WorldWideScience

Sample records for steel bipolar plate

  1. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Spiegelhauer, Susie Ann

    2015-01-01

    Abstract Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel...

  2. Nanosized TiN-SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Kumagai, Masanobu; Myung, Seung-Taek; Asaishi, Ryo; Sun, Yang-Kook; Yashiro, Hitoshi

    2008-01-01

    In attempt to improve interfacial electrical conductivity of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells, TiN nanoparticles were electrophoretically deposited on the surface of stainless steel with elastic styrene butadiene rubber (SBR) particles. From transmission electron microscopic observation, it was found that the TiN nanoparticles (ca. 50 nm) surrounded the spherical SBR particles (ca. 300-600 nm), forming agglomerates. They were well adhered on the surface of the type 310S stainless steel. With help of elasticity of SBR, the agglomerates were well fitted into the interfacial gap between gas diffusion layer (GDL) and stainless steel bipolar plate, and the interfacial contact resistance (ICR), simultaneously, was successfully reduced. A single cell using the TiN nanoparticles-coated bipolar plates, consequently, showed comparable cell performance with the graphite employing cell at a current density of 0.5 A cm -2 (12.5 A). Inexpensive TiN nanoparticle-coated type 310S stainless steel bipolar plates would become a possible alternate for the expensive graphite bipolar plates as use in fuel cell applications

  3. Ag-polytetrafluoroethylene composite coating on stainless steel as bipolar plate of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu. [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hou, Ming; Shao, Zhigang; Yi, Baolian [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Xu, Hongfeng; Hou, Zhongjun; Ming, Pingwen [Sunrise Power Co., Ltd., Dalian 116025 (China)

    2008-08-01

    Forming a coating on metals by surface treatment is a good way to get high performance bipolar plate of proton exchange membrane fuel cell (PEMFC). In our research, Ag-polytetrafluoroethylene (PTFE) composite film was electrodeposited with silver-gilt solution of nicotinic acid by a bi-pulse electroplating power supply on 316 L stainless steel bipolar plate of PEMFC. Surface topography, contact angle, interfacial conductivity and corrosion resistance of the bipolar plate samples were investigated. Results showed that the defects on the Ag-PTFE composite coating are greatly reduced compared with those on the pure Ag coating fabricated under the same condition; and the contact angle of the Ag-PTFE composite coating with water is 114 , which is much bigger than that of the pure Ag coating (73 ). In addition, the interfacial contact resistance of the composite coating stays as low as the pure Ag coating; and the bipolar plate sample with composite coating shows a close corrosion resistance to the pure Ag coating sample in potentiodynamic and potentiostatic tests. Coated 316 L stainless steel plate with Ag-PTFE composite coating exhibits well hydrophobic characteristic, less defects, high interfacial conductivity and good corrosion resistance, which shows a great potential of the application in PEMFC. (author)

  4. Electroplating of Ni-Mo Coating on Stainless Steel for Application in Proton Exchange Membrane Fuel Cell Bipolar Plate

    Directory of Open Access Journals (Sweden)

    H. Rashtchi

    2018-03-01

    Full Text Available Stainless steel bipolar plates are preferred choice for use in Proton Exchange Membrane Fuel Cells (PEMFCs. However, regarding the working temperature of 80 °C and corrosive and acidic environment of PEMFC, it is necessary to apply conductive protective coatings resistant to corrosion on metallic bipolar plate surfaces to enhance its chemical stability and performance. In the present study, by applying Ni-Mo and Ni-Mo-P alloy coatings via electroplating technique, corrosion resistance was improved, oxid layers formation on substrates which led to increased electrical conductivity of the surface was reduced and consequently bipolar plates fuction was enhanced. Evaluation tests included microstructural and phase characterizations for evaluating coating components; cyclic voltammetry test for electrochemical behavior investigations; wettability test for measuring hydrophobicity characterizations of the coatings surfaces; interfacial contact resistance measurements of the coatings for evaluating the composition of applied coatings; and polarization tests of fuel cells for evaluating bipolar plates function in working conditions. Finally, the results showed that the above-mentioned coatings considerably decreased the corrosion and electrical resistance of the stainless steel.

  5. Corrosion kinetics of 316L stainless steel bipolar plate with chromiumcarbide coating in simulated PEMFC cathodic environment

    Directory of Open Access Journals (Sweden)

    N.B. Huang

    Full Text Available Stainless steel with chromium carbide coating is an ideal candidate for bipolar plates. However, the coating still cannot resist the corrosion of a proton exchange membrane fuel cell (PEMFC environment. In this work, the corrosion kinetics of 316L stainless steel with chromium carbide is investigated in simulated PEMFC cathodic environment by combining electrochemical tests with morphology and microstructure analysis. SEM results reveal that the steel’s surface is completely coated by Cr and chromium carbide but there are pinholes in the coating. After the coated 316L stainless steel is polarized, the diffraction peak of Fe oxide is found. EIS results indicate that the capacitive resistance and the reaction resistance first slowly decrease (2–32 h and then increase. The potentiostatic transient curve declines sharply within 2000 s and then decreases slightly. The pinholes, which exist in the coating, result in pitting corrosion. The corrosion kinetics of the coated 316L stainless steel are modeled and accords the following equation: i0 = 7.6341t−0.5, with the corrosion rate controlled by ion migration in the pinholes. Keywords: PEMFC, Metal bipolar plate, Chromium carbide coating, Corrosion kinetics, Pitting corrosion

  6. Surface composition effect of nitriding Ni-free stainless steel as bipolar plate of polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shironita, Sayoko [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nakatsuyama, Kunio [Nakatsuyama Heat Treatment Co., Ltd., 1-1089-10, Nanyou, Nagaoka, Niigata 940-1164 (Japan); Souma, Kenichi [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Hitachi Industrial Equipment Systems Co., Ltd., 3 Kanda Neribei, Chiyoda, Tokyo 101-0022 (Japan); Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2016-12-01

    Graphical abstract: The anodic current densities in the passive region of nitrided SUS445-N stainless steel are lower than those of a non heat-treated SUS445 stainless steel and heat-treated SUS445-Ar stainless steel under an Ar atmosphere. It shows a better corrosion resistance for the SUS445 stainless steel after the nitriding heat treatment. - Highlights: • The nitriding heat treatment was carried out using Ni-free SUS445 stainless steel. • The corrosion resistance of the nitrided SUS445-N stainless steel was improved. • The structure of the nitrided SUS445-N stainless steel changed from α-Fe to γ-Fe. • The surface elemental components present in the steels affect the corrosion resistance. - Abstract: In order to increase the corrosion resistance of low cost Ni-free SUS445 stainless steel as the bipolar plate of a polymer electrolyte fuel cell, a nitriding surface treatment experiment was carried out in a nitrogen atmosphere under vacuum conditions, while an Ar atmosphere was used for comparison. The electrochemical performance, microstructure, surface chemical composition and morphology of the sample before and after the electrochemical measurements were investigated using linear sweep voltammetry (LSV), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDS) and laser scanning microscopy (LSM) measurements. The results confirmed that the nitriding heat treatment not only increased the corrosion resistance, but also improved the surface conductivity of the Ni-free SUS445 stainless steel. In contrast, the corrosion resistance of the SUS445 stainless steel decreased after heat treatment in an Ar atmosphere. These results could be explained by the different surface compositions between these samples.

  7. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  8. Optimization of electrical conduction and passivity properties of stainless steels used for PEM fuel cell bipolar plates

    International Nuclear Information System (INIS)

    Andre, J.

    2007-10-01

    Among the new technologies for energy for sustainable development, PEMFC (proton exchange membrane fuel cells) offer seducing aspects. However, in order to make this technology fit large scale application requirements, it has to comply with stringent cost, performance, and durability criteria. In such a frame, the goal of this work was to optimize electrical conduction properties and passivity of stainless steels for the conception of PEMFC bipolar plates, used instead of graphite, the reference material. This work presents the possible ways of performance loss when using stainless steels and some methods to solve this problem. Passive film properties were studied, as well as their modifications by low cost industrial surface treatments, without deposition. Ex situ characterizations of corrosion resistance and electrical conduction were performed. Electrochemical impedance spectroscopy, water analysis, surface analysis by microscopy and photoelectron spectroscopy allowed to study the impact of ageing on two alloys in different states, and several conditions representative of an exposure to PEMFC media. Correlations between semi-conductivity properties, composition, and structure of passive layers were considered, but not leading to clear identification of all parameters responsible for electrical conduction and passivity. The plate industrial state is not convenient for direct use in fuel cell to comply with durability and performance requirements. A surface modification studied improves widely electrical conduction at initial state. The performance is degraded with ageing, but maintaining a level higher than the initial industrial state. This treatment increases also corrosion resistance, particularly on the anode side. (author)

  9. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell

    Science.gov (United States)

    Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der

    The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.

  10. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Chemistry and Materials Science and Engineering, Chung Cheng Institute of Technology, National Defense University, Tau-Yuan 335 (China); Wen, Tse-Min [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335 (China); Hou, Kung-Hsu [Department of Power Vehicles and System Engineering, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335 (China)

    2010-02-01

    The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 x 10{sup -8} A cm{sup -2}, and the smallest interfacial contact resistance, 5.9 m{omega} cm{sup 2}, at 140 N cm{sup -2} among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC. (author)

  11. Reviewing metallic PEMFC bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-08-15

    A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  13. Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seong-Yun; Lee, Jae-Bong [School of Advanced Materials Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-04-15

    Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.

  14. Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process

    Science.gov (United States)

    Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu

    2016-08-01

    Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.

  15. Employment of fluorine doped zinc tin oxide (ZnSnOx:F) coating layer on stainless steel 316 for a bipolar plate for PEMFC

    International Nuclear Information System (INIS)

    Park, Ji Hun; Byun, Dongjin; Lee, Joong Kee

    2011-01-01

    Highlights: → Preparation of fluorine doped tin oxide (SnOx:F) and fluorine doped zinc tin oxide (ZnSnOx:F) coating layer on the surface of stainless steel 316 bipolar plate for PEMFCs (Proton Exchange Membrane Fuel Cells). → Evaluations of the corrosion resistance and the interfacial contact resistance of the bare, SnOx:F and ZnSnOx:F thin film coated stainless steel 316 bipolar plates. → Evaluation of single cell performance such as cell voltage and power density using bare stainless steel, SnOx:F and ZnSnOx:F film coated bipolar plates. - Abstract: The investigation of the electrochemical characteristics of the fluorine doped tin oxide (SnOx:F) and fluorine doped zinc tin oxide (ZnSnOx:F) was carried out in the simulated PEMFC environment and bare stainless steel 316 was used as a reference. The results showed that the ZnSnOx:F coating enhanced both the corrosion resistance and interfacial contact resistance (ICR). The corrosion current for ZnSnOx:F was 1.2 μA cm -2 which was much lower than that of bare stainless steel of 50.16 μA cm -2 . The ZnSnOx:F coated film had the smallest corrosion current due to the formation of a tight surface morphology with very few pin-holes. The ZnSnOx:F coated film exhibited the highest values of the cell voltage and power density due to its having the lowest ICR values.

  16. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Wang, Hsiang-Cheng; Hou, Kung-Hsu; Lu, Chen-En; Ger, Ming-Der

    2014-01-01

    In this study, the trivalent Cr–C coatings were electroplated on stainless steel 304 (SS304) substrates for an application in bipolar plates (BPPs) that was because of coating's excellent electric conductivity and corrosion resistance. The images of scanning electron microscope showed that the thickness of the coatings was between 1.4 and 11.4 μm, which increased with increase of coating current density. The surface morphology of Cr–C plated at coating current density of 10 A/dm 2 was smooth, crack- and pinhole-free, while cracks and pinholes appearing in networks were observed apparently in the deposits plated at a higher coating current density. Additionally, the C content in the coating decreased with increasing the coating current density. Moreover, the polarization curve with different coating current densities (10, 30, 50 A/dm 2 ) exhibited the coating prepared at 10 A/dm 2 and 10 min possessing the best corrosion resistance (I corr = 9.360 × 10 −8 A/cm 2 ). The contact resistance of Cr–C plated at coating current density of 10 A/dm 2 was the lowest (16.54 mΩ cm 2 at 150 N cm −2 ), which showed great potential of application. The single cell test with Cr–C coated SS304 prepared at coating current density of 10 A/dm 2 as BPPs showed the highest current density (about 791.532 mA/cm 2 ) and power density (about 270.150 mW/cm 2 ). - Highlights: • The Cr–C coatings on steel are electroplated for utilization as bipolar plate. • The electrical conductivity and corrosion resistance increase with carbon content. • The power density of Cr–C coated steel is superior to the bare steel

  17. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiang-Cheng [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Hou, Kung-Hsu, E-mail: khou@ndu.edu.tw [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Lu, Chen-En [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Ger, Ming-Der [Department of Applied Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China)

    2014-11-03

    In this study, the trivalent Cr–C coatings were electroplated on stainless steel 304 (SS304) substrates for an application in bipolar plates (BPPs) that was because of coating's excellent electric conductivity and corrosion resistance. The images of scanning electron microscope showed that the thickness of the coatings was between 1.4 and 11.4 μm, which increased with increase of coating current density. The surface morphology of Cr–C plated at coating current density of 10 A/dm{sup 2} was smooth, crack- and pinhole-free, while cracks and pinholes appearing in networks were observed apparently in the deposits plated at a higher coating current density. Additionally, the C content in the coating decreased with increasing the coating current density. Moreover, the polarization curve with different coating current densities (10, 30, 50 A/dm{sup 2}) exhibited the coating prepared at 10 A/dm{sup 2} and 10 min possessing the best corrosion resistance (I{sub corr} = 9.360 × 10{sup −8} A/cm{sup 2}). The contact resistance of Cr–C plated at coating current density of 10 A/dm{sup 2} was the lowest (16.54 mΩ cm{sup 2} at 150 N cm{sup −2}), which showed great potential of application. The single cell test with Cr–C coated SS304 prepared at coating current density of 10 A/dm{sup 2} as BPPs showed the highest current density (about 791.532 mA/cm{sup 2}) and power density (about 270.150 mW/cm{sup 2}). - Highlights: • The Cr–C coatings on steel are electroplated for utilization as bipolar plate. • The electrical conductivity and corrosion resistance increase with carbon content. • The power density of Cr–C coated steel is superior to the bare steel.

  18. Corrosion behaviors and contact resistances of the low-carbon steel bipolar plate with a chromized coating containing carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China); Wu, Min-Sheng [Department of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China)

    2009-08-15

    This work improved the surface performance of low-carbon steel AISI 1020 by a reforming pack chromization process at low temperature (700 C) and investigated the possibility that the modified steels are used as metal bipolar plates (BPP) of PEMFCs. The steel surface was activated by electrical discharge machining (EDM) with different currents before the chromizing procedure. Experimental results indicate that a dense and homogenous Cr-rich layer is formed on the EDM carbon steels by pack chromization. The chromized coating pretreated with electrical discharge currents of 2 A has the lowest corrosion current density, 5.78 x 10{sup -8} Acm{sup -2}, evaluated by potentiodynamic polarization in a 0.5 M H{sub 2}SO{sub 4} solution and the smallest interfacial contact resistance (ICR), 11.8 m{omega}-cm{sup 2}, at 140 N/cm{sup 2}. The carbon steel with a coating containing carbides and nitrides is promising for application as metal BPPs, and this report presents the first research in producing BPPs with carbon steels. (author)

  19. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  20. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    Science.gov (United States)

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.

  1. 2017 Bipolar Plate Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kopasz, John P. [Argonne National Lab. (ANL), Argonne, IL (United States); Benjamin, Thomas G. [Argonne National Lab. (ANL), Argonne, IL (United States); Schenck, Deanna [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-17

    The Bipolar Plate (BP) Workshop was held at USCAR1 in Southfield, Michigan on February 14, 2017 and included 63 participants from industry, government agencies, universities, and national laboratories with expertise in the relevant fields. The objective of the workshop was to identify research and development (R&D) needs, in particular early-stage R&D, for bipolar plates for polymer electrolyte membrane (PEM) fuel cells for transportation applications. The focus of the workshop was on materials, manufacturing, and design aspects of bipolar plates with the goal of meeting DOE’s 2020 bipolar plate targets. Of special interest was the cost target of ≤$3/kW for the bipolar plate.

  2. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  3. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  4. Alternative bipolar plates design and manufacturing for PEM fuel cell

    International Nuclear Information System (INIS)

    Lee Chang Chuan; Norhamidi Muhamad; Jaafar Sahari

    2006-01-01

    Bipolar plates is one of the important components in fuel cell stack, it comprise up to 80% of the stack volume. Traditionally, these plates have been fabricated from graphite, owing to its chemical nobility, and high electrical and thermal conductivity; but these plates are brittle and relatively thick. Therefore increasing the stack volume and size. Alternatives to graphite are carbon-carbon composite, carbon-polymer composite and metal (aluminum, stainless steel, titanium and nickel based alloy). The use of coated and uncoated metal bipolar plates has received attention recently due to the simplicity of plate manufacturing. The thin nature of the metal substrate allows for smaller stack design with reduced weight. Lightweight coated metals as alternative to graphite plate is being developed. Beside the traditional method of machining and slurry molding, metal foam for bipolar plates fabrication seems to be a good alternative. The plates will be produced with titanium powder by Powder Metallurgy method using space holders technique to produce the meal foam flow-field. This work intends to facilitate the materials and manufacturing process requirements to produce cost effective foamed bipolar plates for fuel cell

  5. Plating on stainless steel alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1981-01-01

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  6. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  7. An investigation of coated aluminium bipolar plates for PEMFC

    International Nuclear Information System (INIS)

    Lin, Chien-Hung; Tsai, Sung-Ying

    2012-01-01

    Highlights: ► Coated aluminium bipolar plates demonstrate the hydrophobic property than the raw material. ► The corrosion behaviour of bipolar plate decreases the PEMFC performance severely. ► These PEMFCs are measured by current–voltage (I–V) curve test. ► The oxide film increases the interfacial contact resistance. -- Abstract: The performance of Al-alloy bipolar plates for the PEMFC (proton exchange membrane fuel cell) system is investigated in this paper. The metallic bipolar plates are modified with a Ni–P coating. The performance of the Al-alloy bipolar plates is evaluated by the coating structure, corrosion resistance, contact angle and single cell performance. The results indicate that the coated aluminium bipolar plates demonstrate hydrophobic and anti-corrosive properties. The hydrophobic property increases the contact angle on the surface from 46.08° to 80.51°. Meanwhile, the corrosion rate of the Ni–P coating can be over 1 order of magnitude lower than that of the substrate. Hence, the substrate with the coating maintains superior performance under the long term test. The present study proves that both the hydrophobicity and corrosion resistance significantly affect the metallic bipolar plate.

  8. Development of new bi-polar plates based on electrically conductive filled polymers for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Jousse, F.; Salas, J.F.; Giroud, F. [C.E.A., Le Ripault, Monts (France); Icard, B.; Laurent, J.Y.; Serre Combe, P.

    2000-07-01

    In polymer electrolyte membrane fuel cell technology, the bi-polar plates are dedicated to: the current collection, the separation and distribution of gas (hydrogen and oxygen) at the cathode and the anode. To achieve these functions, bi-polar plate materials must satisfy the following properties: high conductivity (higher than 10 S/cm), high chemical resistance to acid and water, very low permeability to hydrogen (permeability < Pe{sup H2}{sub Nafion} (20 C) = 7.10{sup -17} m{sup 2}/Pa/s). Traditionally bi-polar plates have been designed with stainless steel or graphite. However, the cost of these plates are incompatible to transport applications, principally because of the gas channel machining step. Recently, we have noticed the work of T.M. Besmann [1] on the manufacturing of bi-polar plates based on carbon fibres and phenolic resin, processed by pyrolisis and densification on surface by a chemical vapour infiltration process. However, this kind of process seems too expensive and complex for the needs of the road electric transportation industry. Organic composites based on conductive chemical resistant fillers and processed by molding could be an alternative solution. Bi-polar plates requirements can be achieved by controlling and optimising experimental parameters such as the nature and morphology of fillers, the resin characteristics, and the process conditions. To avoid corrosion of the composite material, and then, the contamination of the cell, we have selected non metallic fillers, based on graphite or carbon black. (orig.)

  9. PEMFC Performance with Metal Bipolar Plates Depending on the Channel Dimension

    Directory of Open Access Journals (Sweden)

    Kwon Kuikam

    2016-01-01

    Full Text Available Bipolar plates of a proton exchange membrane fuel cell (PEMFC play an important role in removing liquid phase water as a by-product in order to facilitate the reaction between fuel and oxygen. A great amount of effort has been made to improve the performance of a fuel cell such as maximum current density or maximum power, by improving water removability of a bipolar plate. Most of the studies, however, are conducted numerically because of the complexity of analysing gas and liquid and the poor manufacturability of graphite bipolar plates. In this proceeding, we demonstrate that the performance of a PEMFC with metal bipolar plates can be enhanced by reducing the dimension of the channel. Bipolar plates were machined with stainless steel (type 316L to have three different channel size (1000 μm, 500 μm and 300 μm and the performance of each assembled cells were tested. As a result, the maximum power density and the maximum current density increased by 25%.

  10. Steel plate reinforcement of orthotropic bridge decks

    NARCIS (Netherlands)

    Teixeira de Freitas, S.

    2012-01-01

    The PhD research is focused on the reinforcement of fatigue cracked orthotropic steel bridge decks (OBD) by adding a second steel plate to the existing deck. The main idea is to stiffen the existing deck plate, which will reduce the stresses at the fatigue sensitive details and extend the fatigue

  11. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    Keywords. Corroded steel plate; plastic collapse; FEM; rough surface. ... The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear finite element method ... Department of Ocean Engineering, AmirKabir University of Technology, 15914 Tehran, Iran ...

  12. Diffusion zinc plating of structural steels

    International Nuclear Information System (INIS)

    Kazakovskaya, Tatiana; Goncharov, Ivan; Tukmakov, Victor; Shapovalov, Vyacheslav

    2004-01-01

    The report deals with the research on diffusion zinc plating of structural steels when replacing their cyanide cadmium plating. The results of the experiments in the open air, in vacuum, in the inert atmosphere, under various temperatures (300 - 500 deg.C) for different steel brands are presented. It is shown that diffusion zinc plating in argon or nitrogen atmosphere ensures obtaining the qualitative anticorrosion coating with insignificant change of mechanical properties of steels. The process is simple, reliable, ecology pure and cost-effective. (authors)

  13. Evaluation of materials for bipolar plates in simulated PEM fuel-cell cathodic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, S.V.; Belmonte, M.R.; Moron, L.E.; Torres, J.; Orozco, G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica S.C. Parcque Sanfandila, Queretaro (Mexico); Perez-Quiroz, J.T. [Mexican Transport Inst., Queretaro (Mexico); Cortes, M. A. [Mexican Petroleum Inst., Mexico City (Mexico)

    2008-04-15

    The bipolar plates in proton exchange membrane fuel cells (PEMFC) are exposed to an oxidizing environment on the cathodic side, and therefore are susceptible to corrosion. Corrosion resistant materials are needed for the bipolar plates in order to improve the lifespan of fuel cells. This article described a study in which a molybdenum (Mo) coating was deposited over austenitic stainless steel 316 and carbon steel as substrates in order to evaluate the resulting surfaces with respect to their corrosion resistance in simulated anodic and cathodic PEMFC environments. The molybdenum oxide films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The article presented the experiment and discussed the results of the corrosion behaviour of coated stainless steel. In general, the electrochemical characterization of bare materials and coated steel consisted of slow potentiodynamic polarization curves followed by a constant potential polarization test. The test medium was 0.5M sulfuric acid with additional introduction of oxygen to simulate the cathodic environment. All tests were performed at ambient temperature and at 50 degrees Celsius. The potentiostat used was a Gamry instrument. It was concluded that it is possible to deposit Mo-oxides on steel without using another alloying metal. The preferred substrate for corrosion prevention was found to be an alloy with high chromium content. 24 refs., 4 figs.

  14. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  15. Use of stainless stell for cost competitive bipolar plates in the SPFC

    Energy Technology Data Exchange (ETDEWEB)

    Makkus, R.C.; Janssen, A.H.H.; Bruijn, F.A. de; Mallant, R.K.A.M. [Netherlands Energy Research Foundation, Department of Fuels, Conversion and Environment, Petten (Netherlands)

    2000-03-01

    Bipolar plate materials for the Solid Polymer Fuel Cell (SPFC), alternative to the presently used graphite, should fulfil the following requirements in order to be applicable: low-cost, easy to machine or to shape, lightweight and low volume, mechanically and sufficiently chemically stable, and having a low contact resistance. Stainless steel is a low-cost material that is easy to shape, and thin sheets can be used to yield low volume and weight. Several stainless steels have been tested for their applicability (1.4439, 1.4404, 1.4541, 1.4529, 1.3974). The compaction pressure is of large influence on the contact resistance. Also, the pre-treatment of the surface is of influence; this is a permanent effect. Stainless steel constituents slowly dissolve into the Membrane Electrode Assembly (MEA). It has been found that the anode side stainless steel flow plate is the main source of contamination. Direct contact between the stainless steel and the membrane greatly enhances the contaminant level. Using an appropriate pre-treatment and a coating or gasket preventing direct contact between stainless steel and the membrane, one alloy was found to satisfy the requirements for use as a low cost material for the flow plate of an SPFC. (orig.)

  16. Deformation in Micro Roll Forming of Bipolar Plate

    Science.gov (United States)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  17. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    Science.gov (United States)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  18. Scale-up of Carbon/Carbon Bipolar Plates

    Energy Technology Data Exchange (ETDEWEB)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  19. Requirements and testing methods for surfaces of metallic bipolar plates for low-temperature PEM fuel cells

    Science.gov (United States)

    Jendras, P.; Lötsch, K.; von Unwerth, T.

    2017-03-01

    To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.

  20. Free vibration analysis of corroded steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Eslami-Majd, Alireza; Rahbar-Ranji, Ahmad [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Vibration analysis of unstiffened/stiffened plates has long been studied due to its importance in the design and condition assessments of ship and offshore structures. Corrosion is inevitable in steel structures and has been so far considered in strength analysis of structures. We studied the free vibration of pitted corroded plates with simply supported boundary conditions. Finite element analysis, with ABAQUS, was used to determine the natural frequencies and mode shapes of corroded plates. Influential parameters including plate aspect ratio, degree of pit, one-sided/both-sided corroded plate, and different corrosion patterns were investigated. By increasing the degree of corrosion, reduction of natural frequency increases. Plate aspect ratio and plate dimensions have no influence on reduction of natural frequency. Different corrosion patterns on the surface of one-sided corroded plates have little influence on reduction of natural frequency. Ratio of pit depth over plate thickness has no influence on the reduction of natural frequency. The reduction of natural frequency in both-sided corroded plates is higher than one-sided corroded plates with the same amount of total corrosion loss. Mode shapes of vibration would change due to corrosion, except square mode shapes.

  1. Blast response of corroded steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Eslamimajd, Alireza; RahbarRanji, Ahmad [AmirKabir University of Technology, Tehran (Korea, Republic of)

    2014-05-15

    Numerical results for one- and both-sided corroded steel plates subjected to blast loading are presented. Finite element analysis, with ABAQUS software, is employed to determine the deformation and stress distributions. The results for the case of triangular pulse pressure on un-corroded plates are validated against literature-based data and then, detailed parametric studies are carried-out. The effects of influential parameters including, plate aspect ratio, degree of pit and different ratio of pit depth at each sides of the plate are investigated. The results show that position of pitted surface in respect to applied pressure is the most influential parameter on reduction of dynamic load carrying capacity of pitted plates. By increasing degree of pitting, reduction of dynamic load carrying capacity decrease more.

  2. Ni-based amorphous alloy-coating for bipolar plate of PEM fuel cell by electrochemical plating

    International Nuclear Information System (INIS)

    Yamaura, S; Kim, S C; Inoue, A

    2013-01-01

    In this study, the Ni-Cr-P amorphous alloy-coated bipolar plates were produced by electro-plating on the Cu base plates with a flow field. The power generation tests of a single fuel cell with those Ni-Cr-P bipolar plates were conducted at 353 K. It was found that the single fuel cell with those Ni-Cr-P bipolar plates showed excellent I-V performance as well as that with the carbon graphite bipolar plates. It was also found that the single cell with those Ni-Cr-P bipolar plates showed better I-V performance than that with the Ni-P amorphous alloy-coated bipolar plates. Furthermore, the long-time operation test was conducted for 440 h with those Ni-Cr-P bipolar plates at the constant current density of 200 mA·cm −2 . As a result, it was found that the cell voltage gradually decreased at the beginning of the measurement before 300 h and then the voltage was kept constant after 300 h.

  3. Light alloys as substrate material for bipolar plates; Leichtmetall-Legierungen als Substrat fuer Bipolarplatten

    Energy Technology Data Exchange (ETDEWEB)

    Schicke, R. [PSFU GmbH, Wernigerode (Germany)

    2008-07-01

    Light alloys as substrate material for bipolar plates in fuel cells offer a number of advantages compared to stainless steel sheets. First, the specific weight is smaller, costs are lower, but also bulk properties like thermal and electric conductivities are much better than in the case of stainless steel. Regarding graphite polymer composite materials, the electric conductivity of light alloys again is much higher leading to a considerably lower internal resistance of the cells. Metal sheets, in general, are more attractive with respect to building up compact stacks with high power densities since metal sheets can be produced easily down to thicknesses of around 0.1 mm, whereby graphite composite materials most often have a thickness of at least around 2 mm. In addition, the economics of using light alloys as bipolar plate material is advantageous also for small and medium quantities of production (for instance making use of photochemical etching), but also for high volume production where both conventional techniques like stamping and also more advanced processes like hydroforming can be employed. A major challenge is the identification and technological control and improvement of surface modification / coating processes which lead to low ohmic contact resistances and a good corrosion protection under the electrochemical conditions within a fuel cell environment. Different coating technologies and the characteristics of several coatings will be discussed. (orig.)

  4. Stacks with TiN/titanium as the bipolar plate for PEMFCs

    International Nuclear Information System (INIS)

    Ren, Zhijun; Zhang, Dongming; Wang, Zaiyi

    2012-01-01

    Proton exchange membrane fuel cell (PEMFC) is a potential alternative for the internal combustion engine. But many problems, such as metallic bipolar plate instead of graphite bipolar plate to decrease the cost, should be solved before its application. Based on the previous results that single cell with TiN/Ti as bipolar plates shows high performance and enough long-time durability, the progress on the stacks with TiN/Ti as bipolar plates is reported in this manuscript. Till now seldom report is focused on stacks because of the complicated processing technique, especially for that with TiN/Ti as bipolar plate. The flow field in the plate is punched from titanium deformation, and two plates are welded by laser welding to form one piece of bipolar plate. The adopted processing techniques for stacks with TiN/Ti as bipolar plate exhibit advantage and feasibility in industry. The power density by weight for the stack is as high as 1353 W kg −1 , although it still has space to be improved. Next work should be focused on the design of flow channel parameters and flow field type based on plastic deformation of metal materials. -- Highlights: ► The progress on the stacks with TiN/Ti as bipolar plates is reported. ► The adopted processing techniques exhibit feasibility in industry. ► The power density by weight for the stack is as high as 1353 W kg −1 .

  5. Optimization of electrical conduction and passivity properties of stainless steels used for PEM fuel cell bipolar plates; Opmisation des proprietes de conduction electrique et de passivite d'aciers inoxydables pour la realisation de plaques bipolaires de pile a combustible de type PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J

    2007-10-15

    Among the new technologies for energy for sustainable development, PEMFC (proton exchange membrane fuel cells) offer seducing aspects. However, in order to make this technology fit large scale application requirements, it has to comply with stringent cost, performance, and durability criteria. In such a frame, the goal of this work was to optimize electrical conduction properties and passivity of stainless steels for the conception of PEMFC bipolar plates, used instead of graphite, the reference material. This work presents the possible ways of performance loss when using stainless steels and some methods to solve this problem. Passive film properties were studied, as well as their modifications by low cost industrial surface treatments, without deposition. Ex situ characterizations of corrosion resistance and electrical conduction were performed. Electrochemical impedance spectroscopy, water analysis, surface analysis by microscopy and photoelectron spectroscopy allowed to study the impact of ageing on two alloys in different states, and several conditions representative of an exposure to PEMFC media. Correlations between semi-conductivity properties, composition, and structure of passive layers were considered, but not leading to clear identification of all parameters responsible for electrical conduction and passivity. The plate industrial state is not convenient for direct use in fuel cell to comply with durability and performance requirements. A surface modification studied improves widely electrical conduction at initial state. The performance is degraded with ageing, but maintaining a level higher than the initial industrial state. This treatment increases also corrosion resistance, particularly on the anode side. (author)

  6. Optimization of electrical conduction and passivity properties of stainless steels used for PEM fuel cell bipolar plates; Opmisation des proprietes de conduction electrique et de passivite d'aciers inoxydables pour la realisation de plaques bipolaires de pile a combustible de type PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J

    2007-10-15

    Among the new technologies for energy for sustainable development, PEMFC (proton exchange membrane fuel cells) offer seducing aspects. However, in order to make this technology fit large scale application requirements, it has to comply with stringent cost, performance, and durability criteria. In such a frame, the goal of this work was to optimize electrical conduction properties and passivity of stainless steels for the conception of PEMFC bipolar plates, used instead of graphite, the reference material. This work presents the possible ways of performance loss when using stainless steels and some methods to solve this problem. Passive film properties were studied, as well as their modifications by low cost industrial surface treatments, without deposition. Ex situ characterizations of corrosion resistance and electrical conduction were performed. Electrochemical impedance spectroscopy, water analysis, surface analysis by microscopy and photoelectron spectroscopy allowed to study the impact of ageing on two alloys in different states, and several conditions representative of an exposure to PEMFC media. Correlations between semi-conductivity properties, composition, and structure of passive layers were considered, but not leading to clear identification of all parameters responsible for electrical conduction and passivity. The plate industrial state is not convenient for direct use in fuel cell to comply with durability and performance requirements. A surface modification studied improves widely electrical conduction at initial state. The performance is degraded with ageing, but maintaining a level higher than the initial industrial state. This treatment increases also corrosion resistance, particularly on the anode side. (author)

  7. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Grundler, M.; Derieth, T.; Beckhaus, P.; Heinzel, A. [centre for fuel cell technology ZBT GmbH (Germany)

    2010-07-01

    Using standard mass production techniques for the fabrication of fuel cell components, such as bipolar plates, is a main issue for the commercialisation of PEM fuel cell systems. Bipolar plates contribute significantly to the cost structure of PEM stacks. In an upcoming fuel cell market a large number of bipolar plates with specific high-quality standards will be needed. At the Centre for Fuel Cell Technology (ZBT) together with the University of Duisburg-Essen fuel cell stacks based on injection moulded bipolar plates have been developed and demonstrated successfully [1]. This paper focuses on the interactions between carbon filling materials (graphite, carbon black and carbon nanotubes (CNT)) in compound based bipolar plates and especially the potential of CNTs, which were used in bipolar plates for the first time. The entire value added chain based on the feedstock, the compounding and injection moulding process, the component bipolar plate, up to the operation of a PEM single fuel cell stack with CNT-based bipolar plates is disclosed. (orig.)

  8. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  9. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Dundar, F. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Department of Materials Science and Engineering, Gebze Institute of Technology (Turkey); Dur, Ender; Koc, M. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Mahabunphachai, S. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); National Metal and Materials Technology Center (MTEC), Pathumthani (Thailand)

    2010-06-01

    Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate. (author)

  10. Current density and catalyst-coated membrane resistance distribution of hydro-formed metallic bipolar plate fuel cell short stack with 250 cm2 active area

    Science.gov (United States)

    Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.

    2016-01-01

    An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.

  11. 46 CFR 154.170 - Outer hull steel plating.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Outer hull steel plating. 154.170 Section 154.170... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the...

  12. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  13. Six years of evidence-based adult dissection tonsillectomy with ultrasonic scalpel, bipolar electrocautery, bipolar radiofrequency or 'cold steel' dissection.

    Science.gov (United States)

    Ragab, S M

    2012-10-01

    To conduct an adequately powered, prospective, randomised, controlled trial comparing adult dissection tonsillectomy using either ultrasonic scalpel, bipolar electrocautery, bipolar radiofrequency or 'cold steel' dissection. Three hundred patients were randomised into four tonsillectomy technique groups. The operative time, intra-operative bleeding, post-operative pain, tonsillar fossa healing, return to full diet, return to work and post-operative complications were recorded. The bipolar radiofrequency group had a shorter mean operative time. The mean intra-operative blood loss during bipolar radiofrequency tonsillectomy was significantly less compared with cold dissection and ultrasonic scalpel tonsillectomy. Pain scores were significantly higher after bipolar electrocautery tonsillectomy. Patients undergoing bipolar electrocautery tonsillectomy required significantly more days to return to full diet and work. The bipolar electrocautery group showed significantly reduced tonsillar fossa healing during the first and second post-operative weeks. In this adult series, bipolar radiofrequency tonsillectomy was superior to ultrasonic, bipolar electrocautery and cold dissection tonsillectomies. This method combines the advantages of 'hot' and 'cold' tonsillectomy.

  14. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  15. Porous Composite for Bipolar Plate in Low Emission Hydrogen Fuel Cells

    Directory of Open Access Journals (Sweden)

    Renata Katarzyna Włodarczyk

    2018-01-01

    Full Text Available The paper presents the results of graphite-stainless steel composites for the bipolar plates in low-temperature fuel cells. The sinters were performed by powder metallurgy technology. The influenceof technological parameters, especially molding pressure were examined. Following the requirements formulated by the DOE concerning the parameters of the materials, it indicated by the value of the parameters. The density, flowabilit, particle size of graphite and stainless steel powders have been evaluated. Composites have been tested by microstructure and phase analysis, properties of strength, functional properties: wettability, porosity, roughness. The special attention was paid to the analysis of corrosion resistance obtained sinters and influenceof technological parameters on the corrosion. Corrosion tests were carried out under conditions simulating the environment of the fuel cell under anode and cathode conditions. The effectof pH solution during working of the cell on corrosion resistance of composites have been evaluated. Contact resistance depends on roughness of sinters. Low ICR determined high contact area GDL-BP and high electrical conductivity on the contact surface. The ICR in anode conditions after corrosion tests are not change significantly; composite materials can be used for materials for B in terms of H 2 .

  16. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  17. Highly conductive thermoplastic composite blends suitable for injection molding of bipolar plates

    International Nuclear Information System (INIS)

    Mighri, F.; Huneault, M.A.; Champagne, M.F.

    2003-01-01

    This study aimed at developing highly conductive, lightweight, and low-cost bipolar plates for use in proton exchange membranes (PEM) fuel cells. Injection and compression molding of highly filled polypropylene, PP, and polyphenylene sulfide, PPS, based blends were used as a mean for mass production of bipolar plates. Loadings up to 60-wt% in the form of graphite, conductive carbon black and carbon fibers were investigated. The developed formulations have a combination of properties and processability suitable for bipolar plate manufacturing, such as good chemical resistance, sufficient fluidity, and good electrical and thermal conductivity. Electrical resistivities around 0.15 and 0.09 Ohm-cm were respectively achieved for the PP and PPS-based blends, respectively. Two bipolar plate designs were successfully fabricated by molding the gas flow channels over aluminum plates to form a metallic/polymer composite plate, or simply by direct injection molding of the conductive polymer composite. For the first design, overall plate resistivities of 0.2 and 0.1 Ohm-cm were respectively attained using PP and PPS based blends as conductive skin. A lower volume resistivity of around 0.06 Ohm-cm was attained for the second injected plate design with PPS based blend. (author)

  18. Influence of Sintering Temperature on Mechanical and Physical properties of Mill Scale based Bipolar Plates for PEMFC

    Science.gov (United States)

    Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir

    2018-03-01

    This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.

  19. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  20. Special heavy plates and steel solutions for bridge building

    Science.gov (United States)

    Lehnert, Tobias

    2017-09-01

    In many European countries infrastructure, -road as well as railway infrastructure-, needs intensive investments to follow the growing demands of mobility and goods traffic. Steel or steel composite bridges offer in this context viable and very sustainable solutions. Due to its unlimited recyclability steel can in general be seen as the ideal material for such sustainable constructions, but especially when designers or fabricators exploit the nowadays available possibilities of steel industry very cost-efficient and remarkable constructions are realizable. This paper will highlight some of these newest developments in heavy plates for bridge building. For example, for small span railway bridges the so-called thick plate trough bridges have proven to be a favourable concept. Very heavy plates with single plate weights up to 42 t allow building these bridges very efficiently out of one or very few single plates. Another interesting development is the so-called longitudinally profiled plates which allow a varying plate thickness along the actual loading profile. As last point the rising entry of higher strength steels in bridge building will be discussed and it will be shown why thermomechanically rolled plates are the ideal solution for these demands.

  1. Seismic Performance and Design of Steel Plate Shear Walls with Low Yield Point Steel Infill Plates

    OpenAIRE

    Zirakian, Tadeh

    2013-01-01

    Steel plate shear walls (SPSWs) have been frequently used as the primary or part of the primary lateral force-resisting system in design of low-, medium-, and high-rise buildings. Their application has been based on two different design philosophies as well as detailing strategies. Stiffened and/or stocky-web SPSWs with improved buckling stability and high seismic performance have been mostly used in Japan, which is one of the pioneering countries in design and application of these systems. U...

  2. Progress in thermomechanical control of steel plates and their commercialization

    Science.gov (United States)

    Nishioka, Kiyoshi; Ichikawa, Kazutoshi

    2012-01-01

    The water-cooled thermomechanical control process (TMCP) is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates. PMID:27877477

  3. Progress in thermomechanical control of steel plates and their commercialization

    Directory of Open Access Journals (Sweden)

    Kiyoshi Nishioka and Kazutoshi Ichikawa

    2012-01-01

    Full Text Available The water-cooled thermomechanical control process (TMCP is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates.

  4. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    International Nuclear Information System (INIS)

    Mueller, M; Hoehlich, D; Scharf, I; Lampke, T; Hollaender, U; Maier, H J

    2016-01-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W 2 N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing. (paper)

  5. Electroless nickel plating on stainless steels and aluminum

    Science.gov (United States)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  6. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  7. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates

    Science.gov (United States)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Zhang, Qiuxiang; Zhao, Junfeng; Lu, Hongbin; Meng, Xiangkang

    2017-12-01

    Conductive polymer coating doped with large molecular organic acid is an alternative method used to protect stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). However, it is difficult to select the proper doping acid, which improves the corrosion resistance of the coating without affecting its conductivity. In this study, large spatial molecular group camphorsulfonic acid (CSA) doped polypyrrole (PPY) conductive coating was prepared by galvanostatic electropolymerization on 304SS. The electrochemical properties of the coating were evaluated in 0.1 M H2SO4 solution in order to simulate the PEMFC service environment. The results indicate that the coating increased the corrosion potential and shifted Ecorr towards more positive value, particularly the jcorr value of PPY-CSA coated 304SS was dropped from 97.3 to 0.00187 μA cm-2. The long-term immersion tests (660 h) show that the PPY-CSA coating exhibits better corrosion resistance in comparison with the small acid (SO42-) doped PPY-SO42- or PPY/PPY-SO42- coatings. Moreover, the PPY-CSA coating presents low contact resistance and maintains strong corrosion resistance during the prolonged exposure time due to barrier effect and anodic protection.

  8. Development of stress correction formulae for heat formed steel plates

    Directory of Open Access Journals (Sweden)

    Hyung Kyun Lim

    2018-03-01

    Full Text Available The heating process such as line heating, triangular heating and so on is widely used in plate forming of shell plates found in bow and stern area of outer shell in a ship. Local shrinkage during heating process is main physical phenomenon used in plate forming process. As it is well appreciated, the heated plate undergoes the change in material and mechanical properties around heated area due to the harsh thermal process. It is, therefore, important to investigate the changes of physical and mechanical properties due to heating process in order to use them plate the design stage of shell plates. This study is concerned with the development of formula of plastic hardening constitutive equation for steel plate on which line heating is applied. In this study the stress correction formula for the heated plate has been developed based on the numerical simulation of tension test with varying plate thickness and heating speed through the regression analysis of multiple variable case. It has been seen the developed formula shows very good agreement with results of numerical simulation. This paper ends with usefulness of the present formula in examining the structural characteristic of ship's hull. Keywords: Heat input, Heat transfer analysis, Line heating, Shell plate, Stress correction, Thermo-elasto-plastic analysis

  9. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  10. Application of low energy electron beam to precoated steel plates

    International Nuclear Information System (INIS)

    Koshiishi, Kenji

    1989-01-01

    Recently in the fields of home electric appliances, machinery and equipment and interior building materials, the needs for the precoated steel plates having the design and function of high class increase rapidly. In order to cope with such needs, the authors have advanced the examination on the application of electron beam hardening technology to precoated steel plates, and developed the precoated steel plates of high grade and high design 'Super Tecstar EB Series' by utilizing low energy electron beam. The features of this process are (1) hardening can be done at room temperature in a short time-thermally weak films can be adhered, (2) high energy irradiation-the hardening of thick enamel coating and the adhesion of colored films are feasible, (3) the use of monomers of low molecular weight-by high crosslinking, the performance of high sharpness, high hardness, anti-contamination property and so on can be given. The application to precoated steel plate production process is the coating and curing of electron beam hardening type paints, the coating of films with electron beam hardening type adhesives, and the reforming of surface polymer layers by impregnating monomers and causing graft polymerization with electron beam irradiation. The outline of the Super Tecstar EB Series is described. (K.I.)

  11. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling

    International Nuclear Information System (INIS)

    Kahraman, Huseyin; Orhan, Mehmet F.

    2017-01-01

    Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.

  12. Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser

    International Nuclear Information System (INIS)

    Tamura, Koji; Ishigami, Ryoya; Yamagishi, Ryuichiro

    2016-01-01

    Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser was studied for application to nuclear decommissioning. Successful cutting of carbon steel and stainless steel plates up to 300 mm in thickness was demonstrated, as was that of thick steel components such as simulated reactor vessel walls, a large pipe, and a gate valve. The results indicate that laser cutting applied to nuclear decommissioning is a promising technology. (author)

  13. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    Science.gov (United States)

    2010-12-27

    ... (Second Review)] Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United... on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY: The... on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan would be likely to lead...

