plants, the containment structure acts as an ultimate barrier against the leakage of radioactive substances during normal operations and postulated accident conditions. The concept of the structural design of the containment structure has been examined in considerable detail. This has resulted in development of a new conceptual design for the containment structure for CANDU 3. This paper deals with this new design of the containment structure

  12. Strain-based failure criteria for steel containments

    International Nuclear Information System (INIS)

    Fanous, F.; Greimann, L.F.

    1989-01-01

    The Containment Integrity Division of the Sandia National Laboratories (Sandia) has been conducting a program to evaluate the performance of containment buildings with internal pressure. Sandia has suggested that in the absence of leakage past penetrations, containment buildings will fail by rupturing after large plastic strains are developed up to ultimate strain of the material. This paper represents a portion of work conducted at Ames Laboratory for Sandia, the objective of which was to identify fabrication details that may affect the performance of a containment building. Construction drawings for nine steel containment buildings were surveyed, and several significant strain concentration regions were identified by using recommendations from Sandia and Section NE-3217 of the ASME Boiler and Pressure Vessel Code. These following regions were identified as: eccentricities in stiffener patterns around penetrations, eccentricities in containment shell middle surface, flat plate covers used on spare penetrations, containment base connection details, and containment heads. Examples of each of these regions were analyzed by the finite-element method, by simplified equations or both. In the case of middle surface eccentricities, the strains were found to be self-limiting. Even though flat plates have primary strains, they are typically designed so as not to control. Bolts in the base connection have primary strains and may control. The circumferential compressive strains introduced at the knuckle during buckling of the containment head grow as the pressure increases, but are somewhat restricted by the meridional tension. Finally, three analysis techniques and their associated failure criteria for the analysis of containment strength are introduced. (orig.)

  13. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  14. Examination of leakage aspects through concrete - steel interfaces at and around containment penetration assemblies

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Sai, A.S.R.; Basu, P.C.

    1994-01-01

    Penetration assemblies are parts required to be provided in the containment wall/dome to permit piping, mechanical devices, equipments, electrical cables, personnel movements etc. Integrity of arrangements with respect to leak tightness at or around these penetration assemblies, is of utmost importance for achieving safe functioning of containment. Considering the feasibilities in controlling leakages along different possible paths, it has been found necessary to examine in detail the leakage possibilities at concrete - steel interfaces at and around penetration assemblies. The present paper addresses this issue with respect to the important related aspects like constructional details, testing conditions, normal operating conditions, and the accidental situation associated with containment structures. (author)

  15. Blast resistance behaviour of steel frame structures

    NARCIS (Netherlands)

    Varas, J.M.; Soetens, F.

    2010-01-01

    The effect of a blast explosion on a typical steel frame building is investigated by means of computer simulations. The simulations help to identify possible hot spots that may lead to local or global failure. The blast energy is transferred to the structure by means of the façade. In particular

  16. Overpressurization performance of containment structures

    International Nuclear Information System (INIS)

    Barr, P.; Bleackley, M.; Harrop, L.P.; Hargreaves, J.; Jowett, J.; Phillips, D.W.

    1987-01-01

    The containment building of a PWR is the outermost engineered barrier between the reactor and the environment. The most important element of such a containment system is the pressure boundary structure and its associated seals and penetrations. This containment structure is designed deterministically to withstand a number of loads and load combinations of which the dominant one is generally the internal pressure due to the double-ended guillotine break in one of the primary circuit loops. Typically, the design basis large LOCA produces a peak pressure increase in the region of 0.3 MPa in some 10 seconds and with a duration of up to a few tens of seconds. The assessment of overpressure performance of the containment structure is a key component of the PWR safety case, and is usually carried out by estimating a static factor of safety to some failure limit state. These estimates can be made using simple force-balance calculations or complicated finite element calculations, and both approaches have merit. In this paper we examine these approaches and discuss their value in estimating failure pressures and failure modes for a variety of internal pressurization transients. This discussion covers both general design and risk considerations and is illustrated by numerical examples taken from previous and on-going analysis

  17. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  18. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.

  19. Machinability of structural steels with calcium addition

    International Nuclear Information System (INIS)

    Pytel, S.; Zadecki, M.

    2003-01-01

    The machinability of the plain carbon and low alloy structural steels with carbon content of 0.1-0.6% is briefly discussed in the first part of the paper. In the experimental part a dependence between the addition of calcium and some changes in sulphide and oxide inclusions morphology is presented. The Volvo test for measurement of machinability index B i has been applied. Using the multiple regression methods two relationships between machinability index B i and stereological parameters of non-metallic inclusions as well as hardness of the steels have been calculated. The authors have reached the conclusion that owing to the changes in inclusion chemical composition and geometry as result of calcium addition the machinability index of the steel can be higher. (author)

  20. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  1. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    International Nuclear Information System (INIS)

    Grounes, M.

    1967-07-01

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10 18 n/cm 2 (> 1 MeV) and 4 x 10 19 n/cm 2 (thermal) and also 9.0 x 10 18 n/cm 2 (> 1 MeV) and 6 x 10 19 n/cm 2 (thermal). Material from three laboratory melts, in which the boron consisted of 10 B, 11 B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the 10 B-alloyed material was changed more and the 11 B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the 10 B containing material compared to 5 kg/mm in the 11 B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the 10 B-alloyed material, 40 deg C in the 11 B-alloyed material and 80 deg C in the material containing natural boron

  2. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M

    1967-07-15

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 4 x 10{sup 19} n/cm{sup 2} (thermal) and also 9.0 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 6 x 10{sup 19} n/cm{sup 2} (thermal). Material from three laboratory melts, in which the boron consisted of {sup 10}B, {sup 11}B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the {sup 10}B-alloyed material was changed more and the {sup 11}B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the {sup 10}B containing material compared to 5 kg/mm in the {sup 11}B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the {sup 10}B-alloyed material, 40 deg C in the {sup 11}B-alloyed material and 80 deg C in the material containing natural boron.

  3. Modal Based Fatigue Monitoring of Steel Structures

    DEFF Research Database (Denmark)

    Graugaard-Jensen, J.; Brincker, Rune; Hjelm, H. P.

    2005-01-01

    In this paper it is shown how the accumulated fatigue in steel structures can be estimated with high accuracy by continuously measuring the accelerations in a few points of the structure. First step is to obtain a good estimate of the mode shapes by performing a natural input modal analysis. The so...... by applying the mode shapes of the calibrated Finite Element model and strains are obtained using the shape functions for the actual elements. The technique has been applied on a model frame structure in the laboratory and on a wind loaded lattice pylon structure. In both cases the estimated stresses has been...

  4. Corrosion behavior of austenitic stainless steel containing Ti

    International Nuclear Information System (INIS)

    Cha, Sueng Ok; Choe, Han Cheol; Kim, Kwan Hyu

    1998-01-01

    Corrosion behavior of austenitic stainless steel containing Ti has been studied by using electrochemical techniques. The samples containing Ti from 0.1 to 1.0 wt% were solutionized at 1050 .deg. C for 1hr and then sensitized at 650 .deg. C for 5hr under argon atmosphere. Microstructure and phase analysis of the samples after heat treatment and corrosion tests were carried out by using XRD. TEM, SEM and optical microscope. The amount of δ-ferrite and TiC precipitates in matrix increased as the Ti content increased. In the sensitized samples, Cr 23 C 6 precipitates were observed at γ/δ interface. Degree Of Sensitization(DOS) was lower than 1.0 in all of the solutionized samples and the sensitized samples of Ti content above 0.4% wt% whereas the sensitized samples of Ti content lower than 0.4 wt% showed DOS higher than 1.0. Intergranular attack appeared mainly at grain boundaries in the sensitized sample containing 0.1 wt% Ti and at the γ/δ interface of the higher Ti content. In the latter, however, the attack was not so severe. Pitting potential(E pit ) and repassivation potential(E rep ) of the solutionized and sensitized samples were increased with increasing Ti content. The number and size of the pits decreased with increasing Ti content in the sensitized samples. The pits nucleated at Cr 23 C 6 site and the γ/δ interface

  5. Nuclear reactors sited deep underground in steel containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bourque, Robert [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Although nuclear power plants are certainly very safe, they are not perceived as safe by the general populace. Also, there are concerns about overland transport of spent fuel rods and other irradiated components. It is hereby proposed that the nuclear components of nuclear power plants be placed in deep underground steel vessels with secondary coolant fed from them to turbines at or near the surface. All irradiated components, including spent fuel, would remain in the chamber indefinitely. This general concept was suggested by the late Edward Teller, generated some activity 20-25 years ago and appears to be recently reviving in interest. Previous work dealt with issues of geologic stability of underground, possibly reinforced, caverns. This paper presents another approach that makes siting independent of geology by placing the reactor components in a robust steel vessel capable of resisting full overburden pressure as well as pressures resulting from accident scenarios. Structural analysis of the two vessel concepts and approximate estimated costs are presented. This work clears the way for the extensive discussions required to evaluate the advantages of this concept. (author)

  6. Corrosion of carbon steel and low-alloy steel in diluted seawater containing hydrazine under gamma-rays irradiation

    International Nuclear Information System (INIS)

    Nakano, Junichi; Yamamoto, Masahiro; Tsukada, Takashi

    2014-01-01

    Seawater was injected into reactor cores of Units 1, 2, and 3 in the Fukushima Daiichi nuclear power station as an urgent coolant. It is considered that the injected seawater causes corrosion of steels of the reactor pressure vessel and primary containment vessel. To investigate the effects of gamma-rays irradiation on weight loss in carbon steel and low-alloy steel, corrosion tests were performed in diluted seawater at 50°C under gamma-rays irradiation. Specimens were irradiated with dose rates of 4.4 kGy/h and 0.2 kGy/h. To evaluate the effects of hydrazine (N 2 H 4 ) on the reduction of oxygen and hydrogen peroxide, N 2 H 4 was added to the diluted seawater. In the diluted seawater without N 2 H 4 , weight loss in the steels irradiated with 0.2 kGy/h was similar to that in the unirradiated steels, and weight loss in the steels irradiated with 4.4 kGy/h increased to approximate 1.7 times of those in the unirradiated steels. Weight loss in the steels irradiated in the diluted seawater containing N 2 H 4 was similar to that in the diluted seawater without N 2 H 4 . When N 2 was introduced into the gas phase in the flasks during gamma-rays irradiation, weight loss in the steels decreased. (author)

  7. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    International Nuclear Information System (INIS)

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.

    1988-03-01

    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H 2 O /plus/ Fe(sub 3)O /plus/ 4H 2 , would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs

  8. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  9. Inspection of Nuclear Power Plant Containment Structures

    Energy Technology Data Exchange (ETDEWEB)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  10. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  11. Multi-layer concept for containments in an integrated construction method by using steel composite building block modules

    International Nuclear Information System (INIS)

    Friedrich, F.

    1987-01-01

    Containments consisting of steel modules have been developed as an alternative design and solution to the double shell containments comprising two separate structures. The combination of different reinforcement layers of steel plates and round reinforcing bars in one cross section provides a high loadbearing capacity. The multiple utilization of the steel plates in the composite section as formwork in the construction state and as reinforcement and liner in the operation or damage/failure states, respectively, yields a number of advantages. The main effect is being achieved due to the high degree of prefabrication and completion (finishing) of the steel modules and the reduction of expenditure on the job site connected with same. (orig.)

  12. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    International Nuclear Information System (INIS)

    von Riesemann, W.A.; Parks, M.B.

    1993-01-01

    In the United States, concrete containment buildings for commercial nuclear power plants have steel liners that act as the intemal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented. This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions)

  13. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  14. Structural dynamic response of target container against proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  15. Structural dynamic response of target container against proton beam

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro

    1997-01-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  16. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxiliary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embedded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. (Auth.)

  17. Stochastic Analysis of Offshore Steel Structures An Analytical Appraisal

    CERN Document Server

    Karadeniz, Halil

    2013-01-01

    Stochastic Analysis of Offshore Steel Structures provides a clear and detailed guide to advanced analysis methods of fixed offshore steel structures using 3D beam finite elements under random wave and earthquake loadings. Advanced and up-to-date research results are coupled with modern analysis methods and essential theoretical information to consider optimal solutions to structural issues. As these methods require and use knowledge of different subject matters, a general introduction to the key areas is provided. This is followed by in-depth explanations supported by design examples, relevant calculations and supplementary material containing related computer programmers. By combining this theoretical and practical approach Stochastic Analysis of Offshore Steel Structures cover a range of key concepts in detail including: ·         The basic principles of standard 3D beam finite elements and special connections, ·         Wave loading - from hydrodynamics to the calculation of wave load...

  18. Effects of dynamic coupling between freestanding steel containment and attached piping

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Kincaid, R.H.; Short, S.A.

    1981-01-01

    This paper presents an accurate, practical method of converting uncoupled response time history results obtained from an uncoupled structure model into coupled response time histories using a post-processor routine. The method is rigorous and only requires the modal properties of the uncoupled structure model, the modal properties of the uncoupled attached equipment model, and the uncoupled time histories of the attachment points on the structure. Coupled response spectra or time histories for use as input to an uncoupled equipment model are obtained. Comparisons of coupled versus uncoupled analysis results are presented for representative piping systems attached to a typical BWR Mark III steel containment subjected to vibration from safety relief valve discharge with a fundamental frequency of 12 Hz. It is shown that the coupled response spectra at piping attachment points are reduced by a factor between 2 and 5 from the amplified uncoupled spectra at each significant piping modal frequency above 20 Hz for representative major piping systems attached to the unstiffened portion of the steel shell. Responses at lower frequencies are not generally reduced and may increase by coupling effects for the input loading and shell model studied. Peak accerations are generally significantly reduced while peak displacements may be decreased or increased. Rules are presented for estimating the coupling effects between freestanding steel shells and attached equipment. (orig./HP)

  19. Investigation of the pitting corrosion of low carbon steel containers

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Sullivan, T.M.

    1988-01-01

    The present study was undertaken because the prediction of the degradation rate of low carbon steel contains over long time frames is one of the crucial elements in the development of a source term model for low-level shallow land burial. The principal data base considered is that of the NBS corrosion measurements of ferrous materials buried in the ground for periods of up to 18 years. In this investigation, the maximum penetration in mils, hm, due to pitting corrosion was found to conform closely to the relation h m = kt n where it is the exposure time of the sample in years, κ is the pitting parameter in mil/(years) n , and n > O is a parameter related to the aeration property of the soil. The central objective of the present investigation is the determination of the dependence of the pitting parameters κ and n on the soil properties. The result of a detailed linear correlation analysis of κ on one hand, the pH value and the resistivity of the soil on the other hand revealed that κ is principally influenced by the pH value of the soil. The resistivity of the soil is found to play a minor role

  20. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  1. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  2. Influence of austenitisation temperature on the structure and properties of weather resistant steels

    International Nuclear Information System (INIS)

    Prasad, S.N.; Mediratta, S.R.; Sarma, D.S.

    2003-01-01

    The influence of austenitisation temperature on the structure and properties of three experimental weather resistant steels has been studied. All these steels contain 1% Mn, 0.3% Ni, 0.47% Cr and 0.47% Cu. In addition, steel no. 1 has 0.1% C, 0.1% P, steel no. 2 has 0.1% C, 0.05% P and 0.024% Nb while steel 3 has 0.2% C, 0.054% Nb and 0.046% V. It has been found that the hardness, yield strength and tensile strength do not change significantly with austenitisation temperature over the range 900-1200 deg. C for steel no. 1 but they increase considerably when austenitised above 1000 deg. C for steels 2 and 3. Similarly, the ductility decreases with increasing temperature of austenitisation. All the steels austenitised up to 1000 deg. C exhibit sharp yield points. None of these steels shows sharp yield point after 1200 deg. C. At 1100 deg. C, however, sharp yield points were observed in steels 1 and 2. There has been a noticeable change in optical microstructure. In steels 2 and 3 the pearlite is gradually replaced by granular bainite when austenitised above 1000 deg. C. The transmission electron microscopy study reveals that the granular bainite consists of acicular ferrite and martensite/austenite constituent

  3. Structure of three Zlatoust bulats (Damascus-steel blades)

    Science.gov (United States)

    Schastlivtsev, V. M.; Gerasimov, V. Yu.; Rodionov, D. P.

    2008-08-01

    Chemical composition, structure, and hardness of samples of three Zlatoust bulats (Damascus steels), namely, an Anosov bulat blade (1841), Obukhov bulat blade (1859), and a Shvetsov forged bulat-steel blank (crucible steel) have been investigated. The Anosov bulat possesses all signs of the classical Damascus steel; this is a hypereutectoid carbon steel with a structure formed from chains of carbides against the background of fine pearlite (troostite). A banded pattern is revealed on the surface of the blade. The Obukhov blade cannot be referred to classical Damascus steel. The pattern on the surface of the blade is absent, despite the fact that the initial steel is hypereutectoid. The structure of the blade does not correspond to the structure of classical Damascus steel; this is bainite with numerous cementite particles. The Shvetsov sample cannot be regarded as Damascus steel since it is made from a hypereutectoid steel alloyed by managanese and tungsten. The pattern on the surface of the metal is a consequence of the dendritic structure of the ingot which is developed during forging. The structure of this pattern differs from classical damascene pattern, since the latter is formed due to a specific arrangement of a variety of carbide particles against the pearlitic or some other background obtained during heat treatment.

  4. Ductile fracture behavior of cast structure containing voids

    International Nuclear Information System (INIS)

    Gilles, Ph.; Migne, C.; Chapuliot, S.

    2001-01-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  5. Ductile fracture behavior of cast structure containing voids

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, Ph.; Migne, C. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Chapuliot, S. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    2001-07-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  6. Microstructure and toughness of structural steels

    International Nuclear Information System (INIS)

    Chipperfield, C.G.; Knott, J.F.

    1975-01-01

    The effects of notch acuity, inclusion content, and strength level on the toughness of a variety of ductile steels have been investigated in fully plastic single edge notched bend testpieces. Results for specimens containing fatigue precracks and sharp notches indicate that accurate predictions of a material's resistance to the initiation of fibrous fracture ahead of a fatigue crack may be inferred from tests on notched testpieces and from a knowledge of the microstructure of the material; an experimental procedure has been proposed whereby this may be achieved for quality control and material evaluation purposes. The spacing of optically visible inclusions is found essentially to define both the unit of ductile crack extension and, for low-strength steels, the limiting lateral dimensions of the high-strain field ahead of the crack tip. As a consequence, the notch-tip ductility is found to be invariant with the changes in notch acuity for sharp stress concentrators. The effect of increasing the purity and/or strength level is to alter the mechanism of fibrous fracture from one involving void growth and coalescence to one of predominantly shear character. (author)

  7. Kawasaki Steel Giho, Vol. 27, No. 4, 1995. Special issue on steel structure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    ;Contents (Partial): Vertical Gust Prediction of Cable-Stayed Bridges in Yawed Wind; Design and Construction of a Super Platform Structure Made of Steel; Prefabricated Steel Deck of Battledeck Floor Type for Redecking; Aesthetic Design of Structures; and Lift-up Construction Method for Multi-layer Building.

  8. 46 CFR 154.172 - Contiguous steel hull structure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this...

  9. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    International Nuclear Information System (INIS)

    Dai, Y.

    1996-01-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature (≤380 degrees C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300 degrees C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300 degrees C to 500 degrees C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180 degrees C to 330 degrees C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited

  10. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  11. Corrosion of pipe steel in CO2 containing impurities and possible solutions

    NARCIS (Netherlands)

    Zhang, X.; Zevenbergen, J.F.; Spruijt, M.P.N.; Borys, M.

    2013-01-01

    CO2 flue gases acquired from different sources contain a significant amount of impurities and water, which are corrosive to the pipeline steel. To design the pipelines for large scale of CO2 flue gas transport, the corrosion of pipeline steels has to be investigated in the realistic conditions. In

  12. Eccentric H2 detonation in a nuclear power plant steel containment

    International Nuclear Information System (INIS)

    Maresca, G.; Pino, G.

    1992-01-01

    At present, studies are in progress at ENEA-DISP to assess the performance of a steel containment under hydrogen detonation. Although considered unprobable to occur, this event is studied as a load on the safe side challenging the containment. A complete model to simulate the shock wave behavior and the fluid-structure interaction between the containment atmosphere and the containment wall has been set up at ENEA-DISP and a monodimensional axisymmetric case already studied. In the present paper the two-dimensional extension of the numerical model has been used. A plane slice of the wall and of the atmosphere filling the containment is considered. A cylindrical detonation wave is supposed to start from a source located eccentrically with respect to the containment axis. Because of the exploratory nature of the numerical model, a period of only 20 msec has been considered, although 100 msec should be considered as a minimum in a large metal containment to exclude further growing of plastic strains produced by consecutive reflections. At variance with the axisymmetric case bending stresses are developed now. The use of the model in order to assess a strain failure criterion to be applied at the dynamic portion of the H 2 detonation load is considered. In the paper the influence of different initial values of the relevant parameters (pressure, temperature, hydrogen concentration and source location) is examined in order to assess a range of equivalent conditions

  13. Life extension of containment structures of Indian PHWRs

    International Nuclear Information System (INIS)

    Roy, Raghupati; Garg, R.P.; Verma, U.S.P.

    2006-01-01

    Containment structures prevent radioactivity release in the event of any postulated Design Basis Accident (DBA) so that the level of radiation in the external environment is within acceptable limits. Containment structures of Indian PHWRs are typically unlined prestressed concrete structures, which are required to maintain its leak tightness characteristics and strength under DBA during the life of the structure. As nuclear power plant structures age, a number of degradation mechanisms begin to affect critical containment structure. Depending on the type and severity of these degradation mechanisms, its adverse effect on the leak tightness and pressure carrying capacity can be significant. Since the containment structures of Indian PHWRs are unlined, the leak tightness characteristics are solely dependent on the concrete properties and the prestressing material. Prestressing, which is introduced to control the deformation and strength requirement, is affected due to aging. Hence, adequacy of prestressing during the life of the structure to withstand internal pressure and the related leak tightness must be ensured for life extension of prestressed concrete containment structure in view of their significant long term losses. Prevention of corrosion in prestressing steel and assessment of the same at the end of extended design life of the structure, require utmost attention in view of their catastrophic nature of failure. This paper describes the various degradation mechanisms pertaining to concrete and their effect on the leak tightness characteristics and the strength requirement. The issues related to prestressing are also discussed in detail in this paper. The requirement of periodic monitoring of the containment structure for assessing its deformation and leak tightness characteristics and development of database for life extension of containment structure is also addressed in this paper. This paper also discusses the various provisions and measures, which are

  14. Battery and fuel cell electrodes containing stainless steel charging additive

    Science.gov (United States)

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  15. Relationships of quenching stresses to structural transformations in steel

    International Nuclear Information System (INIS)

    Loshkarev, V.E.

    1985-01-01

    Technique for accountancy of the effect of stresses on structural transformations in steel when solving problems of thermoplasticity is suggested. It is revealed on the basis of the conducted calculations that accountancy of interrelation of stressed and structural states of 20Kh2MF steel essentially affects forecasting of results of quenching

  16. Influence of titanium on the tempering structure of austenitic steels

    International Nuclear Information System (INIS)

    Ghuezaiel, M.J.

    1985-10-01

    The microstructure of titanium-stabilized and initially deformed (approximately 20%) austenitic stainless steels used in structures of fast neutrons reactors has been studied after one hour duration annealings (500 0 C) by X-ray diffraction, optical microscopy, microhardness and transmission electron microscopy. The studied alloys were either of industrial type CND 17-13 (0.23 to 0.45 wt% Ti) or pure steels (18% Cr, 14% Ni, 0 or 0.3 wt% Ti). During tempering, the pure steels presented some restauration before recristallization. In the industrial steels, only recristallization occurred, and this only in the most deformed steel. Precipitation does not occur in the titanium-free pure steel. In industrial steels, many intermetallic phases are formed when recristallization starts [fr

  17. Round Robin Posttest analysis of a 1/10-scale Steel Containment Vessel Model Test

    International Nuclear Information System (INIS)

    Komine, Kuniaki; Konno, Mutsuo

    1999-01-01

    NUPEC and U.S. Nuclear Regulatory Commission (USNRC) have been jointly sponsoring 'Structural Behavior Test' at Sandia National Laboratory (SNL) in Cooperative Containment Research Program'. As one of the test, a test of a mixed scaled SCV model with 1/10 in the geometry and 1/4 in the shell thickness. Round Robin analyses of a 1/10-scale Steel Containment Vessel (SCV) Model Test were carried out to obtain an adequate analytical method among seven organizations belonged to five countries in the world. As one of sponsor, Nuclear Power Engineering Corporation (NUPEC) filled the important role of a posttest analysis of SCV model. This paper describes NUPEC's analytical results in the round robin posttest analysis. (author)

  18. Round Robin Posttest analysis of a 1/10-scale Steel Containment Vessel Model Test

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Kuniaki [Nuclear Power Engineering Corp., Tokyo (Japan); Konno, Mutsuo

    1999-07-01

    NUPEC and U.S. Nuclear Regulatory Commission (USNRC) have been jointly sponsoring 'Structural Behavior Test' at Sandia National Laboratory (SNL) in Cooperative Containment Research Program'. As one of the test, a test of a mixed scaled SCV model with 1/10 in the geometry and 1/4 in the shell thickness. Round Robin analyses of a 1/10-scale Steel Containment Vessel (SCV) Model Test were carried out to obtain an adequate analytical method among seven organizations belonged to five countries in the world. As one of sponsor, Nuclear Power Engineering Corporation (NUPEC) filled the important role of a posttest analysis of SCV model. This paper describes NUPEC's analytical results in the round robin posttest analysis. (author)

  19. Commissioning of the steel containment and its related components of the Loviisa II. nuclear power plant

    International Nuclear Information System (INIS)

    Tuominen, J.; Pietikaeinen, L.; Kutramoinen, H.

    1982-01-01

    The outer concrete wall of the containment building serves as a protective system for the components in side. It contains the hermetically sealed steel pressure vessel for retaining the release of radioactive contamination in an accident situation. During a loss-of-coolant accident the pressure is reduced in two steps. The various testing procedures of the containment locks, their main-tenance and repair, the pressure and tightness tests of the steel containment and the preliminary operational tests of the other components of the containment system has been presented. (R.P.)

  20. Certain peculiarities of structural inheritance in phase recrystallization of steel

    International Nuclear Information System (INIS)

    Mukhamedov, A.A.

    1978-01-01

    The structural inheritance in phase recrystallization of previously overheated to various temperatures industrially melted 40Kh steel and of Armco-iron has been investigated. The steels have been heated to 100O, 11O0, 1200 and 1260 deg C and cooled in the air, and in some instances, hardened (quenched) in water. The physical broadening of X-ray lines points to a nonmonotonous variation of fine structure parameters as a function of the temperature and the heating time. The inheritance effect of fine structure defects affects the steel properties obtained in a final heat treatment. The structural inheritance effect has an important bearing upon the wear resistance of steel. A purpose-oriented use of the structural inheritance effect can enhance service properties of steel parts

  1. Risk-informed assessment of degraded containment structures

    International Nuclear Information System (INIS)

    Spencer, B.W.; Kunsman, D.M.; Graves, H.L.

    2003-01-01

    As nuclear power plants age, a number of degradation mechanisms may begin to affect the ability of critical containment structures to prevent radiation release during a severe accident. A research program is underway to quantify the effects of various types of containment degradation in a risk-informed manner. In this paper, corrosion is assumed to occur in the liner of a reinforced concrete containment at a 'typical' U.S. pressurized water reactor nuclear power plant, and its effect is investigated. Latin hypercube sampling is used in conjunction with finite element models of a typical steel-lined reinforced concrete containment to generate overpressurization fragilities of the containment with and without corrosion. An existing probabilistic risk assessment model of the plant is then used with these fragilities to determine the increase in risk caused by the corrosion. (author)

  2. Eddy-Current Testing of Welded Stainless Steel Storage Containers to Verify Integrity and Identity

    International Nuclear Information System (INIS)

    Tolk, Keith M.; Stoker, Gerald C.

    1999-01-01

    An eddy-current scanning system is being developed to allow the International Atomic Energy Agency (IAEA) to verify the integrity of nuclear material storage containers. Such a system is necessary to detect attempts to remove material from the containers in facilities where continuous surveillance of the containers is not practical. Initial tests have shown that the eddy-current system is also capable of verifying the identity of each container using the electromagnetic signature of its welds. The DOE-3013 containers proposed for use in some US facilities are made of an austenitic stainless steel alloy, which is nonmagnetic in its normal condition. When the material is cold worked by forming or by local stresses experienced in welding, it loses its austenitic grain structure and its magnetic permeability increases. This change in magnetic permeability can be measured using an eddy-current probe specifically designed for this purpose. Initial tests have shown that variations of magnetic permeability and material conductivity in and around welds can be detected, and form a pattern unique to the container. The changes in conductivity that are present around a mechanically inserted plug can also be detected. Further development of the system is currently underway to adapt the system to verifying the integrity and identity of sealable, tamper-indicating enclosures designed to prevent unauthorized access to measurement equipment used to verify international agreements

  3. Utilization of structural steel in buildings.

    Science.gov (United States)

    Moynihan, Muiris C; Allwood, Julian M

    2014-08-08

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is 'rationalization'-providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in 'embodied' carbon emissions.

  4. Technical features of steel structure construction by Kawasaki Steel; Kawasaki Seitetsu no kokozo gijutsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Urata, I.; Okata, S. [Kawasaki Steel Corp., Tokyo (Japan)

    1996-03-01

    In the steel structure technology of Kawasaki Steel, the joint technique (e.g., welding) is added to them while developing or improving the products that meet the social needs as a material supplier. Moreover, the execution technique that manufactures materials or constructs them as an integrated structure, the structural analysis that conforms to the function and application of a structure, and the design technique on dynamic properties or durability such as earthquake resistance, fatigue, and corrosion resistance are synthetically expanded for engineering. In this paper, a building steel frame, non-residence building, bridge, and harbor structure as steel structure in the building and construction fields were described for each structure genre. The structural technology of a building steel frame is summarized to the products of pillar materials. An earthquake brace, using a dead soft steel, with high earthquake energy absorption capability and a damping wall were also developed. The design and execution technique of a large roof was systematized. The exchange technique of a road bridge RC floor and the technique of an unstiffened suspension bridge for pipeline were developed. A new technique was also developed for a suspension monorail track and offshore structure. 30 refs., 5 figs.

