WorldWideScience

Sample records for steel bare metal

  1. Supersonic bare metal cluster beams

    International Nuclear Information System (INIS)

    Smalley, R.E.

    1991-01-01

    Progress continued this past year on two principal fronts in the study of bare metal clusters: photoelectron spectroscopy of mass selected negative ions, and surface chemisorption of cluster ions levitated in a superconducting magnet as monitored by fourier transform ion cyclotron resonance

  2. Specification for corrosion-resisting chromium and chromium-nickel steel bare and composite metal cored and stranded arc welding electrodes and welding rods

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for corrosion or heat resisting chromium and chromium-nickel steel electrodes and welding rods. These electrodes and welding rods are normally used for arc welding and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  3. Specification for corrosion-resisting chromium and chromium-nickel steel welding rods and bare electrodes - approved 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers corrosion-resisting chromium and chromium-nickel steel welding rods for use with the atomic hydrogen and gas-tungsten-arc welding processes and bare electrodes for use with the submerged arc and gas metal-arc welding processes. These welding rods and electrodes include those alloy steels designated as corrosion- or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4% and nickel does not exceed 50%

  4. Corrosion of bare and galvanized steel in gypsum

    Directory of Open Access Journals (Sweden)

    Gómez, Mercedes

    1988-12-01

    Full Text Available Gypsum is a relatively low-cost building material much abounding in our country. When it is put in contact with steel, it may produce high corrosion rates due to its pH value (close to 7. This work reports the results obtained in studying the corrosion rates of bare and galvanized steel in contact with gypsum and plaster, as well as the influence curing thermal treatment applied to gypsum, enviromental relative humidity and addition of compounds with different natures and purposes may have in such process. In-situ observations, as well as the measurement of the Polarization Resistance and the weight loss have been used as measurement technics. From the results obtained it has been possible to deduce that galvanized steel has better behaviour in dry enviroments than bare steel in the same conditions and moist atmosphere induces proportionally more corrosion in galvanized steel than in bare one. Additions to gypsum do not modified these conclusions, though it may be pointed out that addition of nitrites or lime improves the behaviour of bare steel, while galvanized behaviour is not modified. The addition of lime is not recommended because phenomena of dilated along time expansion may take place.

    El yeso es un material de construcción de relativo bajo coste y que, además, es muy abundante en nuestro país. Debido a su pH cercano a la neutralidad, cuando entra en contacto con el acero, este puede corroerse a elevadas velocidades. En esta comunicación se presentan los resultados de un estudio sobre la velocidad de corrosión del acero desnudo y galvanizado en contacto con yeso y escayola y la influencia que tienen: el tratamiento térmico del curado del yeso, la humedad relativa ambiental y la adición de aditivos de diversa naturaleza y finalidad. Como técnicas de medida se han utilizado la medida de la Resistencia de Polarización y de la pérdida de peso, así como observaciones visuales. De los resultados se puede deducir que en

  5. The effect of gamma radiation on reference electrodes and platinum and carbon steel bare metal electrodes in a simulated waste solution

    International Nuclear Information System (INIS)

    Danielson, M.J.

    1993-09-01

    Electrochemical potential measurements of materials in waste tanks are important in determining if the materials have a propensity for stress corrosion cracking and pitting. Potential measurement requires a reference electrode, but the effect of radiation on the potential generated by the reference electrode has been an unknown quantity. To determine the significance of the radiation effect, Pacific Northwest Laboratory conducted studies of five types of electrodes under gamma radiation at room temperature. The subjects were two types of silver/silver chloride reference electrodes (Fisher and Lazaran), a mercury/calomel reference electrode, a platinum ''flag,'' and a piece of A-537 carbon steel; the electrodes were exposed to a simulated caustic tank environment. The Fisher silver/silver chloride and mercury/calomel reference electrodes showed essentially no radiation effects up to a flux of 2.1E6 R/h and fluence of 9.4E8 R, indicating they would be useful reference electrodes for in-tank studies. The Lazaran reg-sign silver/silver chloride electrode showed serious potential deviations at fluences of 2.E8 R, but it would be the electrode of choice in many situations because it is simple to maintain. Radiation affected the open circuit potential of both the platinum and carbon steel electrodes. This effect indicates that corrosion studies without radiation may not duplicate the corrosion processes expected in a waste tank. Mixed-potential theory was used to explain the radiation effects

  6. Nd-YAG laser welding of bare and galvanised steels

    International Nuclear Information System (INIS)

    Kennedy, S.C.; Norris, I.M.

    1989-01-01

    Until recently, one of the problems that has held back the introduction of lasers into car body fabrication has been the difficulty of integrating the lasers with robots. Nd-YAG laser beams can be transmitted through fibre optics which, as well as being considerably easier to manipulate than a mirror system, can be mounted on more lightweight accurate robots. Although previously only available at low powers, recent developments in Nd-YAG laser technology mean that lasers of up to 1kW average power will soon be available, coupled to a fibre optic beam delivery system. The increasing usage of zinc coated steels in vehicle bodies has led to welding problems using conventional resistance welding as well as CO 2 laser welding. The use of Nd-YAG lasers may be able to overcome these problems. This paper outlines work carried out at The Welding Institute on a prototype Lumonics 800W pulsed Nd-YAG laser to investigate its welding characteristics on bare and zinc coated car body steels

  7. The effective delayed neutron fraction for bare-metal criticals

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1999-01-01

    Given sufficient material, a large number of actinides could be used to form bare-metal criticals. The effective delayed neutron fraction for a bare critical comprised of a fissile material is comparable with the absolute delayed neutron fraction. The effective delayed neutron fraction for a bare critical composed of a fissionable material is reduced by factors of 2 to 10 when compared with the absolute delayed neutron fraction. When the effective delayed neutron fraction is small, the difference between delayed and prompt criticality is small, and extreme caution must be used in critical assemblies of these materials. This study uses an approximate but realistic model to survey the actinide region to compare effective delayed neutron fractions with absolute delayed neutron fractions

  8. Clinical and angiographic outcomes after intracoronary bare-metal stenting.

    Directory of Open Access Journals (Sweden)

    I-Chang Hsieh

    Full Text Available BACKGROUND: Data from a large patient population regarding very long-term outcomes after BMS implantation are inadequate. This study aimed to evaluate the very long-term (8-17 years clinical and long-term (3-5 years angiographic outcomes after intracoronary bare-metal stenting (BMS. METHODS AND RESULTS: From the Cardiovascular Atherosclerosis and Percutaneous TrAnsluminal INterventions (CAPTAIN registry, a total of 2391 patients with 2966 lesions treated with 3190 BMSs between November 1995 and May 2004 were evaluated. In total, 1898 patients with 2364 lesions, and 699 patients with 861 lesions underwent 6-month and 3- to 5- year angiographic follow-up, respectively. During a mean follow-up period of 149 ± 51 months, 18.6% of the patients died (including 10.8% due to cardiac death, 6.1% developed reinfarction, 16.2% had target lesion revascularization (including 81% of the patients within the first year, 14.5% underwent new lesion stenting (including 72% of the patients after 3 years, 2.4% underwent coronary bypass surgery, and 1.6% had definite stent thrombosis. The overall cardiovascular event-free survival rate was 58.5%. The 6-month angiographic study indicated a 20% restenosis rate. The minimal luminal diameter increased from 0.65 ± 0.44 mm to 3.02 ± 0.46 mm immediately after stenting, decreased to 2.06 ± 0.77 mm at the 6-month follow-up, and increased to 2.27 ± 0.68 mm at the 3- to 5-year follow-up. CONCLUSIONS: This study provides clinical and angiographic results from a large population of patients who underwent BMS implantations after a long-term follow-up period (149 ± 51 months. The progression of coronary atherosclerosis developed over time, and presented with new lesion required stent implantation. The follow-up angiographic findings reconfirmed the late and sustained improvement in luminal diameter between 6 months and 3-5 years.

  9. Adsorptive behavior and solid-phase microextraction of bare stainless steel sample loop in high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Wenpeng; Zhang, Zixin; Meng, Jiawei; Zhou, Wei; Chen, Zilin

    2014-10-24

    In this work, we interestingly happened to observe the adsorption of stainless steel sample loop of HPLC. The adsorptive behaviors of the stainless steel loop toward different kinds of compounds were studied, including polycyclic aromatic hydrocarbons (PAHs), halogeno benzenes, aniline derivatives, benzoic acid derivatives, phenols, benzoic acid ethyl ester, benzaldehyde, 1-phenyl-ethanone and phenethyl alcohol. The adsorptive mechanism was probably related to hydrophobic interaction, electron-rich element-metal interaction and hydrogen bond. Universal adsorption of stainless steels was also testified. Inspired by its strong adsorptive capability, bare stainless steel loop was developed as a modification-free in-tube device for solid-phase microextraction (SPME), which served as both the substrate and sorbent and possessed ultra-high strength and stability. Great extraction efficiency toward PAHs was obtained by stainless steel loop without any modification, with enrichment factors of 651-834. By connecting the stainless steel loop onto a six-port valve, an online SPME-HPLC system was set up and an SPME-HPLC method has been validated for determination of PAHs. The method has exceptionally low limits of detection of 0.2-2pg/mL, which is significantly lower than that of reported methods with different kinds of sorbents. Wide linear range (0.5-500 and 2-1000pg/mL), good linearity (R(2)≥0.9987) and good reproducibility (RSD≤2.9%) were also obtained. The proposed method has been applied to determine PAHs in environmental samples. Good recoveries were obtained, ranging from 88.5% to 93.8%. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Ferromagnetic Bare Metal Stent for Endothelial Cell Capture and Retention.

    Science.gov (United States)

    Uthamaraj, Susheil; Tefft, Brandon J; Hlinomaz, Ota; Sandhu, Gurpreet S; Dragomir-Daescu, Dan

    2015-09-18

    Rapid endothelialization of cardiovascular stents is needed to reduce stent thrombosis and to avoid anti-platelet therapy which can reduce bleeding risk. The feasibility of using magnetic forces to capture and retain endothelial outgrowth cells (EOC) labeled with super paramagnetic iron oxide nanoparticles (SPION) has been shown previously. But this technique requires the development of a mechanically functional stent from a magnetic and biocompatible material followed by in-vitro and in-vivo testing to prove rapid endothelialization. We developed a weakly ferromagnetic stent from 2205 duplex stainless steel using computer aided design (CAD) and its design was further refined using finite element analysis (FEA). The final design of the stent exhibited a principal strain below the fracture limit of the material during mechanical crimping and expansion. One hundred stents were manufactured and a subset of them was used for mechanical testing, retained magnetic field measurements, in-vitro cell capture studies, and in-vivo implantation studies. Ten stents were tested for deployment to verify if they sustained crimping and expansion cycle without failure. Another 10 stents were magnetized using a strong neodymium magnet and their retained magnetic field was measured. The stents showed that the retained magnetism was sufficient to capture SPION-labeled EOC in our in-vitro studies. SPION-labeled EOC capture and retention was verified in large animal models by implanting 1 magnetized stent and 1 non-magnetized control stent in each of 4 pigs. The stented arteries were explanted after 7 days and analyzed histologically. The weakly magnetic stents developed in this study were capable of attracting and retaining SPION-labeled endothelial cells which can promote rapid healing.

  11. ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-09-01

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

  12. Critical masses of bare metal spheres using SCALE/XSDRN

    International Nuclear Information System (INIS)

    Wright, R.Q.; Jordan, W.C.; Westfall, R.M.

    2000-01-01

    More than 200 actinide isotopes are known; most of them have very short half-lives (only 45 with T 1/2 > 40 days). Only 41 have been predicted capable of a self-sustaining nuclear chain reaction, some of them with fast neutrons and others with either thermal or fast neutrons. Of these 41 there are 13 nuclides for which the average production is >1 g/tonne for pressurized water reactors or boiling water reactors (35 GWd/tonne--power 35 W/g; cooling time, 90 days). Six actinides, 233 U, 235 U, 238 U, 239 Pu, 240 Pu, and 241 Pu, have cross sections that are relatively well known. Cross sections for the other actinides are not as well known. In the United States, criticality safety guidelines for nuclides other than 233 U, 235 U, and 239 Pu is provided by the American National Standard for Nuclear Criticality Control of Special Actinide Elements, ANSI/ANS-8.15. The standard appeared in 1981 and was reaffirmed in 1987 and 1995. The standard provides guidance for 14 nuclei: 237 Np, 238 Pu, 240 Pu, 241 Pu, 242 Pu, 241 Am, 242m Am, 243 Am, 243 Cm, 244 Cm, 245 Cm, 247 Cm, 249 Cf, and 251 Cf. The ANS-8.15 Standard Work Group is in the process of revising the standard. Five nuclides will be added to the list of nuclides included-- 231 Pa, 234 U, 250 Cf, 252 Cf, and 254 Es--resulting in a total of 19 nuclides in the revised standard. Subcritical mass limits in the current standard are based on calculations by Clark and Westfall. The calculations were based on ENDF/B-IV and preliminary ENDF/B-V evaluations. For several of the actinides, new or revised evaluations are available in ENDF/B-VI. All of the 19 nuclides in the revised standard are included in the current paper with the exception of 231 Pa. In a previous paper, minimum critical mass estimates for metal-water mixtures (spherical geometry), fully reflected by water, for 20 fissile nuclides with values of Z between 92 and 99 were given. A simple exponential fit was developed that gives quite accurate values for the

  13. Drug-eluting versus bare-metal stents in large coronary arteries

    DEFF Research Database (Denmark)

    Kaiser, Christoph; Galatius, Soeren; Erne, Paul

    2010-01-01

    Recent data have suggested that patients with coronary disease in large arteries are at increased risk for late cardiac events after percutaneous intervention with first-generation drug-eluting stents, as compared with bare-metal stents. We sought to confirm this observation and to assess whether...

  14. Half metallicity in bare BC{sub 2}N nanoribbons with zigzag edges

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong, E-mail: lihong@ncut.edu.cn [College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144 (China); Xiao, Xiang; Tie, Jun [College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144 (China); Lu, Jing [State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2017-06-09

    We study the electronic and magnetic properties of bare zigzag BC{sub 2}N nanoribbons (ZBC{sub 2}NNRs) by using first principles calculations. The ZBC{sub 2}NNRs which we studied are assigned to four edge types, and we carefully examine the size effect and edge magnetic coupling orders. We find that the N edge and the C edge adjacent to N atoms have a ferromagnetic coupling, while the B edge and the C edge adjacent to B atoms have an anti-ferromagnetic coupling. These novel properties arise from the unsaturated edge with specific edge determined magnetic moment distribution. All the investigated ribbons exhibit magnetic ground states with room-temperature accessible half-metallic character, irrespective of the ribbon width. Our results suggest that ZBC{sub 2}NNRs can have potential applications in spintronics. - Highlights: • DFT study on bare zigzag BC{sub 2}N nanoribbons (ZBC{sub 2}NNRs). • All the studied bare ZBC{sub 2}NNRs are half-metals at room temperature. • The half-metal characters come from specific spin couplings on the edge atoms. • We predict bare ZBC{sub 2}NNRs as practical candidate for spintronics.

  15. Corrosion of bare carbon steel as a passive sensor to assess moisture availability for biological activity in Atacama Desert soils.

    Science.gov (United States)

    Cáceres, Luis; Davila, Alfonso F; Soliz, Alvaro; Saldivia, Jessica

    2018-02-28

    Here we consider that the corrosion of polished bared metal coupons can be used as a passive sensor to detect or identify the lower limit of water availability suitable for biological activity in Atacama Desert soils or solid substrates. For this purpose, carbon steel coupons were deposited at selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, long rectangular shaped ones that were half-buried in a vertical position, and square shaped ones that were deposited on the soil surface. The morphological attributes observed by SEM inspection were found to correlate to the so-called humectation time which is determined from local meteorological parameters. The main finding was that the decreasing trend of atmospheric moisture along the transect was closely related to corrosion behaviour and water soil penetration. For instance, at the coastal site oxide phases formed on the coupon surface rapidly evolve into well-crystallized species, while at the driest inland site Lomas Bayas only amorphous oxide was observed on the coupons.

  16. Corrosion of Bare Carbon Steel as a Passive Sensor to Assess Moisture Availability for Biological Activity in Atacama Desert Soils

    Science.gov (United States)

    Caceres, Luis; Davila, Alfonso F.; Soliz, Alvaro; Saldivia, Jessica

    2018-01-01

    In this work we suggest the corrosion of polished bared metal coupons as a passive sensor to detect or identify the lower limit of water availability that could be suitable for biological activity in the Atacama Desert on soil or solid substrates. For this purpose, carbon steel coupons were deposited in selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, a long rectangular shape that are half-buried in a vertical position, and square shape that are deposited on the soil surface. The morphological attributes observed by SEM inspection is correlated to the so-called humectation time which is determined from local meteorological parameters. The main result is that the decreasing trend of atmospheric moisture along the transect is closely related to corrosion behavior and water soil penetration. For instance, while in the coastal site oxide phases formed on the coupon surface rapidly evolve to well- crystallized species, in the driest inland site Lomas Bayas only amorphous oxide is observed.

  17. Characterization of diamond film and bare metal photocathodes as a function of temperature and surface preparation

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, R P; Moir, D C; Devlin, D J [Los Alamos National Laboratory, Los Alamos, NM (United States)

    1997-12-31

    High current photocathodes using bare metal and polycrystalline diamond films illuminated by ultraviolet lasers are being developed at Los Alamos for use in a new generation of linear induction accelerators. These photocathodes must be able to produce multiple 60 ns pulses separated by several to tens of nanoseconds. The vacuum environment in which the photocathodes must operate is {sup 1}0-5 torr. (author). 9 figs., 10 refs.

  18. Outcomes of Prosthetic Hemodialysis Grafts after Deployment of Bare Metal versus Covered Stents at the Venous Anastomosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Charles Y., E-mail: charles.kim@duke.edu; Tandberg, Daniel J.; Rosenberg, Michael D.; Miller, Michael J.; Suhocki, Paul V.; Smith, Tony P. [Duke University Medical Center, Division of Vascular and Interventional Radiology (United States)

    2012-08-15

    Purpose: To compare postintervention patency rates after deployment of bare metal versus covered stents across the venous anastomosis of prosthetic arteriovenous (AV) grafts. Methods: Review of our procedural database over a 6 year period revealed 377 procedures involving stent deployment in an AV access circuit. After applying strict inclusion criteria, our study group consisted of 61 stent deployments in 58 patients (median age 58 years, 25 men, 33 women) across the venous anastomosis of an upper extremity AV graft circuit that had never been previously stented. Both patent and thrombosed AV access circuits were retrospectively analyzed. Within the bare metal stent group, 20 of 32 AV grafts were thrombosed at initial presentation compared to 18 of 29 AV grafts in the covered stent group. Results: Thirty-two bare metal stents and 29 covered stents were deployed across the venous anastomosis. The 3, 6, and 12 months primary access patency rates for bare metal stents were not significantly different than for covered stents: 50, 41, and 22 % compared to 59, 52, and 29 %, respectively (p = 0.21). The secondary patency rates were also not significantly different: 78, 78, and 68 % for bare metal stents compared to 76, 69, and 61 % for covered stents, respectively (p = 0.85). However, covered stents demonstrated a higher primary stent patency rate than bare metal stents: 100, 85, and 70 % compared to 75, 67, and 49 % at 3, 6, and 12 months (p < 0.01). Conclusion: The primary and secondary access patency rates after deployment of bare metal versus covered stents at the venous anastomosis were not significantly different. However, bare metal stents developed in-stent stenoses significantly sooner.

  19. Outcomes of Prosthetic Hemodialysis Grafts after Deployment of Bare Metal versus Covered Stents at the Venous Anastomosis

    International Nuclear Information System (INIS)

    Kim, Charles Y.; Tandberg, Daniel J.; Rosenberg, Michael D.; Miller, Michael J.; Suhocki, Paul V.; Smith, Tony P.

    2012-01-01

    Purpose: To compare postintervention patency rates after deployment of bare metal versus covered stents across the venous anastomosis of prosthetic arteriovenous (AV) grafts. Methods: Review of our procedural database over a 6 year period revealed 377 procedures involving stent deployment in an AV access circuit. After applying strict inclusion criteria, our study group consisted of 61 stent deployments in 58 patients (median age 58 years, 25 men, 33 women) across the venous anastomosis of an upper extremity AV graft circuit that had never been previously stented. Both patent and thrombosed AV access circuits were retrospectively analyzed. Within the bare metal stent group, 20 of 32 AV grafts were thrombosed at initial presentation compared to 18 of 29 AV grafts in the covered stent group. Results: Thirty-two bare metal stents and 29 covered stents were deployed across the venous anastomosis. The 3, 6, and 12 months primary access patency rates for bare metal stents were not significantly different than for covered stents: 50, 41, and 22 % compared to 59, 52, and 29 %, respectively (p = 0.21). The secondary patency rates were also not significantly different: 78, 78, and 68 % for bare metal stents compared to 76, 69, and 61 % for covered stents, respectively (p = 0.85). However, covered stents demonstrated a higher primary stent patency rate than bare metal stents: 100, 85, and 70 % compared to 75, 67, and 49 % at 3, 6, and 12 months (p < 0.01). Conclusion: The primary and secondary access patency rates after deployment of bare metal versus covered stents at the venous anastomosis were not significantly different. However, bare metal stents developed in-stent stenoses significantly sooner.

  20. Clinical outcomes with drug-eluting and bare-metal stents in patients with ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Palmerini, Tullio; Biondi-Zoccai, Giuseppe; Della Riva, Diego

    2013-01-01

    The authors investigated the relative safety and efficacy of different drug-eluting stents (DES) and bare metal stents (BMS) in patients with ST-segment elevation myocardial infarction (STEMI) using a network meta-analysis.......The authors investigated the relative safety and efficacy of different drug-eluting stents (DES) and bare metal stents (BMS) in patients with ST-segment elevation myocardial infarction (STEMI) using a network meta-analysis....

  1. Drug-eluting stents versus bare-metal stents for acute coronary syndrome

    DEFF Research Database (Denmark)

    Feinberg, Joshua; Nielsen, Emil Eik; Greenhalgh, Janette

    2017-01-01

    -EXPANDED, and BIOSIS from their inception to January 2017. We also searched two clinical trials registers, the European Medicines Agency and the US Food and Drug Administration databases, and pharmaceutical company websites. In addition, we searched the reference lists of review articles and relevant trials. SELECTION...... CRITERIA: Randomised clinical trials assessing the effects of drug-eluting stents versus bare-metal stents for acute coronary syndrome. We included trials irrespective of publication type, status, date, or language. DATA COLLECTION AND ANALYSIS: We followed our published protocol and the methodological...

  2. Drug-eluting stents and bare metal stents in patients with NSTE-ACS

    DEFF Research Database (Denmark)

    Pedersen, Sune Haahr; Pfisterer, Matthias; Kaiser, Christoph

    2014-01-01

    the randomised BASKET-PROVE trial (sirolimus-eluting stent vs. everolimus-eluting stent vs. bare metal stent in large-vessel stenting). The primary endpoint was the combined two-year rate of cardiovascular death or non-fatal myocardial infarction (MI). Secondary endpoints were each component of the primary...... implantation in large vessels was associated with a reduction in both TVR and the combined endpoint consisting of cardiovascular death/MI. Thus, DES use improves both efficacy and safety. These findings support the use of DES in NSTE-ACS patients....

  3. Safety and efficacy of everolimus-eluting stents for bare-metal in-stent restenosis

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Hideaki [Division of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC 20010 (United States); Mahmoudi, Michael [University of Surrey, Guildford Road, Surrey, GU2-7XH (United Kingdom); Torguson, Rebecca; Satler, Lowell F.; Suddath, William O.; Pichard, Augusto D. [Division of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC 20010 (United States); Waksman, Ron, E-mail: ron.waksman@medstar.net [Division of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC 20010 (United States)

    2015-04-15

    Objective: The aim of this study was to compare the safety and efficacy of the everolimus-eluting stents (EES) with the paclitaxel-eluting stent (PES) and sirolimus-eluting stent (SES) for the treatment of bare-metal in-stent restenosis. Background: The optimal treatment for bare-metal in-stent restenosis remains controversial. Methods: The study cohort comprised 322 consecutive patients (543 lesions) who presented with bare-metal in-stent restenosis to our institution and underwent coronary artery stent implantation with EES (114 patients; 181 lesions), PES (65 patients; 116 lesions) and SES (143 patients; 246 lesions). The analyzed clinical parameters were the 1-year rates of death, Q-wave myocardial infarction (MI), target lesion revascularization (TLR), target vessel revascularization (TVR), definite stent thrombosis (ST) and major adverse cardiac events (MACE) defined as the composite of death, MI, or TLR at 1-year. Results: The three groups were well matched for the conventional risk factors except for age and chronic kidney disease. The 1-year analyzed clinical parameters were similar in the three groups: death (EES = 3.5%, PES = 4.6%, SES = 4.2%; p = 0.94), MI (EES = 3.5%, PES = 6.3%, SES = 2.1%; p = 0.31), TLR (EES = 9.8%, PES = 9.5%, SES = 5.7%; p = 0.42), TVR (EES = 14.3%, PES = 11.1%, SES = 11.3%; p = 0.74), definite ST (EES = 0.9%, PES = 3.1%, SES = 3.5%; p = 0.38) and MACE (EES = 14.0%, PES = 15.4%, SES = 10.5%; p = 0.54). Male gender (hazard ratio = 0.47; 95% confidence interval = 0.25–0.88) and number of treated lesions (hazard ratio = 1.47; 95% confidence interval = 1.06–2.05) were found to be independent predictors of MACE. Conclusion: The results of the present study indicate that EES may provide similar safety and efficacy as first generation DES for the treatment of patients presenting with bare-metal in-stent restenosis.

  4. In-situ investigation of stress conditions during expansion of bare metal stents and PLLA-coated stents using the XRD sin(2)ψ-technique.

    Science.gov (United States)

    Kowalski, Wolfgang; Dammer, Markus; Bakczewitz, Frank; Schmitz, Klaus-Peter; Grabow, Niels; Kessler, Olaf

    2015-09-01

    Drug eluting stents (DES) consist of platform, coating and drug. The platform often is a balloon-expandable bare metal stent made of the CoCr alloy L-605 or stainless steel 316 L. The function of the coating, typically a permanent polymer, is to hold and release the drug, which should improve therapeutic outcome. Before implantation, DES are compressed (crimped) to allow implantation in the human body. During implantation, DES are expanded by balloon inflation. Crimping, as well as expansion, causes high stresses and high strains locally in the DES struts, as well as in the polymer coating. These stresses and strains are important design criteria of DES. Usually, they are calculated numerically by finite element analysis (FEA), but experimental results for validation are hardly available. In this work, the X-ray diffraction (XRD) sin(2)ψ-technique is applied to in-situ determination of stress conditions of bare metal L-605 stents, and Poly-(L-lactide) (PLLA) coated stents. This provides a realistic characterization of the near-surface stress state and a validation option of the numerical FEA. XRD-results from terminal stent struts of the bare metal stent show an increasing compressive load stress in tangential direction with increasing stent expansion. These findings correlate with numerical FEA results. The PLLA-coating also bears increasing compressive load stress during expansion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  6. Thulium fiber laser induced vapor bubbles using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.

  7. Oralloy (93.2 235U) Bare Metal Annuli And Disks

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, Andrew John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A multitude of critical experiments with highly enriched uranium metal were conducted in the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. These experiments served to evaluate the storage, casting, and handling limits for the Y-12 Plant while also providing data for verification of different calculation methods and associated cross-sections for nuclear criticality safety applications. These included both solid cylinders and annuli of various diameters, interacting cylinders of various diameters, parallelepipeds, and reflected cylinders and annuli. The experiments described here involve a series of delayed critical stacks of bare oralloy HEU annuli and disks. Three of these experiments consist of stacking bare HEU annuli of varying diameters to obtain critical configurations. These annuli have nominal inner and outer diameters (ID/OD) including: 7 inches (") ID – 9" OD, 9" ID – 11" OD, 11" ID – 13" OD, and 13? ID – 15" OD. The nominal heights range from 0.125" to 1.5". The three experiments themselves range from 7" – 13", 7" – 15", and 9" – 15" in diameter, respectively. The fourth experiment ranges from 7" – 11", and along with different annuli, it also includes an 11" disk and several 7" diameter disks. All four delayed critical experiments were configured and evaluated by J. T. Mihalczo, J. J. Lynn, and D. E. McCarty from December of 1962 to February 1963 with additional information in their corresponding logbook.

  8. Percutaneous pulmonary valve implantation preceded by routine prestenting with a bare metal stent

    DEFF Research Database (Denmark)

    Demkow, Marcin; Biernacka, Elzbieta Katarzyna; Spiewak, Mateusz

    2011-01-01

    Objectives: To evaluate the effectiveness and safety of percutaneous pulmonary valve implantation (PPVI) with routine prestenting with a bare metal stent (BMS). Background: PPVI is a relatively new method of treating patients with repaired congenital heart disease (CHD). Results of PPVI performed.......6 ± 22.7 to 38.8 ± 10.4 mm Hg on the day following implantation (P = 0.001). At 1-month and 6-month follow-ups, mean RVOT gradient was 34.0 ± 9.8 and 32.0 ± 12.2 mm Hg, respectively. In patients with significant pulmonary regurgitation, mean pulmonary regurgitation fraction decreased from 19% ± 6% to 2...

  9. Long-Term Safety of Drug-Eluting and Bare-Metal Stents

    DEFF Research Database (Denmark)

    Palmerini, Tullio; Benedetto, Umberto; Biondi-Zoccai, Giuseppe

    2015-01-01

    BACKGROUND: Previous meta-analyses have investigated the relative safety and efficacy profiles of different types of drug-eluting stents (DES) and bare-metal stents (BMS); however, most prior trials in these meta-analyses reported follow-up to only 1 year, and as such, the relative long-term safety....... RESULTS: Fifty-one trials that included a total of 52,158 randomized patients with follow-up duration ≥3 years were analyzed. At a median follow-up of 3.8 years, cobalt-chromium everolimus-eluting stents (EES) were associated with lower rates of mortality, definite stent thrombosis (ST), and myocardial...... infarction than BMS, paclitaxel-eluting stents (PES), and sirolimus-eluting stents (SES) and less ST than BES. Phosphorylcholine-based zotarolimus-eluting stents had lower rates of definite ST than SES and lower rates of myocardial infarction than BMS and PES. The late rates of target...

  10. Spectral Analysis Related to Bare-Metal and Drug-Eluting Coronary Stent Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rose Mary Ferreira Lisboa da, E-mail: roselisboa@cardiol.br [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil); Silva, Carlos Augusto Bueno [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil); Belo Horizonte, Hospital São João de Deus, Divinópolis, MG (Brazil); Greco, Otaviano José [Belo Horizonte, Hospital São João de Deus, Divinópolis, MG (Brazil); Moreira, Maria da Consolação Vieira [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil)

    2014-08-15

    The autonomic nervous system plays a central role in cardiovascular regulation; sympathetic activation occurs during myocardial ischemia. To assess the spectral analysis of heart rate variability during stent implantation, comparing the types of stent. This study assessed 61 patients (mean age, 64.0 years; 35 men) with ischemic heart disease and indication for stenting. Stent implantation was performed under Holter monitoring to record the spectral analysis of heart rate variability (Fourier transform), measuring the low-frequency (LF) and high-frequency (HF) components, and the LF/HF ratio before and during the procedure. Bare-metal stent was implanted in 34 patients, while the others received drug-eluting stents. The right coronary artery was approached in 21 patients, the left anterior descending, in 28, and the circumflex, in 9. As compared with the pre-stenting period, all patients showed an increase in LF and HF during stent implantation (658 versus 185 ms2, p = 0.00; 322 versus 121, p = 0.00, respectively), with no change in LF/HF. During stent implantation, LF was 864 ms2 in patients with bare-metal stents, and 398 ms2 in those with drug-eluting stents (p = 0.00). The spectral analysis of heart rate variability showed no association with diabetes mellitus, family history, clinical presentation, beta-blockers, age, and vessel or its segment. Stent implantation resulted in concomitant sympathetic and vagal activations. Diabetes mellitus, use of beta-blockers, and the vessel approached showed no influence on the spectral analysis of heart rate variability. Sympathetic activation was lower during the implantation of drug-eluting stents.

  11. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klain, Kimberly L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set of multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the

  12. Metallurgy - steel and non-ferrous metals

    International Nuclear Information System (INIS)

    Wusatowski, R.

    1999-01-01

    Several actual problems of metallurgy and processing of the chief metals and their alloys, especially of steel, copper, zinc and aluminium were discussed. The thought was given to the problems of: scientific, technical (also the energy consumption of production, the evolution of technology), organizational, economical, even political nature (influence of the state on the development of industry). (author)

  13. Direct comparison of coronary bare metal vs. drug-eluting stents: same platform, different mechanics?

    Science.gov (United States)

    Schmidt, Wolfram; Lanzer, Peter; Behrens, Peter; Brandt-Wunderlich, Christoph; Öner, Alper; Ince, Hüseyin; Schmitz, Klaus-Peter; Grabow, Niels

    2018-01-08

    Drug-eluting stents (DES) compared to bare metal stents (BMS) have shown superior clinical performance, but are considered less suitable in complex cases. Most studies do not distinguish between DES and BMS with respect to their mechanical performance. The objective was to obtain mechanical parameters for direct comparison of BMS and DES. In vitro bench tests evaluated crimped stent profiles, crossability in stenosis models, elastic recoil, bending stiffness (crimped and expanded), and scaffolding properties. The study included five pairs of BMS and DES each with the same stent platforms (all n = 5; PRO-Kinetic Energy, Orsiro: BIOTRONIK AG, Bülach, Switzerland; MULTI-LINK 8, XIENCE Xpedition: Abbott Vascular, Temecula, CA; REBEL Monorail, Promus PREMIER, Boston Scientific, Marlborough, MA; Integrity, Resolute Integrity, Medtronic, Minneapolis, MN; Kaname, Ultimaster: Terumo Corporation, Tokyo, Japan). Statistical analysis used pooled variance t tests for pairwise comparison of BMS with DES. Crimped profiles in BMS groups ranged from 0.97 ± 0.01 mm (PRO-Kinetic Energy) to 1.13 ± 0.01 mm (Kaname) and in DES groups from 1.02 ± 0.01 mm (Orsiro) to 1.13 ± 0.01 mm (Ultimaster). Crossability was best for low profile stent systems. Elastic recoil ranged from 4.07 ± 0.22% (Orsiro) to 5.87 ± 0.54% (REBEL Monorail) including both BMS and DES. The bending stiffness of crimped and expanded stents showed no systematic differences between BMS and DES neither did the scaffolding. Based on in vitro measurements BMS appear superior to DES in some aspects of mechanical performance, yet the differences are small and not class uniform. The data provide assistance in selecting the optimal system for treatment and assessment of new generations of bioresorbable scaffolds. not applicable.

  14. Effects of cobalt-chromium everolimus eluting stents or bare metal stent on fatal and non-fatal cardiovascular events

    DEFF Research Database (Denmark)

    Valgimigli, Marco; Sabaté, Manel; Kaiser, Christoph

    2014-01-01

    eluting stents with bare metal stents were selected. The principal investigators whose trials met the inclusion criteria provided data for individual patients. PRIMARY OUTCOMES: The primary outcome was cardiac mortality. Secondary endpoints were myocardial infarction, definite stent thrombosis, definite...... a significant reduction of cardiac mortality (hazard ratio 0.67, 95% confidence interval 0.49 to 0.91; P=0.01), myocardial infarction (0.71, 0.55 to 0.92; P=0.01), definite stent thrombosis (0.41, 0.22 to 0.76; P=0.005), definite or probable stent thrombosis (0.48, 0.31 to 0.73; P... coronary syndrome v stable coronary artery disease), diabetes mellitus, female sex, use of glycoprotein IIb/IIIa inhibitors, and up to one year v longer duration treatment with dual antiplatelets. CONCLUSIONS: This meta-analysis offers evidence that compared with bare metal stents the use of cobalt...

  15. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis.

    Science.gov (United States)

    Palmerini, Tullio; Biondi-Zoccai, Giuseppe; Della Riva, Diego; Stettler, Christoph; Sangiorgi, Diego; D'Ascenzo, Fabrizio; Kimura, Takeshi; Briguori, Carlo; Sabatè, Manel; Kim, Hyo-Soo; De Waha, Antoinette; Kedhi, Elvin; Smits, Pieter C; Kaiser, Christoph; Sardella, Gennaro; Marullo, Antonino; Kirtane, Ajay J; Leon, Martin B; Stone, Gregg W

    2012-04-14

    The relative safety of drug-eluting stents and bare-metal stents, especially with respect to stent thrombosis, continues to be debated. In view of the overall low frequency of stent thrombosis, large sample sizes are needed to accurately estimate treatment differences between stents. We compared the risk of thrombosis between bare-metal and drug-eluting stents. For this network meta-analysis, randomised controlled trials comparing different drug-eluting stents or drug-eluting with bare-metal stents currently approved in the USA were identified through Medline, Embase, Cochrane databases, and proceedings of international meetings. Information about study design, inclusion and exclusion criteria, sample characteristics, and clinical outcomes was extracted. 49 trials including 50,844 patients randomly assigned to treatment groups were analysed. 1-year definite stent thrombosis was significantly lower with cobalt-chromium everolimus eluting stents (CoCr-EES) than with bare-metal stents (odds ratio [OR] 0·23, 95% CI 0·13-0·41). The significant difference in stent thrombosis between CoCr-EES and bare-metal stents was evident as early as 30 days (OR 0·21, 95% CI 0·11-0·42) and was also significant between 31 days and 1 year (OR 0·27, 95% CI 0·08-0·74). CoCr-EES were also associated with significantly lower rates of 1-year definite stent thrombosis compared with paclitaxel-eluting stents (OR 0·28, 95% CI 0·16-0·48), permanent polymer-based sirolimus-eluting stents (OR 0·41, 95% CI 0·24-0·70), phosphorylcholine-based zotarolimus-eluting stents (OR 0·21, 95% CI 0·10-0·44), and Resolute zotarolimus-eluting stents (OR 0·14, 95% CI 0·03-0·47). At 2-year follow-up, CoCr-EES were still associated with significantly lower rates of definite stent thrombosis than were bare-metal (OR 0·35, 95% CI 0·17-0·69) and paclitaxel-eluting stents (OR 0·34, 95% CI 0·19-0·62). No other drug-eluting stent had lower definite thrombosis rates compared with bare-metal

  16. Cost-effectiveness of drug-eluting stents versus bare-metal stents in patients undergoing percutaneous coronary intervention

    OpenAIRE

    Baschet, Louise; Bourguignon, Sandrine; Marque, S?bastien; Durand-Zaleski, Isabelle; Teiger, Emmanuel; Wilquin, Fanny; Levesque, Karine

    2016-01-01

    Objective To determine the cost-effectiveness of drug-eluting stents (DES) compared with bare-metal stents (BMS) in patients requiring a percutaneous coronary intervention in France, using a recent meta-analysis including second-generation DES. Methods A cost-effectiveness analysis was performed in the French National Health Insurance setting. Effectiveness settings were taken from a meta-analysis of 117?762 patient-years with 76 randomised trials. The main effectiveness criterion was major c...

  17. Improved two-year outcomes after drug-eluting versus bare-metal stent implantation in women and men with large coronary arteries

    DEFF Research Database (Denmark)

    Hansen, K W; Kaiser, C; Hvelplund, A

    2013-01-01

    To investigate the importance of vessel size on outcome differences by comparing the effects of drug-eluting stents (DES) versus bare-metal stents (BMS) in women and men with large coronary vessels.......To investigate the importance of vessel size on outcome differences by comparing the effects of drug-eluting stents (DES) versus bare-metal stents (BMS) in women and men with large coronary vessels....

  18. Effect of biolimus-eluting stents with biodegradable polymer vs bare-metal stents on cardiovascular events among patients with acute myocardial infarction

    DEFF Research Database (Denmark)

    Räber, Lorenz; Kelbæk, Henning; Ostojic, Miodrag

    2012-01-01

    The efficacy and safety of drug-eluting stents compared with bare-metal stents remains controversial in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI).......The efficacy and safety of drug-eluting stents compared with bare-metal stents remains controversial in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI)....

  19. Long-term outcome after drug-eluting versus bare-metal stent implantation in patients with ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Holmvang, Lene; Kelbæk, Henning; Kaltoft, Anne Kjer

    2013-01-01

    This study sought to compare the long-term effects of drug-eluting stent (DES) compared with bare-metal stent (BMS) implantation in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention.......This study sought to compare the long-term effects of drug-eluting stent (DES) compared with bare-metal stent (BMS) implantation in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention....

  20. Stent implantation into the tracheo-bronchial system in rabbits: histopathologic sequelae in bare metal vs. drug-eluting stents.

    Science.gov (United States)

    Sigler, Matthias; Klötzer, Julia; Quentin, Thomas; Paul, Thomas; Möller, Oliver

    2015-12-01

    Stent implantation into the tracheo-bronchial system may be life-saving in selected pediatric patients with otherwise intractable stenosis of the upper airways. Following implantation, significant tissue proliferation may occur, requiring re-interventions. We sought to evaluate the effect of immunosuppressive coating of the stents on the extent of tissue proliferation in an animal model. Bare metal and sirolimus-coated stents (Bx Sonic and Cypher Select, Johnson & Johnson, Cordis) were implanted into non-stenotic lower airways of New Zealand white rabbits (weight 3.1 to 4.8 kg). Three stents with sirolimus coating and six bare metal stents could be analyzed by means of histology and immunohistochemistry 12 months after implantation. On a macroscopic evaluation, all stents were partially covered with a considerable amount of whitish tissue. Histologically, these proliferations contained fiber-rich connective tissue and some fibromuscular cells without significant differences between both stent types. The superficial tissue layer was formed by typical respiratory epithelium and polygonal cells. Abundant lymphocyte infiltrations and moderate granulocyte infiltrations were found in both groups correspondingly, whereas foreign-body reaction was more pronounced around sirolimus-eluting stents. After stent implantation in the tracheo-bronchial system of rabbits, we found tissue reactions comparable to those seen after stent implantation into the vascular system. There was no difference between coated and uncoated stents with regard to quality and quantity of tissue proliferation. We found, however, a significantly different inflammatory reaction with a more pronounced foreign-body reaction in sirolimus-coated stents. In our small series, drug-eluting stents did not exhibit any benefit over bare metal stents in an experimental setting.

  1. Successful treatment of coronary artery pseudoaneurysm by graft stent, which developed after the implantation of bare metal stent

    Directory of Open Access Journals (Sweden)

    Utku Şenol

    2013-03-01

    Full Text Available Although coronary artery pseudoaneurysm which couldoccur following percutaneous coronary interventions is arare complication, it can be mortal. As soon as the pseudoaneurysmis diagnosed, it should be treated by percutaneousintervention or surgery. Graft stent implantationis a preferred treatment for appropriate patients. In thiscase report, we presented a successful treatment of coronaryartery pseudoaneurysm by graft stent; which developedafter the implantation of bare metal stent into theleft anterior descending coronary artery. J Clin Exp Invest2013; 4 (1: 126-129Key words: Coronary artery, pseudoaneurysm, graft stent

  2. Metal dusting of low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Grabke, H.J. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)); Bracho-Troconis, C.B. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)); Mueller-Lorenz, E.M. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany))

    1994-04-01

    The metal dusting of two low alloy steels was investigated at 475 C in flowing CO-H[sub 2]-H[sub 2]O mixtures at atmospheric pressure with a[sub C] > 1. The reaction sequence comprises: (1) oversaturation with C, formation of cementite and its decomposition to metal particles and carbon, and (2) additional carbon deposition on the metal particles from the atmosphere. The metal wastage rate r[sub 1] was determined by analysis of the corrosion product after exposures, this rate is constant with time and virtually independent of the environment. The carbon deposition from the atmosphere was determined by thermogravimetry, its rate r[sub 2] increases linearly with time, which can be explained by the catalytic action of the metal particles - periodic changes are superposed. The rate of carbon deposition r[sub 2] is proportional to the carbon activity in the atmosphere. The metal dusting could not be suppressed by increasing the oxygen activity or preoxidation, even if magnetite should be stable. Addition of H[sub 2]S, however, effectively suppresses the attack. (orig.)

  3. Are drug-coated balloons cost effective for femoropopliteal occlusive disease? A comparison of bare metal stents and uncoated balloons.

    Science.gov (United States)

    Poder, Thomas G; Fisette, Jean-François

    2016-07-01

    To perform a cost-effectiveness analysis to help hospital decision-makers with regard to the use of drug-coated balloons compared with bare metal stents and uncoated balloons for femoropopliteal occlusive disease. Clinical outcomes were extracted from the results of meta-analyses already published, and cost units are those used in the Quebec healthcare network. The literature review was limited to the last four years to obtain the most recent data. The cost-effectiveness analysis was based on a 2-year perspective, and risk factors of reintervention were considered. The cost-effectiveness analysis indicated that drug-coated balloons were generally more efficient than bare metal stents, particularly for patients with higher risk of reintervention (up to CAD$1686 per patient TASC II C or D). Compared with uncoated balloons, results indicated that drug-coated balloons were more efficient if the reintervention rate associated with uncoated balloons is very high and for patients with higher risk of reintervention (up to CAD$3301 per patient). The higher a patient's risk of reintervention, the higher the savings associated with the use of a drug-coated balloon will be. For patients at lower risk, the uncoated balloon strategy is still recommended as a first choice for endovascular intervention.

  4. Comparison of shape memory polymer foam versus bare metal coil treatments in an in vivo porcine sidewall aneurysm model.

    Science.gov (United States)

    Horn, John; Hwang, Wonjun; Jessen, Staci L; Keller, Brandis K; Miller, Matthew W; Tuzun, Egemen; Hartman, Jonathan; Clubb, Fred J; Maitland, Duncan J

    2017-10-01

    The endovascular delivery of platinum alloy bare metal coils has been widely adapted to treat intracranial aneurysms. Despite the widespread clinical use of this technique, numerous suboptimal outcomes are possible. These may include chronic inflammation, low volume filling, coil compaction, and recanalization, all of which can lead to aneurysm recurrence, need for retreatment, and/or potential rupture. This study evaluates a treatment alternative in which polyurethane shape memory polymer (SMP) foam is used as an embolic aneurysm filler. The performance of this treatment method was compared to that of bare metal coils in a head-to-head in vivo study utilizing a porcine vein pouch aneurysm model. After 90 and 180 days post-treatment, gross and histological observations were used to assess aneurysm healing. At 90 days, the foam-treated aneurysms were at an advanced stage of healing compared to the coil-treated aneurysms and showed no signs of chronic inflammation. At 180 days, the foam-treated aneurysms exhibited an 89-93% reduction in cross-sectional area; whereas coiled aneurysms displayed an 18-34% area reduction. The superior healing in the foam-treated aneurysms at earlier stages suggests that SMP foam may be a viable alternative to current treatment methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1892-1905, 2017. © 2016 Wiley Periodicals, Inc.

  5. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    International Nuclear Information System (INIS)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-01-01

    An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  6. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    Science.gov (United States)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-07-01

    An extension of the point kinetics model is developed to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. The spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  7. Stent thrombosis, myocardial infarction, and death after drug-eluting and bare-metal stent coronary interventions

    DEFF Research Database (Denmark)

    Jensen, Lisette Okkels; Maeng, Michael; Kaltoft, Anne

    2007-01-01

    OBJECTIVES: The aim of the study was to examine outcomes subsequent to implantation of drug-eluting stents (DES) and bare-metal stents (BMS). BACKGROUND: Use of DES might be associated with increased risk of stent thrombosis (ST), myocardial infarction (MI), and death. METHODS: From January 2002...... through June 2005, data from all percutaneous coronary interventions in western Denmark were prospectively recorded in the Western Denmark Heart Registry; 12,395 consecutive patients (17,152 lesions) treated with stent implantation were followed for 15 months. Data on death and MI were ascertained from...... within 15 months after implantation of DES seems unlikely to outweigh the benefit of these stents. Udgivelsesdato: 2007-Jul-31...

  8. Influence of a pressure gradient distal to implanted bare-metal stent on in-stent restenosis after percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Jensen, Lisette Okkels; Thayssen, Per; Thuesen, Leif

    2007-01-01

    pullback recording in the entire length of the artery. METHODS AND RESULTS: In 98 patients with angina pectoris, 1 de novo coronary lesion was treated with a bare-metal stent. After stent implantation, pressure wire measurements (P(d)=mean hyperemic coronary pressure and P(a)=mean aortic pressure) were......-stent restenosis after 9 months. CONCLUSIONS: A residual abnormal P(d)/P(a) distal to a bare-metal stent was an independent predictor of in-stent restenosis after implantation of a coronary bare-metal stent. Udgivelsesdato: 2007-Dec-11......BACKGROUND: Fractional flow reserve predicts cardiac events after coronary stent implantation. The aim of the present study was to assess the 9-month angiographic in-stent restenosis rate in the setting of optimal stenting and a persisting gradient distal to the stent as assessed by a pressure wire...