  14. Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Lin, Chien-Hung

    2013-01-01

    Highlights: ► Various degrees of roughness are caused by the sandblasting method. ► An improper surface modification depletes the PEMFC performance severely. ► The AC impedance are used to assess the fuel gas transfer effect. ► The Warburg resistance form in the coarse flow channel surface. - Abstract: Proton exchange membrane fuel cells (PEMFCs) is a promising candidate as energy systems. However, the stability and lifetime of cells are still important issues. The effect of surface roughness on metallic bipolar plate is discussed in this paper. Various roughness on the bulk surface are obtained by the sandblasting method. The grain sizes of sand are selected as 50, 100 and 200 μm. The Ac impedance experiment results show that the bipolar plate roughness and carbon paper porosity are well matched when the surface roughness is within 1–2 μm. Superior condition decreases the contact resistance loss in the fuel cell. The high frequency resistance of the coarse surface was larger than that of the substrate by around 5 mΩ. Furthermore, a new arc was formed at the low frequency region. Hence, the unmatch roughness condition of the bipolar plate significantly increases the contact resistance and mass transfer resistance. This paper develops a sequential approach to study an optimum surface roughness by combining the whole performance (I–V) curve and AC impedance result. It benefits us to quantify the contact and mass transfer resistance exists in the PEMFC. The proposed surface treatment improves the surface effect and promotes the implement of potential metallic bipolar plate in near future

  15. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries

    Science.gov (United States)

    Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas

    2016-02-01

    Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.

  16. Fabrication of carbon-polymer composite bipolar plates for polymer electrolyte membrane fuel cells by compression moulding

    International Nuclear Information System (INIS)

    Raza, M.A.; Ahmed, R.; Saleem, A.; Din, R.U.

    2009-01-01

    Fuel cells are considered as one of the most important technologies to address the future energy and environmental pollution problems. These are the most promising power sources for road transportation and portable devices. A fuel cell is an electrochemical device that converts chemical energy into electrical energy. A fuel cell stack consists of bipolar plates and membrane electrode assemblies (MEA). The bipolar plate is by weight, volume and cost one of the most significant components of a fuel cell stack. Major functions of bipolar plates are to separate oxidant and fuel gas, provide flow channels, conduct electricity and provide heat transfer. Bipolar plates can be made from various materials including graphite, metals, carbon / carbon and carbon/ polymer composites. Materials for carbon-polymer composites are relatively inexpensive, less corrosive, strong and channels can be formed by means of a moulding process. Carbon-polymer composites are of two type i.e; thermosetting and thermoplastic. For thermosetting composite a bulk molding compound (BMC) was prepared by adding graphite, vinyl ester resin, methyl ethyl ketone peroxide and cobalt naphthalate. The BMC was thoroughly mixed, poured into a die mould of a bipolar plate with channels and hot pressed at a specific temperature and pressure. A bipolar plate was formed according to the die mould. Design of the mould is also discussed. Conducting polymers were also added to BMC to increase the conductivity of bipolar plates. Particle size of the graphite has also a significant effect on the conductivity of the bipolar plates. Thermoplastic composites were also prepared using polypropylene and graphite.

  17. Immobilization of mesoporous silica particles on stainless steel plates

    International Nuclear Information System (INIS)

    Pasqua, Luigi; Morra, Marco

    2017-01-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  18. Immobilization of mesoporous silica particles on stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pasqua, Luigi, E-mail: luigi.pasqua@unical.it [University of Calabria, Department of Environmental and Chemical Engineering (Italy); Morra, Marco, E-mail: mmorra@nobilbio.com [Via Valcastellana 26 (Italy)

    2017-03-15

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  19. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    Science.gov (United States)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  20. Effect of graphite addition into mill scale waste as a potential bipolar plates material of proton exchange membrane fuel cells

    Science.gov (United States)

    Khaerudini, D. S.; Prakoso, G. B.; Insiyanda, D. R.; Widodo, H.; Destyorini, F.; Indayaningsih, N.

    2018-03-01

    Bipolar plates (BPP) is a vital component of proton exchange membrane fuel cells (PEMFC), which supplies fuel and oxidant to reactive sites, remove reaction products, collects produced current and provide mechanical support for the cells in the stack. This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as BPP in PEMFC. On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in BPP and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the carbon source containing 5, 10, and 15 wt.% graphite using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at 900 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by X-ray diffractometry, optical microscopy, scanning electron microscopy, and microhardness measurement. The details of the presence of iron, carbon, and iron carbide (Fe-C) as the products of reactions as well as sufficient mechanical strength of the sintered materials were presented in this report.

  1. Electron beam cladding of titanium on stainless steel plate

    International Nuclear Information System (INIS)

    Tomie, Michio; Abe, Nobuyuki; Yamada, Masanori; Noguchi, Shuichi.

    1990-01-01

    Fundamental characteristics of electron beam cladding was investigated. Titanium foil of 0.2mm thickness was cladded on stainless steel plate of 3mm thickness by scanning electron beam. Surface roughness and cladded layer were analyzed by surface roughness tester, microscope, scanning electron microscope and electron probe micro analyzer. Electron beam conditions were discussed for these fundamental characteristics. It is found that the energy density of the electron beam is one of the most important factor for cladding. (author)

  2. Performance of Retrofitted Self-Compacting Concrete-Filled Steel Tube Beams Using External Steel Plates

    Directory of Open Access Journals (Sweden)

    Ahmed A. M. AL-Shaar

    2018-01-01

    Full Text Available Self-compacting concrete-filled steel tube (SCCFST beams, similar to other structural members, necessitate retrofitting for many causes. However, research on SCCFST beams externally retrofitted by bolted steel plates has seldom been explored in the literature. This paper aims at experimentally investigating the retrofitting performance of square self-compacting concrete-filled steel tube (SCCFST beams using bolted steel plates with three different retrofitting schemes including varied configurations and two different steel plate lengths under flexure. A total of 18 specimens which consist of 12 retrofitted SCCFST beams, three unretrofitted (control SCCFST beams, and three hollow steel tubes were used. The flexural behaviour of the retrofitted SCCFST beams was examined regarding flexural strength, failure modes, and moment versus deflection curves, energy absorption, and ductility. Experimental results revealed that the implemented retrofitting schemes efficiently improve the moment carrying capacity and stiffness of the retrofitted SCCFST beams compared to the control beams. The increment in flexural strength ranged from 1% to 46%. Furthermore, the adopted retrofitting schemes were able to restore the energy absorption and ductility of the damaged beams in the range of 35% to 75% of the original beam ductility. Furthermore, a theoretical model was suggested to predict the moment capacity of the retrofitted SCCFST beams. The theoretical model results were in good agreement with the test results.

  3. Laser cutting of thick steel plates with 30 kW fiber laser for nuclear decommissioning

    International Nuclear Information System (INIS)

    Tamura, Koji

    2015-01-01

    Laser cutting technologies of the thick steel plates for the nuclear decommissioning were developed with a 30 kW fiber laser. Plates of stainless steel and carbon steel more than 100 mm thick were successfully cut, indicating that this technology is promising for the application to the nuclear decommissioning. (author)

  4. Effect of formation temperature on properties of graphite/stannum composite for bipolar plate

    International Nuclear Information System (INIS)

    Selamat, Mohd Zulkefli; Yusuf, Muhammad Yusri Md; Wer, Tio Kok; Sahadan, Siti Norbaya; Malingam, Sivakumar Dhar; Mohamad, Noraiham

    2016-01-01

    Bipolar plates are key components in Proton Exchange Membrane (PEM) fuel cells. They carry current away from the cell and withstand the clamping force of the stack assembly. Therefore, PEM fuel cell bipolar plates must have high electrical conductivity and adequate mechanical strength, in addition to being light weight and low cost in terms of both applicable materials and production methods. In this research, the raw materials used to fabricate the high performance bipolar plate are Graphite (Gr), Stannum (Sn) and Polypropylene (PP). All materials used was in powder form and Gr and Sn act as fillers and the PP acts as binder. The ratio of fillers (Gr/Sn) and binder (PP) was fixed at 80:20. For the multi-conductive filler, small amount of Sn, which is 10 up to 20wt% (from the total weight of fillers 80%) have been added into Gr/Sn/PP composite. The fillers were mixed by using the ball mill machine. The second stage of mixing process between the mixer of fillers and binder is also carried out by using ball mill machine before the compaction process by the hot press machine. The effect of formation temperatures (160°C-170°C) on the properties of Gr/Sn/PP composite had been studied in detail, especially the electrical conductivity, bulk density, hardness and microstructure analysis of Gr/Sn/PP composite. The result shows that there are significant improvement in the electrical conductivity and bulk density, which are exceeding the US-DoE target with the maximum value of 265.35 S/cm and 1.682g/cm"3 respectively.

  5. Effect of formation temperature on properties of graphite/stannum composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Selamat, Mohd Zulkefli, E-mail: azulkeflis@utem.edu.my; Yusuf, Muhammad Yusri Md, E-mail: yusri.cheras@gmail.com; Wer, Tio Kok, E-mail: to91@hotmail.my; Sahadan, Siti Norbaya, E-mail: norbaya@utem.edu.my; Malingam, Sivakumar Dhar, E-mail: sivakumard@utem.edu.my; Mohamad, Noraiham, E-mail: noraiham@utem.edu.my [Centre of Advanced Research on Energy (CARe), Faculty of Mechanical Engineering, UniversitiTeknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2016-03-29

    Bipolar plates are key components in Proton Exchange Membrane (PEM) fuel cells. They carry current away from the cell and withstand the clamping force of the stack assembly. Therefore, PEM fuel cell bipolar plates must have high electrical conductivity and adequate mechanical strength, in addition to being light weight and low cost in terms of both applicable materials and production methods. In this research, the raw materials used to fabricate the high performance bipolar plate are Graphite (Gr), Stannum (Sn) and Polypropylene (PP). All materials used was in powder form and Gr and Sn act as fillers and the PP acts as binder. The ratio of fillers (Gr/Sn) and binder (PP) was fixed at 80:20. For the multi-conductive filler, small amount of Sn, which is 10 up to 20wt% (from the total weight of fillers 80%) have been added into Gr/Sn/PP composite. The fillers were mixed by using the ball mill machine. The second stage of mixing process between the mixer of fillers and binder is also carried out by using ball mill machine before the compaction process by the hot press machine. The effect of formation temperatures (160°C-170°C) on the properties of Gr/Sn/PP composite had been studied in detail, especially the electrical conductivity, bulk density, hardness and microstructure analysis of Gr/Sn/PP composite. The result shows that there are significant improvement in the electrical conductivity and bulk density, which are exceeding the US-DoE target with the maximum value of 265.35 S/cm and 1.682g/cm{sup 3} respectively.

  6. Behavior of Equipment Support Beam Joint Directly Connected to A Steel-plate Concrete(SC) Wall

    International Nuclear Information System (INIS)

    Kim, K. S.; Kwon, K. J.

    2008-01-01

    To decrease the time for building nuclear power plants, a modular construction method, 'Steel-plate Concrete(SC)', has been investigated for over a decade. To construct a SC wall, a pair of steel plates are placed in parallel similar to a form-work in conventional reinforced concrete (RC) structures, and concrete is filled between the steel plates. Instead of removing the steel plates after the concrete has cured, the steel plates serve as components of the structural member. The exposed steel plate of SC structures serves as the base plate for the equipment support, and the headed studs welded to the steel plates are used as anchor bolts. Then, a support beam can be directly welded to the surface of the steel plate in any preferred position. In this study, we discuss the behavior and evaluation method of the equipment support joint directly connected to exposed steel plate of SC wall

  7. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    International Nuclear Information System (INIS)

    Li, D.; Korinko, P.; Spencer, W.; Stein, E.

    2016-01-01

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivity with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3 ) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2 O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2 , while H 2 O off-gas rate was on the level of 10 -15 l mbar/s cm 2 , consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and

  8. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Korinko, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stein, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-15

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivity with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H2 and adsorbed H2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10-14 l mbar/s cm2, while H2O off-gas rate was on the level of 10-15 l mbar/s cm2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their Sil

  9. Casting of Hearth Plates from High-chromium Steel

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2014-12-01

    Full Text Available The paper presents the results of studies on the development of manufacturing technologies to cast hearth plates operating in chamber furnaces for heat treatment. Castings made from the heat-resistant G-X40CrNiSi27-4 steel were poured in hand-made green sand molds. The following operations were performed: computer simulation to predict the distribution of internal defects in castings produced by the above mentioned technology with risers bare and coated with exothermic and insulating sleeves, analysis of each variant of the technology, and manufacture of experimental castings. As a result of the conducted studies and analysis it was found that the use of risers with exothermic sleeves does not affect to a significant degree the quality of the produced castings of hearth plates, but it significantly improves the metal yield.

  10. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    Directory of Open Access Journals (Sweden)

    Aizik F.

    2012-08-01

    Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  11. Underwater Shock Response of Circular HSLA Steel Plates

    Directory of Open Access Journals (Sweden)

    R. Rajendran

    2000-01-01

    Full Text Available Studies on shock response of circular plates subjected to underwater explosion is of interest to ship designers. Non-contact underwater explosion experiments were carried out on air backed circular High Strength Low Alloy (HSLA steel plates of 4 mm thickness and 290 mm diameter. The experiments were carried out in two phases. In the first phase, strain gauges were fixed at intervals of 30 mm from the centre of the plate and strains were recorded for the shock intensity gradually increasing to yielding. Semi-analytical models were derived for the elastic strain prediction which showed good agreement with the experiments. Dynamic yield stress and the shock factor for yielding were established. In the second phase, individual plates were subjected to increasing shock severity until fracture and the apex bulge depth and the thickness strains were measured. Empirical models were derived to predict the plastic deformation which were validated through a fresh set of experiments. Analysis of the fractured surface by visual examination showed that there was slant fracture indicating ductile mode of failure and the same was corroborated by Scanning Electron Microscopic (SEM examination.

  12. Fire resistance of a steel plate reinforced concrete bearing wall

    International Nuclear Information System (INIS)

    Kodaira, Akio; Kanchi, Masaki; Fujinaka, Hideo; Akita, Shodo; Ozaki, Masahiko

    2003-01-01

    Samples from a steel plate reinforced concrete bearing wall composed of concrete slab sandwiched between studded steel plates, were subjected to loaded fire resistance tests. There were two types of specimens: some were 1800 mm high while the rest were 3000 mm high ; thickness and width were the same for all specimens, at 200 mm and 800 mm, respectively. Under constant load conditions, one side of each specimen was heated along the standard fire-temperature curve. The results enabled us to approximate the relationship between the ratio of working load to concrete strength N/(Ac x c σ b) and the fire resistance time (t: minutes), as equation (1) for the 1800 mm - high specimen, and equation (2) for the 3000 mm - high specimen. N/(Ac x c σ b) = 2.21 x (1/t) 0.323 (1), .N/(Ac x c σ b) 2.30 x (1/t) 0.378 (2) In addition, the temperature of the unheated side of the specimens was 100degC at 240 minutes of continuous heating, clearly indicating that there was sufficient heat insulation. (author)

  13. Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Chih-Hsun Chang

    2016-05-01

    Full Text Available All-vanadium redox flow batteries (VRBs are potential energy storage systems for renewable power sources because of their flexible design, deep discharge capacity, quick response time, and long cycle life. To minimize the energy loss due to the shunt current, in a traditional design, a flow field is machined on two electrically insulated frames with a graphite plate in between. A traditional bipolar plate (BP of a VRB consists of many components, and thus, the assembly process is time consuming. In this study, an integrally molded BP is designed and fabricated to minimize the manufacturing cost. First, the effects of the mold design and injection parameters on frame formability were analyzed by simulation. Second, a new graphite plate design for integral molding was proposed, and finally, two integrally molded BPs were fabricated and compared. Results show that gate position significantly affects air traps and the maximum volume shrinkage occurs at the corners of a BP. The volume shrinkage can be reduced using a large graphite plate embedded within the frame.

  14. 78 FR 4385 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2013-01-22

    ...-Quality Steel Plate Products From the Republic of Korea: Preliminary Results of Antidumping Duty... the antidumping duty order on certain cut-to- length carbon-quality steel plate products (CTL plate... Carbon-Quality Steel Plate Products from the Republic of Korea'' dated concurrently with this notice...

  15. Recent trend of titanium-clad steel plate/sheet (NKK)

    International Nuclear Information System (INIS)

    Kimura, Hideto

    1997-01-01

    The roll-bonding process for titanium-clad steel production enabled the on-line manufacturing and quality control of the products which are usually applied for the production of steel plate and sheet by the steel producers. The recent trend of roll-bonded titanium-clad steel which has an excellent corrosion resistance together with the advantage in cost-saving are mainly described in this article as to the demand, production technique and new application aspects. Though the predominant usage of titanium-clad steel plate has been in power-generating plants, enlargeing utilization in the chemical plants such as terephthalic acid production plants is leading the growth in the market of titanium-clad steel plate. Also, the application of titanium-clad steel plates and sheets for the lining the marine structures is expected as one of the best solution to long-term surface protection for their outstanding corrosion resistance against sea water. (author)

  16. Comparison of bipolar electrocautry and cold steel dissection methods for tonsillectomy

    International Nuclear Information System (INIS)

    Ali, M.; Rafique, A.; Dastgir, M.; Rashid, M.; Maqbool, M.; Maqbool, S.; Bashir, S.

    2014-01-01

    To compare the efficacy and post-operative morbidity of bipolar electrocautry and cold steel dissection methods for tonsillectomy in pediatric population, in terms of operating time, peri-operative blood loss, post-operative pain and frequency of secondary hemorrhage. Study Design: Randomized controlled trial. Place and Duration: This study was conducted at department of ENT, Combined Military Hospital Kharian and Lahore between Jan 2009 to Jan 2012. Patients and Methods: Total 146 patients between age 6 to 12 years were enrolled in this study but only 102 patients who fulfilled the desired criteria and had regular follow up were placed in two groups. They were divided into two equal groups of 51 each labeled as A and B. Patients in group A were operated for tonsillectomy by bipolar electrocautry while group B underwent tonsillectomy by cold steel dissection method. All patients in both groups were assessed for operating time, peri-operative blood loss, secondary hemorrhage and postoperative pain on Visual Analogue Score. Results: In group A there were 27 males and 24 females while group B had 28 females and 23 males. Mean age of patients was 9.4 (SD +- 2.67) years. Patients in groups A had statistically significant lower operative time and blood loss than group B. While initial post-operative pain was not different in two groups. However late onset pain (pain on 7th and 14th day) and frequency of secondary hemorrhage was significantly higher in group A. Conclusion: Bipolar electrocautry dissection method of tonsillectomy is better than cold steel dissection method in terms of operating time and peri-operative blood loss. Although initial post-operative pain was not much significant in two groups but incidence of late onset pain and secondary hemorrhage is higher in bipolar electrocautry group. (author)

  17. Containment liner plate anchors and steel embedments test results

    International Nuclear Information System (INIS)

    Chang-Lo, P.L.; Johnson, T.E.; Pfeifer, B.W.

    1977-01-01

    This paper summarizes test data on shear load and deformation capabilities for liner plate line anchors and structural steel embedments in reinforced and prestressed concrete nuclear containments. Reinforced and prestressed nuclear containments designed and constructed in the United States are lined with a minimum of 0.64 cm steel plate. The liner plates are anchored by the use of either studs or structural members (line anchors) which usually run in the vertical direction. This paper will only address line anchors. Static load versus displacement test data is necessary to assure that the design is adequate for the maximum loads. The test program for the liner anchors had the following major objectives: determine load versus displacement data for a variety of anchors considering structural tees and small beams with different weld configurations, from the preceding tests, determine which anchors would lead to an economical and extremely safe design and test these anchors for cyclic loads resulting from thermal fluctuations. Various concrete embeds in the containment and other structures are subjected to loads such as pipe rupture which results in shear. Since many of the loads are transient by nature, it is necessary to know the load-displacement relationship so that the energy absorption can be determined. The test program for the embeds had the following objectives: determine load-displacement relationship for various size anchors from 6.5 cm 2 to 26 cm 2 with maximum capacities of approximately 650 kN; determine the effect of various anchor width-to-thickness ratios for the same shear area

  18. A crack arrest test using a toughness gradient steel plate

    International Nuclear Information System (INIS)

    Okamura, H.; Yagawa, G.; Urabe, Y.; Satoh, M.; Sano, J.

    1995-01-01

    Pressurized thermal shock (PTS) is a phenomenon that can occur in the reactor pressure vessels (RPVs) with internal pressure and is one of the most severe stress conditions that can be applied to the vessel. Preliminary research has shown that no PTS concern is likely to exist on Japanese RPVs during their design service lives. However, public acceptance of vessel integrity requires analyses and experiment in order to establish an analytical method and a database for life extension of Japanese RPVs. The Japanese PTS integrity study was carried out from FY 1983 to FY 1991 as a national project by Japan Power Engineering and Inspection Corporation (JAPEIC) under contract with Ministry of International Trade and Industry (MITI) in cooperation with LWR utilities and vendors. Here, a crack arrest test was carried out using a toughness gradient steel plate with three layers to study the concept of crack arrest toughness. Four-point bending load with thermal shock was applied to the large flat plate specimen with a surface crack. Five crack initiations and arrests were observed during the test and the propagated crack bifurcated. Finally, cracks were arrested at the boundary of the first and the second layer, except for a small segment of the crack. The first crack initiation took place slightly higher than the lower bound of K Ic data obtained by ITCT specimens. That is, the K IC concept for brittle crack initiation was verified for heavy section steel plates. The first crack arrest took place within the scatter band of K Ia and K Id data for the first layer. That is, the K Ia concept appears applicable for crack arrest of a short crack jump

  19. 75 FR 59744 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Science.gov (United States)

    2010-09-28

    ... (Second Review)] Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United..., and Taiwan. SUMMARY: The Commission hereby gives notice that it will proceed with full reviews... antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan would be...

  20. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  1. Chromate coating of zinc-aluminum plating on mild steel

    International Nuclear Information System (INIS)

    Haque, I.; Khan, A.; Nadeem, A.

    2005-01-01

    The chromate coating on zinc-aluminium deposits has been studied. Zinc-aluminium deposition from non-cyanide bath was carried out at current density 3-3.5 A/dm/sup 2/, plating voltage approx. equal to 1.25 V, temperature 18-20 deg. C, for 15 min. The effect of aluminium chloride on the rest potentials of golden, colorless and non-chromated zinc-aluminium alloy deposits was observed. It was found that rest potential was slightly increased with the increase in the concentration of aluminium chloride, only in the case of golden chromating. The rest potential of colorless chromated zinc-aluminium deposits on mild steel were observed to have no correlation with aluminium chloride concentration. The abrasion resistance of colorless chromating was better than golden chromating. (author)

  2. Damage sensing and mechanical characteristics of CFRP strengthened steel plate

    Science.gov (United States)

    Mieda, Genki; Nakano, Daiki; Fuji, Yuya; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro; Matsui, Takahiro; Ochi, Yutaka; Matsumoto, Yukihiro

    2017-10-01

    In recent years, a large number of structures that were built during the period of high economic growth in Japan is beginning to show signs of aging. For example, the structural performance of steel structures has degraded due to corrosion. One measure that has been proposed and studied to address this issue is the adhesive bonding method, which can be used to repair and reinforce these structures. However, this method produces brittle fracture in the adhesive layer and is difficult to maintain after bonding. To solve the problem faced by this method, a clarification of the mechanical properties inside the adhesive is necessary. Then this background, a fiber Bragg grating (FBG) sensor has been used in this study. This sensor can be embedded within the building material that needs repairing and reinforcing because an FBG sensor is extremely small. Eventually based on this, a three-point bending test of a carbon fiber reinforced plastic (CFRP) strengthened steel plate that was embedded with an FBG sensor was conducted. This paper demonstrates that an FBG sensor is effectively applicable for sensing when damage occurs.

  3. 75 FR 29976 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final...

    Science.gov (United States)

    2010-05-28

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-475-826] Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final Results of Antidumping Duty Administrative...-quality steel plate products from Italy. See Certain Cut-to-Length Carbon-Quality Steel Plate Products...

  4. 78 FR 29113 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Science.gov (United States)

    2013-05-17

    ...-Quality Steel Plate Products From the Republic of Korea: Final Results of Antidumping Duty Administrative... administrative review of the antidumping duty order on certain cut-to-length carbon-quality steel plate products... duty order on certain cut-to-length carbon-quality steel plate products from the Republic of Korea...

  5. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    Science.gov (United States)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  6. Stålplader gav dobbelt bæreevne (Steel plates doubled the load bearing capacity)

    DEFF Research Database (Denmark)

    Nielsen, Jan Broch

    1999-01-01

    Abstract from an examination of motor road bridge beams reinforced with steel plates on the sides and bottom. The plates doubled the load bearing capacity of the beams.......Abstract from an examination of motor road bridge beams reinforced with steel plates on the sides and bottom. The plates doubled the load bearing capacity of the beams....

  7. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  8. Experimental study on behavior of RC panels covered with steel plates subjected to missile impact

    International Nuclear Information System (INIS)

    Jun Hashimoto; Katsuki Takiguchi; Koshiro Nishimura; Kazuyuki Matsuzawa; Mayuko Tsutsui; Yasuhiro Ohashi; Isao Kojima; Haruhiko Torita

    2005-01-01

    This paper describes an experimental study on the behavior of concrete panels with steel plate subjected to missile impact. Two tests were carried out, divided in accordance with the types of projectile, non-deformable and deformable. In all, 40 specimens of 750 mm square were prepared. The panel specimen was suspended vertically by two steel wire ropes to allow free movement after projectile impact, and was subjected to a projectile. As a result, it is confirmed that a RC panel with steel plate on its back side has higher impact resistance performance than a RC panel and that thickness of concrete panel, thickness of steel plate and the impact velocity of the projectile have a great effect on the failure modes of steel concrete panels. Moreover, based on the experimental results, the quantitative evaluation method for impact resistance performance of RC panels covered with steel plates is examined. The formula for perforation velocity of a half steel concrete panel, proposed in accordance with the bulging height, is effective to evaluate the impact resistance performance of RC panels with steel plates. (authors)

  9. Corrosion Behaviour of Nickel Plated Low Carbon Steel in Tomato Fluid

    Directory of Open Access Journals (Sweden)

    Oluleke OLUWOLE

    2010-12-01

    Full Text Available This research work investigated the corrosion resistance of nickel plated low carbon steel in tomato fluid. It simulated the effect of continuous use of the material in a tomato environment where corrosion products are left in place. Low carbon steel samples were nickel electroplated at 4V for 20, 25, 30 and 35 mins using Watts solution.The plated samples were then subjected to tomato fluid environment for for 30 days. The electrode potentials mV (SCE were measured every day. Weight loss was determined at intervals of 5 days for the duration of the exposure period. The result showed corrosion attack on the nickel- plated steel, the severity decreasing with the increasing weight of nickel coating on substrate. The result showed that thinly plated low carbon steel generally did not have any advantage over unplated steel. The pH of the tomato solution which initially was acidic was observed to progress to neutrality after 4 days and then became alkaline at the end of the thirty days test (because of corrosion product contamination of the tomatocontributing to the reduced corrosion rates in the plated samples after 10 days. Un-plated steel was found to be unsuitable for the fabrication of tomato processing machinery without some form of surface treatment - thick nickel plating is suitable as a protective coating in this environment.

  10. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  11. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  12. Digital image rectification tool for metrification of gusset plate connections in steel truss bridges.

    Science.gov (United States)

    2009-03-01

    A method was developed to obtain dimensional data from photographs for analyzing steel truss gusset plate : connections. The method relies on a software application to correct photographic distortion and to scale the : photographs for analysis. The a...

  13. Design Review Report for Concrete Cover Block Replaced by Steel Plate

    Energy Technology Data Exchange (ETDEWEB)

    JAKA, O.M.

    2000-07-27

    The design for the steel cover plates to replace concrete cover blocks for U-109 was reviewed and approved in a design review meeting. The design for steel plates to replace concrete blocks were reviewed and approved by comparison and similarity with U-109 for the following additional pits: 241-U-105. 241-I-103, 241-Ax-101. 241-A-101, 241-SX-105, 241-S-A, 241-S-C, 241-SX-A.

  14. Development of improved SGV480 steel plate for containment vessel in PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Norioki [Advanced Nuclear Equipment Research Inst., Tokyo (Japan); Morikage, Yasushi; Okayama, Yutaka; Higashikubo, Tomohiro

    2001-01-01

    When a nuclear containment vessel made of steel plate at PWR plants in Japan is produced, SGV480 steel plate made by annealing method according to JIS G3118 is usually used in main. And, when thickness of welding portion of the vessel is larger than 38 mm, as heat treatment after welding is regulated to carry out according to the ministerial ordinance, it is difficult in actual to carry out the heat treatment of the actual welded portions. In a leading plant, approval of welding using a special method without heat treatment less than 47.25 mm of SGV480 carbon steel plate for JIS G3118 middle and ordinary pressure vessel was carried out to supply it for actual use. And, it is required for protection of welding fracture to carry out pre-heat treatment before welding. Because of increasing plate thickness requiring for lower temperature and more seismic resistance in construction condition, in order to produce a containment vessel without heat treatment after welding, more toughness is required for using material and welded portion. Therefore, a new SGV480 steel plate was developed by using TMCP method of modern steel manufacturing technology, to establish lower carbon equivalence and finer texture with upgrading of both toughness and weldability, without heat treatment after welding and pre-heat treatment before welding, at the Shin-Nippon Steel Co, Ltd. and Kawasaki Steel, Co. Ltd., respectively. (G.K.)

  15. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries

    International Nuclear Information System (INIS)

    Richards, Justin Frederick

    2015-01-01

    of a pore in the coatings, where higher concentrations of metallic carbides are assumed to catalyze hydrogen evolution. SECM measurements proved to be an useful and powerful tool to investigate corrosion at a-C:H:Me coatings at defects which cannot be resolved by light microscopic measurements. The validation of metallic substrates coated with a 6,61 μm a-C:H:Ti (20 at % Ti) on an coldrolled stainless steel strip (1.4301) showed acceptable performance in real laboratory cells. Despite the fact of showing a faster decreasing cell efficiency than the graphite composite plates, the a-C:H:Ti coatings proved to affect the hydrogen evolution overpotential less than the graphite material when cathodically stressed. Although the defect density and size of an a-C:H:Ti coatings on 1.4301 stainless steel has to be reduced, the mechanical properties and also their possibility to be mass produced showed that coated metallic bipolar plates can be an alternative bipolar plate material for all-vanadium redox flow batteries.

  16. Sensitivity and statistical analysis within the elaboration of steel plated girder resistance

    Czech Academy of Sciences Publication Activity Database

    Melcher, J.; Škaloud, Miroslav; Kala, Z.; Karmazínová, M.

    2009-01-01

    Roč. 5, č. 2 (2009), s. 120-126 ISSN 1816-112X. [International conf. on steel and aluminium structures /6./. Oxford, 24.06.2007-27.06.2007] Institutional research plan: CEZ:AV0Z20710524 Keywords : steel structures * fatigue * sensitivity * imperfection * plated girder Subject RIV: JM - Building Engineering

  17. Failure analysis of stainless steel femur fixation plate.

    Science.gov (United States)

    Hussain, P B; Mohammad, M

    2004-05-01

    Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.

  18. 77 FR 21527 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Science.gov (United States)

    2012-04-10

    ... from the Republic of Korea. The review covers one manufacturer/ exporter. The period of review is...-Quality Steel Plate Products From the Republic of Korea: Final Results of Antidumping Duty Administrative... duty order on certain cut-to-length carbon-quality steel plate products (CTL plate) from the Republic...

  19. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Turan, Cabir; Cora, Ömer Necati; Koç, Muammer

    2013-12-01

    In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.

  20. Ultra-Low Carbon Bainitic Steels for Heavy Plate Applications

    Science.gov (United States)

    1990-12-01

    these steels. The CCT diagrams 7 of steels typical of the HY grades indicate that the nose of the proeutectoid ferrite/pearlite reactions is located...austenite, carbides, and martensite. An example of the type of CCT diagram for one of the steels used in this investigation is presented in Figure 12...introduce a "bay" of unstable austenite which acts to separate the ferrite "nose" from the bainite/martensite regions on TTT or CCT diagrams , see Figure

  1. Influences of bipolar plate channel blockages on PEM fuel cell performances

    International Nuclear Information System (INIS)

    Heidary, Hadi; Kermani, Mohammad J.; Dabir, Bahram

    2016-01-01

    Highlights: • Effect of partial- or full-blockage of PEMFC flow channels is numerically studied. • The anode blockage does not show any positive effects on cell performance. • Full blockages, despite higher pressure drop, better enhance net electrical power. • Additions of blocks more than five do not improve the cell performance. • Full blockage of cathode channels with five blocks enhances the net power by 30%. - Abstract: In this paper, the effect of partial- or full-block placement along the flow channels of PEM fuel cells is numerically studied. Blockage in the channel of flow-field diverts the flow into the gas diffusion layer (GDL) and enhances the mass transport from the channel core part to the catalyst layer, which in turn improves the cell performance. By partial blockage, only a part of the channel flow is shut off. While in full blockage, in which the flow channel cross sections are fully blocked, the only avenue left for the continuation of the gas is to travel over the blocks via the porous zone (GDL). In this study, a 3D numerical model consisting of a 9-layer PEM fuel cell is performed. A wide spectrum of numerical studies is performed to study the influences of the number of blocks, blocks height, and anode/cathode-side flow channel blockage. The results show that the case of full blockage enhances the net electrical power more than that of the partial blockage, in spite of higher pressure drop. Performed studies show that full blockage of the cathode-side flow channels with five blocks along the 5 cm channel enhances the net power by 30%. The present work provides helpful guidelines to bipolar plate manufacturers.

  2. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    Science.gov (United States)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  3. Buckling analysis of partially corroded steel plates with irregular ...

    Indian Academy of Sciences (India)

    Department of Ocean Engineering, AmirKabir University of Technology, ... could yield some acceptance criteria to assist surveyors or designers in repair and .... Finite element model of a partially both-sided corroded plate (shell elements).

  4. Cytotoxicity difference of 316L stainless steel and titanium reconstruction plate

    OpenAIRE

    Ni Putu Mira Sumarta; Coen Pramono Danudiningrat; Ester Arijani Rachmat; Pratiwi Soesilawati

    2011-01-01

    Background: Pure titanium is the most biocompatible material today and used as a gold standard for metallic implants. However, stainless steel is still being used as implants because of its strength, ductility, lower price, corrosion resistant and biocompatibility. Purpose: This study was done to revealed the cytotoxicity difference between reconstruction plate made of 316L stainless steel and of commercially pure (CP) titanium in baby hamster kidney-21 (BHK-21) fibroblast culture through MTT...

  5. Mechanical Behavior of BFRP-Steel Composite Plate under Axial Tension

    Directory of Open Access Journals (Sweden)

    Yunyu Li

    2014-06-01

    Full Text Available Combining the advantages of basalt fiber-reinforced polymer (BFRP material and steel material, a novel BFRP-steel composite plate (BSP is proposed, where a steel plate is sandwiched between two outer BFRP laminates. The main purpose of this research is to investigate the mechanical behavior of the proposed BSP under uniaxial tension and cyclic tension. Four groups of BSP specimens with four different BFRP layers and one control group of steel plate specimens were prepared. A uniaxial tensile test and a cyclic tensile test were conducted to determine the initial elastic modulus, postyield stiffness, yield strength, ultimate bearing capacity and residual deformation. Test results indicated that the stress-strain curve of the BSP specimen was bilinear prior to the fracture of the outer BFRP, and the BSP specimen had stable postyield stiffness and small residual deformation after the yielding of the inner steel plate. The postyield modulus of BSP specimens increased almost linearly with the increasing number of outer BFRP layers, as well as the ultimate bearing capacity. Moreover, the predicted results from the selected models under both monotonic tension and cyclic tension were in good agreement with the experimental data.

  6. The Effect of the Width of an Aluminum Plate on a Bouncing Steel Ball

    Directory of Open Access Journals (Sweden)

    Christine Hathaway

    2013-01-01

    Full Text Available The effect of the distance between clamping supports of an aluminum alloy plate on the coefficient of restitution of a bouncing steel ball was investigated. The plate was supported on two wooden blocks with a meter stick secured on either side. A steel ball was dropped from a constant height and a motion detector was used to find the coefficient of restitution. Measurements were made with the wooden blocks at a range of distances. It was found that as the distance between the wooden blocks increased, the coefficient of restitution decreased linearly

  7. Design proposal for ultimate shear strength of tapered steel plate girders

    Directory of Open Access Journals (Sweden)

    A. Bedynek

    2017-03-01

    Full Text Available Numerous experimental and numerical studies on prismatic plate girders subjected to shear can be found in the literature. However, the real structures are frequently designed as non-uniform structural elements. The main objective of the research is the development of a new proposal for the calculation of the ultimate shear resistance of tapered steel plate girders taking into account the specific behaviour of such members. A new mechanical model is presented in the paper and it is used to show the differences between the behaviour of uniform and tapered web panels subjected to shear. EN 1993-1-5 design specifications for the determination of the shear strength for rectangular plates are improved in order to assess the shear strength of tapered elements. Numerical studies carried out on tapered steel plate girders subjected to shear lead to confirm the suitability of the mechanical model and the proposed design expression.

  8. Experimental observations and modelling of thermal history within a steel plate during water jet impingement

    International Nuclear Information System (INIS)

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.; Lockhart, G.T.

    2002-01-01

    In order to investigate heat transfer of steel plates under a water jet impingement and to further simulate runout table operation in a hot strip mill, a full-scale pilot runout table facility was designed and constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement by one circular water jet from an industrial header. Recorded visual observations at the impinging surface were obtained. The effects of cooling water temperature and impingement velocity on the heat transfer from a steel plate were studied. A two-dimensional finite element method-based transient inverse heat conduction model was developed. With the help of the model, heat fluxes and heat transfer coefficients along the impinging surface under various cooling conditions were calculated. The microstructural evolution of the steel plate was also investigated for the varying cooling conditions. Samples were obtained from each plate, polished, etched and then photographed. (author)

  9. Review on Electroless Plating Ni-P Coatings for Improving Surface Performance of Steel

    Science.gov (United States)

    Zhang, Hongyan; Zou, Jiaojuan; Lin, Naiming; Tang, Bin

    2014-04-01

    Electroless plating has been considered as an effective approach to provide protection and enhancement for metallic materials with many excellent properties in engineering field. This paper begins with a brief introduction of the fundamental aspects underlying the technological principles and conventional process of electroless nickel-phosphorus (Ni-P) coatings. Then this paper discusses different electroless nickel plating, including binary plating, ternary composite plating and nickel plating with nanoparticles and rare earth, with the intention of improving the surface performance on steel substrate in recent years in detail. Based on different coating process, the varied features depending on the processing parameters are highlighted. Separately, diverse preparation techniques aiming at improvement of plating efficiency are summarized. Moreover, in view of the outstanding performance, such as corrosion resistance, abrasive resistance and fatigue resistance, this paper critically reviews the behaviors and features of various electroless coatings under different conditions.

  10. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  11. Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting

    Science.gov (United States)

    Lee, Hyoung-Jun; Thomas, Brian G.; Kim, Seon-Hyo

    2016-04-01

    The slide-gate plates in a cassette assembly control the steel flow through the tundish nozzle, and may experience through-thickness cracks, caused by thermal expansion and/or mechanical constraint, leading to air aspiration and safety concerns. Different mechanisms for common and rare crack formation are investigated with the aid of a three-dimensional finite-element model of thermal mechanical behavior of the slide-gate plate assembly during bolt pretensioning, preheating, tundish filling, casting, and cooling stages. The model was validated with previous plant temperature measurements of a ladle plate during preheating and casting, and then applied to a typical tundish-nozzle slide-gate assembly. The formation mechanisms of different types of cracks in the slide-gate plates are investigated using the model and evaluated with actual slide-gate plates at POSCO. Common through-thickness radial cracks, found in every plate, are caused during casting by high tensile stress on the outside surfaces of the plates, due to internal thermal expansion. In the upper plate, these cracks may also arise during preheating or tundish filling. Excessive bolt tightening, combined with thermal expansion during casting may cause rare radial cracks in the upper and lower plates. Rare radial and transverse cracks in middle plate appear to be caused during tundish filling by impingement of molten steel on the middle of the middle plate that generates tensile stress in the surrounding refractory. The mechanical properties of the refractory, the bolt tightening conditions, and the cassette/plate design are all important to service life.

  12. Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Li-gang; Li, Ai-ju; Yin, Qiang [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Shandong Key Laboratory of Engineering Ceramics, Shandong University, Jinan 250061 (China); Wang, Wei-qiang [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Lin, Heng; Zhao, Yi-bo [School of Material Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-03-15

    In the paper, a kind of polyphenylene sulfide (PPS) resin/graphite (G) composite for bipolar plate was prepared by using the PPS resin as adhesive and simple hot pressing. The influences of the resin content, the molding temperature and holding time on the conductivity and the bending strength of the PPS/G composite bipolar plate were investigated firstly and then the optimum content and the preparing conditions of the composite were obtained. The experimental results show that the electrical conductivity decreases and the bending strength reveals a serrated variation with increase in PPS resin content; when the holding time is certain, the conductivity decreases and the bending strength increases with the molding temperature increasing. The experimental results further show that the effect of the holding time on the properties of the composite is different at different molding temperatures. The PPS/G composite with 20% PPS resin content has electrical conductivity of 118.9 S cm{sup -1} and bending strength of 52.4 MPa when it molded at 380 C for 30 min, and has electrical conductivity of 105 S cm{sup -1}, bending strength of 55.7 MPa when it molded at 390 C for 30 min. The properties of the composites can meet the requirements of United States Department of Energy (DOE). (author)

  13. Effect of Al and N on the toughness of heavy section steel plates

    International Nuclear Information System (INIS)

    Kikutake, Tetsuo; Tokunaga, Yoshikuni; Nakao, Hitoji; Ito, Kametaro; Takaishi, Shogo.

    1988-01-01

    The effect of Al and N on the notch toughness and tensile strength of heavy section pressure vessel steel plates is investigated. Notch toughness of steel A533B (Mn-Mo-Ni), which has mixed microstructure of ferrite and bainite, is drastically changed by the ratio of sol.N/sol.Al. With metallurgical observations, it is revealed that AlN morphology is influenced by the ratio of sol.N/sol.Al through the level of solute Al(C Al ). At the heat treatment of heavy section steel plate, AlN shows OSTWALD ripening and its speed depends upon C Al . When Al is added (Al ≥ 0.010%) in steel and sol.N/sol.Al ≤ 0.5, C Al remains low. This prevents AlN ripening, and brings fine austenite grain size and high toughness. On the other hand, when sol.N/sol.Al Al becomes high and this gives poor toughness through coarse AlN precipitates and coarse austenite grain. Therefore, controll of sol.N/sol.Al over 0.5 is favorable to keep high toughness in A533B steel. In steel A387-22 (Cr-Mo) which has full bainitic microstructure, too fine austenite grain brings about poor hardenability, and polygonal ferrite, which brings about both poor strength and tughness, appears in microstructure. Then sol.N/sol.Al < 0.5 is better to give high hardenability in steel A387-22. (author)

  14. Capacity limits in columns pulsed with stain steel perforated plates

    International Nuclear Information System (INIS)

    Maset, E.R.; Acosta, E.; Di Piano, M.; Maymo, J.A.

    1987-01-01

    This paper includes part of the second stage of the pulsed columns development program, using a water-nitric acid system as continuous phase and tri-n-butyl phosphate dissolved in kerosene at 30% v/v as disperse phase. Two kits of different geometry perforated plates (different diameter of perforation and free area percentage) were used. Due to the affinity importance of the plates' material with the continuous phase, in all the cases the continuous aqueous phase was used. The relation of flows varied, thus obtaining in each case a curve of characteristic 'flood'. The influence of the geometrical variables, the relation of flows, the medium acidity and the pulse's amplitude was applied in the capacity of the column. Besides, the dimensional correlation of Swift W.H. on the results obtained from 'flood' with both kits of plates to relate flows 1:1 and a minimum deviation was observed. (Author)

  15. 75 FR 4779 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Preliminary Results of...

    Science.gov (United States)

    2010-01-29

    ...-Quality Steel Plate Products From Italy: Preliminary Results of Antidumping Duty Administrative Review... administrative review of the antidumping duty order on certain cut-to-length carbon- quality steel plate products... that the Department conduct an administrative review of its sales and entries of subject merchandise...

  16. 75 FR 61699 - Stainless Steel Plate in Coils From Belgium, Italy, South Africa, South Korea, and Taiwan: Final...

    Science.gov (United States)

    2010-10-06

    ...-831, and A-583-830] Stainless Steel Plate in Coils From Belgium, Italy, South Africa, South Korea, and... steel plate in coils (SSPC) from Belgium, Italy, South Africa, South Korea, and Taiwan, pursuant to... sunset reviews of the antidumping duty orders on SSPC from Belgium, Italy, South Africa, South Korea, and...

  17. Effects of commercial cladding on the fracture behavior of pressure vessel steel plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Alexander, D.J.; Bolt, S.E.; Cook, K.V.; Corwin, W.R.; Oland, B.C.; Nanstad, R.K.; Robinson, G.C.

    1988-01-01

    The objective of this program is to determine the effect, if any, of stainless steel cladding upon the propagation of small surface cracks subjected to stress states similar to those produced by thermal shock conditions. Preliminary results from testing at temperature 10 deg. C and 60 deg. C below NDT have shown that (1) a tough surface layer (cladding and/or HAZ) has arrested running flaws under conditions where unclad plates have ruptured, and (2) the residual load-bearing capacity of clad plates with large subclad flaws significantly exceeded that of an unclad plate. (author)

  18. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    Science.gov (United States)

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates

    Directory of Open Access Journals (Sweden)

    Emad Hosseinpour

    2015-01-01

    Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.

  20. 76 FR 53882 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Plate in Coils From...

    Science.gov (United States)

    2011-08-30

    ... Coils From Belgium, the Republic of Korea, South Africa, and Taiwan AGENCY: Import Administration... steel plate in coils (SSPC) from Belgium, the Republic of Korea (Korea), South Africa, and Taiwan would... and CVD orders would likely lead to a continuation or recurrence of material injury to an industry in...

  1. 76 FR 50495 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Science.gov (United States)

    2011-08-15

    ... Review] Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan Determinations On the... Africa, and Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time.\\2\\ The Commission further determines...

  2. 76 FR 54207 - Stainless Steel Plate in Coils From Italy: Revocation of Antidumping Duty Order

    Science.gov (United States)

    2011-08-31

    ... continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. See Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan, 76 FR 50495..., Italy, Korea, South Africa, and Taiwan pursuant to section 751(c) of the Act. See Initiation. On July 20...

  3. Mechanical System Analysis of C-Frame for Steel Plate Thickness Gauge

    International Nuclear Information System (INIS)

    Sri Sudadiyo

    2007-01-01

    Nuclear base instrument is not only applied in the area of research such as medical and agriculture sciences, but also in the field of industry especially for thickness gauge. To the present at the steel industry, the gauge that is applied to cut plate thickness using infra-red ray method, it cannot result in accurately data. To solve that case, it is developed a thickness gauge of steel plate by using gamma ray method that it is named C-Frame. This thickness gauge is hoped that it could control in cutting the steel plate by on-line, accurate, and safe, therefore, it could socialize the advanced technology in the nuclear field to support the production process in domestic industries (national industries). The present study yields the calculations of mechanical system of that C-Frame including structure, detector support, source container of radioisotope, and transmission system, be also computed by running Professional Microsoft Fortran Version 5.10, NISA-II program, and AutoCAD program. From the obtained results could be known that the design meets the requirement, so that could be employed properly to measure the thickness of plate in the steel industries. (author)

  4. Modeling of laser welding of steel and titanium plates with a composite insert

    Science.gov (United States)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  5. Hydriding of steel in cyanide electrolytes of cadmium plating

    International Nuclear Information System (INIS)

    Sokol'skaya, N.B.; Maksimchuk, V.P.