  5. Assessment of Containment Structures Against Missile Impact Threats

    Institute of Scientific and Technical Information of China (English)

    LI Q M

    2006-01-01

    In order to ensure the highest safety requirements,nuclear power plant structures (the containment structures,the fuel storages and transportation systems) should be assessed against all possible internal and external impact threats.The internal impact threats include kinetic missiles generated by the failure of high pressure vessels and pipes,the failure of high speed rotating machineries and accidental drops.The external impact threats may come from airborne missiles,aircraft impact,explosion blast and fragments.The impact effects of these threats on concrete and steel structures in a nuclear power plant are discussed.Methods and procedures for the impact assessment of nuclear power plants are introduced.Recent studies on penetration and perforation mechanics as well as progresses on dynamic properties of concrete-like materials are presented to increase the understanding of the impact effects on concrete containment structures.

  6. EXPERIMENTAL RESEARCH OF THE THREE-DIMENSIONAL PERFORMANCE OF COMPOSITE STEEL AND CONCRETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Zamaliev Farit Sakhapovich

    2012-12-01

    steel-concrete slabs limits their use in the construction of residential housing. This article describes the composition, geometry, reinforcement, and anchors to enable the use of concrete slabs and steel beams. The article contains photographs that illustrate the load distribution model. Methods of testing of fiber strains of concrete slabs and steel profiles, deflections of beams, shear stresses in the layers of the "steel-to-concrete" contact area that may involve slab cracking are analyzed. Dynamics of fiber deformations of concrete slabs, steel beams, and layers of the "steel-to-concrete" contact areas, deflection development patterns, initial cracking and crack development to destruction are analyzed. The author also describes the fracture behavior of the floor model. Results of experimental studies of the three-dimensional overlapping of structural elements are compared to the test data of individual composite beams. Peculiarities of the stress-strain state of composite steel and concrete slabs, graphs of strains and stresses developing in sections of middle and external steel-and-concrete beams, deflection graphs depending on the loading intensity are provided. The findings of the experimental studies of the three-dimensional performance of composite steel-and-concrete slabs are provided, as well.

  7. Structural Integrity Assessment of Reactor Containment Subjected to Aircraft Crash

    International Nuclear Information System (INIS)

    Kim, Junyong; Chang, Yoonsuk

    2013-01-01

    When an accident occurs at the NPP, containment building which acts as the last barrier should be assessed and analyzed structural integrity by internal loading or external loading. On many occasions that can occur in the containment internal such as LOCA(Loss Of Coolant Accident) are already reflected to design. Likewise, there are several kinds of accidents that may occur from the outside of containment such as earthquakes, hurricanes and strong wind. However, aircraft crash that at outside of containment is not reflected yet in domestic because NPP sites have been selected based on the probabilistic method. After intentional aircraft crash such as World Trade Center and Pentagon accident in US, social awareness for safety of infrastructure like NPP was raised world widely and it is time for assessment of aircraft crash in domestic. The object of this paper is assessment of reactor containment subjected to aircraft crash by FEM(Finite Element Method). In this paper, assessment of structural integrity of containment building subjected to certain aircraft crash was carried out. Verification of structure integrity of containment by intentional severe accident. Maximum stress 61.21MPa of horizontal shell crash does not penetrate containment. Research for more realistic results needed by steel reinforced concrete model

  8. Comparison of Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony with 409L Stainless Steel for a Flue Gas Desulfurization System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Ah; Shin, Su-Bin; Kim, Jung-Gu [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-07-15

    The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H{sub 2}SO{sub 4} + 0.35 vol% HCl at 60 ℃. The inclusions in these steels ere identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction.

  9. Structural and containment response to LMFBR accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Fistedis, S.H.; Baker, L. Jr.; Stepnewski, D.D.; Peak, R.D.; Gluekler, E.L.

    1978-01-01

    The results of current developments in analysing the response of reactor structures and containment to LMFBR accidents are presented. The current status of analysis of the structural response of LMFBR's to core disruptive accidents, including head response, potential missile generation and the effects of internal structures are presented. The results of recent experiments to help clarify the thermal response of reactor structures to molten core debris are summarized, including the use of this data to calculate the response of the secondary containment. (author)

  10. Insights into the behavior of LWR steel containment buildings during severe accidents

    International Nuclear Information System (INIS)

    Clauss, D.B.; Horschel, D.S.; Blejwas, T.E.

    1987-01-01

    Investigations into the performance of steel containment subject to pressure and temperature greater than their design basis loads are discussed. The timing, mechanism, and location of a containment failure, i.e., release of radioactive materials, have an important impact on the consequences of a severe accident. We review the results of experiments on steel containment models pressurized to failure, on aged and unaged seals subjected to elevated temperature and pressure, and on electrical penetration assemblies tested for leakage. Based on the results, the important features and details of analytical methods that can be used to predict containment performance are identified. Finally, we speculate on the performance of steel containments in severe accident conditions. (orig.)

  11. Some special problems of steel reinforcement in nuclear structural engineering

    International Nuclear Information System (INIS)

    Bazant, B.; Smejkal, P.; Vetchy, J.

    1986-01-01

    A comparison is made of the mechanical and design characteristics of reinforcing steels for reinforced concrete structures of classes A-0 to A-IV under Czechoslovak State Standard CSN 73 1201 and Soviet standard SNiP II-21-75. Tests were performed to study changes in the values of the yield point, breaking strength, the tensile strength limit and the module of elasticity in selected Czechoslovak steels. The comparison showed that the steels behave in the same manner at high temperatures as Soviet steels of corresponding strength characteristics. Dynamic design strength of Czechoslovak materials also corresponds to values given in the Soviet standard. The technology and evaluation of welded joints equal for both Czechoslovak and Soviet steels. The manufacture was started of tempered wires with a high strength limit for prestressed wire reinforcement. All tests and comparisons showed that Czechoslovak reinforcing steels meet Soviet prescriptions, in some instances Czechoslovak standards are even more strict. (J.B.)

  12. Properties of 40N3M powder structural steel

    International Nuclear Information System (INIS)

    Moskvina, T.P.; Gulyaev, A.P.; Gulyaev, I.A.; Byakov, S.V.; Melent'ev, I.V.; Morgun, G.N.

    1984-01-01

    Effect of the fabrication technique of compact slabs made of the 40N3M powder structural steel on mechanical properties with determination of a cold brittleness threshold was studied. It is established that after a thermal treatment at a density close to 100% a powder steel is sufficiently close to steel, rolled of an ingot, but is second in reference to steel in its ductility and impact strength. Properties of powder steel obtained by the method of dynamic hot forming (DHF) and hot extrusion are practically equal, but the first method has definite advantages as it allows to obtain details with a definitive form. The above investigation permits to recommend an application of the 40N3M powder steel fabricated by the DHF methods. The optimum thermal treatment course is: quenching+high annealing

  13. Use of stainless steel as structural materials in reactor cores

    International Nuclear Information System (INIS)

    Teodoro, C.A.

    1990-01-01

    Austenitic stainless steels are used as structural materials in reactor cores, due to their good mechanical properties at working temperatures and high generalized corrosion resistance in aqueous medium. The objective of this paper is to compare several 300 series austenitic stainless steels related to mechanical properties, localized corrosion resistance (SCC and intergranular) and content of delta ferrite. (author)

  14. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Park, Junhee

    2014-01-01

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs

  15. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs.

  16. Structural inheritance in cast 30KhGNM-type steel

    International Nuclear Information System (INIS)

    Sadovskij, V.D.; Bershtejn, L.I.; Mel'nikova, A.A.; Polyakova, A.M.; Schastlivtsev, V.M.

    1980-01-01

    Structural inheritance in the cast 30KhGNM-type steel depending on the heating rate and the temperature of preliminary tempering is investigated. When eating the cast steel with a beinite structure at the rate of 1-150 deg/min, the restoration of austenite grain and the following recrystallization due to the phase cold work, are observed. Slow heating from room temperature or preliminary tempering hinder grain restoration during heating. A non-monotonous effect of tempering temperature on the structural inheritance is established which can be connected with the kinetics of decomposition of residual austenite in steel

  17. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    Science.gov (United States)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  18. Assessment of fracture toughness of structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Junyor, José Onésimo; Faria, Stéfanno Bruno; Rocha, Nirlando Antônio; Reis, Emil; Vilela, Jefferson José, E-mail: ze_onezo@hotmail.com, E-mail: sbrunofaria@gmail.com, E-mail: nar@cdtn.br, E-mail: emilr@cdtn.br, E-mail: jjv@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro Universitário de Belo Horizonte (UNIBH), MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The fracture toughness parameters are applied to estimate the lifetime of mechanical components and define the criteria of safe failure and tolerable damages. This information allows equipment to be used longer with a high degree of safety. These techniques are applied in the Leak-Before-Break (LBB) concept that is accepted for designing the piping system of the primary circuit of the pressurized water reactor (PWR). In this work, fracture toughness tests such as J{sub IC} and CTOD were performed on some structural steels. The fracture toughness parameters were determined using SE(B) and C(T) test specimens. The fracture toughness values for the same material varied according to the type specimen. The parameter δ{sub 1c} showed different values when it was calculated using the ASTM E1820 standard and using the BS 7448: Part 1 standard. These results indicate that procedures of these standards need to be improved. Two systems with different sensitivity in the force measurement were used that showed similar results for toughness fracture but the dispersion was different. (author)

  19. Development of improved SGV480 steel plate for containment vessel in PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Norioki [Advanced Nuclear Equipment Research Inst., Tokyo (Japan); Morikage, Yasushi; Okayama, Yutaka; Higashikubo, Tomohiro

    2001-01-01

    When a nuclear containment vessel made of steel plate at PWR plants in Japan is produced, SGV480 steel plate made by annealing method according to JIS G3118 is usually used in main. And, when thickness of welding portion of the vessel is larger than 38 mm, as heat treatment after welding is regulated to carry out according to the ministerial ordinance, it is difficult in actual to carry out the heat treatment of the actual welded portions. In a leading plant, approval of welding using a special method without heat treatment less than 47.25 mm of SGV480 carbon steel plate for JIS G3118 middle and ordinary pressure vessel was carried out to supply it for actual use. And, it is required for protection of welding fracture to carry out pre-heat treatment before welding. Because of increasing plate thickness requiring for lower temperature and more seismic resistance in construction condition, in order to produce a containment vessel without heat treatment after welding, more toughness is required for using material and welded portion. Therefore, a new SGV480 steel plate was developed by using TMCP method of modern steel manufacturing technology, to establish lower carbon equivalence and finer texture with upgrading of both toughness and weldability, without heat treatment after welding and pre-heat treatment before welding, at the Shin-Nippon Steel Co, Ltd. and Kawasaki Steel, Co. Ltd., respectively. (G.K.)

  20. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage

    International Nuclear Information System (INIS)

    Fournier, B.

    2007-09-01

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  1. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    Directory of Open Access Journals (Sweden)

    R. K. Singh Raman

    2014-12-01

    Full Text Available This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC in a nitrite-containing chloride solution. Slow strain rate testing (SSRT in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution.

  2. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  3. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    International Nuclear Information System (INIS)

    Riesemann, W.A. von; Parks, M.B.

    1995-01-01

    In the US, concrete containment buildings for commercial nuclear power plants have steel liners that act as the internal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented.This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).An overpressurization test of a 1:6 scale reinforced concrete containment at Sandia National Laboratories resulted in a failure mechanism in the liner that was not fully anticipated. Post-test analyses and experiments have been conducted to understand the failure better. This work and the activities that followed the test are reviewed. Areas in which additional research should be conducted are given. (orig.)

  4. Mixed structures in continuously cooled low-carbon automotive steels

    International Nuclear Information System (INIS)

    Khalid, F.A.; Edmonds, D.V.

    1993-01-01

    Mixed microstructures have been studied in low- carbon microalloyed steels suitable for automotive applications, after continuous cooling from the hot-rolled condition. Microstructural features such as polygonal ferrite, bainitic and acicular ferrite and microphase constituent are identified using transmission electron microscopy. The influence of these mixed structures on the tensile strength, impact toughness and fracture behaviour is examined. It is found that improvements in impact toughness as compared with microalloyed medium- carbon ferrite/pearlite steels can be achieved from these predominantly acicular structures developed by controlling alloy composition and continuous cooling of these lower carbon steels. (orig.)

  5. Effect of niobium and titanium addition on the hot ductility of boron containing steel

    International Nuclear Information System (INIS)

    Cho, Kyung Chul; Mun, Dong Jun; Koo, Yang Mo; Lee, Jae Sang

    2011-01-01

    Research highlights: → Addition of only Nb without Ti has little influence in the hot ductility of B steel. → Hot ductility loss of B-Nb steel is due to grain boundary precipitation of BN. → Adding a small amount of Ti improve the hot ductility of B-Nb steel. → In B-Nb-Ti steel, hot ductility improvement is related to presence of TiN particle. → Presence of TiN particles makes the BN precipitates' distribution more homogeneous. - Abstract: Hot ductility of boron containing steel (B steel) with adding Nb (0.03 wt.%) (B-Nb steel) and B-Nb steel with adding Ti (0.0079 wt.%) (B-Nb-Ti steel) was quantified using hot tensile tests. The specimens were solution-treated at 1350 deg. C and cooled at 20 deg. C s -1 to tensile test temperature (T) in the range of 750 ≤ T ≤ 1050 deg. C. After that, they were strained to failure at a strain rate of 2.5 x 10 -3 s -1 . For the B-Nb steel, severe hot ductility loss was observed at 850 ≤ T ≤ 950 deg. C, which covered the low temperature in which austenite (γ) single-phase exists, and the high temperature at which γ and ferrite (α) coexist. Ductility loss in the B-Nb steel was caused by the presence of a network of BN precipitates, rather than by Nb(C, N) precipitates at the γ grain boundaries. In contrast, hot ductility of the B-Nb-Ti steel was remarkably improved at 850 ≤ T ≤ 950 deg. C. In the B-Nb-Ti steel, BN precipitates preferentially on TiN particles, resulting in increased BN precipitation in the γ grain interior and a decrease in the network of BN precipitates at the γ grain boundaries. These changes reduce strain localization at the γ grain boundaries and therefore increase the hot ductility of the steel.

  6. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  7. Feasibility studies on design of steel containment for AHWR subjected to normal and seismic loads

    International Nuclear Information System (INIS)

    Verma, Rajeev; Reddy, G.R.; Vaze, K.K.; Kumar, Ajay

    2011-01-01

    Reactor Containments in nuclear power plants are the final leak tight harriers preventing release of radioactive material during the accident to the environment. It should provide containment against fission product release, passive containment cooling and should be economical. In the world various configurations have been adopted depending on the accident pressures, temperatures, leak rate requirements and radius of exclusion zones. economy, speed of construction etc. Some of the containments arc of Reinforced Cement Concrete (RCC), Prestressed Cement Concrete (PCC), RCC with the liner, PCC with the liner and Steel. The design concepts and the choice of containment depend on the country practices. The main objective of this paper is to design, analyze and characterize the effectiveness of steel containment for AHWR and compare it with other type of containments. The paper discusses the literature regarding various types of existing containments in the world. In depth study of design practice for cylinder and various types of heads have been discussed. Also discusses the finite element modeling of the containment, analysis for normal and accidental loads and the design qualification as per the ASME and IS-800 codes. In the conclusion the advantage of steel containment is highlighted with the small discussion on the newer trends of construction. (author)

  8. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1982-01-01

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  9. Stresses and strains in the steel containment resulting from transient pressure and temperature loading during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gruner, P.; Kuntze, W.M.; Jansky, J.

    1985-01-01

    Posttest calculations of stresses and strains in the steel containment of the German research reactor HDR were performed for a simulated LOCA. The results of the theoretical investigations are presented and compared to experimental findings. The pressure and temperature loading of the shell was determined with the thermodynamic code COFLOW on the basis of a multi-compartment model. Using a three-dimensional finite element model the temporal behaviour of the containment was calculated employing the structural mechanics code ASKA. Global bending deformations and local negative straining of the steel shell is discussed. Theoretical and experimental results agree in most cases rather well. Reasons for deviations will be discussed. The specific behaviour of strains found in the vicinity of locally heated areas will be explained by means of analytical considerations. (orig.)

  10. Ultimate Pressure Capacity of Prestressed Concrete Containment Vessels with Steel Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The ultimate pressure capacity (UPC) of the prestressed concrete containment vessel (PCCV) is very important since the PCCV are final protection to prevent the massive leakage of a radioactive contaminant caused by the severe accident of nuclear power plants (NPPs). The tensile behavior of a concrete is an important factor which influence to the UPC of PCCVs. Hence, nowadays, it is interested that the application of the steel fiber to the PCCVs since that the concrete with steel fiber shows an improved performance in the tensile behavior compared to reinforced concrete (RC). In this study, we performed the UPC analysis of PCCVs with steel fibers corresponding to the different volume ratio of fibers to verify the effectiveness of steel fibers on PCCVs

  11. Applicability of JIS SPV 50 steel to primary containment vessels of nuclear power stations

    International Nuclear Information System (INIS)

    Iida, K.; Ishikawa, K.; Satoh, M.; Soya, I.

    1980-01-01

    The fracture toughness of JIS SPV 50 steel and its weldment has been examined in order to verify the applicability of these materials to primary containment vessels of nuclear power stations. Test results were evaluated using elastic plastic fracture mechanics through the COD and the J integral concepts for non ductile fracture initiation characteristics. Linear fracture mechanics was employed for propagation arrest characteristics. Results showed that the materials tested here have a sufficient fracture toughness to prevent nonductile fracture and that this steel is a suitable material for use in construction of primary containment vessels of nuclear power stations. (author)

  12. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  13. Fracture Characteristics of Structural Steels and Weldments

    Science.gov (United States)

    1975-11-01

    CARACTERISTICS 0F.$ýTRUCTURAL TEL/ - "AD E NTSA .INAL 1 A7 sk S. CONTRACT OR GRANT NUMBER(&) Y.2G. im 9. PERFORMING ORGANIZATION NAME AND ADDRESS -017...36, T- 1,and HY-Y130 Steel and AX. Il 30 15 I Tensile F~racture Surface of A-36 Steel, 12x 31 16 Dimple Rupture in A-6Sel 0X 31 17 Plastic ...sites and the relative plasticity of thle The objective of this study was to use a scanning metal. If many fracture icleation sites initiate mticro

  14. Open site tests on corrosion of carbon steel containers for radioactive waste forms

    International Nuclear Information System (INIS)

    Barinov, A.S.; Ojovan, M.I.; Ojovan, N.V.; Startceva, I.V.; Chujkova, G.N.

    1999-01-01

    Testing of waste containers under open field conditions is a component part of the research program that is being carried out at SIA Radon for more than 20 years to understand the long-term behavior of radioactive waste forms and waste packages. This paper presents the preliminary results of these ongoing studies. The authors used a typical NPP operational waste, containing 137 Cs, 134 Cs, and 60 Co as the dominant radioactive constituents. Bituminized and vitrified waste samples with 30--50 wt.% waste loading were prepared. Combined effects of climatic factors on corrosion behavior of carbon steel containers were estimated using gravimetric and chemical analyses. The observations suggest that uniform corrosion of containers prevails under open field conditions. The upper limits for the lifetime of containers were derived from calculations based on the model of atmospheric steel corrosion. Estimated lifetime values range from 300 to 600 years for carbon steel containers with the wall thickness of 2 mm containing vitrified waste, and from 450 to 500 years for containers with the wall thickness of 2.5 mm that were used for bituminized waste. However, following the most conservative method, pitting corrosion may cause container integrity failure after 60 to 90 years of exposure

  15. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel

    International Nuclear Information System (INIS)

    Schober, M.; Schnitzer, R.; Leitner, H.

    2009-01-01

    Stainless maraging steels have a Cr content higher than 12 wt% and show a excellent combination of high strength and ductility, which make them attractive for use in machinery fields and aircraft applications. The massive increase of strength during ageing treatment of maraging steels is related to a precipitation sequence of various nm-scaled intermetallic phases. The peak hardness especially in Ti-containing maraging steels can be reached after short-time ageing at temperatures around 500 o C. However, precipitation reactions in different stainless maraging steels are not fully understood, especially the evolution from clustering over growing to coarsening. In the present work a commercial maraging steel and a Ti-containing model alloy are investigated and compared to each other. The steels were isothermally heat treated at 525 o C for a range of times. Special emphasis was laid on the correlation of hardness to the formation and presence of different kinds of precipitates. The isothermal aged samples were investigated by using two advanced three-dimensional energy compensated atom probes (LEAP TM and 3DAP TM ) both in voltage mode and in laser mode. The atom probe data were correlated to standard hardness measurements. The results show that the partial substitution of Al by Ti results in a different precipitation behaviour. While the Ti-free maraging steel exhibit only one type of precipitate, the Ti-containing grade shows a change in the type of precipitates during ageing. However, this change leads to an accelerated coarsening and thus to a faster drop in hardness.

  16. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel.

    Science.gov (United States)

    Schober, M; Schnitzer, R; Leitner, H

    2009-04-01

    Stainless maraging steels have a Cr content higher than 12wt% and show a excellent combination of high strength and ductility, which make them attractive for use in machinery fields and aircraft applications. The massive increase of strength during ageing treatment of maraging steels is related to a precipitation sequence of various nm-scaled intermetallic phases. The peak hardness especially in Ti-containing maraging steels can be reached after short-time ageing at temperatures around 500 degrees C. However, precipitation reactions in different stainless maraging steels are not fully understood, especially the evolution from clustering over growing to coarsening. In the present work a commercial maraging steel and a Ti-containing model alloy are investigated and compared to each other. The steels were isothermally heat treated at 525 degrees C for a range of times. Special emphasis was laid on the correlation of hardness to the formation and presence of different kinds of precipitates. The isothermal aged samples were investigated by using two advanced three-dimensional energy compensated atom probes (LEAP and 3DAP) both in voltage mode and in laser mode. The atom probe data were correlated to standard hardness measurements. The results show that the partial substitution of Al by Ti results in a different precipitation behaviour. While the Ti-free maraging steel exhibit only one type of precipitate, the Ti-containing grade shows a change in the type of precipitates during ageing. However, this change leads to an accelerated coarsening and thus to a faster drop in hardness.

  17. Assessment of integrity of structures containing cracks

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1976-01-01

    The object of the investigations is to provide a method of assessing the safety and integrity of structures containing cracklike defects. Estimated load at which the cracked structure will fail is compared with the highest load likely to be applied in service

  18. Assessment of martensitic steels as structural materials in magnetic fusion devices

    International Nuclear Information System (INIS)

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600 0 C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  19. Simulation of Structural Transformations in Heating of Alloy Steel

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-07-01

    Amathematical model for computer simulation of structural transformations in an alloy steel under the conditions of the thermal cycle of multipass welding is presented. The austenitic transformation under the heating and the processes of decomposition of bainite and martensite under repeated heating are considered. Amethod for determining the necessary temperature-time parameters of the model from the chemical composition of the steel is described. Published data are processed and the results used to derive regression models of the temperature ranges and parameters of transformation kinetics of alloy steels. The method developed is used in computer simulation of the process of multipass welding of pipes by the finite-element method.

  20. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  1. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxilary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embeded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. An integrated configuration which includes the interior shell, the annular structure and the subgrade is analyzed for several static and dynamic loading conditions. The analysis is done using a finite difference solution scheme for the static loading conditions. A semi-analytical three-dimensional finite element scheme combined with a Fast Fourier Transform (FFT) algorithm is used for the dynamic loading conditions. The effects of cracking of the containment structure due to pressurization in conjunction with earthquake loading are discussed. Analytical results for both the finite difference and the finite element schemes are presented and the sensitivity of the results to changes in the input parameters is studied. General recommendations are given for plant configurations where high seismic loading is a major design consideration

  2. Corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions

    International Nuclear Information System (INIS)

    Wu, P.C.S.; Grundy, B.R.; Miller, R.L.

    1979-01-01

    The corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions was investigated. Results showed that sodium-corroded Type 316 stainless steel (prototypic Liquid Metal Fast Breeder Reactor (LMFBR) fuel cladding) maintains its integrity after five months exposure in these solutions at 82 0 C and with chloride content up to 500 ppM. In contrast, sensitized and sodium mass transfer deposit-containing Type 304 stainless steel failed in the high chloride solution (500 ppM) within ten days at the same temperature. The failure was initiated by pitting and subsequently accelerated by intergranular attack. The results also show that high pH tends to reduce the susceptibility to failure while procedures commonly used for sodium removal have no significant effect on the water corrosion behavior of the test material. Based on the current results, it is concluded that water shortage is feasible for spent fuels in a LMFBR reprocessing plant

  3. A three-dimensional rupture analysis of steel liners anchored to concrete pressure and containment vessels

    International Nuclear Information System (INIS)

    Bangash, Y.

    1987-01-01

    Steel liners or plates are anchored to concrete pressure and containment vessels for nuclear and offshore facilities. Due to extreme loading conditions a liner may buckle due to the pull-out or shearing of anchors from the base metal and concrete. Under certain conditions attributed to loadings, liner metal deterioration and cracking of concrete behind the liner, the liner may fail by rupture. This paper presents a three-dimensional analysis of steel-concrete elements, using finite elements analysis in which a provision is made for liner instability, anchor strength and stiffness, concrete cracking and finally liner rupture. The analysis is tested first on an octagonal slab with and without an anchored steel liner. It is then extended to concrete pressure and containment vessels. The analytical results obtained are compared well with those available from the experimental tests and other sources. (author)

  4. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Cochrane, D.J.

    1998-01-01

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  5. Corrosion of steel drums containing simulated radioactive waste of low and intermediate level

    International Nuclear Information System (INIS)

    Farina, S.B.; Schulz Rodríguez, F.; Duffó, G.S.

    2013-01-01

    Ion-exchange resins are frequently used during the operation of nuclear power plants and constitute radioactive waste of low and intermediate level. For the final disposal inside the repository the resins are immobilized by cementation and placed inside steel drums. The eventful contamination of the resins with aggressive species may cause corrosion problems to the drums. In order to assess the incidence of this phenomenon and to estimate the lifespan of the steel drums, in the present work, the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different aggressive species was studied. The aggressive species studied were chloride ions (main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The corrosion rate of the steel was monitored over a time period of 900 days and a chemical and morphological analysis of the corrosion products formed on the steel in each condition was performed. When applying the results obtained in the present work to estimate the corrosion depth of the drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Low and Intermediate Level Radioactive Waste facility in Argentina), it was found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (author)

  6. Multicriteria Analysis of Assembling Buildings from Steel Frame Structures

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.

  7. Low Temperature Gaseous Nitriding of a Stainless Steel Containing Strong Nitride Formers

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low temperature thermochemical surface hardening of the precipitation hardening austenitic stainless steel A286 in solution treated state was investigated. A286 contains, besides high amounts of Cr, also substantial amounts of strong nitride formers as Ti, Al and V. It is shown that simultaneous...

  8. Electrochemical Performance of Low-Carbon Steel in Alkaline Model Solutions Containing Hybrid Aggregates

    NARCIS (Netherlands)

    Koleva, D.A.; Hu, J.; De Wit, J.H.W.; Boshkov, N.; Radeva, T.; Milkova, V.; Van Breugel, K.

    2010-01-01

    This work reports on the electrochemical performance of low-carbon steel electrodes in model alkaline solutions in the presence of 4.9.10-4 g/l hybrid aggregates i.e. cement extract, containing PDADMAC (poly (diallyl, dimethyl ammonium chloride) / PAA (Poly (acrylic acid)/ PDADMAC over a CaO core.

  9. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    International Nuclear Information System (INIS)

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  10. The Promotion of Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steels by Adding Nickel

    Directory of Open Access Journals (Sweden)

    Wu Ming-Wei

    2015-01-01

    Full Text Available Boron is a feasible alloying element for liquid phase sintering (LPS of powder metallurgy (PM steels. This study investigated the effect of nickel (Ni, which is widely used in PM steels, on the liquid phase sintering of boron-containing PM steels. The results showed that the addition of 1.8wt% Ni does not apparently modify the LPS mechanism of boron-containing PM steels. However, adding 1.8wt% Ni slightly improves the LPS densification from 0.60 g/cm3 to 0.65 g/cm3, though the green density is reduced. Thermodynamic simulation demonstrated that the presence of Ni lowers the temperature region of liquid formation, resulting in enhanced LPS densification. Moreover, original graphite powders remains in the steels sintered at 1200 ºC. These graphite powders mostly dissolve into the base iron powder when the sintering temperature is increased from 1200 ºC to 1250 ºC.

  11. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests......Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude...

  12. Parametric study for the fire safety design of steel structures

    DEFF Research Database (Denmark)

    Aiuti, Riccardo; Giuliani, Luisa

    2013-01-01

    the considered time of fire exposure. A deeper knowledge on the failure mode of steel structure is however important in order to ensure the safety of the people and properties outside the building. Aim of this paper is to analyze the behaviour of single elements, sub-assemblies and frames exposed to fire...... or hindered thermal expansion induced on the element by the rest of the structure. Nevertheless, restrained thermal expansion is known to significantly affect the behaviour of steel structures in fire, and the compliance with a prescribed resistance class doesn’t ensure the integrity of the building after...... and find out the basic collapse mechanisms of structural elements in fire conditions, considering the rest of the construction with appropriate constraints. The analysis is carried out taking into account material and geometrical nonlinearities as well as the degradation of steel properties at high...

  13. Steel skin - SMC laminate structures for lightweight automotive manufacturing

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo

    2017-09-01

    In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.

  14. Corrosion protection and antifouling properties of varnish-coated steel containing natural additive

    Directory of Open Access Journals (Sweden)

    Abd-El-Nabey Besheir Ahmed A.

    2017-01-01

    Full Text Available The corrosion protection and antifouling properties of varnish-coated steel panels containing different amounts of cannabis extracts were investigated using electrochemical impedance spectroscopy (EIS, salt spray and immersion tests in 0.5 M NaCl solution and subjected to a field test in seawater. Analysis of the experimental data showed that the presence of cannabis extract resisted the deterioration (peeling off tendency of the varnish-coated steel panels exposed to aggressive environments. Visual inspection showed that the cannabis extract also provided good antifouling properties.