  9. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  10. Restenosis in coronary bare metal stents. Importance of time to follow-up: a comparison of coronary angiograms 6 months and 4 years after implantation

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Helqvist, Steffen; Kløvgaard, Lene

    2008-01-01

    Objectives. Angiographic late lumen loss measured 6 to 9 month after bare metal stent implantation in the coronary arteries is a validated restenosis parameter. Design. We performed a second angiographic follow-up after 4 years in event free survivors from the DANSTENT trial cohort. Results......-sectional vessel area and a 39% reduction of the binary restenosis rate over time. Conclusions. Instent late lumen loss in bare metal stents decreases spontaneously over time. Maturation of early hyperplastic tissue reaction after stent implantation with subsequent thinning of fibrotic tissue might explain...

  11. The fracture toughness of Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Picker, C.

    This paper describes the results of fracture toughness tests on Type 316 steel and Manual Metal Arc (MMA) weld metal over a range of temperatures from 20 deg. C to 550 deg. C, and includes the effects on toughness of specimen size, post weld heat treatment and thermal ageing. The conclusions reached are that Type 316 steel possesses a superior toughness to the weld metal in the as-welded or stress relieved conditions but the toughness of the steel is degraded to a level similar to that of the weld metal following thermal ageing at temperatures over 600 deg. C. Relatively short term thermal ageing in the temperature range 370 deg. C to 450 deg. C does not appear to affect the toughness of either Type 316 steel or weld metal. (author)

  12. Marble waste and pig manure amendments decrease metal availability, increase soil quality and facilitate vegetation development in bare mine soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Martínez-Martínez, Silvia; Acosta, José A.; Gómez, M. Dolores; Ángeles Muñoz, M.

    2013-04-01

    In order to bring out a functional and sustainable land use in a highly contaminated mine tailing, firstly environmental risks have to be reduced or eliminated by suitable reclamation activities. Tailing ponds pose environmental hazards, such as acidity and toxic metals reaching to waters through wind and water erosions and leaching. As a consequence, soils have no vegetation and low soil organic matter and nutrients. Various physicochemical and biochemical properties, together with exchangeable metals were measured before, 6 months and 12 months after the application of marble waste and pigs manure as reclamation strategy in a tailing pond from SE Spain to reduce hazards for environment and human health. Three months after the last addition of amendments, eight different native shrub species where planted for phytostabilization. Results showed the pH increased up to neutrality. Aggregates stability, organic carbon, total nitrogen, cation exchange capacity, bioavailable phosphorus and potassium, microbial biomass and microbial activity increased with the application of the amendments, while exchangeable metals drastically decreased (~90%). After one year of plantation, only 20% planted species died, with a high growth of survivals reaching flowering and fructification. This study confirms the high effectiveness of initial applications of marble wastes together with pig manure and plantation of shrub species to initialize the recovery of the ecosystem in bare mine soils under Mediterranean semiarid conditions. Key Words: pig manure, marble waste, heavy metals, mine soil. Acknowledgements This work has been funded by the European Union LIFE+ project MIPOLARE (LIFE09 ENV/ES/000439). J.A. Acosta acknowledges a "Saavedra Fajardo" contract from Comunidad Autónoma de Murcia (Spain)

  13. Orsphere: Physics Measurments For Bare, HEU(93.2)-Metal Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); White, Christine E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dyrda, James P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tancock, Nigel P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.

  14. Second generation drug-eluting stents versus bare-metal stents for percutaneous coronary intervention of the proximal left anterior descending artery

    DEFF Research Database (Denmark)

    Mangione, Fernanda Marinho; Biering-Sørensen, Tor; Nochioka, Kotaro

    2017-01-01

    OBJECTIVES: To compare mid-term outcomes between patients undergoing proximal left anterior descending artery (LAD) percutaneous coronary intervention (PCI) with second generation drug-eluting stent (DES) or bare-metal stent (BMS). BACKGROUND: PCI with BMS and first-generation DES have shown to b...

  15. Intravascular ultrasound assessed incomplete stent apposition and stent fracture in stent thrombosis after bare metal versus drug-eluting stent treatment the Nordic Intravascular Ultrasound Study (NIVUS)

    DEFF Research Database (Denmark)

    Kosonen, Petteri; Vikman, Saila; Jensen, Lisette Okkels

    2012-01-01

    This prospective multicenter registry used intravascular ultrasound (IVUS) in patients with definite stent thrombosis (ST) to compare rates of incomplete stent apposition (ISA), stent fracture and stent expansion in patients treated with drug-eluting (DES) versus bare metal (BMS) stents. ST...... is a rare, but potential life threatening event after coronary stent implantation. The etiology seems to be multifactorial....

  16. Comparison between the STENTYS self-apposing bare metal and paclitaxel-eluting coronary stents for the treatment of saphenous vein grafts (ADEPT trial)

    NARCIS (Netherlands)

    A.J.J. IJsselmuiden (Alexander); C. Simsek (Cihan); Van Driel, A.G. (A. G.); Bouchez, D. (D.); G. Amoroso (Giovanni); P. Vermeersch (Paul); Karjalainen, P.P. (P. P.)

    2018-01-01

    textabstractAims To describe the safety and performance of STENTYS self-expandable bare metal stents (BMS) versus paclitaxel-eluting stents (PES) in saphenous vein grafts (SVGs). Methods and Results A randomised controlled trial was performed in four hospitals in three European countries between

  17. Stent malapposition, as a potential mechanism of very late stent thrombosis after bare-metal stent implantation: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Higuma, Takumi, E-mail: higuma@cc.hirosaki-u.ac.jp; Abe, Naoki; Hanada, Kenji; Yokoyama, Hiroaki; Tomita, Hirofumi; Okumura, Ken

    2014-04-15

    A 90-year-old man was admitted to our hospital with acute ST-segment elevation myocardial infarction. He had a history of post-infarction angina pectoris 79 months ago and had a bare-metal stent (BMS) implanted in the proximal left anterior descending artery at our hospital. Emergent coronary angiography demonstrated thrombotic occlusion in the previously stented segment. After catheter thrombectomy, antegrade flow was restored, but 90% stenosis with haziness persisted in the proximal and distal portions of the previously stented segment. Intravascular ultrasound imaging showed interstrut cavities or stent malapposition at the proximal and distal sites of stented segment. In close proximity to the sites, residual thrombi were also observed. Optical coherence tomography (OCT) demonstrated neither lipid-laden neointimal tissue nor rupture but clearly demonstrated residual thrombus adjacent to the malapposed region in addition to the stent malapposition. PCI with balloon was successfully performed and stent apposition was confirmed by OCT. Stent malapposition is an unusual mechanism of very late stent thrombosis after BMS implantation. OCT can clearly reveal the etiology of stent thrombosis.

  18. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  19. Physical characterization of steel and stainless steel metal powders

    International Nuclear Information System (INIS)

    Lavilla, A.O.; Lucchesi, C.G.; Sandin, O.O.

    1991-01-01

    A methodology has been developed for the physical characterization of steel powders (obtained by atomization) for later sintering and for the construction of porous sheets and filtrating tubes, capable of operating at temperatures between 600 deg C and 800 deg C in corrosive atmospheres. This methodology was based on the equipment and methods used for the physical characterization of uranium oxide powders. (Author) [es

  20. The stress rupture properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    Elevated temperature stress rupture data on Mo containing and Mo free austenitic weld metals have been collected from French, Dutch, German and UK sources and the results analysed. The stress rupture strength of Mo containing weld metal is significantly higher than that of Mo free weld metal. At 10,000h the rupture strength of Mo containing weld metal is higher than that of Type 316 steel whereas the Mo free weld metal is about 20% lower than that of Type 304 steel. Austenitic weld metal can give low stress rupture ductility values. It is concluded that there are insufficient data to permit reliable extrapolations to long times and it is recommended that long term tests are performed to overcome this situation

  1. Transjugular Insertion of Bare-Metal Biliary Stent for the Treatment of Distal Malignant Obstructive Jaundice Complicated by Coagulopathy

    International Nuclear Information System (INIS)

    Tsauo Jiaywei; Li Xiao; Li Hongcui; Wei Bo; Luo Xuefeng; Zhang Chunle; Tang Chengwei; Wang Weiping

    2013-01-01

    This study was designed to investigate retrospectively the feasibility of transjugular insertion of biliary stent (TIBS) for the treatment of distal malignant obstructive jaundice complicated by coagulopathy. Between April 2005 and May 2010, six patients with distal malignant obstructive jaundice associated with coagulopathy that was unable to be corrected underwent TIBS at our institution for the palliation of jaundice. Patients’ medical record and imaging results were reviewed to obtain information about demographics, procedure details, complications, and clinical outcomes. The intrahepatic biliary tract was successfully accessed in all six patients via transjugular approach. The procedure was technically successfully in five of six patients, with a bare-metal stent implanted after traversing the biliary strictures. One procedure failed, because the guidewire could not traverse the biliary occlusion. One week after TIBS, the mean serum bilirubin in the five successful cases had decreased from 313 μmol/L (range 203.4–369.3) to 146.2 μmol/L (range 95.8–223.3) and had further decreased to 103.6 μmol/L (range 29.5–240.9) at 1 month after the procedure. No bleeding, sepsis, or other major complications were observed after the procedure. The mean survival of these five patients was 4.5 months (range 1.9–5.8). On imaging follow-up, there was no evidence of stent stenosis or migration, with 100 % primary patency. When the risks of hemorrhage from percutaneous transhepatic cholangiodrainage are high, TIBS may be an effective alternative for the treatment of distal malignant obstructive jaundice.

  2. Transjugular Insertion of Bare-Metal Biliary Stent for the Treatment of Distal Malignant Obstructive Jaundice Complicated by Coagulopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsauo Jiaywei, E-mail: 80732059@qq.com; Li Xiao, E-mail: simonlixiao@gmail.com; Li Hongcui, E-mail: lihongcui520@126.com; Wei Bo, E-mail: allyooking@tom.com; Luo Xuefeng, E-mail: luobo_913@126.com; Zhang Chunle, E-mail: sugar139000@163.com; Tang Chengwei, E-mail: 20378375@qq.com [West China Hospital of Sichuan University, Department of Gastroenterology and Hepatology (China); Wang Weiping, E-mail: irjournalclub@gmail.com [Section of Interventional Radiology, Cleveland Clinic, Imaging Institute (United States)

    2013-04-15

    This study was designed to investigate retrospectively the feasibility of transjugular insertion of biliary stent (TIBS) for the treatment of distal malignant obstructive jaundice complicated by coagulopathy. Between April 2005 and May 2010, six patients with distal malignant obstructive jaundice associated with coagulopathy that was unable to be corrected underwent TIBS at our institution for the palliation of jaundice. Patients' medical record and imaging results were reviewed to obtain information about demographics, procedure details, complications, and clinical outcomes. The intrahepatic biliary tract was successfully accessed in all six patients via transjugular approach. The procedure was technically successfully in five of six patients, with a bare-metal stent implanted after traversing the biliary strictures. One procedure failed, because the guidewire could not traverse the biliary occlusion. One week after TIBS, the mean serum bilirubin in the five successful cases had decreased from 313 {mu}mol/L (range 203.4-369.3) to 146.2 {mu}mol/L (range 95.8-223.3) and had further decreased to 103.6 {mu}mol/L (range 29.5-240.9) at 1 month after the procedure. No bleeding, sepsis, or other major complications were observed after the procedure. The mean survival of these five patients was 4.5 months (range 1.9-5.8). On imaging follow-up, there was no evidence of stent stenosis or migration, with 100 % primary patency. When the risks of hemorrhage from percutaneous transhepatic cholangiodrainage are high, TIBS may be an effective alternative for the treatment of distal malignant obstructive jaundice.

  3. The effects of dextromethorphan on the outcome of percutaneous coronary intervention with bare-metal stent implantation

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Liu

    2018-01-01

    Full Text Available Background: In the era of drug-eluting stents, although bare-metal stent (BMS remains an option for percutaneous coronary intervention (PCI, restenosis remains the Achilles' heel of BMS implantation. A recent study demonstrated several pleiotropic anti-inflammatory effects of dextromethorphan (DXM. This study aims to evaluate the effects of DXM on the outcome of PCI with BMS implantation.Methods: In this prospective, double-blind, randomized trial, we enrolled 55 patients who underwent PCI with BMS implantation from May 2006 to February 2009. The patients were divided into DXM (60 mg once daily and placebo groups. We compared mortality rates, myocardial infarction (MI, target lesion revascularization (TLR, restenosis, stent thrombosis, and plasma levels of high-sensitivity C-reactive protein (hs-CRP with repeated coronary angiography 6 months after the initial procedure.Results: During the 6-month follow-up period, no events of death, MI and stent thrombosis were reported in both groups. The TLR rate was 16.7% in patients receiving DXM compared to 24% receiving a placebo (P = 0.521. The restenosis rate was 30% in patients receiving DXM as compared to 40% receiving the placebo (P = 0.571. Although nonsignificant, the percentage of hs-CRP elevation was lower in the DXM group (20% compared to the placebo group 32%; P = 0.363.Conclusions: DXM is safe to use in patients who underwent PCI. Although DXM therapy following BMS implantation did not significantly reduce the TLR and restenosis rates, it implied a trend toward a lower TLR and restenosis and reduced inflammation in the DXM group compared to the placebo group. Nonetheless, further extensive studies are warranted to elucidate the anti-restenosis effects of DXM.

  4. IVUS Findings in Late and Very Late Stent Thrombosis. A Comparison Between Bare-metal and Drug-eluting Stents.

    Science.gov (United States)

    Fuentes, Lara; Gómez-Lara, Josep; Salvatella, Neus; Gonzalo, Nieves; Hernández-Hernández, Felipe; Fernández-Nofrerias, Eduard; Sánchez-Recalde, Ángel; Alfonso, Fernando; Romaguera, Rafael; Ferreiro, José Luis; Roura, Gerard; Teruel, Luis; Gracida, Montserrat; Marcano, Ana Lucrecia; Gómez-Hospital, Joan-Antoni; Cequier, Ángel

    2018-05-01

    Stent thrombosis (ST) is a life-threatening complication after stent implantation. Intravascular ultrasound is able to discern most causes of ST. The aim of this study was to compare intravascular ultrasound findings between bare-metal stents (BMS) and drug-eluting stents (DES) in patients with late (31 days to 1 year) or very late ST (> 1 year). Of 250 consecutive patients with late or very late ST in 7 Spanish institutions, 114 patients (45.5% BMS and 54.5% DES) were imaged with intravascular ultrasound. Off-line intravascular ultrasound analysis was performed to assess malapposition, underexpansion, and neoatherosclerosis. The median time from stent implantation to ST was 4.0 years with BMS and 3.4 years with DES (P = .04). Isolated malapposition was similarly observed in both groups (36.5% vs 46.8%; P = .18) but was numerically lower with BMS (26.6% vs 48.0%; P = .07) in patients with very late ST. Isolated underexpansion was similarly observed in both groups (13.5% vs 11.3%; P = .47). Isolated neoatherosclerosis occurred only in patients with very late ST and was more prevalent with BMS (22.9%) than with DES (6.0%); P = .02. At 2.9 years' follow-up, there were 0% and 6.9% cardiac deaths, respectively (P = .06) and recurrent ST occurred in 4.0% and 5.2% of patients, respectively (P = .60). Malapposition was the most common finding in patients with late and very late ST and is more prevalent with DES in very late ST. In contrast, neoatherosclerosis was exclusively observed in patients with very late ST and mainly with BMS. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Cost-effectiveness of drug-eluting stents versus bare-metal stents in patients undergoing percutaneous coronary intervention.

    Science.gov (United States)

    Baschet, Louise; Bourguignon, Sandrine; Marque, Sébastien; Durand-Zaleski, Isabelle; Teiger, Emmanuel; Wilquin, Fanny; Levesque, Karine

    2016-01-01

    To determine the cost-effectiveness of drug-eluting stents (DES) compared with bare-metal stents (BMS) in patients requiring a percutaneous coronary intervention in France, using a recent meta-analysis including second-generation DES. A cost-effectiveness analysis was performed in the French National Health Insurance setting. Effectiveness settings were taken from a meta-analysis of 117 762 patient-years with 76 randomised trials. The main effectiveness criterion was major cardiac event-free survival. Effectiveness and costs were modelled over a 5-year horizon using a three-state Markov model. Incremental cost-effectiveness ratios and a cost-effectiveness acceptability curve were calculated for a range of thresholds for willingness to pay per year without major cardiac event gain. Deterministic and probabilistic sensitivity analyses were performed. Base case results demonstrated that DES are dominant over BMS, with an increase in event-free survival and a cost-reduction of €184, primarily due to a diminution of second revascularisations, and an absence of myocardial infarction and stent thrombosis. These results are robust for uncertainty on one-way deterministic and probabilistic sensitivity analyses. Using a cost-effectiveness threshold of €7000 per major cardiac event-free year gained, DES has a >95% probability of being cost-effective versus BMS. Following DES price decrease, new-generation DES development and taking into account recent meta-analyses results, the DES can now be considered cost-effective regardless of selective indication in France, according to European recommendations.

  6. Wear properties of metal ion implanted 4140 steel

    International Nuclear Information System (INIS)

    Evans, P.J.; Paoloni, F.J.

    1994-01-01

    AISI type 4140 (high tensile) steel has been implanted with tungsten and titanium using a metal vapour vacuum arc ion source. Doses in the range (1-5)x10 16 ionscm -2 were implanted to a depth of approximately 30nm. The relative wear resistance between non-implanted and implanted specimens has been estimated using pin-on-disc and abrasive wear tests. Implantation of titanium decreased the area of wear tracks by a factor of 5 over unimplanted steel. In some cases the steel was also hardened by a liquid carburization treatment before implantation. Abrasion tests revealed a further improvement in wear resistance on this material following ion irradiation. ((orig.))

  7. Effects of cobalt-chromium everolimus eluting stents or bare metal stent on fatal and non-fatal cardiovascular events: patient level meta-analysis.

    Science.gov (United States)

    Valgimigli, Marco; Sabaté, Manel; Kaiser, Christoph; Brugaletta, Salvatore; de la Torre Hernandez, Jose Maria; Galatius, Soeren; Cequier, Angel; Eberli, Franz; de Belder, Adam; Serruys, Patrick W; Ferrante, Giuseppe

    2014-11-04

    To examine the safety and effectiveness of cobalt-chromium everolimus eluting stents compared with bare metal stents. Individual patient data meta-analysis of randomised controlled trials. Cox proportional regression models stratified by trial, containing random effects, were used to assess the impact of stent type on outcomes. Hazard ratios with 95% confidence interval for outcomes were reported. Medline, Embase, the Cochrane Central Register of Controlled Trials. Randomised controlled trials that compared cobalt-chromium everolimus eluting stents with bare metal stents were selected. The principal investigators whose trials met the inclusion criteria provided data for individual patients. The primary outcome was cardiac mortality. Secondary endpoints were myocardial infarction, definite stent thrombosis, definite or probable stent thrombosis, target vessel revascularisation, and all cause death. The search yielded five randomised controlled trials, comprising 4896 participants. Compared with patients receiving bare metal stents, participants receiving cobalt-chromium everolimus eluting stents had a significant reduction of cardiac mortality (hazard ratio 0.67, 95% confidence interval 0.49 to 0.91; P=0.01), myocardial infarction (0.71, 0.55 to 0.92; P=0.01), definite stent thrombosis (0.41, 0.22 to 0.76; P=0.005), definite or probable stent thrombosis (0.48, 0.31 to 0.73; Pstents the use of cobalt-chromium everolimus eluting stents improves global cardiovascular outcomes including cardiac survival, myocardial infarction, and overall stent thrombosis. © Valgimigli et al 2014.

  8. Finishes for Metals. Paintability of Galvanized Steel, Corrosion Resistance of Metallized Coatings.

    Science.gov (United States)

    Building Research Inst., Inc., Washington, DC.

    Two papers are presented. The first, "Report of the AISI Research Project on the Paintability of Galvanized Steel," was a project aimed at determining optimum procedures for painting bright-spangled galvanized sheet steel products using three classes of trade sales paints--metallic zinc-dust, portland cement-in-oil, and water base emulsion paints.…

  9. Prospective, multi-center evaluation of a silicon carbide coated cobalt chromium bare metal stent for percutaneous coronary interventions: Two-year results of the ENERGY Registry

    International Nuclear Information System (INIS)

    Erbel, Raimund; Eggebrecht, Holger; Roguin, Ariel; Schroeder, Erwin; Philipp, Sebastian; Heitzer, Thomas; Schwacke, Harald; Ayzenberg, Oded; Serra, Antonio; Delarche, Nicolas; Luchner, Andreas; Slagboom, Ton

    2014-01-01

    Background: Novel bare metal stents with improved stent design may become a viable alternative to drug-eluting stents in certain patient groups, particularly, when long-term dual antiplatelet therapy should be avoided. Purpose: The ENERGY registry aimed to assess the safety and benefits of a cobalt–chromium thin strut bare metal stent with a passive coating in a large series of patients under real-world conditions. Methods and materials: This prospective registry recruited 1016 patients with 1074 lesions in 48 centers from April to November 2010. The primary endpoint was the rate of major adverse cardiac events (MACEs), a composite of cardiac death, myocardial infarction and clinically driven target lesion revascularization. Results: More than half of the lesions (61.0%) were type A/B1 lesions, mean lesion length was 14.5 ± 6.5 mm and mean reference vessel diameter 3.2 ± 0.5 mm. MACE rates at 6, 12 and 24 months were 4.9%, 8.1% and 9.4%, target lesion revascularization rates 2.8%, 4.9% and 5.4% and definite stent thrombosis rates 0.5%, 0.6% and 0.6%. Subgroups showed significant differences in baseline and procedural characteristics which did not translate into significantly different clinical outcomes. Specifically, MACE rates at 24 months were 13.5% in diabetics, 8.6% in small stents and 9.6% in acute coronary syndrome patients. Conclusion: The population of ENERGY reflects real-world conditions with bare metal stents being mainly used in simple lesions. In this setting, percutaneous coronary intervention using a cobalt–chromium thin strut bare metal stent with a passive coating showed very good results up to 24 months. (ClinicalTrials.gov:NCT01056120) Summary for annotated table of contents: The ENERGY international registry evaluated the safety and benefits of a cobalt–chromium thin strut bare metal stent with passive coating in 1016 patients under real-world conditions until 2 years. Results were encouraging with a low composite rate of cardiac death

  10. Prospective, multi-center evaluation of a silicon carbide coated cobalt chromium bare metal stent for percutaneous coronary interventions: Two-year results of the ENERGY Registry

    Energy Technology Data Exchange (ETDEWEB)

    Erbel, Raimund, E-mail: erbel@uk-essen.de [Department of Cardiology, University of Duisburg-Essen, Essen (Germany); Eggebrecht, Holger [Cardioangiological Center Bethanien (CCB), Frankfurt (Germany); Roguin, Ariel [Department of Cardiology, Rambam Medical Center, Haifa (Israel); Schroeder, Erwin [Division of Cardiovascular Medicine, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); Philipp, Sebastian [Department Internal Medicine/Cardiology, Elbe Klinikum Stade, Stade (Germany); Heitzer, Thomas [Department of Cardiology, Heart Center Dortmund, Dortmund (Germany); Schwacke, Harald [Department of Internal Medicine, Diakonissen-Stiftungs- Krankenhaus Speyer (Germany); Ayzenberg, Oded [The Heart Institute, Kaplan Medical Center, Rehovot (Israel); Serra, Antonio [Servicio de Cardiología, Hospital de la Santa Creu i Sant Pau, Barcelona, España (Spain); Delarche, Nicolas [Cardiology unit, Pau General Hospital, Pau (France); Luchner, Andreas [Department of Internal Medicine/Cardiology, Universitätsklinikum Regensburg (Germany); Slagboom, Ton [Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam (Netherlands)

    2014-11-15

    Background: Novel bare metal stents with improved stent design may become a viable alternative to drug-eluting stents in certain patient groups, particularly, when long-term dual antiplatelet therapy should be avoided. Purpose: The ENERGY registry aimed to assess the safety and benefits of a cobalt–chromium thin strut bare metal stent with a passive coating in a large series of patients under real-world conditions. Methods and materials: This prospective registry recruited 1016 patients with 1074 lesions in 48 centers from April to November 2010. The primary endpoint was the rate of major adverse cardiac events (MACEs), a composite of cardiac death, myocardial infarction and clinically driven target lesion revascularization. Results: More than half of the lesions (61.0%) were type A/B1 lesions, mean lesion length was 14.5 ± 6.5 mm and mean reference vessel diameter 3.2 ± 0.5 mm. MACE rates at 6, 12 and 24 months were 4.9%, 8.1% and 9.4%, target lesion revascularization rates 2.8%, 4.9% and 5.4% and definite stent thrombosis rates 0.5%, 0.6% and 0.6%. Subgroups showed significant differences in baseline and procedural characteristics which did not translate into significantly different clinical outcomes. Specifically, MACE rates at 24 months were 13.5% in diabetics, 8.6% in small stents and 9.6% in acute coronary syndrome patients. Conclusion: The population of ENERGY reflects real-world conditions with bare metal stents being mainly used in simple lesions. In this setting, percutaneous coronary intervention using a cobalt–chromium thin strut bare metal stent with a passive coating showed very good results up to 24 months. (ClinicalTrials.gov:NCT01056120) Summary for annotated table of contents: The ENERGY international registry evaluated the safety and benefits of a cobalt–chromium thin strut bare metal stent with passive coating in 1016 patients under real-world conditions until 2 years. Results were encouraging with a low composite rate of cardiac death

  11. Type D personality predicts death or myocardial infarction after bare metal stent or sirolimus-eluting stent implantation

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; Lemos, Pedro A; van Vooren, Priya R

    2004-01-01

    We investigated the effect of Type D personality on the occurrence of adverse events at nine months in patients with ischemic heart disease (IHD) after percutaneous coronary intervention (PCI) with sirolimus-eluting stents (SESs) or bare stents. Type D patients experience increased negative...

  12. Biomonitoring of some heavy metal contaminations from a steel ...

    African Journals Online (AJOL)

    Soil and plants growing in the vicinity of industrial areas display increased concentrations of heavy metals and give an indication of the environmental quality. The contamination source for aluminum, iron, nickel and lead in the Botanical garden of Mobarakeh Steel Company was recognized by analyzing the leaves and ...

  13. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  14. Wear properties of metal ion implanted 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J. (Applications of Nuclear Physics, Ansto, Private Mail Bag 1, Menai, NSW 2234 (Australia)); Paoloni, F.J. (Department of Electrical and Computer Engineering, University of Wollongong, GPO Box 1144, Wollongong, NSW 2500 (Australia))

    1994-07-01

    AISI type 4140 (high tensile) steel has been implanted with tungsten and titanium using a metal vapour vacuum arc ion source. Doses in the range (1-5)x10[sup 16]ionscm[sup -2] were implanted to a depth of approximately 30nm. The relative wear resistance between non-implanted and implanted specimens has been estimated using pin-on-disc and abrasive wear tests. Implantation of titanium decreased the area of wear tracks by a factor of 5 over unimplanted steel. In some cases the steel was also hardened by a liquid carburization treatment before implantation. Abrasion tests revealed a further improvement in wear resistance on this material following ion irradiation. ((orig.))

  15. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    OpenAIRE

    Yurtisik,Koray; Tirkes,Suha; Dykhno,Igor; Gur,C. Hakan; Gurbuz,Riza

    2013-01-01

    Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex mi...

  16. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  17. Influence of laser power on microstructure of laser metal deposited 17-4 ph stainless steel

    CSIR Research Space (South Africa)

    Adeyemi, AA

    2017-09-01

    Full Text Available The influence of laser power on the microstructure of 17-4 PH stainless steel produced by laser metal deposition was investigated. Multiple-trackof 17-4 stainless steel powder was deposited on 316 stainless steel substrate using laser metal...

  18. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  19. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  20. 2-year clinical outcomes after implantation of sirolimus-eluting, paclitaxel-eluting, and bare-metal coronary stents: results from the WDHR (Western Denmark Heart Registry)

    DEFF Research Database (Denmark)

    Kaltoft, Anne; Jensen, Lisette Okkels; Maeng, Michael

    2009-01-01

    OBJECTIVES: This registry study assessed the safety and efficacy of the 2 types of drug-eluting stents (DES), sirolimus-eluting stents (SES) and paclitaxel-eluting stents (PES), compared with bare-metal stents (BMS). BACKGROUND: Drug-eluting stents may increase the risk of stent thrombosis (ST...... databases. We used Cox regression analysis to control for confounding. RESULTS: The 2-year incidence of definite ST was 0.64% in BMS patients, 0.79% in DES patients (adjusted relative risk [RR]: 1.09; 95% confidence interval [CI]: 0.72 to 1.65), 0.50% in SES patients (adjusted RR: 0.63, 95% CI: 0.35 to 1...

  1. An agent-based model of the response to angioplasty and bare-metal stent deployment in an atherosclerotic blood vessel.

    Directory of Open Access Journals (Sweden)

    Antonia E Curtin

    Full Text Available PURPOSE: While animal models are widely used to investigate the development of restenosis in blood vessels following an intervention, computational models offer another means for investigating this phenomenon. A computational model of the response of a treated vessel would allow investigators to assess the effects of altering certain vessel- and stent-related variables. The authors aimed to develop a novel computational model of restenosis development following an angioplasty and bare-metal stent implantation in an atherosclerotic vessel using agent-based modeling techniques. The presented model is intended to demonstrate the body's response to the intervention and to explore how different vessel geometries or stent arrangements may affect restenosis development. METHODS: The model was created on a two-dimensional grid space. It utilizes the post-procedural vessel lumen diameter and stent information as its input parameters. The simulation starting point of the model is an atherosclerotic vessel after an angioplasty and stent implantation procedure. The model subsequently generates the final lumen diameter, percent change in lumen cross-sectional area, time to lumen diameter stabilization, and local concentrations of inflammatory cytokines upon simulation completion. Simulation results were directly compared with the results from serial imaging studies and cytokine levels studies in atherosclerotic patients from the relevant literature. RESULTS: The final lumen diameter results were all within one standard deviation of the mean lumen diameters reported in the comparison studies. The overlapping-stent simulations yielded results that matched published trends. The cytokine levels remained within the range of physiological levels throughout the simulations. CONCLUSION: We developed a novel computational model that successfully simulated the development of restenosis in a blood vessel following an angioplasty and bare-metal stent deployment based on

  2. Primary endpoint results of the OMEGA Study: One-year clinical outcomes after implantation of a novel platinum chromium bare metal stent

    Energy Technology Data Exchange (ETDEWEB)

    Wang, John C., E-mail: john.wang@medstar.net [MedStar Union Memorial Hospital, Baltimore MD (United States); Carrié, Didier, E-mail: carrie.didier@chu-toulouse.fr [Centre Hôpital Universitaire Rangueil, Toulouse (France); Masotti, Monica, E-mail: MASOTTI@clinic.ub.es [Hospital Clinic, University of Barcelona (Spain); Erglis, Andrejs, E-mail: a.a.erglis@stradini.lv [Pauls Stradins Clinical University Hospital, University of Latvia, Riga (Latvia); Mego, David, E-mail: David.Mego@arheart.com [Arkansas Heart Hospital, Little Rock, AR (United States); Watkins, Matthew W., E-mail: Matthew.Watkins@vtmednet.org [University of Vermont Medical Center, Burlington VT (United States); Underwood, Paul, E-mail: Paul.underwood@bsci.com [Boston Scientific, Marlborough MA USA (United States); Allocco, Dominic J., E-mail: Dominic.allocco@bsci.com [Boston Scientific, Marlborough MA USA (United States); Hamm, Christian W., E-mail: C.Hamm@kerckhoff-klinik.de [Kerckhoff Heart and Thoraxcenter, Bad Nauheim (Germany)

    2015-03-15

    Background/purpose: Bare metal stents (BMS) have similar rates of death and myocardial infarction (MI) compared to drug-eluting stents (DES). DES lower repeat revascularization rates compared to BMS, but may have higher rates of late stent thrombosis (ST) potentially due to impaired endothelialization requiring longer dual anti-platelet therapy (DAPT). OMEGA evaluated a novel BMS designed to have improved deliverability and radiopacity, in comparison to currently available platforms. Methods/materials: OMEGA was a prospective, multicenter, single-arm study enrolling 328 patients at 37 sites (US and Europe). Patients received the OMEGA stent (bare platinum chromium element stent) for the treatment of de novo native coronary artery lesions (≤ 28 mm long; diameter ≥ 2.25 mm to ≤ 4.50 mm). The primary endpoint was 9-month target lesion failure (TLF: cardiac death, target vessel-related MI, target lesion revascularization [TLR]) compared to a prespecified performance goal (PG) based on prior generation BMS. All major cardiac events were independently adjudicated. DAPT was required for a minimum of 1 month post procedure. Results: In the OMEGA study, the mean age was 65; 17% had diabetes mellitus. The primary endpoint was met; 9 month TLF rate was 11.5%, and the upper 1-sided 95% confidence bound of 14.79% was less than the prespecified PG of 21.2% (p < 0.0001). One-year event rates were low including a TLF rate of 12.8% and an ST rate of 0.6% at 12 months. Conclusions: One-year outcomes of OMEGA show low rates of TLF, revascularization and ST. This supports safety and efficacy of the OMEGA BMS for the treatment of coronary artery disease. - Highlights: • The OMEGA study evaluated a novel platinum chromium bare metal stent. • OMEGA enrolled 328 patients at 37 sites (US and Europe). • The primary endpoint of 9 month target lesion failure was 11.5%. • One-year event rates were low including an ST rate of 0.6% at 12 months.

  3. Primary endpoint results of the OMEGA Study: One-year clinical outcomes after implantation of a novel platinum chromium bare metal stent

    International Nuclear Information System (INIS)

    Wang, John C.; Carrié, Didier; Masotti, Monica; Erglis, Andrejs; Mego, David; Watkins, Matthew W.; Underwood, Paul; Allocco, Dominic J.; Hamm, Christian W.

    2015-01-01

    Background/purpose: Bare metal stents (BMS) have similar rates of death and myocardial infarction (MI) compared to drug-eluting stents (DES). DES lower repeat revascularization rates compared to BMS, but may have higher rates of late stent thrombosis (ST) potentially due to impaired endothelialization requiring longer dual anti-platelet therapy (DAPT). OMEGA evaluated a novel BMS designed to have improved deliverability and radiopacity, in comparison to currently available platforms. Methods/materials: OMEGA was a prospective, multicenter, single-arm study enrolling 328 patients at 37 sites (US and Europe). Patients received the OMEGA stent (bare platinum chromium element stent) for the treatment of de novo native coronary artery lesions (≤ 28 mm long; diameter ≥ 2.25 mm to ≤ 4.50 mm). The primary endpoint was 9-month target lesion failure (TLF: cardiac death, target vessel-related MI, target lesion revascularization [TLR]) compared to a prespecified performance goal (PG) based on prior generation BMS. All major cardiac events were independently adjudicated. DAPT was required for a minimum of 1 month post procedure. Results: In the OMEGA study, the mean age was 65; 17% had diabetes mellitus. The primary endpoint was met; 9 month TLF rate was 11.5%, and the upper 1-sided 95% confidence bound of 14.79% was less than the prespecified PG of 21.2% (p < 0.0001). One-year event rates were low including a TLF rate of 12.8% and an ST rate of 0.6% at 12 months. Conclusions: One-year outcomes of OMEGA show low rates of TLF, revascularization and ST. This supports safety and efficacy of the OMEGA BMS for the treatment of coronary artery disease. - Highlights: • The OMEGA study evaluated a novel platinum chromium bare metal stent. • OMEGA enrolled 328 patients at 37 sites (US and Europe). • The primary endpoint of 9 month target lesion failure was 11.5%. • One-year event rates were low including an ST rate of 0.6% at 12 months

  4. Cyclic deformation behavior of steels and light-metal alloys

    International Nuclear Information System (INIS)

    Walther, Frank; Eifler, Dietmar

    2007-01-01

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy

  5. Cyclic deformation behavior of steels and light-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Frank [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)], E-mail: walther@mv.uni-kl.de; Eifler, Dietmar [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)

    2007-11-15

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy.

  6. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    Science.gov (United States)

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  7. 49 CFR 178.506 - Standards for metal drums other than steel or aluminum.

    Science.gov (United States)

    2010-10-01

    ... aluminum. 178.506 Section 178.506 Transportation Other Regulations Relating to Transportation PIPELINE AND... drums other than steel or aluminum. (a) The following are the identification codes for metal drums other than steel or aluminum: (1) 1N1 for a non-removable head metal drum; and (2) 1N2 for a removable head...

  8. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    Science.gov (United States)

    2013-05-01

    H.K.D.H. Bhadeshia, A Model for the Microstruc- ture of Some Advanced Bainitic Steels , Mater. Trans., 1991, 32, p 689–696 19. G.J. Davies and J.G. Garland...REPORT Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding 14. ABSTRACT 16. SECURITY...Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding Report Title ABSTRACT A fully coupled (two-way

  9. Intravascular ultrasound assessment of minimumlumen area and intimal hyperplasia in in-stent restenosis after drug-eluting or bare-metal stent implantation. The Nordic Intravascular Ultrasound Study (NIVUS)

    DEFF Research Database (Denmark)

    Jensen, Lisette Okkels; Vikman, Saila; Antonsen, Lisbeth

    2017-01-01

    presenting with a DES or bare-metal stent (BMS) in-stent restenosis. Methods: The ``Nordic Intravascular Ultrasound Study (NIVUS)'' study was conducted in Nordic and Baltic countries as a prospective multicenter registry. Two hundred nine patients (DES n = 121 and BMS n = 88) with instent restenosis were...

  10. Steel-SiC Metal Matrix Composite Development. Final report

    International Nuclear Information System (INIS)

    Smith, Don D.

    2005-01-01

    One of the key materials challenges for Generation IV reactor technology is to improve the strength and resistance to corrosion and radiation damage in the metal cladding of the fuel pins during high-temperature operation. Various candidate Gen IV designs call for increasing core temperature to improve efficiency and facilitate hydrogen production, operation with molten lead moderator to use fast neutrons. Fuel pin lifetime against swelling and fracture is a significant limit in both respects. The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite. In the context of the mission of the SBIR program, this Phase I grant has been successful. The development of a means to attain interfacial bonding between metal and ceramic has been a pacing challenge in materials science and technology for a century. It entails matching or grading of thermal expansion across the interface and attaining a graded chemical composition so that impurities do not concentrate at the boundary to create a slip layer. To date these challenges have been solved in only a modest number of pairings of compatible materials, e.g. Kovar and glass, titanium and ceramic, and aluminum and ceramic. The latter two cases have given rise to the only presently available MMC materials, developed for aerospace applications. Those materials have been possible because the matrix metal is highly reactive at elevated temperature so that graded composition and intimate bonding happens naturally at the fiber-matrix interface. For metals that are not highly reactive at processing temperature, however, successful bonding is much more difficult. Recent success has been made with copper MMCs for cooling channels in first-wall designs for fusion

  11. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  12. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu

    2007-01-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  13. Clinical outcome after primary percutaneous coronary intervention with drug-eluting and bare metal stents in patients with ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Jensen, Lisette Okkels; Maeng, Michael; Thayssen, Per

    2008-01-01

    BACKGROUND: The use of drug-eluting stents (DESs) versus bare metal stents (BMSs) in primary percutaneous coronary intervention (PCI) for ST-segment elevation myocardial infarction is a matter of debate. Therefore, we examined the risk of target lesion revascularization (TLR), stent thrombosis...... Registry from January 2002 through June 2005, were followed up for 2 years. We used Cox regression analysis to control for confounding. The 2-year incidence of definite stent thrombosis was 1.9% in the DES group and 1.1% in the BMS group (adjusted relative risk [RR]=1.53; 95% CI=0.84 to 2.78; P=0.17). Very...... late definite stent thrombosis (> or =12 months) was seen in 0.4% in the DES group and 0.06% in the BMS group (adjusted RR=6.74; 95% CI=1.23 to 37.00; P=0.03). The 2-year incidence of myocardial infarction was similar in the 2 groups, 5.2% in the DES group versus 6.3% in the BMS group (P=0.28; adjusted...

  14. Evolution of metal-metal wear mechanisms in martensitic steel deposits for recharging

    International Nuclear Information System (INIS)

    Gualco, Agustin; Svoboda, Hernan G; Surian, Estela S; De Vedia, Luis A

    2008-01-01

    This work studied metal recharged by welding with a martensitic steel (Cr, Mn, Mo, V and W alloy), deposited with a metal filled tubular wire on a low carbon steel, using semi-automatic welding with a contributing heat of 2 kJ/mm and under a gaseous protection of Ar-2%CO 2 . Transverse cuts were extracted from the welded sample for microstructural characterization, hardness measurement, determination of chemical composition and wear tests. The microstructural characterization was performed using light microscopy (LM) and scanning electron microscopy (SEM), X-Ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The wear tests (metal-metal) were carried out on an Amsler machine in natural flow condition, with 500, 1250 and 2000 N of applied charge. The reference material was SAE 1020 steel. The weight loss curves were determined as a function of the distance run up to 5000 meters for all conditions. Then the test's wear surfaces and debris were analyzed. The microstructure consisted mostly of martensite and a fraction of retained austenite. A pattern of dendritic segregation was observed. The hardness on the wear surface averaged 670 HV 1 . The wear behavior showed a lineal variation between the loss of weight and the distance run, for the different loads applied. The rates of wear for each condition were obtained. The observed wear mechanisms were abrasion and adhesion, with plastic deformation. At low charges, the predominant mechanism was mild oxidative wear and at bigger loads heavy oxidative wear with the presence of zones with adhesion. The oxides formed on the surface of the eroded plate were identified

  15. Square-wave voltammetric determination of fungicide fenfuram in real samples on bare boron-doped diamond electrode, and its corrosion properties on stainless steels used to produce agricultural tools

    International Nuclear Information System (INIS)

    Brycht, Mariola; Skrzypek, Sławomira; Kaczmarska, Kinga; Burnat, Barbara; Leniart, Andrzej; Gutowska, Natalia

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • A bare boron-doped diamond electrode was first used to determine fenfuram. • A sensitive voltammetric procedure for the determination of fenfuram was developed. • The sensor showed high sensitivity, selectivity, and wide linear range. • The procedure was successfully applied to detect fenfuram in real samples. • The effect of fenfuram on the uniform and pitting corrosion of steel was stated. -- Abstract: A simple, selective, and sensitive electroanalytical method for the determination of a novel fungicide, fenfuram (Fnf), on a bare boron-doped diamond electrode (BDDE) using square-wave voltammetry (SWV) was developed. For the first time, the electrochemical oxidation of Fnf at BDDE at about 1.5 V vs. Ag/AgCl reference electrode in 0.35 mol L −1 sulfuric acid was investigated. To select the optimum experimental conditions, the effects of the supporting electrolyte, pH, frequency, amplitude, and step potential were studied. The developed method allowed the determination of Fnf in the concentration range of 2.4 × 10 −5 to 2.6 × 10 −4 mol L −1 (LOD = 6.3 × 10 −6 mol L −1 , LOQ = 2.1 × 10 −5 mol L −1 ). The validation of the method was carried out. The proposed procedure was successfully applied to determine Fnf in the spiked natural water samples collected from Polish rivers and in the spiked triticale seed samples by the standard addition method. To understand the Fnf electrode mechanism, the cyclic voltammetry (CV) technique was applied. The oxidation mechanism was also confirmed using mass spectrometry with the electrospray ionization (ESI-MS) technique. Using electrochemical techniques, the effect of Fnf on the corrosion properties of stainless steel which is used to produce agricultural tools was studied

  16. Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel

    Science.gov (United States)

    Srinivasan, P. Bala; Muthupandi, V.; Sivan, V.; Srinivasan, P. Bala; Dietzel, W.

    2006-12-01

    This work describes the results of an investigation on a dissimilar weld joint comprising a boiler-grade low alloy steel and duplex stainless steel (DSS). Welds produced by shielded metal arc-welding with two different electrodes (an austenitic and a duplex grade) were examined for their microstructural features and properties. The welds were found to have overmatching mechanical properties. Although the general corrosion resistance of the weld metals was good, their pitting resistance was found to be inferior when compared with the DSS base material.

  17. Arc brazing of austenitic stainless steel to similar and dissimilar metals

    Science.gov (United States)

    Moschini, Jamie Ian

    There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the

  18. Development for dissimilar metal joint between stainless steel and zirconium by explosive bonding technique

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Matsumoto, Toshimi; Asano, Chooichi; Funamoto, Takao; Hirose, Yasuo; Sasada, Yasuhiro.

    1988-01-01

    Development of dissimilar metal joints between stainless steel and Zr for application to nuclear fuel reprocessing equipment was studied. Two dissimilar metal joints (Zr to SUS 304 L joint and its joint using Ta as insert metal) were made by the explosive bonding technique. After bonding, microstructure, tensile strength and corrosion test of dissimilar metal joints were investigated. The results indicated that: (1) The good dissimilar metal joint is obtained between stainless steel and Zr with a Ta insert metal by using explosive bonding technique. (2) A Ta insert metal retards a growth of intermetallic compounds at the bonding interface. (3) The strength of the dissimilar metal joint in this study is higher than that of Zr metal. Any local attack was not observed at the bonding interface after corrosion test. (author)

  19. Occupational asthma due to manual metal-arc welding of special stainless steels.

    Science.gov (United States)

    Hannu, T; Piipari, R; Kasurinen, H; Keskinen, H; Tuppurainen, M; Tuomi, T

    2005-10-01

    Occupational asthma (OA) can be induced by fumes of manual metal-arc welding on stainless steel. In recent years, the use of special stainless steels (SSS) with high chromium content has increased. This study presents two cases of OA caused by manual metal-arc welding on SSS. In both cases, the diagnosis of OA was based on respiratory symptoms, occupational exposure and positive findings in the specific challenge tests. In the first case, a 46-yr-old welder had experienced severe dyspnoea while welding SSS (SMO steel), but not in other situations. Challenge tests with both mild steel and stainless steel using a common electrode were negative. Welding SSS with a special electrode caused a delayed 37% drop in forced expiratory volume in one second (FEV1). In the second case, a 34-yr-old male had started to experience dyspnoea during the past few years, while welding especially SSS (Duplex steel). The workplace peak expiratory flow monitoring was suggestive of OA. Challenge tests with both mild steel and stainless steel using a common electrode did not cause bronchial obstruction. Welding SSS with a special electrode caused a delayed 31% drop in FEV1. In conclusion, exposure to manual metal-arc welding fumes of special stainless steel should be considered as a new cause of occupational asthma.

  20. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION [[NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in...

  1. Stent Thrombosis in Drug-Eluting or Bare-Metal Stents in Patients Receiving Dual Antiplatelet Therapy.

    Science.gov (United States)

    Kereiakes, Dean J; Yeh, Robert W; Massaro, Joseph M; Driscoll-Shempp, Priscilla; Cutlip, Donald E; Steg, P Gabriel; Gershlick, Anthony H; Darius, Harald; Meredith, Ian T; Ormiston, John; Tanguay, Jean-François; Windecker, Stephan; Garratt, Kirk N; Kandzari, David E; Lee, David P; Simon, Daniel I; Iancu, Adrian Corneliu; Trebacz, Jaroslaw; Mauri, Laura

    2015-10-01

    This study sought to compare rates of stent thrombosis and major adverse cardiac and cerebrovascular events (MACCE) (composite of death, myocardial infarction, or stroke) after coronary stenting with drug-eluting stents (DES) versus bare-metal stents (BMS) in patients who participated in the DAPT (Dual Antiplatelet Therapy) study, an international multicenter randomized trial comparing 30 versus 12 months of dual antiplatelet therapy in subjects undergoing coronary stenting with either DES or BMS. Despite antirestenotic efficacy of coronary DES compared with BMS, the relative risk of stent thrombosis and adverse cardiovascular events is unclear. Many clinicians perceive BMS to be associated with fewer adverse ischemic events and to require shorter-duration dual antiplatelet therapy than DES. Prospective propensity-matched analysis of subjects enrolled into a randomized trial of dual antiplatelet therapy duration was performed. DES- and BMS-treated subjects were propensity-score matched in a many-to-one fashion. The study design was observational for all subjects 0 to 12 months following stenting. A subset of eligible subjects without major ischemic or bleeding events were randomized at 12 months to continued thienopyridine versus placebo; all subjects were followed through 33 months. Among 10,026 propensity-matched subjects, DES-treated subjects (n = 8,308) had a lower rate of stent thrombosis through 33 months compared with BMS-treated subjects (n = 1,718, 1.7% vs. 2.6%; weighted risk difference -1.1%, p = 0.01) and a noninferior rate of MACCE (11.4% vs. 13.2%, respectively, weighted risk difference -1.8%, p = 0.053, noninferiority p stent thrombosis that are lower than BMS-treated subjects. (The Dual Antiplatelet Therapy Study [DAPT study]; NCT00977938). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Soil Contamination with Heavy Metals around Jinja Steel Rolling Mills in Jinja Municipality, Uganda

    Directory of Open Access Journals (Sweden)

    Noel Namuhani

    2015-01-01

    Conclusions. The concentration levels of heavy metals around the steel rolling mills did not appear to be of serious concern, except for copper and cadmium, which showed moderate pollution and moderate to strong pollution, respectively. All heavy metals were within the limits of the United States Environmental Protection Agency (USEPA residential soil standards and the Dutch intervention soil standards. Overall, soils around the Jinja steel rolling mills were slightly polluted with heavy metals, and measures therefore need to be taken to prevent further soil contamination with heavy metals.