    1977-01-01

    Hydrogenation of steel in cyanide electrolytes for cadmium deposition has been studied in a wide range of compositions. Also investigated have been the scattering capacity and polarization parameters of these electrolytes. The basic components are Cd 2+ and CH - ; besides that, Na 2 SO 4 x10H 2 O, NaOH and NiSO 4 x7H 2 O have been added to the electrolytes. Hydrogenation upon cadmium electrolytic deposition has been determined by the rate of hydrogen penetration through a steel membrane 0.5 mm thick. At the NaCN/Cd(CN) 2 ratio more than 2 the increase in sodium cyanide concentration in the electrolyte appreciably increases neither its hydrogenating and scattering capacity, nor cathodic polarization. The greatest scattering capacity and the highest hydrogenation is exhibited by diluted cadmium deposition elecctrolytes (CdO concentration 9-12 g/1), which prove particularly effective for deposition of regular coatings on complex shape articles. Cadmium deposition on high strength steels, however, should rather involve cyanide electrolytes with high cadmium concentration (50-60 g/1) in order to reduce hydrogenation

  6. Development and Technology of Large Thickness TMCP Steel Plate with 390MPA Grade Used for Engineering Machinery

    Science.gov (United States)

    Wang, Xiaoshu; Zhang, Zhijun; Zhang, Peng

    Recently, with the rapid upgrading of the equipment in the steel Corp, the rolling technology of TMCP has been rapidly developed and widely applied. A large amount of steel plate has been produced by using the TMCP technology. The TMCP processes have been used more and more widely and replaced the heat treatment technology of normalizing, quenching and tempering heat process. In this paper, low financial input is considered in steel plate production and the composition of the steel has been designed with low C component, a limited alloy element of the Nb, and certain amounts of Mn element. During the continuous casting process, the size of the continuous casting slab section is 300 mm × 2400 mm. The rolling technology of TMCP is controlled at a lower rolling and red temperature to control the transformation of the microstructure. Four different rolling treatments are chosen to test its effects on the 390MPa grade low carbon steel of bainitic microstructure and properties. This test manages to produce a proper steel plate fulfilling the standard mechanical properties. Specifically, low carbon bainite is observed in the microstructure of the steel plate and the maximum thickness of steel plate under this TMCP technology is up to 80mm. The mechanical property of the steel plate is excellent and the KV2 at -40 °C performs more than 200 J. Moreover, the production costs are greatly reduced when the steel plate is produced by this TMCP technology when replacing the current production process of quenching and tempering. The low cost steel plate could well meet the requirements of producing engineering machinery in the steel market.

  7. Prediction of deformations of steel plate by artificial neural network in forming process with induction heating

    International Nuclear Information System (INIS)

    Nguyen, Truong Thinh; Yang, Young Soo; Bae, Kang Yul; Choi, Sung Nam

    2009-01-01

    To control a heat source easily in the forming process of steel plate with heating, the electro-magnetic induction process has been used as a substitute of the flame heating process. However, only few studies have analyzed the deformation of a workpiece in the induction heating process by using a mathematical model. This is mainly due to the difficulty of modeling the heat flux from the inductor traveling on the conductive plate during the induction process. In this study, the heat flux distribution over a steel plate during the induction process is first analyzed by a numerical method with the assumption that the process is in a quasi-stationary state around the inductor and also that the heat flux itself greatly depends on the temperature of the workpiece. With the heat flux, heat flow and thermo-mechanical analyses on the plate to obtain deformations during the heating process are then performed with a commercial FEM program for 34 combinations of heating parameters. An artificial neural network is proposed to build a simplified relationship between deformations and heating parameters that can be easily utilized to predict deformations of steel plate with a wide range of heating parameters in the heating process. After its architecture is optimized, the artificial neural network is trained with the deformations obtained from the FEM analyses as outputs and the related heating parameters as inputs. The predicted outputs from the neural network are compared with those of the experiments and the numerical results. They are in good agreement

  8. Numerical simulation of projectile impact on mild steel armour plates using LS-DYNA, Part II: Parametric studies

    OpenAIRE

    Raguraman, M; Deb, A; Gupta, NK; Kharat, DK

    2008-01-01

    In Part I of the current two-part series, a comprehensive simulation-based study of impact of Jacketed projectiles on mild steel armour plates has been presented. Using the modelling procedures developed in Part I, a number of parametric studies have been carried out for the same mild steel plates considered in Part I and reported here in Part II. The current investigation includes determination of ballistic limits of a given target plate for different projectile diameters and impact velociti...

  9. The Development and Microstructure Analysis of High Strength Steel Plate NVE36 for Large Heat Input Welding

    Science.gov (United States)

    Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li

    In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.

  10. Experimental study and calculation of boiling heat transfer on steel plates during runout table operation

    International Nuclear Information System (INIS)

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.

    2002-01-01

    Within a hot strip steel mill, red hot steel is hot rolled into a long continuous slab that is led onto what is called the runout table. Temperatures of the steel at the beginning of this table are around 900 o C. Above and below the runout table are banks of water jets, sprays or water curtains that rapidly cool the steel slab. The heat transfer process itself may be considered one of the most complicated in the industrial world. The cooling process that occurs on the runout table is crucial and governs the final mechanical properties and flatness of a steel strip. However, very limited data of industrial conditions has been available and that which is available is poorly understood. To study heat transfer during runout table cooling, an industrial scale pilot runout table facility was constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement cooling by one circular water jet from industrial headers. The effect of cooling water temperature and initial steel plate temperature as well as varying water jet diameters on heat transfer was systematically investigated. A two-dimensional finite element scheme based inverse heat conduction model was developed to calculate surface heat transfer coefficients along the impinging surface. Heat flux curves at the stagnation area were obtained for selected tests. A quantitative relationship between adjustable processing parameters and heat transfer coefficients along the impinging surface during runout table operation is discussed. The results of the study were used to upgrade an extensive process model developed at UBC. The model ties in the cooling rate and hence two dimensional temperature gradients to the resulting microstructure and final mechanical properties of the steel. This process model is widely used by major steel industries in Canada and the United States. (author)

  11. Development and Application of TMCP Steel Plate in Coal Mining Machinery

    Science.gov (United States)

    Yongqing, Zhang; Liandeng, Yao; aimin, Guo; Sixin, Zhao; Guofa, Wang

    Coal, as the most major energy in China, accounted for about 70% of China's primary energy production and consumption. While the percentage of coal as the primary energy mix would drop in the future due to serious smog pollution partly resulted from coal-burning, the market demand of coal will maintain because the progressive process of urbanization. In order to improve productivity and simultaneously decrease safety accidents, fully-mechanized underground mining technology based on complete equipment of powered support, armored face conveyor, shearer, belt conveyor and road-header have obtained quick development in recent years, of which powered support made of high strength steel plate accounts for 65 percent of total equipment investment, so, the integrated mechanical properties, in particular strength level and weldability, have a significant effects on working service life and productivity. Take hydraulic powered supports as example, this paper places priority to introduce the latest development of high strength steel plates of Q550, Q690 and Q890 for powered supports, as well as metallurgical design conception and production cost-benefits analysis between QT plate and TMCP plate. Through production and application practice, TMCP or DQ plate demonstrate great economic advantages compared with traditional QT plate.

  12. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  13. Characterization of Thermal and Mechanical Properties of Polypropylene-Based Composites for Fuel Cell Bipolar Plates and Development of Educational Tools in Hydrogen and Fuel Cell Technologies

    Science.gov (United States)

    Lopez Gaxiola, Daniel

    2011-01-01

    In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…

  14. Fabrication of CNT Dispersion Fluid by Wet-Jet Milling Method for Coating on Bipolar Plate of Fuel Cell

    Directory of Open Access Journals (Sweden)

    Anas Almowarai

    2015-01-01

    Full Text Available Water based carbon nanotube (CNT dispersion was produced by wet-jet milling method. Commercial CNT was originally agglomerated at the particle size of less than 1 mm. The wet-jet milling process exfoliated CNTs from the agglomerates and dispersed them into water. Sedimentation of the CNTs in the dispersion fluid was not observed for more than a month. The produced CNT dispersion was characterized by the SEM and the viscometer. CNT/PTFE composite film was formed with the CNT dispersion in this study. The electrical conductivity of the composite film increased to 10 times when the CNT dispersion, which was produced by the wet-jet milling method, was used as a constituent of the film. Moreover, the composite film was applied to bipolar plate of fuel cell and increased the output power of the fuel cell to 1.3 times.

  15. Studies on the temperature distribution of steel plates with different paints under solar radiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Chen, Zhihua; Chen, Binbin; Xiao, Xiao; Wang, Xiaodun

    2014-01-01

    Thermal effects on steel structures exposed to solar radiation are significant and complicated. Furthermore, the solar radiation absorption coefficient of steel surface with different paintings is the main factor affecting the non-uniform temperature of spatial structures under solar radiation. In this paper, nearly two hundreds steel specimens with different paintings were designed and measured to obtain their solar radiation absorption coefficients using spectrophotometer. Based on the test results, the effect of surface color, painting type, painting thickness on the solar radiation absorption coefficient was analyzed. The actual temperatures under solar radiation for all specimens were also measured in summer not only to verify the absorption coefficient but also provide insight for the temperature distribution of steel structures with different paintings. A numerical simulation and simplified formula were also conducted and verified by test, in order to study the temperature distribution of steel plates with different paints under solar radiation. The results have given an important reference in the future research of thermal effect of steel structures exposed to solar radiation. - Highlights: • Solar radiation absorptions for steel with different paintings were measured. • The temperatures of all specimens under solar radiation were measured. • The effect of color, thickness and painting type on solar absorption was analyzed. • A numerical analysis was conducted and verified by test data. • A simplified formula was deduced and verified by test data

  16. Numerical Study on Ultimate Behaviour of Bolted End-Plate Steel Connections

    Directory of Open Access Journals (Sweden)

    R.E.S. Ismail

    Full Text Available Abstract Bolted end-plate steel connections have become more popular due to ease of fabrication. This paper presents a three dimension Finite Element Model (FEM, using the multi-purpose software ABAQUS, to study the effect of different geometrical parameters on the ultimate behavior of the connection. The proposed model takes into account material and geometrical non-linearities, initial imperfection, contact between adjacent surfaces and the pretension force in the bolts. The Finite Element results are calibrated with published experimental results ''briefly reviewed in this paper'' and verified that the numerical model can simulate and analyze the overall and detailed behavior of different types of bolted end-plate steel connections. Using verified FEM, parametric study is then carried out to study the ultimate behavior with variations in: bolt diameter, end-plate thickness, length of column stiffener, angle of rib stiffener. The results are examined with respect to the failure modes, the evolution of the resistance, the initial stiffness, and the rotation capacity. Finally, the ultimate behavior of the bolted end-plate steel connection is discussed in detail, and recommendations for the design purpose are made.

  17. Improving electron beam weldability of heavy steel plates for PWR-steam generator

    International Nuclear Information System (INIS)

    Tomita, Yukio; Mabuchi, Hidesato; Koyama, Kunio

    1996-01-01

    Installation and replacement of many PWR-steam generators are planned inside and outside Japan. The steel plates for steam generators are heavy in thickness, and increase the number of welding passes and prolong the welding time. Electron beam welding (EBW) can greatly reduce the welding period compared with conventional welding methods (narrow-gap gas metal arc welding (GMAW) and submerged arc welding (SAW)). The problems in applying EBW are to prevent weld defects and to improve the toughness of the weld metal. Defect-free welding procedures were successfully established even in thick steel plates. The factors that deteriorate weld-metal (WM) toughness of EBW were investigated. The manufacturing process, which utilizes a new secondary refining process at steelmaking and a high-torque mill at plate mill in actual mass-production, were established. EBW base metal and WM have better properties including fracture toughness than those of conventional welding processes. As a result, an application of EBW to the fabrication of PWR-steam generators has become possible. Large amounts of ASTM A533 Gr B Cl 2 (JIS SQV2B) steel plates in actual PWR-steam generators have come to be produced (more than 1,500 ton) by applying EBW. (author)

  18. Development and characterisation of electrically conductive polymeric-based blends for proton exchange membrane fuel cell bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Bouatia, S.; Mighri, F. [Center for Applied Research on Polymers and Composites, CREPEC, Department of Chemical Engineering, Laval University, Quebec (Canada); Bousmina, M. [Center for Applied Research on Polymers and Composites, CREPEC, Department of Chemical Engineering, Laval University, Quebec (Canada); Canada Research Chair on Polymer Physics and Nanomaterials, Department of Chemical Engineering, Laval University, Quebec (Canada); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2008-04-15

    The main objective of this work was to develop films with controlled dimensions for proton exchange membrane fuel cell (PEMFC) bipolar plates (BPPs) using the twin-screw extrusion process. These films consisted of a low-viscosity polyethylene terephthalate (PET) in which a mixture of high specific surface area carbon black (CB) and synthetic flake graphite (GR) were dispersed. A third conductive additive, consisting of silver-coated glass particles (SCG) or multi-walled carbon nanotubes (MWCNT), was also added at a low concentration (5 wt.-%) in order to study its synergistic effect on the PET-based blend electrical conductivity. As the developed blends had to meet properties suitable for PEMFC bipolar plate applications, they were characterised for their electrical through-plane resistivity, mechanical properties and oxygen permeability. Through-plane electrical resistivity of about 0.3 {omega}.cm and oxygen permeation rate of 3.5 x 10{sup -8} cc cm{sup -2} s{sup -1} were obtained for only 30 wt.-% of a 60:40 mixture of CB/GR conductive additives. Although the substitution of 5 wt.-% of CB/GR by the same amount of MWCNT had no significant effect on BPPs' electrical resistivity, it helped to improve their mechanical properties and especially their oxygen permeation, which was decreased from 3.5 x 10{sup -8} cc cm{sup -2} s{sup -1} to around 0.6 x 10{sup -8} cc cm{sup -2}s{sup -1}. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Yang, Meijun; Zhang, Dongming

    2014-01-01

    The bipolar plate is an important component of the PEMFC (polymer electrolyte membrane fuel cell) because it supplies the pathway of electron flow between each unit cell. Fe–Ni–Cr alloy is considered as a good candidate material for bipolar plate, but it is limited to use as a bipolar plate due to its high ICR (interfacial contact resistance) and corrosion problem. In order to explore a cost-effective method on surface modification, various chemical and electrochemical treatments are performed on Fe–Ni–Cr alloy to acquire the effect of the surface modification on the ICR and corrosion behavior. The ICR and corrosion resistance of Fe–Ni–Cr alloy can be effectively controlled by the chemical treatment of immersion in the mixed acid solution with 10 vol% HNO 3 , 2 vol% HCl and 1 vol% HF for 10 min at 65 °C and then was placed in 30 vol% HNO 3 solution for 5 min. The chemical treatment is more effective on reducing ICR and improving corrosion resistance than that of electrochemical methods (be carried out in the 2 mol/L H 2 SO 4 solution with the electrical potential from −0.4 V to 0.6 V) for Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. - Highlights: • The procedure of the surface treatments on Fe–Ni–Cr alloy as bipolar plate was described in detail. • Effects of various surface treatments on the interfacial contact resistivity and corrosion behavior were discussed. • The mechanism of the surface modification was particularly analyzed

  20. Laser cut hole matrices in novel armour plate steel for appliqué battlefield vehicle protection

    OpenAIRE

    Thomas, Daniel J.

    2016-01-01

    During this research, experimental rolled homogeneous armour steel was cast, annealed and laser cut to form an appliqué plate. This Martensitic–Bainitic microstructure steel grade was used to test a novel means of engineering lightweight armour. It was determined that a laser cutting speed of 1200 mm/min produced optimum hole formations with limited distortion. The array of holes acts as a double-edged solution, in that they provide weight saving of 45%, providing a protective advantage and i...

  1. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.

    Science.gov (United States)

    Krischak, G D; Gebhard, F; Mohr, W; Krivan, V; Ignatius, A; Beck, A; Wachter, N J; Reuter, P; Arand, M; Kinzl, L; Claes, L E

    2004-03-01

    Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice. A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM). With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction. We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be

  2. Cytotoxicity difference of 316L stainless steel and titanium reconstruction plate

    Directory of Open Access Journals (Sweden)

    Ni Putu Mira Sumarta

    2011-03-01

    Full Text Available Background: Pure titanium is the most biocompatible material today and used as a gold standard for metallic implants. However, stainless steel is still being used as implants because of its strength, ductility, lower price, corrosion resistant and biocompatibility. Purpose: This study was done to revealed the cytotoxicity difference between reconstruction plate made of 316L stainless steel and of commercially pure (CP titanium in baby hamster kidney-21 (BHK-21 fibroblast culture through MTT assay. Methods: Eight samples were prepared from reconstruction plates made of stainless steel type 316L grade 2 (Coen’s reconstruction plate® that had been cut into cylindrical form of 2 mm in diameter and 3 mm long. The other one were made of CP titanium (STEMA Gmbh® of 2 mm in diameter and 2,2 mm long; and had been cleaned with silica paper and ultrasonic cleaner, and sterilized in autoclave at 121° C for 20 minutes.9 Both samples were bathed into microplate well containing 50 μl of fibroblast cells with 2 x 105 density in Rosewell Park Memorial Institute-1640 (RPMI-1640 media, spinned at 30 rpm for 5 minutes. Microplate well was incubated for 24 and 48 hours in 37° C. After 24 hours, each well that will be read at 24 hour were added with 50 μl solution containing 5mg/ml MTT reagent in phosphate buffer saline (PBS solutions, then reincubated for 4 hours in CO2 10% and 37° C. Colorometric assay with MTT was used to evaluate viability of the cells population after 24 hours. Then, each well were added with 50 μl dimethyl sulfoxide (DMSO and reincubated for 5 minutes in 37° C. the wells were read using Elisa reader in 620 nm wave length. Same steps were done for the wells that will be read in 48 hours. Each data were tabulated and analyzed using independent T-test with significance of 5%. Results: This study showed that the percentage of living fibroblast after exposure to 316L stainless steel reconstruction plate was 61.58% after 24 hours and 62

  3. Underwater cutting of stainless steel plate and pipe for dismantling reactor pressure vessels

    International Nuclear Information System (INIS)

    Hamasaki, M.; Tateiwa, F.; Kanatani, F.; Yamashita, S.

    1982-01-01

    A consumable electrode water jet cutting technique is described. Satisfactory underwater cutting of 80mm stainless steel plate using a current of 2000A and at a water depth of 200mm has been demonstrated. The electrical requirements for this arc welding method applied to cutting were found to be approximately one third those required for conventional plasma arc cutting for the same thickness plate. An application of this technique might be found in the dismantling of atomic reactor pressure vessels, and parts of commercial atomic reactors. (author)

  4. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    Science.gov (United States)

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  5. Method of applying a coating to a steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, T; Murakami, S; Chihara, Y; Iijima, K

    1968-07-19

    An application of a coating material containing a radically or ionically polymerizable monomer that can be changed into a high molecular compound by irradiation with ionizing radiations is provided to protect steel from corrosion and the adhesion of organic material. In this irradiation, the radiation doses are not more than 30 Mrad. The coating material is at least one kind of vehicle selected from the group consisting of a radically or ionically polymerizable monomer, polymer, copolymer, or compound of this monomer. They are, for example, styrene, acrylate, methacrylate, vinyl pyridine and their derivatives, acrylonitrile, acrylamide, and other vinyl compounds, etc. The absorption doses may be 30 or less Mrad, but preferably in the range of from 10 to 1 Mrad. Advantages are that the auxiliary heating can be performed below 100/sup 0/C, and that hardening can be carried out below 50/sup 0/C. Furthermore, the irradiation time is shorter than 30 seconds; may kinds of vehicles can be used; and solvent is unnecessary. In one example, 15 parts of acrylamide, 40 parts of styrene and 45 parts of ethyl acrylate are copolymerized. This copolymer is dissolved into 100 parts of styrene and is mixed with 50 parts of rutile and 50 parts of yellow lead. The obtained vehicle is hardened with 10 Mrad. The coated film 30..mu.. thick shows no defects due to weathering after 3 months. In another example, a mixture of 80 parts of unsaturated polyester and 20 parts of ethylene dimethacrylate gives 3H by irradiation with 6 Mrad in inert gas.

  6. Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China

    International Nuclear Information System (INIS)

    Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui

    2008-01-01

    The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research

  7. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuhua, E-mail: yuhua.su@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Oikawa, Kenichi; Harjo, Stefanus; Shinohara, Takenao; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Zhang, Shuoyuan; Parker, Joseph Don [Neutron R& D Division, CROSS-Tokai, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Sato, Hirotaka [Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shiota, Yoshinori; Kiyanagi, Yoshiaki [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tomota, Yo [Research Center for Strategic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-10-15

    Neutron Bragg-edge transmission imaging makes it possible to quantitatively visualize the two-dimensional distribution of microstructure within a sample. In order to examine its application to engineering products, time-of-flight Bragg-edge transmission imaging experiments using a pulsed neutron source were performed for plastically bent plates composed of a ferritic steel and a duplex stainless steel. The non-homogeneous microstructure distributions, such as texture, crystalline size, phase volume fraction and residual elastic strain, were evaluated for the cross sections of the bent plates. The obtained results were compared with those by neutron diffraction and electron back scatter diffraction, showing that the Bragg-edge transmission imaging is powerful for engineering use.

  8. Development of a surface topography instrument for automotive textured steel plate

    Science.gov (United States)

    Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang

    2010-08-01

    The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.

  9. Analytical model development of an eddy-current-based non-contacting steel plate conveyance system

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.; Hwang, C.-C.

    2008-01-01

    A concise model for analyzing and predicting the quasi-static electromagnetic characteristics of an eddy-current-based non-contacting steel plate conveyance system has been developed. Confirmed by three-dimensional (3-D) finite element analysis (FEA), adequacy of the analytical model can be demonstrated. Such an effective approach, which can be conveniently used by the potential industries for preliminary system operational performance evaluations, will be essential for designers and on-site engineers

  10. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  11. Centralized Gap Clearance Control for Maglev Based Steel-Plate Conveyance System

    Directory of Open Access Journals (Sweden)

    GUNEY, O. F.

    2017-08-01

    Full Text Available The conveyance of steel-plates is one of the potential uses of the magnetic levitation technology in industry. However, the electromagnetic levitation systems inherently show nonlinear feature and are unstable without an active control. Well-known U-shaped or E-shaped electromagnets cannot provide redundant levitation with multiple degrees of freedom. In this paper, to achieve the full redundant levitation of the steel plate, a quadruple configuration of U shaped electromagnets has been proposed. To resolve the issue of instability and attain more robust levitation, a centralized control algorithm based on a modified PID controller (I PD is designed for each degree of freedom by using the Manabe canonical polynomial technique. The model of the system is carried out using electromechanical energy conversion princi¬ples and verified by 3-D FEM analysis. An experimental bench is built up to test the system performance under trajectory tracking and external disturbance excitation. The results confirm the effectiveness of the proposed system and the control approach to obtain a full redundant levitation even in case of disturbances. The paper demonstrates the feasibility of the con¬veyance of steel plates by using the quadruple configuration of U-shaped electromagnets and shows the merits of I-PD controller both in stabilization and increased robust levitation.

  12. Evaluation of AISI 316L stainless steel welded plates in heavy petroleum environment

    International Nuclear Information System (INIS)

    Carvalho Silva, Cleiton; Pereira Farias, Jesualdo; Batista de Sant'Ana, Hosiberto

    2009-01-01

    This work presents the study done on the effect of welding heating cycle on AISI 316L austenitic stainless steel corrosion resistance in a medium containing Brazilian heavy petroleum. AISI 316L stainless steel plates were welded using three levels of welding heat input. Thermal treatments were carried out at two levels of temperatures (200 and 300 deg. C). The period of treatment in all the trials was 30 h. Scanning electronic microscopy (SEM) and analysis of X-rays dispersive energy (EDX) were used to characterize the samples. Weight loss was evaluated to determine the corrosion rate. The results show that welding heating cycle is sufficient to cause susceptibility to corrosion caused by heavy petroleum to the heat affected zone (HAZ) of the AISI 316L austenitic stainless steel

  13. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  14. Internal stresses in steel plate generated by shape memory alloy inserts

    International Nuclear Information System (INIS)

    Malard, B.; Pilch, J.; Sittner, P.; Davydov, V.; Sedlák, P.; Konstantinidis, K.; Hughes, D.J.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Thermoresponsive internal stresses introduced into steel by embedding SMA inclusions. ► Neutron strain scanning on steel plate coupons with NiTi inserts at 21 °C and 130 °C. ► Internal stress field in steel evaluated directly from strains and by FE simulation. ► Internal stress generation by SMA insert resistant to thermal and mechanical fatigue. - Abstract: Neutron strain scanning was employed to investigate the internal stress fields in steel plate coupons with embedded prestrained superelastic NiTi shape memory alloy inserts. Strain fields in steel were evaluated at T = 21 °C and 130 °C on virgin coupons as well as on mechanically and thermally fatigued coupons. Internal stress fields were evaluated by direct calculation of principal stress components from the experimentally measured lattice strains as well as by employing an inverse finite element modeling approach. It is shown that if the NiTi inserts are embedded into the elastic steel matrix following a carefully designed technological procedure, the internal stress fields vary with temperature in a reproducible and predictable way. It is estimated that this mechanism of internal stress generation can be safely applied in the temperature range from −20 °C to 150 °C and is relatively resistant to thermal and mechanical fatigue. The predictability and fatigue endurance of the mechanism are of essential importance for the development of future smart metal matrix composites or smart structures with embedded shape memory alloy components.

  15. A study on the effect of stainless steel plate position on neutron multiplication factor in spent fuel storage racks

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong

    2012-02-15

    In spent fuel storage racks, which are just composed of stainless steel plates without neutron absorbing materials, neutron multiplication factors are investigated as the variation of the water gap that exists between the fuel assembly and the stainless steel plates. The stainless steel plate has a low moderating power compared with water because it has a lower elastic scattering cross section, as well as far less change of lethargy in an elastic collision than water. Thus, if stainless steel plates are installed around the fuel assembly instead of water, it is hard for neutrons to be thermalized properly. Therefore, the neutron multiplication factor can be decreased because the thermal neutron fluence and the total neutron production rate in fuel rods are decreased. A stainless steel plate has also has a thermal neutron absorption cross section. Thus, it can absorb thermal neutrons around the fuel assembly. The dominant factor which can cause a decrease in the neutron multiplication factor is the interruption of neutron moderation by stainless steel plates. Therefore, the neutron multiplication factor should always be kept at its lowest point, if stainless steel plates are installed on the specific position where interruptions of the neutron moderation occur most often, allowing for thermal neutrons to be absorbed. The stainless steel plate position is 7 mm away from the outermost surface of the fuel assembly with a pitch of 280mm. The specific position appearing the lowest neutron multiplication factor as the pitch variation from 260mm to 290mm with 10mm interval is also investigated. The lowest neutron multiplication factor also occurs 7mm or 8mm away from the outermost surface of the fuel assembly

  16. A study on the effect of stainless steel plate position on neutron multiplication factor in spent fuel storage racks

    International Nuclear Information System (INIS)

    Sohn, Hee Dong

    2012-02-01

    In spent fuel storage racks, which are just composed of stainless steel plates without neutron absorbing materials, neutron multiplication factors are investigated as the variation of the water gap that exists between the fuel assembly and the stainless steel plates. The stainless steel plate has a low moderating power compared with water because it has a lower elastic scattering cross section, as well as far less change of lethargy in an elastic collision than water. Thus, if stainless steel plates are installed around the fuel assembly instead of water, it is hard for neutrons to be thermalized properly. Therefore, the neutron multiplication factor can be decreased because the thermal neutron fluence and the total neutron production rate in fuel rods are decreased. A stainless steel plate has also has a thermal neutron absorption cross section. Thus, it can absorb thermal neutrons around the fuel assembly. The dominant factor which can cause a decrease in the neutron multiplication factor is the interruption of neutron moderation by stainless steel plates. Therefore, the neutron multiplication factor should always be kept at its lowest point, if stainless steel plates are installed on the specific position where interruptions of the neutron moderation occur most often, allowing for thermal neutrons to be absorbed. The stainless steel plate position is 7 mm away from the outermost surface of the fuel assembly with a pitch of 280mm. The specific position appearing the lowest neutron multiplication factor as the pitch variation from 260mm to 290mm with 10mm interval is also investigated. The lowest neutron multiplication factor also occurs 7mm or 8mm away from the outermost surface of the fuel assembly

  17. Residual strains in a stainless steel perforated plate subjected to reverse loading at high temperature

    International Nuclear Information System (INIS)

    Durelli, A.J.; Buitrago, J.

    1974-01-01

    An investigation was made to determine strains in a stainless steel perforated plate subjected to a temperature of 1100 0 F and to a successively applied tensile and compressive in-plane loading sufficiently large to produce creep and plastic strains. The duration of the test was 1000 hours. Square grids of lines (at distance of 0.25 in.) and crossed-gratings (500 lines-per-inch) were engraved on both surfaces of the plate before the test. After the plate was unloaded and brought back to room temperature the grids were analyzed using traveling microscopes, and the gratings using the moire effect. Both Cartesian strains were determined from the moire isothetics along the axes of the plate, along the two lines tangent to the hole and parallel to those axes and along the edges of the plate. Grid measurements were made at specific points. The deformed shapes of the hole and of the plate are also given. It is estimated that strains larger than 0.001 can be determined with the techniques and methods used. (U.S.)

  18. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Starck, B.; Remy, P.

    2008-01-01

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni 2 H compound, as shown by GIXRD.

  19. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    Energy Technology Data Exchange (ETDEWEB)

    El Hajjami, A. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Gigandet, M.P. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: marie-pierre.gigandet@univ-fcomte.fr; De Petris-Wery, M. [Institut Universitaire de Technologie d' Orsay, Universite Paris XI, Plateau de Moulon, 91400 Orsay (France); Catonne, J.C. [Professeur Honoraire du Conservatoire national des arts et metiers (CNAM), Paris (France); Duprat, J.J.; Thiery, L.; Raulin, F. [Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Starck, B.; Remy, P. [Lisi Automotive, 28 faubourg de Belfort, BP 19, 90101 Delle Cedex (France)

    2008-12-30

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni{sub 2}H compound, as shown by GIXRD.

  20. 76 FR 25666 - Stainless Steel Plate in Coils from Belgium: Final Results of Full Sunset Review and Revocation...

    Science.gov (United States)

    2011-05-05

    ... Corporation and the United Steel, Paper and Forestry, Rubber, Manufacturing, Energy, Allied Industrial and... included in the scope of the AD orders on SSPC from Belgium, Italy, South Africa, the Republic of Korea... Certain Stainless Steel Plate in Coils From Belgium, Italy, South Korea, South Africa, and Taiwan, and the...

  1. Analysis of the Behaviour of Semi Rigid Steel End Plate Connections

    Directory of Open Access Journals (Sweden)

    Bahaz A.

    2018-01-01

    Full Text Available The analysis of steel-framed building structures with full strength beam to column joints is quite standard nowadays. Buildings utilizing such framing systems are widely used in design practice. However, there is a growing recognition of significant benefits in designing joints as partial strength/semi-rigid. The design of joints within this partial strength/semi-rigid approach is becoming more and more popular. This requires the knowledge of the full nonlinear moment-rotation behaviour of the joint, which is also a design parameter. The rotational behaviour of steel semi rigid connections can be studied using the finite element method for the following three reasons: i such models are inexpensive; ii they allow the understanding of local effects, which are difficult to measure accurately physically, and iii they can be used to generate extensive parametric studies. This paper presents a three-dimensional finite element model using ABAQUS software in order to identify the effect of different parameters on the behaviour of semi rigid steel beam to column end plate connections. Contact and sliding between different elements, bolt pretension and geometric and material non-linearity are included in this model. A parametric study is conducted using a model of two end-plate configurations: flush and extended end plates. The studied parameters were as follows: bolts type, end plate thickness and column web stiffener. Then, the model was calibrated and validated with experimental results taken from the literature and with the model proposed by Eurocode3. The procedure for determining the moment–rotation curve using finite element analysis is also given together with a brief explanation of how the design moment resistance and the initial rotational stiffness of the joint are obtained.

  2. Wetting Behavior of Molten AZ61 Magnesium Alloy on Two Different Steel Plates Under the Cold Metal Transfer Condition

    Directory of Open Access Journals (Sweden)

    ZENG Cheng-zong

    2017-04-01

    Full Text Available The wetting behavior and interfacial microstructures of molten magnesium AZ61 alloy on the surface of two different Q235 and galvanized steel plates under the condition of cold metal transfer were investigated by using dynamic sessile drop method. The results show that the wetting behavior is closely related to the wire feed speed. Al-Fe intermetallic layer was observed whether the substrate is Q235 steel or galvanized steel, and the formation of Al-Fe intermetallic layer should satisfy the thermodynamic condition of such Mg-Al/Fe system. The wettability of molten AZ61 magnesium alloy is improved with the increase of wire feed speed whether on Q235 steel surface or on galvanized steel surface, good wettability on Q235 steel surface is due to severe interface reaction when wire feed speed increases, good wettability on galvanized steel surface is attributed to the aggravating zinc volatilization. When the wire feed speed is ≤10.5m·min-1, the wettability of Mg alloy on Q235 steel plate is better than on galvanized steel plate. However, Zn vapor will result in instability for metal transfer process.

  3. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride.

    Science.gov (United States)

    Hai, K; Sawase, T; Matsumura, H; Atsuta, M; Baba, K; Hatada, R

    2000-04-01

    This in vitro study evaluated the corrosion resistance of a titanium nitride (TiN) ion-plated magnetic stainless steel (447J1) for the purpose of applying a magnetic attachment system to implant-supported prostheses made of titanium. The surface hardness of the TiN ion-plated 447J1 alloy with varying TiN thickness was determined prior to the corrosion testing, and 2 micrometers thickness was confirmed to be appropriate. Ions released from the 447J1 alloy, TiN ion-plated 447J1 alloy, and titanium into a 2% lactic acid aqueous solution and 0.1 mol/L phosphate buffered saline (PBS) were determined by means of an inductively coupled plasma atomic emission spectroscopy (ICP-AES). Long-term corrosion behaviour was evaluated using a multisweep cyclic voltammetry. The ICP-AES results revealed that the 447J1 alloy released ferric ions into both media, and that the amount of released ions increased when the alloy was coupled with titanium. Although both titanium and the TiN-plated 447J1 alloy released titanium ions into lactic acid solution, ferric and chromium ions were not released from the alloy specimen for all conditions. Cyclic voltamograms indicated that the long-term corrosion resistance of the 447J1 alloy was considerably improved by ion-plating with TiN.

  4. Experiment and simulation analysis of roll-bonded Q235 steel plate

    International Nuclear Information System (INIS)

    Zhao, G.; Huang, Q.; Zhou, C.; Zhang, Z.; Ma, L.; Wang, X.

    2016-01-01

    Heavy-gauge Q235 steel plate was roll bonded, and the process was simulated using MARC software. Ultrasonic testing results revealed the presence of cracks and lamination defects in an 80-mm clad steel sheet, especially at the head and tail of the steel plate. There were non-uniform ferrite + pearlite microstructures and unbound areas at a bond interface. Through scanning electron microscopy analysis, long cracks and additional inclusions in the cracks were observed at the interface. A fracture analysis revealed non-uniform inclusions that pervaded the interface. Moreover, MARC simulations demonstrated that there was little equivalent strain at the centre of the slab during the first rolling pass. The equivalent centre increased to 0.5 by the fourth rolling pass. Prior to the final pass, the equivalent strain was not consistent across the thickness direction, preventing bonding interfaces from forming consistent deformation and decreasing the residual stress. The initial rolling reduction rate should not be very small (e.g. 5%) as it is averse to the coordination of rolling deformation. Such rolling processes are averse to the rolling bond. (Author)

  5. Characteristics of martensite as a function of the Ms temperature in low-carbon armour steel plates

    International Nuclear Information System (INIS)

    Maweja, Kasonde; Stumpf, Waldo; Berg, Nic van der

    2009-01-01

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M s temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M s temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  6. Degradation of the compressive strength of unstiffened/stiffened steel plates due to both-sides randomly distributed corrosion wastage

    Directory of Open Access Journals (Sweden)

    Zorareh Hadj Mohammad

    Full Text Available The paper addresses the problem of the influence of randomly distributed corrosion wastage on the collapse strength and behaviour of unstiffened/stiffened steel plates in longitudinal compression. A series of elastic-plastic large deflection finite element analyses is performed on both-sides randomly corroded steel plates and stiffened plates. The effects of general corrosion are introduced into the finite element models using a novel random thickness surface model. Buckling strength, post-buckling behaviour, ultimate strength and post-ultimate behaviour of the models are investigated as results of both-sides random corrosion.

  7. Characteristics of martensite as a function of the M{sub s} temperature in low-carbon armour steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Maweja, Kasonde, E-mail: mawejak@yahoo.fr [Council for Scientific and Industrial Research, CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001 (South Africa); Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Stumpf, Waldo [Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Berg, Nic van der [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2009-08-30

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M{sub s} temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M{sub s} temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  8. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    International Nuclear Information System (INIS)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de; Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C.

    2014-01-01

    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  9. A preliminary study on the local impact behavior of Steel-plate Concrete walls

    International Nuclear Information System (INIS)

    Kim, Kap-sun; Moon, Il-hwan; Choi, Hyung-jin; Nam, Deok-woo

    2017-01-01

    International regulations for nuclear power plants strictly prescribe the design requirements for local impact loads, such as aircraft engine impact, and internal and external missile impact. However, the local impact characteristics of Steel-plate Concrete (SC) walls are not easy to evaluate precisely because the dynamic impact behavior of SC walls which include external steel plate, internal concrete, tie-bars, and studs, is so complex. In this study, dynamic impact characteristics of SC walls subjected to local missile impact load are investigated via actual high-speed impact test and numerical simulation. Three velocity checkout tests and four SC wall tests were performed at the Energetic Materials Research and Testing Center (EMRTC) site in the USA. Initial and residual velocity of the missile, strain and acceleration of the back plate, local failure mode (penetration, bulging, splitting and perforation) and deformation size, etc. were measured to study the local behavior of the specimen using high speed cameras and various other instrumentation devices. In addition, a more advanced and applicable numerical simulation method using the finite element (FE) method is proposed and verified by the experimental results. Finally, the experimental results are compared with the local failure evaluation formula for SC walls recently proposed, and future research directions for the development of a refined design method for SC walls are reviewed.

  10. Enhanced Corrosion Resistance and Interfacial Conductivity of TiC x/a-C Nanolayered Coatings via Synergy of Substrate Bias Voltage for Bipolar Plates Applications in PEMFCs.

    Science.gov (United States)

    Yi, Peiyun; Zhang, Weixin; Bi, Feifei; Peng, Linfa; Lai, Xinmin

    2018-06-06

    Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x /amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x /a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp 2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x /a-C coatings would provide new opportunities for commercial bipolar plates.

  11. A Simulation Tool for Geometrical Analysis and Optimization of Fuel Cell Bipolar Plates: Development, Validation and Results

    Directory of Open Access Journals (Sweden)

    Javier Pino

    2009-07-01

    Full Text Available Bipolar plates (BPs are one of the most important components in Proton Exchange Membrane Fuel Cells (PEMFC due to the numerous functions they perform. The objective of the research work described in this paper was to develop a simplified and validated method based on Computational Fluid Dynamics (CFD, aimed at the analysis and study of the influence of geometrical parameters of BPs on the operation of a cell. A complete sensibility analysis of the influence of dimensions and shape of the BP can be obtained through a simplified CFD model without including the complexity of other components of the PEMFC. This model is compared with the PEM Fuel Cell Module of the FLUENT software, which includes the physical and chemical phenomena relevant in PEMFCs. Results with both models regarding the flow field inside the channels and local current densities are obtained and compared. The results show that it is possible to use the simple model as a standard tool for geometrical analysis of BPs, and results of a sensitivity analysis using the simplified model are presented and discussed.

  12. Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong' an; Peng, Linfa; Lai, Xinmin [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China)

    2009-01-15

    Recently, the metallic bipolar plate (BPP) has received considerable attention because of its advantageous electrical and mechanical properties. In this study, a methodology based on FEA model and Monte Carlo simulation is developed to investigate the effect of dimensional error of the metallic BPP on the pressure distribution of gas diffusion layer (GDL). At first, a parameterized FEA model of metallic BPP/GDL assembly is established, and heights of the channel and rib are considered to be randomly varying parameters of normal distribution due to the dimensional error. Then, GDL pressure distributions with different dimensional errors are obtained respectively based on the Monte Carlo simulation, and the desirability function method is employed to evaluate them. At last, a regression equation between the GDL pressure distribution and the dimensional error is modeled. With the regression equation, the allowed maximum dimensional error for the metallic BPP is calculated. The methodology in this study can be applied to guide the design and manufacturing of the metallic BPP. (author)

  13. A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Lin, G.; Shih, A.J.; Hu, S.J. [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2007-01-01

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell constitutes a significant portion of the overall fuel cell electrical resistance under the normal operation conditions. Most current methods for contact resistance estimation are experimental and there is a lack of well developed theoretical methods. A micro-scale numerical model is developed to predict the electrical contact resistance between BPP and GDL by simulating the BPP surface topology and GDL structure and numerically determining the status for each contact spot. The total resistance and pressure are obtained by considering all contact spots as resistances in parallel and summing the results together. This model shows good agreements with experimental results. Influences of BPP surface roughness parameters on contact resistance are also studied. This model is beneficial in understanding the contact behavior between BPP and GDL and can be integrated with other fuel cell simulations to predict the overall performance of PEM fuel cells. (author)

  14. Development of Analytical Method for Predicting Residual Mechanical Properties of Corroded Steel Plates

    Directory of Open Access Journals (Sweden)

    J. M. R. S. Appuhamy

    2011-01-01

    Full Text Available Bridge infrastructure maintenance and assurance of adequate safety is of paramount importance in transportation engineering and maintenance management industry. Corrosion causes strength deterioration, leading to impairment of its operation and progressive weakening of the structure. Since the actual corroded surfaces are different from each other, only experimental approach is not enough to estimate the remaining strength of corroded members. However, in modern practices, numerical simulation is being used to replace the time-consuming and expensive experimental work and to comprehend on the lack of knowledge on mechanical behavior, stress distribution, ultimate behavior, and so on. This paper presents the nonlinear FEM analyses results of many corroded steel plates and compares them with their respective tensile coupon tests. Further, the feasibility of establishing an accurate analytical methodology to predict the residual strength capacities of a corroded steel member with lesser number of measuring points is also discussed.

  15. Experimental Investigation of the Effect of Burnishing Force on Service Properties of AISI 1010 Steel Plates

    Science.gov (United States)

    Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.

    2015-02-01

    This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.

  16. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z; Scherer, G G; Marmy, Ch; Glaus, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  17. Creep crack growth behaviour of an AISI 316 steel plate for fast reactor structures

    International Nuclear Information System (INIS)

    D'Angelo, D.; Regis, V.

    1985-01-01

    The paper presents and analyses creep crack growth data obtained at 550, 600 and 650 0 C in air with SENT and CT specimens on type 316 stainless steel plate for LMFBR applications. Crack initiation and crack growth are tentatively correlated to K, sigmasub(net) and J* taking into account the constraint conditions due to specimen geometry. The validity of these parameters is discussed following the concept of transition time from small scale creep at the crack tip to extensive creep within the ligament. Post exposure microstructural and fractographic investigations do evidence that grain deformation processes are mainly responsible for cavity evolution. (orig.)

  18. Stable and unstable crack growth in Type 304 stainless steel plate

    International Nuclear Information System (INIS)

    Yagawa, G.

    1984-01-01

    Experimental and theoretical results on stable as well as unstable fractures for Type 304 stainless steel plates with a central crack subjected to tension force are given. In the experiment using a testing machine with a special spring for high compliance, the transition points from the stable to the unstable crack growth are observed and comparisons are made between the test results and the finite element solutions. A round robin calculation for the elastic-plastic stable crack growth using one of the specimens mentioned above is also given. (orig.)

  19. STUDY ON THE BEHAVIOUR OF PRECAST BEAM COLUMN JOINT USING STEEL PLATE CONNECTION (JPSP)

    OpenAIRE

    Parung, H.

    2012-01-01

    Joint beam column connection is the most critical part for a structure subjected to earthquake loading. This part should be designed such that any possible failure can be prevented. For a cast in situ structure, any failure in this joint can be prevented if all requirements in the design code are obeyed. For pre-cast construction, structural failure usually occurs at the beam-column connection. The research aimed at studying the strength of precast beam-column joint using steel plate as conne...

  20. Ricochet of a tungsten heavy alloy long-rod projectile from deformable steel plates

    International Nuclear Information System (INIS)

    Lee, Woong; Lee, Heon-Joo; Shin, Hyunho

    2002-01-01

    Ricochet of a tungsten heavy alloy long-rod projectile from oblique steel plates with a finite thickness was investigated numerically using a full three-dimensional explicit finite element method. Three distinctive regimes resulting from oblique impact depending on the obliquity, namely simple ricochet, critical ricochet and target perforation, were investigated in detail. Critical ricochet angles were calculated for various impact velocities and strengths of the target plates. It was predicted that critical ricochet angle increases with decreasing impact velocities and that higher ricochet angles were expected if higher strength target materials are employed. Numerical predictions were compared with existing two-dimensional analytical models. Experiments were also carried out and the results supported the predictions of the numerical analysis

  1. Vibration-response due to thickness loss on steel plate excited by resonance frequency

    Science.gov (United States)

    Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.

    2018-04-01

    The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.

  2. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    International Nuclear Information System (INIS)

    Maarek, V.; Sharir, Y.; Stern, A.

    1980-03-01

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  3. Treatment of Industrial Liquid Waste of Steel Plating by Coagulation-Flocculation Using Sodium Biphosphate

    International Nuclear Information System (INIS)

    Subiarto; Herlan Martono

    2007-01-01

    Research about treatment of industrial liquid waste of steel plating by coagulation-flocculation using sodium biphosphate have been conducted. The purpose of the treatment was the content reduction of Cr, Ni, and Cu in the liquid waste, so that produced effluent with Cr, Ni, and Cu content until they laid under mutual standard. The variables studied in this process were the solution pH, the coagulant/waste volume comparison, the speed of the fast stirring, and the time of the fast stirring. Optimum separation efficiency on coagulation-flocculation process of liquid waste of steel plating using sodium biphosphate at the condition of solution ph 9, coagulant/waste volume comparation 1.50, the speed of the fast stirring 400 rpm, and the time of fast stirring is 5 minute. Low stirring was conducted at 60 rpm for 60 minute. The yields of optimum separation efficiency in this condition were 99.48 % for Cr, 99.51 % for Ni, and 99.03 % for Cu. (author)

  4. Modeling Fragment Simulating Projectile Penetration into Steel Plates Using Finite Elements and Meshfree Particles

    Directory of Open Access Journals (Sweden)

    James O’Daniel

    2011-01-01

    Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.