  15. Corrosion of austenitic steels and their components in vanadium-containing chloride melts

    Science.gov (United States)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Lisienko, D. G.

    2014-08-01

    The corrosion of austenitic 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 steels and their components (Cr, Fe, Ni, Mo) in NaCl-KCl-VCl2 melts with 5 wt % V at 750°C is studied. The rates and mechanisms of corrosion of the materials under these conditions are determined. The processes that occur during contact of the metals and steels with vanadium-containing chloride electrolytes are investigated.

  16. The processing of boron-containing stainless steels for the nuclear industry

    International Nuclear Information System (INIS)

    Harrison, A.H.; King, K.J.; Wilkinson, J.

    1991-01-01

    Stainless steels containing boron additions of up to 2 wt% are used in the nuclear power and fuel reprocessing industries during storage and transportation of spent nuclear fuel elements. The metallurgical characteristics of these steels are described, with particular reference to the manufacture, chemical homogeneity, mechanical properties and weldability of plate products. Results are presented of tests performed on welded fabrications to demonstrate their resistance to impact loading. A neutron absorption meter for simple and rapid measurement of product boron content is described. (author)

  17. Nitrogen-containing superlow-carbon austenitic steel 02Kh25N22AM2

    Science.gov (United States)

    Fe'ldgandler, É. G.; Svistunova, T. V.; Savkina, L. Ya.; Lapshina, O. B.

    1996-02-01

    At present the equipment for manufacturing carbamide mineral fertilizers is produced from domestic steel 03Kh17N14M3 having "carbamide quality." Imported equipment also used in the industry is produced from steel of the 25-22-2 (Cr -Ni-Mo) type shipped by various firms, namely, 2RE69 (Sandvik, Sweden), 254SFER (Avesta, Sweden), 2522LCN (VDM, Germany), DM 1.4466 (Germany), and X2CrNiMo 25-22-2 (Dalmine, Italy). The imported steels are used because in some units steel 03Khl7Nl4M3 does not provide the requisite corrosion resistance in an intensified process of carbamide manufacturing. We currently possess domestic high-alloyed steel for producing new and repairing imported equipment operating under the severe conditions of carbamide synthesis. The present paper concerns the structure, mechanical properties, and corrosion resistance of industrially produced steel 02Kh25N22AM2 (ChS-108) and the recommended range of its application.

  18. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  19. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Sherar, B.W.A. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Power, I.M. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Keech, P.G.; Mitlin, S. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Southam, G. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.c [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2011-03-15

    Research highlights: Compares inorganic sulfide and sulfate reducing bacteria (SRB) on steel corrosion. Mackinawite was the dominant iron sulfide phase. SRBs can form nanowires, presumably grown to acquire energy. - Abstract: This article compares the electrochemical effects induced by inorganic sulfide and sulfate reducing bacteria on the corrosion of carbon steel - a subject of concern for pipelines. Biological microcosms, containing varying concentrations of bioorganic content, were studied to investigate changes to the morphology of biofilms and corrosion product deposits. Raman analysis indicated mackinawite (FeS{sub 1-x}) was the dominant iron sulfide phase grown both abiotically and biotically. A fascinating feature of biological media, void of an organic electron donor, was the formation of putative nanowires that may be grown to acquire energy from carbon steel by promoting the measured cathodic reaction.

  20. Corrosion of silicon-containing austenitic stainless steels under trans-passive conditions

    International Nuclear Information System (INIS)

    Stolarz, Jacek

    1989-01-01

    This research thesis addresses austenitic stainless steels which are used in installations for the chemical treatment of nuclear fuels, and are there in contact with nitric acid solutions the oxidising character of which generally promotes metal passivity. However, if this nitric environment becomes too oxidising, these steels may face severe corrosion problems. More particularly, this thesis addresses the study of intergranular corrosion, and aims at analysing various aspects of the corrosion of these austenitic stainless steels in trans-passive conditions. The author aims at determining and distinguishing the contributions due to silicon and those related to the presence of other impurities and addition elements by comparing the behaviours of industrial grade steels and high purity alloys in rigorously controlled electrochemical conditions. Another objective is to study the influence of the intergranular structure on silicon segregation by means of an attack technique in trans-passive conditions. After a report of a bibliographical study on the addressed topics and a presentation of the studied materials and implemented experimental techniques, the author reports the study of steel behaviour with respect to generalised dissolution in trans-passive conditions, as well in the nitric environment as in a sulphuric acid solution at imposed potential. Localised intragranular corrosion phenomena are discussed. A trans-passive intragranular corrosion model is proposed, and its possibilities in the analysis of intergranular segregation analysis are discussed. Experimental results of trans-passive intergranular corrosion of stainless steels are presented and interpreted by using the McLean segregation model. The influence of steel composition and of experimental conditions is discussed, as well as the role of grain boundary structure in the corrosion process [fr

  1. Development and optimization of containment structure concepts

    International Nuclear Information System (INIS)

    Reuter, H.R.; Whitcraft, J.S. Jr.

    1976-01-01

    The development of prestressed concrete containment structures for nuclear power plants designed, constructed, and tested by Bechtel Power Corporation has been divided into three general stages or generations. The distinctions that characterize these generations are: the shape of the dome, the number of buttresses, the size and arrangement of the post-tensioning tendons, and the design level of the prestressing forces. (author)

  2. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    International Nuclear Information System (INIS)

    Cruz, Magnus G.H.; Viecelli, Alexandre

    2008-01-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation

  3. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Magnus G.H. [Marcopolo S.A., Unidade Ana Rech, Av. Rio Branco, 4889, Ana Rach, 95060-650 Caxias do Sul (Brazil)], E-mail: magnus@verbonet.com.br; Viecelli, Alexandre [Mechanical Engineering Department, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, 95070-560 Caxias do Sul, RS (Brazil)], E-mail: avieceli@ucs.br

    2008-07-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation.

  4. Universal method for opnimal design main structural assemblies of steel structures stationary conveyor with hanging ribbon

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2015-10-01

    Full Text Available The technique and the detailed algorithm for optimal design of steel structures hospitaltion of the conveyor with hang-ing ribbon. Developed a universal objective function together with the system-limited-subject to limits of main components of steel structures of stationary conveyor with hanging ribbon.

  5. Quantitative Analysis on Carbide Precipitation in V-Ti Microalloyed TRIP Steel Containing Aluminum

    Directory of Open Access Journals (Sweden)

    Fu Shiyu

    2016-01-01

    Full Text Available Introducing fine precipitates is an important way to enhance the properties of transformation-induced plasticity (TRIP steels. In present work, two V-Ti microalloyed TRIP steels containing aluminum with different content were compared. The average size, size distribution and numbers of vanadium-titanium carbides in samples cold rolled, quenched after being held at 800°C and quenched after intercritical annealing at 800°C and being held at bainitic isothermal transformation temperature of 400°C were investigated by using the technique of carbon extraction replica, twin jet chemical polishing thinning and transmission electron microscopy. The carbides were identified to be (Ti,VC precipitates in steel A and VC in steel B respectively, precipitated mainly from ferrites grains. The average equivalent radius was 3~6nm. Comparison of the experimental results in A and B steel revealed low carbon diffusion rate caused by aluminum inhibited the coarsening of vanadium-titanium carbides. The experimental results also showed that VC carbides dissolution occurred during the intercritical annealing at 800°C.

  6. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  7. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    International Nuclear Information System (INIS)

    Farina, S.; Schulz Rodriguez, F.; Duffo, G.

    2013-01-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina), it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (authors)

  8. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  9. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  10. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from...

  11. Investigation program on PWR-steel-containment behavior under accident conditions

    International Nuclear Information System (INIS)

    Krieg, R.; Eberle, F.; Goeller, B.; Gulden, W.; Kadlec, J.; Messemer, G.; Mueller, S.; Wolf, E.

    1983-10-01

    This report is a first documentation of the KfK/PNS activities and plans to investigate the behaviour of steel containments under accident conditions. The investigations will deal with a free standing spherical containment shell built for the latest type of a German pressurized water reactor. The diameter of the containment shell is 56 m. The minimum wall thickness is 38 mm. The material used is the ferritic steel 15MnNi63. According to the actual planning the program is concerned with four different problems which are beyond the common design and licensing practice: Containment behavior under quasi-static pressure increase up to containment failure. Containment behavior under high transient pressures. Containment oscillations due to earthquake loadings; consideration of shell imperfections. Containment buckling due to earthquake loadings. The investigation program consists of both theoretical and experimental activities including membrane tests allowing for very high plastic strains and oscillation tests with a thin-walled, high-accurate spherical shell. (orig.) [de

  12. Proof testing of CANDU concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-05-01

    Prior to commissioning of a CANDU reactor, a proof pressure test is required to demonstrate the structural integrity of the containment envelope. The test pressure specified by AECB Regulatory Document R-7 (1991) was selected without a rigorous consideration of uncertainties associated with estimates of accident pressure and conatinment resistance. This study was undertaken to develop a reliability-based philosophy for defining proof testing requirements that are consistent with the current limit states design code for concrete containments (CSA N287.3).It was shown that the upodated probability of failure after a successful test is always less than the original estimate

  13. Applicability of JIS SPV 50 steel to primary containment vessel of nuclear power station

    International Nuclear Information System (INIS)

    Iida, Kunihiro; Ishikawa, Koji; Sakai, Keiichi; Onozuka, Masakazu; Sato, Makoto.

    1979-01-01

    The space within reactor containment vessels must be expanded in order to improve the reliability of nuclear power plants, accordingly the adoption of large reactor containment vessels is investigated. SGV 42 and 49 steels in JIS G 3118 have been used for containment vessels so far, but stress relief annealing is required when the thickness exceeds 38 mm. The time has come when the use of thicker conventional plates without stress relieving or the use of high strength steel must be examined in detail. In this study, the tests of confirming material properties were carried out on SPV 50 in JIS G 3115, Steels for pressure vessels, aiming at the method of fabrication without stress relieving. The highest and lowest temperatures in use were set at 171 deg and -8 deg C, respectively. The chemical composition and the mechanical properties of the plates tested, the method of welding, the results of tensile test on the parent metal and the welds, the required lowest preheating temperature, the fracture toughness at low temperature and the brittle fracture causing test are reported. The parent metal and the welded joints of SPV 50 have the properties suitable to reactor containment vessels, namely the sufficient fracture toughness to guarantee the prevention of unstable fracture when the method of welding without stress relieving is adopted. (Kako, I.)

  14. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    OpenAIRE

    Na Yang; Fan Bai

    2017-01-01

    Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and e...

  15. Optimum tungsten content in high strength 9 to 12% chromium containing creep resistant steels

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Muraki, T.; Mimura, H.

    2000-01-01

    Tungsten containing ferritic creep resistant steels are the candidate materials for ultra-super-critical fossil power plant because of their high creep rupture strength. But the strengthening mechanisms by tungsten addition have not yet been completely studied. In this report, creep rupture time and creep strain rate measurement decided the optimum tungsten content in 9 to 12% chromium ferritic steels. The precipitation behavior of Laves phase and the precise discussion of creep strain rate analyses explain the contribution of Laves phase at the lath boundary and the contribution of tungsten in solid solution. P92 contains the optimum amount of tungsten and chromium, 1.8 mass% and 9 mass% respectively judging from the creep rupture strength point of view. (orig.)

  16. Open Circuit Potential Study of Stainless Steel in Environment Containing Marine Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The corrosion potential of AISI 304 stainless steel coupons influenced by sulphate-reducing bacteria (SRB) has been studied. Pure colony of SRB was isolated from the Malaysia Marine and Heavy Engineering, Pasir Gudang, Johor. Open circuit potential measurements were carried out in variable types of culturing solutions with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated. Results showed that the corrosion potential, E oc increased in the presence of SRBs (in pure and mixed culture) compared to that of control. EDS analysis showed the strong peak of sulphur in coupon containing SRB cultures compared to the control. ESEM data showed that the high density cell of SRBs were associated with corroding sections of surface steel comparing with non-corroding sections for coupons immersed in VMNI medium containing SRBs. (author)

  17. Analyses of containment structures with corrosion damage

    International Nuclear Information System (INIS)

    Cherry, J.L.

    1997-01-01

    Corrosion damage that has been found in a number of nuclear power plant containment structures can degrade the pressure capacity of the vessel. This has prompted concerns regarding the capacity of corroded containments to withstand accident loadings. To address these concerns, finite element analyses have been performed for a typical PWR Ice Condenser containment structure. Using ABAQUS, the pressure capacity was calculated for a typical vessel with no corrosion damage. Multiple analyses were then performed with the location of the corrosion and the amount of corrosion varied in each analysis. Using a strain-based failure criterion, a open-quotes lower boundclose quotes, open-quotes best estimateclose quotes, and open-quotes upper boundclose quotes failure level was predicted for each case. These limits were established by: determining the amount of variability that exists in material properties of typical containments, estimating the amount of uncertainty associated with the level of modeling detail and modeling assumptions, and estimating the effect of corrosion on the material properties

  18. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  19. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  20. Corrosion of Pipeline and Wellbore Steel by Liquid CO2 Containing Trace Amounts of Water and SO2

    Science.gov (United States)

    McGrail, P.; Schaef, H. T.; Owen, A. T.

    2009-12-01

    Carbon dioxide capture and storage in deep saline formations is currently considered the most attractive option to reduce greenhouse gas emissions with continued use of fossil fuels for energy production. Transporting captured CO2 and injection into suitable formations for storage will necessarily involve pipeline systems and wellbores constructed of carbon steels. Industry standards currently require nearly complete dehydration of liquid CO2 to reduce corrosion in the pipeline transport system. However, it may be possible to establish a corrosion threshold based on H2O content in the CO2 that could allow for minor amounts of H2O to remain in the liquid CO2 and thereby eliminate a costly dehydration step. Similarly, trace amounts of sulfur and nitrogen compounds common in flue gas streams are currently removed through expensive desulfurization and catalytic reduction processes. Provided these contaminants could be safely and permanently transported and stored in the geologic reservoir, retrofits of existing fossil-fuel plants could address comprehensive emissions reductions, including CO2 at perhaps nearly the same capital and operating cost. Because CO2-SO2 mixtures have never been commercially transported or injected, both experimental and theoretical work is needed to understand corrosion mechanisms of various steels in these gas mixtures containing varying amounts of water. Experiments were conducted with common tool steel (AISI-01) and pipeline steel (X65) immersed in liquid CO2 at room temperature containing ~1% SO2 and varying amounts of H2O (0 to 2500 ppmw). A threshold concentration of H2O in the liquid CO2-SO2 mixture was established based on the absence of visible surface corrosion. For example, experiments exposing steel to liquid CO2-SO2 containing ~300 ppmw H2O showed a delay in onset of visible corrosion products and minimal surface corrosion was visible after five days of testing. However increasing the water content to 760 ppmw produced extensive

  1. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  2. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  3. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  4. Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    In this work, the influence of dry sliding between a steel counterpart ball and polytetrafluoroethylene (PTFE) plate sample on the transformation of PTFE molecular structure is investigated. With X-ray diffraction, differential scanning calorimetry, Fourier transform infrared (FT-IR) spectroscopy

  5. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    In modern structural steel frame design, the modelling of joints between beams and columns are based on very simple assumptions. The joints are most often assumed to behave as a perfect hinge or as a rigid joint. This means that in the overall static analysis relative rotations and changes...

  6. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Seabed sediment (SBS) is a special soil that is covered by seawater. With the developments in marine oil exploitation and engineering, more and more steel structures have been buried in SBS. SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this ...

  7. Phosphorus effect on fracture properties of structural steels

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Guseva, I.A.

    1985-01-01

    Phosphorus content is studied for its effect on fracture peculiarities and fracture toughness. It is supposed that the phosphorus effect on ductile fractures is associated with phosphorus segregation on the ferrite-carbide interfaces. An increase of the phosphorus content in heat-treated 10KhSND steel from 0.020 up to 0.043 wt.% results in a decrease of the pore size and asub(p) value. Close linear correlation is established between critical temperature of embrittlement T 50 and √ asub(p) or √ KC values for a number of structural steels with different phosphorus content

  8. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    Science.gov (United States)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  9. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    International Nuclear Information System (INIS)

    Duffo, Gustavo S.; Farina, Silvia B.; Schulz, Fatima M.; Marotta, Francesca

    2010-01-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  10. Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure

    International Nuclear Information System (INIS)

    Skidmore, E.

    2016-01-01

    Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhanced by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.

  11. Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhanced by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.

  12. Dynamic fracture toughness testing of structural steels

    International Nuclear Information System (INIS)

    Debel, C.P.

    1978-01-01

    Two candidate test methods aimed at producing materials properties of interest in connection with crack arrest assessments are currently under evaluation. These methods and the significance of the results are described. The quasi-static as well as the dynamic fracture toughness of a plain C-Mn steel in the as-quenched and tempered condition have been examined at temperatures between -115 0 C and the ambient temperature. Wedge-loaded duplex DCB-specimens were used in dynamic tests. The crack extension velocity was measured using a surface deposited grid and a registration circuit based on TTL-electronics. The toughness transition-temperature at quasi-static loading rate is found to be low; but during dynamic crack-extension a substantial shift of the transition-region to higher temperatures is produced, and fast fracture was obtained even at ambient temperature. Even though the dynamic fracture toughness Ksub(ID) increases with temperature, it decreases with increasing crack-extension velocity at a given temperature and the rate of decrease with respect to crack-extension velocity seems to be independent of temperature. Ksub(ID) appears to be insensitive to heat treatments. Test results indicate insufficient load-train stiffness, and problems due to crack branching were encountered. (author)

  13. Thermal stresses at nozzles of nuclear steel containments under LOCA-conditions

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Bergmann, A.N.

    1986-01-01

    During a loss of coolant accident (LOCA) of a PWR-nuclear power plant, a considerable heating of the containment atmosphere is expected to occur. Transient thermal stresses will appear at the containment as a consequence of a non-uniform rise of its temperature. Applying computer codes based on the finite element method, dimensionless general thermal stresses at nozzles of spherical steel containment have been calculated, varying the principal geometrical parameters and the Biot number for the containment internal surface. Atmosphere temperature and Biot number are assumed constant after the accident. Several plots of the maximum principal stresses are provided, which constitute general results applicable to stress analysis of any particular containment of this kind. (orig.)

  14. Hot ductility and fracture mechanisms of a structural steel

    International Nuclear Information System (INIS)

    Calvo, J.; Cabrera, J. M.; Prado, J. M.

    2006-01-01

    The hot ductility of a structural steel produced from scrap recycling has been studied to determine the origin of the transverse cracks in the corners that appeared in some billets. Samples extracted both from a billet with transverse cracks and from a billet with no external damage were tested. To evaluate the influence of residual elements and inclusions, the steel was compared to another one impurity free. Reduction in area of the samples tensile tested to the fracture was taken as a measure of the hot ductility. The tests were carried out at temperatures ranging from 1000 degree centigree to 650 degree centigree and at a strain rate of 1.10-3 s-1. The fracture surfaces of the tested samples were observed by scanning electron microscopy in order to determine the embrittling mechanisms that could be acting. The steel with residuals and impurities exhibited lower ductility values for a wider temperature range than the clean steel. The embrittling mechanisms also changed as compared to the impurity free steel. (Author)

  15. Structure and properties of Hardox 450 steel with arc welded coatings

    Science.gov (United States)

    Ivanov, Yu. F.; Konovalov, S. V.; Kormyshev, V. E.; Gromov, V. E.; Teresov, A. D.; Semina, O. A.

    2017-12-01

    The paper reports on a study of the surface structure, phase composition, and microhardness of Hardox 450 steel with coatings deposited by arc welding of powder wires differing in chemical composition. The study shows that to a depth of 6-8 mm, the microhardness of the thus formed coatings is more than two times the microhardness of the base metal and that their higher mechanical properties are provided by martensite structure containing Nb2C and NbC carbides and Fe2B borides as eutectic lamellae with a transverse size of 30-70 nm; their volume reveals a net-like dislocation substructure with a scalar dislocation density of 1011 cm-2. The highest surface hardness is found for the steel coated with boron-containing wire material. Some ideas are suggested on possible mechanisms and temperature for the formation of Nb and B carbides during the process.

  16. Behaviour of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    MacGregor, J.G.; Murray, D.W.; Simmonds, S.H.

    1980-05-01

    The most significant finds from a study to assess the response of prestressed concrete secondary containment structures for nuclear reactors under the influence of high internal overpressures are presented. A method of analysis is described for determining the strains and deflections including effects of inelastic behaviour at various points in the structure resulting from increasing internal pressures. Experimentally derived relationships between the strains and crack spacing, crack width and leakage rate are given. These procedures were applied to the Gentilly-2 containment building to obtain the following results: (1) The first through-the-wall cracks would occur in the dome at 48 psi or 2.3 times the proof test pressure. (2) At this pressure leakage would begin and would increase exponentially as the pressure increases such that at 93% of the predicted failure load the calculated leakage rate would be approximately equal to the volume of the containment each second. (3) Assuming the pressurizing medium could be supplied sufficiently rapidly, failure would occur due to rupture of the horizontal tendons at approximately 77 psi. (author)

  17. Application of the boron autoradiography in structural steels

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de

    1984-01-01

    The development of boron containing steels requires a knowledge of the microstructural state of that element, determined by the competition between precipitation and solution.An example of the use of the autoradiographic method for obtaining boron distribution images is described and showed. The technique is based on an α emitting nuclear reaction, which leaves a latent track in cellulose. This detector material is revealed by chemical etching and observed by optical and electron transmission microscopy. (Author) [pt

  18. Seismic damage identification for steel structures using distributed fiber optics.

    Science.gov (United States)

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  19. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    International Nuclear Information System (INIS)

    Koone, Neil; Condren, Brian

    2003-01-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and 'build' a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented

  20. Critical review of the equipment hatch of a large dry steel containment. The DEFENDER IMPROVEMENT

    International Nuclear Information System (INIS)

    Mantega, F.; Penno, E.; Vanini, P.

    1994-01-01

    Performances of the Containment System under Severe Accident conditions depend on a number of different features and components. The equipment hatch may be considered a critical component because it is a potential main contributor to the total Containment leak rate during a Severe accident and a potential (depending on the design) direct leak path between the containment atmosphere and the environment. The analytical study performed to anticipate the response of the equipment hatch of a large dry steel containment under Severe Accident condition has pointed out some questions of concern. The possible leak tightness failure mechanism are related to: the gaskets elastic characteristics degradation due to thermal and radiological aging; the deformation of the hatch sleeve induced by the containment wall; and the differential expansion between gasket material and steel. Beside, the equipment hatch may be considered a single barrier and although it is equipped with two gaskets, it is not difficult to demonstrate that a backup function cannot be assigned to the external gasket. For these reason it seems to be necessary to realize a wider application of the 'Defence in Depth' criteria in the design of this component. The DEFENDER (DEFENce in Depth Equipment hatch Requalification) might be a solution to increase the margin of safety of the equipment hatch under the Severe Accident condition. (author)

  1. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  2. Dynamic testing of MFTF containment-vessel structural system

    International Nuclear Information System (INIS)

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-01-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters

  3. Evaluation of calculational and material models for concrete containment structures

    International Nuclear Information System (INIS)

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.

    1984-01-01

    A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)

  4. Nuclear containment steel liner corrosion workshop : final summary and recommendation report.

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Bryan A. (Erler Engineering Ltd., Chicago, IL); Weyers, Richard E. (Virginia Tech University, Blacksburg, VA); Sagues, Alberto (University of South Florida, Tampa, FL); Petti, Jason P.; Berke, Neal Steven (Tourney Consulting Group, LLC, Kalamazoo, MI); Naus, Dan J. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2011-07-01

    This report documents the proceedings of an expert panel workshop conducted to evaluate the mechanisms of corrosion for the steel liner in nuclear containment buildings. The U.S. Nuclear Regulatory Commission (NRC) sponsored this work which was conducted by Sandia National Laboratories. A workshop was conducted at the NRC Headquarters in Rockville, Maryland on September 2 and 3, 2010. Due to the safety function performed by the liner, the expert panel was assembled in order to address the full range of issues that may contribute to liner corrosion. This report is focused on corrosion that initiates from the outer surface of the liner, the surface that is in contact with the concrete containment building wall. Liner corrosion initiating on the outer diameter (OD) surface has been identified at several nuclear power plants, always associated with foreign material left embedded in the concrete. The potential contributing factors to liner corrosion were broken into five areas for discussion during the workshop. Those include nuclear power plant design and operation, corrosion of steel in contact with concrete, concrete aging and degradation, concrete/steel non-destructive examination (NDE), and concrete repair and corrosion mitigation. This report also includes the expert panel member's recommendations for future research.

  5. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  6. Anti-carburizing Coating for Resin Sand Casting of Low Carbon Steel Based on Composite Silicate Powder Containing Zirconium

    Directory of Open Access Journals (Sweden)

    Zhan Chunyi

    2018-01-01

    Full Text Available This paper studied the structure and properties of anticarburizing coating based on composite silicate powder containing zirconium by X-ray diffraction analyzer, thermal expansion tester, digital microscope and other equipment. It is introduced that the application example of the coating in the resin-sand casting of ZG1Cr18Ni9Ti stainless steel impeller. The anti-carburizing effect of the coating on the surface layer of the cast is studied by using direct reading spectrometer and spectrum analyzer. The change of the micro-structure of the coating after casting and cooling is observed by scanning electron microscope. The analysis of anti-carburizing mechanism of the coating is presented. The results indicate that the coating possesses excellent suspension property, brush ability, permeability, levelling property and crackresistance. The coating exhibits high strength and low gas evolution. Most of the coating could be automatically stripped off flakily when the casting was shaken out. The casting possesses excellent surface finish and antimetal penetration effect. The carburizing layer thickness of the stainless steel impeller casting with respect to allowable upper limit of carbon content is about 1mm and maximum carburizing rate is 23.6%. The anticarburizing effect of casting surface is greatly improved than that of zircon powder coating whose maximum carburizing rate is 67.9% and the carburizing layer thickness with respect to allowable upper limit of carbon content is greater than 2mm. The composite silicate powder containing zirconium coating substantially reduces the zircon powder which is expensive and radioactive and mainly dependent on imports. The coating can be used instead of pure zircon powder coating to effectively prevent metal-penetration and carburizing of resin-sand-casting surface of low carbon steel, significantly improve the foundry production environment and reduce the production costs.

  7. Automated nuclear material recovery and decontamination of large steel dynamic experiment containers

    International Nuclear Information System (INIS)

    Dennison, D.K.; Gallant, D.A.; Nelson, D.C.; Stovall, L.A.; Wedman, D.E.

    1999-01-01

    A key mission of the Los Alamos National Laboratory (LANL) is to reduce the global nuclear danger through stockpile stewardship efforts that ensure the safety and reliability of nuclear weapons. In support of this mission LANL performs dynamic experiments on special nuclear materials (SNM) within large steel containers. Once these experiments are complete, these containers must be processed to recover residual SNM and to decontaminate the containers to below low level waste (LLW) disposal limits which are much less restrictive for disposal purposes than transuranic (TRU) waste limits. The purpose of this paper is to describe automation efforts being developed by LANL for improving the efficiency, increasing worker safety, and reducing worker exposure during the material cleanout and recovery activities performed on these containers

  8. Influence of isothermal thermomechanical treatment on structure and properties of structural steels

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Kaletin, A.Yu.; Schastlivthev, V.M.; Kaletina, Yu.V.

    1997-01-01

    A study is made into the structure and mechanical properties of steel 35KhGSA and 37KhN3A after isothermal hardening resulting in bainitic structure formation as well as after low-temperature thermomechanical treatment (LTTMT) combining the plastic deformation at the temperature of bainitic transformation and subsequent isothermal hardening. It is shown that LTTMT permits and essential enhancement of strength properties in steel 35KhGSA, high plasticity and impact strength being reserved. This is associated with bainitic structure refinement. In steel 37KhN3A the process of carbide formation takes place along with bainitic transformation, and LTTMT results in lesser strengthening. LTTMT is fount to not practically affect the tendency of structural steels to bainitic brittleness. This treatment promotes some shift of brittleness manifestation to lower temperatures

  9. Environmentally Preferable Coatings for Structural Steel Project

    Science.gov (United States)

    Lewis, Pattie L. (Editor)

    2014-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.

  10. Dynamic response analysis of a 24-story damped steel structure

    Science.gov (United States)

    Feng, Demin; Miyama, Takafumi

    2017-10-01

    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  11. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  12. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  13. Steel, specially for the fabrication of welded structure working under pressure in nuclear installations

    International Nuclear Information System (INIS)

    Dolbenko, E.T.; Astafiev, A.A.; Kark, G.S.

    1981-01-01

    The present invention is in the field of metallurgy. Steels have found an increasing number of applications in mechanical constructions, and notably in the construction of materials for the production of energy and for the fabrication of welded structures operating under pressure at temperatures as high as 450 0 C. A possible application is the pressurized vessels of nuclear facilities. The steels of interest contain carbon, silicon, manganese, nickel, molybdenum, vanadium, aluminium, nitrogen, phosphorus and iron, but are characterized by the fact that they also contain arsenic, tin and calcium. The sum of the weighted percentages of nickel and manganese and the weighted percentage of phosphorous are related as follows: (Ni + Mn) . P [fr

  14. Radiation swelling of steels with lath martensite-austenic structure

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Pavlov, V.A.; Alyab'ev, V.M.; Lapin, S.S.; Ermishkin, V.A.; Antonova, O.V.

    1987-01-01

    Influence of electron radiation in the column of the JEM-1000 electron microscope on radiation swelling of austenite as austenitic fields and thin plates surrounded by α-martensite crystals is investigated. Formation of lath structure of alternating dispersive plates of martensite and invert austenite formed as a result of partial inverse martensite transformation α→γ is shown to restrain radiation swelling and formation of vacancy voids in stainless steels

  15. In situ testing of titanium and mild steel nuclear waste containers at the WIPP site

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1990-01-01

    An overview of the Waste Isolation Pilot Plant (WIPP) in situ tests on the corrosion of titanium and mild steel for high level waste containers is presented. The tests at Sandia have moved out of the laboratory into a test underground facility in order to evaluate the performance of the waste package material. The tests are being performed under both near-reference and accelerated salt repository conditions. Some containers are filled with high level waste glass (non-radioactive); others contain electric heaters. Backfill material is either bentonite/sand or crushed salt. In other tests metals and glasses are exposed directly to brine. The tests are designed to study the corrosion and metallurgy of the canister and overpack materials; the feasibility and performance of backfill materials; and near-field effects such as brine migration

  16. Impact and structural analysis of the INEL 55 gallon recycled shielded storage container

    International Nuclear Information System (INIS)

    Richins, W.D.