  3. The effect of stent coating on stent deliverability: direct randomised comparison of drug eluting and bare metal stents using the same stent platform.

    Science.gov (United States)

    Siminiak, Tomasz; Link, Rafał; Wołoszyn, Maciej; Kałmucki, Piotr; Baszko, Artur

    2012-01-01

    There is certain experimental and clinical evidence indicating that the covering of bare metal stents (BMS) with drug eluting polymers to produce drug eluting stents (DES) results in increased stent stiffness and modifies the mechanical properties of the stent platform. In addition, it has been speculated that the mechanical performance of DES, compared to BMS, may be related to the type of polymer used to cover stents. We aimed at evaluating the deliverability of DES with a lactate based biodegradable polymer and BMS in patients with stable coronary artery disease in a prospective randomised study. One hundred eleven consecutive patients (age: 36-77, mean 58.8 years) scheduled for routine angioplasty due to stable coronary disease were randomised to receive BMS (Chopin II(TM), Balton, Poland) or paclitaxel eluting stent (Chopin Luc(TM), Balton, Poland) using the same metal platform. Only patients scheduled for angioplasty using the direct implantation technique of a single stent were randomised. The exclusion criteria included patients 〉 80 years, multivessel disease and reference diameter of the target vessel 〉 3.5 mm. In the BMS group (n = 55; 35 males and 20 females), the mean diameter of implanted stents was 3.09 ± 0.40 and the mean length was 11.37 ± 2.80, whereas in the DES group (n = 56; 34 males and 22 females) the mean stent sizes were 3.02 ± 0.34 and 17.90 ± 7.38 mm, respectively (p 〉 0.05 for length). The groups did not significantly differ regarding the frequency of stent implantation to particular coronary vessels. The direct stenting technique was attempted and failed, leading to the stents' implantation after predilatation in five patients in the BMS group and six patients in the DES group. Failure of stent implantation and subsequent implantation of another stent type was observed in no BMS patients and in one DES patient (NS). Although stent covering with lactate based drug eluting polymer may increase its stiffness, it does not affect

  4. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  5. Influence of Citric Acid on the Metal Release of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Mazinanian, N.; Wallinder, I. Odnevall; Hedberg, Y. S. [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm (Sweden)

    2015-08-15

    Knowledge of how metal releases from the stainless steels used in food processing applications and cooking utensils is essential within the framework of human health risk assessment. A new European standard test protocol for testing metal release in food contact materials made from metals and alloys has recently been published by the Council of Europe. The major difference from earlier test protocols is the use of citric acid as the worst-case food simulant. The objectives of this study were to assess the effect of citric acid at acidic, neutral, and alkaline solution pH on the extent of metal release for stainless steel grades AISI 304 and 316, commonly used as food contact materials. Both grades released lower amounts of metals than the specific release limits when they were tested according to test guidelines. The released amounts of metals were assessed by means of graphite furnace atomic absorption spectroscopy, and changes in the outermost surface composition were determined using X-ray photoelectron spectroscopy. The results demonstrate that both the pH and the complexation capacity of the solutions affected the extent of metal release from stainless steel and are discussed from a mechanistic perspective. The outermost surface oxide was significantly enriched in chromium upon exposure to citric acid, indicating rapid passivation by the acid. This study elucidates the effect of several possible mechanisms, including complex ion- and ligand-induced metal release, that govern the process of metal release from stainless steel under passive conditions in solutions that contain citric acid.

  6. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...

  7. Long-Term Results of Everolimus-Eluting Stents Versus Drug-Eluting Balloons in Patients With Bare-Metal In-Stent Restenosis: 3-Year Follow-Up of the RIBS V Clinical Trial.

    Science.gov (United States)

    Alfonso, Fernando; Pérez-Vizcayno, María José; García Del Blanco, Bruno; Otaegui, Imanol; Masotti, Mónica; Zueco, Javier; Veláquez, Maite; Sanchís, Juan; García-Touchard, Arturo; Lázaro-García, Rosa; Moreu, José; Bethencourt, Armando; Cuesta, Javier; Rivero, Fernando; Cárdenas, Alberto; Gonzalo, Nieves; Jiménez-Quevedo, Pilar; Fernández, Cristina

    2016-06-27

    The aim of this study was to compare the long-term efficacy of everolimus-eluting stents (EES) and drug-eluting balloons (DEB) in patients with bare-metal stent in-stent restenosis (ISR). The relative long-term clinical efficacy of current therapeutic modalities in patients with ISR remains unknown. The 3-year clinical follow-up (pre-specified endpoint) of patients included in the RIBS V (Restenosis Intra-Stent of Bare-Metal Stents: Drug-Eluting Balloon vs Everolimus-Eluting Stent Implantation) randomized clinical trial was analyzed. All patients were followed yearly using a pre-defined structured questionnaire. A total of 189 patients with bare-metal stent ISR were allocated to either EES (n = 94) or DEB (n = 95). Clinical follow-up at 1, 2, and 3 years was obtained in all patients (100%). Compared with patients treated with DEB, those treated with EES obtained better angiographic results, including larger minimal luminal diameter at follow-up (primary study endpoint; 2.36 ± 0.6 mm vs. 2.01 ± 0.6 mm; p 1 year) target vessel (3 [3.2%] vs. 3 [3.2%]; p = 0.95) and target lesion (1 [1%] vs. 2 [2.1%]; p = 0.54) revascularization was low and similar in the 2 arms. Rates of definite or probable stent thrombosis (1% vs. 0%) were also similar in the 2 arms. The 3-year clinical follow-up of the RIBS V clinical trial confirms the sustained safety and efficacy of EES and DEB in patients treated for bare-metal stent ISR. In this setting, EES reduce the need for target lesion revascularization at very long-term follow-up. (RIBS V [Restenosis Intra-Stent of Bare Metal Stents: Paclitaxel-Eluting Balloon vs Everolimus-Eluting Stent] [RIBS V]; NCT01239953). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Drug-eluting stents appear superior to bare metal stents for vein-graft PCI in vessels up to a stent diameter of 4 mm

    Directory of Open Access Journals (Sweden)

    Oliver P. Guttmann

    2016-05-01

    Full Text Available BackgroundResearch trials have shown improved short-term outcome with drug-eluting stents (DES over bare metal stents (BMS in saphenous vein graft (SVG percutaneous coronary intervention (PCI, primarily by reducing target vessel revascularization (TVR for in-stent restenosis. We compared the outcomes in patients undergoing SVG stent implantation treated with DES or BMS. In exploratory analyses we investigated the influence of stent generation and diameter.MethodsData were obtained from a prospective database of 657 patients who underwent PCI for SVG lesions between 2003 and 2011. A total of 344 patients had PCI with BMS and 313 with DES. Propensity scores were developed based on 15 observed baseline covariates in a logistic regression model with stent type as the dependent variable. The nearest-neighbour-matching algorithm with Greedy 5-1 Digit Matching was used to produce two patient cohorts of 313 patients each. We assessed major adverse cardiac events (MACE out to a median of 3.3 years (interquartile range: 2.1-4.1. MACE was defined as all-cause mortality, myocardial infarction (MI, TVR and stroke.ResultsThere was a significant difference in MACE between the two groups in favour of DES (17.9% DES vs. 31.2% BMS group; p = 0.0017 over the 5-year follow-up period. MACE was driven by increased TVR in the BMS group. There was no difference in death, MI or stroke. Adjusted Cox analysis confirmed a decreased risk of MACE for DES compared with BMS 0.75 (95% confidence interval (CI 0.52-0.94, with no difference in the hazard of all-cause mortality (hazard ratio: 1.08; 95% CI: 0.77-1.68. However, when looking at stent diameters greater than 4 mm, no difference was seen in MACE rates between BMS and DES.ConclusionsOverall in our cohort of patients who had PCI for SVG disease, DES use resulted in lower MACE rates compared with BMS over a 5-year follow-up period; however, for stent diameters over 4 mm no difference in MACE rates was seen.

  9. Percutaneous coronary intervention with second-generation drug-eluting stent versus bare-metal stent: Systematic review and cost-benefit analysis.

    Science.gov (United States)

    Poder, Thomas G; Erraji, Jihane; Coulibaly, Lucien P; Koffi, Kouamé

    2017-01-01

    Drug-eluting stents (DESs) were considered as ground-breaking technology promising to eradicate restenosis and the necessity to perform multiple revascularization procedures subsequent to percutaneous coronary intervention. Soon after DESs were released on the market, however, there were reports of a potential increase in mortality and of early or late thrombosis. In addition, DESs are far more expensive than bare-metal stents (BMSs), which has led to their limited use in many countries. The technology has improved over the last few years with the second generation of DESs (DES-2). Moreover, costs have come down and an improved safety profile with decreased thrombosis has been reported. Perform a cost-benefit analysis of DES-2s versus BMSs in the context of a publicly funded university hospital in Quebec, Canada. A systematic review of meta-analyses was conducted between 2012 and 2016 to extract data on clinical effectiveness. The clinical outcome of interest for the cost-benefit analysis was target-vessel revascularization (TVR). Cost units are those used in the Quebec health-care system. The cost-benefit analysis was based on a 2-year perspective. Deterministic and stochastic models (discrete-event simulation) were used, and various risk factors of reintervention were considered. DES-2s are much more effective than BMSs with respect to TVR rate ratio (i.e., 0.29 to 0.62 in more recent meta-analyses). DES-2s seem to cause fewer deaths and in-stent thrombosis than BMSs, but results are rarely significant, with the exception of the cobalt-chromium everolimus DES. The rate ratio of myocardial infraction is systematically in favor of DES-2s and very often significant. Despite the higher cost of DES-2s, fewer reinterventions can lead to huge savings (i.e., -$479 to -$769 per patient). Moreover, the higher a patient's risk of reintervention, the higher the savings associated with the use of DES-2s. Despite the higher purchase cost of DES-2s compared to BMSs

  10. Comparison of outcome in 1809 patients treated with drug-eluting stents or bare-metal stents in a real-world setting

    Directory of Open Access Journals (Sweden)

    Vogt A

    2011-11-01

    Full Text Available Alexander Vogt1, Anke Schoelmerich1, Franziska Pollner1, Manuela Schlitt1, Uwe Raaz1, Lars Maegdefessel2, Iris Reindl1, Michael Buerke1, Karl Werdan1, Axel Schlitt11Department of Medicine III, Martin Luther-University, Halle, Germany; 2Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USAPurpose: The aim of this study was to determine the long-term safety of drug-eluting stent (DES versus bare metal stent (BMS implantation in a “real-world” setting.Patients and methods: A total of 1809 patients who were treated with implantation of either BMS or DES were assessed. Kaplan-Meier and multivariate Cox regression analyses concerning primary endpoint of cardiac mortality were performed.Results: A total of 609 patients received DES. Mean age was 66.2 ± 11.3 years, 69.4% were male, and 1517 (83.8% were treated for acute coronary syndrome (unstable angina 510 [28.2%], non-ST-elevation myocardial infarction [NSTEMI] 506 [28.0%], and ST-elevation myocardial infarction [STEMI] 501 [27.7%]. Mean follow-up was 34 ± 15 months. During follow-up, 268 patients died of cardiac causes (DES 42 [7.3%]; BMS 226 [19.6%]; P < 0.001. Univariate Kaplan-Meier analysis showed an advantage of DES over BMS concerning the primary endpoint (P < 0.001. When adjusting for classic risk factors and additional factors that affect the progression of coronary heart disease (CHD, DES was not found to be superior to BMS (hazard ratio 0.996, 95% confidence interval 0.455–2.182, P = 0.993. Severely impaired renal function was an independent predictor for cardiac mortality after stent implantation.Conclusion: Treatment with DES is safe in the long term, also in patients presenting with STEMI. However, in multivariate analyses it is not superior to BMS treatment.Keywords: coronary stent, outcome, renal insufficiency, myocardial infarction, STEMI

  11. Mechanisms and Patterns of Intravascular Ultrasound In-Stent Restenosis Among Bare Metal Stents and First- and Second-Generation Drug-Eluting Stents.

    Science.gov (United States)

    Goto, Kosaku; Zhao, Zhijing; Matsumura, Mitsuaki; Dohi, Tomotaka; Kobayashi, Nobuaki; Kirtane, Ajay J; Rabbani, LeRoy E; Collins, Michael B; Parikh, Manish A; Kodali, Susheel K; Leon, Martin B; Moses, Jeffrey W; Mintz, Gary S; Maehara, Akiko

    2015-11-01

    The most common causes of in-stent restenosis (ISR) are intimal hyperplasia and stent under expansion. The purpose of this study was to use intravascular ultrasound (IVUS) to compare the ISR mechanisms of bare metal stents (BMS), first-generation drug-eluting stents (DES), and second-generation DES. There were 298 ISR lesions including 52 BMS, 73 sirolimus-eluting stents, 52 paclitaxel-eluting stents, 16 zotarolimus-eluting stents, and 105 everolimus-eluting stent. Mean patient age was 66.6 ± 1.1 years, 74.2% were men, and 48.3% had diabetes mellitus. BMS restenosis presented later (70.0 ± 66.7 months) with more intimal hyperplasia compared with DES (BMS 58.6 ± 15.5%, first-generation DES 52.6 ± 20.9%, second-generation DES 48.2 ± 22.2%, p = 0.02). Although reference lumen areas were similar in BMS and first- and second-generation DES, restenotic DES were longer (BMS 21.8 ± 13.5 mm, first-generation DES 29.4 ± 16.1 mm, second-generation DES 32.1 ± 18.7 mm, p = 0.003), and stent areas were smaller (BMS 7.2 ± 2.4 mm(2), first-generation DES 6.1 ± 2.1 mm(2), second-generation DES 5.7 ± 2.0 mm(2), p Stent fracture was seen only in DES (first-generation DES 7 [5.0%], second-generation DES 8 [7.4%], p = 0.13). In conclusion, restenotic first- and second-generation DES were characterized by less neointimal hyperplasia, smaller stent areas, longer stent lengths, and more stent fractures than restenotic BMS. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Very late stent thrombosis with second generation drug eluting stents compared to bare metal stents: Network meta-analysis of randomized primary percutaneous coronary intervention trials.

    Science.gov (United States)

    Philip, Femi; Stewart, Susan; Southard, Jeffrey A

    2016-07-01

    The relative safety of drug-eluting stents (DES) and bare-metal stents (BMS) in primary percutaneous coronary intervention (PPCI) in ST elevation myocardial infarction (STEMI) continues to be debated. The long-term clinical outcomes between second generation DES and BMS for primary percutaneous coronary intervention (PCI) using network meta-analysis were compared. Randomized controlled trials comparing stent types (first generation DES, second generation DES, or BMS) were considered for inclusion. A search strategy used Medline, Embase, Cochrane databases, and proceedings of international meetings. Information about study design, inclusion criteria, and sample characteristics were extracted. Network meta-analysis was used to pool direct (comparison of second generation DES to BMS) and indirect evidence (first generation DES with BMS and second generation DES) from the randomized trials. Twelve trials comparing all stents types including 9,673 patients randomly assigned to treatment groups were analyzed. Second generation DES was associated with significantly lower incidence of definite or probable ST (OR 0.59, 95% CI 0.39-0.89), MI (OR 0.59, 95% CI 0.39-0.89), and TVR at 3 years (OR 0.50: 95% CI 0.31-0.81) compared with BMS. In addition, there was a significantly lower incidence of MACE with second generation DES versus BMS (OR 0.54, 95% CI 0.34-0.74) at 3 years. These were driven by a higher rate of TVR, MI and stent thrombosis in the BMS group at 3 years. There was a non-significant reduction in the overall and cardiac mortality [OR 0.83, 95% CI (0.60-1.14), OR 0.88, 95% CI (0.6-1.28)] with the use of second generation DES versus BMS at 3 years. Network meta-analysis of randomized trials of primary PCI demonstrated lower incidence of MACE, MI, TVR, and stent thrombosis with second generation DES compared with BMS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.

    Science.gov (United States)

    Fathi, M H; Salehi, M; Saatchi, A; Mortazavi, V; Moosavi, S B

    2003-05-01

    The most common metals and alloys used in dentistry may be exposed to a process of corrosion in vivo that make them cytotoxic. The biocompatibility of dental alloys is primarily related to their corrosion behavior. The aim of this work was to evaluate the corrosion behavior and thus the biocompatibility of the uncoated and coated stainless steels and compare the effect of type of coatings on corrosion behavior. Three types of coatings, hydroxyapatite (HA), titanium (Ti), and a double-layer HA/Ti on AISI 316L stainless steel were made. HA coating was produced using plasma-spraying technique and Ti coating was made using physical vapor deposition process. In order to perform a novel double-layer composite coating, a top layer of HA was plasma-sprayed over a physical vapor deposited Ti layer on AISI 316L stainless steel. Structural characterization techniques including XRD, SEM and EDX were used to investigate the microstructure, morphology and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Double-layer HA/Ti coating on AISI 316L SS had a positive effect on improvement of corrosion behavior. The decrease in corrosion current densities was significant for these coated specimens and was much lower than the values obtained for uncoated and single HA coated specimens. Ti coating on AISI 316L SS also has a beneficial effect on corrosion behavior. The results were compared with the results of corrosion behavior of HA coated commercially pure titanium (cpTi) and uncoated cpTi. These results demonstrated that the double-layer HA/Ti coated 316L SS can be used as an endodontic implant and two goals including improvement of corrosion resistance and bone osteointegration can be obtained simultaneously.

  14. Toughness of 2,25Cr-1Mo steel and weld metal

    Science.gov (United States)

    Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret

    2017-09-01

    2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.

  15. Dome style heavy wall steel casting manufactured by metallic core mould system

    International Nuclear Information System (INIS)

    Yamamoto, Shiro; Saeki, Keiji; Hirose, Yutaka; Takebayashi, Kazunari; Kawasaki, Masatoshi

    1986-01-01

    Semi-spherical thick walled steel castings are one of the main products of Nippon Chutanko K.K., but there have been the problems of internal defects peculiar to large thick walled steel castings, and the various improvements have been carried out so far for the manufacturing method, but still some of those remains. Based on the anxiety about the reliability of large steel castings, the conversion to forging has been studied. For the purpose of thoroughly improving the internal quality of thick walled steel castings to compete with forgings, on the basis of the operating experience of chills, the development of the casting techniques changing cores completely to metallic cores has been advanced. After the preliminary experiment using models, a semi-spherical thick walled steel casting mentioned before was manufactured by this metallic core casting method for trial, and the detailed investigation was carried out. As the result, the excellent internal quality was confirmed, accordingly at present, the production is made by this method. The form, dimensions and specification of the semi-spherical thick walled steel castings, the conventional casting plan, the metallic core casting plan, the design of metallic cores, molding and casting, and the examination of the castings made for trial are reported. (Kako, I.)

  16. Characterization of laser metal deposited 316L stainless steel

    CSIR Research Space (South Africa)

    Bayode, A

    2016-06-01

    Full Text Available investigates the effects of laser power on the structural integrity, microstructure and microhardness of laser deposited 316L stainless steel. The result showed that the laser power has much influence on the evolving microstructure and microhardness...

  17. Study of non-metallic inclusion sources in steel

    International Nuclear Information System (INIS)

    Khons, Ya.; Mrazek, L.

    1976-01-01

    A study of potential inclusion sources was carried out at the Tvinec steel plant using an unified labelling procedure for different sources. A lanthanum oxide labelling method has been used for refractories with the subsequent La determination in steel by the neutron activation analysis. Samarium and cerium oxides and the 141 Ce radionuclide have been used in conjunction with the testing. The following sources of exogenous inclusions have been studied: 1)Refractory material comprising fireclay and corundum for steel-teeming trough in open-heart furnaces; 2) Fireclay bottom-pouring refractories; 3) Steel-teeming laddle lining; 4) Heat-insulating and exothermic compounds for steel ingots; 5) Vacuum treatment plant lining; 6) Open-hearth and electric arc furnace slag. The major oxide inclusion source in steel was found to be represented by the furnace slag, since it forms about 40 p.c. of all oxide inclusions. The contributions of the remaining sources did not exceede 5 p.c. each

  18. Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe

    Directory of Open Access Journals (Sweden)

    Wenhao Wu

    2018-01-01

    Full Text Available Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.

  19. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  20. Sustained Benefit at 2 Years for Covered Stents Versus Bare-Metal Stents in Long SFA Lesions: The VIASTAR Trial

    Energy Technology Data Exchange (ETDEWEB)

    Lammer, Johannes, E-mail: jlammer@gmx.at, E-mail: johannes.lammer@meduniwien.ac.at [Medical University Vienna, The Department of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy (Austria); Zeller, Thomas, E-mail: thomas.zeller@universitaets-herzzentrum.de [Universitaets-Herzzentrum Freiburg-Bad Krozingen, Department of Angiology (Germany); Hausegger, Klaus A., E-mail: klaus.hausegger@lkh-klu.at [Klinikum Klagenfurt, The Department of Diagnostic and Interventional Radiology (Austria); Schaefer, Philipp J., E-mail: jp.schaefer@rad.uni-kiel.de [University Clinics Schleswig-Holstein, The Department of Radiology (Germany); Gschwendtner, Manfred, E-mail: manfred.gschwendtner@elisabethinen.or.at [Elisabethinen Hospital, The Department of Diagnostic and Interventional Radiology (Austria); Mueller-Huelsbeck, Stefan, E-mail: muehue@diako.de [Diakonissen Hospital, The Department of Diagnostic and Interventional Radiology (Germany); Rand, Thomas, E-mail: thomas.rand@wienkav.at [Hietzing Hospital, The Department of Radiology (Austria); Funovics, Martin, E-mail: martin.funovics@meduniwien.ac.at; Wolf, Florian, E-mail: florian.wolf@meduniwien.ac.at [Medical University Vienna, The Department of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy (Austria); Rastan, Aljoscha, E-mail: aljoscha.rastan@universitaets-herzzentrum.de [Universitaets-Herzzentrum Freiburg-Bad Krozingen, Department of Angiology (Germany); Gschwandtner, Michael, E-mail: michael.gschwandtner@meduniwien.ac.at [Medical University Vienna, The Department of Angiology (Austria); Puchner, Stefan, E-mail: stefan.puchner@meduniwien.ac.at [Medical University Vienna, The Department of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy (Austria); and others

    2015-02-15

    PurposeThe hypothesis that covered stents are superior to bare-metal stents (BMS) in long femoropopliteal artery disease was tested. The one-year results of the VIASTAR trial revealed a patency benefit of covered stents in the treatment-per-protocol (TPP) analysis only.MethodsA prospective, randomized, single-blind, multicenter study evaluated 141 patients with symptomatic peripheral arterial disease (PAD) after treatment with heparin-bonded covered stents (VIABAHN{sup ®} Endoprosthesis) or BMS. Clinical outcomes and patency rates were assessed at 1, 6, 12, and 24 months. Mean lesion length was 19.0 ± 6.3 cm in the VIABAHN{sup ®} versus 17.3 ± 6.6 cm in the BMS group.ResultsThe 24-month primary patency rates in the VIABAHN{sup ®} and BMS group were: intention-to-treat 63.1 (95 % CI 0.52–0.76) versus 41.2 % (95 % CI 0.29–0.57; log rank p = 0.04) and TPP 69.4 (95 % CI 0.58–0.83) versus 40.0 % (95 % CI 0.28–0.56; log rank p = 0.004). Freedom from target-lesion-revascularization (TLR) was 79.4 (95 % CI 0.70–0.90) versus 73.0 % (95 % CI 0.63–0.85) for VIABAHN{sup ®} versus BMS (log rank p = 0.37). For the TPP group in lesions ≥20 cm, the 24-month patency rates were 65.2 (95 % CI 0.50–0.85) versus 26.7 % (95 % CI 0.12–0.59; log rank p = 0.004) for VIABAHN{sup ®} versus BMS, and freedom from TLR was 80.0 (95 % CI 0.68–0.94) versus 61.9 % (95 % CI 0.44–0.87; log rank p = 0.13). The ankle brachial index was 0.89 ± 0.18 versus 0.91 ± 0.17 (p = 0.76) at 24-month in the VIABAHN{sup ®} versus the BMS group, respectively.ConclusionAt 24-month, this trial in PAD patients with long femoropopliteal lesions demonstrated a significantly improved primary patency rate for heparin-bonded covered stents compared to BMS, however, without a significant impact on clinical outcomes and TLR rate (Reg. Nr. ISRCTN48164244)

  1. Long-term outcome after drug-eluting versus bare-metal stent implantation in patients with ST-segment elevation myocardial infarction: 3-year follow-up of the randomized DEDICATION (Drug Elution and Distal Protection in Acute Myocardial Infarction) Trial

    DEFF Research Database (Denmark)

    Kaltoft, Anne; Kelbaek, Henning; Thuesen, Leif

    2010-01-01

    The purpose of this study was to compare long-term clinical outcomes after implantation of drug-eluting stents (DES) and bare-metal stents (BMS) in patients with ST-segment elevation myocardial infarction (STEMI).......The purpose of this study was to compare long-term clinical outcomes after implantation of drug-eluting stents (DES) and bare-metal stents (BMS) in patients with ST-segment elevation myocardial infarction (STEMI)....

  2. Causes of the fissure formation with shrinkage of metal on low carbon steel slabs

    International Nuclear Information System (INIS)

    Ksenzuk, F.A.; Khudas, A.L.; Zelenskaya, D.P.

    1977-01-01

    The causes have been investigated underlying the formation of fissures with spread of metal on low-carbon steel slabs during hot rolling. Metallographic investigations of templates from various sections of work pieces from 15-ton ingots of 08 ps (kp) steels have indicated that the fissures on the slabs are formed after the metal spreads along the small plane and the work piece thins out in the course of rolling because of the opening of large thin-walled honeycomb bubbles. The phenomenon was confirmed schematically on a model in the form of a slab-shaped lead specimen with longitudinal hole of a variable diameter close to one of the edges

  3. Autoradiographic investigation of the removal of non-metallic inclusions in connection with the steel remelting process in vacuum furnaces

    International Nuclear Information System (INIS)

    Kolaski, H.; Siewierski, J.

    1978-01-01

    The labelled radioactive non-metallic inclusions in steel were obtained through deoxidation of steel with an activated aluminium alloy containing 1% rare earths. Quantity and distribution of the non-metallic inclusions in the steel were determined by applying autoradiography to the longitudinal and cross sections of the steel slabs. After remelting in an electronic furnace the distribution of non-metallic inclusions was determined by autoradiography of the lateral surfaces and the cross section of the slabs. It was found that 50 - 70% of the inclusions could be removed. The results obtained from autoradiographic investigation allow the exploration of the mechanism of the removal of inclusions. (author)

  4. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.

    Science.gov (United States)

    Krischak, G D; Gebhard, F; Mohr, W; Krivan, V; Ignatius, A; Beck, A; Wachter, N J; Reuter, P; Arand, M; Kinzl, L; Claes, L E

    2004-03-01

    Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice. A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM). With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction. We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be

  5. The tensile properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    1985-01-01

    Elevated temperature tensile data on Mo containing and Mo free austenitic weld metals have been collected from French, German and UK sources and the results analysed. In the as welded condition the proof strength is significantly higher than that of wrought material and Mo containing weld metal is stronger than Mo free weld metal. The differences in UTS values are not so marked, and on average at temperatures above 400 0 the weld metal UTS is slightly lower than that of wrought material. The ductility of weld metal is significantly lower than that for wrought material. 7 refs, 2 tables, 20 figs

  6. The Globe laid bare

    CERN Multimedia

    Fortunati, Lucien

    2015-01-01

    If you’re at CERN at the moment, you will certainly have noticed the work under way on the Globe. The structure, which has been in pride of place opposite the Laboratory for over ten years, has never been so completely laid bare. But, as we explained in a previous article (see here), it is all for a good cause. The Globe is built entirely from wood and certain parts of it need to be replaced.

  7. modelling of responses from orthogonal metal cutting of mild steel

    African Journals Online (AJOL)

    user

    technical sciences which are shaped by local operating conditions. ... Three different tool types namely, HSS, tungsten carbide and carbide ... procedure indicated that a tape rule model Fat Max Blade. Armor 35' ... Carbon, C. 0.30 – 0.59% ... Block is Mild Steel x carbide. Runs. Cutting Speed. Feed Rate. Depth of Cut. 1. 250.

  8. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    Science.gov (United States)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  9. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  10. Cancer incidence among mild steel and stainless steel welders and other metal workers

    DEFF Research Database (Denmark)

    Hansen, K S; Lauritsen, J M; Skytthe, A

    1996-01-01

    by a postal questionnaire in living cohort members and interviews by proxy for deceased and emigrated subjects. The incidence of lung cancer was increased among workers ever "employed as welders" (SIR = 1.38, 95% C.I. 1.03-1.81). There was a significant excess risk of lung cancer among "mild steel (MS) only...... "stainless steel (SS) only welders" (SIR = 2.38, 95% C.I. 0.77-5.55). In spite of signs of inconsistency in the risk estimation by duration and latency, we find the results support the conclusions of other studies: employment as a welder is associated with an increased lung cancer risk....

  11. Metal distribution in urban soil around steel industry beside Queen Alia Airport, Jordan.

    Science.gov (United States)

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2009-12-01

    The objective of this study was to assess the extent and severity of metal contamination in urban soil around Queen Alia Airport, Jordan. Thirty-two soil samples were collected around steel manufacturing plants located in the Al-Jiza area, south Jordan, around the Queen Alia Airport. The samples were obtained at two depths, 0-10 and 10-20 cm, and were analyzed by atomic absorption spectrophotometry for lead (Pb), zinc (Zn), cadmium (Cd), iron (Fe), copper (Cu) and chromium (Cr) levels. The physicochemical factors believed to affect the mobility of metals in the soil of the study area were also examined, including pH, electrical conductivity, total organic matter, calcium carbonate (CaCO(3)) content and cation exchange capacity. The high concentrations of Pb, Zn and Cd in the soil samples were found to be related to anthropogenic sources, such as the steel manufacturing plants, agriculture and traffic emissions, with the highest concentrations of these metals close to the site of the steel plants; in contrast the concentration of Cr was low in the soil sampled close to the steel plants. The metals were concentrated in the surface soil, and concentrations decreased with increasing depth, reflecting the physical properties of the soil and its alkaline pH. The mineralogical composition of the topsoil, identified by X-ray diffraction, was predominantly quartz, calcite, dolomite and minor minerals, such as gypsum and clay minerals. Metal concentrations were compared using one-way analysis of variance (ANOVA) to compute the statistical significance of the mean. The results of the ANOVA showed significant differences between sites for Pb, Cd and Cu, but no significant differences for the remaining metals tested. Factor analysis revealed that polluted soil occurs predominantly at sites around the steel plants and that there is no significant variation in the characteristics of the unpolluted soil, which are uniform in the study area.

  12. Remediation of Steel Slag on Acidic Soil Contaminated by Heavy Metal

    OpenAIRE

    Gu, Haihong; Li, Fuping; Guan, Xiang; Li, Zhongwei; Yu, Qiang

    2013-01-01

    The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metal, and selecting economical and effective modifier is the key. The effects and mechanism of steel slag, the silicon-rich alkaline by-product which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory inferences for future research. Firstly, the paper analyzes current research situation of in situ immobilizat...

  13. Metal Dust Exposure and Respiratory Health of Male Steel Work¬ers in Terengganu, Malaysia

    OpenAIRE

    Nurul Ainun HAMZAH; Shamsul Bahri MOHD TAMRIN; Noor Hassim ISMAIL

    2015-01-01

    Background: This cross sectional study was carried out to determine the relationship between metal dust exposure and respiratory health in male steel workers in Terengganu, Malaysia.Methods: Subjects were interviewed using a structured questionnaire from British Medical Research Council (BMRC) Questionnaire regarding respiratory symptoms and were examined their lung function using spirometer.Results: The mean trace metal dusts concentration TWA8 for cobalt and chromium in most of work unit ex...

  14. Deviation of longitudinal and shear waves in austenitic stainless steel weld metal

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1980-01-01

    One of the difficulties associated with the ultrasonic inspection of stainless steel weld metal is the deviation of the ultrasonic beams. This can lead to errors in determining both the location and size of reflectors. The present paper compares experimental and theoretical data related to beam steering for longitudinal and shear waves in a sample of 308 SS weld metal. Agreement between predicted and measured beam deviations is generally good. Reasons for discrepancies are discussed

  15. Recycling radioactive scrap metal by producing concrete shielding with steel granules

    International Nuclear Information System (INIS)

    Sappok, M.

    1996-01-01

    Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel and chromium especially, does not allow for the recycling of stainless steel in a percentage to make this process economical. In Germany, the state of the art is to use shielded concrete containers for the transport of low active waste; this concrete is produced by using hematite as an additive for increasing shielding efficiency. The plan was to produce steel granules from radioactive scrap metal as a substitute for hematite in shielding concrete

  16. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    Science.gov (United States)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  17. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  18. Casting technology for ODS steels - dispersion of nanoparticles in liquid metals

    Science.gov (United States)

    Sarma, M.; Grants, I.; Kaldre, I.; Bojarevics, A.; Gerbeth, G.

    2017-07-01

    Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals with an increased value of the steady magnetic field using a superconducting magnet with a field strength of up to 5 T.

  19. Airborne heavy metal pollution in the environment of a danish steel plant

    DEFF Research Database (Denmark)

    Vestergaard, N. K.; Stephansen, U.; Rasmussen, L.

    1986-01-01

    A survey of heavy metal deposition was carried out in the vicinity of a Danish steel plant. Bulk precipitation and transplanted lichen (Hypogymnia physodes (L.) Nyl.) were sampled at 12 stations in the environment before and after the production had been converted from open-hearth furnaces...

  20. Seismic Performances of Replaceable Steel Connection with Low Yield Point Metal

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2015-01-01

    Full Text Available Compared with the traditional steel rigid connection, the beam-column connections with weakened beam end have better ductility, but the local buckling in the weakened zone and the overall lateral deformation may occur in strong earthquake. The replaceable steel connection with low yield point metal is proposed based on the concept of earthquake resilient structure. In this connection, the weakened parts in the flange slab and web plate are filled with low yield point metal, and the metal firstly yields and dissipates energy sufficiently in earthquake; hence, the main parts are intact and the yield point metal can be replaced. The seismic performances of the three types of connections which include traditional connection, beam end weakened connection, and replaceable connection with low yield point steel under low cycle reciprocating load are studied. In addition, the energy dissipation capacity and damage characteristics of different connections are compared. The multiscale finite element models for the steel frames with different connections are analyzed by time-history method; both the computational efficiency and the accuracy are assured. The analysis results approve that the replaceable connection can confine the major damage in the replacement material and have better energy dissipation ability, safety reserves, and resilient ability.

  1. Microstructure and microhardness of 17-4 PH stainless steel made by laser metal deposition

    CSIR Research Space (South Africa)

    Bayode, A

    2016-10-01

    Full Text Available variety of metallic powders. This paper investigates the evolving properties of laser deposited 17-4PH stainless steel. The microstructure was martensitic with a dendritic structure. The average microhardness of the samples was found to be less than...

  2. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    Science.gov (United States)

    2017-09-01

    ER D C/ CE RL T R- 17 -3 0 DoD Corrosion Prevention and Control Program Demonstration of Thermally Sprayed Metal and Polymer Coatings...and Polymer Coatings for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Larry D. Stephenson, Alfred D. Beitelman, Richard G...5 2.1.2 Thermoplastic polymer coating (flame spray

  3. Study of tritium decontamination of stainless steel, copper, aluminum metals by tritium dry desorption

    International Nuclear Information System (INIS)

    Xie Yun; Shi Zhengkun; Wu Tao

    2014-01-01

    In order to study the decontamination efficiency of stainless steel, copper, aluminum metals contaminated by tritium, the metals were decontaminated by exposing to UV, ozone, heating, and the combination of heating, UV and ozone. The result indicates that the elevation of temperature can obviously improve decontamination. While irradiated by 172 nm UV, the decontamination efficiency is low, but it is better while heated and irradiated by 172 nm UV. If the stainless steel is irradiated by 172 nm UV and heated at 500℃ for 4 h, the decontamination efficiency is 99.2%. There is better decontamination efficiency of copper while exposed to ozone. While exposed to ozone and heated at 500℃, the decontamination efficiencies of stainless steel, copper and aluminum are higher than 99.2%. The decontamination efficiency can more obviously improve when metal is heated at high temperature (500℃) than low temperature (300℃). The surface tritium of metal placed at 30 d after decontamination increases because of diffusion and penetration of the tritium. Resolution spectra of tritium show that there are four kinds of contamination adsorbed tritium of stainless steel. (authors)

  4. Observation of the molten metal behaviors during the laser cutting of thick steel specimens using attenuated process images

    International Nuclear Information System (INIS)

    Tamura, Koji; Yamagishi, Ryuichiro

    2017-01-01

    Molten metal behaviors during the laser cutting of carbon steel and stainless steel specimens up to 300 mm in thickness were observed to dismantle large steel objects for the nuclear decommissioning, where attenuated process images from both steels were observed for detailed process analysis. Circular and rod-like molten metal structures were observed at the laser irradiated region depending on the assist gas flow conditions. Molten metal blow-off and flow processes were observed as cutting processes. The observations were explained by the aerodynamic interaction of the melted surface layer. The method is useful for the detailed observation of the molten metal behaviors, and the results are informative to understand and optimize the laser cutting process of very thick steel specimens. (author)

  5. Decontamination of metals by melt refining/slagging. An annotated bibliography: Update on stainless steel and steel

    Energy Technology Data Exchange (ETDEWEB)

    Worchester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A. [Montana Tech of the Univ., of Montana (United States); Mizia, R.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-01-01

    The following presentation is an update to a previous annotation, i.e., WINCO-1138. The literature search and annotated review covers all metals used in the nuclear industries but the emphasis of this update is directed toward work performed on mild steels. As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste problems, Lockheed Idaho Technologies Co (LITCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small wide melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--2,000 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste and Pit 9/RWMC boxes. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development. The program plan will be jointly developed by Montana Tech and LITCO.

  6. Heavy metal contamination and ecological risk of farmland soils adjoining steel plants in Tangshan, Hebei, China.

    Science.gov (United States)

    Yang, Liyun; Yang, Maomao; Wang, Liping; Peng, Fei; Li, Yuan; Bai, Hao

    2018-01-01

    The purpose of this study was to determine the heavy metal concentrations and ecological risks to farmland soils caused by atmospheric deposition adjoining five industrial steel districts in Tangshan, Hebei, China. A total of 39 topsoil samples from adjoining these plants were collected and analyzed for Pb, Zn, Cu, Cr, and As. The geo-accumulation index (Igeo) and potential ecological risk index (PERI) were calculated to assess the heavy metal pollution level in soils. The results showed that the levels of Pb and As in farmland soils adjoining all steel plants were more than the background value, with the As content being excessively high. The Cr and Cu contents of some samples were over the background values, but the Zn content was not. In all the research areas, the largest Igeo value of the heavy metals was for As, followed by Pb, and the largest monomial PERI ([Formula: see text]) was As, which showed that the pollution of As in farmland soils was significant and had considerable ecological risk. Additionally, the heavy metal sequential extraction experiments showed that Pb and Cr, which exceeded the background value, were present in about 20% of the exchangeable and carbonate-bound fractions in the soils surrounding some steel plants. This would imply the risk of these heavy metals being absorbed and accumulated by the crops. Therefore, the local government needs to control the pollution of heavy metals in the farmland soils adjoining the steel plant as soon as possible, in order to avoid possible ecological and food safety risks.

  7. Studies of iodine concentration in steel and transition metals

    International Nuclear Information System (INIS)

    Kormann, C.; Kozlowski, W.; Oleksi-Frenzel, J.; Nachtigall, K.; Neste, A. van; Welsh, M.; Titze-Zaeske, B.; Plieth, W.

    1990-01-01

    Radioactive iodine which originates from nuclear fuel reprocessing plants as a fission product and consists mainly of the radioactive isotopes 129 I, 131 I, and of the inactive 127 I, must be quantitatively adsorbed at the end of the process for the purpose of safe waste disposal. Inspite of using high-alloy austenitic chrome nickel steels, major corrosion effects were observed at tubes and containers of the PASSAT dissolver waste gas purifier. This research project serves to clarify the question in which parts of the installation iodine concentration is to be expected under certain conditions. Furthermore it serves to identify the redox state of iodine in the various installation components. For this purpose steel (1.4306esu and 1.4563N), zirconium and titanium were studied in nitric iodic media. With the objective of calculating iodine adsorption isotherms, the following methods were used to obtain qualitative and quantitative data: FTIR, ellipsometry, 131 I radiotracer method, cyclo-voltametry, closed circuit potential measurements, ion chromatography. (orig./DG) [de

  8. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  9. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  10. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  11. Technology programme SULA 2. Energy in steel and base metal production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    SULA 2 is the energy research programme of the steel and metal producing industry. Central steel and metal producing companies are Outokumpu, Rautaruukki, Imatra Steel and Fundia Wire which is a subsidiary of Rautaruukki. The priorities of the SULA 2 programme are in process development. Worthwhile areas of concentration in energy research by Finland include the following: Iron and steel production; Zinc production; The production of ferrochromium and stainless steel; The pyrometallurgical production of copper and nickel and Rolling and heat treatment of steel In addition to the steel and metal producers the following companies participate in some projects: Kuusakoski, Kumera, Fiskars Tools and BETKER. Research work is performed in the following universities and research centers: Helsinki University of Technology, Oulu University, Aabo Akademi University, Tampere University of Technology, VTT Energy and VTT Building Technology. The total number of projects in SULA 2 programme is 51. Of these 20 are research institute projects, 21 are company R and D projects and 10 are energy conservation projects funded by Ministry of Trade and Industry. The total research costs are ca. 130 million FIM. The major part of costs is carried by the participating companies, 62 % and by public funding (Ministry of Trade and Industry, TEKES, The Academy of Finland) 36 %. In six projects the objective of research was studying and inventing new production processes or equipment. Results so far are a new production process for the Tornio stainless steel plant and a new design of ore concentrate rotary dryer, which has been commercialized. The electric energy consumption of the melting shop in Tornio has decreased by 25 %, and the production capacity has increased accordingly. Considerable savings in production process energy consumption, estimable from production reports have been achieved in several projects. The total amount of estimable saving in specific energy consumption is about 900

  12. Technology programme SULA 2. Energy in steel and base metal production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    SULA 2 is the energy research programme of the steel and metal producing industry. Central steel and metal producing companies are Outokumpu, Rautaruukki, Imatra Steel and Fundia Wire which is a subsidiary of Rautaruukki. The priorities of the SULA 2 programme are in process development. Worthwhile areas of concentration in energy research by Finland include the following: Iron and steel production; Zinc production; The production of ferrochromium and stainless steel; The pyrometallurgical production of copper and nickel and Rolling and heat treatment of steel In addition to the steel and metal producers the following companies participate in some projects: Kuusakoski, Kumera, Fiskars Tools and BETKER. Research work is performed in the following universities and research centers: Helsinki University of Technology, Oulu University, Aabo Akademi University, Tampere University of Technology, VTT Energy and VTT Building Technology. The total number of projects in SULA 2 programme is 51. Of these 20 are research institute projects, 21 are company R and D projects and 10 are energy conservation projects funded by Ministry of Trade and Industry. The total research costs are ca. 130 million FIM. The major part of costs is carried by the participating companies, 62 % and by public funding (Ministry of Trade and Industry, TEKES, The Academy of Finland) 36 %. In six projects the objective of research was studying and inventing new production processes or equipment. Results so far are a new production process for the Tornio stainless steel plant and a new design of ore concentrate rotary dryer, which has been commercialized. The electric energy consumption of the melting shop in Tornio has decreased by 25 %, and the production capacity has increased accordingly. Considerable savings in production process energy consumption, estimable from production reports have been achieved in several projects. The total amount of estimable saving in specific energy consumption is about 900

  13. Biological monitoring of toxic metals - steel workers respiratory health survey

    International Nuclear Information System (INIS)

    Pinheiro, T.; Almeida, A. Bugalho de; Alves, L.; Freitas, M.C.; Moniz, D.; Alvarez, E.; Monteiro, P.; Reis, M.

    1999-01-01

    The aim of this work is to search for respiratory system aggressors to which workers are submitted in their labouring activity. Workers from one sector of a steel plant in Portugal, Siderurgia Nacional (SN), were selected according to the number of years of exposure and labouring characteristics. The work reports on blood elemental content alterations and lung function tests to determine an eventual bronchial hyper-reactivity. Aerosol samples collected permit an estimate of indoor air quality and airborne particulate matter characterisation to further check whether the elemental associations and alterations found in blood may derive from exposure. Blood and aerosol elemental composition was determined by PIXE and INAA. Respiratory affections were verified for 24% of the workers monitored. There are indications that the occurrence of affections can be associated with the total working years. The influence of long-term exposure, health status parameters, and lifestyle factors in blood elemental variations found was investigated

  14. Effect of composition on corrosion resistance of high-alloy austenitic stainless steel weld metals

    International Nuclear Information System (INIS)

    Marshall, P.I.; Gooch, T.G.

    1993-01-01

    The corrosion resistance of stainless steel weld metal in the ranges of 17 to 28% chromium (Cr), 6 to 60% nickel (Ni), 0 to 9% molybdenum (Mo), and 0.0 to 0.37% nitrogen (N) was examined. Critical pitting temperatures were determined in ferric chloride (FeCl 3 ). Passive film breakdown potentials were assessed from potentiodynamic scans in 3% sodium chloride (NaCl) at 50 C. Potentiodynamic and potentiostatic tests were carried out in 30% sulfuric acid (H 2 SO 4 ) ar 25 C, which was representative of chloride-free acid media of low redox potential. Metallographic examination and microanalysis were conducted on the test welds. Because of segregation of alloying elements, weld metal pitting resistance always was lower than that of matching composition base steel. The difference increased with higher Cr, Mo, and N contents. Segregation also reduced resistance to general corrosion in H 2 SO 4 , but the effect relative to the base steel was less marked than with chloride pitting. Segregation of Cr, Mo, and N in fully austenitic deposits decreased as the Ni' eq- Cr' eq ratio increased. Over the compositional range studied, weld metal pitting resistance was dependent mainly on Mo content and segregation. N had less effect than in wrought alloys. Both Mo and N enhanced weld metal corrosion resistance in H 2 SO 4

  15. Freezing controlled penetration of molten metals flowing through stainless steel tubes

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.; Vetter, D.L.; Wesel, R.H.

    1985-01-01

    The freezing controlled penetration potential of molten metals flowing within stainless steel structure is important to the safety assessment of hypothetical severe accidents in liquid metal reactors. A series of scoping experiments has been performed in which molten stainless steel and nickel at various initial temperatures and driving pressures were injected downward and upward into 6.4 and 3.3 mm ID stainless steel tubes filled with argon gas and initially at room temperature. In all tests, there was no evidence that the solid tube wall was wetted by the molten metals. The penetration phenomena are markedly different for downward versus upward injections. The dependency upon tube orientation is explained in terms of the absence of wetting. Complete plugs were formed in all experiments halting the continued injection of melt. Calculations with a fluid dynamics/heat transfer computer code show that the injected masses limited by plugging are consistent with freezing through the growth of a stable solidified layer (crust) of metal upon the solid tube wall. 23 refs., 5 figs., 2 tabs

  16. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  17. Gas metal arc weldability of 1.5 GPa grade martensitic steels

    Science.gov (United States)

    Hwang, Insung; Yun, Hyeonsang; Kim, Dongcheol; Kang, Munjin; Kim, Young-Min

    2018-01-01

    The gas metal arc weldability of 1.5 GPa grade martensitic (MART) steel was evaluated using both inverter direct current (DC) and DC pulse power type welders, under conditions of different welding currents, welding speeds, and shielding gasses. By investigating the bead appearance, tensile strength, and arc stability, it was determined that DC pulse power is better than inverter DC power for arc welding of 1.3 mm thick 1.5 GPa grade MART steel. Further, from the results of the weldability for various shielding gases, it was determined that mixed shielding gas is more effective for welding 1.5 GPa grade MART steel than is pure inert gas (Ar) or active (CO2) gas. In the case of pure shielding gas, no sound bead was formed under any conditions. However, when the mixed shielding gas was used, sound and fine beads were obtained.