  5. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  6. Effects of multi-pass arc welding on mechanical properties of carbon steel C25 plate

    International Nuclear Information System (INIS)

    Adedayo, S.M.; Babatunde, A.S.

    2013-01-01

    The effects of multi-pass welding on mechanical properties of C25 carbon steel plate were examined. Mild steel plate workpieces of 90 x 55 mm 2 area and 10 mm thickness with a 30 degrees vee weld-grooves were subjected to single and multi-pass welding. Toughness, hardness and tensile tests of single and multi-pass welds were conducted. Toughness values of the welds under double pass welds were higher than both single pass and unwelded alloy, at respective maximum values of 2464, 2342 and 2170 kN/m. Hardness values were reduced under double pass relative to single pass welding with both being lower than the value for unwelded alloy; the values were 40.5, 43.2 and 48.5 Rs respectively at 12 mm from the weld line. The tensile strength of 347 N/mm 2 under multi-pass weld was higher than single pass weld with value of 314 N/mm 2 . Therefore, the temperature distribution and apparent pre-heating during multi-pass welding increased the toughness and tensile strength of the weldments, but reduced the hardness. (au)

  7. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    Science.gov (United States)

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified.

  8. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    Directory of Open Access Journals (Sweden)

    Brian E. Schuster

    2010-08-01

    Full Text Available The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM which included energy-dispersive (X-ray spectrometry (EDS. Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549, a model for lung tissue, to particulates (especially nanoparticulates collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate mix has not yet allowed any particular chemical composition to be identified.

  9. Ex vivo biomechanical evaluation of pigeon (Columba livia) cadaver intact humeri and ostectomized humeri stabilized with caudally applied titanium locking plate or stainless steel nonlocking plate constructs.

    Science.gov (United States)

    Darrow, Brett G; Biskup, Jeffrey J; Weigel, Joseph P; Jones, Michael P; Xie, Xie; Liaw, Peter K; Tharpe, Josh L; Sharma, Aashish; Penumadu, Dayakar

    2017-05-01

    OBJECTIVE To evaluate mechanical properties of pigeon (Columba livia) cadaver intact humeri versus ostectomized humeri stabilized with a locking or nonlocking plate. SAMPLE 30 humeri from pigeon cadavers. PROCEDURES Specimens were allocated into 3 groups and tested in bending and torsion. Results for intact pigeon humeri were compared with results for ostectomized humeri repaired with a titanium 1.6-mm screw locking plate or a stainless steel 1.5-mm dynamic compression plate; the ostectomized humeri mimicked a fracture in a thin cortical bone. Locking plates were secured with locking screws (2 bicortical and 4 monocortical), and nonlocking plates were secured with bicortical nonlocking screws. Constructs were cyclically tested nondestructively in 4-point bending and then tested to failure in bending. A second set of constructs were cyclically tested non-destructively and then to failure in torsion. Stiffness, strength, and strain energy of each construct were compared. RESULTS Intact specimens were stiffer and stronger than the repair groups for all testing methods, except for nonlocking constructs, which were significantly stiffer than intact specimens under cyclic bending. Intact bones had significantly higher strain energies than locking plates in both bending and torsion. Locking and nonlocking plates were of equal strength and strain energy, but not stiffness, in bending and were of equal strength, stiffness, and strain energy in torsion. CONCLUSIONS AND CLINICAL RELEVANCE Results for this study suggested that increased torsional strength may be needed before bone plate repair can be considered as the sole fixation method for avian species.

  10. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  11. Microstructures and Mechanical Properties of Austempering SUS440 Steel Thin Plates

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chen

    2016-02-01

    Full Text Available SUS440 is a high-carbon stainless steel, and its martensite matrix has high heat resistance, high corrosion resistance, and high pressure resistance. It has been widely used in mechanical parts and critical materials. However, the SUS440 martempered matrix has reliability problems in thin plate applications and thus research uses different austempering heat treatments (tempering temperature: 200 °C–400 °C to obtain a matrix containing bainite, retained austenite, martensite, and the M7C3 phase to investigate the relationships between the resulting microstructure and tensile mechanical properties. Experimental data showed that the austempering conditions of the specimen affected the volume fraction of phases and distribution of carbides. After austenitizing heat treatment (1080 °C for 30 min, the austempering of the SUS440 thin plates was carried out at a salt-bath temperature 300 °C for 120 min and water quenching was then used to obtain the bainite matrix with fine carbides, with the resulting material having a higher tensile fracture strength and average hardness (HRA 76 makes it suitable for use as a high-strength thin plate for industrial applications.

  12. 75 FR 10207 - Certain Cut-to-Length Carbon-Quality Steel Plate From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2010-03-05

    ...-Quality Steel Plate From the Republic of Korea: Final Results of Antidumping Duty Administrative Review... cut-to-length carbon-quality steel plate from the Republic of Korea and the intent to rescind the... 1, 2008, through January 31, 2009. We have rescinded the review with respect to one company and we...

  13. Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

    International Nuclear Information System (INIS)

    Kim, Young H.; Sung, Jin Woo

    2013-01-01

    In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

  14. Identification and measurement of dirt composition of manufactured steel plates using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Orzi, Daniel J O; Bilmes, Gabriel M

    2004-12-01

    Laser-induced breakdown spectroscopy (LIBS) was used for the characterization of the main components of the surface residual dirt produced in cold-rolled steel plates as a consequence of the manufacturing stages. At laser fluences between 0.05 J/cm(2) manufacturing process carbon residuals can also be found. By measuring light emission from the lambda = 495.9 nm line of Fe(I) after laser ablation, we developed a real-time on-line method for the determination of the concentration of iron particles present in the surface dirt. The obtained results open new possibilities in the design of real-time instruments for industrial applications as a quality control of products and processes.

  15. Optimizing the Steel Plate Storage Yard Crane Scheduling Problem Using a Two Stage Planning/Scheduling Approach

    DEFF Research Database (Denmark)

    Hansen, Anders Dohn; Clausen, Jens

    This paper presents the Steel Plate Storage Yard Crane Scheduling Problem. The task is to generate a schedule for two gantry cranes sharing tracks. The schedule must comply with a number of constraints and at the same time be cost efficient. We propose some ideas for a two stage planning...

  16. 75 FR 8301 - Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2010-02-24

    ...\\ Inadvertently, the scope listed in the Preliminary Results included the following language: ``{a{time} lso... Duty Investigations on Certain Cut-to-Length Carbon Steel Plate from the Russian Federation and Ukraine, 74 FR 57994 (November 10, 2009). Accordingly, this language is removed from the scope for these final...

  17. Relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Takasago, Masahisa; Takaoka, Kyo

    1986-12-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 -- 1012 ppM, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 -- 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppM, nickel, 0.04 ppM and chromium, from 0.02 to 0.03 ppM. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppM.

  18. The relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    International Nuclear Information System (INIS)

    Takasago, Masahisa; Takaoka, Kyo

    1986-01-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 ∼ 1012 ppm, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 ∼ 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppm, nickel, 0.04 ppm and chromium, from 0.02 to 0.03 ppm. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppm. (author)

  19. Laser cut hole matrices in novel armour plate steel for appliqué battlefield vehicle protection

    Directory of Open Access Journals (Sweden)

    Daniel J. Thomas

    2016-10-01

    Full Text Available During this research, experimental rolled homogeneous armour steel was cast, annealed and laser cut to form an appliqué plate. This Martensitic–Bainitic microstructure steel grade was used to test a novel means of engineering lightweight armour. It was determined that a laser cutting speed of 1200 mm/min produced optimum hole formations with limited distortion. The array of holes acts as a double-edged solution, in that they provide weight saving of 45%, providing a protective advantage and increasing the surface area. Data collected were used to generate laser cut-edge hole projections in order to identify the optimum cutting speed, edge condition, cost and deformation performance. These parameters resulted in the generation of a surface, with less stress raising features. This can result in a distribution of stress across the wider surface. Provided that appropriate process parameters are used to generate laser cut edges, then the hardness properties of the surface can be controlled. This is due to compressive residual stresses produced in the near edge region as a result of metallurgical transformations. This way the traverse cutting speed parameter can be adjusted to alter critical surface characteristics and microstructural properties in close proximity to the cut-edge. A relationship was identified between the width of the laser HAZ and the hardness of the cut edge. It is the thickness of the HAZ that is affected by the laser process parameters which can be manipulated with adjusting the traverse cutting speed.

  20. Elastic behavior and onset of cracking in cement composite plates reinforced by perforated thin steel sheets

    Science.gov (United States)

    Aronchik, V.

    1996-03-01

    Thin cement mortar plates reinforced by perforated thin steel sheets have been tested in four-point flexure loading. Six kinds of sheet reinforcement and to additional ones (for control) were used. Perforated sheets of the Daugavpils Factory of Machinery Chains differed by their thickness (0.6-1.8 mm), shape (round, rectangular, oval, "dumbbell"), and mark of steel (St. 08, 50, 70). Dimensions of plantes were 100×20×2 cm. Cements-sand mortar with a 1∶2 ratio of cement PZ35 and river sand of 3 mm grains was used as a matrix. Control specimens of similar dimensions and matrix were reinforced by wire cages and meshes (ferrocement). The testing was performed using an UMM-5 testing machine. Maximum deflection (at the midspan), tension, and shear strains were recorded. The expeimental data are presented in tables and graphs. The testing results showed that the elasticity modulus of material was in good agreement with the "admixture rule;" an onset of cracking for all types (excluding one) practically did not differ from reference samples; the mode of fracture in typical cases included an adhesion failure and significant shear strains. In one case the limit of the tension strength of the reinforcement was achieved.

  1. Process stability during fiber laser-arc hybrid welding of thick steel plates

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.

    2018-03-01

    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  2. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  3. Effect of direct quenching on the microstructure and mechanical properties of the lean-chemistry HSLA-100 steel plates

    International Nuclear Information System (INIS)

    Dhua, S.K.; Sen, S.K.

    2011-01-01

    Highlights: → Direct-quenched and tempered (DQT) steels gives better mechanical properties. → Fine Cu and Nb (C, N) precipitates enhance matrix strengthening and tempering resistance. → Boron promotes hardenability, but low temperature Charpy impact toughness gets affected. → Mechanical properties equivalent to HSLA-100 steel is achieved by directly quenched leaner chemistry alloys. - Abstract: The influence of direct quenching on structure-property behavior of lean chemistry HSLA-100 steels was studied. Two laboratory heats, one containing Cu and Nb (C:0.052, Mn:0.99, Cu:1.08, Nb:0.043, Cr:0.57, Ni:1.76, Mo:0.55 pct) and the other containing Cu, Nb and B (C:0.04, Mn:1.02, Cu:1.06, Nb:0.036, Cr:0.87, Ni:1.32, Mo:0.41, B:0.002 percent) were hot-rolled into 25 and 12.5 mm thick plates by varying finish-rolling temperatures. The plates were heat-treated by conventional reheat quenching and tempering (RQT), as well as by direct quenching and tempering (DQT) techniques. In general, direct-quench and tempered plates of Nb-Cu heat exhibited good strength (yield strength ∼ 900 MPa) and low-temperature impact toughness (average: 74 J at -85 deg. C); the Charpy V-notch impact energies were marginally lower than conventional HSLA-100 steel. In Nb-Cu-B heat, impact toughness at low-temperature was inferior owing to boron segregation at grain boundaries. Transmission electron microscopy (TEM) and scanning auger microprobe (SAM) analysis confirmed existence of borocarbides at grain boundaries in this steel. In general, for both the steels, the mechanical properties of the direct-quench and tempered plates were found to be superior to reheat quench and tempered plates. A detailed transmission electron microscopy study revealed presence of fine Cu and Nb (C, N) precipitates in these steels. It was also observed that smaller martensite inter-lath spacing, finer grains and precipitates in direct-quench and tempered plates compared to the reheat quench and tempered plates

  4. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    Energy Technology Data Exchange (ETDEWEB)

    Bruhl, Jakob C., E-mail: jbruhl@purdue.edu; Varma, Amit H., E-mail: ahvarma@purdue.edu; Kim, Joo Min, E-mail: kim1493@purdue.edu

    2015-12-15

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  5. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    International Nuclear Information System (INIS)

    Bruhl, Jakob C.; Varma, Amit H.; Kim, Joo Min

    2015-01-01

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  6. Numerical analysis of thermal deformation in laser beam heating of a steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Kim, Yong-Rae; Kim, Jae-Woong [Yeungnam University, Kyongsan (Korea, Republic of)

    2017-05-15

    Line heating is a widely used process for plate forming or thermal straightening. Flame heating and induction heating are the traditional heating processes used by industry for line heating. However, these two heating processes are ineffective when used on small steel plates. Thus, the laser beam heating with various power profiles were carried out in this study. A comparison of numerical simulation results and experimental results found a significant difference in the thermal deformation when apply a different power profile of laser beam heating. The one-sinusoid power profile produced largest thermal deformation in this study. The laser beam heating process was simulated by established a combined heat source model, and simulated results were compared with experimental results to confirm the model’s accuracy. The mechanism of thermal deformation was investigated and the effects of model parameters were studied intensively with the finite element method. Thermal deformation was found to have a significant relationship with the amount of central zone plastic deformation. Scientists and engineers could use this study’s verified model to select appropriate parameters in laser beam heating process. Moreover, by using the developed laser beam model, the analysis of welding residual stress or hardness could also be investigated from a power profile point of view.

  7. Numerical Study on the Structural Performance of Steel Beams with Slant End-plate Connections

    Directory of Open Access Journals (Sweden)

    Farshad Zahmatkesh

    Full Text Available Abstract Thermal effects can be one of the most harmful conditions that any steel structure should expect throughout its service life. To counteract this effect, a new beam, with a capability to dissipate thermally induced axial force by slanting of end-plate connection at both ends, is proposed. The beam was examined in terms of its elastic mechanical behavior under symmetric transverse load in presence of an elevated temperature by means of direct stiffness finite element model. The performance of such connection is defined under two resisting mechanisms; by friction force dissipation between faces of slant connection and by small upward crawling on slant plane. The presented numerical method is relatively easy and useful to evaluate the behavior of the proposed beam of various dimensions at different temperatures. Its applicability is evident through satisfactory results verification with those from experimental, analytical and commercially available finite element software. Based on the good agreement between theoretical and experimental methods, a series of design curves were developed as a safe-practical range for the slant end-plate connections which are depend on the conditions of the connection.

  8. Selection of parameters on laser cutting mild steel plates taking account of some manufacturing purposes

    Science.gov (United States)

    Asano, Hiroshi; Suzuki, Jippei; Kawakami, Hiroshi; Eguchi, Hiroshi

    2003-11-01

    There are large number of processing conditions which can be set for laser-cutting of plate materials, because importance of the objective for the cutting is different from product to product. This study aims to build a system which can set the processing conditions reasonably and efficiently. From plural processing objectives, roughness of cutting surface was taken up from among the required qualities, such as processing speed, circularity of a processed hole, height of dross on the rear side, roughness of cutting surfaces, accuracy of shapes and dimensions, and with of burning, to review the effects of the processing condition on the cutting surface including the drag line gap. In our experiments, a 1 kW CO2 gas laser machine was used to make laser-cutting samples and 389 combinations of samples were used. From the results of the experiments, the range of processing conditions which allow cutting is defined by the energy input per unit area HIA = 4.8 [J/mm2]. The values of roughness of the cutting surface on both front and rear sides of the plates can be reduced if the cutting speed is 1000 mm/min or higher, and they little change at small values if the heat input per unit area is within a range under 20 J/mm2. In a range of thin plate thickness, the drag gap on cutting surfaces can be evaluated by the heat input per unit area. In the case of thicker plate, the greater the duty is, the smaller the drag gap is, if the heat input per units area is kept unchanged. Cutting with small heat input is desirable for better roughness of cutting surface. Cutting with large heat input is required for better drag gap. In the scope of our study, a value 20 J/mm2 of heat input per unit area is recommended for laer-cutting of 0.8 - 4.5 mm thick mild steel plates.

  9. Reduction of core loss in non-oriented (NO) electrical steel by electroless-plated magnetic coating

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Enoki, Manabu; Konda, Shigeru; Inada, Yasushi; Tomizawa, Tamotsu; Toda, Akira

    2011-01-01

    An important issue in development of electrical steels for core-laminated products is to reduce core loss to improve energy conversion efficiency. This is usually obtained by tailoring the composition, microstructure, and texture of electrical steels themselves. A new technique to reduce core loss in electrical steel has been investigated. This technique involves electroless plating of magnetic thin coating onto the surface of electrical steel. The material system was electroless Ni-Co-P coatings with different thicknesses (1, 5, and 10 μm) deposited onto the surface of commercially available Fe-3% Si electrical steel. Characterization of deposited Ni-Co-P coating was carried out using X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX) spectrometer. The deposited Ni-Co-P coatings were amorphous and composed of 56-59% Ni, 32-35% Co, and 8-10% P by mass. The effect of coatings on core loss of the electrical steel was determined using single sheet test. A core loss reduction of 4% maximum was achieved with the Ni-Co-P coating of 1 μm thickness at 400 Hz and 0.3 T. - Research Highlights: → New approach to reduce core loss of electrical steel by magnetic coating. → Ni-Co-P coating influences core loss of NO electrical steel. → Core loss increases in RD direction but reduces in TD direction.

  10. The effect of different rutile electrodes on mechanical properties of underwater wet welded AH-36 steel plates

    Science.gov (United States)

    Winarto, Winarto; Purnama, Dewin; Churniawan, Iwan

    2018-04-01

    Underwater welding is an important role in the rescue of ships and underwater structures, in case of emergency. In this study, the marine steel plates used are AH-36 steel as parent material. This type of steel is included in the High Strength Low Alloy (HSLA). Electrodes used for welding AH-36 steel plates are commonly the E6013 and E 7024 which are the type of based rutile electrodes. Those electrodes are widely available on the market and they would be compared with the original electrode for underwater which is the type of E7014 with the trade name of Broco UW-CS-1. Welding method used is Shielding Metal Arc Welding (SMAW) with the variation of 5 m and 10 m underwater depth and also varied with the electric current of 120A, 140A and 250A. It was found that hardness value of increased in the area of weld metal and HAZ. HAZ also tends to have the highest hardness compared to both of weld metal and base metal. Non destructive test by radiographed test (RT) on welds showed that there are found welding defects in the form of incomplete penetration on all variations of welding parameters, but there is no porosity defect detected. The results of the hardness tests of underwater wet welded steel plates show that the hardness value of both rutile electrodes (E6013 and E 7024) is apparently similar hardness value compared with the existing commercial electrode (E7014 of Broco UW-CS- 1). The tensile test results of underwater wet welded steel plates show that the use of rutile electrode of E6013 gives a better tensile properties than other rutile electrodes.

  11. Effect of Acid- and Ultraviolet/Ozonolysis-Treated MWCNTs on the Electrical and Mechanical Properties of Epoxy Nanocomposites as Bipolar Plate Applications

    Directory of Open Access Journals (Sweden)

    Nishata Royan Rajendran Royan

    2013-01-01

    Full Text Available Carbon nanotubes (CNTs have a huge potential as conductive fillers in conductive polymer composites (CPCs, particularly for bipolar plate applications. These composites are prepared using singlefiller and multifiller reinforced multiwalled carbon nanotubes (MWCNTs that have undergone a chemical functionalization process. The electrical conductivity and mechanical properties of these composites are determined and compared between the different functionalization processes. The results show that UV/O3-treated functionalization is capable of introducing carboxylic functional groups on CNTs. Acid-treated CNT composites give low electrical conductivity, compared with UV/O3-treated and As-produced CNTs. The in- and through-plane electrical conductivities and flexural strength of multifiller EP/G/MWCNTs (As-produced and UV/O3-treated achieved the US Department of Energy targets. Acid-treated CNT composites affect the electrical conductivity and mechanical properties of the nanocomposites. These data indicate that the nanocomposites developed in this work may be alternative attributers of bipolar plate requirements.

  12. Microstructure and Mechanical Properties of High Copper HSLA-100 Steel in 2-inch Plate Form

    Science.gov (United States)

    1992-06-01

    CCT diagram . Increasing copper in HSLA-100 steel also increases the toughness as well as the strength, though the dynamics of this process are not clear. Steel, High Copper HSLA-100 Steel, mechanical property, microstructure.

  13. Thermo-mechanical treatment of the Cr-Mo constructional steel plates with Nb, Ti and B additions

    International Nuclear Information System (INIS)

    Adamczyk, J.; Opiela, M.

    2002-01-01

    Results of investigations of the influence of parameters of thermomechanical treatment, carried out by rolling with controlled recrystallization, on the microstructure and mechanical properties of Cr-Mo constructional steel with Nb, Ti and B microadditions, destined for the manufacturing of weldable heavy plates, are presented. These plates show a yield point of over 960 MPa after heat treatment. Two variants of thermomechanical treatment were worked out, based on the obtained results of investigations, when rolling a plate 40 mm thick in several passes to a plate 15 mm thick in a temperature range from 1100 to 900 o C. It was found that the lack of complete recrystallization of the austenite in the first rolling variant, leads to localization of plastic deformation in form of shear bands. There exists a segregation of MC-type carbides and alloying elements in these bands, causing a distinctive reduction of the crack resistance of the steel, as also a disadvantageous anisotropy of plastic properties of plate after tempering. For plates rolled under the same conditions, using a retention shield, a nearly three times higher impact energy in - 40 o C was obtained, as also only a slight anisotropy of plastic properties, saving the required mechanical properties. (author)

  14. A study on the welding characteristics of Mn-Ni-Mo type A302-C steel plate for pressure vessel

    International Nuclear Information System (INIS)

    Yoon, Byoung Hyun; Chang, Woong Seong; Kweon, Young Gak

    2003-01-01

    In order to develop ASTM A302 grade C type steel plate with excellent weldability, several steels with different chemistry have been manufactured and evaluated their mechanical properties and weldability. Trial A302-C steels have revealed tensile strength in the range of 61-67kg/mm 2 and elongation in the range of 27∼32%, depending on chemical compositions within the ASTM specification range. In case of impact toughness, trial steels showed in the range of 58-70J at 0 .deg. C. From the weldability test, the minimum preheat temperature was found to be about 150 .deg. C, and automatic welding condition satisfied the requirements of both ASTM specification and users

  15. Corrosion Characterization in Nickel Plated 110 ksi Low Alloy Steel and Incoloy 925: An Experimental Case Study

    Science.gov (United States)

    Thomas, Kiran; Vincent, S.; Barbadikar, Dipika; Kumar, Shresh; Anwar, Rebin; Fernandes, Nevil

    2018-04-01

    Incoloy 925 is an age hardenable Nickel-Iron-Chromium alloy with the addition of Molybdenum, Copper, Titanium and Aluminium used in many applications in oil and gas industry. Nickel alloys are preferred mostly in corrosive environments where there is high concentration of H2S, CO2, chlorides and free Sulphur as sufficient nickel content provides protection against chloride-ion stress-corrosion cracking. But unfortunately, Nickel alloys are very expensive. Plating an alloy steel part with nickel would cost much lesser than a part make of nickel alloy for large quantities. A brief study will be carried out to compare the performance of nickel plated alloy steel with that of an Incoloy 925 part by conducting corrosion tests. Tests will be carried out using different coating thicknesses of Nickel on low alloy steel in 0.1 M NaCl solution and results will be verified. From the test results we can confirm that Nickel plated low alloy steel is found to exhibit fairly good corrosion in comparison with Incoloy 925 and thus can be an excellent candidate to replace Incoloy materials.

  16. Laser cutting of steel plates up to 100 mm in thickness with a 6-kW fiber laser for application to dismantling of nuclear facilities

    Science.gov (United States)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-01-01

    A cutting study with a high-power ytterbium-doped fiber laser was conducted for the dismantling of nuclear facilities. Stainless steel and carbon steel plates of various thicknesses were cut at a laser power of 6-kW. Despite the use of a low output of 6-kW, the cutting was successful for both stainless steel and carbon steel plates of up to 100 mm in thickness. In addition, the maximum cutting speeds against the thicknesses were obtained to evaluate the cutting performance. As representative results, the maximum cutting speeds for a 60-mm thickness were 72 mm/min for the stainless steel plates and 35 mm/min for the carbon steel plates, and those for a 100-mm thickness were 7 mm/min for stainless steel and 5 mm/min for carbon steel plates. These results show an efficient cutting capability of about 16.7 mm by kW, whereas other groups have shown cutting capabilities of ∼10 mm by kW. Moreover, the maximum cutting speeds were faster for the same thicknesses than those from other groups. In addition, the kerf widths of 60-mm and 100-mm thick steels were also obtained as another important parameter determining the amount of secondary waste. The front kerf widths were ∼1.0 mm and the rear kerf widths were larger than the front kerf widths but as small as a few millimeters.

  17. MLEP-Fail calibration for 1/8 inch thick cast plate of 17-4 steel.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the work presented in this memo was to calibrate the Sierra material model Multilinear Elastic-Plastic Hardening Model with Failure (MLEP-Fail) for 1/8 inch thick cast plate of 17-4 steel. The calibration approach is essentially the same as that recently used in a previous memo using data from smooth and notched tensile specimens. The notched specimens were manufactured with three notch radii R = 1=8, 1/32 and 1/64 inches. The dimensions of the smooth and notched specimens are given in the prints in Appendix A. Two cast plates, Plate 3 and Plate 4, with nominally identical properties were considered.

  18. Study of the penetration of a plate made of titanium alloy VT6 with a steel ball

    Science.gov (United States)

    Buzyurkin, A. E.

    2018-03-01

    The purpose of this work is the development and verification of mathematical relationships, adapted to the package of finite element analysis LS-DYNA and describing the deformation and destruction of a titanium plate in a high-speed collision. Using data from experiments on the interaction of a steel ball with a titanium plate made of VT6 alloy, verification of the available constants necessary for describing the behavior of the material using the Johnson-Cook relationships was performed, as well as verification of the parameters of the fracture model used in the numerical modeling of the collision process. An analysis of experimental data on the interaction of a spherical impactor with a plate showed that the data accepted for VT6 alloy in the first approximation for deformation hardening in the Johnson-Cook model give too high results on the residual velocities of the impactor when piercing the plate.

  19. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R. [Bechtel Corp., Frederick, MD (United States)

    2015-12-15

    Modular steel-plate composite (SC) safety-related nuclear power plant structures must be designed to resist accident thermal and mechanical loads. The design accident thermal load represents the condition where high pressure and temperature steam is released as result of a mechanical failure and applied against the surfaces of power plant structural walls. The effect of heating and pressure can have both short and long term effects on the mechanical integrity of SC structures including degradation and cracking of concrete infill, residual stresses, and out-of-plane deformations. The purpose of this research is to study the effects of thermal and mechanical loads on the out-of-plane flexural response of SC walls and to develop simplified equations that can be used to predict behavior. Four experimental beam tests are reported that represent full-scale cross-sections of SC walls subjected to combinations of mechanical and thermal loads. The study determined that thermal loads reduce the out-of-plane flexural stiffness of SC walls. For the ambient condition, the flexural stiffness closely matches a conventional elastic cracked-transformed model, and at elevated temperatures, the stiffness is reduced to a fully-cracked flexural stiffness that only takes into account the stiffness of the steel faceplates. A method is presented for estimating the thermal curvature, ϕ{sub th}, and thermal moment, M{sub th}, resulting from unequal heating of opposing faces of an SC wall. Based on the tests in this study, the application of accident thermal loads did not result in a reduction of the flexural strength of the SC section.

  20. Propagation of semi-elliptical surface cracks in ferritic and austenitic steel plates under thermal cyclic loading

    International Nuclear Information System (INIS)

    Bethge, K.

    1989-05-01

    Theoretical and experimental investigations of crack growth under thermal and thermomechanical fatigue loading are presented. The experiments were performed with a ferritic reactor pressure vessel steel 20 MnMoNi 5 5 and an austenitic stainless steel X6 CrNi 18 11. A plate containing a semi-elliptical surface crack is heated up to a homogeneous temperature and cyclically cooled down by a jet of cold water. On the basis of linear elastic fracture mechanics stress-intensity factors are calculated with the weight function method. The prediction of crack growth under thermal fatigue loading using data from mechanical fatigue tests is compared with the experimental result. (orig.) [de

  1. Hydrogen effect on mechanical properties and flake formation in the 10KhSND steel rolled plates

    Energy Technology Data Exchange (ETDEWEB)

    Muradova, R G; Zakharov, V A; Kuzin, A P; Gol' tsov, V A; Podgajskij, M S [Donetskij Politekhnicheskij Inst. (Ukrainian SSR); Donetskij Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii (Ukrainian SSR))

    1982-01-01

    The effect of hydrogen on mechanical properties of the 10KhSND steel rolled plates during natural aging is studied. Optimum period of metal acceptance tests, which are advisable to conduct after 5-7 day natural aging of finished products, are found out. The technique is worked out and a safe hydrogen content to prevent flake formation in the 10KhSND steel is determined. It is shown that a safe hydrogen content is dependent on the experiment conditions (sample dimensions, conditions of cooling, and prehistory).

  2. Hydrogen effect on mechanical properties and flake formation in the 10KhSND steel rolled plates

    International Nuclear Information System (INIS)

    Muradova, R.G.; Zakharov, V.A.; Kuzin, A.P.; Gol'tsov, V.A.; Podgajskij, M.S.

    1982-01-01

    The effect of hydrogen on mechanical properties of the 10KhSND steel rolled plates during natural aging is studied. Optimum period of metal acceptance tests, which are advisable to conduct after 5-7 day natural aging of finished products, are found out. The technique is worked out and a safe hydrogen content to prevent flake formation in the 10KhSND steel is determined. It is shown that a safe hydrogen content is dependent on the experiment conditions (sample dimensions, conditions of cooling, and prehistory)

  3. High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis

    Directory of Open Access Journals (Sweden)

    Imed Miraoui

    2016-01-01

    Full Text Available The thermal effect of CO2 high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ, the heat affected zone depth (HAZ, and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE. The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.

  4. Surface strengthening using a self-protective diffusion paste and its application for ballistic protection of steel plates

    International Nuclear Information System (INIS)

    Lou, D.C.; Solberg, J.K.; Borvik, T.

    2009-01-01

    This paper deals with surface strengthening of steel plates using a self-protective diffusion paste. During the surface strengthening process, a paste containing carbon, boron or similar is applied on the steel surface. In addition to serving as a source for the various diffusion ingredients, the paste protects the steel against contact with the environment, so no packing or gas protection is necessary. Thus, the handling is in general very simple, and the surface strengthening process can be performed in a conventional air furnace. The method provides the same type of surface strengthening that is obtained by more conventional methods. In this work, the main focus will be surface strengthening by carburizing, but also boronizing and boronizing followed by carburizing have been tested out. The methods have been applied to increase the ballistic resistance of the low-strength carbon steel NVE36 (with nominal yield stress of 355 MPa) against impacts from small-arms bullets. An empirical model combining diffusion depth, heat-treatment temperature and soaking time was established on the basis of a series of experimental data. By means of this equation, the various heat-treatment parameters can be predicted when others are chosen. Ballistic perforation tests using 7.62 mm APM2 bullets showed that the low-strength carbon steel after surface strengthening obtained a ballistic limit higher than that of Hardox 400, which is a wear steel with a yield stress of about 1200 MPa.

  5. Full title: Biomechanical comparison between stainless steel, titanium and carbon-fiber reinforced polyetheretherketone volar locking plates for distal radius fractures.

    Science.gov (United States)

    Mugnai, Raffaele; Tarallo, Luigi; Capra, Francesco; Catani, Fabio

    2018-05-25

    As the popularity of volar locked plate fixation for distal radius fractures has increased, so have the number and variety of implants, including variations in plate design, the size and angle of the screws, the locking screw mechanism, and the material of the plates. carbon-fiber reinforced polyetheretherketone (CFR-PEEK) plate features similar biomechanical properties to metallic plates, representing, therefore, an optimal alternative for the treatment of distal radius fractures. three different materials-composed plates were evaluated: stainless steel volar lateral column (Zimmer); titanium DVR (Hand Innovations); CFR-PEEK DiPHOS-RM (Lima Corporate). Six plates for each type were implanted in sawbones and an extra-articular rectangular osteotomy was created. Three plates for each material were tested for load to failure and bending stiffness in axial compression. Moreover, 3 constructs for each plate were evaluated after dynamically loading for 6000 cycles of fatigue. the mean bending stiffness pre-fatigue was significantly higher for the stainless steel plate. The titanium plate yielded the higher load to failure both pre and post fatigue. After cyclic loading, the bending stiffness increased by a mean of 24% for the stainless steel plate; 33% for the titanium; and 17% for the CFR-PEEK plate. The mean load to failure post-fatigue increased by a mean of 10% for the stainless steel and 14% for CFR-PEEK plates, whereas it decreased (-16%) for the titanium plate. Statistical analysis between groups reported significant values (p plastic deformation, and lower load to failure. N/A. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Tailoring diffraction technique Rietveld method on residual stress measurements of cold-can oiled 304 stainless steel plates

    International Nuclear Information System (INIS)

    Parikin; Killen, P.; Anis, M.

    2003-01-01

    Tailoring of diffraction technique-Rietveld method on residual stress measurements of cold-canailed stainless steel 304 plates assuming the material is isotopic, the residual stress measurements using X-ray powder diffraction is just performed for a plane lying in a large angle. For anisotropic materials, the real measurements will not be represented by the methods. By Utilizing of all diffraction peaks in the observation region, tailoring diffraction technique-Rietveld analysis is able to cover the limitations. The residual stress measurement using X-ray powder diffraction tailored by Rietveld method, in a series of cold-canailed stainless steel 304 plates deforming; 0, 34, 84, 152, 158, 175, and 196 % reduction in thickness, have been reported. The diffraction data were analyzed by using Rietveld structure refinement method. Also, for all cold-canailed stainless steel 304 plates cuplikans, the diffraction peaks are broader than the uncanailed one, indicating that the strains in these cuplikans are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-mean square strain, which describes the distribution of the inhomogeneous strain field, was calculated. Finally, the average residual stresses in cold-canailed stainless steel 304 plates were shown to be a combination effect of hydrostatic stresses of martensite particles and austenite matrix. The average residual stresses were evaluated from the experimentally determined average lattice strains in each phase. It was found the tensile residual stress in a cuplikan was maximum, reaching 442 MPa, for a cuplikan reducing 34% in thickness and minimum for a 196% cuplikan

  7. Microstructure and mechanical properties of friction stir welded 18Cr–2Mo ferritic stainless steel thick plate

    International Nuclear Information System (INIS)

    Han, Jian; Li, Huijun; Zhu, Zhixiong; Barbaro, Frank; Jiang, Laizhu; Xu, Haigang; Ma, Li

    2014-01-01

    Highlights: • We focus on friction stir welding of 18Cr–2Mo ferritic stainless steel thick plate. • We produce high-quality joints with special tool and optimised welding parameters. • We compare microstructure and mechanical properties of steel and joint. • Friction stir welding is a method that can maintain the properties of joint. - Abstract: In this study, microstructure and mechanical properties of a friction stir welded 18Cr–2Mo ferritic stainless steel thick plate were investigated. The 5.4 mm thick plates with excellent properties were welded at a constant rotational speed and a changeable welding speed using a composite tool featuring a chosen volume fraction of cubic boron nitride (cBN) in a W–Re matrix. The high-quality welds were successfully produced with optimised welding parameters, and studied by means of optical microscopy (OM), scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and standard hardness and impact toughness testing. The results show that microstructure and mechanical properties of the joints are affected greatly, which is mainly related to the remarkably fine-grained microstructure of equiaxed ferrite that is observed in the friction stir welded joint. Meanwhile, the ratios of low-angle grain boundary in the stir zone regions significantly increase, and the texture turns strong. Compared with the base material, mechanical properties of the joint are maintained in a comparatively high level

  8. Influence of Deposition Conditions on Fatigue Properties of Martensitic Stainless Steel with Tin Film Coated by Arc Ion Plating Method

    Science.gov (United States)

    Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi

    The surface properties like roughness etc. strongly influence the fatigue strength of high-tensile steel. To investigate the effect of surface condition and TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. This study, using samples that had been polished under several size of grind particle, examines the influence of pre-coating treatment on fatigue properties. A 2-µm-thick TiN film was deposited onto the substrate under three kinds of polishing condition. The difference of the hardness originated in the residual stress or thin deformation layer where the difference of the size of grinding particle of the surface polishing. And it leads the transformation of the interface of the substrate and the TiN film and improves fatigue limit.

  9. Effect of microstructure of TiN film on properties as bipolar plate coatings in polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted magnetron sputtering

    International Nuclear Information System (INIS)

    Feng, Kai; Li, Zhuguo

    2013-01-01

    As potential application in bipolar plate of polymer electrolyte membrane fuel cell, the microstructure, corrosion resistance and the electrical conductivity of titanium nitride (TiN) and Si doped titanium nitride (Ti 0.9 Si 0.1 N) films deposited by magnetron sputtering with different bias voltages are investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), electrochemical test and four-point probe method, respectively. XRD, SEM and AFM results reveal that the texture and topography of TiN film depend on the bias voltage and incorporation of Si. When the bias voltage is − 20 V and − 30 V, the TiN and Ti 0.9 Si 0.1 N films exhibit a dense (111) plane preferred growth, denser structure and smoother surface topography. The potentiodynamic test results indicate that the TiN and Ti 0.9 Si 0.1 N films have higher chemical inertness and better corrosion resistance. The films can satisfy the requirement of current density for bipolar plate materials. Incorporation of Si element into TiN film makes the passive current density more stable. Four-point probe measurement results show that the resistivity of both TiN and Ti 0.9 Si 0.1 N films reaches minimum when the deposition bias voltage is − 20 V. - Highlights: • Dense TiN and Ti 0.9 Si 0.1 N films are deposited by magnetron sputtering. • Preferred growth orientation of TiN depends on the bias voltage and Si doping. • TiN and Ti 0.9 Si 0.1 N films have excellent corrosion resistance. • Surface conductivity of TiN and Ti 0.9 Si 0.1 N films evolves with bias voltage

  10. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Xiu Yun, Zhu; Rong, Pan

    2014-01-01

    Highlights: • Simulation analysis is carried out with two constitutive concrete models. • Winfrith model can better simulate nonlinear response of concrete than CSCM model. • Performance of steel plate concrete is better than reinforced concrete. • Thickness of safety related structures can be reduced by adopting steel plates. • Analysis results, mainly concrete material models should be validated. - Abstract: The steel plate reinforced concrete and reinforced concrete structures are used in nuclear power plants for protection against impact of an aircraft. In order to compare the impact resistance performance of steel plate reinforced concrete and reinforced concrete slabs panels, simulation analysis of 1/7.5 scale model impact tests is carried out by using finite element code ANSYS/LS-DYNA. The damage modes of all finite element models, velocity time history curves of the aircraft engine and damage to aircraft model are compared with the impact test results of steel plate reinforced concrete and reinforced concrete slab panels. The results indicate that finite element simulation results correlate well with the experimental results especially for constitutive winfrith concrete model. Also, the impact resistance performance of steel plate reinforced concrete slab panels is better than reinforced concrete slab panels, particularly the rear face steel plate is very effective in preventing the perforation and scabbing of concrete than conventional reinforced concrete structures. In this way, the thickness of steel plate reinforced concrete structures can be reduced in important structures like nuclear power plants against impact of aircraft. It also demonstrates the methodology to validate the analysis procedure with experimental and analytical studies. It may be effectively employed to predict the precise response of safety related structures against aircraft impact

  11. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact

    OpenAIRE

    Rahman, N. A.; Abdullah, S.; Zamri, W. F. H.; Abdullah, M. F.; Omar, M. Z.; Sajuri, Z.

    2016-01-01

    Abstract This paper presents the computational-based ballistic limit of laminated metal panels comprised of high strength steel and aluminium alloy Al7075-T6 plate at different thickness combinations to necessitate the weight reduction of existing armour steel plate. The numerical models of monolithic configuration, double-layered configuration and triple-layered configuration were developed using a commercial explicit finite element code and were impacted by 7.62 mm armour piercing projectil...

  12. Strengthening of Reinforced Concrete Beam in Shear Zone by Compensation the Stirrups with Equivalent External Steel Plates

    Directory of Open Access Journals (Sweden)

    Khamail Abdul-Mahdi Mosheer

    2016-09-01

    Full Text Available An experimental study on reinforced concrete beams strengthened with external steel plates instead of shear stirrups has been held in this paper. Eight samples of the same dimensions and properties were used. Two of them were tested up to failure and specified as references beams; one with shear reinforcement and the other without shear reinforcement. Another samples without shear reinforcement were tested until the first shear crack occurs, then the samples strengthened on both sides with external steel plates as equivalent area of removed stirrups. The strengthened beams were divided into three groups according to the thickness of plates (1, 1.5, 2 mm, each group involved two beams; one bonded using epoxy and the other bonded using epoxy with anchored bolts. Finally, the strengthened beams tested when using anchored bolts with epoxy glue to bond plates. Where the increasing in maximum load is higher than that in reference beam with no internal stirrups reach to (75.46 –106.13% and has a good agreement with the control beam with shear reinforcement reach to (76.06 – 89.36% of ultimate load.

  13. Fracture toughness of welded joints of ASTM A543 steel plate

    International Nuclear Information System (INIS)

    Susukida, H.; Uebayashi, T.; Yoshida, K.; Ando, Y.

    1977-01-01

    Fracture toughness and weldability tests have been performed on a high strength steel which is a modification of ASTM A543 Grade B Class 1 steel, with a view to using it for nuclear reactor containment vessels. The results showed that fracture toughness of welded joints of ASTM A543 modified high strength steel is superior and the steel is suitable for manufacturing the containment vessels

  14. Simulation Study on the Deflection Response of the 921A Steel thin plate under Explosive Impact Load

    Science.gov (United States)

    Zhang, Yu-Xiang; Chen, Fang; Han, Yan

    2018-03-01

    The Ship cabin would be subject to high-intensity shock wave load when it is attacked by anti-ship weapons, causing its side board damaged. The time course of the deflection of the thin plate made of 921A steel in different initial conditions under the impact load is researched by theoretical analysis and numerical simulation. According to the theory of elastic-plastic deformation of the thin plate, the dynamic response equation of the thin plate under the explosion impact load is established with the method of energy, and the theoretical calculation value is compared with the result from the simulation method. It proved that the theoretical calculation method has better reliability and accuracy in different boundary size.

  15. A Study on the Low Temperature Brittleness by Cyclic Cooling-Heating of Low Carbon Hot Rolled Steel Plate

    International Nuclear Information System (INIS)

    Lee, Hyo Bok

    1979-01-01

    The ductile-brittle transition phenomenon of low carbon steel has been investigated using the standard Charpy V-notch specimen. Dry ice and acetone were used as refrigerants. Notched specimens were cut from the hot rolled plate produced at POSCO for the Olsen impact test. The effect of cyclic cooling and heating of 0.14% carbon steel on the embrittlement was extensively examined. The ductile-brittle transition temperature was found to be approximately-30 .deg. C. The transition temperature was gradually increased as the number of cooling-heating cycles increased. On a typical V-notch fracture surface it was found that the ductile fracture surface showed a thick and fibrous structure, while the brittle fracture surface a small and light grain with irregular disposition. As expected, the transition temperature was also increased as the carbon content of steel increased. Compared with the case of 0.14% carbon steel, the transition temperature of 0.17% carbon steel was found to be increased about 12 .deg. C

  16. Design development of steel plate concrete modularization for the advanced PWR in Korea

    International Nuclear Information System (INIS)

    Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang; Kim, Taeyoung; Hwang, Geunha

    2008-01-01

    APR1400 TM - an advanced PWR - has been developed in Korea since 1992. Four APR1400 units - Shin Kori no.3,4 and Shin Uljin no.1,2 - are going to be built in a next decade. As for economical efficiency, construction cost per power generation Unit(W) is improved more than 10% compared to the former 1,000 MWe PWRs. Moreover, life-cycle maintenance cost is reduced to the world's most level. For construction period from first concrete pouring to commercial operation, 54 months for APR1400 and 36 months for n-th unit have been projected. Reduction of the construction term of the Nuclear Power Plant has been emphasized increasingly for the NPP construction Project because it would reduce the interest cost and uncertainty of the project. The reduction can also advance the return of investment. Some of the PPM(Prefabrication, Preassembly, and Modularization) techniques have been studied for the shortening the construction period of nuclear power plant. Especially for the internal structure of reactor containment building (RCB) in PWR whose term of construction is critical to the whole project, Steel Plate Concrete(SC) structure has been studied as one of alternative structural systems to the conventional Reinforced Concrete(RC) structure in APR1400. SC structure is considered appropriate for the modularization of the structure with its self-supporting. In addition, formwork can be dramatically eliminated when SC structural modules are used. The MKE (Ministry of Knowledge Economy) and KHNP (Korea Hydro and Nuclear Power Co., Ltd.) initiated the research and development of SC Structure in 2005. This paper presents design examples along with Codes and Standards of SC structure in nuclear power plant. (author)

  17. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-01-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy's (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 F to 600 F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young's modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper

  18. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    OpenAIRE

    Abidin Kamal Ariff Zainal; Ismail Elya Atikah; Zainuddin Azman; Hussain Patthi

    2014-01-01

    Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagat...

  19. The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wenchun [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: jiangwenchun@126.com; Gong Jianming; Chen Hu; Tu, S.T. [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2008-08-15

    Stainless-steel plate-fin heat exchanger (PFHE) has been used as a high-temperature recuperator in microturbine for its excellent qualities in compact structure, high-temperature and pressure resistance. Plate-fin structure, as the core of PFHE, is fabricated by vacuum brazing. The main component fins and the parting sheets are joined by fusion of a brazing alloy cladded to the surface of parting sheets. Owing to the material mismatching between the filler metal and the base metal, residual stresses can arise and decrease the structure strength greatly. The recuperator serves at high temperature and the creep would happen. The thickness of the filler metal plays an important role in the joint strength. Hence this paper presented a finite element (FE) analysis of the brazed residual stresses and creep for a counterflow stainless-steel plate-fin structure. The effect of the filler metal thickness on residual stress and creep was investigated, which provides a reference for strength design.

  20. Welding procedure specification for arc welding of St 52-3N steel plates with covered electrodes

    International Nuclear Information System (INIS)

    Cvetkovski, S.; Slavkov, D.; Magdeski, J.