    1996-07-01

    The INEL Recycled Shielded Storage Containers (RSSC) are designed primarily for the transportation and storage of mixed RH-TRU solid waste using recycled, potentially contaminated lead and stainless steel construction materials. Two versions of the RSSC have been developed accommodating either 30 or 55 gallon drums. This report addresses the structural qualification of the 55 gallon version of the RSSC to DOT 7A Type A requirements. The controlling qualification test is a 4 ft drop onto a rigid surface. During and after this test, the container contents must remain within the container and shielding must not be reduced. The container is also designed to withstand stacking, internal pressure, lifting loads, tiedown failure, penetration, and a range of temperatures. Nonlinear dynamic finite element analyses were performed using a range of material properties. Loads in the major connections and strains in the stainless steel and lead were monitored as a function of time during impact analyses for three simulated drop orientations. Initial results were used to develop the final design. For the final design, the stainless steel and lead have maximum strains well below ultimate levels except at an impact corner where additional deformation is acceptable. The predicted loads in the connections indicate that some yielding will occur but the containment and shielding will remain intact. The results presented here provide assurance that the container will pass the DOT 7A Type A drop tests as well as the other structural requirements

  17. Engineering of Nanoscale Antifouling and Hydrophobic Surfaces on Naval Structural Steel HY-80 by Anodizing

    Science.gov (United States)

    2015-06-01

    stainless steel by anodization. The oxide structures produced under these conditions granted the material significant visible light photo catalytic...metallurgically classified as quenched and tempered martensitic steels . They have a martensitic microstructure resulting from the 9 combination of...producing a martensitic structure is carbon. The as-quenched steel manifests high strength and hardness but also is brittle and susceptible to hydrogen

  18. Structural characterization and magnetic properties of steels subjected to fatigue

    International Nuclear Information System (INIS)

    Lo, C.C.H.; Tang, F.; Biner, S.B.; Jiles, D.C.

    2000-01-01

    Studies have been made on the effects of residual stress and microstructure on the variations of magnetic properties of steels during fatigue. Strain-controlled fatigue tests have been conducted on 0.2wt% C steel samples which were (1) cold-worked (2) cold-worked and annealed at 500 deg. C to relieve residual stress, and (3) annealed at 905 deg. C to produce a ferrite/pearlite structure. The changes of surface microstructure were studied by SEM replica technique. The dislocation structures of samples fatigued for different numbers of cycle were studied by TEM. In the initial stage of fatigue coercivity was found to behave differently for samples which have different residual stress levels. In the intermediate stage the magnetic hysteresis parameters became stable as the dislocation cell structure developed in the samples. In the final stage the magnetic parameters decreased dramatically. The decrease rate is related to the propagation rate of fatigue cracks observed in the SEM study, which was found to be dependent on the sample microstructure. The present results indicate that the magnetic inspection technique is able to differentiate the residual stress effects from the fatigue damage induced by cyclic loading, and therefore it is possible to detect the onset of fatigue failure in steel components via measurements of the changes in magnetic properties.--This work was sponsored by the National Science Foundation, under grant number CMS-9532056

  19. Structural transformations in amorphous electrical steels

    International Nuclear Information System (INIS)

    D'yakonova, N.B.; Molotilov, B.V.; Vlasova, E.N.; Lyasotskij, I.V.

    2000-01-01

    The sequence of structural reactions at initial sages of crystallization of Fe-B-Si and Fe-B-Si-P amorphous ribbons is studied in the bulk and near the surface. It is shown that partial substitution of boron with phosphorus in Fe-Si-B-P alloys retards the surface crystallization a rising on annealing at temperatures typical for heat treatments applied to enhance magnetic properties. In spite of lower temperature of a bulk crystallization onset in phosphorus bearing alloys the beginning of surface crystallization shifts to high temperatures or to more long-term holding at given temperatures. This fact alloys varying annealing temperature and time in a wide range to attain needed magnetic properties as well as using retarded heating and cooling. It is of special importance when massive magnetic cores are heat treated [ru

  20. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  1. Corrosion of steel drums containing immobilized ion exchange-resins and incineration ashes

    International Nuclear Information System (INIS)

    Marotta, F.; Schulz Rodriguez, F.M.; Farina, Silvia B.; Duffo, Gustavo S.

    2009-01-01

    The Argentine Atomic Energy Commission (CNEA) is responsible for developing the management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. The intermediate radioactive waste consists mostly in spent ionic exchange resins and filters from the nuclear power plants, research reactors and radioisotopes production facilities. The spent resins, as well as the incineration ashes, have to be immobilized before being stored to improve leach resistance of waste matrix and to maintain mechanical stability for safety requirements. Generally, cementation processes have been used as immobilization techniques for economical reasons as well as for being a simple operation. The immobilized resins and incineration ashes are thus contained in steel drums that, in turn, can undergo corrosion depending on the ionic content of the matrix. This work is a part of a systematic study of the corrosion susceptibility of steel drums in contact with immobilized cemented exchange-resins with different types and contents of aggressive species and incineration ashes. To this purpose, a special type of specimen was manufactured to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix are being monitored along time. The aggressive species studied were chloride ions (the main ionic species present in nature) and sulphate ions (produced during the radiolysis process of the cationic exchange-resins after cementation). Preliminary results show the strong effect of chloride on the corrosion susceptibility of the steel. Monitoring will continue for

  2. An assessment of the risk of embrittlement of a steel container by hydrogen picked up on the ocean bed

    International Nuclear Information System (INIS)

    Hardie, D.

    1985-09-01

    A realistic assessment of the likelihood of embrittlement of a plain carbon steel container for nuclear waste has been made by estimating the hydrogen levels that might be expected to develop in the steel as a consequence of the slow corrosion of the container and the possible effect that such a hydrogen concentration would have on its mechanical behaviour. By consideration of various possible models for the generation of hydrogen and its subsequent uptake into the steel or dissemination in the environment, it is concluded that the most pessimistic assessment of the concentration of hydrogen that could build up in the container walls during 1000 years burial would not significantly affect the resistance to failure of even relatively high strength steels. (author)

  3. Effect of Boron and Titanium Addition on the Hot Ductility of Low-Carbon Nb-Containing Steel

    Science.gov (United States)

    Liu, Wei-Jian; Li, Jing; Shi, Cheng-Bin; Huo, Xiang-Dong

    2015-12-01

    The effect of boron and titanium addition on the hot ductility of Nb-containing steel was investigated using hot tensile tests. The fracture surface and the quenched longitudinal microstructure were examined by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that both steel samples had the similar change from 1,100°C to 700°C. The hot ductility of Nb-containing steel with boron and titanium addition was higher than the steel without boron and titanium in the temperature range of 900-750°C. Because the formation of intergranular ferrite was inhibited by solute boron segregating on the grain boundary, the formation of TiN changed the distribution of Nb- and boron-containing precipitates and improved the amount of intragranular ferrite.

  4. Problem statement for optimal design of steel structures

    Directory of Open Access Journals (Sweden)

    Ginzburg Aleksandr Vital'evich

    2014-07-01

    task it can be offered to use informational technologies and opportunities of automated systems. For this purpose it is necessary to develop the automated system of steel designs, allowing to consider some criteria of optimality and a wide range of the restrictions for steel structural designs. This will allow to accelerate projection process, to reduce labor input of a designer and essentially increase the quality of design solutions for steel designs.

  5. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  6. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  7. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  8. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  9. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  10. Image-based corrosion recognition for ship steel structures

    Science.gov (United States)

    Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng

    2018-03-01

    Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.

  11. Structural analysis of oil containment booms

    International Nuclear Information System (INIS)

    Badesha, S.S.; Hunt, J.; Wenck, E.

    1993-01-01

    In recent years, major oil spills, such as the Exxon Valdez incident, and many smaller spills have given rise to a worldwide marine environmental concern. One of the most successful devices for containing and facilitating the recovery of spilled oil, and one which does not endanger or alter the environment in any way, is the oil containment boom. Described in this paper is a finite element (FE)-based method for structural analysis of oil booms. In general, a number of FE models for a typical oil boom section are set up using the COSMOS FEA code. These models differ from one another in oil boom geometry, deployment configurations, and oil boom components. The FEA (fimite element analysis) models are made from the plate elements (skirt and tube), truss elements (tension members and ballast chain), and beam elements (end connector). Loads due to tow/current velocity, wind velocity, wave action, and ballasting, as determined from aero/hydrodynamics analysis, are applied as distributed pressures on the plate and beam elements. This method will predict boom tensile load strength, detailed stress distribution, and distortion characteristics for a particular boom with specific deployment configuration and environmental condition. The derived information can be used to highlight critical design features, thereby optimizing the oil boom design. Alternatively, this information can be used for the selection of an oil boom suited for a particular application and, more importantly, can provide the user with a control evaluation tool to determine whether a given oil boom design can withstand the stresses of its intended application

  12. Structural mechanisms of photoeffect in polyimide structures containing heterocyclic fragments

    International Nuclear Information System (INIS)

    Aleksandrova, E. L.

    2006-01-01

    Trends in the variation in the quantum yields of charge-carrier photogeneration in polyimide structures containing heterocyclic fragments are studied. It is shown that the efficiency of sensitization of polyimides depends on the donor and acceptor properties of the fragments of monomeric units of the polyimide. It is established that the range of spectral sensitivity for heterocyclic fragments representing intramolecular complexes with charge transport is wider than that for heterocycles that do not represent such complexes

  13. Analysis of a Mark II containment structure for hydrodynamic loads in suppression pool

    International Nuclear Information System (INIS)

    Bedrosian, B.

    1978-01-01

    During pressure-relief modes of BWR plant operation forcing signals are introduced into the suppression pool at discrete locations: exit nozzles of SRV discharge pipes (quenchers or ramsheads). These forcing signals are transmitted through the water of the suppression pool and, after reaching the pool boundaries, act as loadings on the containment structure wetted perimeter. The response of the containment structure is influenced by the presence of water as it interacts with the structure during application of the load. An adequate analysis must account for fluid-structure interaction (FSI) effects. This paper presents an exact formulation for solving the problem. FSI effects may become significant for a given geometry if the time history of loading and the dynamic properties of the coupled fluid-structure system satisfy a defined (system related) relationship. Results of analyses and parametric/sensitivity studies performed for the steel containment structure of an 1100 Mwe BWR nuclear plant of Mark II configuration are presented. (Author)

  14. Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria

    Science.gov (United States)

    Antony, P. J.; Singh Raman, R. K.; Kumar, Pradeep; Raman, R.

    2008-11-01

    Influence of changes in microstructure caused due to welding on microbiologically influenced corrosion of a duplex stainless steel was studied by exposing the weldment and parent metal to chloride medium containing sulfate-reducing bacteria (SRB). Identically prepared coupons (same area and surface finish) exposed to sterile medium were used as the control. Etching-type attack was observed in the presence of SRB, which was predominant in the heat-affected zone (HAZ) of the weldment. The anodic polarization studies indicated an increase in current density for coupon exposed to SRB-containing medium as compared to that obtained for coupon exposed to sterile medium. The scanning electron microscopy (SEM) observations after anodic polarization revealed that the attack was preferentially in the ferrite phase of HAZ of the weldment, whereas it was restricted to the austenite phase of the parent metal.

  15. Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash.

    Science.gov (United States)

    Zhang, Peng; Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang

    2014-01-01

    This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P(V)-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P(V)-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%.

  16. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  17. A study on martensitic structure in Fe-4Cr-0.4C steel

    International Nuclear Information System (INIS)

    Won, S.B.

    1980-01-01

    Morphology, dependence of prior austenite grain size and packet size upon austenitizing temperature, distribution of lath width, and habit plane of martensitic structure in Fe-4Cr-0.4C steel has been studied by optical microscopy and transmission electron microscopy. The results obtained are as follows. 1) Optical microstructures of martensitic Fe-4Cr-0.4C steel consist of lath martensite and lens martensite. Also the four types of morphology are observed by electron microscopy. The most common morphologies are a regular paralleled martensite and an irregular dovetailed lath martensite, while the remainder of microstructures consists mainly of groups of internally twinned martensite and autotempered laths. 2) Prior austenite grain size and packet size increased with austenizing temperature, and also the numbers of lath contained in a prior austenite grain or a packet are increased with austenizing temperature. 3) The mean width of lath in Fe-4Cr-0.4C steel is about 0.23μm and most of lath widths are below 0.5μm. 4) Martensite habit plane of Fe-4Cr-0.4C steel is nearly [110]α'. (author)

  18. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  19. The parameters controlling the strength of soil-steel structures

    International Nuclear Information System (INIS)

    Barkhordari, M. A.; Abdel-Sayed, G.

    2001-01-01

    The present paper examines the ultimate load carrying capacity of soil-steel structures taking into consideration the sequence of the developments of plastic hinges, their location, and their sustained plastic moment. Non-linear analysis has been conducted using a micro-computer program in which a structural model is applied with the soil replaced by normal and tangential springs acting at the nodal points of a polygon representing the conduit wall. A comparative study has been conducted for the parameters which affect the load carrying capacity of soil-steel structure, leading to the following conclusions: (1) the load carrying capacity of the composite structure is significantly affected by the shear stiffness (or friction) of the surrounding soil; (2) the conduit span may be used when calculating the buckling load rather than the local radius of the conduit wall; (3) circular arches with sector angle of less than 180 d eg have higher load carrying capacity than equivalent re-entrant arches, i.e. arches with sector angle of more than 180 d eg; (4) the buckling load of the conduit is slightly affected by the rigidity of the lower zone of the conduit wall; (5) eccentric application of the load has practically little effect on its load carrying capacity

  20. Stainless steel waste containers: an assessment of the probability of stress corrosion cracking

    International Nuclear Information System (INIS)

    Wanklyn, J.N.; Naish, C.C.

    1991-06-01

    The paper summarises information obtained from the literature and discussions held with corrosion experts from universities and industry, relevant to the possibility that stainless steel radioactive waste containers containing low level and intermediate level radioactive waste (LLW and ILW) could, when buried in concrete, suffer one or more of the forms of stress corrosion cracking (SCC). Stress corrosion cracking is caused by the simultaneous and synergistic action of a corrosive environment and stress. The initiation and propagation of SCC depend on a number of factors being present, namely a certain level of stress, an environment which will cause cracking and a susceptible metal or alloy. Generally the susceptibility of a metal or alloy to SCC increases as its strength level increases. The susceptibility in a specific environment will depend on: solution concentration, pH, temperature, and electrochemical potential of the metal/alloy. It is concluded that alkaline stress corrosion cracking is unlikely to occur under even the worst case conditions, that chloride stress corrosion cracking is a distinct possibility at the higher end of the temperature range (25-80 o C) and that stress corrosion related to sensitization of the steel will not be a problem for the majority of container material which is less than 5 mm in cross section. Thicker section material could become sensitized leading to a local problem in these areas. Contact with metals that are electrochemically more negative in corrosion potential is likely to reduce the incidence of SCC, at least locally. Measurement of repassivation potentials and rest potentials in solutions of relevant composition would provide a firmer prediction of the extent to which a high pH could reduce the likelihood of SCC caused by chlorides. (author)

  1. Crack monitoring method for an FRP-strengthened steel structure based on an antenna sensor

    NARCIS (Netherlands)

    Liu, Z.; Chen, Kai; Li, Z.; Jiang, X.

    2017-01-01

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it

  2. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  3. Structure of Fe-Ni-Cr steel welded joints

    International Nuclear Information System (INIS)

    Bratukhin, A.G.; Maslenkov, S.B.; Logunov, A.V.

    1993-01-01

    Properties of a welded joint depend on the structure of metal of the joint and near the joint areas subjected to thermal effect in the process of welding. The well-known phenomena, accompanying the welding (grain growth in near the joint area, intergrain slip, stressed state related to crystallization and rapid cooling), as well as certain other processes, which have been insufficiently studied either due to their poor pronouncement or owing to imperfection of the equipment and methods employed, were analyzed, as applied to stainless hihg-strength Fe-Ni-Cr steels

  4. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems.

    Science.gov (United States)

    Ahn, Joo Sung; Chon, Chul-Min; Moon, Hi-Soo; Kim, Kyoung-Woong

    2003-05-01

    Steel manufacturing byproducts were tested as a means of treating mine tailing leachate with a high As concentration. Byproduct materials can be placed in situ as permeable reactive barriers to control the subsurface release of leachate from tailing containment systems. The tested materials had various compositions of elemental Fe, Fe oxides, Ca-Fe oxides and Ca hydroxides typical of different steel manufacturing processes. Among these materials, evaporation cooler dust (ECD), oxygen gas sludge (OGS), basic oxygen furnace slag (BOFS) and to a lesser degree, electrostatic precipitator dust (EPD) effectively removed both As(V) and As(III) during batch experiments. ECD, OGS and BOFS reduced As concentrations to <0.5mg/l from 25mg/l As(V) or As(III) solution in 72 h, exhibiting higher removal capacities than zero-valent iron. High Ca concentrations and alkaline conditions (pH ca. 12) provided by the dissolution of Ca hydroxides may promote the formation of stable, sparingly soluble Ca-As compounds. When initial pH conditions were adjusted to 4, As reduction was enhanced, probably by adsorption onto iron oxides. The elution rate of retained As from OGS and ECD decreased with treatment time, and increasing the residence time in a permeable barrier strategy would be beneficial for the immobilization of As. When applied to real tailing leachate, ECD was found to be the most efficient barrier material to increase pH and to remove As and dissolved metals.

  5. Experimental investigation of asphalt mixture containing Linz-Donawitz steel slag

    Directory of Open Access Journals (Sweden)

    Jens Groenniger

    2017-08-01

    Full Text Available Standard asphalt mixtures for road infrastructures consist of natural aggregate and bitumen. A number of research efforts have successfully investigated the possibility of replacing the conventional aggregate skeleton with industrial by-products such as slag originating from steel production process. However, little is known on the effect of steel slag on the mixtures performance properties such as resistance to low-temperature cracking and to permanent deformation, stiffness and fatigue. This paper presents a comprehensive investigation on the fundamental performance properties of different types of asphalt mixtures prepared with 100% LD slag aggregate and a conventional asphalt mixture containing natural Gabbro aggregate. Sophisticated testing methods were used to evaluate the key performance parameters for the set of asphalt mixtures investigated. In this study, low temperature cracking was addressed through thermal stress restrained specimen tests. Penetration tests and cyclic compression tests were used to evaluate the response of asphalt binder and asphalt mixture to permanent deformation due repeated loading, respectively. The cyclic indirect tensile test was selected for investigating both stiffness properties and fatigue resistance. For this purpose the complex stiffness modulus was measured to quantify material stiffness under different temperature and loading conditions providing information on the visco-elasto-plastic material behavior. Fatigue tests were used to determine the progressive and localized material damage caused by cyclic loading. The experimental results indicate that asphalt mixtures prepared with LD slag are suitable for asphalt pavement construction and that in most cases they perform better than conventional asphalt mixtures prepared with Gabbro aggregate.

  6. The heat treatment effect on the structural changes and properties of high-nitrogen chromium steels

    International Nuclear Information System (INIS)

    Blinov, V.M.; Elistratov, A.A.; Kolesnikov, A.G.; Rakhshtadt, A.G.; Plokhikh, A.I.; Morozova, E.I.; Kostina, M.V.

    2000-01-01

    The structural transformations in the steels with 0.4-1.3 %N and 15-24 %Cr content, originating by thermal treatment, are studied. The dependences of the phase composition of the high-chromium steels (18 %Cr) on the nitrogen content are established. The ratio of the unchanged austenite increases and the martensite quantity decreases correspondingly with growth of the nitrogen concentration from 0.4 up to 1.2 %. The effect of strengthening the steels with the initial martensite structure as well as austenite and martensite steels is observed in the process of steels tempering due to the hardening on the account of the martensite dispersion hardening [ru

  7. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  8. Micromechanics based simulation of ductile fracture in structural steels

    Science.gov (United States)

    Yellavajjala, Ravi Kiran

    The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under

  9. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  10. Optimization methodology for large scale fin geometry on the steel containment of a Public Acceptable Simple SMR (PASS)

    International Nuclear Information System (INIS)

    Kim, Do Yun; NO, Hee Cheon; Kim, Ho Sik

    2015-01-01

    Highlights: • Optimization methodology for fin geometry on the steel containment is established. • Optimum spacing is 7 cm in PASS containment. • Optimum thickness is 0.9–1.8 cm when a fin height is 10–25 cm. • Optimal fin geometry is determined in given fin height by overall effectiveness correlation. • 13% of material volume and 43% of containment volume are reduced by using fins. - Abstracts: Heat removal capability through a steel containment is important in accident situations to preserve the integrity of a nuclear power plant which adopts a steel containment concept. A heat transfer rate will be enhanced by using fins on the external surface of the steel containment. The fins, however, cause to increase flow resistance and to deteriorate the heat transfer rate at the same time. Therefore, this study investigates an optimization methodology of large scale fin geometry for a vertical base where a natural convection flow regime is turbulent. Rectangular plate fins adopted in the steel containment of a Public Acceptable Simple SMR (PASS) is used as a reference. The heat transfer rate through the fins is obtained from CFD tools. In order to optimize fin geometry, an overall effectiveness concept is introduced as a fin performance parameter. The optimizing procedure is starting from finding optimum spacing. Then, optimum thickness is calculated and finally optimal fin geometry is suggested. Scale analysis is conducted to show the existence of an optimum spacing which turns out to be 7 cm in case of PASS. Optimum thickness is obtained by the overall effectiveness correlation, which is derived from a total heat transfer coefficient correlation. The total heat transfer coefficient correlation of a vertical fin array is suggested considering both of natural convection and radiation. However, the optimum thickness is changed as a fin height varies. Therefore, optimal fin geometry is obtained as a function of a fin height. With the assumption that the heat

  11. Mechanical properties of ductile cast iron and cast steel for intermediate level waste transport containers

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Egid, B.; Ajayi, F.; Donelan, P.

    1994-01-01

    UK Nirex Ltd is developing Type B re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses to transport intermediate level radioactive waste (ILW) to a deep repository. The designs are of an essentially monolithic construction and rely principally on the plastic flow of their material to absorb the energies involved in impact events. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. However, cast materials are perceived to lack toughness and ductility and it is necessary to show that sufficient fracture toughness can be obtained to preclude brittle failure modes, particularly at low temperatures. The mechanical testing carried out as part of that programme is described. It shows how the measured properties have been used to demonstrate avoidance of brittle fracture and provide input to computer modelling of the drop tests. (author)

  12. Effects of Nitrogen Content on the HAZ Softening of Ti-Containing High Strength Steels Manufactured by Accelerated Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kook-soo; Jung, Ho-shin; Park, Chan [Pukyong National University, Busan (Korea, Republic of)

    2017-03-15

    The effects of nitrogen content on the HAZ softening of Ti-containing high strength steels manufactured by accelerating cooling were investigated and interpreted in terms of the microstructures in the softening zone. Regardless of their content, all of the steels investigated showed a softened zone 9-10 mm wide. The minimum hardness in the zone, however, was different, with lower hardness in the higher nitrogen content steel. Microstructural observations of the steel showed that the amount of soft ferrite was increased in the zone with an increase of nitrogen content of the steel, suggesting that microstructural evolution in the HAZ is influenced by the nitrogen content. Measurements of TiN particles showed that the degree of particles coarsening in the HAZ was lower in the higher nitrogen content steel. Therefore, it is believed that finer TiN particles in the HAZ inhibit austenite grain growth more effectively, and lead to an accelerated ferrite transformation in higher nitrogen content steel, resulting in a higher amount of soft ferrite microstructure in the softened zone.

  13. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Solehudin, Agus, E-mail: asolehudin@upi.edu [Department of Mechanical Engineering Education, Indonesia University of Education (UPI), Bandung, West Java (Indonesia); Nurdin, Isdiriayani [Department of Chemical Engineering, Bandung Institute of Technology, Bandung, West Java (Indonesia)

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  14. Comprehensive benefits analysis of steel structure modular residence based on the entropy evaluation

    Science.gov (United States)

    Zhang, Xiaoxiao; Wang, Li; Jiang, Pengming

    2017-04-01

    Steel structure modular residence is the outstanding residential industrialization. It has many advantages, such as the low whole cost, high resource recovery, a high degree of industrialization. This paper compares the comprehensive benefits of steel structural in modular buildings with prefabricated reinforced concrete residential from economic benefits, environmental benefits, social benefits and technical benefits by the method of entropy evaluation. Finally, it is concluded that the comprehensive benefits of steel structural in modular buildings is better than that of prefabricated reinforced concrete residential. The conclusion of this study will provide certain reference significance to the development of steel structural in modular buildings in China.

  15. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: miao2@illinois.edu [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Cui, Bai [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Chen, Wei-Ying [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Miller, Michael K.; Powers, Kathy A. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); McCreary, Virginia; Gross, David [Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Robertson, Ian M. [Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WA 53706 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.

  16. The corrosion and protection of less carbon containing steel in subsoil

    International Nuclear Information System (INIS)

    Kazimov, A. M; Mamedyarova, I. F; Selimkhanova, G. G; Bskhishova, D. A; Ibragimova, S. G.

    2007-01-01

    Full text: The protection and corrosion resistance of steel in subsoil waters of Baku subway were investigated. Kinetic curves were drawn. The results obtained from the experiment coincide with calculated results. There have been revealed and proposed hudron and fuel oil mixture protecting steel from corrosion in subsoil waters (97.8%) for the internal surface of steel pipes

  17. Pre-test analysis results of a PWR steel lined pre-stressed concrete containment model

    International Nuclear Information System (INIS)

    Basha, S.M.; Ghosh, Barnali; Patnaik, R.; Ramanujam, S.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-02-01

    Pre-stressed concrete nuclear containment serves as the ultimate barrier against the release of radioactivity to the environment. This ultimate barrier must be checked for its ultimate load carrying capacity. BARC participated in a Round Robin analysis activity which is co-sponsored by Sandia National Laboratory, USA and Nuclear Power Engineering Corporation Japan for the pre-test prediction of a 1:4 size Pre-stressed Concrete Containment Vessel. In house finite element code ULCA was used to make the test predictions of displacements and strains at the standard output locations. The present report focuses on the important landmarks of the pre-test results, in sequential terms of first crack appearance, loss of pre-stress, first through thickness crack, rebar and liner yielding and finally liner tearing at the ultimate load. Global and local failure modes of the containment have been obtained from the analysis. Finally sensitivity of the numerical results with respect to different types of liners and different constitutive models in terms of bond strength between concrete and steel and tension-stiffening parameters are examined. The report highlights the important features which could be observed during the test and guidelines are given for improving the prediction in the post test computation after the test data is available. (author)

  18. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    Science.gov (United States)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  19. Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review

    Directory of Open Access Journals (Sweden)

    Mehmet Polat Saka

    2013-01-01

    Full Text Available The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.

  20. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  1. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  2. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Unknown

    corrosion mechanism, measurement of metal corrosion rate, corrosion ... cables, steel rigs, pipelines and other marine facilities, is ..... make high strength steel material to crack with stress ... of SBS has yet been very limited, and selection of.

  3. Structural optimization of reinforced concrete container for radioactive wastes

    International Nuclear Information System (INIS)

    Tamura, M.

    1984-01-01

    A structural optimization study of reinforced concrete container for transportation and disposal of the low level radioactive waste generated in Brazilian nuclear power plants. The code requires the structural integrity of these containers when subjected to fall from specified height, avoiding environmental contamination. The structural optimization allows material and transportation cost reduction by container wall thickness reduction. The structural analysis is performed by tridimensional mathematical model using finite element method. (Author) [pt

  4. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-03-01

    Full Text Available Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and evaluation of light steel structures caused by strong winds, which include connection failure, fatigue failure, purlin buckling, and primary frame component instability problems. Moreover, this review will mention some applications of structure damage assessment methods in this area, such as vulnerability analysis and performance-based theory, etc.

  5. New type of M23C6 carbide precipitation in an austenitic stainless steel containing niobium

    International Nuclear Information System (INIS)

    Terao, Nobuzo; Sasmal, B.

    1981-01-01

    An electron microscopic study has been made of precipitation in an austenitic stainless steel, 16Cr-16Ni-0.8Nb-1.8Mo-0.06C. Attention has been focused on structural changes which take place during long ageing treatments, extended up to 14.4 Ms (4000 h). In addition to the wellknown chromium rich M 23 C 6 carbides, which appear, together with NbC, from the beginning of the precipitation treatment at 1073 K, a new plate-like morphology of M 23 C 6 carbide precipitation was observed after long ageing treatments. These M 23 C 6 carbide plates were formed on (110) planes in regions near pre-existing undissolved NbC particles and their edges were bounded by (111) planes of the fcc alloy matrix. It is suggested that this unexpected process might be favoured by the stresses produced around the undissolved NbC particles. (author)

  6. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  7. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes

    International Nuclear Information System (INIS)

    Lin Bin; Hu Ronggang; Ye Chenqing; Li Yan; Lin Changjian

    2010-01-01

    Scanning electrochemical probes of corrosion potential and chloride ions were developed for the in situ monitoring of localized corrosion processes of reinforcing steel in NaCl-containing solution. The results indicated that the chloride ions (Cl - ) preferentially adsorbed and accumulated at the imperfect/defective sites, resulting in initiation and propagation of pitting corrosion on the reinforcing steel surface. An electron microprobe analyzer (EMPA) was used to examine the corrosion morphology and elemental distribution at the corroded location to investigate the origins of the preferential Cl - adsorption and pitting corrosion. By combining the in situ and ex situ images, we concluded that manganese sulfide inclusions in reinforcing steel are the most susceptible defects to pitting corrosion in chloride-containing solution.