  18. A systematic review and meta-analysis of randomized trials and prospective studies comparing covered and bare self-expandable metal stents for the treatment of malignant obstruction in the digestive tract.

    Science.gov (United States)

    Yang, Zhiping; Wu, Qiong; Wang, Fang; Ye, Xiaofei; Qi, Xingshun; Fan, Daiming

    2013-01-01

    Self-expandable metal stents (SEMS) are widely used for the palliative treatment of malignant gastrointestinal obstruction. Our aim was to evaluate the evidence comparing covered and bare SEMS in the digestive tract using meta-analytical techniques. A literature search was performed using PubMed, Cochrane Library, and Embase databases for comparative studies assessing the two types of stents. The primary outcomes of interest were stent patency and patient survival; second outcomes included technical success, clinical success, tumor ingrowth, tumor overgrowth, and stent migration. A random-effects model was conducted. Pooled analysis was done separately based on the different segments of the digestive tract. Eleven studies (8 randomized controlled trials and 3 prospective cohort studies) including a total of 1376 patients were identified. Covered SEMS were equivalent to bare SEMS in terms of technical success, clinical success, stent patency (gastroduodenal obstruction: HR =0.87, 95% CI 0.53-1.42; colorectal obstruction: HR =0.89, 95% CI 0.18-4.45; biliary obstruction: HR =0.73, 95% CI 0.41-1.32) and survival rates (esophageal obstruction: HR =1.80, 95% CI 0.73-4.44; gastroduodenal obstruction: HR =0.83, 95% CI 0.55-1.26; biliary obstruction: HR =0.99, 95% CI 0.77-1.28), although bare stents were more prone to tumor ingrowth (esophageal obstruction: RR =0.10, 95% CI 0.01-0.77; gastroduodenal obstruction: RR =0.12, 95% CI 0.03-0.55; colorectal obstruction: RR =0.21, 95% CI 0.06-0.70; biliary obstruction: RR =0.21, 95% CI 0.06-0.69), whereas covered stents had the higher risk of stent migration (gastroduodenal obstruction: RR =5.01, 95% CI 1.53-16.43; colorectal obstruction: RR =11.70, 95% CI 2.84-48.27; biliary obstruction: RR =8.11, 95% CI 1.47-44.76) and tumor overgrowth (biliary obstruction: RR =2.03, 95% CI 1.08-3.78). Both covered and bare SEMS are comparable in efficacy for the palliative treatment of malignant obstruction in the digestive tract. Each type of

  19. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  20. Laser cutting performances for thick steel specimens studied by molten metal removal conditions

    International Nuclear Information System (INIS)

    Tamura, Koji; Toyama, Shin'ichi

    2017-01-01

    Laser cutting performances for thick carbon steel and stainless steel specimens up to 300 mm in thickness were studied to dismantle large steel objects. The cutting performances were summarized based on the assist gas flow rate and the front kerf width, and the range for appropriate cutting conditions was shown. Gas pressure in the kerf region required for molten metal removal was estimated from the pressure loss on the kerf surface, which depended on the gas flow rate and the kerf width. The relation to keep sufficient gas pressure in the kerf well corresponded to the experimental relations for appropriate cutting. Drag force to the molten metal on the kerf surface was also estimated, which varied by the structures and materials. The behaviors such as cavity formation and its expansion in the kerf region at the unsuccessful cutting trials were well explained. The results are informative for the development of the laser cutting technology applied to the thick steel specimen for the nuclear decommissioning. (author)

  1. Meta-analysis comparing efficacy and safety of first generation drug-eluting stents to bare-metal stents in patients with diabetes mellitus undergoing primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    De Luca, Giuseppe; Dirksen, Maurits T; Spaulding, Christian

    2013-01-01

    revascularization (hazard ratio 0.42, 95% confidence interval 0.29 to 0.59, p 1 year) with DES. In conclusion, this meta-analysis, based on individual patients' data from 11 randomized trials, showed that among patients with diabetes with STEMIs who undergo primary percutaneous coronary intervention, sirolimus...... with high rates of target vessel revascularization after bare-metal stent (BMS) implantation but also higher rates of ST after DES implantation. Therefore, the aim of this study was to perform a meta-analysis of individual patients' data to evaluate the long-term safety and effectiveness of DES compared......Several concerns have emerged regarding the higher risk for stent thrombosis (ST) after drug-eluting stent (DES) implantation, especially in the setting of ST-segment elevation myocardial infarction (STEMI). Few data have been reported so far in patients with diabetes mellitus, which is associated...

  2. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  3. Measurement of adhesion properties between topcoat paint and metallized/galvanized steel with surface energy measurement equipment.

    Science.gov (United States)

    2013-09-01

    The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...

  4. Characterization of gas metal arc welded hot rolled DP600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Ramazani, A.; Yang, L.; Prahl, U.; Bleck, W. [RWTH Aachen University, Institute for Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2011-12-15

    Dual-phase (DP) steels are suitable candidates for automotive applications due to their high strength and ductility. These advanced mechanical properties result from the special microstructure of the DP steel with 5{proportional_to}20% martensite phase in a soft ferrite matrix. However, during welding, which is an important process in automotive industry, this special microstructure is destroyed. In this research the characterization of Gas Metal Arc (GMA) welded joining zones was performed by optical microscopy and hardness mapping. Tensile tests were also performed keeping the welded portion in the gauge length. Scanning Electron Microscopy (SEM) was used for the fracture investigation. From the characterization and tensile tests, the soften zones were found, which are caused by the tempered martensite and larger ferrite grain size than that in base metal. Furthermore, GMA welding make a large Heat Affected Zone (HAZ). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Computer Simulation of the Formation of Non-Metallic Precipitates During a Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Kalisz D.

    2016-03-01

    Full Text Available The authors own computer software, based on the Ueshima mathematical model with taking into account the back diffusion, determined from the Wołczyński equation, was developed for simulation calculations. The applied calculation procedure allowed to determine the chemical composition of the non-metallic phase in steel deoxidised by means of Mn, Si and Al, at the given cooling rate. The calculation results were confirmed by the analysis of samples taken from the determined areas of the cast ingot. This indicates that the developed computer software can be applied for designing the steel casting process of the strictly determined chemical composition and for obtaining the required non-metallic precipitates.

  6. Evaluation of various metallic coatings on steel to mitigate biofilm formation.

    Science.gov (United States)

    Kanematsu, Hideyuki; Ikigai, Hajime; Yoshitake, Michiko

    2009-02-01

    In marine environments and water systems, it is easy for many structures to form biofilms on their surfaces and to be deteriorated due to the corrosion caused by biofilm formation by bacteria. The authors have investigated the antibacterial effects of metallic elements in practical steels so far to solve food-related problems, using Escherichia coli and Staphylococcus aureus. However, from the viewpoint of material deterioration caused by bacteria and their antifouling measures, we should consider the biofilm behavior as aggregate rather than individual bacterium. Therefore, we picked up Pseudomonas aeruginosa and Pseudoalteromonas carageenovara in this study, since they easily form biofilms in estuarine and marine environments. We investigated what kind of metallic elements could inhibit the biofilm formation at first and then discussed how the thin films of those inhibitory elements on steels could affect biofilm formation. The information would lead to the establishment of effective antifouling measures against corrosion in estuarine and marine environments.

  7. Evaluation of Various Metallic Coatings on Steel to Mitigate Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Hajime Ikigai

    2009-02-01

    Full Text Available In marine environments and water systems, it is easy for many structures to form biofilms on their surfaces and to be deteriorated due to the corrosion caused by biofilm formation by bacteria. The authors have investigated the antibacterial effects of metallic elements in practical steels so far to solve food-related problems, using Escherichia coli and Staphylococcus aureus. However, from the viewpoint of material deterioration caused by bacteria and their antifouling measures, we should consider the biofilm behavior as aggregate rather than individual bacterium. Therefore, we picked up Pseudomonas aeruginosa and Pseudoalteromonas carageenovara in this study, since they easily form biofilms in estuarine and marine environments. We investigated what kind of metallic elements could inhibit the biofilm formation at first and then discussed how the thin films of those inhibitory elements on steels could affect biofilm formation. The information would lead to the establishment of effective antifouling measures against corrosion in estuarine and marine environments.

  8. Effect of the delta ferrite solidification morphology of austenitic steels weld metal on the joint properties

    International Nuclear Information System (INIS)

    Bilmes, P.; Gonzalez, A.; Llorente, C.; Solari, M.

    1996-01-01

    The properties of austenitic stainless steel weld metals are largely influenced by the appearance in the microstructure of delta ferrite of a given morphology. The susceptibility to hot cracks and low temperature toughness are deeply conditioned by the mixed complex austenitic-ferritic structures which depending on the steel chemical composition and on the cooling rate may be developed. The latest research on this issue points out the importance of the sodification mode as regards to the influence in the appearance of delta ferrite of a certain morphology. In fact, it is very important to understand the solidification sequences, the primary solidification modes which are possible and the subsequent solid state transformations to correlate the structural elements of the weld metal with the parameters of the welding process on the one had, and the weld joint properties on the other. (Author) 19 refs

  9. Effect of noble metals on the corrosion of AISI 316L stainless steel in nitric acid

    International Nuclear Information System (INIS)

    Robin, R.; Andreoletti, G.; Fauvet, P.; Terlain, A.

    2004-01-01

    In the spent fuel treatment, the solutions of fission products contain dissolution fines, in particular platinoids. These solutions are stored into AISI 316L stainless steel tanks, and the contact of noble metallic particles such as platinoids with austenitic stainless steels may induce a shift of the steel corrosion potential towards the trans-passive domain by galvanic coupling. In that case, the steel may be polarized up to a potential value above the range of passive domain, that induces an increase of the corrosion current. The galvanic corrosion of AISI 316L stainless steel in contact with different platinoids has been investigated by electrochemical and gravimetric techniques. Two types of tests were conducted in 1 mol/L nitric acid media at 80 deg C: (1) polarization curves and (2) immersion tests with either platinoid powders (Ru, Rh, Pd) or true insoluble dissolution fines (radioactive laboratory test). The results of the study have shown that even if galvanic coupling enhances the corrosion rate by about a factor 10 in these conditions, the corrosion behavior of AISI 316L remains low (a corrosion rate below 6 μm/year, few small intergranular indentations). No specific effect of irradiation and of elements contained in radioactive fines (other than Ru, Rh and Pd) was observed on corrosion behavior. A platinoids-ranking has also been established according to their coupling potential: Ru > Pd > Rh. (authors)

  10. Formation and Chemical Development of Non-metallic Inclusions in Ladle Treatment of Steel

    OpenAIRE

    Beskow, Kristina

    2003-01-01

    The present study was carried out to investigate theformation and chemical development of non-metallic inclusionsduring ladle treatment of steel. To begin with, an investigation of the deoxidation processand the impact of aluminium addition was carried out. For thispurpose, a new experimental setup was constructed. The setupallowed the examination of the deoxidation process as afunction of time by using a quenching technique. Preliminaryexperiments showed that homogeneous nucleation of alumin...

  11. The Globe laid bare

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    If you’re at CERN at the moment, you will certainly have noticed the work under way on the Globe. The structure, which has been in pride of place opposite the Laboratory for over ten years, has never been so completely laid bare. But, as we explained in a previous article (see here), it is all for a good cause. The Globe is built entirely from wood and certain parts of it need to be replaced.   The Globe after the removal of all the sun baffles. Image: Lucien Fortunati. Picture the general structure of the Globe. In simple terms, the building consists of two spheres, one inside the other. The inner sphere houses the Universe of Particles exhibition and the conference room and is connected to the outer sphere by two access ramps. “Each of these two spheres is made up of eighteen large supporting arcs,” explains Amaya Martínez García of the GS department, who is supervising the Globe renovation project. “These eighteen arcs are ...

  12. The Effect of Rare-Earth Metals on Cast Steels

    Science.gov (United States)

    1954-04-01

    sullide inclusions found in two afuminum-Jriffed steefs treated with fire pounds of misch metal per ton of steef (SOOX) 15 manganese sulfides and...deoxidation treatment by ad- ditions in the monorail ladle were better than those not given the secondary deoxidation treatment. The aluminum analyses...Suliur Addition lb/ton Place BHN Area % it-lbs It-lbs Content Regular Secondary Deoxidation (0.028%Ca as CaMnSi + o.ossy.Ai) Added to 300 lb. Monorail

  13. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface ...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear....

  14. Effects of Rare Earth Metal Addition on Wear Resistance of Chromium-Molybdenum Cast Steel

    Directory of Open Access Journals (Sweden)

    Kasinska J.

    2017-09-01

    Full Text Available This paper discusses changes in the microstructure and abrasive wear resistance of G17CrMo5-5 cast steel modified with rare earth metals (REM. The changes were assessed using scanning microscopy. The wear response was determined in the Miller test to ASTM G75. Abrasion tests were supplemented with the surface profile measurements of non-modified and modified cast steel using a Talysurf CCI optical profilometer. It was demonstrated that the modification substantially affected the microstructure of the alloy, leading to grain size reduction and changed morphology of non-metallic inclusions. The observed changes in the microstructure resulted in a three times higher impact strength (from 33 to 99 kJ/cm2 and more than two times higher resistance to cracking (from 116 to 250 MPa. The following surface parameters were computed: Sa: Arithmetic mean deviation of the surface, Sq: Root-mean-square deviation of the surface, Sp: Maximum height of the peak Sv: Maximum depth of the valley, Sz: Ten Point Average, Ssk: Asymmetry of the surface, Sku: Kurtosis of the surface. The findings also indicated that the addition of rare earth metals had a positive effect on the abrasion behaviour of G17CrMo5-5 cast steel.

  15. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    Science.gov (United States)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  16. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  17. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  18. Heparin-bonded covered stents versus bare-metal stents for complex femoropopliteal artery lesions: the randomized VIASTAR trial (Viabahn endoprosthesis with PROPATEN bioactive surface [VIA] versus bare nitinol stent in the treatment of long lesions in superficial femoral artery occlusive disease).

    Science.gov (United States)

    Lammer, Johannes; Zeller, Thomas; Hausegger, Klaus A; Schaefer, Philipp J; Gschwendtner, Manfred; Mueller-Huelsbeck, Stefan; Rand, Thomas; Funovics, Martin; Wolf, Florian; Rastan, Aljoscha; Gschwandtner, Michael; Puchner, Stefan; Ristl, Robin; Schoder, Maria

    2013-10-08

    The hypothesis that endovascular treatment with covered stents has equal risks but higher efficacy than bare-metal stents (BMS) in long femoropopliteal artery disease was tested. Although endovascular treatment of short superficial femoral artery lesions revealed excellent results, efficacy in long lesions remains unsatisfactory. In a prospective, randomized, single-blind, multicenter study, 141 patients with symptomatic peripheral arterial disease were assigned to treatment with heparin-bonded, covered stents (Viabahn 72 patients) or BMS (69 patients). Clinical outcomes and patency rates were assessed at 1, 6, and 12 months. Mean ± SD lesion length was 19.0 ± 6.3 cm in the Viabahn group and 17.3 ± 6.6 cm in the BMS group. Major complications within 30 days were observed in 1.4%. The 12-month primary patency rates in the Viabahn and BMS groups were: intention-to-treat (ITT) 70.9% (95% confidence interval [CI]: 0.58 to 0.80) and 55.1% (95% CI: 0.41 to 0.67) (log-rank test p = 0.11); treatment per-protocol (TPP) 78.1% (95% CI: 0.65 to 0.86) and 53.5% (95% CI: 0.39 to 0.65) (hazard ratio: 2.23 [95% CI: 1.14 to 4.34) (log-rank test p = 0.009). In lesions ≥20 cm, (TransAtlantic Inter-Society Consensus class D), the 12-month patency rate was significantly longer in VIA patients in the ITT analysis (VIA 71.3% vs. BMS 36.8%; p = 0.01) and the TPP analysis (VIA 73.3% vs. BMS 33.3%; p = 0.004). Freedom from target lesion revascularization was 84.6% for Viabahn (95% CI: 0.72 to 0.91) versus 77.0% for BMS (95% CI: 0.63 to 0.85; p = 0.37). The ankle-brachial index in the Viabahn group significantly increased to 0.94 ± 0.23 compared with the BMS group (0.85 ± 0.23; p stents compared with BMS in lesions ≥20 cm and for all lesions in the TPP analysis. In the ITT analysis for all lesions, which was flawed by major protocol deviations in 8.5% of the patients, the difference was not significant. (GORE VIABAHN® endoprosthesis with bioactive propaten surface versus bare

  19. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits

    International Nuclear Information System (INIS)

    Piedras, P.; Arganis J, C. R.

    2014-10-01

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  20. Production of metal fullerene surface layer from various media in the process of steel carbonization

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  1. Soil Heavy Metal Concentrations in Green Space of Mobarake Steel Complex

    Directory of Open Access Journals (Sweden)

    vahid Moradinasab

    2017-01-01

    Full Text Available Introduction: Water shortage in arid and semiarid regions of the world is a cause of serious concerns. The severe water scarcity urges the reuse of treated wastewater effluent and marginal water as a resource for irrigation. Mobarake Steel Complex has been using treated industrial wastewater for drip-irrigation of trees in about 1350 ha of its green space. However, wastewater may contain some amounts of toxic heavy metals, which create problems. Excessive accumulation of heavy metals in agricultural soils through wastewater irrigation may not only result in soil contamination, but also affect food quality and safety. Improper irrigation management, however, can lead to the loss of soil quality through such processes as contamination and salination. Soil quality implies its capacity to sustain biological productivity, maintain environmental quality, and enhance plants, human and animal health. Soil quality assessment is a tool that helps managers to evaluate short-term soil problems and appropriate management strategies for maintaining soil quality in the long time. Mobarakeh Steel Complex has been using treated wastewater for irrigation of green space to combat water shortage and prevent environmental pollution. This study was performed to assess the impact of short- middle, and long-term wastewater irrigation on soil heavy metal concentration in green space of Mobarake Steel complex. Materials and Methods: The impacts of wastewater irrigation on bioavailable and total heavy metal concentrations in the soils irrigated with treated wastewater for 2, 6 and 18 years as compared to those in soils irrigated with groundwater and un-irrigated soils. Soils were sampled from the wet bulb produced by under-tree sprinklers in three depths (0-20, 20-40 and 40-60 cm. Soil samples were air-dried, and crushed to pass through a 2-mm sieve. Plant-available metal concentrations were extracted from the soil with diethylenetriaminepentaacetic acid-CaCl2

  2. Wetting Behavior of Molten AZ61 Magnesium Alloy on Two Different Steel Plates Under the Cold Metal Transfer Condition

    Directory of Open Access Journals (Sweden)

    ZENG Cheng-zong

    2017-04-01

    Full Text Available The wetting behavior and interfacial microstructures of molten magnesium AZ61 alloy on the surface of two different Q235 and galvanized steel plates under the condition of cold metal transfer were investigated by using dynamic sessile drop method. The results show that the wetting behavior is closely related to the wire feed speed. Al-Fe intermetallic layer was observed whether the substrate is Q235 steel or galvanized steel, and the formation of Al-Fe intermetallic layer should satisfy the thermodynamic condition of such Mg-Al/Fe system. The wettability of molten AZ61 magnesium alloy is improved with the increase of wire feed speed whether on Q235 steel surface or on galvanized steel surface, good wettability on Q235 steel surface is due to severe interface reaction when wire feed speed increases, good wettability on galvanized steel surface is attributed to the aggravating zinc volatilization. When the wire feed speed is ≤10.5m·min-1, the wettability of Mg alloy on Q235 steel plate is better than on galvanized steel plate. However, Zn vapor will result in instability for metal transfer process.

  3. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests

    Energy Technology Data Exchange (ETDEWEB)

    Ersoy, Feyzan, E-mail: fersoy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium); Gavrilov, Serguei [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Verbeken, Kim [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium)

    2016-04-15

    Heavy liquid metals such as lead bismuth eutectic (LBE) are chosen as the coolant to innovative Generation IV (Gen IV) reactors where ferritic/martensitic T91 steel is a candidate material for high temperature applications. It is known that LBE has a degrading effect on the mechanical properties of this steel. This degrading effect, which is known as liquid metal embrittlement (LME), has been screened by several tests such as tensile and small punch tests, and was most severe in the temperature range from 300 °C to 425 °C. To meet the design needs, mechanical properties such as fracture toughness should be addressed by corresponding tests. For this reason liquid-metal embrittlement of T91 steel was investigated by fracture toughness tests at 350 °C. Tests were conducted in Ar-5%H{sub 2} and LBE under the same experimental conditions Tests in Ar-5%H{sub 2} were used as reference. The basic procedure in the ASTM E 1820 standard was followed to perform tests and the normalization data reduction (NDR) method was used for the analysis. Comparison of the tests demonstrated that the elastic–plastic fracture toughness (J{sub 1C}) of the material was reduced by a factor in LBE and the fracture mode changed from ductile to quasi-cleavage. It was also shown that the pre-cracking environment played an important role in observing LME of the material since it impacts the contact conditions between LBE and steel at the crack tip. It was demonstrated that when specimens were pre-cracked in air and tested in LBE, wetting of the crack surface by LBE could not be achieved. When specimens were pre-cracked in LBE though, they showed a significant reduction in fracture toughness.

  4. Investigation and Evaluation of Heavy Metals Pollution of Agricultural Soils Near a Steel Plant

    Directory of Open Access Journals (Sweden)

    XIE Tuan-hui

    2018-02-01

    Full Text Available The pollution of heavy metals in farmland around a steel plant in the west of Fujian Province was investigated. The pollution index method, principal component analysis and factor analysis on the pollution of Cr, Pb, Cd, Ni, Cu, Zn and As in the soils were carried out to clarify the pollution status, the main source, the degree, and the distribution of the heavy metals pollution in the soil. The secondary standards for acidic agricultural soils of "soil environmental quality standard"(GB 15618-1995were used as the evaluation criterion. The single factor evaluation results showed that the pollution of soil by Cd and Zn in the investigated area was widespread and serious and the points over standard rate was 100% and 95.5% respectively, while the pollution by Pb, Cu and As was slight and the points over standard rate was 29.6%,15.9% and 6.8% respectively. The soils were not polluted by Cr and Ni. The principal component analysis and factor analysis showed that the correlation between Pb, Cd, Cu, Zn and As was significant and homologous. Therefore, the pollution of Pb, Cd, Cu, Zn and As of the soils should be mainly attributed to the pollutants emitted from the steel plant. The correlation between Cr and Ni was also significant and homologous. It was deduced that Cr and Ni in the soils were largely originated from the soils themselves. The comprehensive pollution degree of the heavy metals in the soils decreased as the distance between the steel plant and farmland increasing. The soils of the fields near the entrance of irrigation water from the waste water of the steel plant were more seriously polluted.

  5. Low temperature fatigue crack propagation in neutron irradiated Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Walls, J.D.; Gravenor, J.

    1981-02-01

    The fast cycling fatigue crack propagation characteristics of Type 316 steel and weld metal have been investigated at 380 0 C after irradiation to 1.72-1.92x10 20 n/cm 2 (E>1MeV) and 2.03x10 21 n/cm 2 (E>1MeV) at the same temperature. With mill-annealed Type 316 steel, modest decreases in the rates of crack propagation were observed for both dose levels considered, whereas for cold-worked Type 316 steel irradiation to 2.03x10 21 n/cm 2 (E>1MeV) caused increases in the rate of crack propagation. For Type 316 weld metal, increases in the rate of crack propagation were observed for both dose levels considered. The diverse influences of irradiation upon fatigue crack propagation in these materials are explained by considering a simple continuum mechanics model of crack propagation together with the results of control tensile experiments made on similarly irradiated materials. (author)

  6. Parameters promoting liquid metal embrittlement of the T91 steel in lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Proriol Serre, I.; Ye, C.; Vogt, J.B.

    2015-01-01

    The use of liquid lead-bismuth eutectic (LBE) as a spallation target and a coolant in accelerator-driven systems raises the question of the reliability of structural materials, such as T91 martensitic steel in terms of liquid metal assisted damage and corrosion. In this study, the mechanical behaviour of the T91 martensitic steel was examined in liquid lead-bismuth eutectic (LBE) and in inert atmosphere. Several conditions showed the most sensitive embrittlement factor. The Small Punch Test technique was employed using smooth specimens. In this standard heat treatment, T91 appeared in general as a ductile material, and became brittle in the considered conditions if the test was performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement (LME) of the T91 steel in LBE. Loading the T91 very slowly instead of rapidly in oxygen saturated LBE resulted in brittle fracture. Furthermore, low-oxygen content in LBE and an increase in temperature promote LME. (authors)

  7. Carburization behavior under the pits induced by metal dusting in 304L and 347 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Hao [Department of Materials Engineering and Science, National Cheng Kung University, Tainan 701, Taiwan (China); Tsai, Wen-Ta, E-mail: wttsai@mail.ncku.edu.tw [Department of Materials Engineering and Science, National Cheng Kung University, Tainan 701, Taiwan (China)

    2009-08-15

    The metal dusting behavior of Type 304L and 347 stainless steels (SSs) in a flowing mixed CO/H{sub 2}/H{sub 2}O gas stream at 600 deg. C was investigated. After exposure in a 35% CO + 60% H{sub 2} + 5% H{sub 2}O gas for 500 h, large pits were formed on both steel surfaces. The aspect ratio of the pits formed in 304L SS was higher than that of the pits formed in 347 SS. The microstructures and chemical compositions of the reaction products and those of the substrate under the pits were examined by using a scanning electron microscope (SEM) combined with an energy dispersive spectrometer (EDS). A Cr-depleted zone containing voids was formed on the outer surface just beneath the pit. Massive matrix carburization and intergranular carbide precipitation were seen for both steels. The experimental results showed that niobium (Nb) could delay the ingress of carbon and retard the metal dusting reaction.

  8. Decommissioning: dismantling of thickwalled steel structures using the contact-arc-metal-drilling technique. Final report

    International Nuclear Information System (INIS)

    Bach, F.W.; Lindemaier, J.; Philipp, E.

    1998-01-01

    1. Status of the technology: Today austenitic steel components with a material thickness of more than 200 mm cannot be cut surely by using conventional thermal cutting techniques. A reduction of the wall thickness, by using an effective cutting technique with low restoring forces, is necessary but not available, now. 2. Objectives: Target of the project was the qualification of the thermal contact-arc-metal-drilling technique, based on the contact-arc-metal-cutting technique for the reduction of the wall thickness of steel components in preparation for other cutting techniques to finish the dismantling task if necessary. 3. Methode: Development of the contact-arc-metal-drilling technique for the production of deep (>200 mm) blind holes with non-circular cross sections. Optimization of the drilling parameters and quantification of the released emissions under a radiological aspect. Development of a monitoring system for the electrode wear and a device for changing weared electrodes automatically. 4. Result: The contact-arc-metal-drilling technique was qualified by producing blind holes with a depth of 230 mm. The aerosols, hydrosols and gas emissions of the process were quantified and various monitoring techniques for the wear of the electrode were tested. A pneumatically aided clamping and changing device for electrodes was designed and tested. 5. Applications: The designed clamping device with its integrated pneumatically aided electrode release can be adapted directly to a tool guiding machine. Using this cutting technique steel components with a material thickness of 230 mm can be reduced to a remaining wall thickness and the released emissions can be estimated. (orig.) [de

  9. Residual Stress Induced Mechanical Property Enhancement in Steel Encapsulated Light Metal Matrix Composites

    Science.gov (United States)

    Fudger, Sean James

    Macro hybridized systems consisting of steel encapsulated light metal matrix composites (MMCs) were produced with the goal of creating a low cost/light weight composite system with enhanced mechanical properties. MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient ductility for many structural applications. The macro hybridized systems take advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Furthermore, a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress method is utilized as a means of improving the ductility of the MMCs and overall efficiency of the macro hybridized systems. Systems consisting of an A36, 304 stainless steel, or NitronicRTM 50 stainless steel shell filled with an Al-SiC, Al-Al2O3, or Mg-B4C MMC are evaluated in this work. Upon cooling from processing temperatures, residual strains are generated due to a CTE mismatch between each of the phases. The resulting systems offer higher specific properties and a more structurally efficient system can be attained. Mechanical testing was performed and improvements in yield stress, ultimate tensile stress, and ductility were observed. However, the combination of these dissimilar materials often results in the formation of intermetallic compounds. In certain loading situations, these typically brittle intermetallic layers can result in degraded performance. X-ray Diffraction (XRD), X-ray Energy Dispersive Spectroscopy (EDS), and Electron Backscatter Diffraction (EBSD) are utilized to characterize the intermetallic layer formation at the interface between the steel and MMC. As the residual stress condition in each phase has a large impact on the mechanical property improvement, accurate quantification of these strains/stresses is

  10. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    International Nuclear Information System (INIS)

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-01-01

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  11. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  12. Use of radioactive indicators for the quantitative determination of non-metall inclusions in steel

    International Nuclear Information System (INIS)

    Rewienska-Kosciuk, B.; Michalik, J.

    1979-01-01

    Methods of determining and investigating the sources of non-metal inclusions in steel are presented together with some results of radiometric investigations. The experience of several years of research in industries as well as profound studies of world literature were used as a basis for systematic and critical discussion of the methods used. Optimum methods have been chosen for the quantitative determination of oxide inclusions and for the identification of their origin (e.g. from the refractory furnace lining, the tap-hole, the runner, the ladle or mold slag). Problems of tracers (type, quantity, condition, activity), of the labelling method suitable for the various origins of inclusions, of sampling, of chemical processing of the material sampled, as well as of radiometric measuring techniques (including possible activation) are discussed. Finally, a method for the determination of inclusions resulting from the deoxidation of steel is briefly outlined. (author)

  13. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  14. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  15. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  16. Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints

    International Nuclear Information System (INIS)

    Shanmugam, K.; Lakshminarayanan, A.K.; Balasubramanian, V.

    2009-01-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on fatigue crack growth behaviour of the gas tungsten arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single 'V' butt welded joints. Centre cracked tensile (CCT) specimens were prepared to evaluate fatigue crack growth behaviour. Servo hydraulic controlled fatigue testing machine was used to evaluate the fatigue crack growth behaviour of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength, hardness and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  17. Standard Practice for Recording Data from Atmospheric Corrosion Tests of Metallic-Coated Steel Specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers a procedure for recording data of atmospheric corrosion tests of metallic-coated steel specimens. Its objective is the assurance of (1) complete identification of materials before testing, (2) objective reporting of material appearance during visual inspections, and (3) adequate photographic, micrographic, and chemical laboratory examinations at specific stages of deterioration, and at the end of the tests. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  19. 16-8-2 weld metal design data for 316L(N) steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l' Energie Atomique, CEA/Saclay, 91191 Gif sur Yvette (France)], E-mail: tavassoli@cea.fr

    2008-12-15

    ITER materials properties documentation is extended to weld metals used for welding Type 316L(N) steel, i.e. the structural material retained for manufacturing ITER major components, such as the vacuum vessel. The data presented here are mainly for the Type 16-8-2 and complete those already reported for the low temperature (Type 316L) and the high temperature (Type 19-12-2) filler metals. The weld metal properties data for Type 16-8-2 filler metal and its joints are collected, sorted and analysed according to the French design and construction rules for nuclear components (RCC-MR). Particular attention is paid to the type of weld metal (e.g. wire for TIG, covered electrode for manual arc, flux wire for automatic welding), as well as, to the weld geometry and welding position. Design allowables are derived from validated data for each category of weld and compared with those of the base metal. In most cases, the analyses performed are extended beyond the conventional analyses required for codes to cover specific needs of ITER. These include effects of exposures to high temperature cycles during component fabrication, e.g. HIPing and low dose neutron irradiation at low and medium temperatures. The ITER Materials Properties Handbook (MPH) is, here, enriched with files for physical and mechanical properties of Type 16-8-2 weld metal. These files, combined with the codification and inspection files, are part of the documentation required for ITER licensing needs. They show that all three weld-metals satisfy the code requirements, provided compositions and types of welds used correspond to those specified in RCC-MR.

  20. Effect of Co deposition on oxidation behavior and electrical properties of ferritic steel for solid oxide fuel cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kruk, A.; Adamczyk, A.; Gil, A. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland); Kąc, S. [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow (Poland); Dąbek, J.; Ziąbka, M. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland); Brylewski, T., E-mail: brylew@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-09-01

    In this work, a Co layer deposited on DIN 50049 steel by means of pulsed laser deposition was applied for the protection of solid oxide fuel cell (SOFC) interconnects operating on the cathode side. The coated and uncoated steel samples were oxidized in air at 1073 K for 500 h, and their microstructures as well as electrical resistances were evaluated using X-ray diffraction, atomic force microscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and the 2-probe 4-point direct current method. It was demonstrated that the Co coating had reduced the oxidation rate of the steel by nearly a half. The area-specific resistance value of the coated steel was 5 × 10{sup −6} Ω·m{sup 2}, which was significantly lower than that of bare steel after 350 h of oxidation at 1073 K. Cr vaporization tests showed that the Co coating was efficient at blocking the outward diffusion of Cr. The obtained results prove that steel coated with a thin film of cobalt was suitable for use as metallic interconnect material in SOFCs operating at intermediate temperatures. - Highlights: • Co layer was deposited on ferritic steel by means of pulsed laser deposition. • Coated and bare ferritic steel samples were exposed to air at 1073 K for 500 h. • Scale growth rate on bare steel is higher than that on coated steel. • Electrical resistance for oxidized coated steel was lower than for bare steel. • Co-coated steel effectively reduced the formation of volatile Cr species.

  1. Joining of molybdenum disilicide to stainless steel using amorphous metal brazes - residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, R.U.; Gallegos, D.E.; Kautz, D.D. [Los Alamos National Lab. (United States)

    2007-07-01

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L joints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS trademark 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainless steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses in the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze). (orig.)

  2. Intra-stent tissue evaluation within bare metal and drug-eluting stents > 3 years since implantation in patients with mild to moderate neointimal proliferation using optical coherence tomography and virtual histology intravascular ultrasound.

    Science.gov (United States)

    Kitabata, Hironori; Loh, Joshua P; Pendyala, Lakshmana K; Omar, Alfazir; Ota, Hideaki; Minha, Sa'ar; Magalhaes, Marco A; Torguson, Rebecca; Chen, Fang; Satler, Lowell F; Pichard, Augusto D; Waksman, Ron

    2014-04-01

    We aimed to compare neointimal tissue characteristics between bare-metal stents (BMS) and drug-eluting stents (DES) at long-term follow-up using optical coherence tomography (OCT) and virtual histology intravascular ultrasound (VH-IVUS). Neoatherosclerosis in neointima has been reported in BMS and in DES. Thirty patients with 36 stented lesions [BMS (n=17) or DES (n=19)] >3years after implantation were prospectively enrolled. OCT and VH-IVUS were performed and analyzed independently. Stents with ≥70% diameter stenosis were excluded. The median duration from implantation was 126.0months in the BMS group and 60.0months in the DES group (p 3years to stents had evidence of intimal disruption. The percentage volume of necrotic core (16.1% [9.7, 20.3] vs. 9.7% [7.0, 16.5], p=0.062) and dense calcium (9.5% [3.8, 13.6] vs. 2.7% [0.4, 4.9], p=0.080) in neointima tended to be greater in BMS-treated lesions. Intra-stent VH-TCFA (BMS vs. DES 45.5% vs. 18.2%, p=0.361) did not differ significantly. At long-term follow-up beyond 3 years after implantation, the intra-stent neointimal tissue characteristics appeared similar for both BMS and DES. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Cold metal transfer spot plug welding of AA6061-T6-to-galvanized steel for automotive applications

    International Nuclear Information System (INIS)

    Cao, R.; Huang, Q.; Chen, J.H.; Wang, Pei-Chung

    2014-01-01

    Highlights: • Two Al-to-galvanized steel spot plug welding joints were studied by CMT method. • The optimum process variables for the two joints were gotten by orthogonal test. • Connection mechanism of the two joints were discussed. -- Abstract: In this study, cold metal transfer (CMT) spot plug joining of 1 mm thick Al AA6061-T6 to 1 mm thick galvanized steel (i.e., Q235) was studied. Welding variables were optimized for a plug weld in the center of a 25 mm overlap region with aluminum 4043 wire and 100% argon shielding gas. Microstructures and elemental distributions were characterized by scanning electron microscopy with energy dispersive X-ray spectrometer. Mechanical testing of CMT spot plug welded joints was conducted. It was found that it is feasible to join Al AA6061T6-to-galvanized steel by CMT spot plug welding method. The process variables for two joints with Al AA6061T6-to-galvanized mild steel and galvanized mild steel-to-Al AA6061T6 are optimized. The strength of CMT spot welded Al AA6061T6-to-galvanized mild steel is determined primarily by the strength and area of the brazed interface. While, the strength of the galvanized mild steel-to-Al AA6061T6 joint is mainly dependent upon the area of the weld metal

  4. Metal magnetic memory effect caused by static tension load in a case-hardened steel

    International Nuclear Information System (INIS)

    Shi, C.L.; Dong, S.Y.; Xu, B.S.; He, P.

    2010-01-01

    For investigating the magnetic abnormality influenced by stress in ferromagnetic materials, static tension tests on a case-hardened steel were carried out. Different loads, which covered tensile elastic loads up to plastic deformation and break, were applied. Meanwhile, the normal component of magnetic flux leakage, H p (y), was measured by metal magnetic memory testing. The results indicate that H p (y) values change with the tensile loads and positions. There exists a relationship between k, which is the inclination of the linear amplitude-locus magnetic flux leakage curve, and static tension load. A simple model is derived. Additionally, the mechanism of the magnetic memory effect can be explained by the theory of the interaction between dislocations and domains. The research provides the potential possibility of quantitative inspection for metal magnetic memory testing.

  5. Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate: Parametric Investigation

    Science.gov (United States)

    Imran, M. Khalid; Masood, S. H.; Brandt, Milan

    2015-12-01

    Over the past decade, researchers have demonstrated interest in tribology and prototyping by the laser aided material deposition process. Laser aided direct metal deposition (DMD) enables the formation of a uniform clad by melting the powder to form desired component from metal powder materials. In this research H13 tool steel has been used to clad on a copper alloy substrate using DMD. The effects of laser parameters on the quality of DMD deposited clad have been investigated and acceptable processing parameters have been determined largely through trial-and-error approaches. The relationships between DMD process parameters and the product characteristics such as porosity, micro-cracks and microhardness have been analysed using scanning electron microscope (SEM), image analysis software (ImageJ) and microhardness tester. It has been found that DMD parameters such as laser power, powder mass flow rate, feed rate and focus size have an important role in clad quality and crack formation.

  6. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  7. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-05-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  8. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-04-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  9. Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel

    Science.gov (United States)

    Yang, Z.; Debroy, T.

    1999-06-01

    Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.

  10. Properties, microstructure and resistance to metal corrosion from pure runoff of supermartensitic stainless steel

    International Nuclear Information System (INIS)

    Zappa, S; Burgueno, A; Svoboda, H. G; Ramini de Rissone, M; Surian, E. S

    2008-01-01

    Supermartensitic stainless steels (AISM) are characterized by their very low carbon content, providing good tenacity and weldability. They also contain Ni as a stabilizing agent of the austenite and Mo to improve corrosion resistance. The weldability of these materials is fundamentally important for their applications, mainly in the gas and oil industries. The presence of CO 2 , H 2 S, water with a high solids content and condensed water in the production of hydrocarbons together with the large amounts of Cl in these aqueous phases make localized corrosion one of the mechanisms for the degradation of these steels while in service. The protective gases used in the semiautomatic welding process with heavy or tubular wires (GMAW, FCAW) affect the chemical composition of the deposits, particularly the contents of C, O and N, generating variations in their properties. The mechanical properties of these steels are usually optimized after a post-welding heat treatment (PWHT), which may also significantly affect the corrosion resistance of the welding deposits. This work studied the influence of the welding procedure (protective gas and PWHT) on corrosion resistance from pitting of the unalloyed AISM metal. Two test pieces of unalloyed metal were welded according to ANSI/AWS A5.22-95 with a GMAW process using a 1.2 mm diameter tubular wire with metal filling that deposits a supermartensitic stainless steel. The effect of the gas protection was evaluated, welding one of the test pieces with Ar- 5%He and the other with Ar-18%CO 2 . The effect of the PWHT was analyzed, for which samples were extracted from each welded test piece, which were thermally treated at 650 o C for 15 minutes, producing as-welded (AW) samples and with PWHT. The chemical composition for both welding conditions was determined. Microstructural characterization was carried out for the four conditions , using optic and scanning electron microscopy and X-ray diffraction, and the Vickers microhardness was

  11. Creep behaviour of austenitic stainless steels, base and weld metals used in liquid metal fast breeder reactors, during temperature variations

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1982-07-01

    Creep rupture and deformation during temperature variations have been studied for 316 austenitic steel, base and weld metals. Loaded specimens were heated to 900 0 C or 1000 0 C and maintained at this temperature for different durations. The heating rate to these temperatures was between 5 and 50 0 C h -1 , whilst the cooling rate was between 5 and 20 0 C h -1 . The above tests were coupled with short time creep and tensile tests (straining rate 10 -2 h -1 to 10 3 h -1 ) at constant temperature. These tests were used for predicting the creep behaviour of the materials under changing temperature condition. The predictions were in good agreement with the changing temperature and creep experimental results. In addition, a correlation between certains tensile properties, such as the rupture time as a function of stress was observed at high temperature

  12. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2018-06-01

    The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

  13. Monitoring of the Deposition of PAHs and Metals Produced by a Steel Plant in Taranto (Italy

    Directory of Open Access Journals (Sweden)

    M. Amodio

    2014-01-01

    Full Text Available A high time-resolved monitoring campaign of bulk deposition of PAHs and metals was conducted near the industrial area and at an urban background site in province of Taranto (Italy in order to evaluate the impact of the biggest European steel plant. The deposition fluxes of the sum of detected PAHs at the industrial area ranged from 92 to 2432 ng m−2d−1. In particular the deposition fluxes of BaP, BaA, and BkF were, on average, 10, 14, and 8 times higher than those detected at the urban background site, respectively. The same finding was for metals. The deposition fluxes of Ni (19.8 µg m−2 d−1 and As (2.2 µg m−2 d−1 at the industrial site were about 5 times higher than those at the urban background site, while the deposition fluxes of Fe (57 mg m−2d−1 and Mn (1.02 mg m−2d−1 about 31 times higher. Precipitation and wind speed played an important role in PAH deposition fluxes. Fe and Mn fluxes at the industrial site resulted high when wind direction favored the transport of air masses from the steel plant to the receptor site. The impact of the industrial area was also confirmed by IP/(IP + BgP, IP/BgP, and BaP/BgP diagnostic ratios.

  14. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2018-03-01

    The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

  15. Assessing mechanical properties of the dissimilar metal welding between P92 steels and alloy 617 at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Hwang, J. H.; Park, Y. S.; Kim, T. M.; Bae, D. H. [Sungkyunkwan University, Suwon (Korea, Republic of); Seo, W. B. [Institute of Mechanical Engineering, Yeungnam University, Daegu (Korea, Republic of); Han, J. W. [School of Mechanical Engineering, Hoseo University, Cheonan (Korea, Republic of)

    2016-10-15

    In this study, a new welding technology of dissimilar materials, Cr-based P92 steels and Ni-based Alloy 617 is introduced and demonstrated to investigate its reliability. Firstly, multi-pass dissimilar metal welding between P92 steel and Alloy 617 was performed using DCEN TIG welding technology, buttering welding technique and a narrow gap groove. After welding, in order to understand characteristics of the dissimilar metal welds, metallurgical micro-structures analysis by optical observation and static tensile strength assessment of the dissimilar welded joints were conducted at 700°C.

  16. Metal dust exposure and lung function deterioration among steel workers: an exposure-response relationship.

    Science.gov (United States)

    Hamzah, Nurul Ainun; Mohd Tamrin, Shamsul Bahri; Ismail, Noor Hassim

    2016-07-01

    Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases. A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV 1 , FVC, and %FEV 1 /FVC) were determined using spirometer. Exposure to cobalt and chromium were 1-3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV 1 , FVC, and %FEV 1 /FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV 1 /FVC (Adj b = -1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours. There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers.

  17. Bare coordination: the semantic shift

    OpenAIRE

    de Swart, Henriette; Le Bruyn, Bert

    2014-01-01

    This paper develops an analysis of the syntax-semantics interface of two types of split coordination structures. In the first type, two bare singular count nouns appear as arguments in a coordinated structure, as in bride and groom were happy. We call this the N&N construction. In the second type, the determiner shows agreement with the first conjunct, while the second conjunct is bare, as in the Spanish example el hornero y hornera cobraban en panes (‘thesg.m bakersg.m and bakersg.f werepl p...

  18. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition

    International Nuclear Information System (INIS)

    Shah, Kamran; Haq, Izhar ul; Khan, Ashfaq; Shah, Shaukat Ali; Khan, Mushtaq; Pinkerton, Andrew J

    2014-01-01

    Highlights: • Functionally graded steel and nickel super-alloy structures have been developed. • Mechanical properties of FGMs can be controlled by process input parameters. • SDAS is strongly dependent on the laser power and powder mass flow rate. • Carbides provide a mechanism to control the hardness and wear resistance of FGM. • Tensile strength of FGM is dependent on the laser power and powder mass flow rate. - Abstract: Laser direct metal deposition (LDMD) has developed from a prototyping to a single and multiple metals manufacturing technique. It offers an opportunity to produce graded components, with differing elemental composition, phase and microstructure at different locations. In this work, continuously graded Stainless Steel 316L and Inconel 718 thin wall structures made by direct laser metal deposition process have been explored. The paper considers the effects of process parameters including laser power levels and powder mass flow rates of SS316L and Inconel 718 during the deposition of the Steel–Ni graded structures. Microstructure characterisation and phase identification are performed by optical microscopy and X-ray diffraction techniques. Mechanical testing, using methods such as hardness, wear resistance and tensile testing have been carried out on the structures. XRD results show the presence of the NbC and Fe 2 Nb phases formed during the deposition. The effect of experimental parameters on the microstructure and physical properties are determined and discussed. Work shows that mechanical properties can be controlled by input parameters and generation of carbides provides an opportunity to selectively control the hardness and wear resistance of the functionally graded material

  19. Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels

    Science.gov (United States)

    2012-03-01

    stainless steel and ferritic/ martensitic steel can vary from structural and support components in the reactor core to reactor fuel...of ferritic/ martensitic steels compared to type 316 stainless steel after irradiation in Experimental Breeder Reactor-II at 420 ºC to ~80dpa (From...ferritic martensitic steel at Sandia National Laboratories. The 316 stainless steel had a certified composition of:

  20. Bare coordination: the semantic shift

    NARCIS (Netherlands)

    de Swart, Henriette; Le Bruyn, Bert

    2014-01-01

    This paper develops an analysis of the syntax-semantics interface of two types of split coordination structures. In the first type, two bare singular count nouns appear as arguments in a coordinated structure, as in bride and groom were happy. We call this the N&N construction. In the second type,

  1. Microchemical Analysis of Non-Metallic Inclusions in C-Mn Steel Shielded Metal Arc Welds by Analytical Transmission Electron Microscopy.

    Science.gov (United States)

    1998-06-01

    transformation ( CCT ) diagram Figure 2.2. The microstructures that develop are determined by the cooling rate, alloying element and oxygen content of the weld...TIME Figure 2.2 CCT Diagram for the weld metal of low-carbon, low-alloy steels [From Ref. 2] To assist material scientists in microstructure

  2. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study

    Science.gov (United States)

    Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin

    2014-07-01

    Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.

  3. Physically based multiscale-viscoplastic model for metals and steel alloys: Theory and computation

    Science.gov (United States)

    Abed, Farid H.

    The main requirement of large deformation problems such as high-speed machining, impact, and various primarily metal forming, is to develop constitutive relations which are widely applicable and capable of accounting for complex paths of deformation. Achieving such desirable goals for material like metals and steel alloys involves a comprehensive study of their microstructures and experimental observations under different loading conditions. In general, metal structures display a strong rate- and temperature-dependence when deformed non-uniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no 'material length scales'. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. Physically based vicoplasticity models for different types of metals (body centered cubic, face centered cubic and hexagonal close-packed) and steel alloys are derived in this work for this purpose. We adopt a multi-scale, hierarchical thermodynamic consistent framework to construct the material constitutive relations for the rate-dependent behavior. The concept of thermal activation energy, dislocations interactions mechanisms and the role of dislocations dynamics in crystals are used in the derivation process taking into consideration the contribution of the plastic strain evolution of dislocation density to the flow stress of polycrystalline metals. Material length scales are implicitly introduced into the governing equations through material rate-dependency (viscosity). The proposed framework is implemented into the commercially well-known finite element software ABAQUS. The finite element simulations of material

  4. The short- and long-term outcomes of percutaneous intervention with drug-eluting stent vs bare-metal stent in saphenous vein graft disease: An updated meta-analysis of all randomized clinical trials.