    2003-01-01

    In this paper the results of approval welding technology for arc welding of plates made of St 52-3N steel are presented. Metal arc welding with covered electrode is used welding process. Test specimens are butt welded in different welding positions P A , P F , P C and P D . Before start welding preliminary welding procedure was prepared. After welding of test specimens non destructive and destructive testing was performed. Obtained results were compared with standard DIN 17100 which concerns to chemical composition and mechanical properties of base material. It was confirmed that in all cases mechanical properties of welded joint are higher than those of base material, so preliminary welding procedure (pWTS) can be accepted as welding procedure specification WPS for metal arc welding of St52-3N steel. (Original)

  1. Economic aspect comparison between steel plate reinforced concrete and reinforced concrete technique in reactor containment wall construction

    International Nuclear Information System (INIS)

    Yuliastuti; Sriyana

    2008-01-01

    Construction costs of nuclear power plant were high due to the construction delays, regulatory delays, redesign requirement, and difficulties in construction management. Based on US DOE (United States Department of Energy) study in 2004, there were thirteen advanced construction technologies which were potential to reduce the construction time of nuclear power plant. Among these technologies was the application of steel-plate reinforced concrete (SC) on reactor containment construction. The conventional reinforced concrete (RC) technique were built in place and require more time to remove framework since the external form is temporary. Meanwhile, the SC technique offered a more efficient way to placing concrete by using a permanent external form made of steel. The objective of this study was to calculate construction duration and economic comparison between RC and SC technique. The result of this study showed that SC technique could reduce the construction time by 60% and 29,7% cost reduced compare to the RC technique. (author)

  2. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Mori, Kentaro, E-mail: kentaro_mori@mhi.co.jp [Mitsubishi Heavy Industries, Ltd, Kobe (Japan)

    2015-12-15

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  3. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    International Nuclear Information System (INIS)

    Booth, Peter N.; Varma, Amit H.; Sener, Kadir C.; Mori, Kentaro

    2015-01-01

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  4. Chemical analysis by X-ray fluorescence, of niobium in high-strength plate steels

    International Nuclear Information System (INIS)

    Iozzi, F.B.; Dias, M.J.P.

    1981-01-01

    The use of X-ray fluorescence spectrometry in quantitative analysis of niobium in steels, as an alternative solution for optical emission spectrometry, in the rapid chemical control of steel fabrication by LD type converters, is presented. (M.C.K.) [pt

  5. Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Yan, Jieshen; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of); Song, Gyu Yeong [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2017-01-15

    Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

  6. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    OpenAIRE

    Marroquín de Jesús, Á.; Olivares-Ramírez, J.M.; Ramos-López, G.A.; Pless, R.C.

    2009-01-01

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198-L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m², about 20% smaller than ...

  7. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    OpenAIRE

    Á. Marroquín de Jesús; J.M. Olivares–Ramírez; G.A. Ramos–López; R.C. Pless

    2009-01-01

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than ...

  8. Laboratory procedure for sizing and electroless nickel plating assembled steel bearings

    International Nuclear Information System (INIS)

    Wright, R.R.; Petit, G.S.

    1976-01-01

    The bearing is placed in a holder and degreased in methyl chloroform. The entire bearing is etched in hydrochloric acid and sized in an ammonium bifluoride-hydrogen peroxide solution (NH 4 F.HF--H 2 O 2 ). The bearing is removed from the holder, activated in hydrochloric acid and plated with 0.001 in. of nickel in a plating tumbler immersed in a heated electroless nickel plating bath. The bearing is water-rinsed and air-dried

  9. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods.

    Science.gov (United States)

    Andrade, N J; Bridgeman, T A; Zottola, E A

    1998-07-01

    Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.

  10. Experimental Tests on Steel Plate-to-Plate Splices Bonded by C-FRPS Laminas with and without Wrapping

    Directory of Open Access Journals (Sweden)

    Mario D’Aniello

    2016-02-01

    Full Text Available The results of an experimental investigation carried out on steel splices bonded by (Carbon-Fiber–Reinforced Polymers C-FRPs are presented in this paper. The main aim of the study is to examine the influence of different parameters on the type of failure and on the ductility of splices. Different configurations of the specimens were considered, including butt and lapped joints using different arrangements for end anchorage of the bonded C-FRP laminas, such as (i external bonding; and (ii anchored jacketing with C-FRP sheets transversally wrapped to the longitudinal axis of the joints. The results in terms of failure modes and response curves are described and discussed, highlighting the potentiality of these types of bonded connections for metal structures. In particular, experimental results showed that (i the failure modes exhibited by both butt and lapped wrapped splices were substantially similar; (ii the wrapped anchoring is beneficial in order to achieve large deformations prior to failure, thus allowing a satisfactory ductility, even though a more timely installation process is necessary.

  11. Development of austenitic stainless steel plate (316MN) for fast breeder reactors

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    High creep-fatigue resistance is required for the structural materials for fast breeder reactors. As creep-fatigue life is closely related to creep-rupture ductility, the effects of C, N and Mo on creep-rupture properties were investigated with a view to improving the creep-fatigue resistance of stainless steel. Strengthening by the addition of C has a great adverse effect on rupture ductility, but N can strengthen the steel without decreasing rupture ductility. Strengthening by Mo decreases rupture ductility but this effect is small. The low-C-medium-N (0.01%C - 0.07%N) stainless steel 316 MN developed based on the findings described above exhibits only a small decrease in creep-rupture strength in long-time periods compared with the conventional 316 steel. This steel offers excellent rupture ductility and the 10,000-hour rupture strength which is about 1.2 times that of conventional steel. Moreover, this steel exhibits excellent properties in creep fatigue test. (author)

  12. Energy-Dissipation Performance of Combined Low Yield Point Steel Plate Damper Based on Topology Optimization and Its Application in Structural Control

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2016-01-01

    Full Text Available In view of the disadvantages such as higher yield stress and inadequate adjustability, a combined low yield point steel plate damper involving low yield point steel plates and common steel plates is proposed. Three types of combined plate dampers with new hollow shapes are proposed, and the specific forms include interior hollow, boundary hollow, and ellipse hollow. The “maximum stiffness” and “full stress state” are used as the optimization objectives, and the topology optimization of different hollow forms by alternating optimization method is to obtain the optimal shape. Various combined steel plate dampers are calculated by finite element simulation, the results indicate that the initial stiffness of the boundary optimized damper and interior optimized damper is lager, the hysteresis curves are full, and there is no stress concentration. These two types of optimization models made in different materials rations are studied by numerical simulation, and the adjustability of yield stress of these combined dampers is verified. The nonlinear dynamic responses, seismic capacity, and damping effect of steel frame structures with different combined dampers are analyzed. The results show that the boundary optimized damper has better energy-dissipation capacity and is suitable for engineering application.

  13. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Abidin Kamal Ariff Zainal

    2014-07-01

    Full Text Available Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagation behavior. The results indicate that the microstructure and phase composition as well as corrosion resistance were influenced by nitriding temperatures.

  14. Processing of low carbon steel plate and hot strip—an overview

    Indian Academy of Sciences (India)

    Unknown

    hybrid computer modelling is used for production of strip products with tailor made properties. Although there ..... Thanks are due to the management of SAIL for support and to ... Houdremont E 1956 Handbook of special steels (Berlin: Springer ...

  15. A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Xinmin; Liu, Dong' an; Peng, Linfa [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) plays a significant role on the power loss in a proton exchange membrane (PEM) fuel cell. There are two types of contact behavior at the interface of the BPP and GDL, which are the mechanical one and the electrical one. Furthermore, the electrical contact behavior is dependent on the mechanical one. Thus, prediction of the contact resistance is a coupled mechanical-electrical problem. The current FEM models for contact resistance estimation can only simulate the mechanical contact behavior and moreover they are based on the assumption that the contact surface is equipotential, which is not the case in a real BPP/GDL assembly due to the round corner and margin of the BPP. In this study, a mechanical-electrical FEM model was developed to predict the contact resistance between the BPP and GDL based on the experimental interfacial contact resistivity. At first, the interfacial contact resistivity was obtained by experimentally measuring the contact resistance between the GDL and a flat graphite plate of the same material and processing conditions as the BPP. Then, with the interfacial contact resistivity, the mechanical and electrical contact behaviors were defined and the potential distribution of the BPP/GDL assembly was analyzed using the mechanical-electrical FEM model. At last, the contact resistance was calculated according to the potential drop and the current of the contact surface. The numerical results were validated by comparing with those of the model reported previously. The influence of the round corner of the BPP on the contact resistance was also studied and it is found that there exists an optimal round corner that can minimize the contact resistance. This model is beneficial in understanding the mechanical and electrical contact behaviors between the BPP and GDL, and can be used to predict the contact resistance in a new BPP/GDL assembly. (author)

  16. Depth profiling of hydrogen in ferritic/martensitic steels by means of a tritium imaging plate technique

    International Nuclear Information System (INIS)

    Otsuka, Teppei; Tanabe, Tetsuo

    2013-01-01

    Highlights: ► We applied a tritium imaging plate technique to depth profiling of hydrogen in bulk. ► Changes of hydrogen depth profiles in the steel by thermal annealing were examined. ► We proposed a release model of plasma-loaded hydrogen in the steel. ► Hydrogen is trapped at trapping sites newly developed by plasma loading. ► Hydrogen is also trapped at surface oxides and hardly desorbed by thermal annealing. -- Abstract: In order to understand how hydrogen loaded by plasma in F82H is removed by annealing at elevated temperatures in vacuum, depth profiles of plasma-loaded hydrogen were examined by means of a tritium imaging plate technique. Owing to large hydrogen diffusion coefficients in F82H, the plasma-loaded hydrogen easily penetrates into a deeper region becoming solute hydrogen and desorbs by thermal annealing in vacuum. However the plasma-loading creates new hydrogen trapping sites having larger trapping energy than that for the intrinsic sites beyond the projected range of the loaded hydrogen. Some surface oxides also trap an appreciable amount of hydrogen which is more difficult to remove by the thermal annealing

  17. Super-low-frequency wireless power transfer with lightweight coils for passing through a stainless steel plate

    Science.gov (United States)

    Ishida, Hiroki; Kyoden, Tomoaki; Furukawa, Hiroto

    2018-03-01

    To achieve wireless power transfer (WPT) through a stainless-steel plate, a super-low frequency (SLF) was used as a resonance frequency. In our previous study of SLF-WPT, heavy coils were prepared. In this study, we designed lightweight coils using a WPT simulator that we developed previously. As a result, the weight was reduced to 1.69 kg from 11.9 kg, the previous coil weight. At a resonance frequency of 400 Hz, the transmission efficiency and output power of advanced SLF-WPT reached 91% and 426 W, respectively, over a transmission distance of 30 mm. Furthermore, 80% efficiency and 317 W output were achieved when transmitting power through a 1 mm-thick stainless-steel plate. This performance is much better than that in previous reports. We show using both calculations and experimental results that a power-to-weight ratio of 252 W/kg is possible even when using a 400 Hz power supply frequency.

  18. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  19. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  20. Development of a portable PEM fuel cell system with bipolar plates consisting an electronically conductive thermoplastic Compound material; Entwicklung eines portablen PEM-Brennstoffzellensystems mit Bipolarplatten aus einem elektronisch leitfaehigen thermoplastischen Compound-Material

    Energy Technology Data Exchange (ETDEWEB)

    Niemzig, O.C.

    2005-07-18

    In order to meet the cost targets of PEM fuel cells for commercialization significant cost reductions of cell stack components like membrane/electrode assemblies and bipolar plates have become key aspects of research and development. Central topics of his work are the bipolar plates and humidification for portable applications. Best results concerning conductivity of an extensive screening of a variety of carbon polymer compounds with polypropylene as matrix could be achieved with the carbon black/graphite/polypropylene-base system. Successful tests of this material in a fuel cell stack could be performed as well as the proof of suitability concerning material- and manufacturing costs. Dependent on application a decrease of material cost to 2 Euro/kg to 1,8 Euro/kW seems to be possible. Finally bipolar plates consisting of a selected carbon polymer compound were successfully integrated and tested in a 20-cell stack which was implemented in a portable PEFC-demonstrator unit with a power output between 50 and 150 W. (orig.)

  1. Investigations on the micro-scale surface interactions at the tool and workpiece interface in micro-manufacturing of bipolar plates for proton exchange membrane fuel cells

    Science.gov (United States)

    Peker, Mevlut Fatih

    Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate

  2. Conductive materials for proton exchange membrane fuel cell bipolar plates made from PVDF, PET and co-continuous PVDF/PET filled with carbon additives

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, L.; Mighri, F.; Deyrail, Y. [CREPEC, Center for Applied Research on Polymers and Composites, QC (Canada); Department of Chemical Engineering, Laval University, QC (Canada); Elkoun, S. [CREPEC, Center for Applied Research on Polymers and Composites, QC (Canada); Department of Mechanical Engineering, Sherbrooke University, QC (Canada)

    2010-12-15

    The aim of this work was to develop and characterise electrically conductive materials for proton exchange membrane fuel cells and bipolar plates (BPPs). These BPPs were made from highly conductive blends of polyethylene terephthalate (PET) and polyvinylidene fluoride (PVDF), as matrix phase. The conductive materials were developed from carefully formulated blends composed of conductive carbon black (CB) powder and, in some cases, graphite synthetic flakes mixed with pure PET, PVDF or with PVDF/PET systems. They were first developed by twin-screw extrusion process then compression-molded to give BPP final shape. As the developed blends have to meet properties suitable for BPP applications, they were characterised for their rheological properties, electrical through-plane resistivity (the inverse of conductivity), oxygen permeability, flexural and impact properties. Results showed that lower resistivity was obtained with PVDF/CB blends due to the higher interfacial energy between the PVDF matrix and CB and also the higher density and crystallinity of PVDF, compared to those of PET. It was also observed that the lowest resistivity values were obtained with mixing PVDF and PET at controlled compositions to ensure PVDF/PET co-continuous morphology. Also, slow cooling rates helped to attain the lowest values of through-plane resistivity for all studied blends. This behaviour was related to the higher crystallinity obtained with low cooling rates leading to smaller amorphous regions in which carbon particles are much more concentrated. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Effect of assembly error of bipolar plate on the contact pressure distribution and stress failure of membrane electrode assembly in proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong' an; Peng, Linfa; Lai, Xinmin [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-07-01

    In practice, the assembly error of the bipolar plate (BPP) in a PEM fuel cell stack is unavoidable based on the current assembly process. However its effect on the performance of the PEM fuel cell stack is not reported yet. In this study, a methodology based on FEA model, ''least squares-support vector machine (LS-SVM)'' simulation and statistical analysis is developed to investigate the effect of the assembly error of the BPP on the pressure distribution and stress failure of membrane electrode assembly (MEA). At first, a parameterized FEA model of a metallic BPP/MEA assembly is established. Then, the LS-SVM simulation process is conducted based on the FEA model, and datasets for the pressure distribution and Von Mises stress of MEA are obtained, respectively for each assembly error. At last, the effect of the assembly error is obtained by applying the statistical analysis to the LS-SVM results. A regression equation between the stress failure and the assembly error is also built, and the allowed maximum assembly error is calculated based on the equation. The methodology in this study is beneficial to understand the mechanism of the assembly error and can be applied to guide the assembly process for the PEM fuel cell stack. (author)

  4. An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhou, Yuanyuan; Lin, Guosong; Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Electrical contact resistance between bipolar plates (BPPs) and gas diffusion layers (GDLs) in PEM fuel cells has attracted much attention since it is one significant part of the total contact resistance which plays an important role in fuel cell performance. This paper extends a previous model by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783] on the prediction of electrical contact resistance within PEM fuel cells. The original microscale numerical model was based on the Hertz solution for individual elastic contacts, assuming that contact bodies, GDL carbon fibers and BPP asperities are isotropic elastic half-spaces. The new model features a more practical contact by taking into account the bending behavior of carbon fibers as well as their anisotropic properties. The microscale single contact process is solved numerically using the finite element method (FEM). The relationship between the contact pressure and the electrical resistance at the GDL/BPP interface is derived by multiple regression models. Comparisons of the original model by Zhou et al. and the new model with experimental data show that the original model slightly overestimates the electrical contact resistance, whereas a better agreement with experimental data is observed using the new model. (author)

  5. Flow patterns of GaInSn liquid on inclined stainless steel plate under a range of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan-Cheng, E-mail: yangjc@xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qi, Tian-Yu [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Wang, Zeng-Hui [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China)

    2016-11-01

    Highlights: • The liquid GaInSn metal flow loop was built to study some fusion related liquid metal MHD phenomenon. • The flow patterns of GaInSn free surface flow with the change of Re number and Ha number were got by lot of experiments. • Some detailed descriptions of these flow patterns were also made, and a solid conclusion which agreed with some previous studies was got. - Abstract: In the present paper, some preliminary experimental studies have been conducted to show the flow pattern of liquid metal flow using visualization method. For the convenience of experiments in lab, Ga{sup 67}In{sup 20.5}Sn{sup 12.5} in liquid state at room temperature is used. A test section made by stainless steel is inserted in a traverse magnetic field with strength (B{sub 0}) varies from 0 to 1.28 T. The inclined angle of stainless steel plate in test section is about 9°. Visualization results obtained by high-speed camera (Phantom M/LC 310) shown that GaInSn liquid flow on inclined stainless steel plate behaved unstable liquid column flow pattern in the low flow rate, while behaved large area spreading flow pattern with small waves on the free surface in the large flow rate. However, in the magnetic field, under the action of electromagnetic force, the flow patterns of GaInSn liquid have some significant changes on the spreading width and surface structure of free surface. Some detailed analyses on these changes have been also showed in the present paper. Plans for future work are also presented.

  6. Experimental Study on Welded Headed Studs Used In Steel Plate-Concrete Composite Structures Compared with Contactless Method of Measuring Displacement

    Science.gov (United States)

    Kisała, Dawid; Tekieli, Marcin

    2017-10-01

    Steel plate-concrete composite structures are a new innovative design concept in which a thin steel plate is attached to the reinforced concrete beam by means of welded headed studs. The comparison between experimental studies and theoretical analysis of this type of structures shows that their behaviour is dependent on the load-slip relationship of the shear connectors used to ensure sufficient bond between the concrete and steel parts of the structure. The aim of this paper is to describe an experimental study on headed studs used in steel plate-concrete composite structures. Push-out tests were carried out to investigate the behaviour of shear connectors. The test specimens were prepared according to standard push-out tests, however, instead of I-beam, a steel plate 16 mm thick was used to better reflect the conditions in the real structure. The test specimens were produced in two batches using concrete with significantly different compressive strength. The experimental study was carried out on twelve specimens. Besides the traditional measurements based on LVDT sensors, optical measurements based on the digital image correlation method (DIC) and pattern tracking methods were used. DIC is a full-field contactless optical method for measuring displacements in experimental testing, based on the correlation of the digital images taken during test execution. With respect to conventional methods, optical measurements offer a wider scope of results and can give more information about the material or construction behaviour during the test. The ultimate load capacity and load-slip curves obtained from the experiments were compared with the values calculated based on Eurocodes, American and Chinese design specifications. It was observed that the use of the relationships developed for the traditional steel-concrete composite structures is justified in the case of ultimate load capacity of shear connectors in steel plate-concrete composite structures.

  7. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries; Untersuchungen an a-C:H:Me beschichteten Substraten zur Eignung als alternatives Bipolarplattenmaterial fuer waessrige Vanadium Redox-Flow Batterien

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Justin Frederick

    2015-07-01

    of a pore in the coatings, where higher concentrations of metallic carbides are assumed to catalyze hydrogen evolution. SECM measurements proved to be an useful and powerful tool to investigate corrosion at a-C:H:Me coatings at defects which cannot be resolved by light microscopic measurements. The validation of metallic substrates coated with a 6,61 μm a-C:H:Ti (20 at % Ti) on an coldrolled stainless steel strip (1.4301) showed acceptable performance in real laboratory cells. Despite the fact of showing a faster decreasing cell efficiency than the graphite composite plates, the a-C:H:Ti coatings proved to affect the hydrogen evolution overpotential less than the graphite material when cathodically stressed. Although the defect density and size of an a-C:H:Ti coatings on 1.4301 stainless steel has to be reduced, the mechanical properties and also their possibility to be mass produced showed that coated metallic bipolar plates can be an alternative bipolar plate material for all-vanadium redox flow batteries.

  8. Steel shear strength of anchors with stand-off base plates.

    Science.gov (United States)

    2013-09-01

    Sign and signal structures are often connected to concrete foundations through a stand-off annular base plate with a double-nut anchor bolt connection, which leaves exposed anchor bolt lengths below leveling nuts used in these connections. Cantilever...

  9. Ductile fracture toughness of heavy section pressure vessel steel plate. A specimen-size study of ASTM A 533 steels

    International Nuclear Information System (INIS)

    Williams, J.A.

    1979-09-01

    The ductile fracture toughness, J/sub Ic/, of ASTM A 533, Grade B, Class 1 and ASTM A 533, heat treated to simulate irradiation, was determined for 10- to 100-mm thick compact specimens. The toughness at maximum specimen load was also measured to determine the conservatism of J/sub Ic/. The toughness of ASTM A 533, Grade B, Class 1 steel was 349 kJ/m 2 and at the equivalent upper shelf temperature, the heat treated material exhibited 87 kJ/m 2 . The maximum load fracture toughness was found to be linearly proportional to specimen size, and only specimens which failed to meet ASTM size criteria exhibited maximum load toughness less than J/sub Ic/

  10. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  11. Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-03-01

    Full Text Available The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.

  12. Dispersion and thermal interactions of molten metal fuel settling on a horizontal steel plate through a sodium pool

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1989-01-01

    Although the Integral Fast Reactor (IFR) possesses inherent safety features, an assessment of the consequences of melting of the metal fuel is necessary for risk analysis. As part of this effort an experimental study was conducted to determine the depths of sodium at 600 C required for pour streams of various molten uranium alloys (U, U-5 wt % Zr, U-10 wt % Zr, and U-10 wt % Fe) to break up and solidify. The quenched particulate material, which was in the shape of filaments and sheets, formed coolable beds because of the high voidage (∼0.9) and large particle size (∼10 mm). In a test with a 0.15-m sodium depth, the fragments from a pure uranium pour stream did not completely solidify but formed an agglomerated mass which did not fuse to the base plate. However, the agglomerated fragments of U-10 wt % Fe eutectic fused to the stainless steel base plate. An analysis of the temperature response of a 25-mm thick base plate was made by volume averaging the properties of the sodium and metal particle phases and assuming two semi-infinite solids coming into contact. Good agreement was obtained with the data during the initial 5 to 10 s of the contact period. 16 refs., 5 figs., 1 tab

  13. Irradiated dynamic fracture toughness of ASTM A533, Grade B, Class 1 steel plate and submerged arc weldment. Heavy section steel technology program technical report No. 41

    International Nuclear Information System (INIS)

    Davidson, J.A.; Ceschini, L.J.; Shogan, R.P.; Rao, G.V.

    1976-10-01

    As a result of the Heavy Section Steel Technology Program (HSST), sponsored by the Nuclear Regulatory Commission, Westinghouse Electric Corporation conducted dynamic fracture toughness tests on irradiated HSST Plate 02 and submerged arc weldment material. Testing performed at the Westinghouse Research and Development Laboratory in Pittsburgh, Pennsylvania, included 0.394T compact tension, 1.9T compact tension, and 4T compact tension specimens. This data showed that, in the transition region, dynamic test procedures resulted in lower (compared to static) fracture toughness results, and that weak direction (WR) oriented specimen data were lower than the strong direction (RW) oriented specimen results. Irradiated lower-bound fracture toughness results of the HSST Program material were well above the adjusted ASME Section III K/sub IR/ curve. An irradiated and nonirradiated 4T-CT specimen was tested during a fracture toughness test as a preliminary study to determine the effect of irradiation on the acoustic emission-stress intensity factor relation in pressure vessel grade steel. The results indicated higher levels of acoustic emission activity from the irradiated sample as compared to the unirradiated one at a given stress intensity factor (K) level

  14. Corrosion fatigue crack growth in clad low-alloy steels. Part 2: Water flow rate effects in high-sulfur plate steel

    International Nuclear Information System (INIS)

    James, L.A.; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1997-01-01

    Corrosion fatigue crack propagation tests were conducted on a high-sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 C, under loading conditions (ΔK, R, cyclic frequency) conducive to environmentally assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/s or 4.7 m/s was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi-stagnant conditions, but water flow rates at 1.7 m/s and 5.0 m/s parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity

  15. Effect of Temperature Variation on Bond Characteristics between CFRP and Steel Plate

    Directory of Open Access Journals (Sweden)

    Shan Li

    2016-01-01

    Full Text Available In recent years, application of carbon fiber reinforced polymer (CFRP composite materials in the strengthening of existing reinforced concrete structures has gained widespread attention, but the retrofitting of metallic buildings and bridges with CFRP is still in its early stages. In real life, these structures are possibly subjected to dry and hot climate. Therefore, it is necessary to understand the bond behavior between CFRP and steel at different temperatures. To examine the bond between CFRP and steel under hot climate, a total of twenty-one double strap joints divided into 7 groups were tested to failure at constant temperatures from 27°C to 120°C in this paper. The results showed that the joint failure mode changed from debonding along between steel and adhesive interface failure to debonding along between CFRP and adhesive interface failure as the temperature increased beyond the glass transition temperature (Tg of the adhesive. The load carrying capacity decreased significantly at temperatures approaching or exceeding Tg. The interfacial fracture energy showed a similar degradation trend. Analytical models of the ultimate bearing capacity, interfacial fracture energy, and bond-slip relationship of CFRP-steel interface at elevated temperatures were presented.

  16. Post-buckling capacity of bi-axially loaded rectangular steel plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, T. H.

    2012-01-01

    slenderness and edge displacement ratio are included in the investigations presented. Capacity interaction curves are established in the bi-axial stress domain. It turns out that for certain stress ratios the imperfections dominating the ultimate capacity are not affine to the lowest classical buckling mode...... for biaxial stress. It is of great interest that short wave imperfections of a lower magnitude compared to conventionally used imperfections are seen to lower the capacity of the bi-axially loaded plates. The topic is of major concern in the flange plates of long span bridges with multi box girder...

  17. The effect of plasma arc process parameters on the properties of dissimilar AISI 1040/AISI 304 steel plate welds

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Musa; Kirik, Ihsan; Orhan, Nuri [Firat Univ., Elazig (Turkey); Celik, Ferkan [Science Industry and Technology Ministry of Turkey (Turkey)

    2012-11-01

    In this study, 10 mm thick AISI 1040 and AISI 304 steel plates were welded in the butt position without pretreatment by plasma transferred arc (PTA) welding technique. Therefore, mechanical behaviour, microstructure, penetration depth and length were investigated. After welding, microstructural changes in the interface regions of the welded specimens were examined by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Micro-hardness as well as V-notch Charpy tests were performed to determine the mechanical properties of the welds. The influence of the welding parameters on the dimension and shape of the joints has been found out. From the results, it was derived that with the parameters used, a partly keyhole weld bead formed with a penetration depth of 10 mm and a width of 11 mm in butt position. (orig.)

  18. The influence of plate thickness on the welding residual stresses from submerged arc welding in offshore steel structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2017-01-01

    Welding-induced residual tensile stresses and distortion have become a major concern in relation to the structural integrity of welded structures within the offshore wind industry. The stresses have a negative impact on the integrity of the welded joint, as they promote distortion, reduce fatigue...... leading to a better understanding of the distribution and development of the welding residual stresses. This can later be used to optimize the fatigue design, providing a more efficient and improved design. In this context, the current research is expected to benefit the offshore industry by leading...... to an improved design, which consequently may be included in future norms and standards. Submerged Arc Welding (SAW) was used to make a fully penetrated butt weld in 10 mm and 40 mm thick steel plates with the same welding parameters as used in the production procedures. The base material is thermomechanical hot...

  19. Comparison of the Time Domain Windows Specified in the ISO 18431 Standards Used to Estimate Modal Parameters in Steel Plates

    Directory of Open Access Journals (Sweden)

    Jhonatan Camacho-Navarro

    2016-01-01

    Full Text Available The procedures used to estimate structural modal parameters as natural frequency, damping ratios, and mode shapes are generally based on frequency methods. However, methods of time-frequency analysis are highly sensible to the parameters used to calculate the discrete Fourier transform: windowing, resolution, and preprocessing. Thus, the uncertainty of the modal parameters is increased if a proper parameter selection is not considered. In this work, the influence of three different time domain windows functions (Hanning, flat-top, and rectangular used to estimate modal parameters are discussed in the framework of ISO 18431 standard. Experimental results are conducted over an AISI 1020 steel plate, which is excited by means of a hammer element. Vibration response is acquired by using acceleration records according to the ISO 7626-5 reference guides. The results are compared with a theoretical method and it is obtained that the flat-top window is the best function for experimental modal analysis.

  20. Rectangular Gusset Plate Behaviour in Cold-Formed I-Type Steel Connections

    Directory of Open Access Journals (Sweden)

    Bučmys Ž.

    2017-06-01

    Full Text Available Cold-formed structure connections utilizing gusset plates are usually semi-rigid. This paper investigates the behaviours of rectangular gusset plates in cold-formed connections of elements whose columns and beams are made with lipped back-to-back C-sections. Methods of calculating strength and stiffness are necessary for such semi-rigid joints. The main task of this paper is to determine a method capable of calculating these characteristics. The proposed analytical method could then be easily adapted to the component method that is described in part 1993-1-8 of the Eurocode. This method allows us to calculate both the strength and stiffness of rectangular gusset plates, assuming that the joint deforms only in plane. This method of design moment resistance calculation was presented taking into account that an entire cross-section shall reach its yield stress. A technique of stiffness calculation was presented investigating the sum of deformations acquired at the bending moment and from shear forces which are transmitted from each beam bolt group. Calculation results according to the suggested method show good agreement of laboratory experimental results of specimens with numerical simulations. Two specimens of beam-to-column connections were tested in the laboratory. Lateral supports were used on the specimens to prevent lateral displacements in order to better investigate the behaviour of the rectangular gusset plate in plane. Experiments were simulated by modelling rectangular gusset plates using standard finite element software ANSYS Workbench 14.0. Three-dimensional solid elements were used for modelling and both geometric and material nonlinear analysis was performed.

  1. Lumped Parameter experiments for Single Mode Fiber Laser Cutting of Thin Stainless Steel Plate

    Science.gov (United States)

    Lai, Shengying; Jia, Ye; Han, Bing; Wang, Jun; Liu, Zongkai; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2017-06-01

    The present work reports the parameters on laser cutting stainless steel including workpiece thickness, cutting speed, defocus length and assisting gas pressure. The cutting kerf width, dross attachment and cut edge squareness deviation are examined to provide information on cutting quality. The results show that with the increasing thickness, the cutting speed decrease rate is about 27%. The optimal ranges of cutting speed, defocus length and gas pressure are obtained with maximum quality. The first section in your paper

  2. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    Science.gov (United States)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  3. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    Science.gov (United States)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol-gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  4. Effect of analysis parameters on non-linear implicit finite element analysis of marine corroded steel plate

    Science.gov (United States)

    Islam, Muhammad Rabiul; Sakib-Ul-Alam, Md.; Nazat, Kazi Kaarima; Hassan, M. Munir

    2017-12-01

    FEA results greatly depend on analysis parameters. MSC NASTRAN nonlinear implicit analysis code has been used in large deformation finite element analysis of pitted marine SM490A steel rectangular plate. The effect of two types actual pit shape on parameters of integrity of structure has been analyzed. For 3-D modeling, a proposed method for simulation of pitted surface by probabilistic corrosion model has been used. The result has been verified with the empirical formula proposed by finite element analysis of steel surface generated with different pitted data where analyses have been carried out by the code of LS-DYNA 971. In the both solver, an elasto-plastic material has been used where an arbitrary stress versus strain curve can be defined. In the later one, the material model is based on the J2 flow theory with isotropic hardening where a radial return algorithm is used. The comparison shows good agreement between the two results which ensures successful simulation with comparatively less energy and time.

  5. Titanium and steel fracture fixation plates with different surface topographies: Influence on infection rate in a rabbit fracture model.

    Science.gov (United States)

    Metsemakers, W J; Schmid, Tanja; Zeiter, Stephan; Ernst, Manuela; Keller, Iris; Cosmelli, Nicolo; Arens, Daniel; Moriarty, T Fintan; Richards, R Geoff

    2016-03-01

    Implant-related infection is a challenging complication in musculoskeletal trauma surgery. In the present study, we examined the role of implant material and surface topography as influencing factors on the development of infection in an experimental model of plating osteosynthesis in the rabbit. The implants included in this experimental study were composed of: standard Electropolished Stainless Steel (EPSS), standard titanium (Ti-S), roughened stainless steel (RSS) and surface polished titanium (Ti-P). Construct stability and load-to-failure of Ti-P implants was compared to that of Ti-S implants in a rabbit cadaveric model. In an in vivo study, a rabbit humeral fracture model was used. Each rabbit received one of three Staphylococcus aureus inocula, aimed at determining the infection rate at a low, medium and high dose of bacteria. Outcome measures were quantification of bacteria on the implant and in the surrounding tissues, and determination of the infectious dose 50 (ID50). No significant differences were observed between Ti-S and Ti-P regarding stiffness or failure load in the cadaver study. Of the 72 rabbits eventually included in the in vivo study, 50 developed an infection. The ID50 was found to be: EPSS 3.89×10(3) colony forming units (CFU); RSS 8.23×10(3) CFU; Ti-S 5.66×10(3) CFU; Ti-P 3.41×10(3) CFU. Significantly lower bacterial counts were found on the Ti-S implants samples compared with RSS implants (ptitanium and steel implants with conventional or modified topographies. Ti-P implants, which have previously been shown in preclinical studies to reduce complications associated with tissue adherence, do not affect infection rate in this preclinical fracture model. Therefore, Ti-P implants are not expected to affect the infection rate, or influence implant stability in the clinical situation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fretting corrosion tests on orthopedic plates and screws made of ASTM F138 stainless steel

    OpenAIRE

    Santos,Claudio Teodoro dos; Barbosa,Cássio; Monteiro,Maurício de Jesus; Abud,Ibrahim de Cerqueira; Caminha,Ieda Maria Vieira; Roesler,Carlos Rodrigo de Mello

    2015-01-01

    Introduction Although there has been significant progress in the design of implants for osteosynthesis, the occurrence of failures in these medical devices are still frequent. These implants are prone to suffer from fretting corrosion due to micromotion that takes place between the screw heads and plate holes. Consequently, fretting corrosion has been the subject of research in order to understand its influence on the structural integrity of osteosynthesis implants. The aim of this paper is t...

  7. Investigation of the ductile fracture properties of Type 304 stainless steel plate, welds, and 4-inch pipe

    International Nuclear Information System (INIS)

    Vassilaros, M.G.; Hays, R.A.; Gudas, J.P.

    1985-01-01

    J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. The tests were performed at 550 0 F, 300 0 F and room temperature. The results of the J-integral tests indicate that the Jsub(Ic) of the base plate ranged from 4400 to 6100 in lbs/in 2 at 550 0 F. The Jsub(Ic) values for the tests performed at 300 0 F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that Jsub(Ic) was greater than 8000 in lb/in 2 . The J-integral tests performed on the weld metal specimens indicate that the Jsub(Ic) values ranged from 930 to 2150 in lbs/in 2 at 550 0 F. The Jsub(Ic) values of the weld metal specimens tested at 300 0 F and room temperature were 2300 and 3000 in lbs/in 2 respectively. One HAZ specimen was tested at 550 0 F and found to have a Jsub(Ic) value of 2980 in lbs/in 2 which indicates that the HAZ is an average of the base metal and weld metal toughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding. The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550 0 F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these tests indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack. (orig.)

  8. The Influence of TIG Welding Thermal Cycles on HSLA-100 Steel Plate

    Science.gov (United States)

    1993-11-01

    8217 1.0’ 1,i 1.0’ 10’ TZ•ME. Secznas Figure 15. CCT diagram for a HSLA-100 steel with composition similar to that of the present work from Wilson...cooling rate through the transformation and ends up with a HAZ hardness of 345 HV which indicates a predominantly martensitic structure, on the CCT ... diagram . This is confirmed by the TEM micrograph of the HAZ taken close to fusion boundary, figure 14. On the other hand, the high heat input weld 1, with

  9. Numerical modeling of the destruction of steel plates with a gradient substrate

    Science.gov (United States)

    Orlov, M. Yu.; Glazyrin, V. P.; Orlov, Yu. N.

    2017-10-01

    The paper presents the results of numerical simulation of the shock loading process of steel barriers with a gradient substrate. In an elastic plastic axisymmetric statement, a shock is simulated along the normal in the range of initial velocities up to 300 m / s. A range of initial velocities was revealed, in which the presence of a substrate "saved" the obstacle from spallation. New tasks were announced to deepen scientific knowledge about the behavior of unidirectional gradient barriers at impact. The results of calculations are obtained in the form of graphs, calculated configurations of the "impact - barrier" and tables.

  10. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    Science.gov (United States)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were

  11. Fiber Laser Welding of Dissimilar 2205/304 Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Ghusoon Ridha Mohammed

    2017-12-01

    Full Text Available In this study, an attempt on pulsed-fiber laser welding on an austenitic-duplex stainless steel butt joint configuration was investigated. The influence of various welding parameters, such as beam diameter, peak power, pulse repetition rate, and pulse width on the weld beads geometry was studied by checking the width and depth of the welds after each round of welding parameters combination. The weld bead dimensions and microstructural progression of the weld joints were observed microscopically. Finally, the full penetration specimens were subjected to tensile tests, which were coupled with the analysis of the fracture surfaces. From the results, combination of the selected weld parameters resulted in robust weldments with similar features to those of duplex and austenitic weld metals. The weld depth and width were found to increase proportionally to the laser power. Furthermore, the weld bead geometry was found to be positively affected by the pulse width. Microstructural studies revealed the presence of dendritic and fine grain structures within the weld zone at low peak power, while ferritic microstructures were found on the sides of the weld metal near the SS 304 and austenitic-ferritic microstructure beside the duplex 2205 boundary. Regarding the micro-hardness tests, there was an improvement when compared to the hardness of duplex and austenitic stainless steels base metals. Additionally, the tensile strength of the fiber laser welded joints was found to be higher when compared to the tensile strength of the base metals (duplex and austenitic in all of the joints.

  12. Simulation of crack propagation in steel plate with strain softening model

    Energy Technology Data Exchange (ETDEWEB)

    Chan, O.B.; Elwi, A.E.; Grondin, G.Y.

    2006-05-15

    A new material model for simulating the fracture behaviour of structural steel was presented. Recent research on crack initiation and continuum damage mechanics was presented. A modified continuum damage model was also evaluated. Strain softening elements were then used to simulate material cracks in a steel structure. The analysis then compared load versus displacement and load versus clip-gauge displacement curves from various different experimental and numerical studies. A finite element analysis technique was used to simulate the fracture behaviour of 3-points bending specimens. Results of the analysis showed that the model predicted 90 per cent of the load and stress intensity factor at fracture initiation. A BE 365 electric shovel boom was used in the study to simulate fracture behaviour. Coupon test specimens were used to validate analysis predictions. It was concluded that the model was able to reduce the stiffness of the boom when the softening element reached yield strength limits during fracture initiation. 29 refs., 12 tabs., 58 figs.

  13. Modeling the influence of the parameters the diffusion of chromium plating on operational and physical and mechanical properties of steels for stamping tool

    Directory of Open Access Journals (Sweden)

    Олександр Петрович Чейлях

    2015-03-01

    Full Text Available The diffusion hardening steel can be produced in any plant having a thermal equipment, besides, it is more economical than obtaining an alloy steel with similar properties. The influence of the parameters of the diffusion of chromium plating (the composition of the steel, powder mixture on the structure and mechanical properties of structural and tool steels was investigated. Results of X-ray analysis showed that the diffusion zone in the samples consists of two layers. First layer is predominantly carbides Cr7C3, Cr23C6, Fe3C. An intermediate layer composed of carbon-free solid solution of chromium in the iron. The maximum total thickness of the diffusion zone is observed in the steel 130Cr12V1 and 130Cr12Mo1 (~80 µm, minimum – in carbon steels 45, U10 (~10-30 µm. The thickness of carbide layer is approximately the same – 1-3 µm. Analyzing of data micro-hardness measurement across the thickness of the diffusion zone it must be noted that the diffusion layers of the samples of the tool steels have a high micro-hardness 6000-10000. The maximum HV=10200 was in steel 30Cr2W8V1. Chromium saturation of steel surface significantly increases its wear resistance. A much greater effect of increase of coefficient of relative wear resistance (3 fold increase was observed in steels 30Cr2W8V1, 130Cr12V1 and 130Cr12Mo1. The mathematical models relating the micro-hardness, wear resistance, the thickness of the diffusion layer were obtained. In view of the analytical relationships ascertained that the wear resistance of hardened steels substantially depend on the thickness of the diffusion coating, the micro-hardness of the layer and the core of steel and alloy steels has increased more than two times. For hardening steel punching tool 30Cr2W8V1 can be recommended composition of the powder mixture: 50% FeCr + 48% Al2O3 + 2% NaF, and for steel 130Cr12V1 preferably used as activator NH4F

  14. Study of the temperature distribution on welded thin plates of duplex steel to be used for the external clad of a cask for transportation of radiopharmaceuticals products

    International Nuclear Information System (INIS)

    Betini, Evandro G.; Ceoni, Francisco C.; Mucsi, Cristiano S.; Politano, Rodolfo; Rossi, Jesualdo L.; Orlando, Marcos T.D.

    2015-01-01

    The clad material for a proprietary transport device for radiopharmaceutical products is the main focus of the present work. The production of 99 Mo- 99m Tc transport cask requires a receptacle or cask where the UNS S32304 duplex steel sheet has shown that it meets high demands as the required mechanical strength and the spread of impact or shock waves mitigation. This work reports the experimental efforts in recording the thermal distribution on autogenous thin plates of UNS S32304 steel during welding. The UNS S32304 duplex steel is the most probable candidate for the external clad of the containment package for the transport of radioactive substances so it is highly relevant the understanding of all its physical parameters and its behavior under the thermal cycle imposed by a welding process. For the welding of the UNS S32304 autogenous plates the GTAW (gas tungsten arc welding) process was used with a pure argon arc protection atmosphere in order to simulate a butt joint weld on a thin duplex steel plate without filler metal. The thermal cycles were recorded by means of K-type thermocouples embedded by electrical spot welding near the weld region and connected to a multi-channel data acquisition system. The obtained results validate the reliability of the experimental apparatus for the future complete analysis of the welding experiment and further comparison to numerical analysis. (author)

  15. Discussion about effecting of stiffener in four bolts in a row end plate connection for long span and heavy load steel structures in Vietnam

    Science.gov (United States)

    Huong, Khang T.; Nguyen, Cung H.

    2018-04-01

    Nowadays, steel structure industry in Vietnam is in strong development. The construction of steel structure becomes larger span and heavier load. The issue spawned a number of issues arise from optimizing connections. Typical of steel connections in prefabricated steel structure that is an end plate (face plate) bolted connection. When the connection carried a heavy load, then the number of bolts is required much more. Increasing the number of rows bolts will less effective because can still not enough strength requirements, the bolts in row near rotational center will level arm reduction, then it cannot carry heavy loads. The current solution is doing multiple bolts in a row. Current standards such as EN [1], AISC [2] are no specific guidelines for calculating the connection four bolts in a row that primarily assumes the way works like a T-stub of the two bolts a row. Some articles studied T-stub four bolts in a row [3], [4], [5], [6] by component method but it has some components which weren’t considered. In this paper, in order to provide a contribution to improve the T-stub four bolts in a row, the stiffener component in T-stub will be added and compared with T-stub without stiffener by the finite element model to demonstrate effectiveness in reducing stress and displacement of T-stub. It gives ideas for the economic design of four bolts in a row end plate connection in Vietnam for future.

  16. Determining frustum depth of 304 stainless steel plates with various diameters and thicknesses by incremental forming

    Energy Technology Data Exchange (ETDEWEB)

    Golabi, Sa' id [University of Kashan, Kashan (Iran, Islamic Republic of); Khazaali, Hossain [Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2014-08-15

    Nowadays incremental forming is more popular because of its flexibility and cost saving. However, no engineering data is available for manufacturers for forming simple shapes like a frustum by incremental forming, and either expensive experimental tests or finite element analysis (FEA) should be employed to determine the depth of a frustum considering: thickness, material, cone diameter, wall angle, feed rate, tool diameter, etc. In this study, finite element technique, confirmed by experimental study, was employed for developing applicable curves for determining the depth of frustums made from 304 stainless steel (SS304) sheet with various cone angles, thicknesses from 0.3 to 1 mm and major diameters from 50 to 200 mm using incremental forming. Using these curves, the frustum angle and its depth knowing its thickness and major diameter can be predicted. The effects of feed rate, vertical pitch and tool diameter on frustum depth and surface quality were also addressed in this study.

  17. Testing of Ni-plated ferritic steel interconnect in SOFC stacks

    DEFF Research Database (Denmark)

    Nielsen, K.A.; Dinesen, A.R.; Korcakova, L.

    2006-01-01

    heating to 1,030 °C. During this time, 20–70 μm thick surface layers of austenitic steel were formed, which were covered by a 1–4 μm chromia layer on the anode side and by a layer of mixed Cr-Fe-Ni-spinels over a 1–4 μm chromia layer on the cathode side. The microstructure and composition...... of the protective scale on the cathode side was susceptible to pitting-type corrosion patterns, which may limit the life expectancy to less than 2,000 hours for the 200 μm thick interconnect tested. The initial area-specific resistances (ASR) at the interconnect/cathode current collector interface...

  18. The prediction of failure of welded steel plates for pressure vessels

    International Nuclear Information System (INIS)

    Gulvin, T.F.; Terry, P.; Webster, S.E.

    1980-01-01

    The avoidance of brittle fracture in pressure vessels and other welded steel fabrications is a matter of considerable importance. The application of fracture mechanics to this problem has led to the evolution of a philosophy which, among other things, permits estimation of tolerable crack sizes so that practical working limits can be set on inspection procedures and on material and welded joint toughness levels. The use of small-scale fracture mechanics tests, particularly crack opening displacement (COD) tests, to make the necessary material and/or joint property assessments is now commonplace. A number of possible analytical techniques have been considered. Initially, the COD data have been used with the Burdekin-Dawes design curve approach taking into account all the possible stress conditions and, it can be demonstrated, that consistently safe predictions of allowable flaw sizes can be made. Also considered, is the fracture analysis diagram approach of Harrison, Loosemore, and Milne in which a combination of fracture toughness data and mechanical property data is used to assess the probability of failure. Similarly the approach defined by Irvine and Quirk which makes use of mechanical property data without resorting to fracture mechanics and finally, a simple approach using uniaxial tensile property data only has also been examined. Comparisons have been made between these four approaches using, initially, the body of data referring to fracture tests on a single material with various defect sizes and aspect ratios, etc. and latterly, to the specific cases in the body of data on high strength steels. The results are discussed. (author)

  19. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact

    Directory of Open Access Journals (Sweden)

    N. A. Rahman

    Full Text Available Abstract This paper presents the computational-based ballistic limit of laminated metal panels comprised of high strength steel and aluminium alloy Al7075-T6 plate at different thickness combinations to necessitate the weight reduction of existing armour steel plate. The numerical models of monolithic configuration, double-layered configuration and triple-layered configuration were developed using a commercial explicit finite element code and were impacted by 7.62 mm armour piercing projectile at velocity range of 900 to 950 m/s. The ballistic performance of each configuration plate in terms of ballistic limit velocity, penetration process and permanent deformation was quantified and considered. It was found that the monolithic panel of high-strength steel has the best ballistic performance among all panels, yet it has not caused any weight reduction in existing armour plate. As the weight reduction was increased from 20-30%, the double-layered configuration panels became less resistance to ballistic impact where only at 20% and 23.2% of weight reduction panel could stop the 950m/s projectile. The triple-layered configuration panels with similar areal density performed much better where all panels subjected to 20-30% weight reductions successfully stopped the 950 m/s projectile. Thus, triple-layered configurations are interesting option in designing a protective structure without sacrificing the performance in achieving weight reduction.