  8. Total cross-sections assessment of neutron reaction with stainless steel SUS-310 contained in various nuclear data files

    International Nuclear Information System (INIS)

    Suwoto

    2002-01-01

    The integral testing of neutron cross-sections for Stainless Steel SUS-310 contained in various nuclear data files have been performed. The shielding benchmark calculations for Stainless Steel SUS-310 has been analysed through ORNL-Broomstick Experiment calculation which performed by MAERKER, R.E. at ORNL - USA ( 1) . Assessment with JENDL-3.1, JENDL-3.2, ENDF/B-IV, ENDF/B-VI nuclear data files and data from GEEL have also been carried out. The overall calculation results SUS-310 show in a good agreement with the experimental data, although, underestimate results appear below 3 MeV for all nuclear data files. These underestimation tendencies clearly caused by presented of iron nuclide which more than half in Stainless Steel compound. The total neutron cross-sections of iron nuclide contained in various nuclear data files relatively lower on that energy ranges

  9. Strength Properties of Foamed Concrete Containing Crushed Steel Slag as Partial Replacement of Sand with Specific Gradation

    Directory of Open Access Journals (Sweden)

    Tiong Hock Yong

    2017-01-01

    Full Text Available Lightweight construction material, notably foamed concrete, had become more favourable to reduce building weight and cost, accelerate construction process, and ease handling of precast segment. Simultaneously, rapid development had result in price rising of conventional material and environmental issue due to abundant wastes, for instance steel slag. As a consequence, feasibility of steel slag to be incorporated in lightweight foamed concrete for both structural and nonstructural purpose is worth to be investigated. This paper is aimed to evaluate the effects of crushed steel slag, as partial replacement of sand with specific gradation, on performance of lightweight foamed concrete (LFC with density of 1600 kg/m3 to 1700 kg/m3 in terms of compressive and tensile strengths. Different steel slag based LFCs were developed by replacing 0, 25, 50, 75 and 100% of steel slag for sand. Different water to cement ratios (w/c and dosages of super-plasticizer (sp were adopted to confirm certain workability, strength properties was then studied for ages of 7 and 28 days. The laboratory results showed that lightweight foamed concrete with incorporation of crushed steel slag has decreased strength; however it still achieves structural strength of 17 MPa when replacement level is less than 25% at density of 1600 kg/m3 to 1700 kg/m3.

  10. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    International Nuclear Information System (INIS)

    Prajitno, Djoko Hadi; Syarif, Dani Gustaman

    2014-01-01

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO 2 . The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe 2 O 3 . Minor element such as Cr 2 O 3 is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO 2 appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate

  11. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia)

    2014-03-24

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  12. Methods to Evaluate Corrosion in Buried Steel Structures: A Review

    Directory of Open Access Journals (Sweden)

    Lorena-de Arriba-Rodriguez

    2018-05-01

    Full Text Available Around the world, there are thousands of metal structures completely or partially buried in the soil. The main concern in their design is corrosion. Corrosion is a mechanism that degrades materials and causes structural failures in infrastructures, which can lead to severe effects on the environment and have direct impact on the population health. In addition, corrosion is extremely complex in the underground environment due to the variability of the local conditions. The problem is that there are many methods to its evaluation but none have been clearly established. In order to ensure the useful life of such structures, engineers usually consider an excess thickness that increases the economic cost of manufacturing and does not satisfy the principles of efficiency in the use of resources. In this paper, an extended revision of the existing methods to evaluate corrosion is carried out to optimize the design of buried steel structures according to their service life. Thus, they are classified into two categories depending on the information they provide: qualitative and quantitative methods. As a result, it is concluded that the most exhaustive methodologies for estimating soil corrosion are quantitative methods fed by non-electrochemical data based on experimental studies that measure the mass loss of structures.

  13. Seismic damage assessment of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Cho, HoHyun; Koh, Hyun-Moo; Hyun, Chang-Hun; Kim, Moon-Soo; Shin, Hyun Mock

    2003-01-01

    This paper presents a procedure for assessing seismic damage of concrete containment structures using the nonlinear time-history numerical analysis. For this purpose, two kinds of damage index are introduced at finite element and structural levels. Nonlinear finite element analysis for the containment structure applies PSC shell elements using a layered approach leading to damage indices at finite element and structural levels, which are then used to assess the seismic damage of the containment structure. As an example of such seismic damage assessment, seismic damages of the containment structure of Wolsong I nuclear power plant in Korea are evaluated against 30 artificial earthquakes generated with a wide range of PGA according to US NRC regulatory guide 1.60. Structural responses and corresponding damage index according to the level of PGA and nonlinearity are investigated. It is also shown that the containment structure behaves elastically for earthquakes corresponding to or lower than DBE. (author)

  14. Evaluation of five sampling methods for Liposcelis entomophila (Enderlein) and L. decolor (Pearman) (Psocoptera: Liposcelididae) in steel bins containing wheat

    Science.gov (United States)

    An evaluation of five sampling methods for studying psocid population levels was conducted in two steel bins containing 32.6 metric tonnes of wheat in Manhattan, KS. Psocids were sampled using a 1.2-m open-ended trier, corrugated cardboard refuges placed on the underside of the bin hatch or the surf...

  15. Resistance to fracture of carbon weldable structural steel with ferrite-pearlite and widmanstaetten structure

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Guzovskaya, M.A.

    1977-01-01

    Consideration is given to mechanical properties of St3 steel with varying ferritic-peartilic and widmanstaetten structures typical of a weld seam and adjacent zones. It has been found that mechanical properties determined at static tension are sensitive to structure variation in the limits under study. A considerable difference has been detected during impact tests CT 50 , asub(p)). The highest resistance to breakage is observed for the steel with a fine-grain ferritic-pearlitic structure (T 50 =-10 deg C, asub(p)=4.3 kgxm/cm 2 ). The enlargement of such a structure enhances transition temperature (T 50 =+20 deg C) and reduces resistance to crack development (asub(p)2.4 kgxm/cm 2 ). The appearance of widmanstaetten zones in the fine-grain structure leads also to a higher T 50 , up to +10 deg C, and at a completely widmanstaetten structure T 50 =+25 deg C. An especially unfavorable effect on the resistance of steel to breakage is produced by structure nonuniformity, i.e. accumulation of loop-like pearlitic and ferritic zones

  16. Alfinated coating structure on HS6-5-2 (SW7M high speed steel

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2010-10-01

    Full Text Available The paper presents the results of immersion alfinated coating structure in AlSi5 silumin on HS6-5-2 (SW7M high speed steel. Alfinating bath temperature was 750 ± 5 ° C, time of sample immersion was τ = 180s. Thickness of obtained coating under specified conditions was g = 150μm. Manufactured coating consists of three layers of different construction phase. The first layer from the substrate „g1`” constructed with a AlFe phase consist of alloy additives constituents of HS6-5-2 (SW7M steel: W, Mo, V, Cr and Si. On it crystallizes the second layer „g1``” of AlFeWMoCr intermetallic phases also containing Si and small amount of V. Last, the outer layer „g2” of the coating is composed with silumin including AlFeWMoCrVSi intermetallic phases. Within all layers of the coating occurs carbides. Penetration of carbides to individual coating layers is mainly due to steel surface partial melting and crystallizing layers „g1`” and „g1``” by alfinating liquid and shifting into her of carbides as well as partial carbides rejection by crystallization front of intermetallic phases occurs in coating.

  17. Application of the S690QL class steels in responsible welded structures

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2013-12-01

    Full Text Available In this paper are considered the most important properties of a special class of high strength steels S690QL, which can be classified into the group of special low alloyed steels. The high strength steels belong into a group of high quality steels. They possess exceptional mechanical properties, especially tensile strength and toughness. Those favorable properties are being achieved by application of special procedures of thermo-mechanical processing and simultaneous alloying with adequate elements. The advantages that the S690QL steels have with respect to other steels are being presented here. However, possibilities for application of those steels in responsible welded structures are limited due to their only relatively good weldability.  The special procedures for improving it are discussed here, primarily preheating, controlled heat input during welding and additional heat treatment of the welded joint.

  18. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    In modern structural steel frame design, the modelling of joints between beams and columns are based on very simple assumptions. The joints are most often assumed to behave as a perfect hinge or as a rigid joint. This means that in the overall static analysis relative rotations and changes...... the rotational stiffness of a connection. Based on a modelling of any beam-to-column joint using finite shell elements and springs for single components such as bolts, it is the primary hypothesis that it is possible to formulate a generalized connection model with few degrees of freedom related to a relevant...... set of deformation modes. This hypothesis is based on the idea of modal decomposition performed in generalized beam theories (GBT). The question is – is it possible to formulate an eigenvalue problem with a solution corresponding to mode shapes for the deformation of the joint by using the finite...

  19. Crevice Corrosion Behavior of 45 Molybdenum-Containing Stainless Steels in Seawater.

    Science.gov (United States)

    1981-12-01

    Armco, Avesta Jernverks, Cabot, Carpenter Technology, Crucible, Eastern, Firth-Brown, Huntington, Jessup, Langley Alloys, and Uddeholm. 16...Department of Energy, Report ANL/OTEC-BCM-022. 7. Wallen, B., and M. Liljas, " Avesta 254 SMO - A New, High Molybdenum Stainless Steel," presented at NKM8...1977).; 11. Wallen, B., " Avesta 254 SMO - A Stainless Steel for Seawater Service," presented at the Advanced Stainless Steels for Turbine Condensors

  20. Coal fly ash-containing sprayed mortar for passive fire protection of steel sections

    Directory of Open Access Journals (Sweden)

    Vilches, L. F.

    2005-09-01

    Full Text Available The present article addresses the possible use of coal fly ash as the chief component of sprayed mortars to fireproof steel structures. A pilot wet-mix gunning rig was specifically designed and built to spray different pastes on to sheet steel and sections with different surface/volume ratios. After gunning, the specimens were placed in a furnace and subjected to standard fire resistance testing. Product fire resistance was calculated from the test results. The mortar used in this study, with a high fly ash content, was found to have acceptable mechanical properties as well as afire resistance potential comparable to those of commercial passive fire protection products.

    En este artículo se estudia el posible uso de las cenizas volantes procedentes de la combustión del carbón como constituyente principal de morteros que pueden ser proyectados sobre estructuras metálicas, para protegerlas contra el fuego. Con objeto de estudiar el proceso de proyección, se ha construido una planta piloto de gunitado por vía húmeda. La pasta se ha proyectado sobre placas metálicas y perfiles metálicos con diferentes relaciones superficie/volumen. Tras el gunitado, las probetas proyectadas se colocan en un horno y se someten a un programa de calentamiento según la norma de resistencia al fuego. A partir de los datos obtenidos se ha podido realizar una estimación de la resistencia al fuego del producto. Los resultados muestran que el material proyectado usado en este estudio, que contiene una alta proporción de cenizas volantes, tiene unas propiedades mecánicas aceptables y unas características potenciales de resistencia al fuego comparables a las de otros productos comerciales utilizados en la protección pasiva contra el fuego.

  1. Structural ceramics containing electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, V.N., E-mail: vasta@teihal.gr [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece); General Department of Applied Sciences, School of Technological Applications, Technological Educational Institute of Sterea Ellada, GR 34400 Psahna (Greece); Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J. [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece)

    2013-11-15

    Highlights: • Zn is stabilized due to formation of ZnAl{sub 2}O{sub 4} spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in

  2. Structural ceramics containing electric arc furnace dust.

    Science.gov (United States)

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B

  3. Structural ceramics containing electric arc furnace dust

    International Nuclear Information System (INIS)

    Stathopoulos, V.N.; Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J.

    2013-01-01

    Highlights: • Zn is stabilized due to formation of ZnAl 2 O 4 spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an

  4. Prestressed concrete nuclear reactor containment structures. Revision 3

    International Nuclear Information System (INIS)

    Reuter, H.R.; Chang-Lo, P.L.C.; Pfeifer, B.W.; Shah, G.H.; Whitcraft, J.S.

    1975-02-01

    A discussion of the techniques and procedures used for the design of prestressed concrete nuclear reactor containment structures is presented. A physical description of Bechtel designed containment structures is presented. The design bases and load combinations are given for anticipated conditions of service. Reference design documents which include industry codes, specifications, AEC Regulatory Guides, Bechtel Topical Reports and additional criteria as appropriate to containment design are listed. Stepwise procedures typically followed by Bechtel for design of containments is discussed and design examples are presented. A description of currently used analytical methods and the practical application of these methods for containment design is also presented. The principal containment construction materials are identified and codes of practice pertaining to construction procedures are listed. Preoperational structural testing procedures and post-operational surveillance programs are furnished along with results of tests on completed containment structures. (U.S.)

  5. Conversion electron Moessbauer study of low carbon steel polarized in aqueous sulfate solution containing sulfite in low concentration

    International Nuclear Information System (INIS)

    Vertes, Cs.; Lakatos-Varsanyi, M.; Vertes, A.; Kuzmann, E.; Meisel, W.; Guetlich, P.

    1992-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5 M Na 2 SO 4 +0.001 M NaHSO 3 at pH=3.5 and 6.5. The found major components at pH=3.5 were: γ-FeOOH and Fe 3 C, and also FeSO 4 .H 2 O could be identified on the surface of the low carbon steel as a minor component. At pH=6.5, the passive film contained only amorphous iron(III)-oxide or oxyhydroxide. (orig.)

  6. Phase change predictions for liquid fuel in contact with steel structure using the heat conduction equation

    Energy Technology Data Exchange (ETDEWEB)

    Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO{sub 2} brought into contact with solid steel using up-to-date materials properties. The solutions predict criteria for fuel crust formation and steel melting and provide a simple algorithm to determine the interface temperature when one or both of the materials is undergoing phase change. The predicted steel melting criterion is compared with available experimental results. (author)

  7. Phase change predictions for liquid fuel in contact with steel structure using the heat conduction equation

    International Nuclear Information System (INIS)

    Brear, D.J.

    1998-01-01

    When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO 2 brought into contact with solid steel using up-to-date materials properties. The solutions predict criteria for fuel crust formation and steel melting and provide a simple algorithm to determine the interface temperature when one or both of the materials is undergoing phase change. The predicted steel melting criterion is compared with available experimental results. (author)

  8. Effects of Ion-Nitriding on the Pitting Behavior of Austenitic Stainless Steels Containing Mo

    International Nuclear Information System (INIS)

    Cho, Yong Seok; Choe, Han Cheol; Kim, Kwan Hyu

    1994-01-01

    Austenitic stainless steels(ASS) containing 1-4wt% Mo were ion-nitrided at 550 .deg. C for 20hrs and 30hrs, and their pitting behavior was examined by the electrochemical measurements. The formation of multiphase surface layers composed of the ε-{(Fe, Cr) 2- 3N} and the γ'-{(Fe, Cr) 4 N} phases was observed after ion-nitriding. The compound layers were approximately 50 μm thick after nitriding for 20hrs and 70 μm thick after 30hrs. Anodic polarization curves indicated that passive current density(I p ) and critical current density(I c ) increased, and corrosion potential(E corr ) decreased as a results of ion-nitriding. As the Mo content in the ion-nitrided ASS increased, passivation breakdown potential(E b ) and repassivation potential(E r ) increased, whereas I c and I p decreased. The pit nucleation time of the ASS nitrided for 20hrs was 10 minutes, while that of the 30hr nitrided samples was 3 minutes. The nucleation and growth of pits were significantly increased with the decreasing of Mo content as well as the increasing of ion-nitriding time

  9. Fatigue Strength Assessment of Welded Mild Steel Joints Containing Bulk Imperfections

    Directory of Open Access Journals (Sweden)

    Martin Leitner

    2018-04-01

    Full Text Available This work investigates the effect of gas pores, as bulk imperfections, on the fatigue strength of welded mild steel joints. Two test series containing different butt joint geometries and weld process parameters are included in order to achieve two variable types of pore sizes. Based on the √area-parameter by Murakami, the test series can be grouped into imperfections exhibiting √area < 1000 µm and √area > 1000 µm. Fatigue tests at a load stress ratio of R = 0.1 are performed, which act as comparison for the subsequent fatigue estimation. To assess the fatigue resistance, the approaches by Murakami, De Kazinczy, and Mitchell are utilized, which highlight certain differences in the applicability depending on the imperfection size. It is found that, on one hand, Murakami’s approach is well suitable for both small and large gas pores depending on the applied model parameters. On the other hand, the fatigue concepts by De Kazinczy and Mitchell are preferably practicable for large defects with √area > 1000 µm. In addition, the method by Mitchell incorporates the stress concentration factor of the imperfection, which can be numerically computed considering the size, shape, and location of the gas pore, as presented in this paper.

  10. The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel

    Science.gov (United States)

    Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong

    2017-02-01

    The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.

  11. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum

    International Nuclear Information System (INIS)

    Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2014-01-01

    The oxide dispersion strengthened (ODS) ferritic steels with nominal composition of Fe–16Cr–2W–0.5Ti–0.4Y 2 O 3 –4Al–1Zr (16Cr–4Al–Zr–ODS) were fabricated by a sol–gel method combining with mechanical alloying and spark plasma sintering (SPS) technique, and the 16Cr–ODS and 16Cr–4Al–ODS steels were prepared for comparison in the same way. Microstructure characterization reveals that in the 16Cr–4Al–ODS steel coarse Y–Al–O particles were formed while in the 16Cr–4Al–Zr–ODS steel finer Y–Zr–O particles were formed. The mean size and number density of the nano-oxide particles in the 16Cr–4Al–Zr–ODS steel are about 25 nm and 2.6 × 10 21 /m 3 , respectively. The ultimate tensile strength (UTS) of the 16Cr–ODS steel is about 1045 MPa, but UTS of the 16Cr–4Al–ODS steel decreases to 974 MPa. However, UTS of the 16Cr–4Al–Zr–ODS steel increases to 1180 MPa while keeping a large uniform elongation up to 23%, indicating the enhancement of mechanical properties by Zr addition

  12. Realization methodology for optimal design of steel structures conveyors with hanging belt

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2016-03-01

    Full Text Available Presents the results of optimum design of metal structures of the fixed conveyor with hanging belt. The analysis results optimum design of steel structures of stationary conveyor with hanging belt.

  13. Problem statement for optimal design of steel structures

    OpenAIRE

    Ginzburg Aleksandr Vital'evich; Vasil'kin Andrey Aleksandrovich

    2014-01-01

    The presented article considers the following complex of tasks. The main stages of the life cycle of a building construction with the indication of process entrance and process exit are described. Requirements imposed on steel constructions are considered. The optimum range of application for steel designs is specified, as well as merits and demerits of a design material. The nomenclature of metal designs is listed - the block diagram is constructed. Possible optimality criteria of steel desi...

  14. Experimental investigation of the influence of Mo contained in stainless steel on Cs chemisorption behavior

    Energy Technology Data Exchange (ETDEWEB)

    Di Lemma, F.G.; Nakajima, K., E-mail: nakajima.kunihisa@jaea.go.jp; Yamashita, S.; Osaka, M., E-mail: ohsaka.masahiko@jaea.go.jp

    2017-02-15

    Chemisorption phenomena can affect fission products (FP) retention in a nuclear reactor vessel during a severe accident (SA). Detailed information on the FP chemisorbed deposits, especially for Cs, are important for a rational decommissioning of the reactor following a SA, as for the Fukushima Daiichi Power Station. Moreover the retention of Cs will influence the source term assessment and thus improved models for this phenomenon are needed in SA codes. This paper describes the influence on Cs chemisorption of molybdenum contained in stainless steel (SS) type 316. In our experiments it was observed that Cs-Mo deposits (CsFe(MoO{sub 4}){sub 3}, Cs{sub 2}MoO{sub 4}) were formed together with CsFeSiO{sub 4}, which is the predominant compound formed by chemisorption. The Cs-Mo deposits were found to revaporize from the SS sample at 1000 °C, and thus could contribute to the source term. On the other hand, CsFeSiO{sub 4} will be probably retained in the reactor during a SA due to its stability. - Highlights: • The influence of Mo contained in SS on CsOH chemisorption was investigated. • Cs chemisorbed deposits were submitted to revaporization tests. • CsFeSiO{sub 4} was the main chemisorbed compound and stable at high temperature. • Cs{sub 2}MoO{sub 4} and Cs{sub 4}Fe(MoO{sub 4}){sub 3} were the Cs-Mo deposited phases detected. • Cs-Mo deposits re-vaporization can contribute to the accident late stage release.

  15. Interface Analyses Between a Case-Hardened Ingot Casting Steel and Carbon-Containing and Carbon-Free Refractories

    Science.gov (United States)

    Fruhstorfer, Jens; Dudczig, Steffen; Rudolph, Martin; Schmidt, Gert; Brachhold, Nora; Schöttler, Leandro; Rafaja, David; Aneziris, Christos G.

    2018-06-01

    Corrosion tests of carbon-free and carbon-containing refractories were performed. The carbon-free crucibles corroded, whereas the carbon-containing crucibles were negligibly attacked. On them, inclusions were attached. This study investigates melt oxygen contents, interface properties, and steel compositions with their non-metallic inclusions in order to explore the inclusion formation and deposition mechanisms. The carbon-free crucibles were based on alumina, mullite, and zirconia- and titania-doped alumina (AZT). The carbon-containing (-C) ones were alumina-C and AZT-C. Furthermore, nanoscaled carbon and alumina additives (-n) were applied in an AZT-C-n material. In the crucibles, the case-hardened steel 17CrNiMo7-6 was remelted at 1580 °C. It was observed that the melt and steel oxygen contents were higher for the tests in the carbon-free crucibles. Into these crucibles, the deoxidizing alloying elements Mn and Si diffused. Reducing contents of deoxidizing elements resulted in higher steel oxygen levels and less inclusions, mainly of the inclusion group SiO2-core-MnS-shell (2.5 to 8 μ m). These developed from smaller SiO2 nuclei. The inclusion amount in the steel was highest after remelting in AZT-C-n for 30 minutes but decreased strongly with increasing remelting time (60 minutes) due to inclusions' deposition on the refractory surface. The Ti from the AZT and the nanoadditives supported inclusion growth and deposition. Other inclusion groups were alumina and calcium aluminate inclusions. Their contents were high after remelting in carbon- or AZT-containing crucibles but generally decreased during remelting. On the AZT-C-n crucible, a dense layer formed from vitreous compositions including Al, Ca, Mg, Si, and Ti. To summarize, for reducing forming inclusion amounts, mullite is recommended as refractory material. For capturing formed inclusions, AZT-C-n showed a high potential.

  16. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    Serna, M.M.; Galego, E.; Rossi, J.L.

    2005-01-01

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  17. Welding stainless steels for structures operating at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  18. Welding stainless steels for structures operating at liquid helium temperature

    International Nuclear Information System (INIS)

    Witherell, C.E.

    1980-01-01

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2 0 K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2 0 K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness

  19. Analytical capability for predicting structural response of NPP concrete containments to severe loads

    International Nuclear Information System (INIS)

    Planas, J.; Guinea, G.; Trbojevic, V.M.; Marti, J.; Martinez, F.; Cortes, P.

    1989-12-01

    A survey has been conducted on the state-of-the-art of analytical techniques for predicting the structural response of concrete containment buildings under severe accident conditions. The validity of inelastic analysis is often limited by the inadequacy of the material models adopted. This is specially true in the case of materials which undergo localization phenomena in the course of the deformation process. Because of this, the Joint Research Centre at Ispra has given a high priority to the review of existing constitutive models for concrete. Such models must be able to describe concrete behaviour with and without steel reinforcement across the complete stress range, from initial elastic behaviour to and beyond the point of failure. For reinforced and prestressed concrete, segregated models (where concrete and steel are independently simulated) are preferred. A review of existing constitutive models for mass concrete has been conducted. The review focused on necessary features for describing the near-peak and post-peak stages of deformation. Special attention was dedicated to the localization of strains in tension and the post-peak softening behaviour. Existing models for representing the concrete steel bond were also reviewed. These models are still relatively simplistic and incorporate seldom a number of effects of considerable importance: sustained, dynamic and cyclic loading, environmental effects, etc. Finally, the computational procedures currently available for modelling problems involving the ultimate capacity of concrete containments have also been reviewed. This includes methodologies for modelling amongst other mass concrete, cracking procedures, bond behaviour, in existing computer codes

  20. Behaviour of concrete nuclear containment structures upto ultimate failure with special reference to MAPP-1 containment

    International Nuclear Information System (INIS)

    Appa Rao, T.V.S.R.

    1975-01-01

    Theoretical and experimental methods for investigating the behaviour of concrete secondary containment structures subjected to loads upto their ultimate failure have been discussed in the paper. Need for inelastic nonlinear analysis of containments has been emphasized. Different contitutive models of concrete that can be employed in the nonlinear analysis of concrete structures were briefly reviewed. Based on the experimental results obtained in a 1:12 scale model test conducted at the Structural Engineering Research (Regional) Centre, Madras, behaviour of the MAPP-1 containment to internal pressure loading upto its ultimate failure has been discussed. (author)

  1. Structure and properties of powder metallurgy constructional steel of different densities

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Moskvina, T.P.

    1986-01-01

    A specific feature of powder metallurgy steels is porosity, the degree of which depends upon the method of their production. This article establishes the influence of a small amount of porosity on the mechanical properties of powder metallurgy constructional steel. The structure of heat-treated cast and powder metallurgy steels with different porosities are shown. The results of mechanical tests of the experimental steels with different porosities are shown. With an increase in porosity the nonmetallic inclusion rating of the powder metallurgy constructional steel increases, primarily as the result of the increase in the coarse particles, which is caused by the lower degree of plastic deformation in pressing. With an increase in porosity the mechanical properties of the powder metallurgy steel become poorer: the hardness and strength properties with a porosity of more than 3-5%, the plasticity with more than 1-2%, and the toughness even with a porosity of 1%

  2. Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation

    Science.gov (United States)

    Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.

    2017-10-01

    The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.

  3. Use of fracture mechanics for estimation of cold resistance of structural steels

    International Nuclear Information System (INIS)

    Vikulin, A.V.; Solntsev, Yu.P.

    1988-01-01

    Structural steel cold resistance diagrams are developed and constructed in the form of testing temperature dependences on critical length of crack in endless plate. The diagrams allow one to determine critical temperature using steel samples without conducting complex and labour-consuming testings

  4. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  5. RESEARCH OF SYNERGETIC RELIABILITY OF PEARLITE-REDUCED STRUCTURAL STEEL 09G2FB

    Directory of Open Access Journals (Sweden)

    Gustov Yuriy Ivanovich

    2012-10-01

    Full Text Available The primary objective of the research is the synergetic reliability of perlite-reduced structural steel 09G2FB exposed to various thermal and mechanical treatments. In the aftermath of the above exposure, the steel in question has proved to assume a set of strength-related and plastic mechanical properties (σσδ and ψ.

  6. Changes in mechanical properties and structure of electrolytic plasma treated X 12 CrNi 18 10 Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanbekov, Sherzod; Baklanov, Viktor; Karakozov, Batyrzhan [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan). Inst. of Atomic Energy Branch; Skakov, Mazhyn [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan)

    2017-05-01

    The paper addresses findings regarding the influence of electrolytic plasma treatment on the mechanical properties as well as structural and phase states of X 12 CrNi 18 10 Ti steel. Electrolytic plasma treatment is based on carburizing of stainless steel heated in electrolytes. Treatment of steel samples has been performed as follows: the samples were heated up to a temperature between 850 and 950 C and then they were cured for 7 minutes in an electrolyte of an aqueous solution containing 10 % glycerol (C{sub 3}H{sub 8}O{sub 3}) and 15 % sodium carbonate (Na{sub 2}CO{sub 3}). It is found that, after plasma electrolytic treatment, the surface of X 12 CrNi 18 10 Ti steel had a modified structure and high hardness. Increasing wear resistance of X 12 CrNi 18 10 Ti steel has been observed after carburizing and the coefficient of friction has been reduced. X-ray analysis showed that retained austenite γ-Fe is a main phase, and there are some diffraction lines of orthorhombic Fe{sub 3}C phase as well as Fe{sub 3}O{sub 4} cubic phase. It has been determined, that, after plasma electrolytic treatment, a carbide phase in the modified surface layer, irrespective of the location in the steel structure has the chemical composition Fe{sub 3}C. High concentration of carbon atoms in a solid solution based on γ- and α-iron, a large dislocation density, presence of particles of carbide phase and retained austenite layers have been found.

  7. Modal Identification of A Tested Steel Frame using Linear ARX Model Structure

    Directory of Open Access Journals (Sweden)

    Yavuz Kaya

    2009-07-01

    Full Text Available This study contains the identification of modal dynamic properties of a 3-story large-scale steel test frame structure through shaking table measurements. Shaking table test is carried out to estimate the modal properties of the test frame such as natural frequencies, damping ratios and mode shapes. Among many different model structures, ARX (Auto Recursive Exogenous model structure is used for modal identification of the frame structure system. The unknown parameters in the obtained ARX model structure are estimated by Least-Square method by minimizing the AIC criteria with the help of a program coded in advanced computing software MATLAB®. The adopted model structure is then tested out in time domain to verify the validity of the model with the selected model parameters. Then the modal characteristics of test frame and the story stiffness are estimated using the white noise shakings. An attempt is done to determine the change of modal characteristics and the story stiffness of test frame according to the velocity, which the test frame structure experienced during the shaking schedule and also during the input shaking of El Centro 1940 NS. Results shows that there is an increase in damping ratio and a decrease in both story stiffness and natural frequency for all modes when the damage forms at cementitious device and the test frame structure itself during the shaking schedule.

  8. The creep properties of a low alloy ferritic steel containing an intermetallic precipitate dispersion

    International Nuclear Information System (INIS)

    Batte, A.D.; Murphy, M.C.; Edmonds, D.V.