    Science.gov (United States)

    Kheiri, Babikir; Osman, Mohammed; Abdalla, Ahmed; Ahmed, Sahar; Bachuwa, Ghassan; Hassan, Mustafa

    2018-05-11

    The use of drug-eluting stents (DES) vs bare-metal stents (BMS) in saphenous vein graft (SVG) lesions remains controversial. We conducted a meta-analysis of all randomized clinical trials comparing the outcomes of DES with BMS in SVG percutaneous coronary interventions. A search of PubMed, Embase, the Cochrane Register of Controlled Trials, and Clinicaltrials.gov was performed for all randomized clinical trials. We evaluated the short- and long-term clinical outcomes of the following: all-cause mortality, major adverse cardiovascular events (MACE), definite/probable stent thrombosis, target lesion revascularization (TLR), and target-vessel revascularization (TVR). From a total of 1582 patients in 6 randomized clinical trials, 797 had DES and 785 had BMS. Patients with DES had lower short-term MACE, TLR, and TVR in comparison with BMS (odds ratio [OR]: 0.56, 95% confidence interval [CI]: 0.35-0.91, P = 0.02; OR: 0.43, 95% CI: 0.19-0.99, P = 0.05; and OR: 0.45, 95% CI: 0.22-0.95, P = 0.04, respectively). However, there were no different outcomes for all-cause mortality (P = 0.63) or stent thrombosis (P = 0.21). With long-term follow-up, there were no significant reductions of MACE (P = 0.20), TLR (P = 0.57), TVR (P = 0.07), all-cause mortality (P = 0.29), and stent thrombosis (P = 0.76). The use of DES in SVG lesions was associated with lower short-term MACE, TLR, and TVR in comparison with BMS. However, there were no significant differences with long-term follow-up. © 2018 Wiley Periodicals, Inc.

  5. Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: results from a registry of 18,334 patients.

    Science.gov (United States)

    Tada, Tomohisa; Byrne, Robert A; Simunovic, Iva; King, Lamin A; Cassese, Salvatore; Joner, Michael; Fusaro, Massimiliano; Schneider, Simon; Schulz, Stefanie; Ibrahim, Tareq; Ott, Ilka; Massberg, Steffen; Laugwitz, Karl-Ludwig; Kastrati, Adnan

    2013-12-01

    This study sought to compare the risk of stent thrombosis among patients treated with bare-metal stents (BMS), first-generation drug-eluting stents (G1-DES), and second-generation drug-eluting stents (G2-DES) for a period of 3 years. In patients undergoing coronary stenting, there is a scarcity of long-term follow-up data on cohorts large enough to compare rates of stent thrombosis across the stent generations. A total of 18,334 patients undergoing successful coronary stent implantation from 1998 to 2011 at 2 centers in Munich, Germany, were included in this study. Patients were stratified into 3 groups according to treatment with BMS, G1-DES, and G2-DES. The cumulative incidence of definite stent thrombosis at 3 years was 1.5% with BMS, 2.2% with G1-DES, and 1.0% with G2-DES. On multivariate analysis, G1-DES compared with BMS showed a significantly higher risk of stent thrombosis (odds ratio [OR]: 2.05; 95% confidence interval [CI]: 1.47 to 2.86; p stent thrombosis compared with BMS (OR: 0.82; 95% CI: 0.56 to 1.19; p = 0.30). Beyond 1 year, the risk of stent thrombosis was significantly increased with G1-DES compared with BMS (OR: 4.72; 95% CI: 2.01 to 11.1; p stenting, compared with BMS, there was a significant excess risk of stent thrombosis at 3 years with G1-DES, driven by an increased risk of stent thrombosis events beyond 1 year. G2-DES were associated with a similar risk of stent thrombosis compared with BMS. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Stent coverage and neointimal proliferation in bare metal stents postdilated with a Paclitaxel-eluting balloon versus everolimus-eluting stents: prospective randomized study using optical coherence tomography at 6-month follow-up.

    Science.gov (United States)

    Poerner, Tudor C; Otto, Sylvia; Gassdorf, Johannes; Nitsche, Kristina; Janiak, Florian; Scheller, Bruno; Goebel, Björn; Jung, Christian; Figulla, Hans R

    2014-12-01

    In this randomized trial, strut coverage and neointimal proliferation of a therapy of bare metal stents (BMSs) postdilated with the paclitaxel drug-eluting balloon (DEB) was compared with everolimus drug-eluting stents (DESs) at 6-month follow-up using optical coherence tomography. We hypothesized sufficient stent coverage at follow-up. A total of 105 lesions in 90 patients were treated with either XIENCE V DES (n=51) or BMS postdilated with the SeQuent Please DEB (n=54). At follow-up, comparable results on the primary optical coherence tomography end point (percentage uncovered struts 5.64±9.65% in BMS+DEB versus 4.93±9.29% in DES; P=0.366) were found. Thus, BMS+DEB achieved the prespecified noninferiority margin of 5% uncovered struts versus DES (difference between treatment means, 0.71%; one-sided upper 95% confidence interval, 4.14%; noninferiority P=0.04). Optical coherence tomography analysis showed significantly more global neointimal proliferation in the BMS+DEB group (15.7±7.8 versus 11.0±5.2 mm(3) proliferation volume/cm stent length; P=0.002). No significant focal in-stent stenosis analyzed with angiography (percentage diameter stenosis at follow-up, 22.8±11.9 versus 16.9±10.4; P=0.014) and optical coherence tomography (peak local area stenosis, 39.5±13.8% versus 36.8±15.6%; P=0.409) was found. Good stent strut coverage of >94% was found in both therapy groups. Despite greater suppression of global neointimal growth in DES, both DES and BMS+DEB effectively prevented clinically relevant focal restenosis at 6-month follow-up. http://www.clinicaltrials.gov. Unique identifier: NCT01056744. © 2014 American Heart Association, Inc.

  7. The sirolimus-eluting Cypher Select coronary stent for the treatment of bare-metal and drug-eluting stent restenosis: insights from the e-SELECT (Multicenter Post-Market Surveillance) registry.

    Science.gov (United States)

    Abizaid, Alexandre; Costa, J Ribamar; Banning, Adrian; Bartorelli, Antonio L; Dzavik, Vladimir; Ellis, Stephen; Gao, Runlin; Holmes, David R; Jeong, Muyng Ho; Legrand, Victor; Neumann, Franz-Josef; Nyakern, Maria; Orlick, Amy; Spaulding, Christian; Worthley, Stephen; Urban, Philip M

    2012-01-01

    This study sought to compare the 1-year safety and efficacy of Cypher Select or Cypher Select Plus (Cordis Corporation, Bridgewater, New Jersey) sirolimus-eluting stents (SES) with the treatment of bare-metal stents (BMS) and drug-eluting stent (DES) in-stent restenosis (ISR) in nonselected, real-world patients. There is paucity of consistent data on DES for the treatment of ISR, especially, DES ISR. The e-SELECT (Multicenter Post-Market Surveillance) registry is a Web-based, multicenter and international registry encompassing virtually all subsets of patients and lesions treated with at least 1 SES during the period from 2006 to 2008. We enrolled in this pre-specified subanalysis all patients with at least 1 clinically relevant BMS or DES ISR treated with SES. Primary endpoint was major adverse cardiac events and stent thrombosis rate at 1 year. Of 15,147 patients enrolled, 1,590 (10.5%) presented at least 1 ISR (BMS group, n = 1,235, DES group, n = 355). Patients with DES ISR had higher incidence of diabetes (39.4% vs. 26.9%, p target lesion revascularization and definite/probable late stent thrombosis were higher in patients with DES ISR (6.9% vs. 3.1%, p = 0.003, and 1.8% vs. 0.5%, p = 0.04, respectively). Use of SES for either BMS or DES ISR treatment is safe and associated with low target lesion revascularization recurrence and no apparent safety concern. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  9. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  10. Studies on microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work is aimed at studying the microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc (SMA) welds made with Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microstructures of the welds were characterized using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and electron back scattered diffraction (EBSD) mainly to determine the morphology, phase analysis, grain size and orientation image mapping. Hardness, tensile and ductility bend tests were carried out to determine mechanical properties. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance using a GillAC basic electrochemical system. Constant load type testing was carried out to study stress corrosion cracking (SCC) behaviour of welds. The investigation results shown that the selected Cr–Mn–N type electrode resulted in favourable microstructure and completely solidified as single phase coarse austenite. Mechanical properties of SMA welds are found to be inferior when compared to that of base metal and is due to coarse and dendritic structure.

  11. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    Science.gov (United States)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  12. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    International Nuclear Information System (INIS)

    Contreras R, A.; Arganis J, C. R.; Aguilar T, J. A.; Medina A, A. L.

    2010-10-01

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  13. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power

  14. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  15. Characterization of the dissimilar welding - austenitic stainless steel with filler metal of the nickel alloy

    International Nuclear Information System (INIS)

    Soares, Bruno Amorim; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa

    2007-01-01

    In elevated temperature environments, austenitic stainless steel and nickel alloy has a superior corrosion resistance due to its high Cr content. Consequently, this alloys is widely used in nuclear reactors components and others plants of energy generation that burn fossil fuel or gas, chemical and petrochemical industries. The object of the present work was to research the welding of AISI 304 austenitic stainless steel using the nickel alloy filler metals, Inconel 625. Gas tungsten arc welding, mechanical and metallographic tests, and compositional analysis of the joint were used. A fundamental investigation was undertaken to characterize fusion boundary microstructure and to better understand the nature and character of boundaries that are associated with cracking in dissimilar welds. The results indicate that the microstructure of the fusion zone has a dendritic structure, inclusions, and precipitated phases containing Ti and Nb are present in the inter-dendritic region. In some parts near to the fusion line it can be seen a band in the weld, probably a eutectic phase with lower melting point than the AISI 304, were the cracking may be beginning by stress corrosion. (author)

  16. TRANSITION METAL OXIDES AS MATERIALS FOR ADDITIVE LASER MARKING ON STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Mihail Stoyanov Mihalev

    2017-09-01

    Full Text Available The product information plays an important role in the improvement of the manufacturing, allowing the tracking of the part through the full life cycle. Laser marking is one of the most versatile techniques for this purpose. In this paper, a modification of the powder bed selective laser melting for additive laser marking of stainless steel parts is presented. This modification is based on the use of only one transition metal oxide chemically bonded to the stainless steel substrate, without using any additional materials and cleaning substances. The resulting additive coatings, produced from initial MoO3 and WO3 powders, show strong adhesion, high hardness, long durability and a high optical contrast. For estimation of the chemical and structural properties, the Raman and X-Ray Diffraction (XRD spectroscopy have been implemented. A computer model of the process of the laser melting and re-solidification has been developed as well. A comparative analysis of the properties of both (MoO3 and WO3 additive coatings has been performed. An attempt for a qualitative explanation of the thermo-chemical phenomena during the marking process has been undertaken.

  17. Evaluation of liquid metal embrittlement of stainless steel 304 by cadmium and cadmium-aluminum solutions

    International Nuclear Information System (INIS)

    Iyer, N.C.; Peacock, H.B.; Thomas, J.K.; Begley, J.A.

    1994-01-01

    The susceptibility of stainless steel 304 (SS304) to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The safety rod test data and destructive examination of the specimens indicated that LME was not the failure mode. The available literature data also suggest that austenitic stainless steels are not particularly susceptible to LME by Cd or Cd-Al solutions. However, the literature data is not conclusive and an experimental study was therefore conducted to examine the susceptibility of SS304 to LME by Cd and Cd-Al solutions. Temperatures from 325 to 600 C and strain rates from 1x10 -6 to 5x10 -5 s -1 were of interest in this evaluation. Tensile tests carried out in molten Cd-Al and Cd solutions over these temperatures and strain rates with both smooth bar and notched specimens showed no evidence of LME. U-bend tests conducted in liquid Cd at 500 and 600 C also showed no evidence of LME. It is concluded that SS304 is not subject to LME by Cd or Cd-Al solutions over the range of temperatures and strain rates of interest. ((orig.))

  18. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    Science.gov (United States)

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

  19. Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering

    Science.gov (United States)

    Jelis, Elias; Clemente, Matthew; Kerwien, Stacey; Ravindra, Nuggehalli M.; Hespos, Michael R.

    2015-03-01

    Direct metal laser sintering (DMLS) was used to produce high-strength low-alloy 4340 steel specimens. Mechanical and metallurgical analyses were performed on the specimens to determine the samples with the highest strengths and the least porosity. The optimal process parameters were thus defined based on the corresponding experimental conditions. Additionally, the effects of fabricating specimens with both virgin and recycled powders were studied. Scanning electron microscopy and electron-dispersive spectroscopy were performed on both types of powders to determine the starting morphology and composition. The initial tensile results are promising, suggesting that DMLS can produce specimens equal in strength to wrought materials. However, there is evidence of cracking on several of the heat-treated tensile specimens that is unexplained. Several theories point to disturbances in the build chamber environment that went undetected while the specimens were being fabricated.

  20. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel

    International Nuclear Information System (INIS)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-01-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs

  1. Characterization and modelling techniques for gas metal arc welding of DP 600 sheet steels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Prahl, U.; Bleck, W. [RWTH Aachen University, Department of Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2010-11-15

    The objectives of the present work are to characterize the Gas Metal Arc Welding process of DP 600 sheet steel and to summarize the modelling techniques. The time-temperature evolution during the welding cycle was measured experimentally and modelled with the softwaretool SimWeld. To model the phase transformations during the welding cycle dilatometer tests were done to quantify the parameters for phase field modelling by MICRESS {sup registered}. The important input parameters are interface mobility, nucleation density, etc. A contribution was made to include austenite to bainite transformation in MICRESS {sup registered}. This is useful to predict the microstructure in the fast cooling segments. The phase transformation model is capable to predict the microstructure along the heating and cooling cycles of welding. Tensile tests have shown the evidence of failure at the heat affected zone, which has the ferrite-tempered martensite microstructure. (orig.)

  2. Determination of Different Metals in Steel Waste Samples Using laser Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. H. Bakry

    2007-12-01

    Full Text Available Elemental analysis of waste samples collected from steel products manufacturing plant (SPS located at industrial city of Jeddah, Saudi-Arabia has been carried out using Laser Induced Breakdown Spectroscopy (LIBS. The 1064 nm laser radiations from a Nd:YAG laser at an irradiance of 7.6  1010 W cm –2 were used. Atomic emission spectra of the elements present in the waste samples were recorded in the 200 – 620 nm region. Elements such as Fe, W, Ti, Al, Mg, Ca, S, Mn, and Na were detected in these samples. Quantitative determination of the elemental concentration was obtained for these metals against certified standard samples. Parametric dependences of LIBS signal intensity on incident laser energy and time delay between the laser pulse and data acquisition system were also carried out.

  3. Removal of Heavy Metals from Steel Making Waste Water by Using Electric Arc Furnace Slag

    Directory of Open Access Journals (Sweden)

    C. L. Beh

    2012-01-01

    Full Text Available This work investigated the reduction of chemical oxygen demand (COD, biological oxygen demand (BOD, total suspended solids (TSS and the concentration of heavy metals of wastewater from a steel making plant. Adsorption experiments were carried out by electric arc furnace slag (EAFS in a fixed-bed column mode. The raw wastewater did not meet the standard B limitations, having high values of BOD, COD, TSS, Iron, Zinc, Manganese and Copper. After passing through the fixed bed column, BOD, COD and TSS values decreased to 1.6, 6.3 and <2 mgL-1, respectively while the concentration of Iron, Zinc, Manganese and Copper were 0.08, 0.01, 0.03 and 0.07 mgL-1, respectively. The results confirmed that EAFS can be used as an efficient adsorbent for producing treated water that comply with the Standard B limitations for an industrial effluent.

  4. Effects of heat input on pitting corrosion in super duplex stainless steel weld metals

    Science.gov (United States)

    Shin, Yong taek; Shin, Hak soo; Lee, Hae woo

    2012-12-01

    Due to the difference in reheating effects depending on the heat input of subsequent weld passes, the microstructure of the weld metal varies between acicular type austenite and a mixture of polygonal type and grain boundary mixed austenite. These microstructural changes may affect the corrosion properties of duplex stainless steel welds. This result indicates that the pitting resistance of the weld can be strongly influenced by the morphology of the secondary austenite phase. In particular, the ferrite phase adjacent to the acicular type austenite phase shows a lower Pitting Resistance Equivalent (PRE) value of 25.3, due to its lower chromium and molybdenum contents, whereas the secondary austenite phase maintains a higher PRE value of more than 38. Therefore, it can be inferred that the pitting corrosion is mainly due to the formation of ferrite phase with a much lower PRE value.

  5. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    Science.gov (United States)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  6. Effect of post-weld heat treatment and neutron irradiation on a dissimilar-metal joint between F82H steel and 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Haiying, E-mail: haigirl1983@gmail.com [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); Nagasaka, Takuya [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); National Institute for Fusion Science, Toki (Japan); Kometani, Nobuyuki [Nagoya University, Nagoya (Japan); Muroga, Takeo [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); National Institute for Fusion Science, Toki (Japan); Guan, Wenhai; Nogami, Shuhei; Yabuuchi, Kiyohiro; Iwata, Takuya; Hasegawa, Akira [Tohoku University, Sendai (Japan); Yamazaki, Masanori [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University (Japan); Kano, Sho; Satoh, Yuhki; Abe, Hiroaki [Institute for Materials Research, Tohoku University, Sendai (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho (Japan)

    2015-10-15

    Highlights: • Significant hardening after neutron irradiation at 300 °C for 0.1 dpa was found in the fine-grain HAZ of F82H for the dissimilar-metal joint between F82H and 316L. • The possible hardening mechanism was explained from the viewpoint of carbon behavior. • However, the significant hardening did not degrade the impact property significantly. - Abstract: A dissimilar-metal joint between F82H steel and 316L stainless steel was fabricated by using electron beam welding (EBW). By microstructural analysis and hardness test, the heat-affected zone (HAZ) of F82H was classified into interlayer area, fine-grain area, and coarse-carbide area. Post-weld heat treatment (PWHT) was applied to control the hardness of HAZ. After PWHT at 680 °C for 1 h, neutron irradiation at 300 °C with a dose of 0.1 dpa was carried out for the joint in Belgian Reactor II (BR-II). Compared to the base metals (BMs) and weld metal (WM), significant irradiation hardening up to 450HV was found in the fine-grain HAZ of F82H. However, the impact property of F82H-HAZ specimens, which was machined with the root of the V-notch at HAZ of F82H, was not deteriorated obviously in spite of the significant irradiation hardening.

  7. Magnetic resonance imaging of an equine fracture model containing stainless steel metal implants.

    Science.gov (United States)

    Pownder, S L; Koff, M F; Shah, P H; Fortier, L A; Potter, H G

    2016-05-01

    Post operative imaging in subjects with orthopaedic implants is challenging across all modalities. Magnetic resonance imaging (MRI) is preferred to assess human post operative musculoskeletal complications, as soft tissue and bones are evaluated without using ionising radiation. However, with conventional MRI pulse sequences, metal creates susceptibility artefact that distorts anatomy. Assessment of the post operative equine patient is arguably more challenging due to the volume of metal present, and MRI is often not performed in horses with implants. Novel pulse sequences such as multiacquisition variable resonance image combination (MAVRIC) now provide improved visibility in the vicinity of surgical-grade implants and offer an option for imaging horses with metal implants. To compare conspicuity of regional anatomy in an equine fracture-repair model using MAVRIC, narrow receiver bandwidth (NBW) fast spin echo (FSE), and wide receiver bandwidth (WBW) FSE sequences. Nonrandomised in vitro experiment. MAVRIC, NBW FSE and WBW FSE were performed on 9 cadaveric distal limbs with fractures and stainless steel implants in the third metacarpal bone and proximal phalanx. Objective measures of artefact reduction were performed by calculating the total artefact area in each transverse image as a percentage of the total anatomic area. The number of transverse images in which fracture lines were visible was tabulated for each sequence. Regional soft tissue conspicuity was assessed subjectively. Overall anatomic delineation was improved using MAVRIC compared with NBW FSE; delineation of structures closest to the metal implants was improved using MAVRIC compared with WBW FSE and NBW FSE. Total artefact area was the highest for NBW FSE and lowest for MAVRIC; the total number of transverse slices with a visible fracture line was highest in MAVRIC and lowest in NBW FSE. MAVRIC and WBW FSE are feasible additions to minimise artefact around implants. © 2015 EVJ Ltd.

  8. Bare Quantum Null Energy Condition.

    Science.gov (United States)

    Fu, Zicao; Marolf, Donald

    2018-02-16

    The quantum null energy condition (QNEC) is a conjectured relation between a null version of quantum field theory energy and derivatives of quantum field theory von Neumann entropy. In some cases, divergences cancel between these two terms and the QNEC is intrinsically finite. We study the more general case here where they do not and argue that a QNEC can still hold for bare (unrenormalized) quantities. While the original QNEC applied only to locally stationary null congruences in backgrounds that solve semiclassical theories of quantum gravity, at least in the formal perturbation theory at a small Planck length, the quantum focusing conjecture can be viewed as the special case of our bare QNEC for which the metric is on shell.

  9. AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.

    Science.gov (United States)

    Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H

    2003-05-01

    In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.

  10. Use of a cobalt-based metallic glass for joining MoSi{sub 2} to stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, R.U.; Rangaswamy, P.; Misra, A.; Gallegos, D.E.; Castro, R.G.; Petrovic, J.J. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Butt, D.P. [Florida Univ., Gainesville, FL (United States). Dept. of Materials Science and Engineering

    2002-07-01

    The successful use of a cobalt-based metallic glass in joining molybdenum disilicide (MoSi{sub 2}) to stainless steel 316L was demonstrated. Such joints are being investigated for sensor tube applications in glass melting operations. The cobalt-based metallic-glass (METGLAS{sup TM} 2714A) was found to wet the MoSi{sub 2} and stainless steel surfaces and provide high quality joints. Joining was completed at 1050 C for 60 minutes in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainless steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Post-brazing metallographic evaluations coupled with quantitative elemental analysis indicated the presence of a Co-Cr-Si ternary phase with CoSi and CoSi{sub 2} precipitates within the braze. The residual stresses in these molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L joints were evaluated using X-ray diffraction and instrumented indentation techniques. These measurements revealed that significant differences are induced in the residual stresses in MoSi{sub 2} and stainless steel depending on the joining technique employed. Push-out tests were carried out on these joints to evaluate the joint strength. (orig.)

  11. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal

    International Nuclear Information System (INIS)

    Chen, Z.R.; Lu, Y.H.; Ding, X.F.; Shoji, T.

    2016-01-01

    The investigation on microstructure and hardness at the fusion boundary (FB) region of a dissimilar metal weld (DMW) between low alloy steel (LAS) A508-III and Alloy 82 weld metal (WM) was carried out. The results indicated that there were two kinds of FBs, martensite FB and sharp FB, with obvious different microstructures, alternately distributed in the same FB. The martensite FB region had a gradual change of elemental concentration across FB, columnar WM grains with high length/width ratios, a thick martensite layer and a wide heat affected zone (HAZ) with large prior austenite grains. By comparison, the sharp FB region had a relatively sharp change of elemental concentration across the FB, WM grains with low length/width ratios and a narrow HAZ with smaller prior austenite grains. The martensite possessed a K-S orientation relationship with WM grains, while no orientation relationship was found between the HAZ grains and WM grains at the sharp FB. Compared with sharp FB there were much more Σ3 boundaries in the HAZ beside martensite FB. The hardness maximum of the martensite FB was much higher than that of the sharp FB, which was attributed to the martensite layer at the martensite FB. - Highlights: •Martensite and sharp FBs with different microstructures were found in the same FB. •There were high length/width-ratio WM grains and a wide HAZ beside martensite FB. •There were low length/width-ratio WM grains and a narrow HAZ beside sharp FB. •Compared with sharp FB, there were much more Σ3 boundaries in HAZ of martensite FB. •Hardness maximium of martensite FB was much higher than that of sharp FB.

  12. A study of enhanced diffusion during high dose high flux pulsed metal ion implantation into steel and aluminium

    International Nuclear Information System (INIS)

    Zhang Tonghe; Ji Chengzhou; Shen Jinghua; Chen Jun

    1992-01-01

    The depth profiles of metal ions implanted into steel and aluminium were measured by Rutherford backscattering (RBS). The ions of Mo, W and Y, produced by a metal vapour vacuum are ion source (MEVVA) were implanted at an energy range from 25 to 50 keV for doses of (2-5)x10 17 cm -2 into H13 steel and aluminium. Beam currents were from 0.5 to 1.0 A. The beam flux is in the range of 25 to 75 μAcm -2 . In order to simulate the profiles, a formula which includes the sputtering yield, diffusion coefficients and reaction rate was obtained. The results demonstrate that the penetration depth and retained dose increase with increasing beam flux for Mo implanted into aluminium. The peak concentration of Mo implanted H13 steel increases with increasing ion flux. In contrast to this for Y implantation into steel, the peak concentration of Y decreases with increasing ion flux. For an ion flux of 25 μAcm -2 for Mo, Y and W implantation into steel, the penetration depth and retained dose are 3-5 times greater than the theoretical values. The diffusion coefficients are about 10 -16 to 10 -15 s -1 . If the ion flux is greater than 47 μAcm -2 , the penetration depth and retained dose are 5 to 10 times greater than the theoretical values for Mo implanted aluminium. The diffusion coefficients increase with increasing ion flux for Mo implanted aluminium. The diffusion coefficients hardly change with increasing ion flux for Y and Mo implanted H13 steel. The retained dose increases 0.43 to 1.16 times for Y implanted steel for an ion flux of 25 μAcm -2 . Finally, the influence of phases precipitates, reaction rate and diffusion on retained dose, diffusion coefficient and penetration depth are discussed. (orig.)

  13. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  14. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  15. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Science.gov (United States)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  16. Control of molten salt corrosion of reduced activation steel for fusion applications by metallic beryllium

    International Nuclear Information System (INIS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2007-01-01

    Full text of publication follows: In 2001 the INL started a research program as a part of the 2. Japan/US Program on Irradiation Tests for Fusion Energy Research (JUPITER-II collaboration) aimed at the characterization of the 2LiF-BeF2 (Flibe) molten salt as a breeder and coolant material for fusion applications. A key objective of the work was to demonstrate chemical compatibility between Flibe and potential fusion structural materials once suitable fluoride potential control methods are established. A series of tests performed at INL demonstrated that this can be achieved by contacting the salt with metallic beryllium, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W JLF-1 to static corrosion tests that include an active corrosion agent (hydrofluoric gas) and fluoride potential control (metallic Be) at 530 C, and the results of the tests are presented in this paper. The specimen and a beryllium rod were simultaneously immersed in the molten salt through gas tight fittings mounted on risers extending from the top lid of the test vessel; the beryllium rod was extracted after 5 hours, while the sample was left in the salt for 250 hours during which salt samples were withdrawn from the melt at fixed intervals. A diagnostic system based on the measurement of reacting HF through on-line titration was coupled with the analysis of metallic components in the salt samples that were dissolved and analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Impurity levels of oxygen, nitrogen and carbon were determined from pieces of the solidified melt using Leco analytical systems. The results confirmed the expected correlation of the HF recovery with the concentration of metallic elements dissolved in the salt because of specimen corrosion. The metals concentration falls below the detectable limit when the beryllium rod is inserted and increases when the

  17. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2015-09-01

    Full Text Available The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM and field emission scanning electron microscopy (FESEM. Energy back scattered diffraction (EBSD method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr–Mn–N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.

  18. In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features

    Directory of Open Access Journals (Sweden)

    C Brose

    2012-05-01

    Full Text Available Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.

  19. Crack path in liquid metal embrittlement: experiments with steels and modeling

    Directory of Open Access Journals (Sweden)

    T. Auger

    2016-01-01

    Full Text Available We review the recent experimental clarification of the fracture path in Liquid Metal Embrittlement with austenitic and martensitic steels. Using state of the art characterization tools (Focused Ion Beam and Transmission Electron Microscopy a clear understanding of crack path is emerging for these systems where a classical fractographic analysis fails to provide useful information. The main finding is that most of the cracking process takes place at grain boundaries, lath or mechanical twin boundaries while cleavage or plastic flow localization is rarely the observed fracture mode. Based on these experimental insights, we sketch an on-going modeling strategy for LME crack initiation and propagation at mesoscopic scale. At the microstructural scale, crystal plasticity constitutive equations are used to model the plastic deformation in metals and alloys. The microstructure used is either extracted from experimental measurements by 3D-EBSD (Electron Back Scattering Diffraction or simulated starting from a Voronoï approach. The presence of a crackwithin the polycrystalline aggregate is taken into account in order to study the surrounding plastic dissipation and the crack path. One key piece of information that can be extracted is the typical order of magnitude of the stress-strain state at GB in order to constrain crack initiation models. The challenges of building predictive LME cracking models are outlined.

  20. Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal

    Science.gov (United States)

    Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif

    2018-04-01

    Low-temperature phase separations (T duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.

  1. Impingement heat flux by dispersed molten metal fuel on a horizontal stainless steel structure

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1989-01-01

    Although the Integral Fast Reactor (IFR) possesses inherent safety features, an assessment of the consequences of melting of the metal fuel is necessary for risk analysis. As part of this effort an experimental study was conducted to determine the depths of sodium at 600 C required for pour streams of various molten uranium alloys (U, U-5 wt % Zr, U-10 wt % Zr, and U-10 wt % Fe) to break up and solidify. The quenched particulate material, which was in the shape of filaments and sheets, formed coolable beds because of the high void-age (∼0.9) and large particle size (∼10 mm). In a test with a 0.15-m sodium depth, the fragments from a pure uranium pour stream did not completely solidify but formed an agglomerated mass which did not fuse to the base plate. However, the agglomerated fragments of U-10 wt % Fe eutectic fused to the stainless steel base plate. An analysis of the temperature response of a 25-mm thick base plate was made by volume averaging the properties of the sodium and metal phases and assuming two semi-infinite solids coming into contact. Good agreement was obtained with the data during the initial 5 to 10 s of the contact period. 16 refs., 5 figs., 2 tabs

  2. Influence of a doping by Al stainless steel on kinetics and character of interaction with the metallic nuclear fuel

    Science.gov (United States)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.

    2016-04-01

    Metallic nuclear fuel is a perspective kind of fuel for fast reactors. In this paper we conducted a study of the interaction between uranium-molybdenum alloy and ferritic- martensitic steels with additions of aluminum at a temperature of 700 ° C for 25 hours. The rate constants of the interaction layer growth at 700 °C is about 2.8.10-14 m2/s. It is established that doping Al stainless steel leads to decrease in interaction with uranium-molybdenum alloys. The phase composition of the interaction layer is determined.

  3. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (Ni, Mn, Pb, Fe, Zn, Cr)

    International Nuclear Information System (INIS)

    Hormozi Nejad, F.; Rastmanesh, F.; Zarasvandi, A.

    2016-01-01

    The highest concentrations were found at soil samples 4 and 12. Comparison of heavy metals concentration with unpolluted soil standard indicated that, concentrations of Cr, Zn, Fe, Ni and Pb is higher than that of unpolluted soil standard. In general, Manganese, Chromium, Zinc and Lead are the most important elements that are found in emissions of steel plants. The soil samples near the steel plant and downwind direction have much higher pollution level. The results showed that Mn, Pb and Zn is related to human activity and Cr have geogenic source and Fe and Ni have both geogenic and anthropogenic source in the study area in the city of Ahwaz.

  4. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  5. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  6. Corrosion resistance of ERW (Electric Resistance Welded) seam welds as compared to metal base in API 5L steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Velasquez, Jorge L.; Godinez Salcedo, Jesus G.; Lopez Fajardo, Pedro [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2009-07-01

    The corrosion resistance of ERW seam welds and the base metal in API 5L X70 steel pipes was evaluated by Tafel tests. The procedure was according to ASTM G3 standard. The study was completed with metallographic and chemical characterization of the tested zones, that is, the welded zone and the base metal away of the weld. All tests were made on the internal surface of the pipe in order to assess the internal corrosion of an in-service pipeline made of the API 5L X70 steel. The test solution was acid brine prepared according to NACE Publications 1D182 and 1D196. The results showed that the ERW seam weld corrodes as much as three times faster than the base material. This behavior is attributed to a more heterogeneous microstructure with higher internal energy in the ERW seam weld zone, as compared to the base metal, which is basically a ferrite pearlite microstructure in a normalized condition. This result also indicates that pipeline segments made of ERW steel pipe where the seam weld is located near or at the bottom of the pipe are prone to a highly localized attack that may form channels of metal loss if there is water accumulation at the bottom of the pipeline. (author)

  7. The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation

    Directory of Open Access Journals (Sweden)

    Maynard Robert L

    2005-05-01

    Full Text Available Abstract Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition and biological activity of PM10 collected in the vicinity of the steel plant. Methods The metal content of PM10 samples collected before during and after the closure was measured by ICP-MS in order to ascertain whether there was any significant alteration in PM10 composition during the steel plant closure. Biological activity was assessed by instillation of 24 hr PM10 samples into male Wistar rats for 18 hr (n = 6. Inflammation was identified by the cellular and biochemical profile of the bronchoalveolar lavage fluid. Metal chelation of PM10 samples was conducted using Chelex beads prior to treatment of macrophage cell line, J774, in vitro and assessment of pro-inflammatory cytokine expression. Results The total metal content of PM10 collected before and during the closure period were similar, but on reopening of the steel plant there was a significant 3-fold increase (p 10 collected during the reopened period, as well as significant increases in albumin (p 10 from the pre-closure and closure periods did not induce any significant alterations in inflammation or lung damage. The soluble and insoluble extractable PM10 components washed from the reopened period both induced a significant increase in neutrophil cell number (p 10 from the re-opened period stimulated J774 macrophages to generate TNF-α protein and this was significantly prevented by chelating the metal content of the PM10 prior to addition to the cells. Conclusion PM10-induced inflammation in the rat lung was related to the concentration of metals in the PM10 samples tested, and activity was found in both the soluble and insoluble fractions of the particulate pollutant.

  8. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-06-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  9. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool ...

  10. Comparison of newer-generation drug-eluting with bare-metal stents in patients with acute ST-segment elevation myocardial infarction: a pooled analysis of the EXAMINATION (clinical Evaluation of the Xience-V stent in Acute Myocardial INfArcTION) and COMFORTABLE-AMI (Comparison of Biolimus Eluted From an Erodible Stent Coating With Bare Metal Stents in Acute ST-Elevation Myocardial Infarction) trials.

    Science.gov (United States)

    Sabaté, Manel; Räber, Lorenz; Heg, Dik; Brugaletta, Salvatore; Kelbaek, Henning; Cequier, Angel; Ostojic, Miodrag; Iñiguez, Andrés; Tüller, David; Serra, Antonio; Baumbach, Andreas; von Birgelen, Clemens; Hernandez-Antolin, Rosana; Roffi, Marco; Mainar, Vicente; Valgimigli, Marco; Serruys, Patrick W; Jüni, Peter; Windecker, Stephan

    2014-01-01

    This study sought to study the efficacy and safety of newer-generation drug-eluting stents (DES) compared with bare-metal stents (BMS) in an appropriately powered population of patients with ST-segment elevation myocardial infarction (STEMI). Among patients with STEMI, early generation DES improved efficacy but not safety compared with BMS. Newer-generation DES, everolimus-eluting stents, and biolimus A9-eluting stents, have been shown to improve clinical outcomes compared with early generation DES. Individual patient data for 2,665 STEMI patients enrolled in 2 large-scale randomized clinical trials comparing newer-generation DES with BMS were pooled: 1,326 patients received a newer-generation DES (everolimus-eluting stent or biolimus A9-eluting stent), whereas the remaining 1,329 patients received a BMS. Random-effects models were used to assess differences between the 2 groups for the device-oriented composite endpoint of cardiac death, target-vessel reinfarction, and target-lesion revascularization and the patient-oriented composite endpoint of all-cause death, any infarction, and any revascularization at 1 year. Newer-generation DES substantially reduce the risk of the device-oriented composite endpoint compared with BMS at 1 year (relative risk [RR]: 0.58; 95% confidence interval [CI]: 0.43 to 0.79; p = 0.0004). Similarly, the risk of the patient-oriented composite endpoint was lower with newer-generation DES than BMS (RR: 0.78; 95% CI: 0.63 to 0.96; p = 0.02). Differences in favor of newer-generation DES were driven by both a lower risk of repeat revascularization of the target lesion (RR: 0.33; 95% CI: 0.20 to 0.52; p stent thrombosis (RR: 0.35; 95% CI: 0.16 to 0.75; p = 0.006) compared with BMS. Among patients with STEMI, newer-generation DES improve safety and efficacy compared with BMS throughout 1 year. It remains to be determined whether the differences in favor of newer-generation DES are sustained during long-term follow-up. Copyright © 2014 American

  11. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    Science.gov (United States)

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  12. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  13. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  14. Joining of pressureless-sintered SiC to stainless steel using Ag-Cu alloy and insert-metals

    International Nuclear Information System (INIS)

    Yano, Toyohiko; Takada, Naohiro; Iseki, Takayoshi

    1987-01-01

    Brazing of pressureless-sintered SiC to stainless steel using Ag-28 wt% Cu alloy was studied. In SiC plate joined to stainless steel rod (6 mm in diameter) using an Ag-Cu alloy powder containing 1.5 wt% Ti, the bond strength increased with decreasing brazing temperature and holding time. When the increased size of stainless steel plate (10 x 10 x 4 mm), joining was unsuccessful by the method mentioned above and even with Ti insert-metal. However, simultaneous use of Ti and Mo as insert-metal gave a good bonding in the order SiC/Ti/Mo/stainless steel, because of relaxation of residual stress due to thermal expansion mismatch. The shear strength was 30 - 50 MPa. A thin layer, probably Ti 3 SiC 2 , was observed at the interface between SiC and brazing filler immediately after melting. But with increasing both temperature and time, Ti 5 Si 3 (C) and TiC x were formed if Ti was continuously provided from the brazing filler. Since the interface of Ti 3 SiC 2 and either Ti 5 Si 3 (C) or TiC x seemed to be brittle, the formation of Ti 5 Si 3 (C) and TiC x decreased the bond strength. At lower temperature and short time, a high bond strength is expected when Ti was inserted in contact with SiC. (author)

  15. SULA 2 - Energy-efficient steel and metal production. Yearbook 1996; SULA 2 - Perusmetallien energiataloudellinen valmistus. Vuosikirja 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hakulin, H [ed.

    1997-12-31

    The main objective of SULA 2 programme are (1) reduction of specific energy consumption, (2) reduction of harmful emissions and impact on the environment, (3) promoting technology export. Participants in the programme are the steel and base metal producers; Fundia wire, Imatra Steel Oy Ab, Outokumpu Oy and Rautaruukki Oy, as well as universities with laboratories for research on metal producing processes and their control such as Helsinki University of Technology, University of Oulu, Aabo Akademi and Tampere University of Technology. The programme consists of 32 research projects, of which 14 are applied technology. The total funding for 1995-1996 is 52,5 mill. FIM. Information on the research results is exchanged at the SULA-seminars arranged in 1994, 1996 and at the beginning of 1999. In connection with the seminars a yearbook will be published. The yearbook contains the reports of all the programme projects

  16. SULA 2 - Energy-efficient steel and metal production. Yearbook 1996; SULA 2 - Perusmetallien energiataloudellinen valmistus. Vuosikirja 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hakulin, H. [ed.

    1996-12-31

    The main objective of SULA 2 programme are (1) reduction of specific energy consumption, (2) reduction of harmful emissions and impact on the environment, (3) promoting technology export. Participants in the programme are the steel and base metal producers; Fundia wire, Imatra Steel Oy Ab, Outokumpu Oy and Rautaruukki Oy, as well as universities with laboratories for research on metal producing processes and their control such as Helsinki University of Technology, University of Oulu, Aabo Akademi and Tampere University of Technology. The programme consists of 32 research projects, of which 14 are applied technology. The total funding for 1995-1996 is 52,5 mill. FIM. Information on the research results is exchanged at the SULA-seminars arranged in 1994, 1996 and at the beginning of 1999. In connection with the seminars a yearbook will be published. The yearbook contains the reports of all the programme projects

  17. In-service behavior of creep strength enhanced ferritic steels Grade 91 and Grade 92 – Part 1 parent metal

    International Nuclear Information System (INIS)

    Parker, Jonathan

    2013-01-01

    In creep strength enhanced ferritic steels, such as Grade 91 and Grade 92, control of both composition and heat treatment of the parent steel is necessary to avoid producing components which have creep strength below the minimum expected by applicable ASME and other International Codes. These efforts are required to ensure that the steel develops a homogeneous fully tempered martensitic microstructure, with the appropriate distribution of precipitates and the required dislocation substructure. In-service creep related problems with Grade 91 steel have been reported associated with factors such as incorrect microstructure and heat treatment, welded connections in headers and piping, dissimilar metal welds as well as the manufacture and performance of castings. Difficulties associated with remediation of in-service damage include challenges over detection and removal of damaged material as well as the selection and qualification of appropriate methodologies for repair. Since repeated heat treatment leads to continued tempering, and a potential degradation of properties, specific procedures for performing and then lifing repair welds are a key aspect of Asset Management. This paper presents a summary of in-service experience with Grade 91 steel and outlines approaches for repair welding. Highlights: ► The steel alloy known as Grade 91 is widely used to fabricate critical pressure part components. ► Designers favor Grade 91 because it provides superior elevated temperature strength at substantially lower cost than the austenitic stainless steels. ► Service experience has confirmed that early failures can occur. ► Life management solutions involved attention to detail at Purchase, during design and all stages of fabrication.

  18. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    International Nuclear Information System (INIS)

    Rafiqul, M I; Ishak, M; Rahman, M M

    2012-01-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  19. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    Science.gov (United States)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  20. Microvascular response of striated muscle to metal debris. A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Diedrich, O; Burian, B; Schmitt, O; Wimmer, M A

    2003-01-01

    Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant.

  1. The assessment of non-metallic inclusions in steels and nickel alloys for ultra high vacuum applications

    International Nuclear Information System (INIS)

    Meriguet, P.J.-L.

    1992-01-01

    The presence of non-metallic inclusions in steels and nickel alloys may create leak-paths under Ultra High Vacuum conditions. This paper shows the application of the ASTM E45 standard to the assessment of these inclusions and gives some design recommendations. Three case-histories encountered at the Joint European Torus Joint Undertaking and a possible explanation of the phenomenon are also presented. (Author)

  2. Metal pollution investigation of Goldman Park, Middletown Ohio: Evidence for steel and coal pollution in a high child use setting.

    Science.gov (United States)

    Dietrich, Matthew; Huling, Justin; Krekeler, Mark P S

    2018-03-15

    A geochemical investigation of both ballfield sediment and street sediment in a park adjacent to a major steel manufacturing site in Middletown, Ohio revealed Pb, Cu, Cr and Zn exceeded background levels, but in heterogeneous ways and in varying levels of health concern. Pb, Sn, and Zn had geoaccumulation values>2 (moderate to heavy pollutants) in street sediment samples. Cr had a geoaccumulation value>1, while Ni, W, Fe and Mn had geoaccumulation values between 1 and 0 in street sediment. Street sediment contamination factors for respective elements are Zn (10.41), Sn (5.45), Pb (4.70), Sb (3.45), Cr (3.19), W (2.59), and Mn (2.43). The notable elements with the highest factors for ball fields are Zn (1.72), Pb (1.36), Cr (0.99), V (0.95), and Mn (1.00). High correlation coefficients of known constituents of steel, such as Fe and Mo, Ni and Cr, W and Co, W and V, as well as particulate steel and coal spherule fragments found by SEM suggest probable sourcing of some of the metals from the AK Steel facility directly adjacent to the park. However, overall extensive heterogeneity of metal pollutants in the area points to the difficulties in sourcing pollutant metals, with many outside sources likely contributing as well. This study demonstrates that different sediment media can be impacted by significantly different metal pollutants even when in very close proximity to a single source and points to unrecognized complexity in urban pollution processes in the region. This study pertains to large-scale regional importance, as Middletown, Ohio is indicative of a typical post-industrial Midwestern U.S. city where limited investigation has been conducted regarding urban pollution and sourcing of materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP in the second group, TBXT composite was bonded with the conventional method of acid etching and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  4. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  5. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  6. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel - Part 1

    International Nuclear Information System (INIS)

    Kim, Soon-Tae; Jeon, Soon-Hyeok; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    To elucidate the effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel, a metallographic examination, potentiodynamic and potentiostatic polarization tests, a SEM-EDS and a SAM analysis of inclusion, austenite phase and ferrite phase were conducted. The addition of rare earth metals to the base alloy led to the formation of (Mn, Cr, Si, Al, Ce) oxides and (Mn, Cr, Si, Ce) oxides, which improved the resistance to pitting corrosion and caused a decrease in the preferential interface areas for the initiation of the pitting corrosion.

  7. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  8. Reuse of scrap of Al and steel SAE 1045 in metal composite as alternative of recycling route powder metallurgy

    International Nuclear Information System (INIS)

    Souza, V.E.S.; Masieiro, F.R.S.; Lourenco, J.M.; Felipe, R.C.T.S.

    2009-01-01

    Full text: The process of powder metallurgy in the production of parts through application of pressure on the selected ceramic or metal powders, which are subjected to a temperature of sintering for to occur consolidation of the components. The metal-mechanical industry is responsible for the generation of inputs from their manufacturing processes. This work aims to re-use of chips of Al and SAE 1045 steel by powder metallurgy of this is a viable and effective. This work is in the manufacture of a composite using Al 6060 metal matrix and steel 1045 as reinforcement (30%, 40%, 50%), under different compaction pressures (250MPa, 400MPa and 600MPa), analyzing the influence of compressibility in hardness of the compressed. The samples were sintered at a temperature of 500 ° C in an oven using resistive atmosphere of hydrogen for 45 minutes. After the procedures of the powder metallurgy technique were analyzed of the optical microscopy, x-ray diffraction, MEV and Rockwell hardness, which was found to be evaluated as not diffusibility between the steel and aluminum. (author)

  9. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  10. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    International Nuclear Information System (INIS)

    Liu, Y.H.; Zhang, Y.C.; Jiang, F.; Fu, B.J.; Sun, N.B.

    2013-01-01

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na 2 WO 4 –WO 3 binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%

  11. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    Science.gov (United States)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  12. Structure changes in steels and hard metal induced by nanosecond and femtosecond laser processing

    Science.gov (United States)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Haefke, Henry; Gerbig, Yvonne; Sentis, Marc L.; Hermann, Joerg; Bruneau, Sebastien

    2003-11-01

    Investigations on the occurrence of structure and hardness changes (for two sorts of steel and for a hard metal substrate) in the immediate vicinity of laser induced craters are presented in this work. Experiments with femtosecond pulses were performed in air with a Ti:sapphire laser (800 nm, 100 fs) at mean fluences of 2, 5 and 10 J/cm2. Series of microcraters were induced with 100 to 5,000 laser pulses per hole. Experiments with similar fluences, but 10 to 40 pules per hole, were performed on the same materials using a Nd:YAG delivering 100 ns pulese. After laser irradiation, cuts were made through the processed samples and the changes occurred in the crystalline structure of the target materials were evidenced by metallographical analysis of the resulting cross-sections. Hardness measurements were performed in points situated in the immediate vicinity of the laser-induced pores. Affected zones in the material surrounding laser induced pores were always found in the ns-regime, however with different properties for various laser parameters. In the fs-regime, zones of modified materials were also found and in such zones a significant hardness increasing was evidenced; the limit of the low fluences regime, where no structure changes occurred, was found to be slightly above 2 J/cm2.