  20. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.

    Science.gov (United States)

    Jain, R; Podworny, N; Hearn, T; Anderson, G I; Schemitsch, E H

    1997-10-01

    Comparison of the effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Randomized, prospective. Orthopaedic research laboratory. Ten large (greater than twenty-five kilogram) adult dogs. A short, midshaft spiral tibial fracture was created, followed by lag screw fixation and neutralization with an eight-hole, 3.5-millimeter, low-contact dynamic compression plate (LCDCP) made of either 316L stainless steel (n = five) or commercially pure titanium (n = five). After surgery, animals were kept with unrestricted weight-bearing in individual stalls for ten weeks. Cortical bone blood flow was assessed by laser Doppler flowmetry using a standard metalshafted probe (Periflux Pf303, Perimed, Jarfalla, Sweden) applied through holes in the custom-made LCDCPs at five sites. Bone blood flow was determined at four times: (a) prefracture, (b) postfracture, (c) postplating, and (d) ten weeks postplating. After the dogs were killed, the implant was removed and both the treated tibia and contralateral tibia were tested for bending stiffness and load to failure. Fracture creation decreased cortical perfusion in both groups at the fracture site (p = 0.02). The application of neither stainless steel nor titanium LCDCPs further decreased cortical bone blood flow after fracture creation. However, at ten weeks postplating, cortical perfusion significantly increased compared with acute postplating levels in the stainless steel (p = 0.003) and titanium (p = 0.001) groups. Cortical bone blood flow ten weeks postplating was not significantly different between the titanium group and the stainless steel group. Biomechanical tests performed on the tibiae with the plates removed did not reveal any differences in bending stiffness nor load required to cause failure between the two groups. Both titanium and stainless steel LCDCPs were equally effective in allowing revascularization, and

  1. Bipolar Disorder

    Science.gov (United States)

    Bipolar disorder is a serious mental illness. People who have it go through unusual mood changes. They go ... The down feeling is depression. The causes of bipolar disorder aren't always clear. It runs in families. ...

  2. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    Science.gov (United States)

    Mousavi, S. A. A. Akbari; Zareie, H. R.

    2011-01-01

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  3. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  4. The analysis of bainitic ferrite microstructure in microalloyed plate steels through quantitative characterization of intervariant boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Singon, E-mail: sikang@mines.edu [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States); Speer, John G.; Regier, Ryan W. [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States); Nako, Hidenori [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States); Materials Research Laboratory, Kobe Steel Ltd., Kobe, Hyogo 651-2271 (Japan); Kennett, Shane C. [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States); Exponent Failure Analysis Associates, Menlo Park, CA 94025 (United States); Findley, Kip O. [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO 80401 (United States)

    2016-07-04

    Electron backscatter diffraction (EBSD) measurements were performed to investigate the bainitic ferrite microstructure in low-carbon, microalloyed steels with varying C and Mn contents. Fully austenitized samples were isothermally heat treated at temperatures ranging from 450 to 550 °C to form bainitic ferrite. The bainitic ferrite microstructures and boundary characteristics obtained from the EBSD measurements were analyzed based on an inferred Kurdjumov-Sachs (K-S) orientation relationship. The heat treated samples exhibit a microstructure composed of laths and the lath aspect ratio tends to increase at lower isothermal heat treatment temperatures. High fractions of boundary misorientation angles below 5° are observed, which are due to lath boundaries in the microstructure. Additionally, misorientations of approximately 7°, 53° and 60° are observed, which are related to the sub-block, packet, and block boundaries, respectively. With decreasing isothermal heat treatment temperature, there is an increase of block boundaries; these boundaries are intervariant boundaries between different blocks within a packet, most of which have the misorientation angle of 60°. The specimens with a higher carbon level contained increased length of block boundaries, whereas the addition of Mn moderated the dependence of block boundary length on the heat treatment temperature within the experimental temperature range. Meanwhile, the length of intervariant boundaries of both packet and sub-block character did not vary much with heat treatment temperature and alloy composition.

  5. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    Science.gov (United States)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  6. The study of fix composite panel and steel plates on testing stand

    Science.gov (United States)

    Wróbel, A.; Płaczek, M.; Wachna, M.

    2016-08-01

    In this paper the practical possibilities of strength verification analysis of composite materials used in the manufacture of selected components of railway wagons are presented. Real laboratory stand for measurements in a scale controlled by PLC controller were made. The study of different types of connections of composite materials with sheet metal is presented. In one of the chapter of this paper principles construction of testing stand with pneumatic cylinder were presented. Mainly checking of displacements and stresses generated on the sheet as a result of pneumatic actuators load for composite boards was carried out. The use of the controller with operating panel allows to easy programming testing cycle. The user can define the force generated by the actuator by change of air pressure in cylinder. Additionally the location of acting cylinders and their jump can be changed by operator. The examination of the volume displacements was done by displacement sensor, and the tensile strain gauge. All parameters are written in CatmanEasy - data acquisition software. This article presents the study of stresses and displacements in the composite plates joined with sheet metal, in summary of this article, the authors compare the obtained results with the computer simulation results in the article: "Simulation of stresses in an innovative combination of composite with sheet".

  7. Surface residual stress evaluation in double-electrode butt welded steel plates

    International Nuclear Information System (INIS)

    Estefen, S.F.; Gurova, T.; Castello, X.; Leontiev, A.

    2010-01-01

    Surface residual stress evaluation for double-electrode welding was studied. The stresses were monitored after each operational step: positioning, implementing of constraints, welding and constraints removal. The measurements were performed at the deposited metal, heat affected zone, base metal close to the weld joint and along the plate using the X-ray diffraction method. It was observed differences in the stress evaluations for double-electrode welding which resulted in lower bending distortions and higher values of surface residual stresses, compared with single-electrode welding. This behavior is associated with the stress distribution just after the welding processes in both heat affected zone and base metal close to the fillet for double-electrode welding. The main results from the laboratorial tests indicated lower values of the bending distortions for double-electrode welding compared with the single-electrode. In relation to the residual stress, the double-electrode welding generated, in general, higher stress values in both longitudinal and transversal directions.

  8. Continuous cooling transformations and microstructures in a low-carbon, high-strength low-alloy plate steel

    Science.gov (United States)

    Thompson, S. W.; Vin, D. J., Col; Krauss, G.

    1990-06-01

    A continuous-cooling-transformation (CCT) diagram was determined for a high-strength low-alloy plate steel containing (in weight percent) 0.06 C, 1.45 Mn, 1.25 Cu, 0.97 Ni, 0.72 Cr, and 0.42 Mo. Dilatometric measurements were supplemented by microhardness testing, light microscopy, and transmission electron microscopy. The CCT diagram showed significant suppression of polygonal ferrite formation and a prominent transformation region, normally attributed to bainite formation, at temperatures intermediate to those of polygonal ferrite and martensite formation. In the intermediate region, ferrite formation in groups of similarly oriented crystals about 1 μm in size and containing a high density of dislocations dominated the transformation of austenite during continuous cooling. The ferrite grains assumed two morphologies, elongated or acicular and equiaxed or granular, leading to the terms “acicular ferrite” and “granular ferrite,” respectively, to describe these structures. Austenite regions, some transformed to martensite, were enriched in carbon and retained at interfaces between ferrite grains. Coarse interfacial ledges and the nonacicular morphology of the granular ferrite grains provided evidence for a phase transformation mechanism involving reconstructive diffusion of substitutional atoms. At slow cooling rates, polygonal ferrite and Widmanstätten ferrite formed. These latter structures contained low dislocation densities and e-copper precipitates formed by an interphase transformation mechanism.

  9. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    Directory of Open Access Journals (Sweden)

    Á. Marroquín de Jesús

    2009-07-01

    Full Text Available Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than comparable copper–tube–based collectors offered in the market. Temperature measurements conducted over a 30–day period gave values which were a few degrees lower than the theoretically calculated water temperatures. Momentary thermal efficiency values between 35% and 77% were observed. The water temperature achieved in the tank at the end of the day aver ages 65°C in winter weather conditions in the central Mexican highland. This design of solar water heater is well suited to Mexican conditions, as it makes use of the high local intensity of the solar radiation, and as the channel shape of the ducts minimizes bursting during the rare occurrences of freezing temperatures in the region; it also has the advantage of being manufacturable at low cost from simple materials.

  10. Effect of Abrasive Waterjet Peening Surface Treatment of Steel Plates on the Strength of Single-Lap Adhesive Joints

    Directory of Open Access Journals (Sweden)

    Kamil Anasiewicz

    2017-09-01

    Full Text Available The paper presents results of comparative study of shear strength of single–lap adhesive joints, depending on the method of surface preparation of steel plates with increased corrosion resistance. The method of preparing adherend surfaces is often one of the most important factors determining the strength of adhesive joints. Appropriate geometric surface development and cleaning of the surface enhances adhesion forces between adherend material and adhesive. One of the methods of shaping engineering materials is waterjet cutting, which in the AWJP – abrasive waterjet peening variant, serves to shape flat surfaces of the material by changing the roughness and introducing stresses into the surface layer. These changes are valuable when preparing adhesive joints. In the study, surface roughness parameters obtained with AWJP treatment, were analyzed in direct relation to the strength of the adhesive joint. As a consequence of the experimental results analysis, the increase in the strength of the adhesive joints was observed in a certain range of parameters used for AWJP treatment. A decrease in shear strength of adhesive joint with the most modified topography of overlap surface was observed.

  11. Theoretical and experimental study on unstable fracture for type 304 stainless steel plates with a soft tensile testing machine

    International Nuclear Information System (INIS)

    Yagawa, G.; Takahashi, Y.; Ando, Y.

    1981-01-01

    The object of this paper is to show experimental results on stable as well as unstable fractures for Type 304 stainless steel plates with a central crack using a soft tensile testing machine. The test machine was installed specially for the safety study of nuclear piping systems and its maximum loading capacity and maximum displacement are 600 ton and 500 mm, respectively. The compliance of the machine is 1.0 x 10 -4 (mm/N). The transition points from the stable to the unstable crack growth observed in the test were theoretically determined by using three methods. In the first method, the 'applied' value of T was calculated with the simple expression based on the dimensional analysis. In the second method, the fully-plastic solutions were used to calculate the nonlinear value of J, which was added to the linear value of J, thus the 'applied' values of T was determined by differentiating the total value of J, which was obtained for the material with the Ramberg-Osgood type stress-strain relation. In the final method, the finite element method was fully utilized to determine the 'applied' value of T. The value of J in the finite element method was obtained with the use of the path-integral. (orig./GL)

  12. Independency of Elasticity on Residual Stress of Room Temperature Rolled Stainless Steel 304 Plates for Structure Materials

    Directory of Open Access Journals (Sweden)

    Parikin Parikin

    2015-12-01

    Full Text Available Mechanical strengths of materials are widely expected in general constructions of any building. These properties depend on its formation (cold/hot forming during fabrication. This research was carried out on cold-rolled stainless steel (SS 304 plates, which were deformed to 0, 34, 84, and 152% reduction in thickness. The tests were conducted using Vickers method. Ultra micro indentation system (UMIS 2000 was used to determine the mechanical properties of the material, i.e.: hardness, modulus elasticity, and residual stresses. The microstructures showed lengthening outcropping due to stress corrosion cracking for all specimens. It was found that the tensile residual stress in a specimen was maximum, reaching 442 MPa, for a sample reducing 34% in thickness and minimum; and about 10 MPa for a 196% sample. The quantities showed that the biggest residual stress caused lowering of the proportional limit of material in stress-strain curves. The proportional modulus elasticity varied between 187 GPa and of about 215 GPa and was free from residual stresses.

  13. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masanori, E-mail: ando.masanori@jaea.go.jp; Takaya, Shigeru, E-mail: takaya.shigeru@jaea.go.jp

    2016-12-15

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  14. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    International Nuclear Information System (INIS)

    Ando, Masanori; Takaya, Shigeru

    2016-01-01

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  15. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohu [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Li, Xiaojun, E-mail: beerli@vip.sina.com [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China)

    2017-04-15

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  16. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact. Pt.3: Analyses of full-scale aircraft impact

    International Nuclear Information System (INIS)

    Jun Mizuno; Norihide Koshika; Eiichi Tanaka; Atsushi Suzuki; Yoshinori Mihara; Isao Nishimura

    2005-01-01

    Steel plate reinforced concrete (SC) walls and slabs are structural members in which the rebars of reinforced concrete are replaced by steel plates. Steel plate reinforced concrete structures are more attractive structural design alternatives to reinforced concrete structures, especially with thick, heavily reinforced walls and slabs such as nuclear structures, because they enable a much shorter construction period, greater earthquake resistant and more cost effectiveness. Experimental and analytical studies performed by the authors have also shown that SC structures are much more effective in mitigating damage against scaled aircraft models , as described in Parts 1 and 2 of this study. The objective of Part 3 was to determine the protective capability of SC walls and roofs against a full-scale aircraft impact by conducting numerical experiments to investigate the fracture behaviors and limit thicknesses of SC panels and to examine the effectiveness of SC panels in detail under design conditions. Furthermore, a simplified method is proposed for evaluating the localized damage induced by a full-scale engine impact. (authors)

  17. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    International Nuclear Information System (INIS)

    Li, Xiaohu; Li, Xiaojun

    2017-01-01

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  18. The annal of british RPV steel plates for first nuclear power station in Japan (1). Unforseen accidents araised before nuclear power plant open

    International Nuclear Information System (INIS)

    Miyoshi, Shigeru

    2011-01-01

    This article described the author's experiences of reactor vessel steel plates for the first nuclear power station, Tokai-mura reactor. The station is an advanced Calder Hall type. The electrical output is 166 MWe. The reactor vessel was spherical with internal diameter of 189 cm and wall thickness of 83 mm. Material was a fine-grain, aluminum-killed steel. Each part of pressure vessel, bottom cap, belt 1, 2, 3, 4 and top cap, were prefabricated with welding of plates, then lifted into the reactor building and assembled with welding. Steel plates were imported from UK, press formed to spherical segments in Japan and transferred to the site. Ultrasonic testing, magnetic particle testing of groove face (crack detection), sizing of groove and sulfur print tests were performed as an on-site acceptance testing. Inclusions and lamination openings were observed at groove faces due to gas flame cutting. White spot was observed at rupture face of tensile test specimen. At the liquid penetration testing after back gauging of extra seam, a crack-like indication with length of less than 3 mm was observed. Reexamination of groove face by magnetic particles testing showed indications of inclusion cloud or alumina cloud. These would be cracks caused by hydrogen embrittlement. (T. Tanaka)

  19. Characterization of gold and nickel coating on AISI 304 stainless steel for use in the fabrication of current collector plates for fuel cells; Caracterizacion de recubrimientos de oro y niquel realizados sobre acero inoxidable AISI 304 para su empleo en la fabricacion de placas colectoras de corriente para celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Aguilar Gama, M. Tulio [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Olvera, J. Carlos; Orozco, German [CIDETEQ, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    Among the different components that compose fuel cell technology (MEA, bipolar plates, seals, etc.) current collector plates play an important role in the good performance of fuel cells, since they collect all of the current generated and distribute it to the external circuit. Therefore, the most important properties that the current collector plates should have are excellent conductivity and good resistance to the corrosive conditions present in the fuel cell. This document presents results obtained during the nickel and gold electrodeposition process on AISI 304 stainless steel and the morphology and thickness of each coating, their adhesion, hardness and conductivity values. Finally, results obtained during some of the electrochemical tests performed on the coatings are shown. [Spanish] De los diferentes componentes que integran la tecnologia de celdas de combustible (MEA's, placas bipolares, sellos, etc.), las placas colectoras de corriente tienen un importante rol en el buen desempeno de la celdas de combustibles, ya que en estas placas se colecta toda la corriente generada y se distribuye al circuito externo. Debido a esto, las propiedades mas importantes que deben tener las placas colectaras de corriente son: excelente conductividad y buena resistencia a las condiciones corrosivas presentes en la celda de combustible. En este documento se presentan los resultados obtenidos en el proceso de electrodeposicion de niquel y oro sobre acero inoxidable AISI 304, asi como la morfologia y el espesor de cada recubrimiento, sus valores de adherencia, dureza y conductividad. Finalmente se muestran tambien los resultados obtenidos de algunas pruebas electroquimicas a los que fueron sometidos los recubrimientos.

  20. Experimental study comparing the behaviour of steel truss plates and birch plywood inserts in ridge joints on glued laminated rafters

    Directory of Open Access Journals (Sweden)

    López Gayarre, F.

    2009-08-01

    Full Text Available The present paper reports on an analysis of the mechanical performance of two flat joining systems used in roof members made of glued laminated timber.Six pairs of laminated timber rafters for a double-pitched roof with a 100x180-mm cross-section, a 6.00-m span and a height of 1.00 m were subjected to full-scale four-point bending. In three of the specimens the rafters were joined at the ridge with a birch plywood insert, while in the other three the connection was secured with a fitting consisting in a standard flat steel truss plate. The objective pursued was to evaluate the possibility of replacing the steel fittings with birch plywood inserts. The approach adopted to reach this objective was to compare the strength of the two joint pieces and the deformation generated in the overall structure during strength tests.The results proved to be highly satisfactory in terms of both the bearing capacity and the stiffness of the structures tested.El presente trabajo tiene por objeto llevar a cabo un análisis experimental del comportamiento mecánico de ciertos sistemas planos de unión para elementos estructurales de madera laminada empleados en la construcción de cubiertas.El estudio incluye los ensayos a escala real de seis din-teles a dos aguas de madera laminada, de 6 m de luz, 1 m de altura y una sección de 100 mm x 180 mm, sometidos a flexión en cuatro puntos. En tres dinteles el elemento de unión es una pieza de tablero contra-chapado de abedul, mientras que en los otros tres se ha utilizado un herraje de acero. La finalidad es valorar la posibilidad de sustituir los elementos de unión, realizados mediante herrajes, por otros constituidos por piezas de tablero contrachapado de abedul. Este objetivo se logra comparando el comportamiento resistente mostrado por ambos dispositivos de unión, y las deformaciones en cada caso de las estructuras completas.Los resultados resultaron muy satisfactorios tanto en la capacidad portante como en la

  1. Computational simulation of the microstructure of irradiation damaged regions for the plate type fuel of UO2 microspheres dispersed in stainless steel matrix

    International Nuclear Information System (INIS)

    Reis, S.C. dos; Lage, A.F.; Braga, D.; Ferraz, W.B.

    2006-01-01

    Plate type fuel elements have high efficiency of thermal transference what benefits the heat flux with high rates of power output. In reactor cores, fuel elements, in general, are subject to a high neutrons flux, high working temperatures, severe corrosion conditions, direct interference of fission products that result from nuclear reactions and radiation interaction-matter. For plate type fuels composed of ceramic particles dispersed in metallic matrix, one can observe the damage regions that arise due to the interaction fission products in the metallic matrix. Aiming at evaluating the extension of the damage regions in function of the particles and its diameters, in this paper, computational geometric simulations structure of plate type fuel cores, composed of UO 2 microspheres dispersed in stainless steel in several fractions of volume and diameters were carried out. The results of the simulations were exported to AutoCAD R where it was possible its visualization and analysis. (author)

  2. An experimental study on the flexural and shear behavior of steel plate concrete—reinforced concrete connected structures

    International Nuclear Information System (INIS)

    Hwang, K.M.; Lee, K.J.; Yang, H.J.; Kim, W.K.

    2013-01-01

    Highlights: ► This paper confirmed the structural behavior of the connection plane between a RC and a SC member. ► Out-of-plane flexural load tests verified the appropriateness of the ductile non-contact splice length. ► The test results for the in-plane shear load showed the needlessness of horizontal bars in the SC member. ► In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. ► Numerical analysis was carried out to verify test results and its results was compared with them. -- Abstract: This paper describes an experimental study on the structural behavior of the joint plane between a RC (reinforced concrete) wall and a SC (steel plate concrete) wall under out-of-plane flexural loads and in-plane shear loads. L- and I-shaped test specimens were produced to efficiently assess the flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. The out-of-plane flexural test conducted on the short development length L-shaped specimen with a non-contact splice length exhibited a ductile failure mode that surpassed the nominal strength, verifying the validity of the splice length used in its design. The in-plane shear test was conducted on two I-shaped specimens varying the compositional presence of horizontal bars in the SC member. The test results showed that the capacity of the specimens was more than their nominal strength regardless of the compositional presence of horizontal bars. The shear friction tests of the RC–SC member connection conducted on the other L-shaped specimen caused the failure of the SC member and verified a shear resistance of at least 85.5% compared to the theoretical value

  3. Review of corrosion phenomena on zirconium alloys, niobium, titanium, inconel, stainless steel, and nickel plate under irradiation

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1975-01-01

    The role of nuclear fluxes in corrosion processes was investigated in ATR, ETR, PRTR, and in Hanford production reactors. Major effort was directed to zirconium alloy corrosion parameter studies. Corrosion and hydriding results are reported as a function of oxygen concentration in the coolant, flux level, alloy composition, surface pretreatment, and metallurgical condition. Localized corrosion and hydriding at sites of bonding to dissimilar metals are described. Corrosion behavior on specimens transferred from oxygenated to low-oxygen coolants in ETR and ATR experiments is compared. Mechanism studies suggest that a depression in the corrosion of the Zr--2.5Nb alloy under irradiation is due to radiation-induced aging. The radiation-induced onset of transition on several alloys is in general a gradual process which nucleates locally, causing areas of oxide prosity which eventually encompass the surface. Examination of Zry-2 process tubes reveals that accelerated corrosion has occurred in low-oxygen coolants. Hydrogen contents are relatively low, but show some localized profiles. Gross hydriding has occurred on process tubes containing aluminum spacers, apparently by a galvanic charging mechanism. Titanium paralleled Zry-2 in corrosion behavior under irradiation. Niobium corrosion was variable, but did not appear to be strongly influenced by radiation. Corrosion rates on Inconel and stainless steel were only slightly higher in-flux than out-of-reactor. Corrosion rates on nickel-plated aluminum appeared to vary substantially with preexposure treatments, but the rates generally were accelerated compared to rates on unirradiated coupons. (59 references, 11 tables, 12 figs.)

  4. Feasibility investigations on a novel micro-manufacturing process for fabrication of fuel cell bipolar plates: Internal pressure-assisted embossing of micro-channels with in-die mechanical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Muammer [NSF I/UCR Center for Precision Forming (CPF), Department of Mechanical Engineering, Virginia Commonwealth University (VCU), Richmond, VA (United States); Mahabunphachai, Sasawat [NSF I/UCR Center for Precision Forming (CPF), Department of Mechanical Engineering, Virginia Commonwealth University (VCU), Richmond, VA (United States); Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2007-10-25

    In this paper, we present the results of our studies on conceptual design and feasibility experiments towards development of a novel hybrid manufacturing process to fabricate fuel cell bipolar plates that consists of multi-array micro-channels on a large surface area. The premises of this hybrid micro-manufacturing process stem from the use of an internal pressure-assisted embossing process (cold or warm) combined with mechanical bonding of double bipolar plates in a single-die and single-step operation. Such combined use of hydraulic and mechanical forming forces and in-process bonding will (a) enable integrated forming of micro-channels on both surfaces (as anode and cathode flow fields) and at the middle (as cooling channels), (b) reduce the process steps, (c) reduce variation in dimensional tolerances and surface finish, (d) increase the product quality, (e) increase the performance of fuel cell by optimizing flow-field designs and ensuring consistent contact resistance, and (f) reduce the overall stack cost. This paper explains two experimental investigations that were performed to characterize and evaluate the feasibility of the conceptualized manufacturing process. The first investigation involved hydroforming of micro-channels using thin sheet metals of SS304 with a thickness of 51 {mu}m. The width of the channels ranged from 0.46 to 1.33 mm and the height range was between 0.15 and 0.98 mm. Our feasibility experiments resulted in that different aspect ratios of micro-channels could be fabricated using internal pressure in a controllable manner although there is a limit to very sharp channel shapes (i.e., high aspect ratios with narrow channels). The second investigation was on the feasibility of mechanical bonding of thin sheet metal blanks. The effects of different process and material variables on the bond quality were studied. Successful bonding of various metal blanks (Ni201, Al3003, and SS304) was obtained. The experimental results from both

  5. Bipolar disorders

    DEFF Research Database (Denmark)

    Vieta, Eduard; Berk, Michael; Schulze, Thomas G

    2018-01-01

    Bipolar disorders are chronic and recurrent disorders that affect >1% of the global population. Bipolar disorders are leading causes of disability in young people as they can lead to cognitive and functional impairment and increased mortality, particularly from suicide and cardiovascular disease...... and accurate diagnosis is difficult in clinical practice as the onset of bipolar disorder is commonly characterized by nonspecific symptoms, mood lability or a depressive episode, which can be similar in presentation to unipolar depression. Moreover, patients and their families do not always understand...... a bipolar disorder from other conditions. Optimal early treatment of patients with evidence-based medication (typically mood stabilizers and antipsychotics) and psychosocial strategies is necessary....

  6. Comparison of high temperature wear behaviour of plasma sprayed WC–Co coated and hard chromium plated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Balamurugan, G.M.; Duraiselvam, Muthukannan; Anandakrishnan, V.

    2012-01-01

    Highlights: ► WC–12wt.%Co powders were deposited to a thickness of 300 μm on to steel substrates. ► The micro hardness of the above coatings was lower than that of chromium plating. ► Wear resistance of chromium coating was increased up to five times of AISI 304 austenitic stainless steel. ► Wear resistance of chromium coat higher than plasma coat at different temperatures. -- Abstract: The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.

  7. Improvements to the corrosion resistance of stainless steels for fuel cell applications : supplementary report for phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S.; Li, J.; Liu, P.; Shehata, M.; Kruszewski, J.; Lo, J.; Guertsman, V.Y.; Gu, G.P. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2007-07-15

    This paper reported on a newly developed method of making bipolar electrodes from type 304 stainless steel. Two stainless steels were cast, hot-rolled and heat treated. The microstructures were then examined to determine the chromium carbide formation. Plain and mechanically polished samples were sent to General Motors for conductivity measurements to investigate the thermo-mechanical treatment as a means of improving the contact resistance of stainless steel bipolar plates subject to the operating conditions in a proton-exchange membrane (PEM) fuel cell. The treatment induces precipitation of conducive particles. The surface of the stainless steel is etched so that particles protrude from the surface. When the bipolar plates are stacked with sufficient load, the protruding surface precipitates indent into adjacent graphite electrodes, making direct electrical contact. The most common precipitate is M{sub 23}C{sub 6} carbide. This paper described the carbide precipitation required for electrical conductivity and presented a model for electrical conductance across a bipolar plate. It included a description of inter-particle distance and carbide size; carbide formation in type 304 stainless steels; heat-treatment processing of 304 steel for electrical conductance and desensitization; and the effect of steel composition on carbide growth. The experimental work was outlined in terms of casting, hot rolling, cold rolling, heat treatment, aging treatment for carbide growth, and desensitization treatment. Both alloys that were subjected to the thermo-mechanical treatment in this study showed a uniform distribution of carbide precipitates. Their size varied from very small to about 0.8{mu}m. Scanning electron microscopy (SEM) analysis did not detect a change in particle size and population density of these particles with prolonged annealing at 800 degrees C. 4 refs., 6 tabs., 14 figs.

  8. Required grades of hull steel plates in consideration of fracture toughness; Hakai jinsei wo koryoshita sentaiyo koban shiyo kubun ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, H; Yamamoto, M; Ogaki, Y [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1997-10-01

    This paper discusses the required grades of hull steel plates based on the steel ship rule of Nippon Kaiji Kyokai (NK). The minimum value of the allowable crack length in NK rule (critical safety crack length at 0degC just before brittle unstable crack causing fatal fracture) was estimated. In the case where the estimated crack tip exists in a matrix, the crack length was a minimum of 200-210mm, while nearly 60mm in a fusion line at high-heat-input welded joint. The allowable crack lengths estimated from a specified value in the NK rule were fairly different. The allowable crack length at 0degC was also estimated from the minimum value in V-notch Charpy impact test. The private proposal on the required grades of hull steel plates in consideration of fracture toughness was discussed. Thirty-five percent of crack lengths found in real ships is 100mm or less, however, cracks of 250-400mm long are frequently found suggesting the allowable crack length of 400mm. The required grade integrally considering required values and design conditions is demanded to secure the reliability of hull strength. 5 refs., 5 figs., 2 tabs.

  9. Measurements of Residual Stresses In Cold-Rolled 304 Stainless Steel Plates Using X-Ray Diffraction with Rietveld Refinement Method

    International Nuclear Information System (INIS)

    Parikin; Killen, P; Rafterry, A.

    2009-01-01

    The determination of the residual stresses using X-ray powder diffraction in a series of cold-rolled 304 stainless steel plates, deforming 0, 34, 84, 152, 158, 175 and 196 % reduction in thickness has been carried out. The diffraction data were analyzed using the Rietveld structure refinement method. The analysis shows that for all specimens, the martensite particles are closely in compression and the austenite matrix is in tension. Both the martensite and austenite, for a sample reducing 34% in thickness (containing of about 1% martensite phase) the average lattice strains are anisotropic and decrease approximately exponential with an increase in the corresponding percent reduction (essentially phase content). It is shown that this feature can be qualitatively understood by taking into consideration the thermal expansion mismatch between the martensite and austenite grains. Also, for all cold-rolled stainless steel specimens, the diffraction peaks are broader than the unrolled one (instrumental resolution), indicating that the strains in these specimens are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-mean square strain, which describes the distribution of the inhomogeneous strain field, was predicted. The average residual stresses in cold-rolled 304 stainless steel plates showed a combination effect of hydrostatic stresses of the martensite particles and the austenite matrix. (author)

  10. Low upper-shelf toughness, high transition temperature test insert in HSST [Heavy Section Steel Technology] PTSE-2 [Pressurized Thermal Shock Experiment-2] vessel and wide plate test specimens: Final report

    International Nuclear Information System (INIS)

    Domian, H.A.

    1987-02-01

    A piece of A387, Grade 22 Class 2 (2-1/4 Cr - 1 Mo) steel plate specially heat treated to produce low upper-shelf (LUS) toughness and high transition temperature was installed in the side wall of Heavy Section Steel Technology (HHST) vessel V-8. This vessel is to be tested by the Oak Ridge National Laboratory (ORNL) in the Pressurized Thermal Shock Experiment-2 (PTSE-2) project of the HSST program. Comparable pieces of the plate were made into six wide plate specimens and other samples. These samples underwent tensile tests, Charpy tests, and J-integral tests. The results of these tests are given in this report

  11. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    Science.gov (United States)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  12. Galvanic corrosion study of aluminium alloy plates mounted to stainless and mild steel bolts by accelerated exposure test

    OpenAIRE

    MREMA, Emmanuel; ITOH, Yoshito; KANEKO, Akira; HIROHATA, Mikihito

    2016-01-01

    Despite the fact that aluminium alloy members have a proven durability over stainless steel members, their joint fasteners like bolts, nuts and washers are drawn from steel material due to aluminium alloy inferior mechanical properties. Bare contact between aluminium alloy members and stainless steel fasteners results to galvanic corrosion of aluminium alloy members. A corrosion behaviour study was carried out on different aluminium alloy types with different surface treatments mounted to sta...

  13. Bipolar Disorder.

    Science.gov (United States)

    Spearing, Melissa

    Bipolar disorder, a brain disorder that causes unusual shifts in a person's mood, affects approximately one percent of the population. It commonly occurs in late adolescence and is often unrecognized. The diagnosis of bipolar disorder is made on the basis of symptoms, course of illness, and when possible, family history. Thoughts of suicide are…

  14. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J. [Centre de l``Etude de l``Energie Nucleaire, Mol (Belgium); Biemiller, E.C. [Yankee Atomic Electric Company, Bolton (United States); Rossinski, S.T.; Carter, R.G. [Electric Power Research Institute, Charlotte (United States)

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  15. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rossinski, S.T.; Carter, R.G.

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  16. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact. Pt.2: Simulation analysis of scale model impact tests

    International Nuclear Information System (INIS)

    Jun Mizuno; Norihide Koshika; Hiroshi Morikawa; Kentaro Wakimoto; Ryusuke Fukuda

    2005-01-01

    Steel plate reinforced concrete (SC) structure is one in which the rebars of conventional reinforced concrete (RC) structures are replaced with external steel plates attached to inner concrete with headed studs. SC structures are considered to be more effective than RC structures against aircraft impact, so their application to outer walls and roofs of risk-sensitive structures such as nuclear-related structures is expected to mitigate damage to critical components. The objective of this study was to investigate the fracture behavior and perforation thickness of SC panels against aircraft impact through impact tests and simulation analyses. Objectives of this paper are to analytically investigate the protection performance of SC panels against aircraft model impact through simulation analyses of 1/7.5 scale aircraft model impact tests presented in Part 1 of this study using a discrete element method (DEM), and to examine the applicability and validity of the DEM. Simulation analyses by a finite element method (FEM) were also performed to evaluate its applicability. The fracture process and damage to the SC test panels as well as the aircraft models are closely simulated by the discrete element analyses. The various impact responses and failure mechanisms, such as deceleration curves of projectile, velocity of debris from rear face and deformation mode of SC panels, are also simulated closely by the DEM analyses. The results of analyses confirm the shock-proof performance of SC panels against aircraft impact, and the applicability and validity of DEM for evaluating the complex phenomena of an aircraft impact against an SC panel. The finite element analysis closely simulates the deformation of the SC test panel and strains of rear steel plate where the global bending deformation mode is dominant. (authors)

  17. Advanced automobile steels subjected to plate rolling at 773 K or 1373 K

    Science.gov (United States)

    Torganchuk, Vladimir; Belyakov, Andrey; Kaibyshev, Rustam

    2017-12-01

    The high manganese steels exhibiting the effects of twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) demonstrate an excellent combination of enhanced formability, strength and ductility. Such unique mechanical properties make high-manganese steel the most attractive material for various applications, including the segment of advanced automobile steels. The strain hardening in such steels can be achieved through martensitic transformation, when the stacking fault energy (SFE) is about 10 mJ m-2, and/or twinning, when SFE is about 20 to 50 mJ m-2. The actual mechanical properties of high-Mn steels could vary, depending on the conditions of thermo-mechanical processing. In the present study, the effect of rolling temperature on the microstructure and mechanical properties of 18% Mn steels was clarified. The steels hot rolled at 1373 K were characterized by uniform almost equiaxed grains with near random crystallographic orientations that resulted in relatively low yield strengths of 300-360 MPa, followed by pronounced strain hardening that led to the total elongation above 60%. In contrast, the steels warm rolled at 773 K were characterized by flattened grains with a strong rolling texture and high yield strengths of 850-950 MPa combined with a total elongation of about 30%.

  18. Using an equation based on flow stress to estimate structural integrity of annealed Type 304 stainless steel plate and pipes containing surface defects

    International Nuclear Information System (INIS)

    Reuter, W.G.; Place, T.A.

    1981-01-01

    An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)

  19. Improved performance of brazed plate heat exchangers made of stainless steel type EN 1.4401 (UNS S31600) when using a iron-based braze filler

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, P. [Alfa Laval Materials, Lund (Sweden)

    2004-07-01

    The mechanical properties of brazed plate heat exchangers, made of stainless steel plates type EN 1.4401, brazed with a new iron-based braze filler ''AlfaNova'', have been evaluated. The results were compared with heat exchangers brazed with a copper (pure copper) and a nickel-based (MBF 51) braze filler. Their resistance against pressure- and temperature fatigue, which are important for the lifetime of a heat exchanger, and the burst pressure, which is important for pressure vessel approvals, were tested and evaluated. It was found that the pressure fatigue resistance was extraordinary good for the heat exchangers brazed the iron-based filler and its temperature fatigue resistance was better than those brazed with nickel-based braze filler and slightly lower than those brazed with copper. The highest burst pressures were achieved for the copper brazed units followed by the iron-brazed units and rearmost the nickel-brazed units. (orig.)

  20. Photocatalytic degradation of dissolved organic matter in the ground water employing TiO2 film supported on stainless steel plate

    International Nuclear Information System (INIS)

    Andayani, W.; Sumartono, A.; Lindu, M.

    2012-01-01

    The Taman Palem Residences, Cengkareng, Indonesia has a groundwater problem as a main sources of drinking water in the area due to yellowish brown colour of the water, that may come from dissolved organic matter (DOM), humic substances. Photocatalytic degradation using TiO 2 coated on a stainless steel plate (8 x 8 cm) to degrade the dissolved organic matter was studied. Groundwater samples were collected at 150 m deep from Taman Palem Residences. The TiO 2 catalyst was made from deep coating in a sol-gel system of titanium (IV) diisopropoxidebisacetylacetonate (TAA) precursor and immobilized at stainless steel plate (8 x 8 cm), followed by calcination at 525°C. Two catalyst sheets were put in batch reactor containing groundwater. The ground water containing DOM were irradiated by UV black light at varying initial pH values i.e 5, 7 and 9. Sampling of solution was taken at the interval time of 0, 1, 2, 4, and 6 hours. DOM residu in water before and after irradiation were measured by spectrophotometer UV-Vis at 300 nm. Photocatalytic degradation of DOM was greater in acid solution than in basic solution. The determination of intermediate degradation products by HPLC revealed that oxalic acid was detected consistently. (author)

  1. Establishment of Wear Resistant HVOF Coatings for 50CrMo4 Chromium Molybdenum Alloy Steel as an Alternative for Hard Chrome Plating

    Science.gov (United States)

    Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.

    2018-05-01

    High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.

  2. 3-D characteristics of the residual stress in the plate weld between SA508 and stainless steel 316L

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Soo; Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Park, Jai Hak [Chungbuk National Univ., Cheongju (Korea, Republic of); Kim, Man Won [Global New-clear Engineering and Consulting, Daejeon (Korea, Republic of); Cho, Seon Yeong [Korea Laboratory Engineering System Company, Cheonan (Korea, Republic of)

    2008-07-01

    This study is performed to check the three dimensional characteristics of residual stress in the dissimilar metal weld. Although two dimensional analysis has been widely used for the assessment of weld residual stress, it has limitations to understand the stress distribution of the third direction. 3-D analysis was done to understand residual stress distribution of the welded plate. A simple butt-welded plate was considered to show the stress variation on all direction. A mock-up plate weldment was fabricated with SA-508 and F316L, which are widely used in nuclear power plants. The analysis results were validated with the measured values in the mock-up.

  3. Study on elevated-temperature flow behavior of Ni-Cr-Mo-B ultra-heavy-plate steel via experiment and modelling

    Science.gov (United States)

    Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao

    2018-04-01

    Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.

  4. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  5. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method.

    Science.gov (United States)

    Rivas, Lucia; Dykes, Gary A; Fegan, Narelle

    2007-04-01

    Attachment of Shiga toxigenic Escherichia coli (STEC) to surfaces and the formation of biofilms may enhance persistence in a food processing environment and present a risk of contaminating products. Seven strains of STEC and three non-STEC strains were selected to compare two biofilm quantification methods; epifluorescence microscopy on stainless steel (SS) and a microtitre plate assay. The influence of prior growth in planktonic (nutrient broth) and sessile (nutrient agar) culture on biofilm production, as well as expression of surface structures and the possession of antigen 43 (encoded by agn43) on biofilm formation were also investigated. Biofilms were produced in diluted nutrient broth at 25 degrees C for 24 and 48 h. Curli expression was determined using congo red indicator agar, while the presence of agn43 was determined using polymerase chain reaction. No correlation was found between counts for epifluorescence microscopy on SS and the absorbance values obtained with the microtitre plate method for planktonic and sessile grown cultures. Different abilities of individual STEC strains to attach to SS and microtitre plates were found with some strains attaching better to each surface following growth in either planktonic or sessile culture. All O157 STEC strains had low biofilm counts on SS for planktonic and sessile grown cultures; however, one STEC O157:H- strain (EC516) had significantly greater (pbiofilm production on microtitre plates compared to the other O157 STEC strains. EC516 and other STEC (O174:H21 and O91:H21) strains expressing curli fimbriae were found to produce significantly greater (pbiofilms on microtitre plates compared to the non-curli expressing strains. No relationship was found between the production of type-I fimbriae, motility, agn43 and bacterial physicochemical properties (previously determined) and biofilm formation on SS or microtitre plates. Variations between the two biofilm determination methods may suggest that the biofilm

  6. Bipolar dislocation of the clavicle

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2012-01-01

    Full Text Available Bipolar dislocation of the clavicle at acromioclavicular and sternoclavicular joint is an uncommon traumatic injury. The conservative treatments adopted in the past is associated with redislocation dysfunction and deformity. A 41 years old lady with bipolar dislocation of right shoulder is treated surgically by open reduction and internal fixation by oblique T-plate at sternoclavicular joint and Kirschner wire stabilization at acromioclavicular joint. The patient showed satisfactory recovery with full range of motion of the right shoulder and normal muscular strength. The case reported in view of rarity and at 2 years followup.

  7. 77 FR 263 - Certain Cut-To-Length Carbon-Quality Steel Plate From Italy and Japan: Revocation of Antidumping...

    Science.gov (United States)

    2012-01-04

    ... physical description, and in which the chemistry quantities do not equal or exceed any one of the levels...- alloying levels of elements such as chromium, copper, niobium, titanium, vanadium, and molybdenum. Steel....3000, 7210.90.9000, 7211.13.0000, 7211.14.0030, 7211.14.0045, 7211.90.0000, 7212.40.1000, 7212.40.5000...

  8. 78 FR 69371 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Preliminary...

    Science.gov (United States)

    2013-11-19

    ... this investigation are flat-rolled, cold-reduced steel products, regardless of chemistry; whether or... 7210.70.6090, 7212.40.1000, 7212.40.5000, 7219.90.0020, 7219.90.0025, 7219.90.0060, 7219.90.0080, 7220.... Results of the DP Analysis f. Export Price g. Normal Value h. Level of Trade i. Affiliated Party...

  9. 76 FR 66271 - Stainless Steel Plate in Coils From Belgium: Notice of Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-10-26

    ... production facilities, supplier relationships, management, and customer base of Aperam are substantially... facilities; (3) supplier relationships; and (4) customer base. See, e.g., Carbon and Certain Alloy Steel Wire... Belgium N.V. resulted in little or no change in management, production facility, supplier relationships...

  10. Characterization of 2.25Cr1Mo welded ferritic steel plate by using diffractometric and ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy); Albertini, G.; Ceretti, M.; Rustichelli, F. [Ancona Univ. (Italy). Ist. di Fisica Medica; Castelnuovo, A.; Depero, L. [Univ. degli studi, Brescia.Fac. di ingegneria, dip. di ingegneria meccanica (Italy); Giamboni, S.; Gori, M. [Centro Elettrotecnico Sperimentale Italiano (CESI), Milan (Italy)

    1995-12-01

    Four different techniques (X-ray and neutron diffraction, ultrasonic birefringence and incremental hole drilling method) were applied for evaluating residual stress in a butt-welded ferritic steel palte. Measurements were carried out both before and after welding. Effects of post-welding heat treatment is also considered. A comparison between results obtained by using four different techniques is done.

  11. Use of the gapped bead-on-plate test to investigate hydrogen induced cracking of flux cored arc welds of a quenched and tempered steel

    International Nuclear Information System (INIS)

    Chen, Liang; Dunne, Druce; Davidson, Len

    2014-01-01

    Gapped bead-on-plate (G-BOP) testing of flux cored arc welds was conducted to assess the susceptibility to hydrogen induced cold cracking (HICC) of weld metal deposited on a high strength quenched and tempered steel. For preheat temperatures higher than 40°C, no weld metal cracking was observed using a shielding gas consisting of argon with 20% carbon dioxide. In contrast, the no-crack condition was not achieved for a shielding gas consisting of argon-5% carbon dioxide for preheat temperatures lower than 100°C. This extraordinary difference in weld metal HICC resistance indicates that, in general, the shielding gas mixture can exert a major influence on weld metal transverse cold cracking behaviour

  12. Tensile properties of irradiated and fatigue exposed stainless steel DIN X 6 CrNi 1811 (similar to AISI type 304) plate and welded joints

    International Nuclear Information System (INIS)

    Vries, M.I. de; Schaaf, B. van der; Elen, J.D.

    1979-10-01

    Test specimens of plate metal and welded joints of stainless steel DIN 1.4948, which is similar to AISI type 304, have been irradiated at 723 K and 823 K up to fluences of 1.10 23 n.m -2 and 5.10 24 n.m -2 (E > 0.1 MeV). These are representative conditions for the SNR-300 reactor vessel and inner components after 16 years of operation. High-rate (depsilon/dt = 1 s -1 ) tensile tests were performed after fatigue exposure up to various fractions of fatigue life (D) ranging from 5% to 95% at the same temperatures as the nominal temperatures of the irradiation series

  13. Conceptual design for Japan Sodium-Cooled Fast Reactor. (4) Developmental study of steel plate reinforced concrete containment vessel for JSFR

    International Nuclear Information System (INIS)

    Hosoya, Takusaburo; Negishi, Kazuo; Satoh, Kenichiro; Somaki, Takahiro; Matsuo, Ippei; Shimizu, Katsusuke

    2009-01-01

    An innovative containment vessel, namely Steel plate reinforced Concrete Containment Vessel (SCCV) is developed for Japan Sodium-Cooled Fast Reactor (JSFR). Reducing plant construction cost is one of the most important issues for commercialization of fast reactors. This study investigated construction issues including the building structure and the construction method as well as design issues in terms of the applicability of SCCV to fast reactors. An experimental study including loading and/or heating tests has been carried out to investigate the fundamental structural features, which would be provided to develop methodology to evaluate the feasibility of SCCV under the severe conditions. In this paper, the test plan is described as well as the first test results. (author)

  14. Detection of leakage magnetic flux from near-side and far-side defects in carbon steel plates using a giant magneto-resistive sensor

    International Nuclear Information System (INIS)

    Singh, W Sharatchandra; Rao, B P C; Vaidyanathan, S; Jayakumar, T; Raj, Baldev

    2008-01-01

    Giant magneto-resistive (GMR) sensors are attractive for magnetic flux leakage measurements, especially for the detection of shallow near-side cracks and deeply located defects. An optimized measurement system with magnetic yoke, GMR sensor and selective amplifier has been devised to detect the tangential component of leakage flux from various near-side notches and far-side notches (widths 0.5 mm and 1.0 mm, respectively) in 12 mm thick carbon steel plates. Far-side notches located at nearly 11 mm below the measurement surface have been detected with a good signal-to-noise ratio. The performance of the GMR sensor with lift off has also been studied for possible non-contact examination of hot surfaces and a lift off of 2 mm is expected to ensure the saturation-free detection of near-side as well as far-side notches

  15. 75 FR 21241 - Certain Cut-to-Length Carbon Steel Plate from the People's Republic of China: Initiation of...