    1976-01-01

    A good combination of creep rupture ductility and strength together with excellent long term thermal stability, has been obtained from a dispersion of intermetallic Laves phase precipitate in a non-transforming ferritic low alloy steel. The steel is without many of the problems currently associated with the heat affected zone microstructures of low alloy transformable ferritic steels, and can be used as a weld metal. Following suitable development to optimize the composition and heat treatment, such alloys may provide a useful range of weldable creep resistant steels for steam turbine and other high temperature applications. They would offer the unique possibility of easily achievable microstructural uniformity, giving good long term strength and ductility across the entire welded joint

  9. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  10. NRC Information Notice No. 86-99, Supplement 1: Degradation of steel containments

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1993-01-01

    IN 86-99 was issued on December 8, 1986, in response to the discovery of significant corrosion on the external surface of the carbon steel drywell in the sand bed region of the Oyster Creek plant. This supplement updates the status of Oyster Creek containment corrosion and the licensee's mitigation program. Since drywell corrosion was detected in 1986, the licensee instituted periodic wall thickness measurements by the ultrasonic testing (UT) technique to determine corrosion rates. The most severe corrosion was found in the sand bed region at a nominal elevation of 11 feet 3 inches. The highest corrosion rate determined was 35.2 ± 6.8 mils per year. To mitigate the corrosion in the sand bed region, water was drained from the sand bed and cathodic protection (CP) was installed in the bays with the greatest wall thinning in early 1989. Subsequent UT thickness measurements in these bays indicated that CP was ineffective. The licensee's consultants indicated that it would be necessary to flood the sand bed and to install CP in all the bays to make the CP system effective. The licensee decided that large amounts of water in the sand bed would be counterproductive. The licensee believes that a thorough program has been established for managing leakage that could affect drywell integrity due to corrosion from moisture ingress into the drywell gap. Recent surveillance of the sand bed drains indicates that the sand bed is free of water. To further mitigate drywell corrosion, the licensee is considering removing the sand, insulation, gap filler material, and corrosion film and applying a protective coating to the exterior drywell surface

  11. Preliminary study on the forgeability and heat treatment response of niobium - containing tool steels materials

    International Nuclear Information System (INIS)

    Cescon, T.; Papaleo, R.

    1981-01-01

    The forgeability and microstructure of tool steels materials based on the M-2 composition, where W and V were partially replaced by Nb, were examined. The optimum heat-treating conditions were established. The poor response to heat treatment of some of the alloys studied indicated the need of increasing the C content of the steels when Nb is used as a substitute for W and V. (Author) [pt

  12. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    Science.gov (United States)

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  13. Conceptual design for Japan Sodium-Cooled Fast Reactor. (4) Developmental study of steel plate reinforced concrete containment vessel for JSFR

    International Nuclear Information System (INIS)

    Hosoya, Takusaburo; Negishi, Kazuo; Satoh, Kenichiro; Somaki, Takahiro; Matsuo, Ippei; Shimizu, Katsusuke

    2009-01-01

    An innovative containment vessel, namely Steel plate reinforced Concrete Containment Vessel (SCCV) is developed for Japan Sodium-Cooled Fast Reactor (JSFR). Reducing plant construction cost is one of the most important issues for commercialization of fast reactors. This study investigated construction issues including the building structure and the construction method as well as design issues in terms of the applicability of SCCV to fast reactors. An experimental study including loading and/or heating tests has been carried out to investigate the fundamental structural features, which would be provided to develop methodology to evaluate the feasibility of SCCV under the severe conditions. In this paper, the test plan is described as well as the first test results. (author)

  14. A quality approach to maintain the properties of S235 JR structural carbon steel in Lebanon

    International Nuclear Information System (INIS)

    Sidawi, J.A.; Al Khatib, H.

    2004-01-01

    Full text.S235JR carbon steel is one of the most popular steels used in Lebanon. It is imported by steel dealers and is widely used by all fabricators and manufacturers of steels for many structural purposes and applications. This kind of steel has good ductile properties as well as excellent weldability. It is still known by its previous designation St 37-2 or E 24-2. S235JR is produced in many shapes and thicknesses such as steel plates, sheets, angles and different other geometric shapes. Standard chemical and mechanical tests were conducted and reported on S235JR hot-rolled structural low-carbon mild steel specimens collected from Lebanese steel market. The main objective of this work is to assure the compliance of these properties with those set by the steel manufacturer. The above mentioned tests were performed at the laboratories of the Industrial Research Institute (IR) in Lebanon to assure the quality and credibility of the results. related European and American standards were presented as references and compared with the achieved results. Discussion was presented to show the similarities and differences between S235JR steel samples and standard requirements. Some of the reasons for such differences were discussed. Sufficient data was furnished through this work for the public and mainly for the Lebanese Standard Organization LIBNOR to easily adopt and implement the EN 10025:1993 European standard that can be applied in Lebanon concerning the most commonly used hot rolled low carbon structural steel. A follow up concerning adopting and implementing EN 10025:1993 will be briefed

  15. Process for testing noise emission from containers or pipelines made of steel, particularly for nuclear reactor plants

    International Nuclear Information System (INIS)

    Votava, E.; Stipsits, G.; Sommer, R.

    1982-01-01

    In a process for noise emission testing of steel containers or pipelines, particularly for testing primary circuit components of nuclear reactor plants, measuring sensors and/or associated electronic amplifiers are used, which are tuned for receiving the frequency band of the sound emission spectrum above a limiting frequency f G , but are limited or non-resonant for frequency bands less than f G . (orig./HP) [de

  16. Flexural fatigue behavior of steel fiber reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, G.I.; Chai, W.K.; Park, C.W.; Min, I.K.

    1993-01-01

    In this thesis, the fatigue tests are performed on a series of SFRC (steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varing with the steel fiber contents and the steel fiber aspect ratios. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  17. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  18. Mechanical properties of CO2/MIG welded structural rolled steel and stainless steel

    International Nuclear Information System (INIS)

    Lim, Jong Young; Yoon, Myong Jin; Kim, Sang Youn; Kim, Tae Gyu; Shin, Hyeon Seung

    2015-01-01

    To accomplish long-term use of specific parts of steel, welding technology is widely applied. In this study, to compare the efficiency in improving mechanical properties, rolled steel (SS400) was welded with stainless steel (STS304) by both CO 2 welding method and MIG (metal inert gas) welding method, respectively. Multi-tests were conducted on the welded specimen, such as X-ray irradiation, Vickers' Hardness, tensile test, fatigue test and fatigue crack growth test. Based on the fatigue crack growth test performed by two different methods, the relationship of da/dN was analyzed. Although the hardness by the two methods was similar, tensile test and fatigue properties of MIG welded specimen are superior to CO 2 welded one.

  19. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1992-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both nominal use and accident conditions to serve the dual-role of shielding and containment, the use of other structure materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describesa two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature. The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracmm resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as win be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term ''structural credit'' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.)

  20. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1993-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both normal use and accident conditions to serve the dual-role of shielding and containment, the use of other structural materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describes a two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature (Eckelmeyer, 1991). The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracture resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as will be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term 'structural credit' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.) (J.P.N.)

  1. Application and validation of the notch master curve in medium and high strength structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Sergio; Garcia, Tiberio [Universidad de Cantabria, Santander (Spain); Madrazo, Virginia [PCTCAN, Santander (Spain)

    2015-10-15

    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches.

  2. Magnetic resonance imaging of an equine fracture model containing stainless steel metal implants.

    Science.gov (United States)

    Pownder, S L; Koff, M F; Shah, P H; Fortier, L A; Potter, H G

    2016-05-01

    Post operative imaging in subjects with orthopaedic implants is challenging across all modalities. Magnetic resonance imaging (MRI) is preferred to assess human post operative musculoskeletal complications, as soft tissue and bones are evaluated without using ionising radiation. However, with conventional MRI pulse sequences, metal creates susceptibility artefact that distorts anatomy. Assessment of the post operative equine patient is arguably more challenging due to the volume of metal present, and MRI is often not performed in horses with implants. Novel pulse sequences such as multiacquisition variable resonance image combination (MAVRIC) now provide improved visibility in the vicinity of surgical-grade implants and offer an option for imaging horses with metal implants. To compare conspicuity of regional anatomy in an equine fracture-repair model using MAVRIC, narrow receiver bandwidth (NBW) fast spin echo (FSE), and wide receiver bandwidth (WBW) FSE sequences. Nonrandomised in vitro experiment. MAVRIC, NBW FSE and WBW FSE were performed on 9 cadaveric distal limbs with fractures and stainless steel implants in the third metacarpal bone and proximal phalanx. Objective measures of artefact reduction were performed by calculating the total artefact area in each transverse image as a percentage of the total anatomic area. The number of transverse images in which fracture lines were visible was tabulated for each sequence. Regional soft tissue conspicuity was assessed subjectively. Overall anatomic delineation was improved using MAVRIC compared with NBW FSE; delineation of structures closest to the metal implants was improved using MAVRIC compared with WBW FSE and NBW FSE. Total artefact area was the highest for NBW FSE and lowest for MAVRIC; the total number of transverse slices with a visible fracture line was highest in MAVRIC and lowest in NBW FSE. MAVRIC and WBW FSE are feasible additions to minimise artefact around implants. © 2015 EVJ Ltd.

  3. Reliability assessment of Indian Point Unit 3 containment structure

    International Nuclear Information System (INIS)

    Kawakami, J.; Hwang, H.; Chang, M.T.; Reich, M.

    1984-01-01

    In the current design criteria, the load combinations specified for design of concrete containment structures are in the deterministic formats. However, by applying the probability-based reliability method developed by BNL to the concrete containment structures designed according to the criteria, it is possible to evaluate the reliability levels implied in the current design criteria. For this purpose, the reliability analysis is applied to the Indian Point Unit No. 3 containment. The details of the containment structure such as the geometries and the rebar arrangements, etc., are taken from the working drawings and the final safety analysis reports. Three kinds of loads are considered in the reliability analysis. They are, dead load (D), accidental pressure due to a large LOCA (P), and earthquake ground acceleration (E). Reliability analysis of the containment subjected to all combinations of loads is performed. Results are presented in this report

  4. Structure and radiation induced swelling of steels and alloys

    International Nuclear Information System (INIS)

    Parshin, A.M.

    1983-01-01

    Regularities of vacancy void formation and radiation induced swelling of austenitic chromium-nickel steels and alloyse ferritic steels as well as titanium α-alloys under radiation by light and heavy ions and neutrons are considered. Possible methods for preparation of alloys with increased resistance to radiation swelling are described. Accounting for investigations into ferritic steels and α-alloys of titanium the basic way of weakening vacancy smelling is development of continuous homogeneous decomposition of solid solution using alloying with vividly expressed incubation period at a certain volumetric dilatation as well as decompositions of the type of ordering, K-state, lamination of solid solutions, etc. Additional alloying of solid solutions is also shown to be necessary for increasing recrystallization temperature of cold-deformed steel

  5. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  6. Advanced metallic structural materials and a new role for microalloyed steels

    International Nuclear Information System (INIS)

    Korchynsky, M.

    2004-01-01

    The recent worldwide surge of steel consumption, mainly of low-strength carbon grades, has created raw-materials shortages and price increases. These supply-demand strains could be relaxed by satisfying engineering needs with less steel. However, materials used for such a substitution must combine high weight reducing potential with low cost. Microalloyed (MA) steels are cost-effective substitutes, since their high strength is the result of grain refinement and precipitation hardening. These two strengthening mechanisms are developed by the interaction of micro-additives: niobium or vanadium with the deformation occurring during hot rolling followed by cooling. The physical metallurgy of these phenomena is discussed in the paper. The optimum alloy design of MA steels combines superior properties with lowest processing cost. In many applications, the versatility and adaptability of vanadium steels provides an economic advantage. The monetary value of weight production is sufficient to increase the profitability of steel makers and to lower the material cost to steel users. This 'win-win' situation is financed by the elimination of efforts spent in producing inefficient steel, yielding an increase in wealth formation. The gain acceptance of substitution by the consumer, a long-term strategic plan is needed to be implemented by the beneficiaries - both steel producers and steel users. The successful substitution is of importance to the national economy, resources and energy conservation, and the environment. Since microalloyed steels, used as a replacement for carbon steels, offer low cost weight savings, they deserve to be classified as advanced structural materials. (author)

  7. Rust Layer Formed on Low Carbon Weathering Steels with Different Mn, Ni Contents in Environment Containing Chloride Ions

    Directory of Open Access Journals (Sweden)

    Gui-qin FU

    2016-11-01

    Full Text Available The rusting evolution of low carbon weathering steels with different Mn, Ni contents under a simulated environment containing chloride ions has been investigated to clarify the correlation between Mn, Ni and the rust formed on steels. The results show that Mn contents have little impact on corrosion kinetics of experimental steels. Content increase of Ni both enhances the anti-corrosion performance of steel substrate and the rust. Increasing Ni content is beneficial to forming compact rust. Semi-quantitative XRD phase analysis shows that the quantity ratio of α/γ*(α-FeOOH/(γ-FeOOH+Fe3O4 decreases as Mn content increases but it increases as Ni content increases. Ni enhances rust layer stability but Mn content exceeding 1.06 wt.% is disadvantageous for rust layer stability. The content increase of Mn does not significantly alter the parameters of the polarization curve. However, as Ni contents increases, Ecorr has shifted to the positive along with decreased icorr values indicating smaller corrosion rate especially as Ni content increases from 0.42 wt.% to 1.50 wt.%.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12844

  8. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    Science.gov (United States)

    Farina, S.; Schulz Rodriguez, F.; Duffó, G.

    2013-07-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.

  9. Potential mechanisms for corrosion and stress corrosion cracking failure of 3013 storage containers composed of 316 stainless steel

    International Nuclear Information System (INIS)

    Kolman, D.G.; Butt, D.P.

    1998-01-01

    The degradation of 316 stainless steel (SS) storage container materials is a potential problem for radioactive waste disposition. Container materials will be exposed to significant ionizing radiation, elevated temperatures, embrittling and/or alloying agents (e.g., gallium), chloride-containing compounds (as much as 20 wt% Cl or Cl - ), oxidizing compounds, and a limited quantity of moisture. Additionally, containers will contain welds that have heterogeneous composition due to solute segregation and that may retain significant residual stress. All of the above-listed environmental and material conditions have been shown to be deleterious to material integrity under certain conditions. Unfortunately, the precise conditions within each container and environment is unknown and may vary widely from container to container. Thus, no single test or set of tests will be able mimic the broad range of storage container conditions. Additionally, material behavior cannot be predicted because the synergistic effects of temperature, time, chloride, moisture, sensitization, weldments, salt formation, etc., have not been fully studied. The complexity and uncertainty of storage conditions precludes any detailed recommendations. This document attempts to detail selected previous studies and to suggest some general guidelines for storage of radioactive waste. Because of the voluminous research in this area, this review cannot be considered to be comprehensive. Readers are directed to references that contain detailed reviews of particular processes for more information. Note that the effect of gallium on the degradation of SS storage containers has been discussed elsewhere and will not be discussed here

  10. ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE

    OpenAIRE

    Cuenca Asensio, Estefanía

    2013-01-01

    Cuenca Asensio, E. (2012). ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/18326. Palancia

  11. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; Busby, J.T. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States); Gussev, M.N., E-mail: gussevmn@ornl.gov [Nuclear Fuel & Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6136 (United States); Maziasz, P.J.; Hoelzer, D.T.; Rowcliffe, A.F.; Vitek, J.M. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States)

    2017-01-15

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14–0.36%) and Mn (2–5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  12. Interaction of steel, titanium and zirconium with melted chlorides containing copper and zinc

    International Nuclear Information System (INIS)

    Ozeryanaya, I.N.; Manukhina, T.I.; Shibanov, B.S.

    1976-01-01

    Cu and Zn coatings were obtained by contact displacement of their molten chlorides. Cu was deposited on Kh18N10T stainless steel, and Zn was deposited on Ti or Zr at 400-550 0 . Cu was displaced from the electrolyte by all components in the steel. A smooth coating exhibited high adhesion. According to metallography there was a transition layer of a Ni-Cr solid solution between the surface Cu layer and steel. With electronegetiol Ti and Zr, contact deposition of Zn or Cu from chloride melts was possible. The coatings were multilayer and exhibited adequate adhesion. The coating consisted of an intermetallic compound of Ti or Zr with Zn

  13. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  14. Structure, mechanical and corrosion properties of powdered stainless steel Kh13

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Napara-Volgina, S.G.; Orlova, L.N.; Apininskaya, L.M.

    1982-01-01

    Structure, mechanical and corrosion properties are studied for compact powdered stainless steel, Grade Kh13, produced from prealloyed powder and a mixture of chromium and iron powders by hot vacuum pressing (HVP) following four schemes: HVP of unsintered billets; HVP of presintered billets; HVP of unsintered billets followed by diffusion annealing; HVP of sintered billets followed by diffusion annealing. Analysis of the structure, mechanical and corrosion properties of Kh13 steel produced according to the four schemes confirmed that production of this steel by the HVP method without presintering of porous billets and diffusion annealing of compact stampings is possible only when prealloyed powder of particular composition is used as a starting material

  15. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-01-01

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants

  16. Effect of high temperature on integrity of concrete containment structures

    International Nuclear Information System (INIS)

    Bhat, P.D.

    1986-01-01

    The effect of high temperature on concrete material properties and structural behavior are studied in order to relate these effects to the performance of concrete containment structures. Salient data obtained from a test program undertaken to study the behavior of a restrained concrete structure under thermal gradient loads up to its ultimate limit are described. The preliminary results indicate that concrete material properties can be considered to remain unaltered up to temperatures of 100 0 C. The presence of thermal gradients did not significantly affect the structures ultimate mechanical load capacity. Relaxation of restraint forces due to creep was found to be an important factor. The test findings are compared with the observations made in available literature. The effect of test findings on the integrity analysis of a containment structure are discussed. The problem is studied from the viewpoint of a CANDU heavy water reactor containment

  17. Corrosion behavior of austenitic steels and their components in niobium-containing chloride melts

    Science.gov (United States)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Volkovich, V. A.; Lisienko, D. G.

    2014-02-01

    The mechanism of corrosion of austenitic steels 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 and metals Cr, Fe, Ni, and Mo in a NaCl-KCl-NbCl n ( n = 3.5, Nb content is 5 ± 0.1 wt %) melt at 750°C is studied. The metal and steel corrosion rates under these conditions are determined. The character of material fracture and the mechanisms of material corrosion are found.

  18. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    Science.gov (United States)

    2016-10-12

    Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 2. O. Grong, Metallurgical Modelling of Welding , 2ed., Materials Modelling...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6394--16-9690 Validation of Temperature Histories for Structural Steel Welds Using...PAGES 17. LIMITATION OF ABSTRACT Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges S.G. Lambrakos

  19. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple

  20. Review of Differences of Steel related Properties between Proposals of European Structural Codes

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    Differences of Steel related Properties between fire chapters of the Proposals of European Structural Codes are indicated for the same physical properties, the right properties are found and it is proposed to use these properties in all codes.......Differences of Steel related Properties between fire chapters of the Proposals of European Structural Codes are indicated for the same physical properties, the right properties are found and it is proposed to use these properties in all codes....

  1. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  2. Structural transformations in austenitic stainless steel induced by deuterium implantation: irradiation at 100 K.

    Science.gov (United States)

    Morozov, Oleksandr; Zhurba, Volodymyr; Neklyudov, Ivan; Mats, Oleksandr; Rud, Aleksandr; Chernyak, Nikolay; Progolaieva, Viktoria

    2015-01-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic stainless steel 18Cr10NiTi preimplanted at 100 K with deuterium ions in the dose range from 3 × 10(15) to 5 × 10(18) D/cm(2). The kinetics of structural transformation development in the implantation steel layer was traced from deuterium thermodesorption spectra as a function of implanted deuterium concentration. At saturation of austenitic stainless steel 18Cr10NiTi with deuterium by means of ion implantation, structural-phase changes take place, depending on the dose of implanted deuterium. The maximum attainable concentration of deuterium in steel is C = 1 (at.D/at.met. = 1/1). The increase in the implanted dose of deuterium is accompanied by the increase in the retained deuterium content, and as soon as the deuterium concentration attains C ≈ 0.5 the process of shear martensitic structural transformation in steel takes place. It includes the formation of bands, body-centered cubic (bcc) crystal structure, and the ferromagnetic phase. Upon reaching the deuterium concentration C > 0.5, the presence of these molecules causes shear martensitic structural transformations in the steel, which include the formation of characteristic bands, bcc crystal structure, and the ferromagnetic phase. At C ≥ 0.5, two hydride phases are formed in the steel, the decay temperatures of which are 240 and 275 K. The hydride phases are formed in the bcc structure resulting from the martensitic structural transformation in steel.

  3. Ultimate pressure capacity of CANDU 6 containment structures

    International Nuclear Information System (INIS)

    Radulescu, J.P.; Pradolin, L.; Mamet, J.C.

    1997-01-01

    This paper summarizes the analytical work carried out and the results obtained when determining the ultimate pressure capacity (UPC) of the containment structures of CANDU 6 nuclear power plants. The purpose of the analysis work was to demonstrate that such containment structures are capable of meeting design requirements under the most severe accident conditions. For this concrete vessel subjected to internal pressure, the UPC was defined as the pressure causing through cracking in the concrete. The present paper deals with the overall behaviour of the containment. The presence of openings, penetrations and the ultimate pressure of the airlocks were considered separately. (author)

  4. Study on the hydrogen embrittlement and corrosion of stainless steels used as NI/MHX battery containers

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, H.J.; Chan, S.L.I. [National Taiwan University, Taipei (China); Chen, S.Y. [Chung Shan Institute of Science and Technology, Lung-Tan (China)

    1998-07-01

    Stainless steels are used as the containers for Nickel-metal hydride (Ni/MHx) batteries. In this work stainless steel 304, 304L, 316, 316L, 17-4PH and 430 were selected to study their relative susceptibility to hydrogen embrittlement and alkaline corrosion under battery environments. Comparisons were made by immersion test under different hydrogen pressure over the electrolyte, U-bend tests and slow strain rate tensile test with cathodic H{sub 2} charging. The results showed that high strength 17-4PH suffered severe corrosion after long time immersion in the electrolyte solution and were sensitive to hydrogen embrittlement after hydrogen charging. Ferritic 430 performed better than 17-4PH during immersion test but lost its ductility after hydrogen charging. All the austenitic steels (304, 304L, 316, 316L) were found to be suitable as the materials for Ni/MHx battery container, and the present tests can not discriminate their relative resistance to the corrosion and hydrogen embrittlement in the electrolyte. 5 refs.

  5. Nuclear microanalysis of oxide films on structural steel

    International Nuclear Information System (INIS)

    Istomin, I.V.; Karabash, V.A.; Maisyukov, V.D.; Sosnin, A.N.; Shorin, V.S.

    1989-01-01

    Studies of the behavior of structural materials in nuclear power plants have indicated the important role of oxide films on metals, especially metals of the iron group. The films may be formed as a result of the corrosion of the metal in an aggressive coolant. At the same time, some oxide films have anticorrosive properties and can be produced specially by the introduction of inhibitor-passivators, e.g., molecular oxygen, into the aggressive medium. Experimental data on the film growth rate make it possible to determine the kinetics of the oxidation process, the nature of the diffusion of the main components through the film, and the role of the phase transitions (crystal-chemical transformations) and point defects during the migration of oxygen and metal ions through the oxide. In this study nuclear microanalysis is used to measure the parameters of oxide films formed on 10Cr2Mo and 1Cr18Ni10Ti steels in steam in the temperature range 320-620C. In this method the film parameters in the general analysis of the energy spectra of deuterons back-scattered from iron nuclei and protons in the case of the 16 O(d,p 1 ) 17 O nuclear reaction. With this approach and an initial deuteron energy E o = 0.9 MeV the range of the measurable thickness t of the films is 0.001-1.5 mg/cm 2 . The data obtained not only confirm the high sensitivity of the nuclear microanalysis method but also demonstrate that it can be used for nondestructive quality control of the surface

  6. Hydrogen embrittlement of ASTM A 203 D nuclear structural steel

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Prasad, G.E.; Sinha, T.K.; Asundi, M.K.

    1986-01-01

    The influence of hydrogen on the mechanical properties of ASTM A 203 D nuclear structural steel has been studied by tension, bend and delayed-failure tests at room temperature. While the tension tests of hydrogen charged unnotched specimens reveal no change in ultimate strength and ductility, the effect of hydrogen is manifested in notched specimens (tensile and bend) as a decrease in ultimate strength (maximum load in bend test) and ductility; the effect increases with increasing hydrogen content. It is observed that for a given hydrogen concentration, the decrease in bend ductility is remarkably large compared to that in tensile ductility. Hydrogen charging does not cause any delayed-failure upto 200 h under an applied tensile stress, 0.85 times the notch tensile strength. However delayed failure occurs in hydrogen charged bend samples in less than 10 h under an applied bending load of about 0.80 times of the uncharged maximum load. Fractographs of hydrogen charged unnotched specimens show ductile dimple fracture, while those of notched tension and bend specimens under hydrogen-charged conditions show a mixture of ductile dimple and quasi-cleavage cracking. The proportion of quasi-cleavage cracking increases with increasing hydrogen content and this fracture mode is more predominant in bend specimens. The changes in tensile properties and fracture modes can reasonably be explained by existing theories of hydrogen embrittlement. An attempt is made to explain the significant difference in the embrittlement susceptibility of bend and tensile specimens in the light of difference in triaxiality and plastic zone size near the notch tip. (orig.)

  7. Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures

    International Nuclear Information System (INIS)

    Zhao, Y.

    1996-01-01

    Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed

  8. Seismic damage sensing of bridge structures with TRIP reinforcement steel bars

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki

    2001-07-01

    Intelligent reinforced concrete structures with transformation-induced-plasticity (TRIP) steel rebars that have self-diagnosis function are proposed. TRIP steel is special steel with Fe-Cr based formulation. It undergoes a permanent change in crystal structure in proportion to peak strain. This changes from non-magnetic to magnetic steel. By using the TRIP steel rebars, the seismic damage level of reinforced concrete structures can be easily recognized by measuring the residual magnetic level of the TRIP rebars, that is directly related to the peak strain during a seismic event. This information will be most helpful for repairing the damaged structures. In this paper, the feasibility of the proposed intelligent reinforced concrete structure for seismic damage sensing is experimentally studied. The relation among the damage level, peak strain of rebars, and residual magnetic level of rebars of reinforced concrete beams implemented with TRIP steel bars was experimentally studied. As the result of this study, this intelligent structure can diagnose accumulated strain/damage anticipated during seismic event.

  9. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  10. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  11. Elemental segregation during resistance spot welding of boron containing advanced high strength steels

    NARCIS (Netherlands)

    Amirthalingam, M.; Van der Aa, E.M.; Kwakernaak, C.; Hermans, M.J.M.; Richardson, I.M.

    2015-01-01

    The partitioning behaviour of carbon, phosphorous and boron during the solidification of a resistance spot weld pool was studied using experimental simulations and a phase field model. Steels with varying carbon, phosphorous and boron contents were designed and subjected to a range of resistant spot

  12. Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy

    Science.gov (United States)

    Vattur Sundaram, Maheswaran; Surreddi, Kumar Babu; Hryha, Eduard; Veiga, Angela; Berg, Sigurd; Castro, Fransisco; Nyborg, Lars

    2018-01-01

    Reaching high density in PM steels is important for high-performance applications. In this study, liquid phase sintering of PM steels by adding gas-atomized Ni-Mn-B master alloy was investigated for enhancing the density levels of Fe- and Mo- prealloyed steel powder compacts. The results indicated that liquid formation occurs in two stages, beginning with the master alloy melting (LP-1) below and eutectic phase formation (LP-2) above 1373 K (1100 °C). Mo and C addition revealed a significant influence on the LP-2 temperatures and hence on the final densification behavior and mechanical properties. Microstructural embrittlement occurs with the formation of continuous boride networks along the grain boundaries, and its severity increases with carbon addition, especially for 2.5 wt pct of master alloy content. Sintering behavior, along with liquid generation, microstructural characteristics, and mechanical testing revealed that the reduced master alloy content from 2.5 to 1.5 wt pct (reaching overall boron content from 0.2 to 0.12 wt pct) was necessary for obtaining good ductility with better mechanical properties. Sintering with Ni-Mn-B master alloy enables the sintering activation by liquid phase formation in two stages to attain high density in PM steels suitable for high-performance applications.

  13. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste

  14. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    Science.gov (United States)

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  15. Economic aspect comparison between steel plate reinforced concrete and reinforced concrete technique in reactor containment wall construction

    International Nuclear Information System (INIS)

    Yuliastuti; Sriyana

    2008-01-01

    Construction costs of nuclear power plant were high due to the construction delays, regulatory delays, redesign requirement, and difficulties in construction management. Based on US DOE (United States Department of Energy) study in 2004, there were thirteen advanced construction technologies which were potential to reduce the construction time of nuclear power plant. Among these technologies was the application of steel-plate reinforced concrete (SC) on reactor containment construction. The conventional reinforced concrete (RC) technique were built in place and require more time to remove framework since the external form is temporary. Meanwhile, the SC technique offered a more efficient way to placing concrete by using a permanent external form made of steel. The objective of this study was to calculate construction duration and economic comparison between RC and SC technique. The result of this study showed that SC technique could reduce the construction time by 60% and 29,7% cost reduced compare to the RC technique. (author)

  16. Formation of Outburst Structure in Hot Dip Galvannealed Coatings on IF Steels

    Directory of Open Access Journals (Sweden)

    Kollárová, M.

    2007-01-01

    Full Text Available Outburst structure in two industrially produced hot dip galvanized interstitial free steel sheets for automotive industry after additional annealing has been examined. Ti IF steel was found to form weak outburst structure in the early stage of annealing, followed by frontal growth of Fe-Zn phases during further heating. The high reactivity of this steel was confirmed by rapid G-phase formation. Under the same conditions, Ti-Nb-P IF steel exhibited frontal growth of Fe-Zn compounds without G-phase formation due to relatively high phosphorous content, which is known as inhibitor of Fe-Zn reaction, but simultaneously significant occurrence of undesired outburst structures was recorded. It was assumed that the phosphorous content was insufficient and/or ferrite grain was very fine.

  17. Pressure test behaviour of embalse nuclear power plant containment structure

    International Nuclear Information System (INIS)

    Bruschi, S.; Marinelli, C.