  13. Investigation of iron adsorption on composite transition metal carbides in steel by first-principles calculation

    Science.gov (United States)

    Xiong, Hui-Hui; Gan, Lei; Tong, Zhi-Fang; Zhang, Heng-Hua; Zhou, Yang

    2018-05-01

    The nucleation potential of transition metal (TM) carbides formed in steel can be predicted by the behavior of iron adsorption on their surface. Therefore, Fe adsorption on the (001) surface of (A1-xmx)C (A = Nb, Ti, m = Mo, V) was investigated by the first-principles method to reveal the initialization of Fe nucleation. The Mulliken population and partial density of state (PDOS) were also calculated and analyzed in this work. The results show that Fe adsorption depends on the composition and configuration of the composite carbides. The adsorption energy (Wads) of Fe on most of (A1-xmx)C is larger than that of Fe on pure TiC or NbC. The maximum Wads is found for Fe on (Nb0.5Mo0.5)C complex carbide, indicating that this carbide has the high nucleation capacity at early stage. The Fe adsorption could be improved by the segregation of Cr and Mn atoms on the surfaces of (Nb0.5Mo0.5)C and (Ti0.5Mo0.5)C. The PDOS analysis of (Cr, Mn)-doped systems further explains the strong interactions between Fe and Cr or Mn atoms.

  14. Determination of metal ions released by stainless steel arch bar into bio-fluids

    Directory of Open Access Journals (Sweden)

    Lori A. Joseph

    2009-04-01

    Full Text Available The amounts of cobalt, iron, manganese, nickel and chromium ions released from new and reused stainless steel arch bar used for maxillomandibular fixation was determined in Hank’s solutions of different hydrogen and chloride ions concentrations, whole blood serum and phosphate buffered saline (PBS in vitro, over a six-week immersion time at 37 oC, by atomic absorption spectrophotometry. The corrosion levels of the wires due to effects of media and incubation times in the bio-fluids were compared by Duncan’s two-way ANOVA (P less than 0.05. Pearson’s correlation was used in establishing relationship in the amounts of metal ions released by new and reused arch bars. The study indicated that the reused wires released more ions than new ones at all time points. The variation of pH and chloride ions of the bio-fluids had a significant effect on the amount of Ni, Mn and Cr ions released. Ageing prior use of arch bars significantly increased Ni ions released into the bio-fluids.

  15. Residual stresses in a bulk metallic glass-stainless steel composite

    Energy Technology Data Exchange (ETDEWEB)

    Aydiner, C.C. [Department of Materials and Science Engineering, Iowa State University, Ames, IA 50011 (United States); Uestuendag, E. [Department of Materials and Science Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Clausen, B. [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hanan, J.C. [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125 (United States); Winholtz, R.A. [Department of Mechanical and Aerospace Engineering and Research Reactor Center, University of Missouri, Columbia, MO 65211 (United States); Bourke, M.A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Peker, A. [Liquidmetal Technologies, Lake Forest, CA 92630 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) are new structural materials with impressive mechanical properties. They can now be cast into large dimensions, which can lead to significant residual stress generation due to thermal tempering. In this process, a surface compression develops balanced with tension in the interior. To evaluate this phenomenon non-destructively, a model cylindrical stainless steel (SS)-BMG composite was prepared and studied using neutron diffraction and finite element (FE) modeling. The residual strain data from the SS obtained by diffraction were used in modeling calculations to show that significant tempering could be achieved in the composite (about -200 MPa surface compression in the SS). The strong bond between the SS and BMG allowed efficient load transfer and facilitated stress generation. The final values of the residual stresses were seen to be relatively insensitive to the high temperature constitutive behavior of the SS due to the physics of the thermal tempering in BMGs. The approach presented here constitutes an effective means to study non-destructively thermal tempering in BMGs.

  16. Residual stresses in a bulk metallic glass-stainless steel composite

    International Nuclear Information System (INIS)

    Aydiner, C.C.; Uestuendag, E.; Clausen, B.; Hanan, J.C.; Winholtz, R.A.; Bourke, M.A.M.; Peker, A.

    2005-01-01

    Bulk metallic glasses (BMGs) are new structural materials with impressive mechanical properties. They can now be cast into large dimensions, which can lead to significant residual stress generation due to thermal tempering. In this process, a surface compression develops balanced with tension in the interior. To evaluate this phenomenon non-destructively, a model cylindrical stainless steel (SS)-BMG composite was prepared and studied using neutron diffraction and finite element (FE) modeling. The residual strain data from the SS obtained by diffraction were used in modeling calculations to show that significant tempering could be achieved in the composite (about -200 MPa surface compression in the SS). The strong bond between the SS and BMG allowed efficient load transfer and facilitated stress generation. The final values of the residual stresses were seen to be relatively insensitive to the high temperature constitutive behavior of the SS due to the physics of the thermal tempering in BMGs. The approach presented here constitutes an effective means to study non-destructively thermal tempering in BMGs

  17. Direct observation and quantification of nanoscale spinodal decomposition in super duplex stainless steel weld metals.

    Science.gov (United States)

    Shariq, Ahmed; Hättestrand, Mats; Nilsson, Jan-Olof; Gregori, Andrea

    2009-06-01

    Three variants of super duplex stainless steel weld metals with the basic composition 29Cr-8Ni-2Mo (wt%) were investigated. The nitrogen content of the three materials was 0.22%, 0.33% and 0.37%, respectively. Isothermal heat treatments were performed at 450 degrees C for times up to 243 h. The hardness evolution of the three materials was found to vary with the overall concentration of the nitrogen. Atom probe field ion microscopy (APFIM) was used to directly detect and quantify the degree of spinodal decomposition in different material conditions. 3-DAP atomic reconstruction clearly illustrate nanoscale variation of iron rich (alpha) and chromium rich (alpha') phases. A longer ageing time produces a coarser microstructure with larger alpha and alpha' domains. Statistical evaluation of APFIM data showed that phase separation was significant already after 1 h of ageing that gradually became more pronounced. Although nanoscale concentration variation was evident, no significant influence of overall nitrogen content on the degree of spinodal decomposition was found.

  18. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. H. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); State Nuclear Power Research Institute, Xicheng District, Beijing (China); Zhang, Y.C., E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); Jiang, F.; Fu, B. J.; Sun, N. B. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China)

    2013-11-15

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na{sub 2}WO{sub 4}–WO{sub 3} binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%.

  19. Multiaxial Cycle Deformation and Low-Cycle Fatigue Behavior of Mild Carbon Steel and Related Welded-Metal Specimen

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available The low-cycle fatigue experiments of mild carbon Q235B steel and its related welded-metal specimens are performed under uniaxial, in-phase, and 90° out-of-phase loading conditions. Significant additional cyclic hardening for 90° out-of-phase loading conditions is observed for both base metal and its related weldment. Besides, welding process produces extra additional hardening under the same loading conditions compared with the base metal. Multiaxial low-cycle fatigue strength under 90° out-of-phase loading conditions is significantly reduced for both base-metal and welded-metal specimens. The weldment has lower fatigue life than the base metal under the given loading conditions, and the fatigue life reduction of weldment increases with the increasing strain amplitude. The KBM, FS, and MKBM critical plane parameters are evaluated for the fatigue data obtained. The FS and MKBM parameters are found to show better correlation with fatigue lives for both base-metal and welded-metal specimens.

  20. Process simulation and experimental validation of Hot Metal Gas Forming with new press hardening steels

    Science.gov (United States)

    Paul, A.; Reuther, F.; Neumann, S.; Albert, A.; Landgrebe, D.

    2017-09-01

    One field in the work of the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz is industry applied research in Hot Metal Gas Forming, combined with press hardening in one process step. In this paper the results of investigations on new press hardening steels from SSAB AB (Docol®1800 Bor and Docol®2000 Bor) are presented. Hot tensile tests recorded by the project partner (University of West Bohemia, Faculty of Mechanical Engineering) were used to create a material model for thermo-mechanical forming simulations. For this purpose the provided raw data were converted into flow curve approximations of the real stress-real strain-curves for both materials and afterwards integrated in a LS-DYNA simulation model of Hot Metal Gas Forming with all relevant boundary conditions and sub-stages. Preliminary experimental tests were carried out using a tool at room temperature to permit evaluation of the forming behaviour of Docol 1800 Bor and Docol 2000 Bor tubes as well as validation of the simulation model. Using this demonstrator geometry (outer diameter 57 mm, tube length 300 mm, wall thickness 1.5 mm), the intention was to perform a series of tests with different furnace temperatures (from 870 °C to 1035 °C), maximum internal pressures (up to 67 MPa) and pressure build-up rates (up to 40 MPa/s) to evaluate the formability of Docol 1800 Bor and Docol 2000 Bor. Selected demonstrator parts produced in that way were subsequently analysed by wall thickness and hardness measurements. The tests were carried out using the completely modernized Dunkes/AP&T HS3-1500 hydroforming press at the Fraunhofer IWU. In summary, creating a consistent simulation model with all relevant sub-stages was successfully established in LS-DYNA. The computation results show a high correlation with the experimental data regarding the thinning behaviour. The Hot Metal Gas Forming of the demonstrator geometry was successfully established as well. Different hardness values

  1. Demonstration test on manufacturing steel bars for concrete reinforcement for recycling of reactor decommissioning metal scrap

    International Nuclear Information System (INIS)

    Sakurai, D.; Anabuki, Y.

    1993-01-01

    To prove the possibility of recycling the steel scrap resulting from decommissioning of a nuclear power plant, this salvaged steel would be formed into steel bars for concrete reinforcement, as the restricted use and limited use at nuclear plants. The shifting behavior of radioactive isotopes (RI) in the melting process was confirmed through the laboratory hot test using the RI. Then, the demonstration cold test for steel bars for reinforcement using the nonradioactive isotope was conducted in on-line production facilities. In this test the quality of steel bars and uniform distribution of RI were proven and material balance and operational data were obtained. These data show the recycling to steel bars for concrete reinforcement is applicable from economical and safety aspects

  2. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    Science.gov (United States)

    1975-04-01

    work of Kerns (36)] 29 22 Crack Velocity vs. Stress Intensity for AISI 4340 Steel (Martensitic and Bainitic Structures) in 314 NaCl Solution (pit = 6.0...magnitude greater for 4340 steel with a tempered martensite structure than for the lower bainite structure. Figure 22 shows crack velocity as a function of...applied stress intensity for martensitic and bainitic steels . The dif- ference was attributed to more effective trapping of hydrogen at coher- ently

  3. Advanced metallic structural materials and a new role for microalloyed steels

    International Nuclear Information System (INIS)

    Korchynsky, M.

    2004-01-01

    The recent worldwide surge of steel consumption, mainly of low-strength carbon grades, has created raw-materials shortages and price increases. These supply-demand strains could be relaxed by satisfying engineering needs with less steel. However, materials used for such a substitution must combine high weight reducing potential with low cost. Microalloyed (MA) steels are cost-effective substitutes, since their high strength is the result of grain refinement and precipitation hardening. These two strengthening mechanisms are developed by the interaction of micro-additives: niobium or vanadium with the deformation occurring during hot rolling followed by cooling. The physical metallurgy of these phenomena is discussed in the paper. The optimum alloy design of MA steels combines superior properties with lowest processing cost. In many applications, the versatility and adaptability of vanadium steels provides an economic advantage. The monetary value of weight production is sufficient to increase the profitability of steel makers and to lower the material cost to steel users. This 'win-win' situation is financed by the elimination of efforts spent in producing inefficient steel, yielding an increase in wealth formation. The gain acceptance of substitution by the consumer, a long-term strategic plan is needed to be implemented by the beneficiaries - both steel producers and steel users. The successful substitution is of importance to the national economy, resources and energy conservation, and the environment. Since microalloyed steels, used as a replacement for carbon steels, offer low cost weight savings, they deserve to be classified as advanced structural materials. (author)

  4. The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wenchun [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: jiangwenchun@126.com; Gong Jianming; Chen Hu; Tu, S.T. [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2008-08-15

    Stainless-steel plate-fin heat exchanger (PFHE) has been used as a high-temperature recuperator in microturbine for its excellent qualities in compact structure, high-temperature and pressure resistance. Plate-fin structure, as the core of PFHE, is fabricated by vacuum brazing. The main component fins and the parting sheets are joined by fusion of a brazing alloy cladded to the surface of parting sheets. Owing to the material mismatching between the filler metal and the base metal, residual stresses can arise and decrease the structure strength greatly. The recuperator serves at high temperature and the creep would happen. The thickness of the filler metal plays an important role in the joint strength. Hence this paper presented a finite element (FE) analysis of the brazed residual stresses and creep for a counterflow stainless-steel plate-fin structure. The effect of the filler metal thickness on residual stress and creep was investigated, which provides a reference for strength design.

  5. Relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Takasago, Masahisa; Takaoka, Kyo

    1986-12-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 -- 1012 ppM, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 -- 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppM, nickel, 0.04 ppM and chromium, from 0.02 to 0.03 ppM. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppM.

  6. The relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    International Nuclear Information System (INIS)

    Takasago, Masahisa; Takaoka, Kyo

    1986-01-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 ∼ 1012 ppm, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 ∼ 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppm, nickel, 0.04 ppm and chromium, from 0.02 to 0.03 ppm. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppm. (author)

  7. Susceptibility of 2 1/4 Cr-1Mo steel to liquid metal induced embrittlement by lithium-lead solutions

    International Nuclear Information System (INIS)

    Eberhard, B.A.; Edwards, G.R.

    1984-08-01

    An investigation has been conducted on the liquid metal induced embrittlement susceptibility of 2 1/4Cr-1Mo steel exposed to lithium and 1a/o lead-lithium at temperatures between 190 0 C and 525 0 C. This research was part of an ongoing effort to evaluate the compatibility of liquid lithium solutions with potential fusion reactor containment materials. Of particular interest was the microstructure present in a weld heat-affected zone, a microstructure known to be highly susceptible to corrosive attack by liquid lead-lithium solutions. Embrittlement susceptibility was determined by conducting tension tests on 2 1/4Cr-1Mo steel exposed to an inert environment as well as to a lead-lithium liquid and observing the change in tensile behavior. The 2 1/4Cr-1Mo steel was also given a base plate heat treatment to observe its embrittlement susceptibility to 1a/o lead-lithium. The base plate microstructure was severely embrittled at temperatures less than 500 0 C. Tempering the base plate was effective in restoring adequate ductility to the steel

  8. Effect of Nb addition on microstructure and corrosion resistance of novel stainless steels fabricated by direct laser metal deposition

    Science.gov (United States)

    Wu, S. Q.; Zhang, C. H.; Zhang, S.; Wang, Q.; Liu, Y.; Abdullah, Adil O.

    2018-03-01

    The study demonstrated the successful fabrication of novel stainless steels by direct laser metal deposition with the aim of investigating the impact of niobium content (Nb = 0, 0.25, 0.75, 1.25 wt%) on their microstructure and electrochemical properties. The microstructure and phase evolution of the as-built stainless steels were studied using scanning electron microscope (SEM) and electron back-scatter diffraction (EBSD). Corrosion behavior of the samples was evaluated using electrochemical workstation in 3.5 wt% NaCl. Experimental results have shown that the crystal structure of as-built stainless steels was BCC with a small trace of dispersive carbides and FCC phase. Grain refinement was observed with increasing niobium content. Large-angle boundaries were obtained in different Nb-containing samples with distribution from 50° to 60°. An increase in niobium content extremely improved the corrosion resistance of as-built stainless steels and the as-built samples with 1.25 wt% exhibited the best corrosion resistance among the tested samples as indicated by its lowest corrosion rate, which was an order of magnitude lower than that of Nb-free samples.

  9. Fatigue behaviour of a 9Cr1MoNbV martensitic steel in a liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Jean-Bernard; Serre, Ingrid [Ecole National Superieure de Chimie de Lille (France); Verleene, Arnaud [Ecole National Superieure de Chimie de Lille (France); Michelin, Clermond Ferrand (France)

    2009-07-01

    The low cycle fatigue behaviour of the T91 martensitic steel is studied in the range {delta}{epsilon}{sub t} from 0.4% to 2.4%, at 300 C, in air and in liquid Lead Bismuth Eutectic (LBE). It is shown that the cyclic stress response consists of a cyclic softening that is not modified by the environment. However, the fatigue life is reduced after fatigue in LBE as compared to air and the effect is especially marked at high strain range. Metallographic analysis of the external surfaces and of transverse cross sections of specimen show that the short crack density is very low in the specimen failed in liquid metal while it is high for tests in air. Fracture surface observations show that multiple crack initiations occurred in air. In liquid metal, the fracture surfaces were flat and contained widely spaced fatigue striations. Strain localization promoted by the liquid metal is responsible for the decrease in fatigue resistance. (orig.)

  10. Effect of commercial metals (Al, Cu, carbon steel, and Zn) on the oxidation of soy-biodiesel

    International Nuclear Information System (INIS)

    Díaz-Ballote, L; Castillo-Atoche, A; Maldonado, L; Ruiz-Gómez, M A; Hernández, E

    2016-01-01

    The effect of aluminum, copper, low carbon steel and zinc on the oxidation of biodiesel derived from soybean oil is studied using residual mass curves from thermogravimetry. Biodiesel is oxidized in the presence and absence of each metal in static conditions and exposed to ambient air. Oxidized biodiesel parameters are confirmed by viscosity measurements, nuclear magnetic resonance and Fourier transform infrared spectroscopy. The results showed that the metals do not negatively influence the oxidative stability of biodiesel and it can even be considered that they slightly inhibit the oxidation process. This behavior was ascribed to a depletion of dissolved oxygen in biodiesel due to oxidation of the metal and the low solubility of oxygen at high temperature. (paper)

  11. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits; Caracterizacion del comportamiento electroquimico de recubrimiento por soldadura de acero 308L y en presencia de depositos de metales nobles

    Energy Technology Data Exchange (ETDEWEB)

    Piedras, P.; Arganis J, C. R., E-mail: pedro.piedras@hotmail.es [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  12. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both

  13. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    Science.gov (United States)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  14. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    International Nuclear Information System (INIS)

    Ghomashchi, Reza; Costin, Walter; Kurji, Rahim

    2015-01-01

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies

  15. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.

  16. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    International Nuclear Information System (INIS)

    Sathiya, P.; Ajith, P. M.; Soundararajan, R.

    2013-01-01

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  17. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sathiya, P. [National Institute of Technology Tiruchirappalli (India); Ajith, P. M. [Department of Mechanical Engineering Rajiv Gandhi Institute of Technology, Kottayam (India); Soundararajan, R. [Sri Krishna College of Engineering and Technology, Coimbatore (India)

    2013-08-15

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  18. Hand Book of Metal Material Contrast

    International Nuclear Information System (INIS)

    Park, Yeong Hui

    1989-06-01

    This book first gives descriptions of using of this hand book and contents. It tells of steel such as bar steel, section steel, and steel sheet which are steel for general structure and steel for pressure vessel, a steel pipe, carbon steel for machine structure and alloy steel, steel for special things, stainless steel, heat resisting steel, tool steel, spring steel, forging, steel casting, nonferrous metal such as aluminium and aluminium alloy, casting, list of similar steel per metal, list of steel like ASTM, AISI per number, and list of collecting standard per metal material.

  19. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    Science.gov (United States)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  20. Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Sung Hyuk; Kwon, Hyuk Sun; Kim, Gyo Sung; Lee, Chong Soo

    2014-01-01

    Highlights: • We report the mechanical properties of DP780 steel welded by three methods. • The size of the welded zone increases with heat input (MAG > TIG > laser). • The hardness of the welded zone increases with cooling rate (laser > TIG > MAG). • Tensile and fatigue properties are strongly dependent on welding method. • Crack initiation sites depend on the microstructural features of the welded zone. - Abstract: The microstructural characteristics, tensile properties and low-cycle fatigue properties of a dual-phase steel (DP780) were investigated following its joining by three methods: laser welding, tungsten inert gas (TIG) welding, and metal active gas (MAG) welding. Through this, it was found that the size of the welded zone increases with greater heat input (MAG > TIG > laser), whereas the hardness of the weld metal (WM) and heat-affected zone (HAZ) increases with cooling rate (laser > TIG > MAG). Consequently, laser- and TIG-welded steels exhibit higher yield strength than the base metal due to a substantially harder WM. In contrast, the strength of MAG-welded steel is reduced by a broad and soft WM and HAZ. The fatigue life of laser-and TIG-welded steel was similar, with both being greater than that of MAG-welded steel; however, the fatigue resistance of all welds was inferior to that of the non-welded base metal. Finally, crack initiation sites were found to differ depending on the microstructural characteristics of the welded zone, as well as the tensile and cyclic loading

  1. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab.

  2. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    International Nuclear Information System (INIS)

    1998-01-01

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab

  3. Corrosion Behavior of Metal Active Gas Welded Joints of a High-Strength Steel for Automotive Application

    Science.gov (United States)

    Garcia, Mainã Portella; Mantovani, Gerson Luiz; Vasant Kumar, R.; Antunes, Renato Altobelli

    2017-10-01

    In this work, the corrosion behavior of metal active gas-welded joints of a high-strength steel with tensile yield strength of 900 MPa was investigated. The welded joints were obtained using two different heat inputs. The corrosion behavior has been studied in a 3.5 wt.% NaCl aqueous solution using electrochemical impedance spectroscopy and potentiodynamic polarization tests. Optical microscopy images, scanning electron microscopy and transmission electron microscopy with energy-dispersive x-ray revealed different microstructural features in the heat-affected zone (HAZ) and the weld metal (WM). Before and after the corrosion process, the sample was evaluated by confocal laser scanning microscopy to measure the depth difference between HAZ and WM. The results showed that the heat input did not play an important role on corrosion behavior of HSLA steel. The anodic and cathodic areas of the welded joints could be associated with depth differences. The HAZ was found to be the anodic area, while the WM was cathodic with respect to the HAZ. The corrosion behavior was related to the amount and orientation nature of carbides in the HAZ. The microstructure of the HAZ consisted of martensite and bainite, whereas acicular ferrite was observed in the weld metal.

  4. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles

    International Nuclear Information System (INIS)

    Parvathavarthini, N.; Dayal, R.K.; Khatak, H.S.; Shankar, V.; Shanmugam, V.

    2006-01-01

    Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 deg. C to 850 deg. C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens

  5. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  6. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  7. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer.

    Science.gov (United States)

    Ning, Dongfeng; Liang, Yongchao; Song, Alin; Duan, Aiwang; Liu, Zhandong

    2016-12-01

    Steel slag has been widely used as amendment and silicon fertilizer to alleviate the mobility and bioavailability of heavy metals in soil. The objective of this study was to evaluate the influence of particle size, composition, and application rate of slag on metal immobilization in acidic soil, metals uptake by rice and rice growth. The results indicated that application of slag increased soil pH, plant-available silicon concentrations in soil, and decreased the bioavailability of metals compared with control treatment, whereas pulverous slag (S1) was more effective than granular slag (S2 and S3). The acid-extractable fraction of Cd in the spiked soil was significantly decreased with application of S1 at rates of 1 and 3 %, acid-extractable fractions of Cu and Zn were decreased when treated at 3 %. Use of S1 at both rates resulted in significantly lower Cd, Cu, and Zn concentrations in rice tissues than in controls by 82.6-92.9, 88.4-95.6, and 67.4-81.4 %, respectively. However, use of pulverous slag at 1 % significantly promotes rice growth, restricted rice growth when treated at 3 %. Thus, the results explained that reduced particle size and suitable application rate of slag could be beneficial to rice growth and metals stabilization.

  8. Alumina Fiber-Reinforced 9310 Steel Metal Matrix Composite for Rotorcraft Drive System Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AISI 9310 nickel-chromium-molybdenum alloy steel is used extensively in military helicopter rotor shafts and gears. This reliable alloy provides excellent fatigue...

  9. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  10. Evolution of Non-metallic Inclusions and Precipitates in Oriented Silicon Steel

    Science.gov (United States)

    Luo, Yan; Yang, Wen; Ren, Qiang; Hu, Zhiyuan; Li, Ming; Zhang, Lifeng

    2018-06-01

    The evolution of inclusions in oriented silicon steel during the manufacturing process was carried out by chemical composition analysis, non-aqueous electrolytic corrosion, and thermodynamic calculation. The morphology, composition, and size of inclusions were analyzed introducing field emission scanning electron microscope. The oxides were mainly formed during the secondary refining, and the nitrides, sulfides, and compounds were formed during the solidification and cooling of steel in the processes of continuous casting and hot rolling.

  11. The improvement of ultrasonic characteristics in weld metal of austenitic stainless steel using magnetic stirring method

    International Nuclear Information System (INIS)

    Arakawa, T.; Tomisawa, Y.

    1988-01-01

    The magnetic stirring welding process was tested to save the difficulty of ultrasonic testing of austenitic stainless steel overlayed welds, due to grain refinement of weld solidification structure. The testing involved stirring the molten pool with Lorenz force induced by the interaction of welding current and alternative magnetic field applied from the outside magnetic coil. This report summarizes improvement of ultrasonic characteristic in austenitic stainless steel overlayed welds caused by magnetic stirring welding process

  12. Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2017-11-01

    Full Text Available The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD, and focused ion beam transmission electron microscopy (FIB-TEM were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr2N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr2N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr2N in the non-reheated area was dispersed following heating and transformed to secondary austenite.

  13. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (KSC (Ni, Mn, Pb, Fe, Zn, Cr

    Directory of Open Access Journals (Sweden)

    Fatemeh hormozi Nejad

    2017-02-01

    Full Text Available Introduction Soil plays a vital role in human life as the very survival of mankind is tied to the preservation of soil productivity (Kabata- Pendies and Mukherjee, 2007. The purpose of this study is the assessment of heavy metal contamination (Zn, Mn, Pb, Fe, Ni, Cr of the soil around the Khuzestan Steel Complex. Materials and methods For this purpose, 13 surface soil samples (0-10 cm were taken. Also a control sample was taken from an area away from the steel complex. The coordinates of each point were recorded by Global Positioning System (GPS. The samples were transferred to the laboratory and then were air dried at room temperature for 72 hours. Then they were sieved through a 2mm sieve for determining physical and chemical parameters (soil texture, pH, OC, and a 63-micron sieve for measurement of heavy metal concentration. pH was measured using a calibrated pH meter at a 2: 1 mixture (soil: water, and soil texture was determined using a hydrometer. The amount of organic matter was measured using the Valkey black method (Chopin and Alloway, 2007. After preparation of the samples in the laboratory, the samples were analyzed using the ICP-OES method to assess concentration of heavy metals. Measurement of heavy metals concentration was carried out at the Zar azma laboratory in Tehran. To ensure the accuracy of the analysis of soil samples, replicate samples were also sent to the laboratory. In order to assess the heavy metal pollution in the soil samples, different indices including contamination factor (CF, contamination degree (Cd, anthropogenic enrichment percent (An%, and saturation degree of metals (SDM were calculated. Discussion In addition, the mean concentrations of heavy metals in soil samples were compared to the concentration of these metals in Control Sample and unpolluted soil standard. Measurement of soil pH showed that the soil has a tendency to alkalinity. Also, soil texture is sandy loam (Moyes, 2011. The results showed that

  14. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    Science.gov (United States)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  15. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Muthupandi, V.; Bala Srinivasan, P.; Seshadri, S.K.; Sundaresan, S

    2003-10-15

    The excellent combination of strength and corrosion resistance in duplex stainless steels (DSS) is due to their strict composition control and microstructural balance. The ferrite-austenite ratio is often upset in DSS weld metals owing to the rapid cooling rates associated with welding. To achieve the desired ferrite-austenite balance and hence properties, either the weld metal composition and/or the heat input is controlled. In the current work, a low heat input process viz., EBW and another commonly employed process, gas tungsten-arc welding have been employed for welding of DSS with and without nickel enhancement. Results show that (i) chemical composition has got a greater influence on the ferrite-austenite ratio than the cooling rate, (ii) and even EBW which is considered an immature process in welding of DSS, can be employed provided means of filler addition could be devised.

  16. Stationary potentials and corrosion of metals and steels in sodium and potassium chloride eutectic melts saturated with hydrogen chloride

    International Nuclear Information System (INIS)

    Belov, V.N.; Ershova, T.K.; Kochergin, V.P.

    1978-01-01

    Stationary potentials have been measured at 850 deg C and corrosion rates found gravimetrically for a number of metals and steels in the eutectic NaCl-KCl melt saturated with HCl. Periodic shifts of the stationary potentials towards positive values have been established in the Ti-V-Cr-Fe-Ni, Cu-Zr-Nb-Mo, Ag-Ta-W-Pt systems, with the corrosion rate of metals decreasing in them. The stationary potentials are shown to shift towards positive values in the series: st.08 KP, st.3, Kh17N2, Kh22N6T, Kh13NChG9, 1Kh18N10T, Kh17N13M2T, OKh17N16M3T, Kh23N18, Kh25N16G7, Kh23N28M3D3T, with corrosive resistance in this series increasing

  17. Low temperature sensitization behavior in the weld metal of austenitic stainless steel. Study on low temperature sensitization in weldments of austenitic stainless steels and its improvement by laser surface melting treatment. 1

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Nishimoto, Kazutoshi; Nakao, Yoshikuni

    1996-01-01

    Low temperature sensitization (LTS) behavior in the weld metal of Type308 stainless steel was investigated in this study. Three kinds of Type308 stainless steels, of which carbon contents were 0.04%, 0.06% and 0.08%, were used for this study. TIG welding method was adopted to make the weld metals. Weld metals were subjected to the sensitizing heat treatment in the temperature range between 773 K and 1073 K. The degree of sensitization were examined by the EPR method and the Strauss test. Chromium carbide was absorbed to precipitate at δ/γ grain boundaries in the as-welded weld metals Corrosion test results have shown that the higher carbon content in the weld metal is, the earlier sensitization yields in it. Sensitization in weld metals is found to occur faster than in those solution heat-treated at 1273 K prior to sensitizing heat-treatment. This fact suggests that preexisted chromium carbides have an effect to accelerate sensitization. That is, it is apparent that LTS phenomenon occur even in the weld metal. Moreover, sensitization in the weld metal has occurred in much shorter time than in HAZ, which is attributed to the preferential precipitation of chromium carbide at δ/γ grain boundaries in the weld metals. (author)

  18. Interaction of inhibitors with corrosion scale formed on N80 steel in CO{sub 2}-saturated NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, Wuhan (China); School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan (China); Qiu, Y.B.; Guo, X.P. [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, Wuhan (China); Tomoe, Y.; Bando, K. [Japan Oil, Gas and Metals National Corporation, The Former Japan National Oil Corporation, Hamada, Mihama-ku, Chiba-City, Chiba (Japan)

    2011-12-15

    The performance of the selected inhibitors, including thioglycolic acid (TGA), diethylenetriamine (DETA), and naphthene acid imidazolines (IM), on the bare surface of N80 steel and its scaled surface pre-corroded in CO{sub 2}-saturated 1%NaCl solution was investigated by weight-loss method, electrochemical measurements using rotating cylinder electrode and surface analytical methods (SEM, XRD, and EPMA). The results indicate that there is a remarkable difference in inhibition efficiency of inhibitors on the N80 steel with and without pre-corrosion scale. The synergistic effect between inhibitors and corrosion scale not only depends on the size of inhibitor molecules, but also depends on the interaction of the inhibitor with the corrosion scale. It shows that IM and DETA have a good positive synergistic effect with the corrosion scale formed on N80 steel, although DETA has no inhibition efficiency for bare N80 steel, which can easily enter into the apertures of the corrosion scale, and block the active sites on the metal surface and the diffusion routeways of the reactant so as to depress the corrosion of the substrate metal. While TGA shows excellent inhibition efficiency on bare N80 steel, but it has an antagonistic effect with the corrosion scale although it has a small molecular weight as well as DETA, because TGA can dissolve corrosion scale and break its integrality and protectiveness performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  20. Ultrastructural analysis of metal particles released from stainless steel and titanium miniplate components in an animal model.

    Science.gov (United States)

    Matthew, I R; Frame, J W

    1998-01-01

    Low-vacuum scanning electron microscopy (Ivac SEM) was used to characterize the appearance of metal particles released from stressed and unstressed Champy miniplates placed in dogs and to study the relationship of the debris to the surrounding tissues. Under general endotracheal anesthesia, two Champy miniplates (titanium or stainless steel) were placed on the frontal bone in an animal model. One miniplate was bent to fit the curvature of the frontal bone (unstressed) and another miniplate of the same material was bent in a curve until the midpoint was raised 3 mm above the ends. The latter miniplate adapted to the skull curvature under tension during screw insertion (stressed). The miniplates and surrounding tissues were retrieved after intervals of 4, 12, and 24 weeks. Decalcified sections were prepared and examined by light microscopy and Ivac SEM. Under Ivac SEM examination, the titanium particles had a smooth, polygonal outline. Stainless steel particles were typically spherical, with numerous small projections on the surface. Most particles were 1 to 10 microns in diameter. The tissue response to the particles was variable; some particles were covered by fibrous connective tissue or enclosed by bone, and others were intracellular. The metal particles released from stressed or unstressed Champy miniplates were similar, and this was related to their source of origin and duration within the tissues. The tissue response to the particles appeared to depend on their location.

  1. Characteristics and Liquid Metal Embrittlement of the steel T91 in contact with Lead–Bismuth Eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Hojna, Anna, E-mail: anna.hojna@cvrez.cz; Di Gabriele, Fosca; Klecka, Jakub

    2016-04-15

    This paper summarizes results of the work carried out on the evaluation of the susceptibility to LME (Liquid Metal Embrittlement) of the ferritic/martensitic steel T91 in contact with LBE (Lead–Bismuth Eutectic). The influence of LBE on the fracture toughness of the steel was studied using 0.5T CT specimen at 355 °C, pre-cracked by cyclic loading in the liquid metal. Tests were carried out in well-defined conditions and according to ASTM standard. It was observed that the LBE decreased the apparent fracture toughness, J{sub IC}, by more than 30%, compared to the value in air. The results are discussed based on examinations of the fracture surface evidencing LME occurrence. The stretch zone accompanying the pre-crack tip blunting was not observed in the specimens exhibiting LME. Therefore, a new fracture toughness, J{sub map}, determined as J integral at the maximum applied load, is proposed to be the appropriate value for fracture resistance evaluation in LBE. The J{sub map} can be applied for the assessment of a pre-existing LME crack stability.

  2. Effects of Rare Earth Metal addition on the cavitation erosion-corrosion resistance of super duplex stainless steels

    Science.gov (United States)

    Shim, Sung-Ik; Park, Yong-Soo; Kim, Soon-Tae; Song, Chi-Bok

    2002-05-01

    Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0.4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

  3. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  4. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  5. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  6. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  7. Toughness of submerged arc weld metals of controlled rolled NB bearing steel

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Shiga, A.; Kamada, A.; Tsuboi, J.

    1982-01-01

    The toughness and the hardness of reheated weld metals depend on the maximum reheating temperature. When the maximum reheating temperature is 500 to 700 0 C, the hardness of single pass weld metal increases and the toughness decreases because of fine Nb- and V-carbonitride precipitation. When the maximum reheating temperature is over 800 0 C, the hardness and the toughness remain almost unchanged. The stress relieving treatment of single pass weld metal at 600 0 C for 1 up to about 100 hours causes the increase in hardness and then decreases the hardness gradually. It needs over 500 hours to obtain the same hardness value as that of as-welded metal. The addition of Ti to weld metal is very effective to improve the toughness, however excess Ti increases the hardness of stress relieved weld metal by precipitating as fine Ti-carbonitride. Therefore Ti addition should be restricted within the lowest limit required to improve as-welded metal toughness. The optimum Ti content is about 0.020% in the case of weld metal of which oxygen content is 350 ppM or so. In multipass welding, the hardness of weld metal affected by subsequent weld heat cycle varies from pass to pass, because Nb and V content change with the passes as the result of the change in dilution from base metal. The most hardened zone is observed in the reheated first pass weld metal, in which Nb and V content are the highest. Good weld metal toughness would be obtained by lowering dilution from base metal and taking advantage of grain refinement by subsequent passes

  8. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  9. SCC propagation and cessation behavior near the fusion boundary of dissimilar weld joint with Ni-based weld metal and low alloy steel

    International Nuclear Information System (INIS)

    Ishizawa, Makoto; Abe, Hiroshi; Watanabe, Yutaka

    2009-01-01

    The purpose of this study is to investigate the following items focused on the microstructure near the fusion boundary of dissimilar weld joint with Ni-based weld metal and low alloy steel; (1) Microstructural characteristics near the fusion boundary, (2) Dominant factor that makes crack retardation near the fusion boundary. Main conclusions can be summarized as follows; (1) From the results of CBB tests, it has been understood that the low alloy steel has no SCC susceptibility and that there is a difference in oxidation behavior between high and low sulfur containing low alloy steel, (2) In Alloy182/LAS sample, most of crack tips were located at the fusion boundary. It has been thought that crack become less active when crack reach at fusion boundary, (3) It has been suggested that the dominant factor of crack retardation is low SCC susceptibility of low alloy steel in high temperature water. (author)

  10. Reheat cracking susceptibility of P23 (7CrWVMoNb9-6) steel welds made using matching and mis-matching filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Nevasmaa, Pekka; Salonen, Jorma; Auerkari, Pertti; Rantala, Juhani; Holmstroem, Stefan [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Reheat cracking sensitivity of 7CrWVMoNb9-6 (P23) thick-section multipass welds has been investigated by Gleeble simulation, mechanical testing, fractography and metallography. The results demonstrate that the experimental weld metal made using a high-Nb-W-Ti-B type filler metal was sensitive to reheat cracking, with a reduction of area no more than 2-3% in the BWI reheat cracking (RC) test. Welds made using a high-W -low-Ti type filler metal with Nb content similar to the parent steel, as well as welds make using a Ni-Nb-Ti-free-(W-free) type filler metal with the chemical composition closer to P24 grade material, were more ductile and crack-resistant, though with reduced cross-weld creep strength. Fractography of RC test specimens showed evidence of pronounced localisation of damage at the prior austenite grain boundaries of the thermally reheated, experimental P23 weld metal. The reheat cracking susceptibility of the less ductile weld metal was apparently related both to the chemical composition (higher B, Nb and Ti content) and sub-structural features of the coarse-grained reheated weld metal microstructure. Appropriate single- and multi-cycle thermal Gleeble simulations to produce representative HAY and reheated weld metal microstructures (as function of peak temperature), in conjunction with the BWI RC test were successfully applied to characterise the reheat cracking sensitivity of the candidate weld metals and parent steel HAZ. (orig.)

  11. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    Science.gov (United States)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  12. Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seong-Yun; Lee, Jae-Bong [School of Advanced Materials Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-04-15

    Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.

  13. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    Science.gov (United States)

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  14. Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants.

    Science.gov (United States)

    Hudetz, D; Ursic Hudetz, S; Harris, L G; Luginbühl, R; Friederich, N F; Landmann, R

    2008-12-01

    Currently, ica is considered to be the major operon responsible for staphylococcal biofilm. The effect of biofilm on susceptibility to staphylococcal infection of different implant materials in vivo is unclear. The interaction of ica-positive (wild-type (WT)) and ica-negative (ica(-)) Staphylococcus aureus and Staphylococcus epidermidis strains with titanium and both smooth and rough stainless steel surfaces was studied by scanning electron microscopy in vitro and in a mouse tissue cage model during 2 weeks following perioperative or postoperative inoculation in vivo. In vitro, WT S. epidermidis adhered equally and more strongly than did WT S. aureus to all materials. Both WT strains, but not ica(-) strains, showed multilayered biofilm. In vivo, 300 CFUs of WT and ica(-)S. aureus led, in all metal cages, to an infection with a high level of planktonic CFUs and only 0.89% adherent CFUs after 8 days. In contrast, 10(6) CFUs of the WT and ica(-) strains were required for postoperative infection with S. epidermidis. In all metal types, planktonic numbers of S. epidermidis dropped to titanium cages adherent WT bacteria survived in higher numbers than ica(-) bacteria. In conclusion, the metal played a minor role in susceptibility to and persistence of staphylococcal infection; the presence of ica genes had a strong effect on biofilm in vitro and a weak effect in vivo; and S. epidermidis was more pathogenic when introduced during implantation than after implantation.

  15. Effects of degradation on the mechanical properties and fracture toughness of a steel pressure-vessel weld metal

    International Nuclear Information System (INIS)

    Wu, S.J.; Knott, J.F.

    2003-01-01

    A degradation procedure has been devised to simulate the effect of neutron irradiation on the mechanical properties of a steel pressure-vessel weld metal. The procedure combines the application of cold prestrain together with an embrittling heat treatment to produce an increase in yield stress, a decrease in strain hardening rate, and an increased propensity for brittle intergranular fracture. Fracture tests were carried out using blunt-notch four-point-bend specimens in slow bend over a range of temperatures and the brittle/ductile transition was shown to increase by approximately 110 deg. C as a result of the degradation. Fractographic analysis of specimens broken at low temperatures showed about 30% intergranular failure in combination with transgranular cleavage. Predictions have been made of the ductile-brittle transition curves for the weld metal (sharp crack) fracture toughness in degraded and non-degraded states, based on the notched-bar test results and on finite element analyses of the stress distributions ahead of the notches and sharp cracks. The ductile-brittle transition temperature shift (ΔT=110 deg. C) between non-degraded and degraded weld metal at a notch opening displacement of 0.31 mm was combined with the Ritchie, Knott and Rice (RKR) model to predict an equivalent shift of 115 deg. C for sharp-crack specimens at a toughness level of 70 MN/m 3/2

  16. Austenitic stainless steel alloys with high nickel contents in high temperature liquid metal systems

    International Nuclear Information System (INIS)

    Konvicka, H.R.; Schwarz, N.F.

    1981-01-01

    Fe-Cr-Ni base alloys (nickel content: from 15 to 70 wt%, Chromium content: 15 wt%, iron: balance) together with stainless steel (W.Nr. 1.4981) have been exposed to flowing liquid sodium at 730 0 C in four intervals up to a cumulative exposure time of 1500 hours. Weight change data and the results of post-exposition microcharacterization of specimens are reported. The corrosion rates increase with increasing nickel content and tend to become constant after longer exposure times for each alloy. The corrosion rate of stainless steel is considerably reduced due to the presence of the base alloys. Different kinetics of nickel poor (up to 35% nickel) and nickel rich (> 50% nickel) alloys and nickel transport from nickel rich to nickel poor material is observed. (orig.)

  17. Multi-scale contact modeling of coated steels for sheet metal forming applications

    NARCIS (Netherlands)

    Shisode, Meghshyam; Hazrati Marangalou, Javad; Mishra, Tanmaya; De Rooij, Matthijn; Van Den Boogaard, Ton; Bay, Niels; Nielsen, Chris V.

    2018-01-01

    Friction in sheet metal forming is a local phenomenon which depends on continuously evolving contact conditions during the forming process. This is mainly influenced by local contact pressure, surface textures of the sheet metal as well as the forming tool surface profile and material behavior. The

  18. Influence of non-metallic second phases on fatigue behaviour of high strength steel components

    International Nuclear Information System (INIS)

    Gonzalez, L.; Elvira, R.; Garcia de Andoin, A.; Pizarro, R.; Bertrand, C.

    2005-01-01

    To assess the real effect of the inclusion type on fatigue life of ultra clean high strength steels mechanical components made of 100Cr6 steel were fatigue tested and fracture surfaces analysed to determine the origin of fatigue cracks.Two heats proceedings from different steelmaking routes were taken for the tests. The material were forged into ring shape components which were fatigue tested under compression-compression loads. Failures were analysed by SFEM (Scanning field Emission Microscopy), proving that most of failures at high loads were originated by manganese sulphides of small size (10-70 micros), while less than 40% of all fatigue cracks due to inclusions were caused by titanium carbonitrides and hard oxides. It has been demonstrated that once number and size of hard inclusions have been reduced, the hazardous effect of oxides and carbonitrides on the fatigue life decreases also. However, softer inclusions as manganese sulphides, currently considered as less hazardous, play a more relevant role as direct cause of fatigue failure and they should be taken into account in a deeper way in order to balance both machinability and fatigue life requirements in high strength steel components. (Author) 11 refs

  19. Effects of delta ferrite content on the mechanical properties of E308-16 stainless steel weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, D. P.; Vandergriff, D. M.; Gray, R. J.

    1978-01-01

    The effects of ferrite content on the properties of type 308 stainless steel shielded metal-arc (SMA) welds were investigated. Welds were made at four levels of ferrite content ranging from 2 to 15 FN (Ferrite Number). Creep and tensile tests were performed. Specimens were aged at 1100/sup 0/C (593/sup 0/C) for times up to 10,000 h (36 Ms) and Charpy V-notch impact tests were performed. Chemical analysis of the original deposits, Magne-gage evaluations, and metallographic evaluation of tested specimens were made. The E308-16 stainless steel electrodes were formulated to produce SMA welds with 2, 5, 9, and 15 FN. The ferrite number was made to vary by varying the nickel and chromium concentrations. Magne-gage determinations revealed that as-welded structures contained an average of 1.8, 4.2, 9.6, and 14.5 FN, respectively. Chemical anslysis of these deposits revealed no unusually high concentrations of tramp elements that would significantly affect mechanical properties. The extra low-ferrite electrodes were made with a different core wire, which produced deposits with slightly higher molybdenum concentrations. This variation in molybdenum should affect properties only minimally. From these chemical analyses and a constitutional diagram, ferrite concentrations were calculated, and the results correlated with the Magne-gage values

  20. Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, A., E-mail: ali.ramazani@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, D-52072 Aachen (Germany); Mukherjee, K. [Department of Ferrous Metallurgy, RWTH Aachen University, D-52072 Aachen (Germany); Abdurakhmanov, A. [Welding and Joining Institute, RWTH Aachen University, D-52072 Aachen (Germany); Prahl, U. [Department of Ferrous Metallurgy, RWTH Aachen University, D-52072 Aachen (Germany); Schleser, M.; Reisgen, U. [Welding and Joining Institute, RWTH Aachen University, D-52072 Aachen (Germany); Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, D-52072 Aachen (Germany)

    2014-01-01

    Dual-phase (DP) steels show combined high strength and adequate formability. However, during welding, their microstructural feature of dispersion of hard martensite islands in the soft ferrite matrix is lost and the properties deteriorate. The current research aims to study the mechanical properties of the welded joint, taking into account the effect of features of all regions, such as microstructure, chemical composition and the area fraction, on the macroscopic mechanical properties of the welded joint. Hot rolled DP 600 steel was gas metal arc welded (GMAW) and tensile specimens were made with a welded joint. In the heat-affected zone (HAZ), the microstructure varied from bainite to coarse grained ferrite and tempered martensite. Chemical composition of every quantified region in the welded specimen was also identified using electron probe microanalysis (EPMA). Macromechanical FE modelling was employed to simulate the mechanical properties of the welded tensile specimen. 2D representative volume elements (RVE) for different parts of the welded region were constructed from real microstructure. 2D simulated flow curves were corrected to 3Ds using a developed correlation factor. Finally, the tensile test of welded material with inhomogeneous morphology was simulated and good agreement between experimental and predicted flow curve was achieved.

  1. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    Science.gov (United States)

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel

    International Nuclear Information System (INIS)

    Ramazani, A.; Mukherjee, K.; Abdurakhmanov, A.; Prahl, U.; Schleser, M.; Reisgen, U.; Bleck, W.

    2014-01-01

    Dual-phase (DP) steels show combined high strength and adequate formability. However, during welding, their microstructural feature of dispersion of hard martensite islands in the soft ferrite matrix is lost and the properties deteriorate. The current research aims to study the mechanical properties of the welded joint, taking into account the effect of features of all regions, such as microstructure, chemical composition and the area fraction, on the macroscopic mechanical properties of the welded joint. Hot rolled DP 600 steel was gas metal arc welded (GMAW) and tensile specimens were made with a welded joint. In the heat-affected zone (HAZ), the microstructure varied from bainite to coarse grained ferrite and tempered martensite. Chemical composition of every quantified region in the welded specimen was also identified using electron probe microanalysis (EPMA). Macromechanical FE modelling was employed to simulate the mechanical properties of the welded tensile specimen. 2D representative volume elements (RVE) for different parts of the welded region were constructed from real microstructure. 2D simulated flow curves were corrected to 3Ds using a developed correlation factor. Finally, the tensile test of welded material with inhomogeneous morphology was simulated and good agreement between experimental and predicted flow curve was achieved

  3. Diffusion Brazing of Ti-6Al-4V and Stainless Steel 316L Using AgCuZn Filler Metal

    Directory of Open Access Journals (Sweden)

    R. Soltani Tashi

    2013-09-01

    Full Text Available In the present study, vacuum brazing was applied to join Ti-6Al-4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness. It has been shown that shear strength decreased with increasing the brazing temperature and time. The wettability of the filler alloy was increased by enhancing the wetting test temperature. By increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe-Cu-Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for different brazing temperatures.

  4. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-12-01

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments

  5. Data collection on the effect of irradiation on the mechanical properties of austenitic stainless steels and weld metals

    International Nuclear Information System (INIS)

    Picker, C.; Wareing, J.; Tavassoli, A.A.