    Science.gov (United States)

    2010-04-23

    ... alterations are properly considered ``minor,'' the legislative history of this provision indicates there are..., the use of the merchandise, the channels of marketing and the cost of any modification relative to the... present in ASTM A830 plate without boron. See id. Channels of Marketing Domestic Producers state the...

  16. Advantages of DVW reinforced moment transmitting timber joints with steel flitch plates for colum-beam application

    NARCIS (Netherlands)

    Leijten, A.J.M.; Brandon, D.; Haddad, Y.M.

    2013-01-01

    This paper presents a study into the moment-rotation aspects of dvw (densified veneer wood) reinforced timber connections with an inter-connecting flitch plate used as middle member. Previous studies showed that reinforcing dowel-type timber connections with dvw and using expanded tube fasteners

  17. Bipolar Disorder

    Science.gov (United States)

    ... one or other traumatic event Drug or alcohol abuse Complications Left untreated, bipolar disorder can result in serious problems that affect every area of your life, such as: Problems related to drug and alcohol use Suicide or suicide attempts Legal or financial problems Damaged ...

  18. Development of ultrafine ferritic sheaves/plates in SAE 52100 steel for enhancement of strength by controlled thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, J. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, W.B. 721 302 (India); Scientific Services and Research and Development, Tata Steel, Jamshedpur 831 001, Jharkhand (India); Manna, I., E-mail: imanna@metal.iitkgp.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, W.B. 721 302 (India); Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), 196 Raja S C Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Ultrafine bainite + martensite duplex microstructure developed in SAE 52100 steel. Black-Right-Pointing-Pointer Thermomechanical processing modifies size + morphology of bainitic ferrite. Black-Right-Pointing-Pointer Processing involves hot deformation prior to/during/after austenitizing. Black-Right-Pointing-Pointer Significant improvement in mechanical strength achieved. Black-Right-Pointing-Pointer Similar study on high carbon, low alloy steel not reported in the literature. - Abstract: The present study attempts to tailor the size, morphology and distribution of the ferrite needles/sheaves by thermomechanical processing and develop an ultrafine ferrite + martensite duplex microstructure for enhancement of strength and toughness in SAE 52100 steel. The thermo-mechanical routine included 5% hot deformation before, during or after austenitizing at 950 Degree-Sign C for 15 min followed by austempering at 270 Degree-Sign C for 30 min and subsequent water quenching to room temperature. Optical/electron microscopy along with X-ray diffraction was used to quantitatively monitor the size, morphology and distribution of the phase or phase aggregate. Significant improvement in nanohardness, wear resistance and elastic modulus and was observed in samples subjected to thermomechanical processing, as compared to that following the same austenitizing and austempering routine without hot deformation at any stage. However, improvement in the bulk mechanical property due to the present thermo-mechanical is lower than that obtained in our earlier study comprising cold deformation prior to austenitizing and austempering.

  19. Bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  20. Temperature of Heating and Cooling of Massive, Thin, and Wedge-Shaped Plates from Hard-to-Machine Steels During Their Grinding

    Science.gov (United States)

    Dement‧ev, V. B.; Ivanova, T. N.; Dolginov, A. M.

    2017-01-01

    Grinding of flat parts occurs by solid abrasive particles due to the physicomechanical process of deformation and to the action of a process liquid at high temperatures in a zone small in volume and difficult for observation. The rate of heating and cooling depends on the change in the intensity of the heat flux and in the velocity and time of action of the heat source. A study has been made of the regularities of the influence of each of these parameters on the depth and character of structural transformations during the grinding of flat parts from hard-to-machine steels. A procedure to calculate temperature in grinding massive, thin, and wedge-shaped parts has been developed with account taken of the geometric and thermophysical parameters of the tool and the treated part, and also of cutting regimes. The procedure can be used as a constituent part in developing a system for automatic design of the technological process of grinding of flat surfaces. A relationship between the temperature in the grinding zone and the regimes of treatment has been established which makes it possible to control the quality of the surface layer of massive, thin, and wedge-shaped plates from hard-to-machine steels. The rational boundaries of shift of cutting regimes have been determined.

  1. Neutrality in bipolar structures

    DEFF Research Database (Denmark)

    Montero, Javier; Rodríguez, J. Tinguaro; Franco, Camilo

    2014-01-01

    In this paper, we want to stress that bipolar knowledge representation naturally allows a family of middle states which define as a consequence different kinds of bipolar structures. These bipolar structures are deeply related to the three types of bipolarity introduced by Dubois and Prade, but our...... approach offers a systematic explanation of how such bipolar structures appear and can be identified....

  2. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  3. Bipolar plates for polymer electrolyte membrane fuel cells made of thermal and electrical high conductivity thermoplastics. Formulation, production, characterization and application; Bipolarplatten fuer Polymerelektrolytmembran-Brennstoffzellen aus thermisch und elektrisch hochleitfaehigen thermoplastischen Kunststoffen. Rezeptierung, Herstellung, Charakterisierung und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf Leonhard

    2008-07-01

    The upcoming lack of primary energy sources and the need of reducing the anthropogenic climate change led to increased research activities in the field of Fuel Cells (FC) technology within the last ten years in Europe, the USA and Japan. Especially the automotive industry is highly interested in developing zero emission cars as a replacement of nowadays cars within the next twenty years. Not only for mobile applications the Polymer Electrolyte Membrane Fuel Cell systems (PEM-FC systems) is the focus of research and development. Also stationary (PEM-) FC applications seem to be more and more interesting for a decentralized energy supply, producing electricity and heat (Vaillant FC-Systems, Bosch/Junkers). For this purpose, system miniaturizing and weight reduction (70-90 wt-% of the stack itself is due to bipolar- and endplate) is not that essential as it is for mobile appliance, resulting in earlier commercial market introduction of these systems within the next few years. Not only the weight reduction of the FC-stack itself, but also the cost cutting of its components is vital for the economic success of this technology. The three most expensive components of the stack are the perfluorsulfonated ion conducting Membranen (PEM: Nafion, Ashai, Ashai glass), the noble metal catalyst (Platinum and/or Ruthenium) and the Bipolar Plate (BPP). The moulding processes (injection and/or compression moulding) of polymer materials allow highly integrated, tool reduced mass production of tailored stack components like the BP, the endplate, cell frame and peripheral components. The objective of this thesis is to describe the development of an conductive functionalised material suitable for moulding BPP, to investigate compounding optimisation methods (DOE) and evaluate the best fit parameters, to analyse the rheological behaviour of these highly filled compounds, to discuss suitable polymer related manufacturing processes like hot pressing, injection moulding and profile

  4. Bipolar Treatment: Are Bipolar I and Bipolar II Treated Differently?

    Science.gov (United States)

    ... The diagnosis and management of bipolar I and bipolar II disorders: Clinical practice update. Mayo Clinic Proceedings. 2017;92:1532. Haynes PL, et al. Social rhythm therapies for mood disorders: An update. Current Psychiatry Reports. ...

  5. Unsplit bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A [Pleasanton, CA

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  6. Bipolar electrochemistry.

    Science.gov (United States)

    Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M

    2013-09-27

    A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Transtorno bipolar

    Directory of Open Access Journals (Sweden)

    Alda Martin

    1999-01-01

    Full Text Available Os resultados de estudos de famílias sugerem que o transtorno bipolar tenha uma base genética. Essa hipótese foi reforçada em estudos de adoção e de gêmeos. A herança do transtorno bipolar é complexa, envolve vários genes, além de apresentar heterogeneidade e interação entre fatores genéticos e não-genéticos. Achados, que já foram replicados, já implicaram os cromossomos 4, 12, 18 e 21, entre outros, na busca por genes de suscetibilidade. Os resultados mais promissores foram obtidos através de estudos de ligação. Por outro lado, os estudos de associação geraram dados interessantes, mas ainda vagos. Os estudos de populações de pacientes homogêneos e a melhor definição do fenótipo deverão contribuir para avanços futuros. A identificação dos genes relacionados ao transtorno bipolar irá permitir o melhor entendimento e tratamento dessa doença.

  8. Fabrication and mechanical test data for the four 6-inch-thick intermediate test vessels made from steel plate for the Heavy Section Steel Program

    International Nuclear Information System (INIS)

    Childress, C.E.

    1976-01-01

    The HSST Program has among its goals the objective of demonstrating the capability to predict safe behavior of thick-walled pressure vessels containing flaws of known dimensions under frangible, transitional, and tough loading regimes. To accomplish these objectives the program is conducting a series of tests involving 6-in.-thick pressure vessels which will serve as test specimens for assisting in the characterization of failure under these loading conditions. Among the vessels a number of parameters, such as weld type, weld location, flaw size and shape, and test temperature and pressure, will be selectively varied to show that a rationale exists for dealing with the varied stress and metallurgical states which normally exist in commercial nuclear reactor vessels. Each vessel will serve as a go, no-go determination of critical flaw size for a specific set of test parameters. Item 4 of the previous issues in this series covers the fabrication details of the first six 6-in.-thick test vessels, which were fabricated from ASTM A-508 Cl 2 forging materials. This report covers the fabrication details of four additional 6-in.-thick intermediate test vessels having shell courses fabricated from ASTM A-533 Gr B Cl 1 plate. The remaining components were made from forgings. Essentially this report is a continuation of ORNL-TM-4351; it describes the manufacturing details of the individual parts and their ultimate assembly into finished vessels. Details concerning chemical composition and mechanical and nondestructive test data are presented

  9. A Study on the compensation margin on butt welding joint of Large Steel plates during Shipbuilding construction

    International Nuclear Information System (INIS)

    Kim, J; Jeong, K; Chung, H; Jeong, H; Ji, M; Yun, C; Lee, J

    2015-01-01

    This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ∼ 2 mm in 11t ∼ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000 mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage. (paper)

  10. Finite element analysis of plate rolling of duplex-layer steels for long-period fast reactor application

    International Nuclear Information System (INIS)

    Lee, Jungki; Kim, Ji Hyun

    2015-01-01

    With same roll speed and same friction coefficient, curvature is formed on rolled product from FEA result. To reduce this curvature and plastic strain which cause reduction in fabricability, two ways are selected; (i) controlling upper/lower roll speed, and (ii) adjusting upper/lower friction coefficient and contacts. Both results shows it can reduce the curvature and equivalent plastic strain of the plate after the rolling. It can be applied in real plate rolling processing and also the next research for pilgering process for tube and pipe production. The FEA results of equivalent stress and plastic deformation distribution are showed in figure 5. The von-Mises equivalent stress distribution showed that the stress is still concentrated on upper Fe-12Cr-2Si layer, however, it also shows that equivalent plastic strain is distributed uniformly comparing with upper and lower roll speed ratio is 1.0. In high temperature liquid metal environment, there are usually two types of corrosion; one is corrosion by dissolution of alloy elements into liquid metal, and another is corrosion by chemical reaction among impurities in liquid metal and structural alloy. There have been some researches to develop new alloys that can form more dense scale on the surface even in wider impurity range and higher temperature range . M.P Short et al. devised functionally graded composite which is composed of two layers . one is a thin corrosion resistant layer and another is thick structural layer which guarantees mechanical strength, creep rupture strength and shows less irradiation swelling

  11. Creep deformation behavior of weld metal and heat affected zone on 316FR steel thick plate welded joint

    International Nuclear Information System (INIS)

    Hongo, Hiromichi; Yamazaki, Masayoshi; Watanabe, Takashi; Kinugawa, Junichi; Tanabe, Tatsuhiko; Monma, Yoshio; Nakazawa, Takanori

    1999-01-01

    Using hot-rolled 316FR stainless plate (50 mm thick) and 16Cr-8Ni-2Mo filler wire, a narrow-gap welded joint was prepared by GTAW (gas tungsten arc welding) process. In addition to conventional round bar specimens of base metals and weld metal, full-thickness joint specimens were prepared for creep test. Creep tests were conducted at 550degC in order to examine creep deformation and rupture behavior in the weld metal of the welded joint. Creep strain distribution on the surface of the joint specimen was measured by moire interferometry. In the welded joint, creep strength of the weld metal zone apart from the surface was larger than that in the vicinity of the surface due to repeating heat cycles during welding. Creep strain and creep rate within the HAZ adjacent to the weld metal zone were smaller than those within the base metal zone. Creep rate of the weld metal zone in the welded joint was smaller than that of the weld metal specimen due to the restraint of the hardened HAZ adjacent to the zone. The full-thickness welded joint specimens showed longer lives than weld metal specimens, though the lives of the latter was shorter than those of the base metal (undermatching). In the full-thickness welded joint specimen, crack started from the last pass layer of the weld metal zone and fracture occurred at the zone. From the results mentioned above, in order to evaluate the creep properties of the welded joint correctly, it is necessary to conduct the creep test using the full-thickness welded joint specimen which includes the weakest zones of the weld metal, the front and back sides of the plate. (author)

  12. Potentiodynamic studies of Ni-P-TiO{sub 2} nano-composited coating on the mild steel deposited by electroless plating method

    Energy Technology Data Exchange (ETDEWEB)

    Uttam, Vibha, E-mail: vibhauttam74@gmail.com; Duchaniya, R. K., E-mail: rkduchaniya.meta@mnit.ac.in [Department of Metallurgical and Materials Engineering, MNIT Jaipur (India)

    2016-05-06

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO{sub 2} on mild steel are deposited by varying volume of TiO{sub 2} nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO{sub 2} nano powder. Electroless Ni-P-TiO{sub 2} coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO{sub 2} nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy–dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coating.

  13. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    Science.gov (United States)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  14. Irradiation testing of stainless steel plate material and weldments. Report on ITER Task T14, Part B. Tensile properties after 0.5 and 5 dpa at 350 and 500 K

    International Nuclear Information System (INIS)

    Rensman, J.W.; Boskeljon, J.; Horsten, M.G.; De Vries, M.I.

    1997-10-01

    The tensile properties of unirradiated and neutron irradiated type 316L(N)-SPH stainless steel plate, EB weldments, 16-8 TIG-weldments, and full 16-8 TIG-deposits have been measured. Miniature 4 mm diameter test specimens of the European Reference Heat 1 and 2 (ERH), and 4 mm and some 8 mm diameter specimens of the weldments mentioned above, were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the first wall conditions by a combination of high displacement damage with high amounts of helium. The irradiation conditions were 0.5 and 5 displacements per atom (dpa) at 350K and 0.5 and 5 dpa at 500K. Testing temperatures ranged from 300K to 850K. This work was performed as part of the European Fusion Technology Programme for ITER as 'Irradiation testing of stainless steel' The report contains the experimental conditions and summarises the results. The tensile properties of the unirradiated ERH's 1 and 2 plate materials were found to differ slightly but significantly: ERH2 has a lower UTS, but higher yield strength and ductility than ERH1. The plate materials have lower yield strength in the unirradiated condition than all of the weldments (EB, TIG-weld and TIG-deposit), accompanied by a higher ductility of the plate materials. When irradiated at 350K the differences in strength between the plate and weld materials decrease, but the ductility of the plate remains higher than that of the weldments. A saturation of irradiation damage has taken place already at about 0.5 dpa. When irradiated at 500K the plate material continuously hardens up to 5 dpa, where it has lost all uniform plastic ductility. The weldments show similar but less dramatic hardening and loss of ductility as the plate material for both irradiation conditions. 54 figs., 17 tabs., 21 refs

  15. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2017-10-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  16. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints

    International Nuclear Information System (INIS)

    Curtit, F.

    2000-01-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C * . These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C * . These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C * s considers a continuous evolution of creep deformations rate during the all test. (author)

  17. Microstructural and Mechanical Properties of Welded High Strength Steel Plate Using SMAW and SAW Method for LPG Storage Tanks

    Science.gov (United States)

    Winarto, Winarto; Riastuti, Rini; Kumeidi, Nur

    2018-03-01

    Indonesian government policy to convert energy consumption for domestic household from kerosene to liquefied petroleum gas (LPG) may lead to the increasing demand for LPG storage tank. LPG storage tank with a large capacity generally used the HSLA steel material of ASTM A516 Grade 70 joined by SMAW or combination between SMAW and SAW method. The heat input can affect the microstructure and mechanical properties of the weld area. The input heat is proportional to the welding current and the arc voltage, but inversely proportional to its welding speed. The result shows that the combination of SMAW-SAW process yield the lower hardness in the HAZ and the fusion zone compared to the singe SMAW process. PWHT mainly applied to reduce residual stress of welded joint. The result shows that PWHT can reduce the hardness in the HAZ and the fusion zone in comparing with the singe SMAW process. The microstructure of weld joint shows a coarser structure in the combined welding process (SMAW-SAW) comparing with the single welding process (SMAW).

  18. Characterization of Elastic and Plastic Behaviors in Steel Plate Based on Eddy Current Technique Using a Portable Impedance Analyzer

    Directory of Open Access Journals (Sweden)

    Meng Fanlin

    2017-01-01

    Full Text Available A portable impedance analyzer (PIA was developed based on a TiePie-HS3 device to provide the comparable impedance measurement accuracy of the Agilent 4294a impedance analyzer in the frequency range of 0~250 kHz. Then the PIA was applied to monitor the tensile stress-induced variation of the eddy current sensor’s impedance in a medium-carbon steel sample. A model of equivalent magnetic field induced by the elastic stress and the number of pinning sites indicated that the inductance of the eddy current loop firstly increased with the increase in the tensile stress and then decreased at the yield point of the material. The experimental results testified that the variation of impedance amplitude, the variation of phase angle, and the shift of two featured frequencies demonstrated opposite variation trends before and after the yield point, as predicated by the model. A new parameter, which combined the impedance variation information of the selected two frequencies, was found to exhibit nearly monotonous dependency on the tensile stress in elastic and plastic stages. The new parameter together with the developed portable impedance analyzer provided the solution to identify the elastic and plastic behaviors in ferromagnetic materials in practical applications with an eddy current technique.

  19. Influence of specimen thickness on the fatigue behavior of notched steel plates subjected to laser shock peening

    Science.gov (United States)

    Granados-Alejo, V.; Rubio-González, C.; Vázquez-Jiménez, C. A.; Banderas, J. A.; Gómez-Rosas, G.

    2018-05-01

    The influence of specimen thickness on the fatigue crack initiation of 2205 duplex stainless steel notched specimens subjected to laser shock peening (LSP) was investigated. The purpose was to examine the effectiveness of LSP on flat components with different thicknesses. For the LSP treatment a Nd:YAG pulsed laser operating at 10 Hz with 1064 nm of wavelength was used; pulse density was 2500 pulses/cm2. The LSP setup was the waterjet arrangement without sample coating. Residual stress distribution as a function of depth was determined by the hole drilling method. Notched specimens 2, 3 and 4 mm thick were LSP treated on both faces and then fatigue loading was applied with R = 0.1. Experimental fatigue lives were compared with life predictions from finite element simulation. A good comparison of the predicted and experimental fatigue lives was observed. LSP finite element simulation helps in explaining the influence of thickness on fatigue lives in terms of equivalent plastic strain distribution variations associated with the change in thickness. It is demonstrated that specimen size effect is an important issue in applying LSP on real components. Reducing the specimen thickness, the fatigue life improvement induced by LSP is significantly increased. Fatigue life extension up to 300% is observed on thin specimens with LSP.

  20. Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run.

    Science.gov (United States)

    Jindal, Shivali; Anand, Sanjeev; Metzger, Lloyd; Amamcharla, Jayendra

    2018-04-01

    Flow of milk through the plate heat exchanger (PHE) results in denaturation of proteins, resulting in fouling. This also accelerates bacterial adhesion on the PHE surface, eventually leading to the development of biofilms. During prolonged processing, these biofilms result in shedding of bacteria and cross-contaminate the milk being processed, thereby limiting the duration of production runs. Altering the surface properties of PHE, such as surface energy and hydrophobicity, could be an effective approach to reduce biofouling. This study was conducted to compare the extent of biofouling on native stainless steel (SS) and modified-surface [Ni-P-polytetrafluoroethylene (PTFE)] PHE during the pasteurization of raw milk for an uninterrupted processing run of 17 h. For microbial studies, raw and pasteurized milk samples were aseptically collected from inlets and outlets of both PHE at various time intervals to examine shedding of bacteria in the milk. At the end of the run, 3M quick swabs (3M, St. Paul, MN) and ATP swabs (Charm Sciences Inc., Lawrence, MA) were used to sample plates from different sections of the pasteurizers (regeneration, heating, and cooling) for biofilm screening and to estimate the efficiency of cleaning in place, respectively. The data were tested for ANOVA, and means were compared. Modified PHE experienced lower mesophilic and thermophilic bacterial attachment and biofilm formation (average log 1.0 and 0.99 cfu/cm 2 , respectively) in the regenerative section of the pasteurizer compared with SS PHE (average log 1.49 and 1.47, respectively). Similarly, higher relative light units were observed for SS PHE compared with the modified PHE, illustrating the presence of more organic matter on the surface of SS PHE at the end of the run. In addition, at h 17, milk collected from the outlet of SS PHE showed plate counts of 5.44 cfu/cm 2 , which were significantly higher than those for pasteurized milk collected from modified PHE (4.12 log cfu/cm 2 ). This

  1. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    International Nuclear Information System (INIS)

    Zareie Rajani, H.R.; Akbari Mousavi, S.A.A.; Madani Sani, F.

    2013-01-01

    Highlights: ► Both explosive and fusion cladding aggravate the corrosion resistance of Inconel 625. ► Fusion cladding is more detrimental to nonuniform corrosion resistance. ► Single-layered fusion coat does not show any repassivation ability. ► Adding more layers enhance the corrosion resistance of fusion cladding Inconel 625. ► High impact energy spoils the corrosion resistance of explosive cladding Inconel 625. -- Abstract: One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the corrosion resistance of Inconel 625. However, the fusion cladding process is more detrimental to nonuniform corrosion resistance, where the chemical nonuniformity of fusion cladding superalloy issuing from microsegregation, development of secondary phases and contamination of clad through dilution hinders formation of a stable passive layer. Moreover, it is observed that adding more fusion layers can enhance the nonuniform corrosion resistance of fusion cladding Inconel 625, though this resistance still remains weaker than explosive cladding superalloy. Also, the results indicate that raising the impact energy in explosive cladding procedure drops the corrosion resistance of Inconel 625.

  2. Structural safety test and analysis of type IP-2 transport packages with bolted lid type and thick steel plate for radioactive waste drums in a NPP

    International Nuclear Information System (INIS)

    Kim, Dong Hak; Seo, Ki Seog; Lee, Sang Jin; Lee, Kyung Ho; Kim, Jeong Mook

    2007-01-01

    If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or disposal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions

  3. Development of materials and processes for low-cost production of high-temperature bipolar plates for use in polymer electrolyte membrane fuel cells (PEMFC). Final report; Material- und Verfahrensentwicklung fuer eine kostenguenstige Herstellung von Hochtemperatur-Bipolarplatten zum Einsatz in Polymer-Elektrolyt-Membran Brennstoffzellen (PEM-BZ). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In the context of the project 'Verfahren zur spritzgiesstechnischen Herstellung von HT-BPP' (processes for injection moulding of high-temperature fuel cells), bipolar plates for high-temperature proton exchange membrane fuel cells (HT-PEM-FC) were produced by an injection moulding process suited for mass production. This implied extensive material analyses of fillers and matrix materials. A specific compound for application in fuel cells and suited for mass production was produced on this basis. (orig./AKB)

  4. Bipolar disorder in adolescence.

    Science.gov (United States)

    DeFilippis, Melissa; Wagner, Karen Dineen

    2013-08-01

    Bipolar disorder is a serious psychiatric condition that may have onset in childhood. It is important for physicians to recognize the symptoms of bipolar disorder in children and adolescents in order to accurately diagnose this illness early in its course. Evidence regarding the efficacy of various treatments is necessary to guide the management of bipolar disorder in youth. For example, several medications commonly used for adults with bipolar disorder have not shown efficacy for children and adolescents with bipolar disorder. This article reviews the prevalence, diagnosis, course, and treatment of bipolar disorder in children and adolescents and provides physicians with information that will aid in diagnosis and treatment.

  5. Production and characterization of multilayer coatings of Ti/TiN on AISI 316L stainless steel by the PVD technique of cathodic arc ion plating

    International Nuclear Information System (INIS)

    Forlerer, Elena; Rodriguez, Fernando; Mingolo, Norma

    2006-01-01

    Multilayer coatings were produced from bi-layers (compound layers) of Ti/TiN in a PVD reactor of cathodic arc ion plating. The process was carried out at an Argon gas pressure of 5x10 -3 Torr for the interlayer of Ti and a nitrogen + argon pressure of 2x10 -2 Torr for the deposit of TiN and a Bias voltage of -500V for the Ti layer and -100V for the TiN layer. The arc current held constant at 80 amp. The samples were kept at high temperatures ≥ 300 o C, mounted on a rotating system that held the test piece 15-25 cm from the Ti electrode. Certified composition AISI 316L and AISI 410 stainless steel were used for the substrate. Coatings with one or two compound layers with similar thicknesses were made. The coatings were characterized mechanically by adherence, thickness and microhardness by Vickers indentation with 25g loads. The texture was studied by X-ray diffraction and present phases and residual tensions were determined. The results of the X-ray diffraction show the presence of the mostly TiN phase, with fcc structure in the mono-layer and the bi-layer. Residual tensions are compressive and elevated due to the expansion of the TiN network during the deposition process. Measurements of the bi-layers at different angles showed a relaxing of the tensions close to the surface, which could be due to the effect of the second interlayer of Ti. Preferential orientations associated with the growth process of the layers and the developed microstructure were detected in the TiN (CW)

  6. Nickel hydrogen bipolar battery electrode design

    Science.gov (United States)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  7. Cytokines in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Vedel Kessing, Lars

    2012-01-01

    BACKGROUND: Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according...... to affective state. METHODS: We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS: Thirteen studies were included, comprising 556 bipolar disorder patients...

  8. Nutrition and Bipolar Depression.

    Science.gov (United States)

    Beyer, John L; Payne, Martha E

    2016-03-01

    As with physical conditions, bipolar disorder is likely to be impacted by diet and nutrition. Patients with bipolar disorder have been noted to have relatively unhealthy diets, which may in part be the reason they also have an elevated risk of metabolic syndrome and obesity. An improvement in the quality of the diet should improve a bipolar patient's overall health risk profile, but it may also improve their psychiatric outcomes. New insights into biological dysfunctions that may be present in bipolar disorder have presented new theoretic frameworks for understanding the relationship between diet and bipolar disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Evaluation of the impact of two flow field designs with bipolar plate flow on the performance of a PEM fuel cell; Evaluacion del impacto de dos disenos de campo de flujo de placa bipolar en el desempeno de una celda de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Loyola-Morales, F.; Cano-Castillo, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: feloyola@yahoo.com.mx

    2009-09-15

    The flow field (FF) designs of bipolar plates play a fundamental role in the performance of a set of PEM fuel cells. The FF is directly related with diverse processes that occur inside the cells, such as: feeding and uniform distribution of reactant gases and the handling of water produced by the overall electrochemical reaction. Therefore, a FF design that promotes each one of those processes in an optimal manner is of utmost importance to attain the best performance of a set of fuel cells. The present work evaluated the impact of two different FF on the performance of a fuel cell. The FF designs evaluated were 4 serpentine and parallels (4SP) and 2 serpentine counter flow (SC). The stability tests for the operation of the cell applied to each of the flow fields were: flood tolerance, dehydration tolerance conditions and stoichiometry performance of 1.1, 1.3, 1.5 and 2.5. The 4SP design showed high performance stability during operation with a gradual process of flooding the system and operating at different stoichiometries. Only for the test with dehydration conditions was there a gradual decrease in its performance, of up to 27%. Compared to these results, the SC design showed a rapid fall of 45% in its performance when operating under gradual flooding of the system, a constant fall in its performance (also around 45%) with stoichiometries of 1.1, 1.3 and 1.5 due to accumulation of water, and only with a stoichiometry of 2.5 did it have highly stable performance as a result of good water handling. In the test of operations under dehydration conditions, the performance of the SC design dropped to 40% and remained at this value during the rest of the test. According to these results, the performance of the 4SP design was more stable than the SC design for all of the tests implemented. [Spanish] Los disenos de campo de flujo (CF) de las placas bipolares tienen un papel fundamental en el desempeno de un conjunto de celdas de combustible tipo PEM. Los CF tienen una

  10. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  11. Genetics Home Reference: bipolar disorder

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Bipolar disorder Bipolar disorder Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Bipolar disorder is a mental health condition that causes extreme ...

  12. Bipolar nickel-hydrogen battery development

    Science.gov (United States)

    Koehler, C. W.; Applewhite, A. Z.; Hall, A. M.; Russell, P. G.

    1985-01-01

    A comparison of the bipolar Ni-H2 battery with other energy systems to be used in future high-power space systems is presented. The initial design for the battery under the NASA-sponsored program is described and the candidate stack components are evaluated, including electrodes, separator, electrolyte reservoir plate, and recombination sites. The compressibility of the cell elements, electrolyte activation, and thermal design are discussed. Manufacturing and prototype test results are summarized.

  13. BIPOLAR DISORDER: A REVIEW

    OpenAIRE

    Pathan Dilnawaz N; Ziyaurrahaman A.R; Bhise K.S.

    2010-01-01

    Bipolar disorder (BD) is a severe psychiatric disorder that results in poor global functioning, reduced quality of life and high relapse rates. Research finds that many adults with bipolar disorder identify the onset of symptoms in childhood and adolescence, indicating the importance of early accurate diagnosis and treatment. Accurate diagnosis of mood disorders is critical for treatment to be effective. Distinguishing between major depression and bipolar disorders, especially the depressed p...

  14. Bipolar Disorder in Women

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2013-06-01

    Full Text Available The research on gender's role in bipolar disorders has drawn significant interest recently. The presentation and course of bipolar disorder differs between women and men. Women experience depressive episodes, dysphoric mood, mixed states, rapid cycling and seasonal patterns more often than men. Comorbidity, particularly thyroid disease, migraine, obesity, and anxiety disorders laso occur more frequently in women than men. On the other hand men with bipolar disorder are also more likely than women to have problems with drug or alcohol abuse. The pregnancy and postpartum period is a time of high risk for onset and recurrence of bipolar disorder in women.

  15. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    Science.gov (United States)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  16. Detection of wall thinning of carbon steel pipe covered with insulation using Pulsed Eddy Current technique

    International Nuclear Information System (INIS)

    Park, Duckgun; Kishore, M. B.; Lee, D. H.

    2013-01-01

    The test sample is a ferromagnetic carbon steel pipe having different thickness, covered with a 10 cm plastic insulation laminated by 0.4 mm Al plate to simulate the pipelines in NPPs. The PEC Probe used for the wall thinning detection consists of an excitation coil and a Hall sensor. The excitation coils in the probe is driven by a rectangular bipolar current pulse and the Hall-sensor will detects the resultant field. The Hall sensor output is considered as PEC signal. Results shows that the PEC system can detect wall thinning in an insulated pipeline of the NPPs. Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed

  17. Comparative familial aggregation of bipolar disorder in patients with bipolar I and bipolar II disorders.

    Science.gov (United States)

    Parker, Gordon B; Romano, Mia; Graham, Rebecca K; Ricciardi, Tahlia

    2018-05-01

    We sought to quantify the prevalence and differential prevalence of a bipolar disorder among family members of patients with a bipolar I or II disorder. The sample comprised 1165 bipolar and 1041 unipolar patients, with the former then sub-typed as having either a bipolar I or II condition. Family history data was obtained via an online self-report tool. Prevalence of a family member having a bipolar disorder (of either sub-type) was distinctive (36.8%). Patients with a bipolar I disorder reported a slightly higher family history (41.2%) compared to patients with a bipolar II disorder (36.3%), and with both significantly higher than the rate of bipolar disorder in family members of unipolar depressed patients (18.5%). Findings support the view that bipolar disorder is heritable. The comparable rates in the two bipolar sub-types support the positioning of bipolar II disorder as a valid condition with strong genetic underpinnings.

  18. Investigation of fretting corrosion of vacuum-chrome-plated vt3-1 titanium alloy in pair with unprotected vt3-1 alloy and 40khnma steel

    International Nuclear Information System (INIS)

    Rojkh, I.L.; Koltunova, L.N.; Vejtsman, M.G.; Birman, Ya.N.; Skosarev, A.V.; Kogan, I.S.

    1978-01-01

    The character of destruction of contacting surfaces in the process of fretting corrosion of titanium alloy VT3-1 chromized in vacuum in pair with unprotected alloy VT3-1 and steel 40KhNMA has been studied by scanning electron microscopy, electronography, and recording the surface profile. The specific load was 200 kg/cm 2 , vibration amplitude 50 mkm and frequency 500 Hz. It has been established that pairs unprotected with coating are subjected to intensive fretting corrosion especially when they are made of titanium alloy. For the pair chromized alloy VT3-1 - unprotected alloy VT3-1 no destruction of a chromized surface is observed. Vacuum chromium coating in the pair with steel 40KhNMA reveals similar properties as in pair with a titanium alloy. The surface of a steel sample is destroyed because of fretting corrosion, though the intensity of corrosion is lower than in the case of unprotected pairs. Vacuum chromium coating is recommended for protection of titanium alloy VT3-1 from fretting corrosion in pair with steel 40KhNMA or an alloy VT3-1 especially in those cases when various organic coatings are unsuitable

  19. Properties of Bipolar Fuzzy Hypergraphs

    OpenAIRE

    Akram, M.; Dudek, W. A.; Sarwar, S.

    2013-01-01

    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.

  20. Bipolar Electrode Sample Preparation Devices

    Science.gov (United States)

    Wang, Yi (Inventor); Song, Hongjun (Inventor); Pant, Kapil (Inventor)

    2017-01-01

    An analyte selection device can include: a body defining a fluid channel having a channel inlet and channel outlet; a bipolar electrode (BPE) between the inlet and outlet; one of an anode or cathode electrically coupled with the BPE on a channel inlet side of the BPE and the other of the anode or cathode electrically coupled with the BPE on a channel outlet side of the BPE; and an electronic system operably coupled with the anode and cathode so as to polarize the BPE. The fluid channel can have any shape or dimension. The channel inlet and channel outlet can be longitudinal or lateral with respect to the longitudinal axis of the channel. The BPE can be any metallic member, such as a flat plate on a wall or mesh as a barrier BPE. The anode and cathode can be located at a position that polarizes the BPE.

  1. Bipolar Disorder in Children

    Science.gov (United States)

    2014-01-01

    Although bipolar disorder historically was thought to only occur rarely in children and adolescents, there has been a significant increase in children and adolescents who are receiving this diagnosis more recently (Carlson, 2005). Nonetheless, the applicability of the current bipolar disorder diagnostic criteria for children, particularly preschool children, remains unclear, even though much work has been focused on this area. As a result, more work needs to be done to further the understanding of bipolar symptoms in children. It is hoped that this paper can assist psychologists and other health service providers in gleaning a snapshot of the literature in this area so that they can gain an understanding of the diagnostic criteria and other behaviors that may be relevant and be informed about potential approaches for assessment and treatment with children who meet bipolar disorder criteria. First, the history of bipolar symptoms and current diagnostic criteria will be discussed. Next, assessment strategies that may prove helpful for identifying bipolar disorder will be discussed. Then, treatments that may have relevance to children and their families will be discussed. Finally, conclusions regarding work with children who may have a bipolar disorder diagnosis will be offered. PMID:24800202

  2. Stainless Steel 2.0-mm Locking Compression Plate Osteosynthesis System for the Fixation of Comminuted Hand Fractures in Asian Adults

    Directory of Open Access Journals (Sweden)

    Hing-Cheong Wong

    2011-12-01

    Conclusions: The stainless steel 2.0-mm LCP is useful for the fixation of unstable comminuted hand fractures, especially in metacarpal bones, because of its advantage of better stability, which allows more aggressive rehabilitation. However, its design is not very versatile and, therefore, limits its use in the finger region. Its bulkiness frequently causes implant impingement. The patients must be informed about the chance of implant removal later.

  3. Investigation on localized corrosion of 304 stainless steel joints brazed using Sn-plated Ag alloy filler in NaCl aqueous solution

    Science.gov (United States)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-03-01

    Novel AgCuZnSn filler metal with high Sn contents was prepared from BAg50CuZn filler metal by a process of electroplating and thermal diffusion, and the prepared filler metal was applied to induction brazing of 304 stainless steel. The corrosion behavior of the brazed joints was evaluated based on localized corrosion analysis, the morphology of the joints were analyzed by SEM after immersion in a 3.5 vol% NaCl aqueous solution. The results indicated that corrosion groove occurred near the interface between the stainless steel base metal and the brazing seam. A wide range of defects such as holes and cracks appeared on the surface of the base metal, while the brazing seam zone almost no corrosion defects occur. With the increase of corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the base metal was slightly greater than that of the brazing seam. The corrosion potential of the brazing seam and 304 stainless steel were -0.7758 V and -0.7863 V, respectively.

  4. Microstructure and mechanical performance of depositing CuSi3 Cu alloy onto 30CrMnSi steel plate by the novel consumable and non-consumable electrodes indirect arc welding

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Jian; Feng, Jicai

    2010-01-01

    A novel consumable and non-consumable electrodes indirect arc welding (CNC-IAW) with low heat input was successfully applied in depositing CuSi 3 Cu alloy onto 30CrMnSi steel plate. The indirect arc was generated between the consumable and non-consumable welding torch. The microstructure of the deposited weld was analyzed by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and optical microscopy (OM). The results showed that the dilution ratio of the bead-on-plate weld was controlled no higher than 5% and the deleterious iron picking up was effectively restrained. The deposited metal mainly consisted of ε-Cu solid solution and a small amount of Fe 2 Si phase. In the interfacial zone between the deposited metal and base metal, the thickness of the zone changed from thick to thin and the microstructure changed from complex to simple from the middle to both sides. In the middle of the interfacial zone, the microstructure presented three sub-layers consisting of Fe 3 Si (L)/Fe 3 Si (S) + ε-Cu/α-Fe. In the both sides of the interfacial zone, the microstructure presented single α-Fe layer. The formation mechanism of the interfacial zone could be successfully explained by the formation of the Fe liquid-solid phase zone adjacent to the Fe base metal and the interfusion between Fe and Si. The average compressive shear strength reached 321 MPa and its fracture morphology mainly belonged to ductile fracture.

  5. What is Bipolar Disorder?

    Science.gov (United States)

    ... down” Have trouble sleeping Think about death or suicide Can someone have bipolar disorder along with other problems? Yes. Sometimes people having very strong mood episodes may have psychotic symptoms. Psychosis affects thoughts ...

  6. Verification of an optimized condition for low residual stress employed water-shower cooling during welding in austenitic stainless steel plates

    International Nuclear Information System (INIS)

    Yanagida, N.; Enomoto, K.; Anzai, H.

    2004-01-01

    To reduce tensile residual stress in a welded region, we have developed a new cooling method that uses a water-shower behind the welding torch. When this method is applied to the welding of austenitic stainless steel, the welding and cooling conditions mainly determine how much the residual stress can be reduced. To optimize these conditions, we first used a robust design method to determine the effects of the preheating temperature, the heat input quantity, and the water-shower area on the residual stress, and found that, to decrease the tensile residual stress, the preheating temperature should be high, the heat input low, and the water-shower area large. To confirm the effectiveness of these optimized conditions, the residual stresses under optimized or non-optimized conditions were measured experimentally. It was found that the residual stresses were tensile under the non-optimized conditions, but compressive under the optimized ones. These measurements agree well with the 3D-FEM analyses. It can therefore be concluded that the optimized conditions are valid and appropriate for reducing residual stress in an austenitic stainless-steel weld. (orig.)

  7. Band gaps in the low-frequency range based on the two-dimensional phononic crystal plates composed of rubber matrix with periodic steel stubs

    International Nuclear Information System (INIS)

    Yu, Kunpeng; Chen, Tianning; Wang, Xiaopeng

    2013-01-01

    In this paper, the numerical investigation of elastic wave propagation in two-dimensional phononic crystals composed of an array of steel stepped resonators on a thin rubber slab is presented. For the first time the rubber material is used as the matrix of the PCs. With the finite-element method, the dispersion relations of this novel PCs structure and some factors of the band structure are studied. Results show that, with the rubber material as matrix, the PC structures exhibit extremely low-frequency band gaps, in the frequency range of hundreds of Hz or even tens of Hz; the geometrical parameters and the material parameters can modulate the band gaps to different extents. Furthermore, to understand the low-frequency band gaps caused by this new structure, some resonance eigenmodes of the structure are calculated. Results show that the vibration of the unit cell of the structure can be seen as several mass–spring systems, in which the vibration of the steel stepped resonator decides the lower boundary of the first band gap and the vibration of the rubber that is not in contact with the resonator decides the upper boundary

  8. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  9. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  10. Bipolar electrocautery: A rodent model of Sunderland third-degree nerve injury.

    Science.gov (United States)

    Moradzadeh, Arash; Brenner, Michael J; Whitlock, Elizabeth L; Tong, Alice Y; Luciano, Janina P; Hunter, Daniel A; Myckatyn, Terence M; Mackinnon, Susan E

    2010-01-01

    To determine the Sunderland classification of a bipolar electrocautery injury. Twenty-two rats received crush (a reproducible Sunderland second-degree injury) or bipolar electrocautery injury and were evaluated for functional, histomorphometric, and immunohistochemical recovery at 21 or 42 days. Animal experiments were performed between July 3 and December 12, 2007. Axonal regeneration and end plate reinnervation were evaluated in double transgenic cyan fluorescent protein-conjugated Thy1 and green fluorescent protein-conjugated S100 mice. Compared with crush injury, bipolar electrocautery injury caused greater disruption of myelin and neurofilament architecture at the injury site and decreased nerve fiber counts and percentage of neural tissue distal to the injury (P =.007). Complete functional recovery was seen after crush but not bipolar electrocautery injury. Serial live imaging demonstrated axonal regeneration at week 1 after crush and at week 3 after bipolar electrocautery injury. Qualitative assessment of motor end plate reinnervation at 42 days demonstrated complete neuromuscular end plate reinnervation in the crush group and only limited reinnervation in the bipolar electrocautery group. Bipolar electrocautery injury in a rodent model resulted in a Sunderland third-degree injury, characterized by gradual, incomplete recovery without intervention.

  11. Bipolar Affective Disorder and Migraine

    Directory of Open Access Journals (Sweden)

    Birk Engmann

    2012-01-01

    Full Text Available This paper consists of a case history and an overview of the relationship, aetiology, and treatment of comorbid bipolar disorder migraine patients. A MEDLINE literature search was used. Terms for the search were bipolar disorder bipolar depression, mania, migraine, mood stabilizer. Bipolar disorder and migraine cooccur at a relatively high rate. Bipolar II patients seem to have a higher risk of comorbid migraine than bipolar I patients have. The literature on the common roots of migraine and bipolar disorder, including both genetic and neuropathological approaches, is broadly discussed. Moreover, bipolar disorder and migraine are often combined with a variety of other affective disorders, and, furthermore, behavioural factors also play a role in the origin and course of the diseases. Approach to treatment options is also difficult. Several papers point out possible remedies, for example, valproate, topiramate, which acts on both diseases, but no first-choice treatments have been agreed upon yet.

  12. Depression and Bipolar Support Alliance

    Science.gov (United States)

    Depression and Bipolar Support Alliance Crisis Hotline Information Coping with a Crisis Suicide Prevention Information Psychiatric Hospitalization ... sign-up Education info, training, events Mood Disorders Depression Bipolar Disorder Anxiety Screening Center Co-occurring Illnesses/ ...

  13. Bipolar Disorder and Cancer

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2012-06-01

    Full Text Available Prevalence studies and studies on causation relations have shown that the relation between psychiatric disorders and chronic physical diseases is neglected. For heterogeneous diseases an increasing number of susceptibility variants are being defined. Alzheimer disease, bipolar disorder, breast and prostate cancer, coronary artery disease, Chron's disease, systemic lupus eritematosus, type 1 and type 2 diabetes mellitus are mentioned together with epigenetic concept. In acrocentric zone of chromosome 13, breast cancer, retinoblastoma, chronic Iymphocytic leukemia genes with B cells, dopamin loci of bipolar disorder are found together. Among bipolar and healthy individuals, an increase risk of breast cancer in female cases has been resported. On the other hand, psychosocial factors that affect stress and response to stress itself may be important variables in prognosis and progression of different cancer types. During the course of many cancer types –especially brain tumors- and during treatment of chemotherapeutic agents, bipolar symptomatology may appear. In this article, it is reviewed with relevant literature that whether an etiological relation between bipolar disorder and cancer exist and how both diseases affect each other's course and treatment.

  14. Crane Scheduling on a Plate Storage

    DEFF Research Database (Denmark)

    Hansen, Jesper

    2002-01-01

    OSS produces the worlds largest container ships. The first process of producing the steel ships is handling arrival and storage of steel plates until they are needed in production. Two gantry cranes carry out this task. The planning task is now to create a schedule of movements for the 2 cranes...

  15. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  16. Stiffness Analysis of Nail-Plate Joints Subjected to Short-Term Loads

    DEFF Research Database (Denmark)

    Nielsen, Jacob

    nail-plates are designed for trusses. For many years, joints were made of boards with nails, but the increasing industrialism and the need for quick and usable assembly had the result that today nearly all trusses are pre-fabricated with nail-plates. The word "nail-plate" has been used for different...... types of plates. There are two main types of nail-plates: steel plates perforated with holes in which separate nails are used and steel plates perforated by a stamping machine, so the nails are made from the plate, see figur 1.2 on page 7. This type is sometimes called "punching metal plate...

  17. A study on the fracture toughness of heavy section steel plates and forgings for nuclear pressure vessels produced in Japan, (4)

    International Nuclear Information System (INIS)

    Sakai, Yuzuru; Ogura, Nobukazu; Takahashi, Isao; Miya, Kenzo; Ando, Yoshio.

    1985-01-01

    As another parameter for evaluating the toughness of structural materials, there is crack arrest toughness. This is a parameter showing the resistance of materials to stop the cracks rapidly propagating in brittle state within the materials, unlike static and dynamic fracture toughness related to the occurrence of breaking. As the conventional method of determining the crack arrest toughness, the relatively large testing method such as double tensile test and ESSO test have been known, but the establishment of a smaller convenient testing method is desired. In this study, the evaluation of the crack arrest toughness of the very thick steel materials produced in Japan was carried out by the testing method using small test pieces. In order to make test pieces small, tapered type DCB test and the three-point bending test using DWTT test pieces were examined as well as the testing method recommended by ASTM. The test materials were A 533B, Cl. 1 and A 508, Cl. 3. The test pieces, the various testing methods and the experimental results are reported. The temperature dependence of the crack arrest toughness was shown. (Kako, I.)