    1984-01-01

    It's described the structural behaviour of the containment structure during the pressure test of the Embalse plant (CANDU type, 600MW), made of prestressed concrete with an epoxi liner. Displacement, strain, temperature, and pressure measurements of the containment structure of the Embalse Nuclear Power Plant are presented. The instrumentation set up and measurement specifications are described for all variables of interest before, during and after the pressure test. The analytical models to simulate the heat transfer due to sun heating and air convenction and to predict the associated thermal strains and displacements are presented. (E.G.) [pt

  18. Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

    International Nuclear Information System (INIS)

    Xinhua, Chen; Junhua, Dong; Enhou, Han; Wei, Ke

    2008-01-01

    The atmospheric corrosion performance of Al-alloying Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at 30 .deg. C and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% NaHSO 3 (pH∼4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage: and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of Fe 3 O 4 and α-FeOOH. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as FeAl 2 O 4 , (Fe, Si) 2 (Fe, Al)O 4 ). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere

  19. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.

    Science.gov (United States)

    Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli

    2017-10-20

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  20. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor

    Directory of Open Access Journals (Sweden)

    Zhiping Liu

    2017-10-01

    Full Text Available Fiber-reinforced polymer (FRP has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP. FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  1. Some aspects of the reliability-based design of reactor containment structures

    International Nuclear Information System (INIS)

    Schueller, G.I.

    1975-01-01

    It is generally recognized that the load which a structure is likely to experience during its design life as well as its resistance are to be represented by random variables. A rational design procedure for reactor containment structures can therefore only be carried out within a probabilistic framework. Internal load conditions caused by system failure such as loss-of-coolant accident, pressure loads etc., and external load conditions caused for instance by impact due to aircraft crashes, external pressure waves and natural hazards such as earthquakes, floods, hurricanes are described by extreme value distributions of the Fisher-Tippett types. Statistical and physical arguments are given to support their application. The occurrence of these rare events with respect to time is modeled by a Poisson process. The yield strength of the containment structure for both steel (liner) and reinforced concrete shells is also modeled by extreme value distributions (of the smallest values). The failure criterion considered here is that of collapse determined by plastic yieldline formation. A failure mechanism as considered here describes a particular regime of plastic line formation. The probability of failure of a structure under a single load application of load types likely to occur during the design life of the structure is to be determined by integrating over all possible mechanisms. Finally Freudenthal's reliability function is utilized to combine the information derived above so that a containment design for given design lifes and reliabilities is possible. (orig.) [de

  2. Nano structure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    International Nuclear Information System (INIS)

    Zhang, K.M.; Zou, J.X.; Zou, J.X.; Grosdidier, T.; Zou, J.X.; Grosdidier, T.; Grosdidier, T.

    2013-01-01

    The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels

  3. An approach for evaluating the general and localised corrosion of carbon steel containers for nuclear waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sharland, S.M.; Tasker, P.W.

    1987-06-01

    The paper considers the long term corrosion of carbon steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localised or passive corrosion behaviour depending on the exact composition and redox potential of the groundwater contacting the containers; localised corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localised corrosion is only possible when the environment is sufficiently oxidising to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species which oxidising potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localised and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient. (orig.)

  4. Approach for evaluating the general and localized corrosion of carbon-steel containers for nuclear waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sharland, S.M.; Tasker, P.W.

    1987-01-01

    The paper considers the long term corrosion of carbon-steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localized or passive corrosion behavior depending on the exact composition and redox potential of the groundwater contacting the containers; localized corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localized corrosion is only possible when the environment is sufficiently oxidizing to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species with oxidizing potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localized and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible localized attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient. 20 references, 5 figures

  5. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  6. Quality of structural steel melted by single-slag process

    International Nuclear Information System (INIS)

    Levin, A.M.; Andreev, V.I.; Monastyrskij, A.V.; Drozdova, M.F.; Pashchenko, V.E.; Orzhekh, M.B.

    1982-01-01

    The 40Kh and 12KhN3A steels were used to compare the quality of the metal manufactured according to several variants of a single-slag process with the metal of a conventional melting technology. Investigation results show, that a single-slag process metal has higher sulfides and oxides contents as well as an increased anisotropy of mechanical properties while its tendency to flake formation is weaker due to a less degree of gas saturation. It is marked that anisotropy in the properties and a sulfide content may be decreased by out-of-furnace treatment of steels

  7. Structure of maraging steel after thermomechanical treatment at high temperature

    International Nuclear Information System (INIS)

    Prokoshkina, V.G.; Kaputkina, L.M.; Mozzhukhin, V.E.

    1981-01-01

    Developed polygonized substructure is formed in austenite of maraging Cr-Ni steels under the selected conditions of hot deformation during high temperature mechanical treatment (HTMT). Substructure of hot deformed austenite is inherited by packet martensite during cooling. Presence of developed polygonized substructure in austenite results in grinding and high uniformity of packet sizes of martensite crystals. Substructure of α-phase of the investigated steels after HTMT, as well as the one inherited from hot deformed austenite, is inherited at α→γ-transformation in the process of repetitive austenization, and it can be preserved within a limited temperature-time range of heating in γ-region [ru

  8. Chromium surface alloying of structural steels during laser treatment

    International Nuclear Information System (INIS)

    Kurov, I.E.; Nagornykh, S.N.; Sivukhin, G.A.; Solenov, S.V.

    1987-01-01

    Results of matrix alloying from the surface layer and creation of considerably increased chromium concentration in the depth which permits to increase the efficiency of laser treatment of steels (12Kh18N10T and 38KhN3M) in the process of their further mechanical polishing, are presented. The treatment was realized by continuous CO 2 -laser at different power densities and scanning rates are presented. A model describing the creation of anomalous distributions of the alloying element in steels is plotted

  9. Reliability evaluation of containments including soil-structure interaction

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1985-12-01

    Soil-structure interaction effects on the reliability assessment of containment structures are examined. The probability-based method for reliability evaluation of nuclear structures developed at Brookhaven National Laboratory is extended to include soil-structure interaction effects. In this method, reliability of structures is expressed in terms of limit state probabilities. Furthermore, random vibration theory is utilized to calculate limit state probabilities under random seismic loads. Earthquake ground motion is modeled by a segment of a zero-mean, stationary, filtered Gaussian white noise random process, represented by its power spectrum. All possible seismic hazards at a site, represented by a hazard curve, are also included in the analysis. The soil-foundation system is represented by a rigid surface foundation on an elastic halfspace. Random and other uncertainties in the strength properties of the structure, in the stiffness and internal damping of the soil, are also included in the analysis. Finally, a realistic reinforced concrete containment is analyzed to demonstrate the application of the method. For this containment, the soil-structure interaction effects on; (1) limit state probabilities, (2) structural fragility curves, (3) floor response spectra with probabilistic content, and (4) correlation coefficients for total acceleration response at specified structural locations, are examined in detail. 25 refs., 21 figs., 12 tabs

  10. Study on comparison of special moment frame steel structure (SMF) and base isolation special moment frame steel structure (BI-SMF) in Indonesia

    Science.gov (United States)

    Setiawan, Jody; Nakazawa, Shoji

    2017-10-01

    This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.

  11. A reference container concept for spent fuel disposal: structural safety for dimensioning of the reference container

    International Nuclear Information System (INIS)

    Choi, Jongwon; Kwon, Sangki; Kang, Chulhyung; Kwon, Youngjoo

    2002-01-01

    This paper presents the mechanical and thermal stress analysis of a disposal canister to provide basic information for dimensioning the canister and configuration of the canister components. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head, and the thermal load build up in the container

  12. Installation method for the steel container and vessel of the nuclear heating reactor

    International Nuclear Information System (INIS)

    Chen Liying; Guo Jilin; Liu Wei

    2000-01-01

    The Nuclear Heating Reactor (NHR) has the advantages of inherent safety and better economics, integrated arrangement, full power natural circulation and dual vessel structure. However, the large thin container presents a new and difficult problem. The characteristics of the dual vessel installation method are analyzed with system engineering theory. Since there is no foreign or domestic experience, a new method was developed for the dual vessel installation for the 5 MW NHR. The result shows that the installation method is safe and reliable. The research on the dual vessel installation method has important significance for the design, manufacture and installation of the NHR dual vessel, as well as the industrialization and standardization of the NHR

  13. Structural design and dynamic analysis of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.; Heale, D.G.

    1975-01-01

    Present actual experience in the structural design of undeground containments is limited to only four rather small reactors all located in Europe. Thus proposals for future underground reactors depend on the transposition of applicable design specifications, constraints and criteria from existing surface nuclear power plants to underground, and the use of many years of experience in the structural design of large underground cavities and cavity complexes for other purposes such as mining, hydropower stations etc. An application of such considerations in a recent input for the Underground Containment sub-section of the Seismic Task Group Report to the ASCE Committee for Nuclear Structures and Materials is presented as follows: underground concept considerations, siting criteria and structural selection, structural types, analytical and semi-analytical approaches, design and other miscellaneous considerations

  14. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-01-01

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members. PMID:28773347

  15. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.

    Science.gov (United States)

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-03-23

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.

  16. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  17. Calculation and design of steel bearing structure for wind turbine

    Directory of Open Access Journals (Sweden)

    Bešević Miroslav

    2014-01-01

    Full Text Available Wind represents directed movement of the air and is caused by differences in atmospheric pressure which are caused by uneven heating of air masses. Global and local winds can be distinguished. Global winds have high altitude, while local winds occur in the ground layer of the atmosphere. Given that the global wings have high altitude they cannot be used as propellant for wind generators, but they should be known for their effects on the winds in the lower atmosphere. Modern wind turbines are made with a horizontal axle that has a system for the swiveling axis in the horizontal plane for tracking wind direction changes. They can have different number of blades, but for larger forces three blades are commonly used because they provide the greatest efficiency. Rotor diameter of these turbines depends on the strength and it ranges from 30 m for the power of 300 kW to 115 m for the power of 5 MW. Wind turbines are mounted on vertical steel tower which can be high even more than 100 m. Depending on the diameter of the turbine rotor, column is usually built as steel conical and less often as a steel-frame. This study includes analysis and design of steel tower for wind generator made by manufacturer Vestas, type V112 3MW HH 119 (power 3.2 MW for the construction of wind farm 'Kovačica'.

  18. Structural Characterization of Highly Corrosion-resistant Steel

    Czech Academy of Sciences Publication Activity Database

    Lančok, Adriana; Kmječ, T.; Štefánik, M.; Sklenka, L.; Miglierini, M.

    2015-01-01

    Roč. 88, č. 4 (2015), s. 355-361 ISSN 0011-1643 R&D Projects: GA ČR(CZ) GA14-12449S Institutional support: RVO:61388980 Keywords : Mossbauer spectroscopy * corrosion-resistant steel * LC200 * CEMS Subject RIV: CA - Inorganic Chemistry Impact factor: 0.732, year: 2015

  19. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels

    International Nuclear Information System (INIS)

    Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A.; Mondal, K.

    2012-01-01

    The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M S ) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T 0 ) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M S temperatures have a close relation with the optimum mechanical properties of bainitic steels.

  20. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Mondal, K., E-mail: kallol@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2012-12-15

    The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M{sub S}) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T{sub 0}) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M{sub S} temperatures have a close relation with the optimum mechanical properties of bainitic steels.

  1. Modelling the influence of austenitisation temperature on hydrogen trapping in Nb containing martensitic steels

    International Nuclear Information System (INIS)

    Lang, Peter; Rath, Markus; Kozeschnik, Ernst; Rivera-Diaz-del-Castillo, Pedro E.J.

    2015-01-01

    Hydrogen trapping behaviour is investigated by means of thermokinetic simulations in a martensitic steel. The heat treatment consists of austenitisation followed by quenching and tempering. The model prescribes a minimum in hydrogen trapping at an austenitisation temperature of 1050 °C. Below this temperature, austenite grain boundaries are the prevailing trap, whereas niobium atoms in solid solution are the main traps above 1050 °C. The model describes precisely the experimental results

  2. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  3. Deprotonated imidodiphosphate in AMPPNP-containing protein structures

    International Nuclear Information System (INIS)

    Dauter, Miroslawa; Dauter, Zbigniew

    2011-01-01

    In certain AMPPNP-containing protein structures, the nitrogen bridging the two terminal phosphate groups can be deprotonated. Many different proteins utilize the chemical energy provided by the cofactor adenosine triphosphate (ATP) for their proper function. A number of structures in the Protein Data Bank (PDB) contain adenosine 5′-(β,γ-imido)triphosphate (AMPPNP), a nonhydrolysable analog of ATP in which the bridging O atom between the two terminal phosphate groups is substituted by the imido function. Under mild conditions imides do not have acidic properties and thus the imide nitrogen should be protonated. However, an analysis of protein structures containing AMPPNP reveals that the imide group is deprotonated in certain complexes if the negative charges of the phosphate moieties in AMPPNP are in part neutralized by coordinating divalent metals or a guanidinium group of an arginine

  4. Effect of heat treatment and plastic deformation on the structure and the mechanical properties of nitrogen-bearing 04N9Kh2A steel

    Science.gov (United States)

    Blinov, V. M.; Bannykh, O. A.; Lukin, E. I.; Kostina, M. V.; Blinov, E. V.

    2014-11-01

    The effect of the conditions of heat treatment and plastic deformation on the structure and the mechanical properties of low-carbon martensitic nickel steel (9 wt % Ni) with an overequilibrium nitrogen content is studied. The limiting strain to failure of 04N9Kh2A steel is found to be 40% at a rolling temperature of 20°C and 80% at a rolling temperature of 900°C. Significant strengthening of the steel (σ0.2 = 1089 MPa) is obtained after rolling at a reduction of 40% at 20°C. The start and final temperatures of the α → γ transformation on heating and those of the γ → α transformation on cooling are determined by dilatometry. The specific features of the formation of the steel structure have been revealed as functions of the annealing and tempering temperatures. Electron-microscopic studies show that, after quenching from 850°C and tempering at 600°C for 1 h, the structure contains packet martensite with thin interlayers of retained austenite between martensite crystals. The strength of the nitrogen-bearing 04N9Kh2A steel after quenching from 850 and 900°C, cooling in water, and subsequent tempering at 500°C for 1 h is significantly higher than that of carboncontaining 0H9 steel used in cryogenic engineering.

  5. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... these investigations. A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula.Furthermore, in general longer fatigue lives were obtained for the test...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  6. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    . In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two...... recent research reports, Refs. 15 and 16, from these investigations.A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  7. Development of rational design technique for frame steel structure combining seismic resistance and economic performance

    International Nuclear Information System (INIS)

    Kato, Motoki; Morishita, Kunihiro; Shimono, Masaki; Chuman, Yasuharu; Okafuji, Takashi; Monaka, Toshiaki

    2015-01-01

    Anti-seismic designs have been applied to plant support steel frames for years. Today, a rational structure that further improves seismic resistance and ensures economic performance is required in response to an increase of seismic load on the assumption of predicted future massive earthquakes. For satisfying this requirement, a steel frame design method that combines a steel frame weight minimizing method, which enables economic design through simultaneous minimization of multiple steel frame materials, and a seismic response control design technology that improves seismic resistance has been established. Its application in the design of real structures has been promoted. This paper gives an overview of this design technology and presents design examples to which this design technology is applied. (author)

  8. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  9. Formulation and Assessment of a Wash-Primer Containing Lanthanum "Tannate" for Steel Temporary Protection

    Science.gov (United States)

    D'Alessandro, Oriana; Selmi, Gonzalo J.; Deyá, Cecilia; Di Sarli, Alejandro; Romagnoli, Roberto

    2018-02-01

    Tannins are polyphenols synthesized by plants and useful for the coating industry as corrosion inhibitors. In addition, lanthanum salts have a great inhibitory effect on steel corrosion. The aim of this study was to obtain lanthanum "tannate" with adequate solubility to be incorporated as the corrosion inhibitor in a wash-primer. The "tannate" was obtained from commercial "Quebracho" tannin and 0.1 M La(NO3)3. The soluble tannin was determined by the Folin-Denis reagent, while the concentration of Lanthanum was obtained by a gravimetric procedure. The protective action of "tannate" on SAE 1010 steel was evaluated by linear polarization curves and corrosion potential measurements. Lanthanum "tannate" was incorporated in a wash-primer formulation and tested by corrosion potential and ionic resistance measurements. The corrosion rate was also determined by the polarization resistance technique. Besides, the primer was incorporated in an alkyd paint system and its anticorrosion performance assessed in the salt spray cabinet and by electrochemical impedance spectroscopy. Results showed that lanthanum "tannate" primer inhibits the development of deleterious iron oxyhydroxides on the steel substrate and incorporated into a paint system had a similar behavior to the primer formulated with zinc tetroxychromate.

  10. Corrosion behavior of carbon steel for overpack in groundwater containing bicarbonate ions

    International Nuclear Information System (INIS)

    Nishimura, Toshiyasu; Dong, Junpha

    2009-01-01

    Carbon steel is considered in Japan the candidate material for overpacks in high-level radioactive waste disposal. Effects of bicarbonate solutions on the corrosion behavior and corrosion products of carbon steel were investigated by electrochemical measurements, FT-IR and XRD analyses. The anodic polarization measurements showed that bicarbonate ions (HCO 3 - ) accelerated the anodic dissolution and the outer layer film formation of carbon steel in the case of high concentrations, on the other hand, it inhibited these processes in the case of low concentrations. The FT-IR and XRD analyses of the anodized film showed that siderite (FeCO 3 ) was formed in 0.5 to 1.0 mol/L bicarbonate solution, and Fe 2 (OH) 2 CO 3 in 0.1 to 0.2 mol/L bicarbonate solution, while Fe 6 (OH) 12 CO 3 was formed in 0.02 to 0.05 mol/L bicarbonate solutions. The stability of these corrosion products was able to be explained by using the actual potential-pH diagrams for the Fe-H 2 O-CO 2 system. (author)

  11. Static recrystallisation and precipitation after hot deformation of austenitic stainless steels containing molybdenum and niobium

    International Nuclear Information System (INIS)

    Lombry, R.; Rossard, C.; Thomas, B.J.

    1981-01-01

    In general the hot workability of austenite depends on the work hardening during deformation and the kinetics of the dynamic and static restoration processes. Static recrystallisation is a very important factor in the case of hot rolling. The present work was undertaken to determine the effect of additions of molybdenum or niobium on the kinetics of static recrystallisation. The results show that the rate of static recrystallisation of type 304, 316 and 347 stainless steels decreases in this order for a given amount of prior deformation (epsilon=0,44). The differences in the rates of recrystallisation increases as the temperature is lowered towards 900 deg C. The effect of molybdenum appears to be attribuable to a solute drag effect on the mobility of dislocations, subgrain boundaries or grain boundaries whereas niobium additions lead to the formation of NbC precipitates on the dislocation cell walls and sub boundaries. It is also shown that in the case of type 316 and type 347 steels the dynamic recrystallisation process (observed in type 304 steels at all temperatures above 900 deg C) is replaced by dynamic recovery at temperatures egal to or below about 1000 deg C [fr

  12. Design integration of favorable geometry, structural support and containment

    International Nuclear Information System (INIS)

    Purcell, J.A.; McGehee, G.A.

    1991-07-01

    In designs for fissile processes at Savannah River site, different approaches have been used to provide engineered margins of safety for criticality with containment and seismic resistance as additional requirements. These requirements are frequently at odds in engineered systems. This paper proposes a plan to take advantage of vessels with favorable geometry to provide seismic resistance and to support a glovebox for containment. Thin slab tanks, small diameter pencil tanks, annular tanks, and other novel designs have been used for criticality safety. The requirement for DBE seismic resistance and rigid control of dimensions leads the designer to consider annular tanks for meeting these requirements. The high strength of annular tanks may logically be used to support secondary containment. Hands-on access to all instruments, piping etc. within containment can be provided through gloveports, thus a specialized glovebox. This paper examines the advantages of using an annular tank design to provide favorable geometry, structural support and containment

  13. Surface characteristics of the galvannealed coating in Interstitial-free high strengthen steels containing Si and Mn

    International Nuclear Information System (INIS)

    Jeon, Sun Ho; Chin, Kwang Geun; Kim, Dai Ryong

    2008-01-01

    Surface-void defects observed on the Galvannealed (GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer

  14. Surface characteristics of the galvannealed coating in Interstitial-free high strengthen steels containing Si and Mn

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sun Ho; Chin, Kwang Geun [Pohang Iron and Steel Co. Technical Research Laboratories, Gwangyang (Korea, Republic of); Kim, Dai Ryong [Kyungpook National University, Daegu (Korea, Republic of)

    2008-02-15

    Surface-void defects observed on the Galvannealed (GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

  15. Effect of nitrate on corrosion of austenitic stainless steel in boiling nitric acid solution containing chromium ions

    International Nuclear Information System (INIS)

    Hasegawa, Satoshi; Kim, Seong-Yun; Ebina, Tetsunari; Ito, Tatsuya; Nagano, Nobumichi; Hitomi, Keitaro; Ishii, Keizo; Tokuda, Haruaki

    2016-01-01

    The oxidation behavior of chromium and the corrosion behavior of austenitic stainless steel in boiling nitric acid solution containing highly concentrated nitrates were investigated using UV-visible spectroscopic measurements, Raman spectral measurements, immersion tests, and potentiodynamic polarization measurements. The oxidation rate measurement of chromium from Cr(III) to Cr(VI) was performed by 1 M boiling nitric acid solution containing each highly concentrated nitrates: Al(NO_3)_3, Nd(NO_3)_3, Ca(NO_3)_2, Mg(NO_3)_2, and NaNO_3 as a simulant of uranium nitrate in uranium concentrator in reprocessing plants. As a result, the rate of chromium oxidation was different depending on the added nitrates even at the same nitric acid concentration. In addition, the oxidation rate of chromium was increased with increasing the calculated partial pressure of nitric acid in consideration of the hydration of cation of nitrates. Furthermore, the corrosion rate of type 310 stainless steel was accelerated by the solution having a high chromium oxidation rate containing nitrates. These results indicated that the acceleration of the corrosion rate in the solutions depending on the oxidation rate of chromium, and the rate is affected by the salt-effect of nitrates. (author)

  16. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers.

  17. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi

    2014-01-01

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers

  18. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2014-01-01

    Full Text Available Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  19. Ultimate internal pressure capacity of concrete containment structures

    International Nuclear Information System (INIS)

    Krishnaswamy, C.N.; Namperumal, R.; Al-Dabbagh, A.

    1983-01-01

    Lesson learned from the accident at Three-Mile Island nuclear plant has necessitated the computation of the ultimate internal pressure capacity of containment structures as a licensing requirement in the U.S. In general, a containment structure is designed to be essentially elastic under design accident pressure. However, as the containment pressure builds up beyond the design value due to a more severe postulated accident, the containment response turns nonlinear as it sequentially passes through cracking of concrete, yielding of linear plate, yielding of rebar, and yielding of post-tensioning tendon (if the containment concrete is prestressed). This paper reports on the determination of the ultimate internal pressure capacity and nonlinear behavior of typical reinforced and prestressed concrete BWR containments. The probable modes of failure, the criteria for ultimate pressure capacity, and the most critical sections are described. Simple equations to hand-calculate the ultimate pressure capacity and the nonlinear behavior at membrane sections of the containment shell are presented. A nonlinear finite element analysis performed to determine the nonlinear behavior of the entire shell including nonmembrane sections is briefly discribed. The analysis model consisted of laminated axisymmetric shell finite elements with nonlinear stress-strain properties for each material. Results presented for typical BWR concrete containments include nonlinear response plots of internal pressure versus containment deflection and strains in the liner, rebar, and post-tensioning tendons at the most stressed section in the shell. Leak-tightness of the containment liner and the effect of thermal loads on the ultimate capacity are discussed. (orig.)

  20. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1996-01-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  1. Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures

    Science.gov (United States)

    2010-02-01

    Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry

  2. Refinement of grain structure in 20 MnNiMo (SA508C) steel

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Zou Min

    1997-04-01

    The size of prior austenite grains and bainitic colonies of 20 MnNiMo (SA508C) steel (a reactor pressure vessel steel) after normal heat treatment is measured and its controlling factors are discussed. Results show that low aluminium content can induce serious mixed structure with fine and coarse grains in prior austenite. Fast cooling rate can promote refinement of bainitic colonies. Further refinement of grains can be obtained by inter-critical quenching. (5 figs., 1 tab.)

  3. A realistic structural analysis of the integrity of the liner of reinforced and prestressed concrete containments

    International Nuclear Information System (INIS)

    Buchhardt, F.; Brandl, P.

    1979-01-01

    The BWR Gundremmingen II is the first German nuclear power plant with a concrete containment having a thin steel plate liner directly attached to the interior concrete surface to provide an air-tight seal. Due to this monolithic way of anchorage a bonded system of concrete and metal liner membrane is obtained so that the same deformations of the loading or strain conditions are induced to the very stiff concrete hull as well as to the liner. Because of the complex structural behaviour of the bonded system the evaluation is carried out by the finite element method. The overall system is decoupled in several steps. Due to its considerable stiffness the concrete structure can be regarded as the liner supporting basis. The liner system itself might be subdivided into perfect and imperfect sections discretized by plain or curved elements which are supported by point-wise spring elements representing the stud anchors. (orig.)

  4. Application of concrete filled steel bearing wall to inner concrete structure fro PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Tanaka, Mamoru; Inoue, Kunio; Fukihara, Masaaki; Akiyama, Hiroshi.

    1992-01-01

    'Concrete filled steel bearing wall', applied to the inner concrete structure for PWR nuclear power plant, was developed for rationalization of construction procedure at site. It was concluded through preliminary studies that this new type of wall, where concrete is placed between steel plates, is best suited for the strength members of the above structure, due to the high strength and ductility of surface steel plates and the confinement effect of filled concrete. To verify the behavior from the elastic range to the inelastic range, the ultimate strength and the failure mechanism, and to clarify experimentally the structural integrity of the inner concrete structure, which was composed of a concrete filled steel bearing wall, against seismic lateral loads, horizontal loading tests using a 1/10th scale model of the inner concrete structure for PWR nuclear power plant were conducted. As a result of the tests, the inner concrete structure composed of a concrete filled steel bearing wall appeared to have a larger load carrying capacity and a higher ductility as compared with that composed of a reinforced concrete wall. (author)

  5. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  6. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    International Nuclear Information System (INIS)

    Xu, Yun-bo; Hu, Zhi-ping; Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing; Ma, De-gang; Misra, R.D.K.

    2017-01-01

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  7. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-bo [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Hu, Zhi-ping, E-mail: huzhiping900401@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Ma, De-gang [Tangshan Iron and Steel Company, Tangshan 063000, People' s Republic China (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2017-03-14

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  8. Nonconforming axisymmetric elements for the analysis of containment structures

    International Nuclear Information System (INIS)

    Choi, C.K.; Kim, S.Y.

    1989-01-01

    In this study, the behaviors of the conforming isoparametric quadrilateral 4-node and triangular 3-nod axisymmetric solid elements are improved by adding nonconforming displacement modes. The convergence tests and the irregular mesh tests have been established through the analyses of a primary shield wall typed structure. For example study, a containment wall with internal pressure of 60 ksi has been analyzed. It shows that the nonconforming elements behave better than the conforming elements, especially, in the structurally discontinuous regions

  9. Structure-rheology relations in sodium caseinate containing systems

    OpenAIRE

    Ruis, H.G.M.

    2007-01-01

    The general aim of the work described in this thesis was to investigate structure-rheologyrelations for dairy related products, focusing on model systems containing sodium caseinate. The acid inducedgelationof sodium caseinate, of sodium caseinate stabilized emulsions, and the effect of shear on the structure formation was characterized. Special attention was given to the sol-gel transition point, which was defined by a frequency independent loss tangent. It was shown that the sol-gel transit...

  10. Plant life management of the ACR-1000 Concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.H.; Ricciuti, R.; Elgohary, M.

    2009-01-01

    The Ageing of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. For a new plant, a Plant Life Management (PLiM) program should start in the design process and then continues through the plant operation and decommissioning. Hence, PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-10001 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for a 100-year plant life including 60-year operating life and an additional 40-year decommissioning period. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) ageing management program. During the design phase, in addition to strength and serviceability, durability, throughout the service life and decommissioning phase of the ACR-1000 structure, is a major consideration. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental conditions. In addition to addressing the design methodology and material performance requirements, a systematic approach for the ageing management program for the concrete containment structure is presented. (authors)

  11. Design of joints in steel and composite structures Eurocode 3 : design of steel structures : part 1-8 : design of joints, Eurocode 4 : design of composite steel and concrete structures : part 1-1 : general rules and rules for buildings

    CERN Document Server

    Jaspart, Jean-Pierre

    2016-01-01

    This book details the basic concepts and the design rules included in Eurocode 3 Design of steel structures Part 1-8 Design of joints. Joints in composite construction are also addressed through references to Eurocode 4 Design of composite steel and concrete structures Part 1-1 General rules and rules for buildings. Attention has to be duly paid to the joints when designing a steel or composite structure, in terms of the global safety of the construction, and also in terms of the overall cost, including fabrication, transportation and erection. Therefore, in this book, the design of the joints themselves is widely detailed, and aspects of selection of joint configuration and integration of the joints into the analysis and the design process of the whole construction are also fully covered. Connections using mechanical fasteners, welded connections, simple joints, moment-resisting joints and lattice girder joints are considered. Various joint configurations are treated, including beam-to-column, beam-to-beam, ...

  12. Thermomechanical Processing of Structural Steels with Dilute Niobium Additions

    Science.gov (United States)

    Cui, Z.; Patel, J.; Palmiere, E. J.

    The recrystallisation behaviour of medium carbon steels with dilute Nb addition was investigated by means of plane strain compression tests and the observation of prior austenite microstructures during different deformation conditions. It was found that complete suppression of recrystallisation did not occur in the deformation temperature range investigated. At lower deformation temperatures, partial recrystallisation occurred in the higher Nb sample. This gives the potential to obtain a full suppression of recrystallisation at lower deformation temperatures.