    1995-01-01

    Data on the influence of low dose irradiation on the mechanical properties of structural steels (Types 304, 316, 316L, 316H and 316L(N) and associated weld metals) at temperatures from 20 deg. C to 750 deg. C, have been compiled from published literature and the results of British, Dutch, French and German Laboratories. The preliminary results, which cover the dose range from 0 to 5 displacements per atom (and/or up to 2 appm helium) are presented as comparisons between irradiated and unirradiated control data, covering a range of strength and cyclic properties. The results show that low dose irradiation can have a significant influence on the properties ranging from increases in 0.2% proof stress to decreases in stress rupture strength and ductility. More detailed investigations of the significant factors on the individual properties will be completed in the future. (author). 13 figs, 1 tab

  6. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  7. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  8. Plastohydrodynamic drawing and coating of stainless steel wire using a tapered bore die of no metal to metal contact

    Science.gov (United States)

    Hasan, S.; Basmage, O.; Stokes, J. T.; Hashmi, M. S. J.

    2018-05-01

    A review of wire coating studies using plasto-hydrodynamic pressure shows that most of the works were carried out by conducting experiments simultaneously with simulation analysis based upon Bernoulli's principle and Euler and Navier-Stokes (N-S) equations. These characteristics relate to the domain of Computational Fluid Dynamics (CFD) which is an interdisciplinary topic (Fluid Mechanics, Numerical Analysis of Fluid flow and Computer Science). This research investigates two aspects: (i) simulation work and (ii) experimentation. A mathematical model was developed to investigate the flow pattern of the molten polymer and pressure distribution within the wire-drawing dies, assessment of polymer coating thickness on the coated wires and speed of coating on the wires at the outlet of the drawing dies, without deploying any pressurizing pump. In addition to a physical model which was developed within ANSYS™ environment through the simulation design of ANSYS™ Workbench. The design was customized to simulate the process of wire-coating on the fine stainless-steel wires using drawing dies having different bore geometries such as: stepped parallel bore, tapered bore and combined parallel and tapered bore. The convergence of the designed CFD model and numerical and physical solution parameters for simulation were dynamically monitored for the viscous flow of the polypropylene (PP) polymer. Simulation results were validated against experimental results and used to predict the ideal bore shape to produce a thin coating on stainless wires with different diameter. Simulation studies confirmed that a specific speed should be attained by the stainless-steel wires while passing through the drawing dies. It has been observed that all the speed values within specific speed range did not produce a coating thickness having the desired coating characteristic features. Therefore, some optimization of the experimental set up through design of experiments (Stat-Ease) was applied to

  9. The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Xin, Xiu-Ling; Wang, Rui-Zhi; Xu, Long-Yun

    2016-04-01

    In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s-1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s-1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s-1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.

  10. Nucleation and growth of oxides on metals with special reference to mild steel and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Gadiyar, H S [Bhabha Atomic Research Centre, Bombay (India). Metallurgy Div.

    1977-01-01

    The oxidation of metals is a complex phenomenon of metal-gas interface for the understanding of which a multidisciplinary approach is necessary. Some aspects of this phenomena are discussed with reference to oxygen or steam as the oxidant. As a case study, the nucleation of oxide through microstructural characterisation, the kinetics and mechanism involved in the case of oxidation of Zr and its alloys have been examined.

  11. Laser brazing of hard metal on steel; Laserstrahlloeten von Hartmetall an Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H.; Frohmann, A.; Block, B.; Goede, M. [Laser Zentrum Hannover e.V., Hannover (Germany); Muenz, U. [Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Remscheid (Germany)

    2001-07-01

    Topic of the investigations presented here is the laser beam brazing of hardmetal plates onto tool steel. Three different kinds of laser beam sources are comparatively used, a diode laser, a Nd:YAG laser and a CO{sub 2} laser. The investigations concentrate on the variation of two process parameters: brazing time and laser performance. Following the brazing process both visual observation as well as hardness measurements and shear tests are made. The investigations show that by brazing, high seam qualities can be achieved, which withstand the comparison with inductively brazed joints. (orig.)

  12. Pulsed laser synthesis of ceramic-metal composite coating on steel

    International Nuclear Information System (INIS)

    Du Baoshuai; Samant, Anoop N.; Paital, Sameer R.; Dahotre, Narendra B.

    2008-01-01

    A pulsed Nd:YAG laser was employed to modify the surface properties of AISI 1010 steel with precursor of TiB 2 + Al. A set of samples were prepared with different laser processing parameters and compositions of the precursor in order to study the effect of Al on the coating. Thermal modeling was performed to quantitatively evaluate the maximum temperature and the range of cooling rate for the melting pool. Phase constituents and microstructure were characterized using X-ray diffractometer, optical microscopy, and scanning electron microscopy. Results show that TiB 2 dissociated when the Al content reached 30 wt.% or more. The composite coating with the presence of TiB 2 shows acicular TiB 2 particles embedded in the α-Fe matrix. Coatings produced using precursor of high-Al content reveals a refined cellular structure due to the high-cooling rate induced by short pulse duration. Compared with the steel substrate, microhardness and wear resistance of the coating are improved significantly.

  13. Pulsed laser synthesis of ceramic-metal composite coating on steel

    Science.gov (United States)

    Du, Baoshuai; Samant, Anoop N.; Paital, Sameer R.; Dahotre, Narendra B.

    2008-12-01

    A pulsed Nd:YAG laser was employed to modify the surface properties of AISI 1010 steel with precursor of TiB 2 + Al. A set of samples were prepared with different laser processing parameters and compositions of the precursor in order to study the effect of Al on the coating. Thermal modeling was performed to quantitatively evaluate the maximum temperature and the range of cooling rate for the melting pool. Phase constituents and microstructure were characterized using X-ray diffractometer, optical microscopy, and scanning electron microscopy. Results show that TiB 2 dissociated when the Al content reached 30 wt.% or more. The composite coating with the presence of TiB 2 shows acicular TiB 2 particles embedded in the α-Fe matrix. Coatings produced using precursor of high-Al content reveals a refined cellular structure due to the high-cooling rate induced by short pulse duration. Compared with the steel substrate, microhardness and wear resistance of the coating are improved significantly.

  14. Inclusion Characteristics and Acicular Ferrite Nucleation in Ti-Containing Weld Metals of X80 Pipeline Steel

    Science.gov (United States)

    Wang, Bingxin; Liu, Xianghua; Wang, Guodong

    2018-06-01

    X80 steel weld metals with Ti contents of 0.003 to 0.13 pct were prepared by the single-pass submerged-arc welding process. The effects of Ti content in weld metals on the constituent phases of inclusions and chemical compositions of the constituent phases, as well as the potency of acicular ferrite (AF) nucleation on the inclusions were investigated. Moreover, the crystallographic orientation relationship between the AF and inclusion was examined. The results show that with an increase in Ti content, the primary constituent phases of the inclusions change from the (Mn-Al-Si-O) compound to a mixture of spinel and pseudobrookite solid solutions, and eventually to pseudobrookite. The spinel solid solution is characterized by the MnTi2O4 constituent. Compared to pseudobrookite, spinel has a lower Ti concentration, but a significantly higher Mn content. In the case of the presence of a considerable amount of spinel, the Mn element is enriched strongly in the inclusions, resulting in the development of a Mn-depleted zone (MDZ) in the matrix around the inclusions, which enhances the driving force for AF formation. AF shows the Baker-Nutting orientation relationship with MnTi2O4. The formation of MDZ and the presence of the Baker-Nutting orientation relationship promote the ability of inclusions to nucleate the intragranular AF.

  15. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire

    Science.gov (United States)

    Xu, Xiang; Mi, Gaoyang; Luo, Yuanqing; Jiang, Ping; Shao, Xinyu; Wang, Chunming

    2017-07-01

    Laser metal deposition (LMD) with a filler has been demonstrated to be an effective method for additive manufacturing because of its high material deposition efficiency, improved surface quality, reduced material wastage, and cleaner process environment without metal dust pollution. In this study, single beads and samples with ten layers were successfully deposited on a 316 L stainless steel surface under optimized conditions using a 4000 W continuous wave fibre laser and an arc welding machine. The results showed that satisfactory layered samples with a large deposition height and smooth side surface could be achieved under appropriate parameters. The uniform structures had fine cellular and network austenite grains with good metallurgical bonding between layers, showing an austenite solidification mode. Precipitated ferrite at the grain boundaries showed a subgrain structure with fine uniform grain size. A higher microhardness (205-226 HV) was detected in the middle of the deposition area, while the tensile strength of the 50 layer sample reached 669 MPa. In addition, ductile fracturing was proven by the emergence of obvious dimples at the fracture surface.

  16. Effect of Proton Irradiation on the Corrosion Behaviors of Ferritic/Martensitic Steel in Liquid Metal Environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeonghyeon; Kim, Tae Yong; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Liquid metal fast breeder reactors (LMFBRs) such as sodium-cooled fast reactor (SFR) and lead-cooled fast reactor (LFR) are the candidates of GEN-IV nuclear energy systems. Among various liquid metals that can be used as primary coolant material, sodium is a world widely used coolant for GEN-IV reactors. In this study, as-received Gr.92 and irradiated Gr.92 specimen in the oxygen-saturated liquid sodium were examined at high temperature for 300h. The microstructure results reveal the information of the effect of irradiation and effect of the chrome concentration in specimen. From the SRIM result, penetration distance of 40 μm in stainless steel and nominal sample thickness of 30 μm was used to avoid the damage peak and any proton implantation and From the microstructural evaluation, chromium-rich zones existed under the surface of the both of non-irradiated and irradiated materials. The irradiated materials showed chromium-rich zones with larger depths than the non-irradiated specimens.

  17. Electrochemical and corrosion behavior of a 304 stainless-steel-based metal alloy wasteform in dilute aqueous environments

    International Nuclear Information System (INIS)

    Chen, Jian; Asmussen, R. Matthew; Zagidulin, Dmitrij; Noël, James J.; Shoesmith, David W.

    2013-01-01

    Highlights: ► We investigated the corrosion behavior of a metal alloy in six reference solutions. ► Majority of rhenium used as a technetium surrogate contained within a Fe 2 Mo phase. ► This prototype alloy exhibited generally passive behavior in all environments. ► Passivity breakdown events can occur and lead to localized corrosion. - Abstract: The electrochemical and corrosion behavior of a stainless-steel-based alloy made as a prototype metallic nuclear wasteform to immobilize 99 Tc, has been studied in a number of reference solutions ranging in pH from 4 to 10. The results showed the 47SS(304)-9Zr–23Mo prototype alloy contained at least five distinct phases with the majority of the Re, used as a Tc surrogate, contained within a Fe 2 Mo intermetallic phase. Polarization studies showed this alloy exhibited generally passive behavior in a range of dilute aqueous environments. Impedance measurements indicated passivity breakdown events can occur and lead to localized corrosion, especially in slightly alkaline conditions.

  18. Dispersion and thermal interactions of molten metal fuel settling on a horizontal steel plate through a sodium pool

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1989-01-01

    Although the Integral Fast Reactor (IFR) possesses inherent safety features, an assessment of the consequences of melting of the metal fuel is necessary for risk analysis. As part of this effort an experimental study was conducted to determine the depths of sodium at 600 C required for pour streams of various molten uranium alloys (U, U-5 wt % Zr, U-10 wt % Zr, and U-10 wt % Fe) to break up and solidify. The quenched particulate material, which was in the shape of filaments and sheets, formed coolable beds because of the high voidage (∼0.9) and large particle size (∼10 mm). In a test with a 0.15-m sodium depth, the fragments from a pure uranium pour stream did not completely solidify but formed an agglomerated mass which did not fuse to the base plate. However, the agglomerated fragments of U-10 wt % Fe eutectic fused to the stainless steel base plate. An analysis of the temperature response of a 25-mm thick base plate was made by volume averaging the properties of the sodium and metal particle phases and assuming two semi-infinite solids coming into contact. Good agreement was obtained with the data during the initial 5 to 10 s of the contact period. 16 refs., 5 figs., 1 tab

  19. Metal release behavior of surface oxidized stainless steels into flowing high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Nakayama, Takenori; Shimogori, Kazutoshi; Ishigure, Kenkichi; Matsuura, Chihiro; Fujita, Norihiko; Ono, Shoichi.

    1987-01-01

    In order to clarify the effect of oxidation treatment of Type 304 SS on the inhibition of metal release into high temperature pure water, metal release rate of individual alloying element into flowing deionized water containing 50 ppb dissolved oxygen was measured as the function of exposure time on representative specimens oxidized in air and steam. The behavior of metal release was also discussed in relation to the structure of surface films. Among the alloying elements the amount of Fe ion, Cr ion and Fe crud in high temperature pure water tended to saturate with the exposure time and that of Ni ion and Co ion tended to increase monotonously with the exposure time for all specimens tested. And the treatment of steam-oxidation was the most effective to decrease the metal release of alloying elements and the treatment by air-oxidation also decreased the metal release. These tendencies were confirmed to correlate well with the structure of the surface films as it was in the results in the static autoclave test. (author)

  20. Influence of surface treatments on corrosion resistance of stainless steels. Residual stresses in metals

    International Nuclear Information System (INIS)

    Berge, J. Philippe

    1968-05-01

    In a first part, this research thesis proposes presentation of the definition of a surface condition: chemical characteristics such as passivity and contamination, physical characteristics (obtained through micrographic methods, X ray diffusion, magnetic methods), and micro-geometrical characteristics. The author notably discusses the measurement of characteristics either by appropriate conventional methods or by an original method in the case of passivity. In a second part, the author reports the study of the influence of surface condition on different types of corrosion of stainless steels in chemical environments (corrosion in sulphuric acid, intergranular corrosion, stress corrosion cracking in magnesium chloride, pitting corrosion) and of high temperature oxidation (corrosion in pressurized water, oxidation in dry vapour or in carbon dioxide)

  1. Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel

    Science.gov (United States)

    Czerwiec, T.; Tsareva, S.; Andrieux, A.; Bortolini, G. A.; Bolzan, P. H.; Castanet, G.; Gradeck, M.; Marcos, G.

    2017-10-01

    This communication focus on the evaporation of sessile water droplets on different states of austenitic stainless steel surfaces: mirror polished, mirror polished and aged and patterned by sputtering. The evolution of the contact angle and of the droplet diameter is presented as a function of time at room temperature. For all the surface states, a constant diameter regime (CCR) is observed. An important aging effect on the contact angle is measured on polished surfaces due to atmospheric contamination. The experimental observations are compared to a quasi-static evaporation model assuming spherical caps. The evolution of the droplet volume as a function of time is almost linear with the evaporation time for all the observed surfaces. This is in accordance with the model prediction for the CCR mode for small initial contact angles. In our experiments, the evaporation time is found to be linearly dependent on the initial contact angle. This dependence is not correctly described by the evaporation model

  2. Ultrasonic inspectability of austenitic stainless steel and dissimilar metal weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Pudovikov, S.; Bulavinov, A.; Kroening, M. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren IZFP, Saarbruecken (Germany)

    2008-07-01

    Since their invention in 1912, austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, austenitic stainless steel material is qualified to meet the design criteria of high quality, safety related applications, for example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The ''Sampling Phased Array'' technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with image reconstruction techniques using ''SynFoc'' algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priory, we implement a new phase adjustment called ''Reverse Phase Matching'' technique. This algorithm permits the acquisition of phase-corrected A-scans that represent the actual sound propagation in the anisotropic structure; this technique can be utilized for image reconstruction. (orig.)

  3. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  4. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers.

    Science.gov (United States)

    Mercorio, Roberta; Bonzini, Matteo; Angelici, Laura; Iodice, Simona; Delbue, Serena; Mariani, Jacopo; Apostoli, Pietro; Pesatori, Angela Cecilia; Bollati, Valentina

    2017-11-01

    Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (mean baseline = 56.7%5mC; mean post-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate

  5. Cathode-sputtered Ti-Zr-N-C-O base hard coatings and stability of said coatings on hard metals and working steels. Kathodenzerstaeubte Hartstoffschichten auf Basis Ti-Zr-N-C-O und deren Stabilitaet auf Hartmetall und Gebrauchsstaehlen

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, M.

    1986-02-26

    This paper deals with the examination of the metallurgical and thermal stability of the resistant material layers of titanium in connection with the substrate material influence. As substrate material were chosen: hard metal (81% WC, 12% TiC+TaC, 7% Co), high speed steel (DIN 1.3343), austenitic nickel chromium steel (X5 CrNi 18 9) and unalloyed tool steel (DIN 1.1545). The hard materials of titanium were deposited by means of cathode evaporation.

  6. Dry metal forming of high alloy steel using laser generated aluminum bronze tools

    Directory of Open Access Journals (Sweden)

    Freiße Hannes

    2015-01-01

    Full Text Available Regarding the optimization of forming technology in economic and environmental aspects, avoiding lubricants is an approach to realize the vision of a new green technology. The resulting direct contact between the tool and the sheet in non-lubricated deep drawing causes higher stress and depends mainly on the material combination. The tribological system in dry sliding has to be assessed by means on the one hand of the resulting friction coefficient and on the other hand of the wear of the tool and sheet material. The potential to generate tailored tribological systems for dry metal forming could be shown within the investigations by using different material combinations and by applying different laser cladding process parameters. Furthermore, the feasibility of additive manufacturing of a deep drawing tool was demonstrated. The tool was successfully applied to form circular cups in a dry metal forming process.

  7. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  8. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  9. Research of a fracture criterion for ductile metals. Application to austenitic stainless steels

    International Nuclear Information System (INIS)

    Chavaillard, J.P.

    1984-01-01

    Elasto-plastic Fracture Mechanics has been used when plasticity spreads over the ligament or the whole specimen. Then, the theoretic basis of the J-Integral breaks down; the value obtained with the J-Integral's definitions is a still usable parameter. The Crack - Opening - Displacement, COD, also is still a measure of the singularity's severity in the crack-tip surrounding (whom description is not necessary). These observations stem from many experiments conducted on traction specimens, with central or lateral cracks, and shape factor ranging from 0.2 to 0.8, width 40 or 80mm, thickness 10mm; extracted from the transverse direction of Z1 NCDU 25 20 and Z2 CND 17 13 (AISI 316 L) steel plates. The experiment did not fulfil ASTM's size requirement. Critical values of J and COD obtained here (in plane stress), from interrumpted tests or not, are practically independent of shape factor and geometry. They are very similar to the published values (AISI 316 L, 304). The net section stress in the ligament, in tension, is not a fracture parameter because it depends on width. The integral definition of J has been computed by a finite difference program analysing deformed grids in surface. These values are practically path independent here, they are in good agreement with those obtained by the compliance method [fr

  10. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    International Nuclear Information System (INIS)

    Yasuyama, Masanori; Ogawa, Kazuhiro; Taka, Takao; Nakasuji, Kazuyuki; Nakao, Yoshikuni; Nishimoto, Kazutoshi.

    1996-01-01

    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  11. Characterization of mild steel pre rusted and rust converted surfaces through advanced electrochemical analysis

    International Nuclear Information System (INIS)

    Riaz, F.; Rizvi, Z.H.; Arshad, K.

    2008-01-01

    The present work evaluates the anti corrosive properties of a tannin based rust converter applied on the pre rusted steel coupons as compared with the grit blasted bare metal and pre rusted steel coupons. The mechanism and the corrosion control behaviour of the rust converter are characterized and monitored using EIS technique. The result suggested that when the tannin based rust converter applied on the pre rusted/corroded coupon, the protection properties of the mild steel coupon clearly improved because of the more compact conversion layer being formed on the coupon. It is inferred that the rust converter can be applied on the pre rusted samples as an alternative technique to the surface preparation for protection purpose. (author)

  12. Inhalation of gas metal arc-stainless steel welding fume promotes lung tumorigenesis in A/J mice.

    Science.gov (United States)

    Falcone, Lauryn M; Erdely, Aaron; Meighan, Terence G; Battelli, Lori A; Salmen, Rebecca; McKinney, Walter; Stone, Samuel; Cumpston, Amy; Cumpston, Jared; Andrews, Ronnee N; Kashon, Michael; Antonini, James M; Zeidler-Erdely, Patti C

    2017-08-01

    Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, but controlled animal studies are needed to support this association. Oropharyngeal aspiration of collected "aged" gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion model. Our objective in this study was to determine whether inhalation of freshly generated GMA-SS welding fume also acts as a lung tumor promoter in lung tumor-susceptible mice. Male A/J mice received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene (MCA; 10 µg/g) and 1 week later were exposed by whole-body inhalation to air or GMA-SS welding aerosols for 4 h/d × 4 d/w × 9 w at a target concentration of 40 mg/m 3 . Lung nodules were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor multiplicity in A/J mice initiated with MCA (16.11 ± 1.18) compared to MCA/air-exposed mice (7.93 ± 0.82). Histopathological analysis found that the increased number of lung nodules in the MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, approximately fivefold compared to our previous aspiration study, still elicited a significant lung tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that show welders may be at an increased risk for lung cancer.

  13. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. I. A statistical investigation

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.II see ibid., vol.199, p.315-26, 2000. This paper pays a special attention to the issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Statistical investigation is made to the cyclic stress amplitudes of this material. Three considerations are given. They consist of the total fit, the consistency with fatigue physics and the safety in practice of the seven commonly used statistical distributions, namely Weibull (two- and three-parameter), normal, lognormal, extreme minimum value, extreme maximum value and exponential. Results reveal that the data follow meanwhile the seven distributions but the local effects of the distributions yield a significant difference. Any of the normal, lognormal, extreme minimum value and extreme maximum value distributions might be an appropriate assumed distribution for characterizing the data. The normal and extreme minimum models are excellent. Other distributions do not fit the data as they violate two or three of the mentioned considerations. (orig.)

  14. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    Science.gov (United States)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  15. Fracture toughness of austenitic stainless steel weld metal at 4 K

    International Nuclear Information System (INIS)

    Goodwin, G.M.

    1984-08-01

    Selection of the welding processess and weld filler metals for fabrication of a large toroidal superconducting magnet is described. Data available in the literature are collected and compared with data generated in this study for three welding processes, shielded metal arc (SMA), gas tungsten arc (GTA), and flux cored arc (FCA) welds had the highest fracture toughness as measured by K/sub Ic/ estimated from J/sub Ic/. The SMA and FCA welds had about the same toughness, below the GTA values but above the average from the literature. The fracture mode for all three processes was typified by ductile dimples. The fracture morphology of the FCA weld specimens was influenced by the solidification substructure, and small particles were found to be nucleation sites for void formation, especially for the GTA welds. All three welding processes were deemed adequate for the intended service and were used to fabricate the large magnet. A trunnion-type turning fixture eliminated the need for welding in the vertical and overhead positions. The GTA process was used for all root passes, and the horizontal welds were filled by the SMA process. Over 80% of the welds were done in the flat position with the FCA process, and its high deposition rate and ease of operation are credited with contributing greatly to the success of the effort

  16. The Bare Critical Assembly of Natural Uranium and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1958-07-01

    The first reactor built in Yugoslavia was the bare zero energy heavy water and natural uranium assembly at the Boris Kidric Institute of Nuclear Sciences, Belgrade. The reactor went critical on April 29, 1958. The possession of four tons of natural uranium metal and the temporary availability of seven tons of heavy water encouraged the staff of the Institute to build a critical assembly. A critical assembly was chosen, rather than high flux reactor, because the heavy water was available only temporarily. Besides, a 10 MW, enriched uranium, research reactor is being built at the same Institute and should be ready for operation late this year. It was supposed that the zero energy reactor would provide experience in carrying out critical experiments, operational experience with nuclear reactors, and the possibility for an extensive program in reactor physics. (author)

  17. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters.

    Science.gov (United States)

    Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves

    2013-03-15

    The objective of this work was to evaluate the capacity of steel slag filters to treat a gypsum mining leachate containing 11-107 mg P/L ortho-phosphates, 9-37 mg/L fluoride, 0.24-0.83 mg/L manganese, 0.20-3.3 zinc and 1.7-8.2 mg/L aluminum. Column tests fed with reconstituted leachates were conducted for 145-222 days and sampled twice a week. Two types of electric arc furnace (EAF) slags and three filter sequences were tested. The voids hydraulic retention time (HRT(v)) of columns ranged between 4.3 and 19.2 h. Precipitates of contaminants present in columns were sampled and analyzed with X-ray diffraction at the end of tests. The best removal efficiencies over a period of 179 days were obtained with sequential filters that were composed of Fort Smith EAF slag operated at a total HRT(v) of 34 h which removed 99.9% of phosphorus, 85.3% of fluoride, 98.0% of manganese and 99.3% of zinc. Mean concentration at this system's effluent was 0.04 mg P/L ortho-phosphates, 4 mg/L fluoride, 0.02 mg/L manganese, 0.02 zinc and 0.5 mg/L aluminum. Thus, slag filters are promising passive and economical systems for the remediation of mining effluents. Phosphorus was removed by the formation of apatite (hydroxyapatite, Ca(5)(PO(4))(3)OH or fluoroapatite, Ca(5)(PO(4))(3)F) as confirmed by visual and X-ray diffraction analyses. The growth rate of apatite was favored by a high phosphorus concentration. Calcite crystals were present in columns and appeared to be competing for calcium and volume needed for apatite formation. The calcite crystal growth rate was higher than that of apatite crystals. Fluoride was removed by precipitation of fluoroapatite and its removal was favored by a high ratio of phosphorus to fluoride in the wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Reheat cracking susceptibility of new generation 2%CrMo(W)V P23 steel multipass welds made using matching and mis-matching filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Nevasmaa, P.; Salonen, J.; Holmstroem, S. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2007-06-15

    In comparison with conventional creep resisting grade T/P22, the modified 2%Cr steels T/P23 and T/P24 show nearly twice the creep strength at typical service temperatures of about 520-570 deg C. The possibility of welding thin-wall boiler tubes without preheating or PWHT has promoted the use of T23 and T24 in practical boiler service. For thick-wall applications and multipass welds, welding consumables still require further development to improve creep strength and ductility. Susceptibility to reheat cracking and hydrogen cracking increase with the wall-thickness and structural rigidity of the component. Consequently, thick-wall sections generally require the use of PWHT and sometimes preheating as well. This paper is concerned with weldability of P23 pipe steel, with particular emphasis on reheat cracking sensitivity of simulated HAZ microstructures and thick-section multipass welds made using closely matching and mis-matching filler metals. The results demonstrate that the weld metal is far more critical than the parent steel HAZ, both in terms of reheat cracking sensitivity and ductility and toughness. In the as-welded condition, the weld metal exhibited excessive hardness of {approx}380 HV and only diminutive Charpy toughness at room temperature. Adoption of the PWHT (760 deg C/2h) enhanced the weldment toughness; however, it also inevitably raises risk to reheat cracking in the weld metal that showed values of reduction of area (RA) no more than 2-3% in the BWI cracking test. The results imply that thick-section multipass welds made using filler metal with the chemical composition closer to P24 grade material are much less susceptible to reheat cracking than 'matching' P23 grade welds. (orig.)

  19. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    International Nuclear Information System (INIS)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  20. Linear quantum optical bare raising operator

    Science.gov (United States)

    Radtke, Jennifer C. J.; Oi, Daniel K. L.; Jeffers, John

    2017-11-01

    We propose a simple implementation of the bare raising operator on coherent states via conditional measurement, which succeeds with high probability and fidelity. This operation works well not only on states with a Poissonian photon number distribution but also for a much wider class of states. As a part of this scheme, we highlight an experimentally testable effect in which a single photon is induced through a highly reflecting beamsplitter by a large amplitude coherent state, with probability 1/e(≈ 37 % ) in the limit of large coherent state amplitude.

  1. Ikke bare porno på mobilen

    DEFF Research Database (Denmark)

    Andersen, Tem Frank

    2013-01-01

    Den britiske børne- og ungdomsforsker professor Sonia Livingstone ved London School of Economics viser gennem en række interviews, at billeder af eksplicitte sexhandlinger er en velkendt del af den ungdommelige cirkulation af ’hverdagspornografisk’ materiale (Ringrose et al. 2012). ’Sexting’ er a...... altså ikke bare porno på en mobilplatform. Det er handlinger og værgestrategier, som unge piger er nødt til at forholde sig til i hverdagen, mens drengene umiddelbart ser ud til at slippe relativt let udenom den chikane, der kan ligge i ’sexting’....

  2. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  3. Characterization on the Microstructure Evolution and Toughness of TIG Weld Metal of 25Cr2Ni2MoV Steel after Post Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2018-03-01

    Full Text Available The microstructure and toughness of tungsten inert gas (TIG backing weld parts in low-pressure steam turbine welded rotors contribute significantly to the total toughness of the weld metal. In this study, the microstructure evolution and toughness of TIG weld metal of 25Cr2Ni2MoV steel low-pressure steam turbine welded rotor under different post-weld heat treatment (PWHT conditions are investigated. The fractography and microstructure of weld metal after PWHT are characterized by optical microscope, SEM, and TEM, respectively. The Charpy impact test is carried out to evaluate the toughness of the weld. The optical microscope and SEM results indicate that the as-welded sample is composed of granular bainite, acicular ferrite and blocky martensite/austenite (M-A constituent. After PWHT at 580 °C, the blocky M-A decomposes into ferrite and carbides. Both the number and size of precipitated carbides increase with holding time. The impact test results show that the toughness decreases dramatically after PWHT and further decreases with holding time at 580 °C. The precipitated carbides are identified as M23C6 carbides by TEM, which leads to the dramatic decrease in the toughness of TIG weld metal of 25Cr2Ni2MoV steel.

  4. An Investigation into Stress Corrosion Cracking of Dissimilar Metal Welds with 304L Stainless Steel and Alloy 82 in High Temperature Pure Water

    Science.gov (United States)

    Yeh, Tsung-Kuang; Huang, Guan-Ru; Tsai, Chuen-Horng; Wang, Mei-Ya

    For a better understanding toward stress corrosion cracking (SCC) in dissimilar metal welds with 304L stainless steel and Alloy 82, the SCC growth behavior in the transition regions of weld joints was investigated via slow strain rate tensile (SSRT) tests in 280 oC pure water with a dissolve oxygen level of 300 ppb. Prior to the SSRT tests, samples with dissimilar metal welds were prepared and underwent various pretreatments, including post-weld heat treatment (PWHT), shot peening, solution annealing, and mechanical grinding. In addition to the SSRT tests, measurements of degree of sensitization and micro-hardness on the transition regions of the metal welds were also conducted. According to the test results, the samples having undergone PWHTs exhibited relatively high degrees of sensitization. Distinct decreases in hardness were observed in the heat-affected zones of the base metals in all samples. Furthermore, the fracture planes of all samples after the SSRT tests were located at the stainless steel sides and were in parallel with the fusion lines. Among the treating conditions investigated in this study, a PWHT would pose a detrimental effect on the samples in the aspects of mechanical property and degree of SCC. Solution annealing would lead to the greatest improvement in ductility and SCC retardation, and shot peening would provide the treated samples with a positive improvement in ductility and corrosion retardation, but not to a great extent.

  5. A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process

    International Nuclear Information System (INIS)

    Arivazhagan, B.; Srinivasan, G.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Reduced activation ferritic martensitic (RAFM) steel is a major structural material for test blanket module (TBM) to be incorporated in International Thermonuclear Experimental Reactor (ITER) programme to study the breeding of tritium in fusion reactors. This material has been mainly developed to achieve significant reduction in the induced radioactivity from the structural material used. Fabrication of TBM involves extensive welding, and gas tungsten arc welding (GTAW) process is one of the welding processes being considered for this purpose. In the present work, the effect of heat input on microstructure of indigenously developed RAFM steel weld metal produced by GTAW process has been studied. Autogenous bead-on-plate welding, autogenous butt-welding, butt-welding with filler wire addition, and pulsed welding on RAFMS have been carried out using GTAW process respectively. The weld metal is found to contain δ-ferrite and its volume fraction increased with increase in heat input. This fact suggests that δ-ferrite content in the weld metal is influenced by the cooling rate during welding. It was also observed that the hardness of the weld metal decreased with increase in δ-ferrite content. This paper highlights the effect of heat input and PWHT duration on microstructure and hardness of welds.

  6. Evaluating the Properties of Dissimilar Metal Welding Between Inconel 625 and 316L Stainless Steel by Applying Different Welding Methods and Consumables

    Science.gov (United States)

    Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza

    2018-04-01

    The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.

  7. Dry storage technologies: keys to choosing among metal casks, concrete shielded steel canister modules and vaults

    International Nuclear Information System (INIS)

    Roland, V.; Solignac, Y.; Chiguer, M.; Guenon, Y.

    2003-01-01

    time. Then the key criterion is maximum modularity. Furthermore, the up front capital costs requirement for this type of solution is minimal, so depending on the chosen discount rate of the investor, they have an additional attraction. Those smaller modules allow to change course in back end policy more easily. Priority of modularity yields two other solutions, dual-purpose metal casks of the TN24TM family or dual purpose or single purpose concrete shielded welded canisters such as NUHOMS. These solutions, implemented by COGEMA LOGISTICS, TRANSNUCLEAR Inc. and FRAMATOME-ANP, are very flexible and have been adapted also to quite different fuels. Among what influences the choice, we can consider: in favor of metal casks (minimal ancillary equipment, ready to move to final or centralized repository or reprocessing or other ISFSI, compact systems, easy rearrangement, easy handling), in favor of concrete shielded canisters based systems (economics when initial quantity is sufficient to spread out up front equipment, significant cost-shielding advantage, easy local production of the relatively light canisters). Both approaches, when transportable, are also a factor for public acceptance because of the non-permanent characteristics and because transport licensing refers to internationally recognized rules, standards and methods. (authors)

  8. Very late bare-metal stent thrombosis, rare but stormy!

    LENUS (Irish Health Repository)

    Ali, Mohammed

    2011-08-01

    Recurrent in-stent thrombosis is rarely reported, with catastrophic clinical consequences of either acute coronary syndrome or death. We present a case of recurrent in-stent thrombosis with its outcome and a concise literature review.

  9. Effects of sulfur addition on pitting corrosion and machinability behavior of super duplex stainless steel containing rare earth metals: Part 2

    International Nuclear Information System (INIS)

    Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    Research highlights: → The mechanisms on the effects of rare earth metals (REM) and sulfur (S) additions on the initiation and propagation of pitting corrosion and machinabillity of a super duplex stainless steel (SDSS) were elucidated → It was found that, in consideration of the ratio of lifetime (the resistance to pitting corrosion) to cost (machining and raw material), a costly austenitic stainless steel with high Ni , medium Mo and low N can be replaced by the high S and REM added SDSS with 7 wt.% Ni-4 wt% Mo-0.3 wt.% N → The resistance to pitting corrosion of the tested super duplex stainless steel was affected by the type of inclusions, the preferential interface areas between inclusions and the substrate, and the PREN difference between the γ-phase and the α-phase for the initiation and propagation of the pitting corrosion. - Abstract: To elucidate the effects of sulfur addition on pitting corrosion and machinability behavior of alloys containing rare earth metals, a potentiostatic polarization test, a critical pitting temperature test, a SEM-EDS analysis of inclusions, and a tool life test were conducted. As sulfur content increased, the resistance to pitting corrosion decreased due to the formation of numerous manganese sulfides deteriorating the corrosion resistance and an increase in the preferential interface areas for the initiation of the pitting corrosion. With an increase in sulfur content, the tool life increased due to the lubricating films of manganese sulfides adhering to tool surface.

  10. The influence of welding and post heat treatment parameters on the diffusion and precipitation processes in dissimilar metal joints of a 1% and a 12% Cr-steel

    International Nuclear Information System (INIS)

    Kullik, M.; Katerbau, K.H.

    1989-05-01

    The influences of different weld metals, welding processes and post weld heat treatments (PWHT) on mechanical properties, carbon diffusion and precipitation processes were investigated by studying dissimilar metal welds between the cast steel GS-17 CrMoV 5 11 (1% Cr) and the steel X 20 CrMoV 12 1 (12% Cr). By means of tensile and impact tests, metallographic investigation, hardness measurements, electron beam X-ray microanalysis and transmission electron microscope examination changes in the welded joints were shown after different PWHT's as well as after creep tests. It was found that the joint with a 5% CrMoV-weld metal shows higher yield and rupture strength than the joint with a 12% CrMoV-weld metal. With increasing heat input during PWHT the strength decreases for both welds, but always remains higher than the values of the base materials. During PWTH as well as during service at elevated temperatures carbon diffuses from the lower chromium material to the higher chromium material. Width and carbon concentration of the carburized and decarburized zones depend on the heat input. A simple diffusion model was developed to describe the carbon profile for any annealing time and temperature. The consequence of the decarburization is a microstructural change in the heat effected zone of the cast steel. During longer annealing the fine M 2 C-carbides dissolve and coarse M 6 C-crbides form, resulting in a lower creep ductility of this zone. (orig.) With 19 refs., 15 tabs., 104 figs [de

  11. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. II. A modeling

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.I see ibid., vol.199, p.303-14, 2000. This paper pays special attention to an issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Efforts are made to reveal the random fatigue damage character by fracture surface observations and to model the random responses by introducing probability-based stress-strain curves of Ramberg-Osgood relation and its modified form. Results reveal that the fatigue damage is subjected to, 3-D interacting and involved microcracks. The three stages, namely microstructural short cracks (MSC), physical short cracks (PSC) and long cracks (LC) subdivided by Miller and de los Rios, can give a good characterization of the damage process. Both micro- and macro-behaviour of the material have the character of three stages. The 3-D effects are strong in the MSC stage, tend to a gradual decrease in the PSC stage, and then show saturation after going to the LC stage. Intrinsic causes of the random behaviour are the difference and evolution of the microstructural conditions ahead of the dominant crack tips. The 'effectively short fatigue crack criterion' introduced by Zhao et al. in observing the material surface short crack behaviour could facilitate an understanding of the mechanism of interaction and evolution. Based on the previous obtained appropriate assumed distribution, normal model, for the cyclic stress amplitude, the probability-based curves are approximated by the mean value and standard deviation cyclic stress-strain curves. Then, fatigue analysis at arbitrarily given reliability can be conveniently made according to the normal distribution function. To estimate these curves, a maximum likelihood method is developed. The analysis reveals that the curves could give a good modeling of the random responses of material. (orig.)

  12. Mechanical property evaluations of an amorphous metallic/ceramic multilayer and its role in improving fatigue properties of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Min [Nano Technology Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Jeng, R.J.; Yu, Chia-Chi; Chang, Chia-Hao [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Li, Chia-Lin [Department of Materials Science and Engineering and Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chu, Jinn P., E-mail: jpchu@mail.ntust.edu.tw [Nano Technology Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2016-08-01

    We have used nanoindentation to investigate mechanical properties of 200-nm-thick amorphous multilayer consisting of alternating layers of Zr-based thin film metallic glass (TFMG) and holmium scandium oxide (HSO). Nanoindentation results show that TFMG/HSO multilayer exhibits the high hardness and Young's modulus. Owing to its high hardness, smooth surface, and good adhesion properties, TFMG/HSO multilayer is then employed as a protective coating to improve the four-point bending fatigue properties of 316L stainless steel. With coating, the fatigue life is increased from 2.4×10{sup 5} to 4.9×10{sup 6} cycles, at the stress of 700 MPa. A crack retardation mechanism has been proposed to explain the role of TFMG/HSO multilayer in improving fatigue properties of 316L stainless steel substrate.

  13. Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, A. U.; Mishra, Brajendra [Colorado School of Mines, Denver (United States); Mittal, Vikas [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2016-01-15

    The aim of this study was to evaluate the use of iron-nickel oxide (Fe{sub 2}O{sub 3}.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

  14. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel

    Energy Technology Data Exchange (ETDEWEB)

    Jin, T.Y.; Liu, Z.Y.; Cheng, Y.F. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta (Canada)

    2010-08-15

    In this work, the type, composition and distribution of inclusions contained in an API5L X100 steel were characterized by scanning electron microscopy and energy-dispersive x-ray analysis. A hydrogen-charging at various current densities was used to introduce hydrogen into the steel, and the correlation between HIC and the inclusions was established. The microstructure of the steel consists of a leather-like bainitic ferrite matrix, with martensite/austenite as the second phase particles. At least four types of inclusions are contained in API5L X100 steel, elongated MnS inclusions and spherical Al-, Si- and Ca-Al-O-S-enriched inclusions. In particular, the majority of inclusions in the steel are Al-enriched. Upon hydrogen-charging, hydrogen blisters and HIC could be caused in the steel in the absence of external stress. The cracks are primarily associated with the Al- and Si-enriched inclusions, rather than the elongated MnS inclusion. The critical amount of hydrogen resulting in HIC of the tested API5L X100 steel is determined to be 3.24 ppm under condition in this work. (author)

  15. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    Science.gov (United States)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  16. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    International Nuclear Information System (INIS)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man; Baek, Tae-Sil

    2015-01-01

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H 2 SO 4 solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode

  17. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man [Korea Maritime University, Dong Sam-Dong,Yong Do-ku, Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2015-04-15

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H{sub 2}SO{sub 4} solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

  18. Do Bare Rocks Exist on the Moon?

    Science.gov (United States)

    Allen, Carlton; Bandfield, Joshua; Greenhagen, Benjamin; Hayne, Paul; Leader, Frank; Paige, David

    2017-01-01

    Astronaut surface observations and close-up images at the Apollo and Chang'e 1 landing sites confirm that at least some lunar rocks have no discernable dust cover. However, ALSEP (Apollo Lunar Surface Experiments Package) measurements as well as astronaut and LADEE (Lunar Atmosphere and Dust Environment Explorer) orbital observations and laboratory experiments possibly suggest that a fine fraction of dust is levitated and moves across and above the lunar surface. Over millions of years such dust might be expected to coat all exposed rock surfaces. This study uses thermal modeling, combined with Diviner (a Lunar Reconnaissance Orbiter experiment) orbital lunar eclipse temperature data, to further document the existence of bare rocks on the lunar surface.

  19. Residual stress measurements in a ferritic steel/In625 superalloy dissimilar metal weldment using neutron diffraction and deep-hole drilling

    International Nuclear Information System (INIS)

    Skouras, A.; Paradowska, A.; Peel, M.J.; Flewitt, P.E.J.; Pavier, M.J.

    2013-01-01

    This paper reports the use of non-invasive and semi-invasive techniques to measure the residual stresses in a large dissimilar weldment. This took the form of a butt weld between two sections of a P92 steel pipe, joined using an In625 welding consumable. Residual stress measurements have been carried out on the 30 mm thick welded pipe using the deep-hole drilling technique to characterise the through wall section residual stress distribution for the weld metal, HAZ and parent material. In addition, neutron diffraction measurements have been carried out within the weld zone. Diffraction patterns presented a high intensity and sharp peaks for the base P92 steel material. However measurements in the weld superalloy material were proven problematic as very weak diffraction patterns were observed. A thorough examination of the weld material suggested that the likely cause of this phenomenon was texture in the weld material created during the solidification phase of the welding procedure. This paper discusses the challenges in the execution and interpretation of the neutron diffraction results and demonstrates that realistic measurements of residual stresses can be achieved, in complex dissimilar metal weldments. Highlights: ► One of the few papers to measure residual stresses on dissimilar metal welds. ► Paper managed to provide realistic measurements of residual stresses using the DHD and ND technique. ► Results of this study have demonstrated the effect of texture during the ND measurements.

  20. Effect of metal properties of casts of steel-15Kh1M1FL on the crack resistance at 565 deg C

    International Nuclear Information System (INIS)

    Gladshtejn, V.I.; Sheshenev, M.F.

    1976-01-01

    Results are given of prolonged tests of the metal of industrial casts with various fluidity limits. It has been shown experimentally that a quite satisfactory crack resistance is characteristic of a metal with a fluidity limit in the range 30-50 kgf/mm 2 . Metallographic studies have been conducted. Upon variation of the structure and properties of the 15Kh1M1FL steel during operation, the rate of growth of small cracks (up to 2.0 mm) decreases almost by 3 orders of ten (from 1.4x10 -4 to 2.0x10 -7 mm/hour). Subsequent structural changes during prolonged operation (over 50000 hours) result in a gradual increase in the rate of crack growth. At the same time resistance towards appearance of the impermissible high rate of the crack growth, Ksub(10sup(-3)), diminishes monotonically with the operation time. The metal of industrial 15Kh1M1FL steel casts has good crack resistance (Ksub(10sup(-3)) =30-70 kgf/mmsup(3/2) and Vsub(ef) =) kgf/mm 2 ) and a satisfactory local plasticity (critical opening being no more than 0.20 mm for 10 3 hours)

  1. Study of corrosion in metallic coating in steel-carbon by thermal spray; Estudo de corrosao em revestimentos metalicos em aco-carbono obtidos por aspersao termica

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Maria C.P.; Cavalcanti, Eliane B.; Rambo, Elisabeth S.M.; Araujo, Paulo M.M. [Instituto de Tecnologia e Pesquisa (IPT), Aracaju, SE (Brazil); Santos, Anderson O. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The effect caused for constituent elements of the watery environment of production of the oil on metallic coverings was studied that simulate the artificial rise of the oil (connecting rods of pump mechanic). For in such a way, the techniques of electrochemical analysis had been used, as the method of linear polarization and the extrapolation of the straight line of Tafel of metallic coverings [alloy of Bronze and Aluminum; alloy of CrNi 80/20; NiCr 80/20; 95MXC (Cr: 26.5% - 31.5%, Cr: 26.5% - 31.5%, B: 3.35% - 4.15%, Mn: 1.1% - 2.2%, Itself: 1.1% -2.1%, Faith) and aluminum] on the substratum steel simulating covering in the connecting rods of pump. Oil well had been raised the resistance characteristics the polarization of the metal when submitted to the watery way surrounding it. They had been evaluated the resistance the covering polarization applied on the steel, with the objective to analyze its resistance the corrosion and to verify the possibility of its use as barrier against the problems originated for the degradation in connecting rods of pump. For the calculated Taxes of Corrosion, it can be concluded that the Aluminum coverings (0,003 mm/year) and NiCr 80/20 (0,179 mm/year) had been the ones that had presented a bigger resistance to the corrosive way. (author)

  2. Microstructure and Microsegregation of an Inconel 625 Weld Overlay Produced on Steel Pipes by the Cold Metal Transfer Technique

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2014-10-01

    Full Text Available The aim of this work was to investigate the development of microstructure and variations in chemical composition in commercial Inconel 625 coatings on a ferritic-pearlitic steel overlaid by the CMT method.

  3. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Schettgen, Thomas; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-05-01

    The uptake and elimination of metals from welding fumes is currently not fully understood. In the Aachen Workplace Simulation Laboratory (AWSL) it is possible to investigate the impact of welding fumes on human subjects under controlled exposure conditions. In this study, the uptake and elimination of chromium or chromium (VI) respectively as well as nickel was studied in subjects after exposure to the emissions of a manual metal arc welding process using low or high alloyed steel. In this present study 12 healthy male non-smokers, who never worked as welders before, were exposed for 6h to welding fumes of a manual metal arc welding process. In a three-fold crossover study design, subjects were exposed in randomized order to either clean air, emissions from welding low alloyed steel, and emissions from welding high alloyed steel. Particle mass concentration of the exposure aerosol was 2.5mg m(-3). The content of chromium and nickel in the air was determined by analysing air filter samples on a high emission scenario. Urine analysis for chromium and nickel was performed before and after exposure using methods of human biomonitoring. There were significantly elevated chromium levels after exposure to welding fumes from high alloyed steel compared to urinary chromium levels before exposure to high alloyed welding fumes, as well as compared to the other exposure scenarios. The mean values increased from 0.27 µg l(-1) to 18.62 µg l(-1). The results were in good agreement with already existing correlations between external and internal exposure (German exposure equivalent for carcinogenic working materials EKA). The variability of urinary chromium levels was high. For urinary nickel no significant changes could be detected at all. Six-hour exposure to 2.5mg m(-3) high alloyed manual metal arc welding fumes lead to elevated urinary chromium levels far higher (7.11-34.16 µg l(-1)) than the German biological exposure reference value (BAR) of 0.6 µg l(-1) directly after

  4. Modern trends in increasing the quality of the steels intended for cutting and metal-working tools: I. Improvement of granule metallurgy processes

    Science.gov (United States)

    Belyanchikov, L. N.

    2008-12-01

    The following new technological processes for producing fine gas-atomized powders of tool and high-speed steels with a low content of nonmetallic inclusions are considered: the process designed by Böhler Uddeholm Powder Technology (Austria) and processes involving a heated gas. In the former process, a metal is poured from a ladle with electroslag heating, and the atomizing unit consists of three injectors. A new process of producing tools from fine powders by three-dimensional printing, i.e., so-called 3D-printing, is described.