  18. Feasibility study for an engineering concept of a stainless steel/copper divertor plate protected by W-5 Re alloy or graphite armor

    International Nuclear Information System (INIS)

    Renda, V.; Federici, G.; Papa, L.

    1988-01-01

    The latest Joint Research Centre (JRC)-Ispra proposal is presented to support the design of a divertor concept that has long been considered the most crucial component of the plasma impurity control system for the Next Europen Torus (NET) tokamak fusion reactor. Because of the harsh tokamak environment, the divertor panel is the plasma facing component that suffers the most severe loading conditions, such as high thermal stresses, thermal fatigue, severe erosion rates and neutron damage. An analysis of a new divertor panel concept has evolved from the previous studies carried out at JRC-Ispra. The materials considered in this study are AISI 316 stainless steel for the cooling tubes, pure copper for the heat sink, and W-5 Re alloy or graphite for the protective armor. The panel is cooled by pressurized water circulation in U-tubes. A preliminary thermo-hydraulic analysis has been carried out to evaluate a set of reference parameters, such as optimum coolant velocity, maximum outlet water temperature, convective heat exchange coefficient, and the expected pressure drops in the channels. Thermal and mechanical calculations, performed by using the finite element technique, showed encouraging results about the engineering feasibility of the pressure boundary of the divertor for loading conditions similar to those of NET double null, assumed as the reference mainframe

  19. A study on the fracture toughness of heavy section steel plates and forgings for nuclear pressure vessels produced in Japan, 2

    International Nuclear Information System (INIS)

    Sakai, Yuzuru; Ogura, Nobukazu; Takahashi, Isao; Miya, Kenzo; Ando, Yoshio.

    1984-01-01

    In this paper, the main results of a series of tests carried out by the Atomic Energy Research Committee, the Japan Welding Engineering Society, for six years for the purpose of evaluating the fracture toughness and strength of superthick steel materials for nuclear reactors made in Japan are reported. In this research, as the fracture toughness test, three kinds of static, dynamic and crack propagation stop tests were carried out. Not only parent metals but also welded parts were evaluated, and numerous data have been accumulated. The fracture toughness of structural materials generally depends on test temperature, and forms three regions of lower shelf, transition and upper shelf from low temperature side toward high temperature side. It is desired to establish the effective method to determine fracture toughness over wide temperature range with small test pieces, and as its promising method, J(IC) fracture toughness test based on elasto-plastic fracture mechanics is carried out. The toughness in lower shelf and transition regions was clarified by K(IC) test, and that in upper shelf region was evaluated by J(IC) test. The methods of test and analysis, and the results are reported. (Kako, I.)

  20. Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments

    International Nuclear Information System (INIS)

    Varma, Amit H.; Malushte, Sanjeev R.; Sener, Kadir C.; Lai, Zhichao

    2014-01-01

    Steel-concrete (SC) composite walls being considered and used as an alternative to conventional reinforced concrete (RC) walls in safety-related nuclear facilities due to their construction economy and structural efficiency. However, there is a lack of standardized codes for SC structures, and design guidelines and approaches are still being developed. This paper presents the development and verification of: (a) mechanics based model, and (b) detailed nonlinear finite element model for predicting the behavior and failure of SC wall panels subjected to combinations of in-plane forces. The models are verified using existing test results, and the verified models are used to explore the behavior of SC walls subjected to combinations of in-plane forces and moments. The results from these investigations are used to develop an interaction surface in principle force (S p1 –S p2 ) space that can be used to design or check the adequacy of SC wall panels. The interaction surface is easy to develop since it consists of straight line segments connecting anchor points defined by the SC wall section strengths in axial tension, in-plane shear, and compression. Both models and the interaction surface (for design) developed in this paper are recommended for future work. However, in order to use these approaches, the SC wall section should be detailed with adequate shear connector and tie bar strength and spacing to prevent non-ductile failure modes

  1. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    Science.gov (United States)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  2. Crane Scheduling for a Plate Storage

    DEFF Research Database (Denmark)

    Hansen, Jesper; Clausen, Jens

    2002-01-01

    Odense Steel Shipyard produces the worlds largest container ships. The first process of producing the steel ships is handling arrival and storage of steel plates until they are needed in production. This paper considers the problem of scheduling two cranes that carry out the movements of plates...... into, around and out of the storage. The system is required to create a daily schedule for the cranes, but also handle possible disruptions during the execution of the plan. The problem is solved with a Simulated Annealing algorithm....

  3. Post-irradiation creep properties of four plates and two forgings DIN 1.4948 steel from the SNR-300 permanent primary structures

    International Nuclear Information System (INIS)

    Schaaf, B. van der.

    1987-01-01

    The safety authorities, involved in the licensing procedure of the SNR-300, have required the determination of the irradiation effect on the heat-to-heat variation of tensile and creep properties of Werkst. No. DIN 1.4948 austenitic stainless steel. These data are lacking in the present codes and they are necessary for the design and safety considerations of the permanent structures. Results are presented of about 200 tests on irradiated and unirradiated material of 6 heats used in the production of the SNR-300 permanent structures. After irradiation in the HFR-Petten to neutron fluences relevant for the SNR-300 service conditions post-irradiation tensile and creep tests (up to 10,000 hrs rupture time) were performed in the temperature range 723 K to 923 K. All heats are embrittled by irradiation resulting in reduction of rupture times, creep strength and ultimate tensile strength. The considerable reduction is attributed to helium enhanced intergranular creep crack growth, which reduces the ductility and strength, but does not affect the creep rate. The variation of tensile and creep properties is large and independent of irradiation. The minimum derived creep strength in irradiated condition drops below the values expected in the ASME Code and VdTuV Blatt. In design and safety analyses the irradiation effect on creep properties must be accounted for with an appropriate reduction factor. The predictions given, have to be verified with long-term creep tests and parts of the SNR surveillance programme. 172 figs.; 17 refs.; 58 tables

  4. Estimation of overprotection region on the painted steel plate under impressed-current cathodic protection. Gaibu dengenho ni yoru inkyoku boshoku ka no toso kohan ni okeru kaboshoku iki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, M.; Huang, Y.; Fujimoto, Y. (Hiroshima Univ., hiroshima (Japan). Faculty of Engineering)

    1992-09-04

    Painting and cathodic protection are used in combination as a corrosion resisting measure for ship hull. n analytic method which uses the boundary element method for protection electric field by impressed-current method is proposed to show that rational determination is possible for the arrangement and current of the anode, and the arrangement and set voltage of the reference electrode used to control the current. However, repetitive calculation is necessary until overprotection voltage disappears from the surface of the painted steel plate while giving optional insulated area because the insulated area of adequate dimension is unknown. To decrease the number of this repetitive calculation, a study is made on a method of estimating the magnitude of the insulated area to be input as the initial value in the electric field analysis by the boundary element method. Although the insulated area has been empirically obtained, such formurization may be useful for automatic optimization using a computer of the location and number of anode, anode current, arrangement and set voltage of the reference electrode, magnitude of the insulated area, etc. in the impressed-current cathodic protection system. 2 refs., 10 figs., 1 tab.

  5. Types of Bipolar Disorder

    Science.gov (United States)

    ... Events Home Science News Meetings and Events Multimedia Social Media Press Resources Newsletters NIMH News Feeds About Us ... has a lot of money, or has special powers. Someone having psychotic symptoms ... Substance Abuse: People with bipolar disorder may also misuse alcohol ...

  6. Discrete bipolar universal integrals

    Czech Academy of Sciences Publication Activity Database

    Greco, S.; Mesiar, Radko; Rindone, F.

    2014-01-01

    Roč. 252, č. 1 (2014), s. 55-65 ISSN 0165-0114 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : bipolar integral * universal integral * Choquet integral Subject RIV: BA - General Mathematics Impact factor: 1.986, year: 2014 http://library.utia.cas.cz/separaty/2014/E/mesiar-0432224.pdf

  7. El trastorno bipolar

    OpenAIRE

    Freaza Rodríguez, Paula

    2014-01-01

    Se exponen los aspectos más relevantes del trastorno bipolar, entender qué significa este concepto, conocer los tipos que existen, qué otros trastornos suelen aparecer al mismo tiempo y qué tratamientos son los que dan mejores resultados

  8. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps

  9. Buckling Analysis of Edge Cracked Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Rasha Mohammed Hussein

    2016-07-01

    Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.

  10. ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS

    OpenAIRE

    Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache

    2016-01-01

    In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.

  11. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    Science.gov (United States)

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Scientific and Technological Principles of Development of New Cold-Resistant Arc-Steels (Steels for Arctic Applications)

    Science.gov (United States)

    Sych, O. V.; Khlusova, E. I.; Yashin, E. A.

    2017-12-01

    The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.

  13. Life expectancy in bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Vradi, Eleni; Andersen, Per Kragh

    2015-01-01

    OBJECTIVE: Life expectancy in patients with bipolar disorder has been reported to be decreased by 11 to 20 years. These calculations are based on data for individuals at the age of 15 years. However, this may be misleading for patients with bipolar disorder in general as most patients have a later...... onset of illness. The aim of the present study was to calculate the remaining life expectancy for patients of different ages with a diagnosis of bipolar disorder. METHODS: Using nationwide registers of all inpatient and outpatient contacts to all psychiatric hospitals in Denmark from 1970 to 2012 we...... remaining life expectancy in bipolar disorder and that of the general population decreased with age, indicating that patients with bipolar disorder start losing life-years during early and mid-adulthood. CONCLUSIONS: Life expectancy in bipolar disorder is decreased substantially, but less so than previously...

  14. [Bipolar disorder in adolescence].

    Science.gov (United States)

    Brunelle, Julie; Milhet, Vanessa; Consoli, Angèle; Cohen, David

    2014-04-01

    Juvenile mania is a concept widely developed but also highly debated since the 1990s. In the heart of this debate, Severe Mood Dysregulation (SMD) and "Temper Dysregulation disorder with Dysphoria" (recently integrated in DSM-5) showed their interest. Actually, the objective is to distinguish two clinical phenotypes in order to avoid confusion between (1) what would raise more of mood dysregulation with chronic manic like symptoms, and (2) bipolar disorder type I with episodic and acute manic episodes. Therapeutic stakes are major. In adolescents, even if DSM adult diagnostic criteria can be used and bipolar disorder type I clearly established, differential diagnostic at onset between acute manic episode and schizophrenia onset remain sometimes difficult to assess. Furthermore, it is crucial to better assess outcome of these adolescents, in terms of morbidity and potential prognosis factors, knowing that a younger age at onset is associated with a poorer outcome according to several adult studies. Therapeutic implications could then be drawn.

  15. Depressive and bipolar disorders

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hansen, Hanne Vibe; Demyttenaere, Koen

    2005-01-01

    of the patients (40-80%) had erroneous views as to the effect of antidepressants. Older patients (over 40 years of age) consistently had a more negative view of the doctor-patient relationship, more erroneous ideas concerning the effect of antidepressants and a more negative view of antidepressants in general....... Moreover, their partners agreed on these negative views. Women had a more negative view of the doctor-patient relationship than men, and patients with a depressive disorder had a more negative view of antidepressants than patients with bipolar disorder. The number of psychiatric hospitalizations......BACKGROUND: There is increasing evidence that attitudes and beliefs are important in predicting adherence to treatment and medication in depressive and bipolar disorders. However, these attitudes have received little study in patients whose disorders were sufficiently severe to require...

  16. [Creativity and bipolar disorder].

    Science.gov (United States)

    Maçkalı, Zeynep; Gülöksüz, Sinan; Oral, Timuçin

    2014-01-01

    The relationship between creativity and bipolar disorder has been an intriguing topic since ancient times. Early studies focused on describing characteristics of creative people. From the last quarter of the twentieth century, researchers began to focus on the relationship between mood disorders and creativity. Initially, the studies were based on biographical texts and the obtained results indicated a relationship between these two concepts. The limitations of the retrospective studies led the researchers to develop systematic investigations into this area. The systematic studies that have focused on artistic creativity have examined both the prevalence of mood disorders and the creative process. In addition, a group of researchers addressed the relationship in terms of affective temperaments. Through the end of the 90's, the scope of creativity was widened and the notion of everyday creativity was proposed. The emergence of this notion led researchers to investigate the associations of the creative process in ordinary (non-artist) individuals. In this review, the descriptions of creativity and creative process are mentioned. Also, the creative process is addressed with regards to bipolar disorder. Then, the relationship between creativity and bipolar disorder are evaluated in terms of aforementioned studies (biographical, systematic, psychobiographical, affective temperaments). In addition, a new model, the "Shared Vulnerability Model" which was developed to explain the relationship between creativity and psychopathology is introduced. Finally, the methodological limitations and the suggestions for resolving these limitations are included.

  17. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate].

    Science.gov (United States)

    Iizuka, H

    1990-11-01

    Plates currently in use for the management of bone fracture made of metal present with various problems. We manufactured carbon fiber reinforced plastic (CFRP) plates from Pyrofil T/530 puriplegs overlaid at cross angles of +/- 10 degrees, +/- 20 degrees, and +/- 30 degrees for trial and carried out an experimental study on rabbit tibiofibular bones using 316L stainless steel plates of comparable shape and size as controls. The results indicate the influence of CFRP plate upon cortical bone was milder than that of stainless steel plate, with an adequate stabilizing force for the repair of fractured rabbit tibiofibular bones. CFRP has the advantages over metals of being virtually free from corrosion and fatigue, reasonably radiolucent and able to meet a wide range of mechanical requirements. This would make CFRP plate quite promising as a new devices of treating fracture of bones.

  18. Scientific attitudes towards bipolar disorders

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Biglu

    2014-02-01

    Full Text Available Introduction: Bipolar disorder is a psychiatric condition that is also called manic-depressive disease. It causes unusual changes in mood, energy, activity levels, and the ability to carry out day-to-day tasks. In the present study, 3 sets of data were considered and analyzed: first, all papers categorized under Bipolar Disorders in Science Citation Index Expanded (SCI-E database through 2001-2011; second, papers published by the international journal of Bipolar Disorders indexed in SCI-E during a period of 11 years; and third, all papers distributed by the international journal of Bipolar Disorders indexed in MEDLINE during the period of study. Methods: The SCI-E database was used to extract all papers indexed with the topic of Bipolar Disorders as well as all papers published by The International Journal of Bipolar Disorders. Extraction of data from MEDLINE was restricted to the journals name from setting menu. The Science of Science Tool was used to map the co-authorship network of papers published by The International Journal of Bipolar Disorders through 2009-2011. Results: Analysis of data showed that the majority of publications in the subject area of bipolar disorders indexed in SCI-E were published by The International Journal of Bipolar Disorders. Although journal articles consisted of 59% of the total publication type in SCI-E, 65% of publications distributed by The Journal of Bipolar Disorders were in the form of meetingabstracts. Journal articles consisted of only 23% of the total publications. USA was the leading country regarding sharing data in the field of bipolar disorders followed by England, Canada, and Germany. Conclusion: The editorial policy of The International Journal of Bipolar Disorders has been focused on new themes and new ways of researching in the subject area of bipolar disorder. Regarding the selection of papers for indexing, the SCI-E database selects data more comprehensively than MEDLINE. The number of papers

  19. Epidemiology in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Caner Mutlu

    2015-12-01

    Full Text Available Childhood and adolescent bipolar disorder diagnosis has been increasing recently. Since studies evaluating attempted suicide rates in children and adolescents have shown bipolarity to be a significant risk factor, diagnosis and treatment of bipolarity has become a very important issue. Since there is a lack of specific diagnostic criteria for especially preadolescent samples and evaluations are made mostly symptomatically, suspicions about false true diagnosis and increased prevalence rates have emerged. This situation leads to controversial data about the prevalence rates of bipolar disorder in children and adolescents. The aim of this article is to review the prevalence of childhood and adolescent bipolar disorder in community, inpatient and outpatient based samples in literature.

  20. Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Kerner B

    2014-02-01

    Full Text Available Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a “risk” allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are

  1. High temperature oxidation resistance of magnetron-sputtered homogeneous CrAlON coatings on 430 steel

    Energy Technology Data Exchange (ETDEWEB)

    Garratt, E; Wickey, K J; Nandasiri, M I; Moore, A; AlFaify, S; Gao, X [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Smith, R J; Buchanan, T L; Priyantha, W; Kopczyk, M; Gannon, P E [Montana State University, Bozeman, MT, 59717 (United States); Kayani, A, E-mail: asghar.kayani@wmich.ed

    2009-11-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 {sup o}C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  2. Early Intervention in Bipolar Disorder.

    Science.gov (United States)

    Vieta, Eduard; Salagre, Estela; Grande, Iria; Carvalho, André F; Fernandes, Brisa S; Berk, Michael; Birmaher, Boris; Tohen, Mauricio; Suppes, Trisha

    2018-05-01

    Bipolar disorder is a recurrent disorder that affects more than 1% of the world population and usually has its onset during youth. Its chronic course is associated with high rates of morbidity and mortality, making bipolar disorder one of the main causes of disability among young and working-age people. The implementation of early intervention strategies may help to change the outcome of the illness and avert potentially irreversible harm to patients with bipolar disorder, as early phases may be more responsive to treatment and may need less aggressive therapies. Early intervention in bipolar disorder is gaining momentum. Current evidence emerging from longitudinal studies indicates that parental early-onset bipolar disorder is the most consistent risk factor for bipolar disorder. Longitudinal studies also indicate that a full-blown manic episode is often preceded by a variety of prodromal symptoms, particularly subsyndromal manic symptoms, therefore supporting the existence of an at-risk state in bipolar disorder that could be targeted through early intervention. There are also identifiable risk factors that influence the course of bipolar disorder, some of them potentially modifiable. Valid biomarkers or diagnosis tools to help clinicians identify individuals at high risk of conversion to bipolar disorder are still lacking, although there are some promising early results. Pending more solid evidence on the best treatment strategy in early phases of bipolar disorder, physicians should carefully weigh the risks and benefits of each intervention. Further studies will provide the evidence needed to finish shaping the concept of early intervention. AJP AT 175 Remembering Our Past As We Envision Our Future April 1925: Interpretations of Manic-Depressive Phases Earl Bond and G.E. Partridge reviewed a number of patients with manic-depressive illness in search of a unifying endo-psychic conflict. They concluded that understanding either phase of illness was "elusive" and

  3. Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs

    OpenAIRE

    Muhammad, Akram; Musavarah, Sarwar

    2016-01-01

    In this research study, we introduce the concept of bipolar neutrosophic graphs. We present the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We also develop an algorithm for computing domination in bipolar neutrosophic graphs.

  4. Elastic buckling strength of corroded steel plates

    Indian Academy of Sciences (India)

    structural safety assessment of corroded structures, residual strength should be ... Rahbar-Ranji (2001) has proposed a spectrum for random simulation of ... The main aim of the present work is to investigate the buckling strength of simply ...

  5. Bipolar nickel-hydrogen battery design

    Science.gov (United States)

    Koehler, C. W.; Applewhite, A. Z.; Kuo, Y.

    1985-01-01

    The initial design for the NASA-Lewis advanced nickel-hydrogen battery is discussed. Fabrication of two 10-cell boilerplate battery stacks will soon begin. The test batteries will undergo characterization testing and low Earth orbit life cycling. The design effectively deals with waste heat generated in the cell stack. Stack temperatures and temperature gradients are maintained to acceptable limits by utilizing the bipolar conduction plate as a heat path to the active cooling fluid panel external to the edge of the cell stack. The thermal design and mechanical design of the battery stack together maintain a materials balance within the cell. An electrolyte seal on each cell frame prohibits electrolyte bridging. An oxygen recombination site and electrolyte reservoir/separator design does not allow oxygen to leave the cell in which it was generated.

  6. Investigation on the corrosion resistance of PIM 316L stainless steel in PEM fuel cell simulated environment

    International Nuclear Information System (INIS)

    Oliveira, Mara Cristina Lopes de; Costa, Isolda; Antunes, Renato Altobelli

    2009-01-01

    Bipolar plates play main functions in PEM fuel cells, accounting for the most part of the weight and cost of these devices. Powder metallurgy may be an interesting manufacturing process of these components owing to the production of large scale, complex near-net shape parts. However, corrosion processes are a major concern due to the increase of the passive film thickness on the metal surface, lowering the power output of the fuel cell. In this work, the corrosion resistance of PIM AISI 316L stainless steel specimens was evaluated in 1M H 2 SO 4 + 2 ppm HF solution at room temperature during 30 days of immersion. The electrochemical measurements comprised potentiodynamic polarization and electrochemical impedance spectroscopy. The surface morphology of the specimens was observed before and after the corrosion tests through SEM images. The material presented low corrosion current density suggesting that it is suitable to operate in the PEM fuel cell environment. (author)

  7. Flaw behavior in mechanically loaded clad plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Robinson, G.C.; Oland, C.B.

    1989-01-01

    A small crack near the inner surface of clad nuclear reactor pressure vessels is an important consideration in the safety assessment of the structural integrity of the vessel. Four-point bend tests on large plate specimens, conforming to ASTM specification for pressure vessel plates, alloy steels, quenched and tempered, Mn-Mo and Mn-Mo-Ni (A533) grade B six clad and two unclad with stainless steels 308, 309 and 312 weld wires, were performed to determine the effect of cladding upon the propagation of small surface cracks subjected to stress states. Results indicated that the tough surface layer composed of cladding and/or heat-affected zone has enhanced the load-bearing capacity of plates under conditions where unclad plates have ruptured. The results are interpreted in terms of fracture mechanics. The behavior of flaws in clad reactor pressure vessels is examined in the light of the test results. 11 refs., 8 figs., 2 tabs

  8. Heavy gauge plates for nuclear application

    International Nuclear Information System (INIS)

    Cheviet, A.; Roux, J.-H.

    1977-01-01

    The production of energy from nuclear sources leads to the building of very large vessels working under pressure at elevated temperatures, requiring very thick steel plate (from 50 mm to 300 mm). The plates necessary for the production of these vessels have to be as large as possible in order to reduce the length of welds on the vessels. Those two requirements lead to the manufacture of heavy products from 10 to 80 tons unit weight. These products are special, because their fabrication requires very big facilities and also extremely high quality of the steel. The main points are: high cleanliness; properties as homogeneous as possible. The tests carried out on industrially produced plates (especially on a plate of 200 mm thick show the level of quality that can be reached [fr

  9. A flat solar collector built from galvanized steel plate, working by thermosyphonic flow, optimized for Mexican conditions; Un colector solar plano construido de lamina de acero galvanizada, operando por flujo termosifonico, optimizado para las condiciones mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin de Jesus, A; Olivares Ramirez, J.M.; Ramos Lopez, G.A.; Pless, R.C. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro (Mexico)]. E-mail: amarroquind@utsjr.edu.mx

    2009-07-15

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled types, the other one flat, which are joined by electric welding. The absorber is connected to a 198-L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m{sup 2}, about 20% smaller than comparable copper-tube-based collectors offered in the market. Temperature measurements conducted over a 30-day period gave values which were a few degrees lower than the theoretically calculated water temperatures. Momentary thermal efficiency values between 35% and 77% were observed. The water temperature achieved the tank at the end of the day averages 65 degrees Celsius in winter weather conditions in the central Mexican highland. This design of solar water heater is well suited to Mexican conditions, as it makes use of the high local intensity of the solar radiation, and as the channel shape of the ducts minimizes bursting during the rare occurrences of freezing temperatures in the region; it also has the advantage of being manufacturable at low cost from simple materials. [Spanish] Se describe el diseno, construccion y pruebas del desempeno termico de un colector solar plano para calentamiento de agua para uso domestico. La placa absorbedora se construyo de materiales facilmente asequibles: dos placas de acero galvanizado, una del tipo acanalado y la otra plana, unidas mediante soldadura de acero electrico. La placa absorbedora esta conectada a un termotanque con capacidad de 198 L, aislado con espuma de poliuretano. La superficie receptora de este prototipo es de 1.35 m{sup 2}, aproximadamente 20% mas pequena comparado con los colectores, basados en tubos de cobre, ofertados en el mercado. Mediciones de temperatura por un periodo de 30 dias, arrojaron valores

  10. Steels and welding nuclear

    International Nuclear Information System (INIS)

    Sessa, M.; Milella, P.P.

    1987-01-01

    This ENEA Data-Base regards mechanical properties, chemical composition and heat treatments of nuclear pressure vessel materials: type A533-B, A302-B, A508 steel plates and forgings, submerged arc welds and HAZ before and after nuclear irradiation. Irradiation experiments were generally performed in high flux material test reactors. Data were collected from international available literature about water nuclear reactors pressure vessel materials embrittlement

  11. Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes

    Science.gov (United States)

    Liu, Xiaojuan; Wu, Tao; Dai, Zengxin; Tao, Keran; Shi, Yong; Peng, Chuang; Zhou, Xiaohang; Chen, George Z.

    2016-03-01

    Stacked electrolysers with titanium bipolar plates are constructed for electrodeposition of polypyrrole electrodes for supercapacitors. The cathode side of the bipolar Ti plates are pre-coated with activated carbon. In this new design, half electrolysis occurs which significantly lowers the deposition voltage. The deposited electrodes are tested in a symmetrical unit cell supercapacitor and an asymmetrical supercapacitor stack. Both devices show excellent energy storage performances and the capacitance values are very close to the design value, suggesting a very high current efficiency during the electrodeposition. The electrolyser stack offers multi-fold benefits for preparation of conducting polymer electrodes, i.e. low energy consumption, facile control of the electrode capacitance and simultaneous preparation of a number of identical electrodes. Therefore, the stacked bipolar electrolyser is a technology advance that offers an engineering solution for mass production of electrodeposited conducting polymer electrodes for supercapacitors.

  12. Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates.

    Science.gov (United States)

    Hak, David J; Fader, Ryan; Baldini, Todd; Chadayammuri, Vivek B S

    2017-09-01

    Carbon-fibre reinforced polyetheretherketone (CFR-PEEK) plates have recently been introduced for proximal humerus fracture treatment. The purpose of this study was to compare the locking screw-plate interface stability in CFR-PEEK versus stainless steel (SS) proximal humerus plates. Locking screw mechanical stability was evaluated independently in proximal and shaft plate holes. Stiffness and load to failure were tested for three conditions: (1) on-axis locking screw insertion in CFR-PEEK versus SS plates, (2) on-axis locking screw insertion, removal, and reinsertion in CFR-PEEK plates, and (3) 10-degree off-axis locking screw insertion in CFR-PEEK plates. Cantilever bending at a rate of 1 mm/minute was produced by an Instron machine and load-displacement data recorded. Shaft locking screw load to failure was significantly greater in CFR-PEEK plates compared to SS plates (746.4 ± 89.7 N versus 596.5 ± 32.6 N, p PEEK plates (p PEEK plates. The mechanical stability of locking screws in CFR-PEEK plates is comparable or superior to locking screws in SS plates.

  13. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  14. Asenapine for bipolar disorder

    Directory of Open Access Journals (Sweden)

    Scheidemantel T

    2015-12-01

    Full Text Available Thomas Scheidemantel,1 Irina Korobkova,2 Soham Rej,3,4 Martha Sajatovic1,2 1University Hospitals Case Medical Center, 2Case Western Reserve University School of Medicine, Cleveland, OH, USA; 3Department of Psychiatry, University of Toronto, Toronto, ON, 4Geri PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada Abstract: Asenapine (Saphris® is an atypical antipsychotic drug which has been approved by the US Food and Drug Administration for the treatment of schizophrenia in adults, as well as the treatment of acute manic or mixed episodes of bipolar I in both adult and pediatric populations. Asenapine is a tetracyclic drug with antidopaminergic and antiserotonergic activity with a unique sublingual route of administration. In this review, we examine and summarize the available literature on the safety, efficacy, and tolerability of asenapine in the treatment of bipolar disorder (BD. Data from randomized, double-blind trials comparing asenapine to placebo or olanzapine in the treatment of acute manic or mixed episodes showed asenapine to be an effective monotherapy treatment in clinical settings; asenapine outperformed placebo and showed noninferior performance to olanzapine based on improvement in the Young Mania Rating Scale scores. There are limited data available on the use of asenapine in the treatment of depressive symptoms of BD, or in the maintenance phase of BD. The available data are inconclusive, suggesting the need for more robust data from prospective trials in these clinical domains. The most commonly reported adverse effect associated with use of asenapine is somnolence. However, the somnolence associated with asenapine use did not cause significant rates of discontinuation. While asenapine was associated with weight gain when compared to placebo, it appeared to be modest when compared to other atypical antipsychotics, and its propensity to cause increases in hemoglobin A1c or serum lipid levels appeared to be

  15. Modeling suicide in bipolar disorders.

    Science.gov (United States)

    Malhi, Gin S; Outhred, Tim; Das, Pritha; Morris, Grace; Hamilton, Amber; Mannie, Zola

    2018-02-19

    Suicide is a multicausal human behavior, with devastating and immensely distressing consequences. Its prevalence is estimated to be 20-30 times greater in patients with bipolar disorders than in the general population. The burden of suicide and its high prevalence in bipolar disorders make it imperative that our current understanding be improved to facilitate prediction of suicide and its prevention. In this review, we provide a new perspective on the process of suicide in bipolar disorder, in the form of a novel integrated model that is derived from extant knowledge and recent evidence. A literature search of articles on suicide in bipolar disorder was conducted in recognized databases such as Scopus, PubMed, and PsycINFO using the keywords "suicide", "suicide in bipolar disorders", "suicide process", "suicide risk", "neurobiology of suicide" and "suicide models". Bibliographies of identified articles were further scrutinized for papers and book chapters of relevance. Risk factors for suicide in bipolar disorders are well described, and provide a basis for a framework of epigenetic mechanisms, moderated by neurobiological substrates, neurocognitive functioning, and social inferences within the environment. Relevant models and theories include the diathesis-stress model, the bipolar model of suicide and the ideation-to-action models, the interpersonal theory of suicide, the integrated motivational-volitional model, and the three-step theory. Together, these models provide a basis for the generation of an integrated model that illuminates the suicidal process, from ideation to action. Suicide is complex, and it is evident that a multidimensional and integrated approach is required to reduce its prevalence. The proposed model exposes and provides access to components of the suicide process that are potentially measurable and may serve as novel and specific therapeutic targets for interventions in the context of bipolar disorder. Thus, this model is useful not only

  16. Bipolar explosion models for hypernovae

    International Nuclear Information System (INIS)

    Maeda, Keiichi; Nomoto, Ken'ichi

    2003-01-01

    Bipolar explosion models for hypernovae (very energetic supernovae) are presented. These models provide a favorable situation to explain some unexpected features in observations of hypernovae, e.g., high velocity matter dominated by Fe and low velocity matter dominated by O. The overall abundance of these models gives a good fit, at least qualitatively, to abundances in extremely metal-poor stars. We suggest hypernovae be driven by bipolar jets and contribute significantly to the early Galactic chemical evolution

  17. Functional remediation for bipolar disorder

    OpenAIRE

    Martínez-Arán, Anabel, 1971-; Torrent, C.; Solé, B.; Bonnín, C.M.; Rosa, A.R.; Sánchez-Moreno, J.; Vieta i Pascual, Eduard, 1963-

    2014-01-01

    Neurocognitive impairment constitutes a core feature of bipolar illness. The main domains affected are verbal memory, attention, and executive functions. Deficits in these areas as well as difficulties to get functional remission seem to be increased associated with illness progression. Several studies have found a strong relationship between neurocognitive impairment and low functioning in bipolar disorder, as previously reported in other illnesses such as schizophrenia. Cognitive remediatio...

  18. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  20. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  1. Quetiapine monotherapy for bipolar depression

    Directory of Open Access Journals (Sweden)

    Michael E Thase

    2008-03-01

    Full Text Available Michael E ThaseDepartments of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; the Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA; and the University of Pittsburgh Medical Center, Pittsburgh, PA, USAAbstract: Bipolar depression is more common, disabling, and difficult-to-treat than the manic and hypomanic phases that define bipolar disorder. Unlike the treatment of so-called “unipolar” depressions, antidepressants generally are not indicated as monotherapies for bipolar depressions and recent studies suggest that - even when used in combination with traditional mood stabilizers – antidepressants may have questionable value for bipolar depression. The current practice is that mood stabilizers are initiated first as monotherapies; however, the antidepressant efficacy of lithium and valproate is modest at best. Within this context the role of atypical antipsychotics is being evaluated. The combination of olanzapine and the antidepressant fluoxetine was the first treatment to receive regulatory approval in the US specifically for bipolar I depression. Quetiapine was the second medication to be approved for this indication, largely as the result of two pivotal trials known by the acronyms of BOLDER (BipOLar DEpRession I and II. Both studies demonstrated that two doses of quetiapine (300 mg and 600 mg given once daily at bedtime were significantly more effective than placebo, with no increased risk of patients switching into mania. Pooling the two studies, quetiapine was effective for both bipolar I and bipolar II depressions and for patients with (and without a history of rapid cycling. The two doses were comparably effective in both studies. Although the efficacy of quetiapine monotherapy has been established, much additional research is necessary. Further studies are needed to more fully investigate dose-response relationships and comparing quetiapine monotherapy to other mood stabilizers

  2. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  3. Avaliação de soldagem de aço estrutural através do Ruído Magnético de Barkhausen Evaluation of carbon steel welded plates with Magnetic Barkhausen Noise

    Directory of Open Access Journals (Sweden)

    Claudia P. Serna-Giraldo

    2010-12-01

    Full Text Available Este trabalho apresenta resultados de avaliação de juntas soldadas de aço estrutural ASTM A36 por meio do Ruído Magnético de Barkhausen (RMB. A soldagem foi feita em chapas de 6 mm de espessura com preparação de chanfro em V, com um e dois passes. Foram feitas a caracterização de microestructuras e microdurezas através da junta soldada, e na superfície foram feitas medições de RMB. Os sinais de RMB foram analisados com o valor máximo, uma média de valores acima de 80% do pico máximo, o rms e o rms do envelope, dos quais foram obtidas curvas da variação com respeito ao centro do cordão e também foram obtidos mapas superficiais. Na caracterização microestructural obteve-se que as amostras de um e dois passes apresentaram tamanhos da zona afetada pelo calor (ZAC diferente. As microdurezas mostraram que no limite de fusão tem-se a maior dureza enquanto que no fim da ZAC tem-se a menor dureza. O RMB mostrou que no limite de fusão tem o menor valor, enquanto que no fim da ZAC tem o maior valor. Este estúdio mostrou que as mudanças na microestrutura influenciam em todos os parâmetros analisados, sendo que a junta soldada ficou melhor representada pelo valor rms e rms do envelope do RMB.This paper shows results for the evaluation of ASTM A36 carbon steel welded joints by Magnetic Barkhausen Noise (MBN. V-groove shape welded samples were made in a 6 mm thickness plates, with one-pass and two-pass. Microstructural and microhardness characterization were made on a transversal section of welds. In the surface was made measurement of MBN. The signal of MBN were analyzed with the maximum value, threshold of 80% above of maximum, the root mean square (rms, the root mean square of the profile, and these parameters were plotted in function of the distance to center bead. Surface maps were obtained, too. The microstructural characterization identified different heat affected zone (HAZ sizes for one-pass and two-pass. In addition

  4. Heat receiving plates in thermonuclear device

    International Nuclear Information System (INIS)

    Kitamura, Kazunori.

    1988-01-01

    Purpose: To obtain a heat receiving plate structure capable of withstanding sputtering wear and retaining the thermal deformation and residual stress low upon junction and available at a reduced cost. Constitution: Junction structures between heat sinks and armours are the same as usual, whereas high melting armour (for example, made of tungsten) are used at the portion on a heat receiving plate where the thermal load and particle load are higher while materials having a heat expansion coefficient similar to that of the heat sink (stainless steel) are used at the portion where the thermal load and particle load are lower on a heat receiving plate depending on the thermal load and particle load distribution. This can reduce the thermal deformation for the entire divertor heat receiving plate to obtain a heat receiving plate of a good surface dimensional accuracy. (Takahashi, M.)

  5. Integrated neurobiology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Vladimir eMaletic

    2014-08-01

    Full Text Available From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity—reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition—limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional unified field theory of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia—the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the HPA axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great

  6. DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING

    Science.gov (United States)

    In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...

  7. Bipolar Disorder and Alcoholism: Are They Related?

    Science.gov (United States)

    ... Are they related? Is there a connection between bipolar disorder and alcoholism? Answers from Daniel K. Hall-Flavin, M.D. Bipolar disorder and alcoholism often occur together. Although the association ...

  8. Bipolar outflow in B335

    International Nuclear Information System (INIS)

    Hirano, N.; Kameya, O.; Nakayama, M.; Takakubo, K.

    1988-01-01

    The high-velocity (C-12)O (J = 1-0) emission in B335 with a high angular resolution of 16 arcsec has been mapped. The high-velocity emission shows distinct bipolar pattern centered at IRAS 19345+0727, toward which a strong high-velocity (C-12)O emission has been detected. The bipolar lobes delineate remarkable collimation toward the IRAS source, indicating that the flow is focused within 0.02 pc of the driving source. Each lobe is accompanied by significant wing emission with the opposite velocity shift, which clearly shows the association with IRAS 19345+0727. This feature is well explained as a bipolar flow the axis of which is nearly perpendicular to the line of sight. There is no evidence of another evolved bipolar flow which does not associate with any dense core as previously suggested. This suggests that B335 is a site of very recent star formation, containing a single bipolar flow with an age of about 30,000 yr. 15 references

  9. Exercising control over bipolar disorder.

    Science.gov (United States)

    Malhi, Gin S; Byrow, Yulisha

    2016-11-01

    Following extensive research exercise has emerged as an effective treatment for major depressive disorder, and it is now a recognised therapy alongside other interventions. In contrast, there is a paucity of research examining the therapeutic effects of exercise for those with bipolar disorder. Given that dysfunctional reward processing is central to bipolar disorder, research suggests that exercise can perhaps be framed as a reward-related event that may have the potential to precipitate a manic episode. The behavioural activation system (BAS) is a neurobehavioural system that is associated with responding to reward and provides an appropriate framework to theoretically examine and better understand the effects of exercise treatment on bipolar disorder. This article discusses recent research findings and provides an overview of the extant literature related to the neurobiological underpinnings of BAS and exercise as they relate to bipolar disorder. This is important clinically because depending on mood state in bipolar disorder, we postulate that exercise could be either beneficial or deleterious with positive or negative effects on the illness. Clearly, this complicates the evaluation of exercise as a potential treatment in terms of identifying its optimal characteristics in this population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Late Onset Bipolar Disorder: Case Report

    OpenAIRE

    Filipa Araújo; Adriana Horta

    2016-01-01

    Background: Bipolar disorder affects approximately 1% of the population, with diagnosis often being made during late adolescence and early adulthood, and only rarely (0.1%) in the elderly. Late onset bipolar disorder in the elderly has a impact on the nature and course of bipolar disorder. Aims: The authors report a case of bipolar disorder emerging in late life  (76years old) with no cleary identified organic cause. Conclusion: This case highlights the importance of a broad different...

  11. Imunologia do transtorno bipolar Immunology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Izabela Guimarães Barbosa

    2009-01-01

    Full Text Available OBJETIVO: Pesquisas recentes têm implicado fatores imunes na patogênese de diversos transtornos neuropsiquiátricos. O objetivo do presente trabalho é revisar os trabalhos que investigaram a associação entre transtorno bipolar e alterações em parâmetros imunes. MÉTODOS: Artigos que incluíam as palavras-chave: "bipolar disorder", "mania", "immunology", "cytokines", "chemokines", "interleukins", "interferon" e "tumor necrosis factor" foram selecionados em uma revisão sistemática da literatura. As bases de dados avaliadas foram MedLine e Scopus, entre os anos de 1980 e 2008. RESULTADOS: Foram identificados 28 trabalhos que estudaram alterações imunes em pacientes com transtorno bipolar. Seis artigos investigaram genes relacionados à resposta imune; cinco, autoanticorpos; quatro, populações leucocitárias; 13, citocinas e/ou moléculas relacionadas à resposta imune e seis, leucócitos de pacientes in vitro. CONCLUSÕES: Embora haja evidências na literatura correlacionando o transtorno bipolar a alterações imunes, os dados não são conclusivos. O transtorno bipolar parece estar associado a níveis mais elevados de autoanticorpos circulantes, assim como à tendência à ativação imune com produção de citocinas pró-inflamatórias e redução de parâmetros anti-inflamatórios.OBJECTIVE: Emerging research has implicated immune factors in the pathogenesis of a variety of neuropsychiatric disorders. The objective of the present paper is to review the studies that investigated the association between bipolar disorder and immune parameters. METHODS: Papers that included the keywords "bipolar to disorder", "mania", "immunology", "cytokines", "chemokines", "interleukins", "interferon" and "tumor necrosis factor" were selected in a systematic review of the literature. The evaluated databases were MedLine and Scopus in the period between 1980 and 2008. RESULTS: Twenty eight works were found. Six studies investigated immune response

  12. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  13. Mathematical models of bipolar disorder

    Science.gov (United States)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  14. Is bipolar always bipolar? Understanding the controversy on bipolar disorder in children

    Science.gov (United States)

    Grimmer, Yvonne; Hohmann, Sarah

    2014-01-01

    Dramatically increasing prevalence rates of bipolar disorder in children and adolescents in the United States have provoked controversy regarding the boundaries of manic symptoms in child and adolescent psychiatry. The serious impact of this ongoing debate on the treatment of affected children is reflected in the concomitant increase in prescription rates for antipsychotic medication. A key question in the debate is whether this increase in bipolar disorder in children and adolescents is based on a better detection of early-onset bipolar disorder—which can present differently in children and adolescents—or whether it is caused by an incorrect assignment of symptoms which overlap with other widely known disorders. So far, most findings suggest that the suspected symptoms, in particular chronic, non-episodic irritability (a mood symptom presenting with easy annoyance, temper tantrums and anger) do not constitute a developmental presentation of childhood bipolar disorder. Additional research based on prospective, longitudinal studies is needed to further clarify the developmental trajectories of bipolar disorder and the diagnostic status of chronic, non-episodic irritability. PMID:25580265

  15. Transcultural aspects of bipolar disorder

    OpenAIRE

    Sanches, Marsal; Jorge, Miguel Roberto

    2004-01-01

    Considerando-se que existem diferenças importantes na maneira como as emoções são vivenciadas e expressas em diferentes culturas, a apresentação e o manejo do transtorno afetivo bipolar sofrem influência de fatores culturais. O presente artigo realiza uma breve revisão da evidência referente aos aspectos transculturais do transtorno bipolar.Cultural variations in the expression of emotions have been described. Consequently, there are cross-cultural influences on the diagnosis and management o...

  16. Electronic monitoring in bipolar disorder.

    Science.gov (United States)

    Faurholt-Jepsen, Maria

    2018-03-01

    Major reasons for the insufficient effects of current treatment options in bipolar disorder include delayed intervention for prodromal depressive and manic symptoms and decreased adherence to psychopharmacological treatment. The reliance on subjective information and clinical evaluations when diagnosing and assessing the severity of depressive and manic symptoms calls for less biased and more objective markers. By using electronic devices, fine-grained data on complex psychopathological aspects of bipolar disorder can be evaluated unobtrusively over the long term. Moreover, electronic data could possibly represent candidate markers of diagnosis and illness activity in bipolar disorder and allow for early and individualized intervention for prodromal symptoms outside clinical settings. 
The present dissertation concerns the use of electronic monitoring as a marker and treatment intervention in bipolar disorder and investigated the scientific literature and body of evidence within the area, which includes ten original study reports and two systematic reviews, one of which included a meta-analysis, conducted by the author of the dissertation. 
Taken together, the literature presented in this dissertation illustrates that 1) smartphone-based electronic self-monitoring of mood seems to reflect clinically assessed depressive and manic symptoms and enables the long-term characterization of mood

instability in bipolar disorder; 2) preliminary results suggest that smartphone-based automatically generated data (e.g. the number of text messages sent/day; the number of incoming and outgoing calls/day; the number of changes in cell tower IDs/day; and voice features) seem to reflect clinically assessed depressive and manic symptoms in bipolar disorder; 3) smartphone-based electronic self-monitoring had no effects on the severity of depressive and manic symptoms in bipolar disorder, according to a randomized controlled trial; and 4) electronic monitoring of psychomotor

  17. Development of three channel linear bipolar high voltage amplifier (±2 KV) for electrostatic steerer

    International Nuclear Information System (INIS)

    Rajesh Kumar; Mukesh Kumar; Suman, S.K.; Safvan, C.P.; Mandal, A.

    2011-01-01

    Electrostatic steerers and scanners are planned for low energy ion beam facilities at IUAC to steer and scan the ion beam on target. The power supplies for electrostatic steerers are high voltage bipolar DC amplifiers and for scanners are bipolar AC amplifiers. To fulfil the requirements a common unit has been designed and assembled for AC and DC applications. It can be used with electrostatic devices in scanning, steering and sweeping of low energy ion beams at high frequencies to attain uniform implantation. The unit consist of three independent limited bandwidth high voltage, linear bipolar amplifiers (for X-axis, Y-axis and Y1-dog leg plates). The unit has been provided with both local and remote control. (author)

  18. Social support and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Paula Mendonça Studart

    2015-08-01

    Full Text Available Background Bipolar disorder is a chronic condition that affects the functioning of its carriers in many different ways, even when treated properly. Therefore, it’s also important to identify the psychosocial aspects that could contribute to an improvement of this population’s quality of life.Objective Carry out a literature review on the role of social support in cases of bipolar disorder.Method A research on the following online databases PubMed, Lilacs and SciELO was conducted by using the keywords “social support” or “social networks” and “mood disorders” or “bipolar disorder” or “affective disorder,” with no defined timeline.Results Only 13 studies concerning the topic of social support and BD were found in the search for related articles. Generally speaking, the results show low rates of social support for BD patients.Discussion Despite the growing interest in the overall functioning of patients with bipolar disorder, studies on social support are still rare. Besides, the existing studies on the subject use different methodologies, making it difficult to establish data comparisons.

  19. Electronic monitoring in bipolar disorder

    DEFF Research Database (Denmark)

    Faurholt-Jepsen, Maria

    2018-01-01

    generated data (e.g. the number of text messages sent/day; the number of incoming and outgoing calls/day; the number of changes in cell tower IDs/day; and voice features) seem to reflect clinically assessed depressive and manic symptoms in bipolar disorder; 3) smartphone-based electronic self-monitoring had...

  20. Integrated Neurobiology of Bipolar Disorder

    Science.gov (United States)

    Maletic, Vladimir; Raison, Charles

    2014-01-01

    From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity – reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition – limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional “unified field theory” of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial–neuronal interactions. Among these glial elements are microglia – the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic–pituitary–adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of