  13. Hot Ductility Behavior of Boron Containing Microalloyed Steels with Varying Manganese Contents

    Science.gov (United States)

    Brune, Tobias; Senk, Dieter; Walpot, Raphael; Steenken, Bernhard

    2015-02-01

    The hot ductility is measured for six different steel grades with different microalloying elements and with varying manganese contents using the hot tensile test machine with melting/solidification unit at the Department of Ferrous Metallurgy RWTH Aachen University. To identify the influence of manganese on hot ductility, tests are performed with varying the manganese content from 0.7 to 18.2 wt pct, a high manganese steel. Additionally, the effect of different cooling and strain rates is analyzed by changing the particular rate for selected samples in the minima. To investigate and detect the cause of cracking during testing, the fracture surfaces in the ductility minima are considered with scanning electron microscope-energy dispersive X-ray spectroscopy. Thermodynamic modeling is conducted on basis of the commercial software ThermoCalc©. A sharp decrease of the hot ductility is recognizable at 1398 K (1125 °C), at only 0.7 wt pct manganese because of the low manganese to sulfur ratio. The grades with a Mn content up to 1.9 wt pct show a good ductility with minimal ductility loss. In comparison, the steel grade with 18.2 wt pct has a poor hot ductility. Because of the formation of complex precipitates, where several alloying elements are involved, the influence of boron on hot ductility is not fully clarified. By increasing the cooling rate, the reduction of area values are shifted to smaller values. For high test temperatures, these measured values are decreased for lower strain rates. Thereby, an early drop of the ductility is noticeable for the high temperatures around 1373 K (1100 °C).

  14. Inclusion Modification by Al Deoxidation and Ca Treatment in Ti Containing 18%Cr Stainless Steel Melts

    International Nuclear Information System (INIS)

    Kim, Kyung-Ho; Do, Kyung-Hyo; Choi, Won-Jin; Kim, Dong-Sic; Pak, Jong-Jin; Lee, Sang-Beum

    2013-01-01

    Titanium is added to ferritic stainless steels in the range of 0.2-0.3 wt% to improve corrosion resistance and mechanical properties. However, titanium is very reactive with oxygen in liquid steel, and it can cause an unstable Ti yield. Therefore, titanium is generally added after the aluminum deoxidation process in the ladle. However, the inclusions formed by Al-Ti deoxidation can cause nozzle clogging and various defects in final products. Calcium injection can be carried out to resolve these problems. In this study, two different deoxidation patterns of Al→Ti and Al→Ti→Ca additions were carried out in Fe-18%Cr ferritic stainless steel melt at 1873 K. The melt composition and the inclusion morphology changes during the deoxidation process were investigated. With Al→Ti addition, the Al_2O_3 inclusions changed to dual phase Al_2O_3-TiO_X inclusions with time by the reaction with Ti in the melt. The morphology of the inclusions in the melt finally changed to a polygonal type indicating that the inclusions were solid phase. The size and number of inclusions in the melt did not change with time after Ti addition. With of Al→Ti→Ca addition, Ca reacted with Al_2O_3-TiO_X inclusions to form liquid CaOAl_2O_3 inclusions embedded with solid CaTiO_3 particles. The morphology of the inclusions in the melt were observed to be spherical and polygonal. The size of inclusions in the melt increased and the number of inclusions decreased by the coalescence of liquid inclusions.

  15. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Science.gov (United States)

    Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina

    2018-03-01

    There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  16. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Directory of Open Access Journals (Sweden)

    Bagautdinov Ruslan

    2018-01-01

    Full Text Available There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  17. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  18. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  19. Structure-rheology relations in sodium caseinate containing systems

    NARCIS (Netherlands)

    Ruis, H.G.M.

    2007-01-01

    The general aim of the work described in this thesis was to investigate structure-rheologyrelations for dairy related products, focusing on model systems containing sodium caseinate. The acid inducedgelationof sodium caseinate, of sodium caseinate stabilized emulsions, and the effect of shear on the

  20. Reliability analysis of RC containment structures under combined loads

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Kagami, S.

    1984-01-01

    This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented

  1. Duplex Heterogeneous Nucleation Behavior of Precipitates in C-Mn Steel Containing Sn

    Science.gov (United States)

    Sun, Guilin; Tao, Sufen

    2018-04-01

    The two successive heterogeneous nucleation behaviors of FeSn2-MnS-Al2O3 complex precipitates in ultrahigh Sn-bearing steel were investigated. First, Al2O3 was the nucleation site of the MnS at the end of solidification. Then, FeSn2 nucleated heterogeneously on the MnS particles that nucleated on the Al2O3 particles. The formation sequence of the precipitated phase caused the duplex heterogeneous nucleation to occur consecutively at most twice.

  2. Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration

    Science.gov (United States)

    Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian

    2018-01-01

    In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.

  3. Safety margins associated with containment structures under dynamic loading

    International Nuclear Information System (INIS)

    Lu, S.C.

    1978-01-01

    A technical basis for assessing the true safety margins of containment structures involved with MARK I boiling water reactor reevaluation activities is presented. It is based on the results of a plane-strain, large displacement, elasto-plastic, finite-element analysis of a thin cylindrical shell subjected to external and internal pressure pulses. An analytical procedure is presented for estimating the ultimate load capacity of the thin shell structure, and subsequently, for quantifying the design margins of safety for the type of loads under consideration. For defining failure of structures, a finite strain failure criterion is derived that accounts for multiaxiality effects

  4. Seismic reliability assessment methodology for CANDU concrete containment structures

    International Nuclear Information System (INIS)

    Stephens, M.J.; Nessim, M.A.; Hong, H.P.

    1995-05-01

    A study was undertaken to develop a reliability-based methodology for the assessment of existing CANDU concrete containment structures with respect to seismic loading. The focus of the study was on defining appropriate specified values and partial safety factors for earthquake loading and resistance parameters. Key issues addressed in the work were the identification of an approach to select design earthquake spectra that satisfy consistent safety levels, and the use of structure-specific data in the evaluation of structural resistance. (author). 23 refs., 9 tabs., 15 figs

  5. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1996-01-01

    Research is being conducted by Oak Ridge National Laboratory under US nuclear regulatory commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a structural materials information center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of non-destructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (orig.)

  6. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    Research is being conducted by Oak Ridge National Laboratory under U.S. Nuclear Regulatory Commission sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the US-NRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (author). 29 refs., 2 figs

  7. Effect of zirconium on the structure and phase composition of steel 03Kh8SYu

    International Nuclear Information System (INIS)

    Tarzhumanova, V.A.; Ryabchenkov, A.V.; Shatunova, A.V.; Yoganova, S.A.

    1986-01-01

    Previously, the authors determined the optimum zirconium content providing retention of a fine-grained structure for steel 03Kh8SYu during high-temperature heating. It was suggested that this was caused by separation in the steel of intermetallic phase Fe 3 Zr. This paper presents results of further studies in this direction. X-ray analysis results for the anodic residues of the steels are presented. It can be seen that in steel without zirconium, carbides of the type M 23 C 6 and M 7 C 3 and aluminum nitride are present. On adding 0.05% Zr, zirconium nitride forms in addition to the existing aluminum nitride and carbides of the type M 7 C 3 . The authors also investigated the effect of zirconium on the tendency of the steel toward grain growth at higher temperature; they studied the structure of steel 03Kh8SYu with 0.61% Zr after soaking specimens for 100 h at 950-1100 C. Results are presented

  8. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  9. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels

    CERN Document Server

    Zwaag, S; Kruijver, S O; Sietsma, J

    2002-01-01

    Stability of retained austenite is the key issue to understand transformation-induced plasticity (TRIP) effect. In this work, both thermal stability and mechanical stability are investigated by thermo-magnetic as well as in situ conventional X-ray diffraction and micro synchrotron radiation diffraction measurements. The thermal stability in a 0.20C-1.52Mn-0.25Si-0.96Al (wt%) TRIP steel is studied in the temperature range between 5 and 300 K under a constant magnetic field of 5T. It is found that almost all austenite transforms thermally to martensite upon cooling to 5K and M sub s and M sub f temperatures are analyzed to be 355 and 115 K. Transformation kinetics on the fraction versus temperature relation are well described by a model based on thermodynamics. From the in situ conventional X-ray and synchrotron diffraction measurements in a 0.17C-1.46Mn-0.26Si-1.81Al (wt%) steel, the volume fraction of retained austenite is found to decrease as the strain increases according to Ludwigson and Berger relation. T...

  10. Effect of magnetic field on the carbide precipitation during tempering of a molybdenum-containing steel

    International Nuclear Information System (INIS)

    Hou, T.P.; Li, Y.; Zhang, J.J.; Wu, K.M.

    2012-01-01

    The influence of a high magnetic field on the carbide precipitation during the tempering of an Fe–2.8C–3.0Mo(wt%) steel was investigated. As-quenched steels were tempered at 200 °C for various times with and without the presence of 12-T magnetic field. The applied field effectively promoted the precipitation of the relatively high-temperature monoclinic χ-Fe 5 C 2 carbide, compared to the usual ε-Fe 2 C and η-Fe 2 C carbides precipitated without magnetic field. It is believed that the effect of applying a magnetic field is due to the reduction in the Gibbs free energy of the relatively higher magnetization phase. The denser distributions of the metastable carbides are attributed to the increased nucleation rate due to additional transformation force. The dispersed precipitation strengthening compensated for the decrease of hardness due to the loss of supersaturation of carbon atoms in the matrix. - Highlights: ► Applied field promoted the precipitation of χ-Fe 5 C 2 carbide. ► Promotion of the transition carbide was attributed to its higher magnetization. ► Increase in hardness was counterbalanced by the reduction in carbon content.

  11. Decontamination of stainless steel canisters that contain high-level waste

    International Nuclear Information System (INIS)

    Bray, L.A.

    1987-01-01

    At the West Valley Nuclear Services Company (WVNSC) in West Valley, New York, high-level radioactive waste (HLW) will be vitrified into a borosilicate glass form and poured into large, stainless steel canisters. During the filling process, volatile fission products, principally 137 Cs, condense on the exterior of the canisters. The smearable contamination that remains on the canisters after they are filled and partially cooled must be removed from the canisters' exterior surfaces prior to their storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. A simple and effective method was developed for decontamination of HLW canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a reduction-oxidation system [Ce(III)/Ce(IV)] in nitric acid solution to chemically mill the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. Contaminated canisters are simply immersed in the solution at controlled temperature and Ce(IV) concentration levels

  12. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  13. Numerical simulation of aircraft crash on nuclear containment structure

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M.A., E-mail: iqbalfce@iitr.ernet.in [Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rai, S.; Sadique, M.R.; Bhargava, P. [Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation was more localised at the center of cylindrical portion. Black-Right-Pointing-Pointer The peak deflection at the junction of dome and cylinder was found to be 67 mm. Black-Right-Pointing-Pointer The peak deflection at midpoint of the cylindrical portion was found to be 88.9 mm. Black-Right-Pointing-Pointer The strain rate was found to be an important parameter to effect the deformation. Black-Right-Pointing-Pointer The model without strain rate and 290 s{sup -1} strain rate predicted very high deformations. - Abstract: Numerical simulations were carried with ABAQUS/Explicit finite element code in order to predict the response of BWR Mark III type nuclear containment against Boeing 707-320 aircraft crash. The load of the aircraft was applied using and force history curve. The damaged plasticity model was used to predict the behavior of concrete while the Johnson-Cook elasto-viscoplastic material model was used to incorporate the behavior of steel reinforcement. The crash was considered to occur at two different locations i.e., the midpoint of the cylindrical portion and the junction of dome and cylinder. The midpoint of the cylindrical portion experienced more deformation. The strain rate in the material model was varied and found to have a significant effect on the response of containment. The results of the present investigation were compared with those of the studies available in literature and a close agreement with the previous results was found in terms of maximum target deformation.

  14. Study about the structural behavior of WStE-36N steel

    International Nuclear Information System (INIS)

    Santos Pinto, M. dos; Trindade, M.B.

    1985-01-01

    The influence of a stress relaxation heat treatment in welding done by submerged-arc-welding is studied. This influence was studied in a structural steel, WStE-36N, niobium alloy, made in Brazil, through Charpy V test, hardness measurements, micro-structural aspects and X-ray diffraction. (E.G.) [pt

  15. Structural properties and out-of-plane stability of roller bent steel arches

    NARCIS (Netherlands)

    Spoorenberg, R.C.

    2011-01-01

    In contemporary architecture the use of steel arches has seen a significant increase. They are applied in buildings and large span bridges, combining structural design with architectural merits. For arches lacking lateral support (or freestanding arches) the out-of-plane structural stability

  16. Reliability-based inspection of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-03-01

    A study was undertaken to develop a reliability-based approach to the planning of inspection programs for prestressed concrete containment structures. The main function of the prestressing system is to ensure the leak integrity of the containment by maintaining a compressive state of stress under the tensile forces which arise in a hypothesized loss of coolant accident. Prestressing force losses (due to creep and shrinkage, stress relaxation or tendon corrosion) can lead to tensile stresses under accident pressure, resulting in loss of containment leak integrity due to concrete cracking and tensile yielding of the non-prestressed reinforcement. Therefore, the evaluation of prestressing inspection programs was based on their effectiveness in maintaining an acceptable reliability level with respect to a limit state representing yeilding of non-prestressed reinforcement. An annual target reliability of 10 -4 was used for this limit state. As specified in CSA-N287.7, the evaluation of prestressing systems for containment structures is based on the results of lift-off tests to determine the prestressing force. For unbonded systems the tests are carried out on a randomly selected sample from each tendon group in the structure. For bonded systems, the test is carried out on an unbonded test beam that matches the section geometry and material properties of the containment structure. It was found that flexural testing is useful in updating the probability of concrete cracking under accident pressure. For unbonded systems, the analysis indicated that the sample size recommended by the CSA Standard (4% of the tendon population) is adequate. The CSA recommendation for a five year inspection interval is conservative unless severe degradation of the prestressing system, characterized by a high prestressing loss rate (>3%) and a large coefficient of variation of the measured prestressing force (>15%), is observed

  17. Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao-Hua; Bai, Yu; Cao, Yue; Xu, Zhen-Liang [East China University of Science and Technology, Shanghai (China)

    2014-08-15

    Porous stainless steel hollow fiber has been widely used due to its high mechanical strength, excellent thermal conductivity and good sealing properties compared with other porous supports. We successfully prepared porous stainless steel hollow fibers using polyacrylonitrile (PAN) as polymer via dry-wet spinning followed by sintering through temperature programming method. The PAN concentration had an obvious impact on the structure and property of porous stainless steel hollow fiber even if it would be burned off during sintering. The results showed that the morphology could be tuned by adjusting the concentration of PAN. With increasing PAN concentration in casting solution for spinning, the viscosity was increased dramatically, resulting in much compact structures with high pure water flux (higher than 3x10{sup 5} L·m{sup -2}·h{sup -1}·Pa{sup -1}). A more dense structure could be obtained by adding additive polyvinylpyrrolidone (PVP) as viscosity enhancer.

  18. Failure/leakage predictions of concrete structures containing cracks

    International Nuclear Information System (INIS)

    Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.

    1984-06-01

    An approach is presented for studying the cracking and radioactive release of a reactor containment during severe accidents and extreme environments. The cracking of concrete is modeled as the blunt crack. The initiation and propagation of a crack are determined by using the maximum strength and the J-integral criteria. Furthermore, the extent of cracking is related to the leakage calculation by using a model developed by Rizkalla, Lau and Simmonds. Numerical examples are given for a three-point bending problem and a hypothetical case of a concrete containment structure subjected to high internal pressure during an accident

  19. Research requirements for improved design of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Holley, M.J. Jr.

    1978-01-01

    Reinforced concrete is a competitive material for the construction of nuclear power plant containment structures. However, the designer is constrained by limited data on the behavior of certain construction details which require him to use what may be excessive rebar quantities and lead to difficult and costly construction. This paper discusses several design situations where research is recommended to increase the designer's options, to facilitate construction, and to extend the applicability of reinforced concrete to such changing containment requirements as may be imposed by an evolving nuclear technology. (Auth.)

  20. Numerical models for prestressing tendons in containment structures

    International Nuclear Information System (INIS)

    Kwak, Hyo-Gyoung; Kim, Jae Hong

    2006-01-01

    Two modified stress-strain relations for bonded and unbonded internal tendons are proposed. The proposed relations can simulate the post-cracking behavior and tension stiffening effect in prestressed concrete containment structures. In the case of the bonded tendon, tensile forces between adjacent cracks are transmitted from a bonded tendon to concrete by bond forces. Therefore, the constitutive law of a bonded tendon stiffened by grout needs to be determined from the bond-slip relationship. On the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. It means that the tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. In advance, the prediction of cracking behavior and ultimate resisting capacity of prestressed concrete containment structures using the introduced numerical models are succeeded, and the need for the consideration of many influencing factors such as the tension stiffening effect, plastic hinge length and modification of stress-strain relation of tendon is emphasized. Finally, the developed numerical models are applied to prestressed concrete containment structures to verify the efficiency and applicability in simulating the structural behavior with bonded and/or unbonded tendons

  1. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage; Fatigue-fluage des aciers martensitiques a 9-12% Cr: comportement et endommagement

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, B

    2007-09-15

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  2. Effect of the isothermal transformation temperature on the fine structure of steel-12Kh1MF

    International Nuclear Information System (INIS)

    Mints, I.I.; Berezina, T.G.; Lanskaya, K.A.

    1976-01-01

    For detailed analysis of bainite and pearlite in steel 12Kh1MF, homogeneous structures were obtained by isothermal annealing at 350, 450, 500, and 650 0 for 1 h. Isothermal transformation of austenite leads to the formation of bainite at 350-500 0 and pearlite at 650 0 . The austenitizing temperature was 980 0 for both types of samples, with holding for 20 min. For comparison, the plates were quenched from 980 0 and 1050 0 in ice-cold brine. The investigation was conducted with use of light and electron microscopes and x-ray analysis. The long-term strength was also determined. Isothermal treatment of steel 12Kh1MF at 350-500 0 C leads to the formation of a structure consisting of upper and lower bainite. At 500 0 the structure consists primarily of upper bainite, and at 350 0 of lower bainite. With tempering of the steel with a structure of upper and lower bainite at 730 0 for 3 h the dislocations undergo redistribution of the polygonization type within ferrite needles, with development of a cellular substructure. The acicular structure of the matrix is retained in this case. The density and evenness of the distribution of carbides is higher in upper bainite than in lower bainite. Steel 12Kh1MF with a structure of upper bainite is more susceptible to recrystallization as compared with a structure of lower bainite, which is responsible for the higher heat resistance of the latter

  3. Hierarchical Structure and Strengthening Mechanisms in Pearlitic Steel Wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Huang, Xiaoxu

    Microstructure evolution and strengthening mechanisms have been analyzed in a cold-drawn pearlitic steel wire (the strongest engineering materials in the world) with a nanostructure down to 10 nm and a flow stress up to 5.4 GPa. The interlamellar spacing and the cementite lamellae thickness...... are reduced during drawing in accordance with the change in wire diameter up to a strain of 2.5. At a higher strain enhanced thinning of cementite lamellae points to decomposition and carbon enrichment of the ferrite lamellae. Dislocations are stored as individual dislocations and in low angle boundaries...

  4. Effects of dew point on selective oxidation of TRIP steels containing Si, Mn, and B

    Science.gov (United States)

    Lee, Suk-Kyu; Kim, Jong-Sang; Choi, Jin-Won; Kang, Namhyun; Cho, Kyung-Mox

    2011-04-01

    The selective oxidation of Si, Mn, and B on TRIP steel surfaces is a widely known phenomenon that occurs during heat treatment. However, the relationship between oxide formation and the annealing factors is not completely understood. This study examines the effect of the annealing conditions (dew point and annealing temperature) on oxide formation. A low dew point of -40 °C leads to the formation of Si-based oxides on the surface. A high dew point of -20 °C changes the oxide type to Mn-based oxides because the formation of Si oxides on the surface is suppressed by internal oxidation. Mn-based oxides exhibit superior wettability due to aluminothermic reduction during galvanizing.

  5. Surface composition of Ru containing duplex stainless steel after passivation in non-oxidizing media

    CSIR Research Space (South Africa)

    Myburg, G

    1998-10-01

    Full Text Available . Skinner, J. Appl. Elec- .7112. wx .471 or 971. wx .301. wxN.D. Tomashov, G.P. Chernova, E.N. Ustinsky, Corrosion .134. wxN.D. Tamashov, G.P. Chermava, L.A. Chigirinskaya, E.A. .704. wxK. Varga, P. Baradlai, W.O. Barnard, G. Myburg, P. Halmas, .25. wx...J.H. Potgieter, W. Skinner, A.M. Heyns, in: Proceedings of the 1st International Chromium Steel and Alloys Congress, 2, 1992, p. 235. wxJ.H. Potgieter, W.O. Barnard, G. Myburg, K. Varga, P. .? 1103. wxK. Varga, P. Baradlai, W.O. Barnard, J.H. Potgieter, P. .143...

  6. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    Khorosh, V.A.; Bulat, S.I.; Mukhina, M.A.; Sorokina, N.A.; Yushchenko, K.A.; Tsentral'nyj Nauchno-Issledovatel'skij Inst. Chernoj Metallurgii, Moscow; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1976-01-01

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  7. The adhesion characteristics of protective coating materials for the containment structure in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang-Kook; Shin, Jae-Chul

    2003-01-01

    Protective coating materials used in the containment structures should be durable for the designed 30 to 40 year lifetime of a nuclear power plant. At the present, these materials have not yet been developed. Therefore it is very important to keep the durability of the protective coating materials through persistent maintenance, and in order to achieve this, understanding the adhesion characteristics of the coating materials is of utmost importance. Therefore, this study attempts to find any methods for durability maintenance of these protective coating materials. To accomplish these aims, this study applied an experimental deterioration environment condition relevant to Loss of Coolant Accident (LOCA) and Main Steam Line Break (MSLB), categorized as of Design Basis Accident (DBA), onto steel liner plate specimens covered with protective coating materials. Adhesion tests were performed on these deteriorated coating materials to characterize the physical properties and through these tests, the quantitative adhesion characteristics according to the history of deterioration environment were found

  8. Finite Element Analysis of Doorframe Structure of Single Oblique Pole Type in Container Crane

    Science.gov (United States)

    Cheng, X. F.; Wu, F. Q.; Tang, G.; Hu, X.

    2017-07-01

    Compared with the composite type, the single oblique pole type has more advantages, such as simple structure, thrift steel and high safe overhead clearance. The finite element model of the single oblique pole type is established in nodes by ANSYS, and more details are considered when the model is simplified, such as the section of Girder and Boom, torque in Girder and Boom occurred by Machinery house and Trolley, density according to the way of simplification etc. The stress and deformation of ten observation points are compared and analyzed, when the trolley is in nine dangerous positions. Based on the result of analysis, six dangerous points are selected to provide reference for the detection and evaluation of container crane.

  9. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  10. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  11. Modeling of the structural response to fire of a high-rise steel building

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2011-01-01

    Observations from the tests and the real fire investigations have consistently shown that the performance of a whole steel-framed building in fire is very different from the performance of its individual members (Usmani et al, 2000). In this context, it is of interest to investigate the failures...... problems due to the triggering of local mechanism should be overcome to this purpose. In this paper, a steel structure has been considered as case study and the response of the structural system to fire and fire effects has been investigated with the avail of a finite element commercial code. These kinds...

  12. The structural integrity of high level waste containers for deep disposal

    International Nuclear Information System (INIS)

    Keer, T.J.; Martindale, N.J.; Haijtink, B.

    1990-01-01

    Most countries with a nuclear power program are developing plans to dispose of high level waste in deep geological repositories. These facilities are typically in the range 500-1000m below ground. Although long term safety analyses mainly rely on the isolation function of the geological barrier, for the medium term (between 500 and 1000 years) a barrier such as a container (overpack) may play an important role. This paper addresses the mechanical/structural behavior of these structures under extreme geological pressures. The work described in the paper was conducted within the COMPAS project (Container Mechanical Performance Assessment) funded by the Commission of the European Communities and the United Kingdom Department of the Environment. The work was aimed at predicting the modes of failure and failure pressures which characterize the heavy, thick walled mild steel containers which might be considered for the disposal of vitrified waste. The work involved a considerable amount of analytical work, using 3-D non-linear finite element techniques, coupled with a large parallel program of experimental work. The experimental work consisted of a number of scale model tests in which the response of the containers was examined under external pressures as high as 120MPa. Extensive strain-gauge instrumentation was used to record the behavior of the models as they were driven to collapse. A number of comparative computer calculations were carried out by organizations from various European countries. Correlations were established between experimental and analytical data and guidelines regarding the choice of suitable software were established. The work concluded with a full 3-D simulation of the behavior of a container under long-term disposal conditions. In this analysis, non-linearities due to geological effects and material/geometry effects in the container were properly accounted for. 6 refs., 9 figs., 4 tabs

  13. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    International Nuclear Information System (INIS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-01-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels

  14. Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures

    International Nuclear Information System (INIS)

    Li, Peifeng

    2015-01-01

    The emerging selective laser melting (SLM) technology makes possible the manufacturing of metallic microlattice structures with better tailorability of properties. This work investigated the constitutive formulation of the parent material and the failure mechanism in the SLM stainless steel microlattice structure. The constitutive behaviour of SLM stainless steel was quantitatively formulated using the Johnson–Cook hardening model. A finite element model incorporating the constitutive formula was developed and experimentally validated to predict the localised stress evolution in an SLM stainless steel microlattice structure subjected to uniaxial compression. The predicted stresses were then linked to the fracture process in the SLM steel observed by scanning electron microscope. It was found that the tensile and compressive stress state is localised in the strut members of the microlattice, and determines the macroscopic cracking mode. The tensile opening and shear cracking dominate the tension and compression zones, respectively. However, the microscopic examination on the fracture surfaces reveals the formation of substantial slip bands in both the tension and compression zones, implying that the ductile fracture in the SLM stainless steel is transgranular

  15. Steel-concrete bond model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Mang, Chetra

    2015-01-01

    Reinforced concrete structure behavior can be extremely complex in the case of exceeding the cracking threshold. The composite characteristics of reinforced concrete structure should be finely presented especially in the distribution stress zone between steel-concrete at their interface. In order to compute the industrial structures, a perfect relation hypothesis between steel and concrete is supposed in which the complex phenomenon of the two-material relation is not taken into account. On the other hand, this perfect relation is unable to predict the significant disorders, the repartition, and the distribution of the cracks, which is directly linked to the steel. In literature, several numerical methods are proposed in order to finely study the concrete-steel bond behavior, but these methods give many difficulties in computing complex structures in 3D. With the results obtained in the thesis framework of Torre-Casanova (2012), the new concrete-steel bond model has been developed to improve performances (iteration numbers and computational time) and the representation (cyclic behavior) of the initial one. The new model has been verified with analytical solution of steel-concrete tie and validated with the experimental results. The new model is equally tested with the structural scale to compute the shear wall behavior in the French national project (CEOS.fr) under monotonic load. Because of the numerical difficulty in post-processing the crack opening in the complex crack formation, a new crack opening method is also developed. This method consists of using the discontinuity of relative displacement to detect the crack position or using the slip sign change between concrete-steel. The simulation-experiment comparison gives validation of not only the new concrete-steel bond model but also the new crack post-processing method. Finally, the cyclic behavior of the bond law with the non-reduced envelope is adopted and integrated in the new bond model in order to take

  16. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  17. Changes in structure and phase composition of chromium diffusion layer on stainless steels after long annealing

    International Nuclear Information System (INIS)

    Knyazev, E.V.; Voshedchenko, B.M.; Voskresenskij, Yu.A.

    1985-01-01

    A study was made on the effect of elevated temperatures UU and long holdings at heat on structure, phase composition and properties of chromium diffusion layer on austenitic chromium-nickel stainless steels 10Kh18N10TVD, 10Kh15N30M4B, 10Kh11N23T3MR, 10Kh21N28V6M3. The following mechanism of processes taking place in diffusion chromium layer is presented. The steady drop of chromium concentrations is observed after diffusion saturation. Chromium redistribution related with system transformation to more equilibrium state and simultaneous decarburization of steel surfaces takes place in diffusion layers of 10Kh15N30M4B and 10Kh21N28V6M3 steels after annealing at different temperatures and holdings at heat. Decarburization of steel surface layers is practically excluded in diffusion layers of 10Kh18N10T-VD and 10Kh11N23T3MR steels. Diffusion chromium-saturated layer stays effective only on 10Kh18N10T-VD and 10Kh11N23T3MR steels on heating up to 1000 deq C with holding up to 250 h

  18. Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors

    Directory of Open Access Journals (Sweden)

    Chun-Feng Lai

    2016-05-01

    Full Text Available Polystyrene (PS colloidal photonic crystals (CPhCs containing silver nanoparticles (AgNPs present tunable structural colors. PS CPhC color films containing a high concentration of AgNPs were prepared using self-assembly process through gravitational sedimentation method. High-concentration AgNPs were deposited on the bottom of the substrate and acted as black materials to absorb background and scattering light. Brilliant structural colors were enhanced because of the absorption of incoherent scattering light, and color saturation was increased by the distribution AgNPs on the PS CPhC surfaces. The vivid iridescent structural colors of AgNPs/PS hybrid CPhC films were based on Bragg diffraction and backward scattering absorption using AgNPs. The photonic stop band of PS CPhCs and AgNPs/PS hybrid CPhCs were measured by UV–visible reflection spectrometry and calculated based on the Bragg–Snell law. In addition, the tunable structural colors of AgNPs/PS hybrid CPhC films were evaluated using color measurements according to the Commission International d’Eclairage standard colorimetric system. This paper presents a simple and inexpensive method to produce tunable structural colors for numerous applications, such as textile fabrics, bionic colors, catalysis, and paints.

  19. Dynamic analysis and structural design of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.

    1975-01-01

    All concept options are assumed to be similar in design criteria for structural competence to contain radioactivity and fuel heat and meet the functional, servicing, protective and aesthetic requirements. The choice of underground siting should be based on criteria developed from the sequential consideration of load-causing phenomena, concept and site characteristics. From the criteria, loads for a particular concept and site are calculated and the design formulated. (orig./ORU) [de

  20. Probabilistic analysis of crack containing structures with the PARIS code

    International Nuclear Information System (INIS)

    Brueckner-Foit, A.

    1987-10-01

    The basic features of the PARIS code which has been developed for the calculation of failure probabilities of crack containing structures are explained. An important issue in the reliability analysis of cracked components is the probabilistic leak-before-break behaviour. Formulae for the leak and break probabilities are derived and it is shown how a leak detection system influences the results. An example taken from nuclear applications illustrates the details of the probabilistic leak-before-break analysis. (orig.) [de