  5. Caracterização microestrutural de soldas dissimilares dos aços ASTM A-508 e AISI 316L Characterization of dissimilar metal weld between low alloy steel ASTM A-508 and 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Luciana Iglésias Lourenço Lima

    2010-06-01

    Full Text Available As soldas dissimilares (dissimilar metal welds - DMWs são utilizadas em diversos segmentos da indústria. No caso específico de usinas nucleares, tais soldas são necessárias para conectar tubulações de aço inoxidável com componentes fabricados em aços baixa liga. Os materiais de adição mais utilizados neste tipo de solda são as ligas de níquel 82 e 182. Este trabalho consistiu na soldagem de uma junta dissimilar de aço baixa liga ASTM A-508 G3 e aço inoxidável austenítico AISI 316L utilizando as ligas de níquel 82 e 182 como metais de adição. A soldagem foi realizada manualmente empregando os processos de soldagem ao arco SMAW (Shielded Metal Arc Welding e GTAW (Gas Tungsten Arc Welding. Os corpos de prova foram caracterizados microestruturalmente utilizando-se microscópio óptico e microscópio eletrônico de varredura com microanálise por dispersão de energia de raios X (EDS e ensaios de microdureza Vickers. Observou-se uma microestrutura constituída de dendritas de austenita com a presença de precipitados com formas e dimensões definidas pelo aporte térmico e pela direção de soldagem. Não houve variação significativa da dureza ao longo da junta soldada, demonstrando a adequação dos parâmetros de soldagem utilizados.The dissimilar metal welds (DMWs are used in several areas of the industries. In the nuclear power plant, this weld using nickel alloy welding wires is used to connect stainless steel pipes to low alloy steel components on the reactor pressured vessels. The filler materials commonly used in this type of weld are nickel alloys 82 and 182.. In this study, dissimilar metal welds composed of low alloy steel ASTM A-508 G3, nickel alloys 82 e 182 as weld metals, and austenitic stainless steel AISI 316L were prepared by manual shielded metal arc welding (SMAW and gas tungsten arc welding techniques (GTAW. Samples were microstructural characterized by optical microscopy and scanning electron microscopy

  6. Parametric Investigation of Diode and CO2 Laser in Direct Metal Deposition of H13 Tool Steel on Copper Substrate

    OpenAIRE

    M. Khalid Imran; Syed Masood; Milan Brandt; Sudip Bhattacharya; Jyotirmoy Mazumder

    2011-01-01

    In the present investigation, H13 tool steel has been deposited on copper alloy substrate using both CO2 and diode laser. A detailed parametric analysis has been carried out in order to find out optimum processing zone for coating defect free H13 tool steel on copper alloy substrate. Followed by parametric optimization, the microstructure and microhardness of the deposited clads have been evaluated. SEM micrographs revealed dendritic microstructure in both clads. However,...

  7. Correlation Between Microstructure and Low-Temperature Impact Toughness of Simulated Reheated Zones in the Multi-pass Weld Metal of High-Strength Steel

    Science.gov (United States)

    Kang, Yongjoon; Park, Gitae; Jeong, Seonghoon; Lee, Changhee

    2018-01-01

    A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.

  8. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  9. The bare parameters of Gribov's Langrangian are understood and determined

    International Nuclear Information System (INIS)

    Bishari, M.

    1977-01-01

    In the context of the ''1/N Dual Unitarization'' scheme, an explicit dynamical study of the triple bare pomeron mechanism which governs the interaction term in Gribov's Lagrangian is presented. Together with the previously established bare pomeron slope and intercept, controlling respectively, the kinetic and mass terms in Gribov's Lagrangian, this work demonstrates the viability of the ''1/N Dual Unitarization'' approach for a field theory of interaction bare pomerons. (author)

  10. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    Science.gov (United States)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  11. Effects of Rare Earth Metals addition and aging treatment on the corrosion resistance and mechanical properties of super duplex stainless steels

    Science.gov (United States)

    Park, Yong-Soo; Kim, Soon-Tae; Lee, In-Sung; Song, Chi-Bok

    2002-05-01

    Effects of rare earth metals addition and aging treatment on corrosion resistance and mechanical properties of super duplex stainless steels were investigated using optical/SEM/TEM metallographic examination, an X-ray diffraction test, a potentiodynamic anodic polarization test and a tensile test. The performance of the experimental alloy with 0.32% REM addition was compared with commercial super duplex stainless steel such as SAF 2507 when they were exposed to solution annealing heat treatment and aging treatment. The corrosion resistance in Cl- environments and mechanical properties of the experimental alloy were found superior to those of the commercial duplex stainless steel. The REM with larger atomic radii than those of Cr, Mo and W may fill vacancies inside the matrix and around the grain boundaries, retarding formation of harmful intermetallic σ and η phases. In addition, fine REM oxides/oxy-sulfides (1-3 μm) seemed to enhance the retardation effects. With REM additions, strength and ductility increased due to the phase and grain refinement caused by fine REM oxides and oxy-sulfides.

  12. Evaluation of systemic metal diffusion after spinal pedicular fixation with titanium alloy and stainless steel system: a 36-month experimental study in sheep.

    Science.gov (United States)

    Brayda-Bruno, M; Fini, M; Pierini, G; Giavaresi, G; Rocca, M; Giardino, R

    2001-01-01

    It is known that titanium alloys cause more extensive local metallosis due to fretting corrosion than stainless steel implants. The aim of the present study was to investigate possible systemic metal releases (Ti, Al, V, Cr, Ni) in sheep where L4-L5 were implanted with titanium alloy (Ti6Al4V, ASTM F 136) and stainless steel (AISI 316 L). 16 sheep were used: 8 were implanted with Ti6Al4V and 8 with stainless steel. At 6, 12, 24 and 36 months, the following examinations were performed: histology, atomic absorption spectrophotometry (AAS) and scanning electron microscopy (SEM), on liver, lung, kidney, brain, spleen and lumbo-aortic lymph nodes. Hair, urine and arteria blood samples were also analysed by AAS before implantation and at sacrifices. A histologic and ultrastructural study was performed on peri-implant tissues, too. Particular attention was paid to avoid contamination from dissection instruments or use of containers. In basal and in samples at 6 and 12 months, no metals were found in blood, urine, hair or other target tissues of the animals implanted with either Ti6Al4V or stainless steel. Regarding Al, V, Co and Ni, negative results in all tissues and body fluids were obtained also at 24 and 36 months. On the contrary, Ti traces were found in lumbo-aortic lymph nodes and lungs of one sheep only (10 and 30 ng/g, respectively) at 24 months. At 36 months, a systemic diffusion of Ti was observed in all tissues of both sheep instrumented with Ti6Al4V (2-16.5 ng/g), except for body fluids and hair. Metal research in target tissues by light and SEM micro-probe analysis provided negative results. Current data suggest that the amount of Ti found in organs after stable pedicular fixation is extremely low and not biologically available. This observation would lead us to exclude the hypothesis of any toxic reaction and such a release seems to be due to the passive diffusion through lymphatic fluids. Additional studies are needed to confirm if this long-term release

  13. Adjunction, Labeling, and Bare Phrase Structure

    Directory of Open Access Journals (Sweden)

    Norbert Hornstein

    2008-03-01

    Full Text Available The primary aim in this paper is to propose a phrase structure for adjunction that is compatible with the precepts of Bare Phrase Structure (BPS. Current accounts are at odds with the central vision of BPS and current practice leans more to descriptive eclecticism than to theoretical insight. A diagnosis for this conceptual disarray is suggested here: It stems from a deeply held though seldom formulated intuition; the tacit view that adjuncts are the abnormal case while arguments describe the grammatical norm. In actuality, it is argued, adjuncts are so well behaved that they require virtually no grammatical support to function properly. Arguments, in contrast, are refractory and require grammatical aid to allow them to make any propositional contribution. This last remark should come as no surprise to those with neo-Davidsonian semantic sympathies. Connoisseurs of this art form are well versed in the important role that grammatical (aka, thematic roles play in turning arguments into modifiers of events. Such fulcra are not required for meaningfully integrating adjuncts. into sentences. In what follows, we take this difference to be of the greatest significance and we ask ourselves what this might imply for the phrase structure of adjunction.

  14. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.

    Science.gov (United States)

    Cena, L G; Chisholm, W P; Keane, M J; Chen, B T

    2015-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm.

  15. Heavy metal accumulation in Pseudevernia furfuracea (L.) Zopf from the Karabük iron-steel factory in Karabük, Turkey.

    Science.gov (United States)

    Cansaran-Duman, Demet; Atakol, Orhan; Atasoy, Ilknur; Kahya, Didem; Aras, Sümer; Beyaztaş, Taylan

    2009-01-01

    Pseudevernia furfuracea (L.) Zopf lichen specimens were collected every 5 km starting from around an iron-steel factory located in the central area of Karabük province, up to Yenice Forest. Zn, Cu, Mn, Fe, Pb, Ni, Cd, Cr contents were analyzed in the samples collected from polluted and unpolluted areas. A Pseudevernia furfuracea (L.) Zopf sample from Yenice Forest was used as a control. The reason for this choise was the abundance of species diversity, and therefore sample collection might cause a very low impact on natural population density. The forest is among the 100 forested areas that must be urgently taken under protection according to WWF (World Wildlife Fund) researches. Results of the current study manifested significant variations among the contents of these elements between stations. As expected, the pollution sources, such as iron-steel factory, roads and railroads, industry, heavy traffic, and waste treatment plants, have major impact on the heavy metal accumulation in P. furfuracea (L.) Zopf, and, in accordance to their location, samples 8 and 10 displayed high element accumulation. Surprisingly, although Yenice Forest is under protection, results of our study showed that the region is becoming polluted by the influence of many pollution sources in the area. The present study also confirms the efficient metal accumulation capacity of lichens.

  16. Depositing Nickel-based Hardfacing to Join Carbon Steel and Cast Iron

    Directory of Open Access Journals (Sweden)

    Tomás Fernández-Columbié

    2016-10-01

    Full Text Available The objective of this investigation is to determine the micro-structural behavior of a joint between cast iron and carbon steel by depositing a nickel-based substrate in the carbon steel. The filler was added through Shielded Metal Arc Welding using Castec 3099 (UTP 8 electrodes while the base materials were joined through Gas Tungsten Arc Welding with ER 70S – A1 bare electrodes. The Schaeffler diagram was used to analyze the chemical composition of the resulting weld beads. The results of the analysis performed on the welded area and the heat influence zone indicated the formation of acicular structures near the welded line when Castec 3099 electrodes are used and the formation of skeletal ferrite on the heat influence zone during the application of this welding process. An austenitic mixture is formed when ER 70S – A1 electrodes are used.

  17. Hydrodynamic behavior of a bare rod bundle

    International Nuclear Information System (INIS)

    Bartzis, J.G.; Todreas, N.E.

    1977-06-01

    The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers

  18. Bare quantifier fronting as contrastive topicalization

    Directory of Open Access Journals (Sweden)

    Ion Giurgea

    2015-11-01

    Full Text Available I argue that indefinites (in particular bare quantifiers such as ‘something’, ‘somebody’, etc. which are neither existentially presupposed nor in the restriction of a quantifier over situations, can undergo topicalization in a number of Romance languages (Catalan, Italian, Romanian, Spanish, but only if the sentence contains “verum” focus, i.e. focus on a high degree of certainty of the sentence. I analyze these indefinites as contrastive topics, using Büring’s (1999 theory (where the term ‘S-topic’ is used for what I call ‘contrastive topic’. I propose that the topic is evaluated in relation to a scalar set including generalized quantifiers such as {lP $x P(x, lP MANYx P(x, lP MOSTx P(x, lP “xP(x} or {lP $xP(x, lP P(a, lP P(b …}, and that the contrastive topic is the weakest generalized quantifier in this set. The verum focus, which is part of the “comment” that co-occurs with the “Topic”, introduces a set of alternatives including degrees of certainty of the assertion. The speaker asserts that his claim is certainly true or highly probable, contrasting it with stronger claims for which the degree of probability is unknown. This explains the observation that in downward entailing contexts, the fronted quantified DPs are headed by ‘all’ or ‘many’, whereas ‘some’, small numbers or ‘at least n’ appear in upward entailing contexts. Unlike other cases of non-specific topics, which are property topics, these are quantifier topics: the topic part is a generalized quantifier, the comment is a property of generalized quantifiers. This explains the narrow scope of the fronted quantified DP.

  19. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.

    Science.gov (United States)

    Yoo, Young-Ran; Jang, Soon-Geun; Oh, Keun-Taek; Kim, Jung-Gu; Kim, Young-Sik

    2008-08-01

    Biometals need high corrosion resistance since metallic implants in the body should be biocompatible and metal ion release should be minimized. In this work, we designed three kinds of super stainless steel and adjusted the alloying elements to obtain different microstructures. Super stainless steels contain larger amounts of Cr, Mo, W, and N than commercial alloys. These elements play a very important role in localized corrosion and, thus, their effects can be represented by the "pitting resistance equivalent number (PREN)." This work focused on the behavior which can arise when the bare surface of an implant in the body is exposed during walking, heavy exercise, and so on. Among the experimental alloys examined herein, Alloy Al and 316L stainless steels were mildly cytotoxic, whereas the other super austenitic, duplex, and ferritic stainless steels were noncytotoxic. This behavior is primarily related to the passive current and pitting resistance of the alloys. When the PREN value was increased, the passivation behavior in simulated body solution was totally different from that in acidic chloride solution and, thus, the Cr(2)O(3)/Cr(OH)(3) and [Metal oxide]/[Metal + Metal oxide] ratios of the passive film in the simulated body solution were larger than those in acidic chloride solution. Also, the critical current density in simulated body solution increased and, thus, active dissolution may induce metal ion release into the body when the PREN value and Ni content are increased. This behavior was closely related to the presence of EDTA in the simulated body solution. (c) 2007 Wiley Periodicals, Inc.

  20. Effect of Microstructure on Hydrogen Diffusion in Weld and API X52 Pipeline Steel Base Metals under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    R. C. Souza

    2017-01-01

    Full Text Available The aim of this research was to evaluate the influence of microstructure on hydrogen permeation of weld and API X52 base metal under cathodic protection. The microstructures analyzed were of the API X52, as received, quenched, and annealed, and the welded zone. The test was performed in base metal (BM, quenched base metal (QBM, annealed base metal (ABM, and weld metal (WM. Hydrogen permeation flows were evaluated using electrochemical tests in a Devanathan cell. The potentiodynamic polarization curves were carried out to evaluate the corrosion resistance of each microstructure. All tests were carried out in synthetic soil solutions NS4 and NS4 + sodium thiosulfate at 25°C. The sodium thiosulfate was used to simulate sulfate reduction bacteria (SRB. Through polarization, assays established that the microstructure does not influence the corrosion resistance. The permeation tests showed that weld metal had lower hydrogen flow than base metal as received, quenched, and annealed.

  1. INVESTIGATION OF MICROSTRUCTURE OF STEEL WIRE FOR METAL CORD AND RVD AFTER PATENTING IN CONDITIONS OF RUP «BMZ»

    Directory of Open Access Journals (Sweden)

    T. P. Kurenkova

    2009-01-01

    Full Text Available The change of microstructure, quantity, character of bainite allocation at lowering of the lead melt temperature is revealed as a result of investigations of microstructure of the samples of steel 80K after isothermal breakdown of austenite in temperature range 610–400 °C.

  2. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  3. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    Science.gov (United States)

    Ballinger, Jared

    . Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels

  4. Casting of Hearth Plates from High-chromium Steel

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2014-12-01

    Full Text Available The paper presents the results of studies on the development of manufacturing technologies to cast hearth plates operating in chamber furnaces for heat treatment. Castings made from the heat-resistant G-X40CrNiSi27-4 steel were poured in hand-made green sand molds. The following operations were performed: computer simulation to predict the distribution of internal defects in castings produced by the above mentioned technology with risers bare and coated with exothermic and insulating sleeves, analysis of each variant of the technology, and manufacture of experimental castings. As a result of the conducted studies and analysis it was found that the use of risers with exothermic sleeves does not affect to a significant degree the quality of the produced castings of hearth plates, but it significantly improves the metal yield.

  5. Creep deformation behavior of weld metal and heat affected zone on 316FR steel thick plate welded joint

    International Nuclear Information System (INIS)

    Hongo, Hiromichi; Yamazaki, Masayoshi; Watanabe, Takashi; Kinugawa, Junichi; Tanabe, Tatsuhiko; Monma, Yoshio; Nakazawa, Takanori

    1999-01-01

    Using hot-rolled 316FR stainless plate (50 mm thick) and 16Cr-8Ni-2Mo filler wire, a narrow-gap welded joint was prepared by GTAW (gas tungsten arc welding) process. In addition to conventional round bar specimens of base metals and weld metal, full-thickness joint specimens were prepared for creep test. Creep tests were conducted at 550degC in order to examine creep deformation and rupture behavior in the weld metal of the welded joint. Creep strain distribution on the surface of the joint specimen was measured by moire interferometry. In the welded joint, creep strength of the weld metal zone apart from the surface was larger than that in the vicinity of the surface due to repeating heat cycles during welding. Creep strain and creep rate within the HAZ adjacent to the weld metal zone were smaller than those within the base metal zone. Creep rate of the weld metal zone in the welded joint was smaller than that of the weld metal specimen due to the restraint of the hardened HAZ adjacent to the zone. The full-thickness welded joint specimens showed longer lives than weld metal specimens, though the lives of the latter was shorter than those of the base metal (undermatching). In the full-thickness welded joint specimen, crack started from the last pass layer of the weld metal zone and fracture occurred at the zone. From the results mentioned above, in order to evaluate the creep properties of the welded joint correctly, it is necessary to conduct the creep test using the full-thickness welded joint specimen which includes the weakest zones of the weld metal, the front and back sides of the plate. (author)

  6. [Health risk assessment of exposure to metals in the workers of the steel foundry and in the general population of Taranto (Italy)].

    Science.gov (United States)

    Soleo, Leonardo; Lovreglio, Piero; Panuzzo, Laura; D'Errico, Maria Nicolà; Basso, Antonella; Gilberti, Maria Enrica; Drago, Ignazio; Tomasi, Cesare; Apostoli, Pietro

    2012-01-01

    To study the urinary excretion of As, Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Ba, Hg, Pb, Sb in workers at the Taranto integrated-cycle steel foundry and in subjects from the general population of Taranto, to assess the health risk posed by occupational exposure and environmental exposure, respectively, to these metals. The study included 49 steel foundry workers (exposed), working in the minerals and agglomerates pools, steel processing plants 1 and 2 and maritime plants, and 50 subjects belonging to the general population of Taranto resident at various distances from the factory (controls), randomly selected from the exposed subjects and controls enrolled in previous research conducted in 2005. A questionnaire was administered to all participants, enquiring into general characteristics, lifestyle, diet, and any medical conditions. Informed written consent to take part in the study was obtained from all subjects before enrolment. The results of environmental monitoring performed in 2005 in the workers' sectors, consisting of determining As, Cr, Mn, Ni, Cu, Zn, Cd and Pb in the respirable dust, revealed by both samplers applied in fixed positions and personal samplers, were considered. Urine samples were obtained from all participants on a Friday, to determine As and Cr by AAS and all the other metal elements by a multielement technique with ICP-MS. Urinary creatinine was also determined to make any necessary adjustments. All urine analyses were performed in 2005 within one month of urine collection. In the respirable dust, As and Cd were always within the LOD, whereas Cr, Mn, Ni, Cu and Pb were 1-2 orders of magnitude below the respective TLV-TWA of the ACGIH. Mn was the only metal element that presented significantly higher urinary concentrations in exposed subjects as compared to controls, although the values in both groups were in any case within the Italian reference range. Co, Cu, Zn, Sn and Sb showed significantly higher urinary concentrations in controls than in

  7. Joining uranium to steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1976-05-01

    A method has been devised which will allow the joining of uranium to steel by fusion welding through the use of an intermediate material. Uranium-0.5 titanium was joined to AISI 304L stainless steel by using a vanadium insert. Also, a method is now available for selecting possible filler metals when two entirely dissimilar metals need to be joined. This method allows a quantitative ranking to be made of the possible filler metals and thus the most likely candidate can be selected

  8. STUDY OF THE INFLUENCE OF THE HEAT INPUT ON MECHANICAL PROPERTIES OF C-Mn STEEL WELD METALS OBTAINED BY SUBMERGED ARC PROCESS

    Directory of Open Access Journals (Sweden)

    Erick de Sousa Marouço

    2013-06-01

    Full Text Available The present work is part of a research program that aims to evaluate the technical feasibility of increasing productivity in the manufacturing of tubular components for offshore oil industry, which are fully welded by automatic submerged arc welding process, with high heat input, but with no impairment on the impact toughness of the weld metal. Multipass welds were produced by the submerged arc welding process, with a combination of F7A4-EM12K (wire/flux, by using a 3.2 mm-diameter wire, preheating at 80°C, with direct current, in flat position, with heat input varying from 3.5 kJ/mm to 12 kJ/mm. After welding, tensile tests and Charpy-V impact tests at –60°C, –40°C, –20°C, 0°C and 20°C were carried out, as well as metallographic examination by both optical (OM and scanning electron microscopy (SEM, of specimens obtained entirely from the weld metal, allowing the discussion over the toughness X microstructure relationship. The weld metals have shown higher toughness levels in relation to the minimum required for use with low-alloy C-Mn steels welding with requirements of impact toughness of 27 J at 0°C for heat input up to 12 kJ/mm allowing an increase in productivity of 58% on the effective manufacturing time.

  9. Correlation of Flux Composition and Inclusion Characteristics With Submerged Arc Weld Metal Properties in HY-100 Steel

    Science.gov (United States)

    1993-09-01

    chemistries are complex, the welding engineer needs to obtain the correct CCT diagram for the alloy system in question. Once the CCT diagram is estimated...the CCT diagram must be pertinent to the particular chemistry of the weld metal, especially when the weld metal composition varies with flux

  10. The influence of particle size distribution on the properties of metal-injection-moulded 17-4 PH stainless steel

    CSIR Research Space (South Africa)

    Seerane, Mandy

    2016-10-01

    Full Text Available Metal injection moulding (MIM) is a near-net-shaping powder metallurgy technique suitable for the cost-effective mass production of small and complex components. In this paper, the effects of the metal powder particle size on the final properties...

  11. Transformation and Precipitation Reactions by Metal Active Gas Pulsed Welded Joints from X2CrNiMoN22-5-3 Duplex Stainless Steels.

    Science.gov (United States)

    Utu, Ion-Dragos; Mitelea, Ion; Urlan, Sorin Dumitru; Crăciunescu, Corneliu Marius

    2016-07-21

    The high alloying degree of Duplex stainless steels makes them susceptible to the formation of intermetallic phases during their exposure to high temperatures. Precipitation of these phases can lead to a decreasing of the corrosion resistance and sometimes of the toughness. Starting from the advantages of the synergic Metal Active Gas (MAG) pulsed welding process, this paper analyses the structure formation particularities of homogeneous welded joints from Duplex stainless steel. The effect of linear welding energy on the structure morphology of the welded joints was revealed by macro- and micrographic examinations, X-ray energy dispersion analyses, measurements of ferrite proportion and X-ray diffraction analysis. The results obtained showed that the transformation of ferrite into austenite is associated with the chromium, nickel, molybdenum and nitrogen distribution between these two phases and their redistribution degree is closely linked to the overall heat cycle of the welding process. The adequate control of the energy inserted in the welded components provides an optimal balance between the two microstructural constituents (Austenite and Ferrite) and avoids the formation of undesirable intermetallic phases.

  12. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    Science.gov (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  13. Transformation and Precipitation Reactions by Metal Active Gas Pulsed Welded Joints from X2CrNiMoN22-5-3 Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Ion-Dragos Utu

    2016-07-01

    Full Text Available The high alloying degree of Duplex stainless steels makes them susceptible to the formation of intermetallic phases during their exposure to high temperatures. Precipitation of these phases can lead to a decreasing of the corrosion resistance and sometimes of the toughness. Starting from the advantages of the synergic Metal Active Gas (MAG pulsed welding process, this paper analyses the structure formation particularities of homogeneous welded joints from Duplex stainless steel. The effect of linear welding energy on the structure morphology of the welded joints was revealed by macro- and micrographic examinations, X-ray energy dispersion analyses, measurements of ferrite proportion and X-ray diffraction analysis. The results obtained showed that the transformation of ferrite into austenite is associated with the chromium, nickel, molybdenum and nitrogen distribution between these two phases and their redistribution degree is closely linked to the overall heat cycle of the welding process. The adequate control of the energy inserted in the welded components provides an optimal balance between the two microstructural constituents (Austenite and Ferrite and avoids the formation of undesirable intermetallic phases.

  14. Impacts of Steel-Slag-Based Silicate Fertilizer on Soil Acidity and Silicon Availability and Metals-Immobilization in a Paddy Soil.

    Directory of Open Access Journals (Sweden)

    Dongfeng Ning

    Full Text Available Slag-based silicate fertilizer has been widely used to improve soil silicon- availability and crop productivity. A consecutive early rice-late rice rotation experiment was conducted to test the impacts of steel slag on soil pH, silicon availability, rice growth and metals-immobilization in paddy soil. Our results show that application of slag at a rate above higher or equal to 1 600 mg plant-available SiO2 per kg soil increased soil pH, dry weight of rice straw and grain, plant-available Si concentration and Si concentration in rice shoots compared with the control treatment. No significant accumulation of total cadmium (Cd and lead (Pb was noted in soil; rather, the exchangeable fraction of Cd significantly decreased. The cadmium concentrations in rice grains decreased significantly compared with the control treatment. In conclusion, application of steel slag reduced soil acidity, increased plant-availability of silicon, promoted rice growth and inhibited Cd transport to rice grain in the soil-plant system.

  15. On the measurement of the stacking-fault energies of face centered cubic metal and austenitic stainless steels by X-ray diffraction

    International Nuclear Information System (INIS)

    Borges, J.F.A.

    1985-01-01

    An X-rays diffraction method was applied to measure the Stacking-Fault Energies (SFE) of the AISI 304, AISI 316, AISI 347 and DIN-WERKSTOFF 1.4970 Austenitic Stainless Steels. The SFE determination plays an important role in the research of the mechanical behaviour of the Metal and Alloys, their deformation mechanisms, stability of microstructure amd electronic configuration. The method is based on the relationship between the SFE and the ratio of the Mean Square Strain to the Stacking-Fault probability. The Mean Square Strain was evaluated by Fourier Analysis of X-rays Diffraction profiles, corrected to reduce instrumental effects, followed by the application of the Warren-Averbach method to the Fourier Coefficients. The Stacking-Fault probabilities were derived from the changes of peak separations between cold-worked and annealed specimens. (author) [pt

  16. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    Science.gov (United States)

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868

  17. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel; Degradacion de la tenacidad al impacto durante el envejecimiento acelerado de soldadura en acero microaleado

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-07-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs.

  18. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  19. Durability of bare and anodised aluminium in atmosphere of very different corrosivities I. Bare aluminium

    International Nuclear Information System (INIS)

    Gonzalez, J. A.; Escudero, E.; Lopez, V.; Simancas, J.; Morcillo, M.

    2004-01-01

    The behaviour of bare aluminium is studied in atmospheric exposure at 11 natural testing stations with salinity levels ranging between 2.1 and 684 mg Cl''- m''-2 d''-1. In atmospheres of low or moderate aggressivity aluminium behaves as a passive material, though the insignificant corrosion that is produced is sufficient to spoil its appearance. In contrast, at salinity levels of 50 mg Cl''- m''-2 ''-1 or above, aluminium is susceptible to pitting corrosion even in the first year of atmospheric exposure, or in the second year at salinities of ≤ 10 mg Cl''- m''-2 d''-1. For comparative purposes, results are included for aluminium protected with an anodic film of 28 μm thickness exposed at the same testing stations. A 28 μm anodic film, correctly sealed, prevents the risk of localised corrosion even in the most unfavourable situations. (Author) 23 refs

  20. Temporal construals of bare predicates in Mandarin Chinese

    NARCIS (Netherlands)

    Sun, Hongyuan

    2014-01-01

    This dissertation contributes to the research on tense and eventualities across languages. It presents the first systematic investigation and detailed theoretical analysis of the temporal interpretations of sentences with bare (aspectually unmarked) predicates in Mandarin. Traditionally considered

  1. Semantic coherence in English accusative-with-bare-infinitive constructions

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    2013-01-01

    -with-bare-infinitive construction. The main methodological framework is that of covarying collexeme analysis, which, through statistical corpus analysis, allows for the analyst to address the semantics of a construction. Using this method on data from the BNC, the ultimate purpose of the paper is to address the underlying semantic...... relations of English accusatives-with-bare-infinitives through the relations of semantic coherence between the two VPs....

  2. Bare and effective fluid description in brane world cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Casilla 307, Santiago (Chile); Lepe, Samuel; Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)

    2010-03-15

    An effective fluid description, for a brane world model in five dimensions, is discussed for both signs of the brane tension. We found several cosmological scenarios where the effective equation differs widely from the bare equation of state. For universes with negative brane tension, with a bare fluid satisfying the strong energy condition, the effective fluid can cross the barrier {omega} {sub eff}=-1. (orig.)

  3. Determination for the Entrapment Criterion of Non-metallic Inclusions by the Solidification Front During Steel Centrifugal Continuous Casting

    Science.gov (United States)

    Wang, Qiangqiang; Zhang, Lifeng

    2016-06-01

    In the current study, the three-dimensional fluid flow, heat transfer, and solidification in steel centrifugal continuous casting strands were simulated. The volume of fluid model was used to solve the multiphase phenomena between the molten steel and the air. The entrapment and final distribution of inclusions in the solidified shell were studied with the discussion on the effect of rotation behavior of the caster system. Main results indicate that after applying the rotation of the shell, the fluid flow transformed from a recirculation flow to a rotation flow in the mold region and was driven to flow around in the casting direction. As the distance below the meniscus increased, the distribution of the tangential speed of the flow and the centrifugal force along one diameter of the strand became symmetrical gradually. The jet flow from the nozzle hardly impinged on the same location on the shell due to the rotation of the shell during solidification. Thus, the shell thickness on the same height was uniform around, and the thinning shell and a hot spot on the surface of shell were avoided. Both of the measurement and the calculation about the distribution of oxide inclusions along the radial direction indicated the number of inclusions at the side and the center was more than that at the quarter on the cross section of billet. With a larger diameter, inclusions tended to be entrapped toward the center area of the billet.

  4. Role of water in the tribochemical removal of bare silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng; Xiao, Chen [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Xiaodong [Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Peng; Chen, Lei; Qi, Yaqiong [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Qian, Linmao, E-mail: linmao@swjtu.edu.cn [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-12-30

    Highlights: • The wear of bare silicon against SiO{sub 2} micro-spherical tip is a tribochemical process with participation of water. • The water amount at Si/SiO{sub 2} interface plays a significant role on the wear of bare silicon. • The role of water relies on the hydroxylation by auto-ionized OH{sup −}, the hydrolysis of H{sub 2}O molecules, and the dissolution of SiO{sub m}H{sub n} in water. - Abstract: Nanowear tests of bare silicon against a SiO{sub 2} microsphere were conducted in air (relative humidity [RH] = 0%–89%) and water using an atomic force microscope. Experimental results revealed that the water played an important role in the tribochemical wear of the bare silicon. A hillock-like wear trace with a height of 0.7 nm was generated on the bare silicon surface in dry air. As the RH increased, the wear depth increased and reached the maximum level in water. Analysis of frictional dissipated energy suggested that the wear of the bare silicon was not dominated by mechanical interactions. High-resolution transmission electron microscopy detection demonstrated that the silicon atoms and crystal lattice underneath the worn area maintained integral perfectly and thus further confirmed the tribochemical wear mechanism of the bare silicon. Finally, the role of water in the tribochemical wear of the bare silicon may be explained by the following three aspects: the hydroxylation by hydroxyl ions auto-ionized in water, the hydrolytic reaction of water molecules, and the dissolution of the tribochemical product SiO{sub m}H{sub n} in liquid water. With increasing RH, a greater water amount would adsorb to the Si/SiO{sub 2} interface and induce a more serious tribochemical wear on the bare silicon surface. The results of this paper may provide further insight into the tribochemical removal mechanism of bare monocrystalline silicon and furnish the wider reaction cognition for chemical mechanical polishing.

  5. A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qian [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Di, Hong-Shuang, E-mail: hongshuangdi_ral@126.com [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Li, Jun-Chen [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Wu, Bao-Qiang [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Material and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2016-07-04

    The differences in microstructure and mechanical properties of laser beam welded (LBW) and gas metal arc welded (GMAW) joints of 800 MPa grade Nb-Ti-Mo microalloyed C-Mn steel of 5 mm thickness were studied. The study suggested that the microstructure in welded seam (WS) of GMAW was acicular ferrite and fine grained ferrite, whereas lath martensite (LM) was obtained in WS of LBW, where inclusions were finer and did not act as nucleation sites for acicular ferrite. The microstructure of coarse-grained HAZ (CGHAZ) obtained using the two welding methods was LM and granular bainite (GB), respectively. The original austenite grain size in CGHAZ of LBW was 1/3 of GMAW. The microstructure of fine-grained HAZ and mixed-grained HAZ using the two welding methods was ferrite and M-A constituents, while that of LBW was significantly fine. The hardness of LBW welded joints was higher than the base metal (BM), which was the initiation site for tensile fracture. The tensile fracture location of GMAW welded joints was in WS. The impact toughness of LBW welded joints was excellent and the impact absorption energy was similar to BM.

  6. Interstitial solutes content determination in ferritic steel weld metal. Determinacion del contenido de solutos intersticiales en metal de soldadsura dse acero ferriticos

    Energy Technology Data Exchange (ETDEWEB)

    Ghilarducci-Salva, A; Perez, T E [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1989-01-01

    To measure the amount of free nitrogen in a welding run (low carbon steel deposited by submerged arc) the internal friction and low frequency elastic module techniques are used, based on the Snoek relaxation effect associated with the displacement of the interstitial solute. Cylindrical samples are activated by means of oscillating charges, keeping the range of movement constant during the heating and cooling cycles, after which internal friction peaks and steppings in the elastic module occur. In the case of welding deposits, the internal friction spectrum is complex, so that squared minimum adjustment of experimental spectrum is used, through a series of perfect Debye peaks. The identification of peaks allows a qualitative evaluation of the free nitrogen. The quantitative evaluation requires a calibration using test pieces subject to solubilization. (Author)

  7. Oceanic corrosion test of bare and zinc-protected aluminum alloys for seawater heat exchangers

    Science.gov (United States)

    Sasscer, D. S.; Morgan, T. O.; Rivera, C.; Ernst, R.; Scott, A. C.; Summerson, T. J.

    1982-01-01

    Bare 3004 tubes, 7072 Alclad 3004 tubes, and bare and zinc diffusion treated 3003 extrusions from a brazed aluminum, plate-fin heat exchanger were exposed to 1.8 m/sec flowing seawater aboard an open ocean test facility moored 3.4 km off the southeast coast of Puerto Rico. After six months exposure, the average corrosion rates for most varieties of aluminum materials converged to a low value of 0.015 mm/yr (0.6 mils/yr). Pitting did not occur in bare 3003 and 3004 samples during the six month test. Pitting did occur to varying degrees in the Alclad and zinc diffusion treated material, but did not penetrate to the base metal. Biofouling countermeasures (intermittent chlorination and brushing) did not affect the corrosion rates to any significant extent. Intermittent chlorination at a level of 0.5 ppm for 28 minutes daily controlled microbiofouling of the samples but did not prevent the development of a macrobiofouling community in areas of the plumbing with low flow.

  8. Measurement of critical mass for an assembly of bare uranium shells

    International Nuclear Information System (INIS)

    Myers, W.L.; Goulding, C.A.; Hollas, C.L.

    1997-01-01

    As part of the research into nuclear measurement techniques, a series of measurements was performed that have applications to criticality safety and nuclear material handling. The critical mass of a set of bare, enriched-uranium metal hemispherical shells, known as the Rocky Flats shells, was measured for an assembly having an inside radius of 2.347 cm. The critical mass value was extrapolated from a series of subcritical measurements using three different kinds of sources (AmBe, AmF, and 252 Cf) placed at the center of the shells. Two kinds of neutron detection configurations (a 1% efficiency and a 25% efficiency configuration) were used to make the measurements

  9. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant.

    Science.gov (United States)

    Zhou, Yun; Ning, Xun-an; Liao, Xikai; Lin, Meiqing; Liu, Jingyong; Wang, Jianghui

    2013-09-01

    The environmental risk of exposure to six heavy metals (Cu, Pb, Zn, Cr, Ni, and Cd) found in fly ashes from waste filter bags obtained from a steel plant was estimated based on the mineralogical compositions, total concentrations and speciation of the metals in the fly ashes. The results indicated that the fly ashes mainly consisted of hematite, magnetite, cyanite, spinel, coesite and amorphous materials. The concentrations of Zn and Pb were much higher than that of other materials. After Zn and Pb, Ni was present in the highest concentration, followed by Cu, Cr and Cd. Each heavy metal was distributed differently in fly ashes. The levels of Zn, Cd and Pb in the active fraction were very high, and ranged from 64.83 to 81.96%, 34.48 to 82.4% and 6.92 to 79.65% respectively, while Cu, Cr and Ni were mainly present in the residual fraction. The risk assessment code (RAC) values of fly ashes showed that the Zn and Cd present in the H3 sample presented a very high risk, with RAC values greater than 50%. The Cu present in the H3 sample, Cd in the H2 sample and Zn in the H4 and H5 samples presented a high risk. The Pb present in the H2 sample, Cd in the H4 sample, Ni in the H1 and H5 samples, and Zn in the H1 sample presented a medium risk. A low risk was presented by the Cu present in the H1, H2, H4 and H5 samples, the Pb in the H1, H3 and H5 samples, the Cd in the H1 and H5 samples, and the Ni in the H2 sample. No risk was presented by Cr in any sample. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effect of inhomogeneous distribution of non-metallic inclusions on crack path deflection in G42CrMo4 steel at different loading rates

    Directory of Open Access Journals (Sweden)

    S. Henschel

    2015-10-01

    Full Text Available An inhomogeneous distribution of non-metallic inclusions can result from the steel casting process. The aim of the present study was to investigate the damaging effect of an inhomogeneous distribution of nonmetallic inclusions on the crack extension behavior. To this end, the fracture toughness behavior in terms of quasi-static J-a curves was determined at room temperature. Additionally, dynamic fracture mechanics tests in an instrumented Charpy impact-testing machine were performed. The fracture surface of fracture mechanics specimens was analyzed by means of scanning electron microscopy. It was shown that an inhomogeneous distribution significantly affected the path and, therefore, the plane of crack growth. Especially clusters of non-metallic inclusions with a size of up to 200 μm exhibited a very low crack growth resistance. Due to the damaging effect of the clusters, the growing crack was strongly deflected towards the cluster. Furthermore, crack tip blunting was completely inhibited when inclusions were located at the fatigue precrack tip. Due to the large size of the non-metallic inclusion clusters, the height difference introduced by crack path deflection was significantly larger than the stretch zone height due to the crack tip blunting. However, the crack path deflection introduced by a cluster was not associated with a toughness increasing mechanism. The e dynamic loading ( 1 0.5 5 s MPam 10   K did not result in a transition from ductile fracture to brittle fracture. However, the crack growth resistance decreased with increased loading rate. This was attributed to the higher portion of relatively flat regions where the dimples were less distinct.

  11. In Situ Synthesis and Characterization of Fe-Based Metallic Glass Coatings by Electrospark Deposition Technique

    Science.gov (United States)

    Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.

    2017-02-01

    Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.

  12. Effect of Metal Ion Etching on the Tribological, Mechanical and Microstructural Properties of TiN-COATED d2 Tool Steel Using Cae Pvd Technique

    Science.gov (United States)

    Ali, Mubarak; Hamzah, Esah Binti; Hj. Mohd Toff, Mohd Radzi

    A study has been made on TiN coatings deposited on D2 tool steel substrates by using commercially available cathodic arc evaporation, physical vapor deposition technique. The goal of this work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness, coefficient of friction and surface roughness of TiN coating deposited on tool steel, which is vastly use in tool industry for various applications. A pin-on-disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating at various ion etching rates. The tribo-test showed that the minimum value recorded for friction coefficient was 0.386 and 0.472 with standard deviation of 0.056 and 0.036 for the coatings deposited at zero and 16 min ion etching. The differences in friction coefficient and surface roughness was mainly associated with the macrodroplets, which was produced during etching stage. The coating deposited for 16 min metal ion etching showed the maximum hardness, i.e., about five times higher than uncoated one and 1.24 times to the coating deposited at zero ion etching. After friction test, the wear track was observed by using field emission scanning electron microscope. The coating deposited for zero ion etching showed small amounts of macrodroplets as compared to the coating deposited for 16 min ion etching. The elemental composition on the wear scar were investigated by means of energy dispersive X-ray, indicate no further TiN coating on wear track. A considerable improvement in TiN coatings was recorded as a function of various ion etching rates.

  13. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  14. Semantic coherence in English accusative-with-bare-infinitive constructions

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    2013-01-01

    Drawing on usage-based cognitively oriented construction grammar, this paper investigates the patterns of coattraction of items that appear in the two VP positions (the VP in the matrix clause, and the VP in the infinitive subordinate clause) in the English accusative-with-bare-infinitive constru......Drawing on usage-based cognitively oriented construction grammar, this paper investigates the patterns of coattraction of items that appear in the two VP positions (the VP in the matrix clause, and the VP in the infinitive subordinate clause) in the English accusative...... relations of English accusatives-with-bare-infinitives through the relations of semantic coherence between the two VPs....

  15. Performance Evaluation of a Multipurpose Bare PC Gateway

    DEFF Research Database (Denmark)

    Tsetse, Anthony; Appiah-Kubi, Patrick; Loukili, Alae

    2015-01-01

    . Different solutions (6to4 tunneling, IVI translation, NAT64, DNS64 etc.), have being proposed but these are all standalone systems. In this paper we discuss the design,implementation and performance evaluation of a multipurpose Bare PC Gateway which incorporates Network Address translation (NAT), 6to4...... results indicate a relatively better performance (18%-45%) of the Bare PC gateway compared to a Linux gateway (running the functionalities as standalone systems). We believe the proposed solution could easily scale to wide area networks and also provide a cost efficient solution...

  16. Is Bare Band Description of Carrier Transport Appropriate in Pentacene?

    Science.gov (United States)

    Andersen, John D.; Giuggioli, Luca; Kenkre, V. M.

    2002-03-01

    Experiments on injected charges in pentacene single crystals reveal mobilities typical of inorganic semiconductors and temperature dependence (for TSchein, C. B. Duke, and A.R. McGhie, Phys. Rev. Lett. 40, 197 (1978); L. B. Schein, W. Warta, and N. Karl, Chem. Phys. Lett. 100, 34 (1983)) Because the low temperature mobility values in pentacene suggest moderately large bandwidths, we address two questions. Does a bare wide (effectively infinite) band description work for pentacene for T<400K? And, is a bare finite band description compatible with those data? These questions are answered by modifications of a theory originally constructed for inorganic materials and a newly developed mobility theory.

  17. An unusual case of aortic rupture after deployment of a bare stent in the treatment of aortic dissection in a patient with giant-cell arteritis.

    Science.gov (United States)

    Rynio, Pawel; Kazimierczak, Arkadiusz; Gutowski, Piotr; Cnotliwy, Miloslaw

    2017-06-01

    Giant-cell arteritis is associated with a higher risk of aortic aneurysm and aortic dissection formation. We present a women with aortic dissection type B treated with a stent graft and bare-metal stent implantation. After the stent deployment we noticed aortic rupture, which was successfully treated with implantation of an additional stent graft. This report highlights the difficulty of endovascular therapy in patients with giant-cell arteritis. We have to bear in mind that chronic inflammation of the aorta leads to a more fragile aortic wall than normal. We recommend the use of a stent graft over a bare-metal stent and gentle use of a balloon catheter.

  18. Stress corrosion crack growth studies on nitrogen added AISI type 316 stainless steel and its weld metal in boiling acidified sodium chloride solution using the fracture mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, H.; George, G.; Khatak, H.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-10-01

    Compact tension specimens of nitrogen-added AISI type 316 austenitic stainless steel and its weld metal were subject to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensify factor (K{sub ISCC}) and J-integral (J{sub ISCC}) were taken as those values of K{sub I} and J{sub I} at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis-a-vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress-assisted dissolution of delta-ferrite or its interface with austenite, was observed. (orig.) [German] CT-Proben von Grund- und Schweissnahtwerkstoff des stickstoffhaltigen Stahles AISI 316 LN wurden Spannungsrisskorrosionstests in siedender chloridhaltiger Loesung (5 M Natriumchlorid/0,15 M Natriumsulfat/0,03 M Salzsaeure) unterzogen. Die Tests erfolgten bei konstanter Dehnrate (CERT-Test) von 10 {mu}m/h. Als Schwellwerte der Initiierung von Spannungsrisskorrosion K{sub ISCC} und I{sub ISCC} wurden die Werte des Spannungsintensitaetsfaktors K{sub I} und des J-Integrals J{sub I} ermittelt, bei denen ein Risswachstum von 25 {mu}m auftrat. Dabei wies der Grundwerkstoff 4-fach hoehere Schwellwerte K{sub ISCC} und J{sub ISCC} auf als der Schweissnahtwerkstoff. Auch die Risswachstumsraten im Plateaubereich der Risswachstumsrate-Spannungsintensitaetskruven waren am Grundwerkstoff um eine Groessenordnung geringer als am Schweissnahtwerkstoff. Die fraktorgrahischen Untersuchungen zeigten an beiden Materialien Schaedigung durch transkristalline Spannungsrisskorrosion. Eine

  19. Comparative Evaluation of Friction Resistance of Titanium, Stainless Steel, Ceramic and Ceramic with Metal Insert Brackets with Varying Dimensions of Stainless Steel Wire: An In vitro Multi-center Study.

    Science.gov (United States)

    Kumar, B Sunil; Miryala, Suresh; Kumar, K Kiran; Shameem, K; Regalla, Ravindra Reddy

    2014-09-01

    The orthodontist seeks an archwire-bracket combination that has both good biocompatibility and low friction. Hence, the aim of this multicenter in vitro study was to evaluate and compare the frictional resistance generated between titanium (Ti), stainless steel (SS), ceramic and ceramic with metal insert (CMI) brackets with SS wires of varying dimensions in a specially designed apparatus. The material used in this study were Ti, SS, Ceramic and CMI with 0.018″ slot manufactured with zero degree tip and -7° torque premolar brackets (3M, Unitek) and SS wires of varying dimensions (0.016″ round, 0.016 × 0.016″ square, 0.016 × 0.022″ rectangular and 0.017 × 0.025″ rectangular) used. The frictional resistance was measured using Instron Universal testing machine (Model no. 4301). The specimen population in each center composed each of 160 brackets and wires. Differences among the all bracket/wire combinations were tested using (one-way) ANOVA, followed by the student Newman Keuls multiple comparisons of means ranking (at P bracket in combination with 0.017 × 0.025″ SS rectangular wire produced significant force levels for an optimum orthodontic movement with least frictional resistance. Ti brackets have least resistance and rectangular wires produced significant force. These can be used to avoid hazards of Nickel. SS brackets revealed higher static frictional force values as the wire dimension increased and showed lower static friction than Ti brackets for all wires except the thicker wire. Our study recommends the preclusion of brackets with rough surface texture (Ti brackets) with SS ligature wire for ligating bracket and archwire are better to reduce friction.

  20. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  1. Effect of Dynamic Reheating Controlled by the Weaving Width on the Microstructure of GTA Bead-On-Pipe Weld Metal of 25% Cr Super Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2018-05-01

    Full Text Available Gas tungsten arc welding (GTAW with three different heat inputs controlled by the weaving width was performed to understand their effects on the microstructural changes during bead-on-pipe welding of super duplex stainless steel. The microstructure of the weld metals was categorized into three different types of zones: non-reheated, reheated type, and reheating-free zone. Even though single-pass welding with different weaving widths was employed, a reheated microstructure was detected, which has been previously observed with multiple pass welding. This phenomenon was called “dynamic reheating”, because it was produced by the weaving operation during welding regardless of the weaving width. The categorized area fraction varied with the weaving width change. Electron backscatter diffraction (EBSD results at the edge (the area near the fusion line of the low-heat-input condition indicated a higher austenite volume fraction and a lower Cr2N fraction than that of the medium heat input condition. Thus, it described an inverse relationship, because higher heat input provided a lower austenite fraction. In addition, it was observed clearly that the austenite fraction at the medium heat input condition was dramatically increased by reheating, while the Cr2N fraction was reduced. Regardless of the weaving width, reheating contributed to the increase of the austenite fraction, further reducing the Cr2N quantity. The edge areas in the map showed an inverse relationship in the reheated area fraction between low heat input and medium heat input. For this reason, the austenite fraction on the weld metal was determined not only by the heat input, but also by the amount of reheating.

  2. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  3. Corrosion protective performance of amino trimethylene phosphonic acid-metal complex layers fabricated on the cold-rolled steel substrate via one-step assembly

    Science.gov (United States)

    Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi

    2018-06-01

    Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.

  4. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  5. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted sp